
Doctoral Dissertation

A Study on Privacy-Preserving Route Planning
for Smart Mobility Applications

Francis Jerome G. Tiausas

November 24, 2023

Graduate School of Science and Technology
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Francis Jerome G. Tiausas

Thesis Committee:
Professor Keiichi Yasumoto (Supervisor)
Professor Kazutoshi Fujikawa (Co-supervisor)
Professor Youki Kadobayashi (Co-supervisor)
Associate Professor Hirohiko Suwa (Co-supervisor)
Assistant Professor Yuki Matsuda (Co-supervisor)

A Study on Privacy-Preserving Route Planning
for Smart Mobility Applications ∗

Francis Jerome G. Tiausas

Abstract

Route Planning Services (RPS) are a core component of autonomous personal
transport systems which facilitate safe and efficient navigation of dynamic urban
environments. However, conventional RPS also require the disclosure of the user’s
origin and destination as input and the computed route as output which is a
major privacy concern. Though a number of privacy-preserving RPS have been
developed over the past decade, most are rendered impractical by the increased
communication and processing overhead they entail. In this dissertation, the core
challenge is to develop an RPS where: (1) route privacy is objectively quantified,
(2) Utility, Performance, and Privacy objectives are adequately satisfied, and (3)
the produced routes are valid and close-to-optimal.

The core idea is to use Private Information Retrieval (PIR) over partitions of a
road network (distributed across multiple devices) to facilitate privacy-preserving
route planning. To satisfy the different system objectives, this was then combined
with Multi-Objective Genetic Algorithms (MOGA) to discover acceptable trade-
offs between said objectives. However, this optimization step was found to be
rather slow, and did not protect the intermediate route at all.

Thus, an improved approach called Hierarchical Privacy-Preserving Route Plan-
ning (HPRoP) was developed, combining Inertial Flow partitioning with a novel
route planning heuristic which distributes route planning tasks across multiple
levels to protect the entire route. Metrics were also formulated to quantify the pri-
vacy of the source/destination points (endpoint location privacy), and the route

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, November 24, 2023.

i

itself (route privacy). Evaluations on the road network of Osaka City showed
that HPRoP reliably produced routes that deviate only by ≤ 20% in length from
optimal shortest paths, while being able to complete routes within ∼ 25 seconds
despite using PIR. Moreover, more than half of the produced routes achieved
near-optimal endpoint location privacy (∼ 1.0) and good route privacy (≥ 0.8).

Keywords:

Distributed route planning, Private Information Retrieval, Multi-objective Opti-
mization, Edge computing

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Statements . 3
1.3 Organization of Dissertation . 5

2 Related Literature 6
2.1 Smart Mobility and Privacy . 6
2.2 Route Planning Systems (RPS) 6
2.3 Privacy-Preserving RPS (P2RPS) 7

2.3.1 Structured Encryption-based Techniques 8
2.3.2 PIR-based Techniques . 8
2.3.3 Other Encryption-based Techniques 9
2.3.4 Other Privacy Techniques 10

2.4 Multi-objective Optimization . 11

3 Assumptions and Key Ideas 12
3.1 Assumptions . 12

3.1.1 Road Network Model . 12
3.1.2 Deployment Environment 13
3.1.3 Network Architecture . 14
3.1.4 Threat Model . 15
3.1.5 Privacy-Preservation Mechanisms 15
3.1.6 Privacy-Preserving Route Planning Service (P2RPS) . . . 15
3.1.7 Privacy Scope and Limitations 16

3.2 Key Idea . 16

iii

4 Practical PIR-based Route Planning via Multi-Objective Op-
timization (P2RoP-MO) 19
4.1 Assumptions . 21
4.2 Key Idea . 22
4.3 Mathematical Formulation . 22

4.3.1 Processing Throughput . 23
4.3.2 Privacy Protection Level 25
4.3.3 Travel Time Accuracy . 25
4.3.4 Objective Functions . 27

4.4 Multi-objective Optimization . 28
4.5 Evaluation . 29

4.5.1 Mobility and Vehicle Trip Data 29
4.5.2 NSGA-II Configuration . 30
4.5.3 Experiment Setup . 30
4.5.4 Experiment Results . 33

4.6 Summary . 33

5 HPRoP: Hierarchical Privacy- Preserving Route Planning 36
5.1 Models and Assumptions . 36

5.1.1 Road Network Partitioning Model 36
5.1.2 Approximate Shortest Path Model 38
5.1.3 Assumptions . 40

5.2 Key Idea . 40
5.2.1 Exact Partial Region Dijkstra’s Algorithm (EPR-D) 41
5.2.2 Approximate Partial Region Dijkstra’s Algorithm (APR-D) 42

5.3 Privacy Metrics . 43
5.3.1 Endpoint Location Privacy Model 43
5.3.2 Route Privacy Model . 44

5.4 Hierarchical Privacy-Preserving Route Planning 46
5.4.1 Private Information Retrieval (PIR) 46
5.4.2 Inertial Flow Partitioning 47
5.4.3 Distributed Architecture 48
5.4.4 Heuristic Algorithm . 49
5.4.5 Route Privacy Mechanism 53

iv

5.4.6 Shortcut Connections . 54
5.5 Evaluation . 56

5.5.1 Environment . 57
5.5.2 Methodology . 57
5.5.3 Results . 58

5.5.3.1 Effect of Shortcut Connections 58
5.5.3.2 Optimal Route Approximation 60
5.5.3.3 Endpoint Location Privacy 61
5.5.3.4 Route Privacy 61
5.5.3.5 Route Completion Time 64
5.5.3.6 Memory Usage 64
5.5.3.7 Pre-processing Time 65

5.5.4 Discussions . 66
5.5.4.1 Optimal Route Approximation and Actual Route

Lengths . 66
5.5.4.2 Scalability . 68
5.5.4.3 Improving Route Completion Times 69

5.6 Summary . 70

6 Conclusion 71
6.1 Summary . 71
6.2 Future Work . 72

Bibliography 75

Publication List 82

v

List of Figures

4.1 (Left) Service Region divided into 4x4 grids/partitions. Source
and Destination partitions can be a combination of multiple base
partitions for better privacy. (Right) Each partition has at least
one RSU (blue) and edge server (orange). Edge servers form a
mesh network. 20

4.2 Practical route privacy preservation achieved through combining
privacy-cloaked sections (orange lines) with non-privacy-cloaked or
intermediate sections (red lines) 21

4.3 (Left) Mean travel time accuracy A(q) and Selected Node Inter-
section Ratio rq; (Right) Processing Throughput P (q) to actual
processing time 1

P (q) (in seconds) with empirically-found values for
P (q)max = 5.0 (five queries every second) and λ = −1.6. 26

4.4 Performance of NSGA-II, L-BFGS-B, and SLSQP in optimizing
the individual objectives (P (q), V (q), A(q)) and individual utility
(U(q)) . 32

4.5 Comparison of execution times between different algorithms . . . 32

5.1 Types of shortest paths stored by each partition 39
5.2 Queried Partitions using Dijkstra’s algorithm to calculate two routes

with the same origin but different destinations (∼ 1 km away from
each other). The numbers indicate how many queries were handled
by each partition. 45

5.3 Road network graph of Osaka City, Japan hierarchically-partitioned
using the Inertial Flow algorithm 47

5.4 Cloud-based Architecture (Left) vs Distributed Architecture (Right) 48
5.5 Initialization: Find SP between lowest-level partitions containing

s (blue circle) and d (green) separately. 50

vi

5.6 Initialization: Use discovered path as basis route (purple line) for
the next level . 50

5.7 Source Subroute Conn.: Find and connect source subroute (blue
line) to basis route (purple line) 50

5.8 Dest. Subroute Conn.: Find and connect dest. subroute (green
line) to basis route (purple line) 50

5.9 Basis Route Merging: Merge routes and use as new basis route
(purple line) . 50

5.10 Demonstration of different shortcut connection strategies for im-
proving the heuristic algorithm’s performance against the base case
(Left), where the dark red shape represents the starting partition,
and the lighter red shapes represent the partitions it connects to.
The black outline represents the starting partition’s parent. (Mid-
dle) uses Same Parent Shortcuts, while (Right) uses 1-hop Neigh-
bor Shortcuts. 56

5.11 Distribution of Optimal Route Approximation results for different
Shortcut Connection methods . 58

5.12 Comparison of total Route Errors for different Shortcut Connection
methods . 58

5.13 Distribution of Pre-Computation Times for different Shortcut Con-
nection methods . 59

5.14 Distribution of Optimal Route Approximation results using APR-
D, EPR-D, and HPRoP . 59

5.15 Distribution of Route Privacy Φ(Q∗) results for APR-D, EPR-D,
and HPRoP . 61

5.16 Visualization of Queried Partitions for APR-Dijkstra (Center), EPR-
Dijkstra (Right) and HPRoP (Left) for the same route. Numbers
indicate partitions that were queried multiple times. 62

5.17 Distribution of Optimal Route Approximation and Route Privacy
results using HPRoP for 4,000 test routes. Note that both axes
were reoriented to show the best results on the lower left. 63

5.18 Distribution of the required number of queries for route completion 63
5.19 Distribution of total PIR retrieval times in seconds 63

vii

5.20 Distribution of Per-Partition Memory Usage (in MB) for the dif-
ferent approaches . 65

5.21 Distribution of Per-Partition Pre-processing Time results (in sec-
onds) for the different approaches 65

5.22 Visualization of differences in HPRoP routes at 1.19 < α(rs,d) <

1.2: (Left) shows an example of minimal deviation (∼ 1.0 km) from
the actual SP; (Right) shows an example of maximal deviation
(∼ 5.63 km) from the actual SP 66

5.23 Visualization of differences in HPRoP routes with an Optimal
Route Deviation between 0.95 km and 1.0 km; (Left) shows an ex-
ample with good Optimal Route Approximation (∼ 1.035); (Right)
shows an example with bad Optimal Route Approximation (∼ 1.162) 67

5.24 Relationship between Optimal Route Approximation and Optimal
Route Deviation (difference between lengths of HPRoP’s route and
the actual shortest path) . 67

5.25 Maximum values for Optimal Route Approximation given a se-
lected percentage of all produced routes 68

5.26 Maximum values for Route Completion Time given a selected per-
centage of all produced routes . 68

viii

1 Introduction

1.1 Background

Route Planning Services (RPS) are web-based applications which can calculate
routes or paths between two different locations in a transportation network ac-
cording to some criteria (e.g. shortest distance, least time, least cost, etc.) given
by the service user. They are therefore indispensable navigational aids for ev-
eryday commuters, vehicle operators, autonomous vehicles, and so forth. Never-
theless, use of (conventional) RPS is not without their risks — especially when
it comes to privacy. Conventional RPS implicitly require the disclosure of two
types of user data: (1) the user’s origin and destination, and (2) the computed
route between those locations. That is, said RPS would not be able to compute
the route without (1), and the user has no reason to use the RPS if it cannot
produce (2). Herein lies the privacy risk. Analysis can be conducted on the
aforementioned user data to reveal points of interest (POIs) [1] relevant to a par-
ticular user — such as their places of work or residence. Further, these POIs can
also reveal highly-sensitive information about users’ political, sexual, or religious
tendencies [2]. All of these expose users to massive personal risks such as tar-
geted criminal acts, mass surveillance, discrimination, etc. when said data is not
handled properly, or falls into the wrong hands — as evidenced by the rise in
high-profile data breaches of the past decade. Consequently, this may also lead
to the loss of public trust and the threat of legal action on the Service Providers
(SP) themselves. It is therefore quite clear that protecting user location and route
data is very important in any modern RPS.

With this in mind, many researchers have begun to focus on devising novel
privacy-preservation mechanisms and incorporating them into RPS. For instance,
privacy-preserving protocols for querying road traffic data have been developed

1

for Vehicle Ad-hoc Networks (VANETs). These either offload the computation
cost of route planning onto the vehicle itself [3–5] or an external trusted entity [6,7]
to preserve privacy. The latter are already done by most modern RPS, while the
former are closer to being offline on-board navigation systems (ONS) than actual
RPS. Some approaches use Structured Encryption (SE) schemes [8–10] to provide
privacy-protection for both user queries and the road network data itself. These
are relatively lightweight and efficient, but come at the cost of inherently leaking
some query-related information which can be analyzed to circumvent privacy
protections. Still other approaches use Private Information Retrieval (PIR) [11],
a data exchange protocol with strong privacy guarantees but is often considered
to be too computationally-heavy to be applied naively on large road networks
(e.g. of a medium-sized city). As such, only a few recent examples of PIR-based
RPS exist. The approach in [12] compresses road network graphs in a novel PIR-
queryable manner but results in longer pre-processing and query response times.
The approach in [13] partitions the road network into disjoint subgraphs which
are individually retrieved via PIR and then used by a local routing algorithm on
the user’s device. This requires making multiple PIR queries which consequently
results in longer route completion times. Aside from these, other approaches
[14, 15] utilize encryption techniques with stronger privacy guarantees but are
also much less efficient and flexible. This, in turn, makes them less practical for
a real-time RPS with a dynamic underlying road network.

A common issue across the aforementioned works seems to be that achieving
a certain level of privacy always comes at the cost of some other aspect of the
RPS — such as its Utility (e.g. whether its routes are accurate) or its Perfor-
mance (e.g. how long it takes to calculate routes). This trade-off is typically
fixed from the outset for most approaches, but PIR-based approaches are poten-
tially a bit more flexible in this regard. That is, in PIR-based RPS, larger road
networks mean having larger route databases and, consequently, slower route re-
trieval times. These large road networks, however, can presumably be subdivided
into smaller, separate sub-networks, each with their own route database. This
idea of making multiple PIR queries on these much smaller databases would be
much faster and more memory-efficient than a single PIR query on one consider-
ably larger database. This is even more advantageous if these smaller databases

2

can be distributed across several machines (either virtual instances or as physical
edge servers) which can each do independent query processing. This is the most
basic idea behind the Privacy-Preserving Route Planning Services — henceforth
referred to as “P2RPS” for the sake of brevity — that will be presented in this
dissertation. With this basic approach, a client application on the user’s device
can then make PIR requests to these separate databases, decrypt the resulting
PIR responses, and then construct the final route using the decrypted partial
routes on the local device. On the side of the SP, this also provides a greater
degree of control over the trade-off between Privacy, Utility, and Performance
which would have been otherwise static — as is currently the case with existing
approaches. This can potentially lead to better Quality-of-Service (QoS) which
is a crucial step in making P2RPS practical to use in real-world applications.

In this dissertation, we discuss two PIR-based RPS approaches. The first
approach, Practical PIR-based Route Planning via Multi-objective Optimization
(P2RoP-MO), utilizes a Multi-objective Genetic Algorithm (MOGA) to discover
solutions that optimize the trade-offs between the three QoS objectives to sat-
isfy user preferences. The optimization step itself, however, was found to be
rather impractical since it slows down response times and holds queries back in
order to batch them. More importantly, the approach only offers “partial” route
privacy since the intermediate route is not protected to help reduce processing
time but is a crucial vulnerability which can be used by adversaries to deduce
the actual route. The second approach, Hierarchical Privacy-Preserving Route
Planning (HPRoP), is a direct improvement over P2RoP-MO and uses a novel Hi-
erarchical Route Planning algorithm alongside other innovations to eliminate the
vulnerabilities of the former while greatly improving the QoS across-the-board.

1.2 Problem Statements

Though the core idea seems rather simple and straightforward, developing a func-
tional prototype P2RPS around this concept is not without its own set of unique
and difficult challenges.
Challenge 1: How can we objectively quantify route privacy?

As existing works have an all-or-nothing approach to privacy, there has not

3

been any need to quantify the privacy of a route result received from the RPS.
Since both of the approaches proposed here implicitly reduce Privacy to achieve
better Utility and Performance, a way to quantify “partial” privacy should be
considered. For the approach based on MOGA, the number of nodes (rq) within
the grid containing the partial routes as well as its geographical area (aq) are
used to describe privacy. For the approach based on HPRoP, a pair of novel
privacy metrics — endpoint location privacy and route privacy — were instead
formulated in order to describe route privacy in a more general manner.
Challenge 2: How can we control the trade-off between Privacy, Utility,
and Performance in a P2RPS?

In existing approaches, the trade-off between these three QoS objectives re-
mains relatively static throughout the operational lifetime of the P2RPS which
may run counter to the SP’s ideal goal of providing providing good QoS to the
service’s users. Our two approaches attempt to solve this by first performing a
Hierarchical Partitioning of the road network such that multiple different-sized
partitions can be used for any chosen location within it. P2RoP-MO uses a sim-
ple grid-based system for its partitioning during its pre-processing phase, and a
Multi-Objective Genetic Algorithm (MOGA) during its routing phase to optimize
the size and number of nodes in the origin and destination partitions. HPRoP,
on the other hand, uses Inertial Partitioning to divide the road network into
balanced partitions so that: (1) a base level of Endpoint Location Privacy is guar-
anteed, and (2) minimize PIR execution times during its pre-processing phase. It
then uses a novel Hierarchical Route Planning Algorithm to minimize the num-
ber of PIR requests while keeping the accuracy of the route good, and the route
privacy at an adequate level.
Challenge 3: How can we combine partial routes within and between
subsections to arrive at a valid and close-to-optimal final route?

This challenge is exclusive to both of the P2RPS described here as it relies
on dividing up the road network route data and distributing those to different
partitions. Since the partitions are technically self-contained subgraphs of the
larger road network, how can the “partial” routes from each sub-graph be com-
bined to produce a valid and close-to-optimal final route? In P2RoP-MO, this
is resolved by using a pre-trained predictive model called the Optimal Sequence

4

of Grids (OSG) in combination with allowing the intermediate route between
the origin and destination partitions to be non-private. HPRoP solves this using
the novel Hierarchical Route Planning Algorithm which creates a merged route
by computing multiple basis routes between partitions at different levels of the
hierarchy.

1.3 Organization of Dissertation

This dissertation is organized as follows. A comprehensive review of the recent
related works is presented in Chapter 2. Preliminary assumptions about the
deployment environment and the threat model, as well as key ideas about the
P2RPS briefly described at the end of Sec. 1.1 are discussed in Chapter 3. In this
dissertation, two PIR-based RPS approaches will be presented. The preliminary
approach, P2RoP-MO, is discussed and evaluated in Chapter 4, while that of
the improved approach, HPRoP, is done in Chapter 5. A brief summary of the
aforementioned approaches as well as some suggestions and plans for future work
are presented in Chapter 6.

5

2 Related Literature

This chapter covers recent works related to decentralized route planning systems
and privacy-preserving mechanisms in route planning. Also, works providing
important background information on private information retrieval (PIR) will be
discussed.

2.1 Smart Mobility and Privacy

Smart Mobility is often considered as one of the key areas which characterize
Smart Cities in practice as it has widespread and far-reaching effects on the
quality-of-life of the city’s inhabitants such as reduced congestion, increased
safety, and improved transfer speed [16]. Since Smart Mobility applications typi-
cally make use of sensitive spatio-temporal data, ensuring that they can guarantee
an adequate level of privacy is also of great importance. Examples of these can
be found across different domains such as human mobility monitoring and pre-
diction [17,18], ride-sharing platforms [15], route planning [19,20], etc.

2.2 Route Planning Systems (RPS)

Route planning systems use route planning algorithms to devise paths across a
particular road network. Road networks are typically represented as a network
graph G = (V, E) where V are the vertices representing road intersections and
E are the edges representing road segments. The objective is usually to find the
shortest point-to-point path between an origin vertex s ∈ V and a destination
vertex d ∈ V . Classical algorithms like Dijkstra’s and Bellman-Ford [21] calcu-
late routes by repeatedly scanning connected vertices from some source point and
assigning them weights until a path to the destination point is found. Modern al-

6

gorithms improve upon this by leveraging the unique properties of road networks.
ALT [22] pre-computes distances to fixed landmarks and uses them as lower
bounds to inform a bidirectional A* search [23]. Contraction Hierarchies [24]
pre-processes the network graph to establish “shortcut edges,” facilitating faster
route calculation between distant points. Customizable Route Planning [25] uses
the network graph’s topology in their metric-independent hierarchical routing
method. Recent approaches based on federated learning have also demonstrated
how to construct a lightweight shared prediction models to determine shortest
paths such as in [26, 27]. Using these models, the best route between any origin
and destination point at any given time can be determined without the need for
conventional route planning algorithms. These models are also kept updated by
periodically sharing only model weights from the local system to decrease both
data transfer costs and private data leakage.

2.3 Privacy-Preserving RPS (P2RPS)

As previously mentioned, deploying any of the conventional, non-P2RPS on a
server inevitably means that the user’s origin and destination must be divulged
so that the final route can be computed. A simple way to solve this is to deploy
those same RPS on the client-side, but this creates its own problems. These
include downloading large amounts of road network data, having to continuously
update said data through additional downloads, and performing computationally-
intensive route planning tasks on more resource-constrained machines. In short,
deploying (conventional RPS) on the server compromises privacy while deploying
on the client degrades functionality.

This highlights the need to focus on devising novel P2RPS as a lot of re-
cent research works have done. The most recent techniques generally fall under
three categories: (1) Structured Encryption-based, (2) PIR-based, and (3) Other
encryption-based schemes. In addition, a number of schemes for privately query-
ing road traffic information with applications to vehicle navigation systems also
exist, but, since these either perform route planning on the vehicle itself [3–5] or
an external trusted entity [6, 7], these works have been excluded here.

7

2.3.1 Structured Encryption-based Techniques

Structured Encryption [28] refers to techniques that allows data structures to be
encrypted such that these can be queried later in a privacy-preserving manner.
They are typically more efficient in terms of computation time and communica-
tion overhead at the cost of leaking a small amount of information about the data
and the queries. The approaches in [9, 10] use structured encryption to find the
shortest distance between vertex-pairs in encrypted graphs. These, however, are
only able to find shortest distance values instead of the actual shortest paths, and
are vulnerable to collusion between the storage and computing servers — which
are essentially the same entity in the RPS context. In contrast, [8] is able to
retrieve the actual shortest paths on a single-server setup which effectively elimi-
nates the aforementioned issues. However, pre-computing the encrypted database
for large sparse graphs (i.e. with |V | ≥ 10, 000 and |E| ≥ 30, 000) took upwards
of 16.5 hours and produced very large files (around 4.4 GB), rendering it imprac-
tical for dynamic scenarios such as real-time route planning. Additionally, while
all three have heavily-constrained leakage profiles, some of the information they
inherently leak may be detrimental to route privacy. For instance, the number
of potential query elements (i.e. the database size) can be used to determine the
specific subgraph of the road network graph being used. Query repetitions and
total queries for route completion can be jointly analyzed across multiple sessions
to deduce the actual route. Different approaches may also leak other information
in addition to the ones mentioned here.

2.3.2 PIR-based Techniques

PIR [11] is a technique that allows remote databases to be queried in such a way
that the retrieved element would not be revealed to the service provider or any
third-party entity. PIR-based schemes, therefore, have slightly stronger privacy
guarantees in that repeated queries and underlying database sizes are not leaked,
but have the disadvantage of much higher communication overhead. While most
modern implementations [29–32] have become very communication-efficient (i.e.
up to O(

√
N)), they remain impractical for accessing a database of All-Pairs of

Shortest Paths (APSP) in a large city. This is because PIR schemes need to go

8

through each individual element to avoid leaking information about the element
being retrieved [33]. The approach in [12] describes a method for compressing
road network graphs via sign-decomposition combined with Yao’s garbled circuits
[34] and PIR to protect both user queries and said graph, giving it strong end-
to-end privacy guarantees. However, it also has relatively long pre-processing
and query response times since the protocol must operate on compressed and
encrypted data at all times. The approach in [13] partitions the network graph
into disjoint sections (i.e. each consisting of a separate subgraph) which can
then be retrieved via PIR during local computation of a shortest path during the
routing phase. While this requires minimal pre-processing time, the total route
completion time remains rather long since the locally-run routing algorithm would
need multiple PIR queries to complete a single route.

As this work aims to achieve strong privacy guarantees for users’ routes while
also meeting utility and performance targets, PIR was chosen as the core privacy-
preservation mechanism for the approaches presented in this dissertation. Unlike
structured encryption, it does not leak information about query repetitions, which
can potentially be analyzed by an adversary to distinguish between different route
requests by the same user.

2.3.3 Other Encryption-based Techniques

Other encryption-based schemes with much stronger privacy guarantees also ex-
ist but they are also much less efficient than the previous two. For instance, [14]
allows users to request routes between arbitrary source and destination parti-
tions, as well as within said partitions in a privacy-preserving manner using 1-
of-n Oblivious Transfer [35]. However, the scheme needs to compute APSP for
the aforementioned partitions during the routing phase, drastically slowing down
query response times. Similarly, the work in [15] uses Paillier’s Encryption to
privately query outgoing edge weights from vertices in the road network graph
which, in turn, is used to inform a route planning algorithm running locally on
the user’s own device. The scheme, unfortunately, has a very high communication
overhead since it has to make a separate query for every vertex that needs to be
“scanned” by the routing algorithm.

9

2.3.4 Other Privacy Techniques

Aside from the above encryption-based privacy techniques, several other ap-
proaches of interest are worth mentioning here. Confidential Computing [36] is a
data protection paradigm that aims to protect “data in use” as opposed to data
at rest (i.e. in storage) and data in motion (i.e. being transmitted through the
network). It makes use of technologies such as Trusted Execution Environments
(TEE) [37] with Memory Encryption [38] to provide strong privacy and security
guarantees (typically enforced at the hardware-level) for both data and programs
running within its scope. These guarantees include protecting data in use from
being viewed and/or modified, and protecting the code from being modified by
unauthorized entities. In the context of RPS, it can potentially be much more
efficient than any of the previously-mentioned encryption-based techniques since
it does not require multiple rounds of communication and can perform more fre-
quent operations on symmetric key encrypted memory (much lighter than public-
key encrypted memory) within the TEE. However, TEE seem to be particularly
vulnerable to side-channel attacks [39, 40] since they inevitably have to interact
with other parts of the system (e.g. shared caches, etc.) which may not be as
secure. Moreover, while TEE architectures have recently started appearing in
modern processors, such capabilities may not be present in the existing edge-
server infrastructure of Smart Cities and will likely require costly infrastructure
upgrades to deploy. Nevertheless, it remains a potentially promising approach
for the route planning use case.

Other privacy techniques are based around Differential Privacy or DP [41]
which states that a mechanism is differentially private if its output remains the
same even when one record from a dataset is removed or altered. These typically
work by adding “noise” to the records (or the results) to improve privacy. In
a P2RPS, the DP has to be framed from the point-of-view of an adversary that
wants to rediscover the association between a specific route and the route privately
retrieved by the user — and that the chosen DP-based technique should make
this difficult. No approaches currently use these techniques in the context of route
privacy as of the time of this writing, but it could still be useful in (1) devising
metrics for evaluating route privacy, and (2) adding noise to the selection of origin
and destination points to improve privacy.

10

2.4 Multi-objective Optimization

Finally, it should also be considered that privacy is only one among several objec-
tives for a route planning service. Thus, there is a need to balance privacy with
other objectives such as execution time and result accuracy. A Multi-Objective
Optimization (MOO) scheme is therefore needed to simultaneously and adap-
tively balance these objectives. As having multiple equally-important objectives
makes it difficult to compare two solutions with each, the Pareto optimal dom-
inance must be considered instead. Approaches to solving MOO problems are
generally classified into two types: a priori and a posteriori. In the a priori ap-
proach, the multi-objective problem is converted to a single-objective one through
aggregation and the use of weights. A posteriori methods, on the other hand,
aim to produce all the Pareto optimal solutions. Evolutionary algorithms such as
the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [42] attempt to find
a Pareto optimal solution in a single run and have become standard approaches
to solving MOO problems. In particular, NSGA-II sorts solutions based on their
dominance level where a solution that is non-dominated is ranked 1 while domi-
nated ones are ranked 2 and so on. Lower ranked solutions have a higher chance
to be selected to generate a new population.

The preliminary approach presented in Chapter 4 is based on NSGA-II which
is used to find close-to-optimal solutions to the Privacy, Utility, and Performance
objectives by varying the size and number of nodes within the partitions contain-
ing the exact origin and destination locations. The second approach presented in
Chapter 5 does not implement an optimization step and therefore does not need
to use any MOO algorithms.

11

3 Assumptions and Key Ideas

This chapter will first discuss the core assumptions about the road network model,
deployment environment, and network architecture, before moving on to discuss
key ideas behind the P2RPS in this dissertation. All information in this chapter
apply to the two approaches presented in this dissertation.

Table 3.1: Summary of Symbols used in Chapter 3
Symbol Description

G = (V, E) Road network graph with road segments E and intersections V

lG(u, v) Weight of a road segment having endpoints (u, v)

s, d Source (s) and Destination (d) vertices

rG(s, d) Path/route between s and d

LG(rG(s, d)) Total weight of path/route rG(s, d)

RG(s, d) All possible paths between s and d

ρG(s, d) Shortest path between s and d

R∗
G Set of all possible SPs between any two vertices in G

Lmax
G Weight of the longest SP in the set, R∗

G

Cpir A constant representing the change in PIR data retrieval times with
respect to database size

Np Average vertex count for some partition subgraph, p

3.1 Assumptions

3.1.1 Road Network Model

The road network is assumed to be modelled as a directed graph G = (V, E)
where the edges E represent road segments, and the vertices V represent ei-

12

ther road intersections or terminals. Each road segment e ∈ E is a directed
edge between two vertices u, v ∈ V such that e = (u, v), with parallel opposing
lanes being represented by two directed edges going in opposite directions. The
traversal cost for e is given by the edge weight, lG(u, v), which is a numerically-
quantifiable property of that particular road segment. It can represent properties
such as the physical length of that road segment, the time it takes to travel
through it, the monetary cost to use it (for example, in the case of toll roads),
etc. It is additionally assumed that edge weights can have dynamic values rather
than having a single fixed value at the outset — for instance, when representing
travel times through that particular road under different traffic conditions. In
the practical case, travel times are a better metric for edge weight in the route
planning context, but, due to the lack of available data, road lengths are used
as a basis instead. A route or path between two vertices s, d ∈ V is defined
as a sequence of vertices rG(s, d) = (vsd

1 , vsd
2 , . . . , vsd

n−1, vsd
n) where the first vertex

vsd
1 = s and the last vertex vsd

n = d. The total weight of rG(s, d) is given by
LG(rG(s, d)) = ∑|rG(s,d)|−1

i=1 lG(vsd
i , vsd

i+1). Denoting all possible paths between s, d

as RG(s, d), the Shortest Path is then:

ρG(s, d) = arg minr∈RG(s,d) LG(r) (3.1)

3.1.2 Deployment Environment

The P2RPS is assumed to be deployed in a Smart City environment equipped with
road-side units (RSUs) and edge servers throughout its network (i.e., integrated
into traffic lights and lamp posts along city roads and highways). Road-Side
Units (RSUs) are resource-constrained low-power computational node devices
built up along city roads and highways to continuously collect data on the current
traffic condition [27]. It is also assumed that the traffic data gathered by these
RSUs and then forwarded to the edge servers which then automatically adjust
the edge weights for the underlying road network during operation. Edge servers
are computational nodes which are considerably more powerful than the resource-
constrained RSUs, and are better suited for heavier data processing tasks. This
Smart City infrastructure is assumed to provide real-time traffic monitoring with
the aim of optimizing resource usage (i.e. roads) and maximizing service utility

13

for its users (citizens). More importantly, it is also assumed that the P2RPS
is operated over previously-deployed infrastructure. Said infrastructure is also
assumed to be still able to perform additional functions (i.e. such as distributed
route planning) alongside its normal functions.

The primary users of the P2RPS are assumed to be vehicle operators such
as personal car owners, taxi drivers, autonomous vehicles, etc. as they are the
ones most able to utilize the routes calculated over the urban road network.
Pedestrians can, of course, still use the P2RPS to calculate walking routes, but it
is typically better for them to rely on public transport for longer distances. Note
that both approaches described in this dissertation can readily be adapted to
work with public transportation networks — as long as they can be represented
by network graphs and combined with the existing road network graph. However,
this application is currently outside the scope of this dissertation and reserved fo
future work instead.

The deployment environment is assumed to be limited to a service region de-
fined by a predetermined geographical area of arbitrary shape and size that has
fixed bounds. This area is assumed to have comprehensive road network data
available such that an RPS can be used to calculate routes within it. This road
network is assumed to be represented as a graph that can be partitioned in some
arbitrary manner to produce multiple subgraphs henceforth called partitions.

3.1.3 Network Architecture

Each partition is assumed to have both RSUs and local edge servers deployed
over existing road network infrastructure. Each RSU is able to communicate
with vehicles and other RSUs in the same partition, but not with RSUs of other
partitions. Edge servers have better processing and data storage capabilities, and
work in collaboration with RSUs to process and respond to all queries within a
reasonable time. They handle local user queries, divide user queries into routing
tasks, distribute local routing tasks to local RSUs, redirect out-of-scope tasks to
other partitions, and execute PIR requests. Unlike RSUs, each edge server is also
capable of communicating with the edge servers of other partitions.

Partitions are assumed to be connected via mesh network and only the transfer
of system-relevant data is considered in this dissertation. Wired fiber links are

14

assumed to exist between any two devices (e.g., RSUs) within each partition to
ensure that data transfer is consistent, and that only transfer rate and transferred
data size are relevant. Additionally, the same type of links are assumed to exist
between any two edge servers across the entire service region. Data transfer rates
are also assumed to be static throughout the duration of operation.

3.1.4 Threat Model

It is assumed that all entities other than the user are potential threats — hence-
forth called adversaries — and that they have some kind of interested in gaining
access to the user’s unencrypted route information. Note that no distinction is
made between the service providers themselves and malicious third-parties in this
model. The kinds of information that can be leaked include the user’s: (1) ex-
act origin, (2) exact destination, and (3) the entirety of the calculated “route”
between these two locations.

3.1.5 Privacy-Preservation Mechanisms

We also define route privacy-preservation mechanisms to be methods or protocols
that grant some level of privacy in terms of the routes recommended to the users
of the system. Simply put, it is assumed that the adversary can know that a
certain user accessed the system and through which device (i.e. RSU or edge
server) the user accessed it, but should not be able to infer any route-related
information (as described in Sec. 3.1.4) from it.

3.1.6 Privacy-Preserving Route Planning Service
(P2RPS)

A basic RPS is assumed to take route planning requests from users as its input,
calculates routes for each request, and sends these routes back to the users as
its output. These requests are assumed to contain information about the origin
and destination of the requested route in some form. The approaches described in
this dissertation follow the same basic pattern but incorporates privacy-preserving
changes. For instance, input route planning requests are broken down into en-

15

crypted and unencrypted components, sent at different stages, to reduce the pri-
vacy leakage risk. Likewise, route calculation is changed to work with these kinds
of requests and produce output routes consisting of encrypted and unencrypted
components as well.

3.1.7 Privacy Scope and Limitations

In this work, the primary focus will be solely on preventing user route information
from being found out by an adversary based on the user’s interactions with the
RPS — more specifically, through the route planning requests described in Sec.
3.1.6. Protecting the identities of the users themselves is outside the scope of this
work. However, we also acknowledge that allowing user identities to be known
can indirectly allow adversaries to discover users mobility patterns — that is, the
routes actually taken by the user. For example, the SP can can likely leverage its
city-wide network of RSUs and Edge Servers to detect and track the presence of
a certain user connected to the Smart City WAN depending on which endpoints
are able to receive broadcast packets from a similar device at which times. In
this case, route information is gleaned not from the user’s queries but from other
attributes which are associated with the user’s identity (e.g. the MAC addresses
of their devices). The approaches in this work are unable to prevent these kinds
of attack, so we must consider it as an unfortunate limitation which has to be
resolved through additional privacy and security mechanisms.

3.2 Key Idea

The two P2RPS described in this dissertation use PIR to provide strong privacy
guarantees by protecting the database representation of the road network graph
used to calculate routes. Let us consider a case where a user wants to find a route
between two points within one partition, and where said partition is a subgraph
of the entire road network graph. During a pre-processing phase before the RPS
goes live, or during an update phase repeated at regularly-scheduled intervals
(e.g. every 10 minutes), the edge server for the partition calculates the All-Pairs
Shortest Paths (APSP) and stores them in a route database where each route is
indexed by its pairs of origin and destination vertices, (s, d). During the routing

16

phase, the client device encodes the desired origin and destination pair in a PIR
request and then send this to the server which has access to the aforementioned
route database. The server uses this PIR request to blindly retrieve an encrypted
record containing the desired route and send it back to the client device as a
PIR response. Finally, the client device can decrypt the PIR response and obtain
the desired route. Through PIR, the user is therefore able to retrieve any route
between any two locations within the partition using a single query (i.e. O(1))
with very high privacy.

This simple idea works well for a single partition, but applying the same for
an entire road network is infeasible in practice for two reasons: (1) it requires a
prohibitively large amount of storage space, and (2) pre-computing APSP infor-
mation for large road network graphs takes a very long time. Assuming a graph
with 10, 000 vertices, a longest path length of 20 vertices, and a 1-byte represen-
tation for vertex data, the total PIR database size is already be around 2 GB.
This is even larger for city-sized road networks such as Osaka City’s which has
∼ 99, 000 vertices (∼ 200.8 GB keeping all other parameters same). In short,
letting R∗

G = {r∗
G(u, v)|u, v ∈ V } and Lmax

G = LG(arg maxr∈R∗
G
|r|), the space

complexity for such an approach is O(|V |2 · Lmax
G). This issue is made even

worse by PIR since individual record retrieval times become slower with larger
database sizes. This has been verified through preliminary experiments where
data retrieval times were observed to scale linearly with database sizes by a con-
stant factor, Cpir, such that accessing a single route would have a time complexity
of O(Cpir · |V |2) ≈ O(|V |2) instead of the expected O(1).

Since time complexity is heavily dependent on space-complexity for PIR-based
approaches, existing works [12,13] have focused on tackling the space complexity
problem since pre-processing is assumed to be done offline only once. This is
not the case for real-world road networks, however, where traffic conditions can
change very quickly. One way to solve this is by distributing route data among
several edge servers such that each one only manages vertices for a distinct parti-
tion. This reduces the time complexity to O(|V |·Np) whereNp = 1/|P |·∑p∈P |Vp|
is the average vertex count per partition, while the per-partition space complexity
becomes O(Np · |V | · Lmax

G). These databases still need to be kept updated, but
it is much easier to do so in a distributed manner. Dividing and distributing the

17

data, however, does weaken privacy somewhat since the set of route data stored
on the accessed edge server is assumed known to the adversary. Other measures
must therefore be taken to ensure that route data is preserved — which is the
primary motivation for developing P2RPS in the first place.

18

4 Practical PIR-based Route
Planning via Multi-Objective
Optimization (P2RoP-MO)

In this preliminary approach, we consider a privacy-preserving RPS that has to
meet the three following service objectives:

• Travel Time Accuracy,

• Processing Throughput, and

• Route Privacy Protection Level.

Each of these represent the more general objectives of Utility, Performance, and
Privacy respectively. Travel Time Accuracy shows the ability of the RPS to
produce valid and close-to-optimal routes. Near-optimal is defined in terms of
the generated route’s total travel time compared to that of the optimal route.
Processing Throughput is measured by the system’s ability to process as many
user requests within a given time frame. Finally, Route Privacy Protection Level
ensures that a large part of the user’s route is concealed from both external
entities and the service provider itself.

Trade-offs exist between these three objectives such that maximizing one comes
at the cost of the other two. For instance, increasing the processing throughput
means compromising on either travel time accuracy or privacy protection, and
vice versa. In this chapter, the goal of optimization is to find the Pareto-optimal
sets for the Accuracy-Throughput-Privacy trade-off problem.

Optimization is done for the entire set of route requests within the given time
frame instead of individually. This is because processing throughput is considered

19

Figure 4.1: (Left) Service Region divided into 4x4 grids/partitions. Source and Desti-
nation partitions can be a combination of multiple base partitions for better privacy.
(Right) Each partition has at least one RSU (blue) and edge server (orange). Edge
servers form a mesh network.

from the system’s perspective where the processing time of each query can po-
tentially affect all other queries. Assuming a system with finite capacity, routing
tasks meant for the same partition are continuously added on to the same queues
and executed sequentially. Tasks that take too long to execute may bottleneck
other tasks when the partition is operating near maximum capacity. Thus, it is
better for the system to maximize the overall processing throughput to make all
queries complete within a reasonable time, instead of prioritizing certain queries.

Finally, the constraints of optimization can be relaxed by considering that
different users will have different preferences with regards to the objectives they
care the most about. Some users might prefer to receive route results faster at
the expense of accuracy, while others might prefer more accurate routes with
minimal privacy. It, therefore, makes sense to dedicate less computational power
on privacy-preservation on users that do not care much about it so that the users
that do care about it have more resources to work with. In other words, such
user preferences have to be considered by the RPS as well.

20

Figure 4.2: Practical route privacy preservation achieved through combining privacy-
cloaked sections (orange lines) with non-privacy-cloaked or intermediate sections (red
lines)

4.1 Assumptions

In this section, we consider a service region that has been partitioned into multiple
grids of fixed size as shown in Fig. 4.1. These grids will represent the partitions
for the sake of the basic PIR-based route planning described in Sec. 3.2. Given
an origin and destination location (s, d), we can consider the partitions, po and
pd, as the partitions where the highest-level of privacy is afforded and hence call
them the privacy-cloaked sections of the route. These are represented by the
orange lines in Fig. 4.2. Depending on the size of po and pd, a large section of
the route can exist outside this protected area. This section will be called the
intermediate section of the route, represented by the red lines. While this section
has functionally no privacy guarantees, some techniques for increasing the privacy
for this area will be proposed in subsequent sections.

It is also assumed that the route planning mechanism will at least need to
have two privacy-cloaked route requests (one for the origin, and one for the des-
tination), and one intermediate route request. Privacy-cloaked route requests, in
turn, will need information about specific partitions within the service region.
Thus, partition information requests (for both origin and destination partitions)

21

will also be needed. These requests contain information on which set of nodes
are belong to the partition for the purpose of finding the correct indices to be
used in PIR-based route planning. Finally, region information requests are also
needed to discover which partitions are available within the service region in the
first place. This request contains information on which partitions are available
and what their boundaries are as well

4.2 Key Idea

The key idea then is to adaptively select the optimization parameters for each
query such that system-level processing throughput, route privacy protection
level, and travel time accuracy objectives are achieved. The methods we consid-
ered are given by varying two parameters: (1) the number of retained intersection
nodes/vertices (rq), and (2) the size of the privacy-cloaked areas (aq). The num-
ber of nodes can be controlled by selecting a subset of the partition’s vertices to
be retained. Less vertices means faster route calculation times since it reduces
the database size that the PIR is dealing with. At the same time, however, the
produced routes might have longer than optimal travel times and be less private
due to the reduction in number of possible routes as well. Increasing the size of
the privacy-cloaked area, in contrast, guarantees privacy for a larger section of
the route, but greatly impacts route calculation times. Careful selection of the
parameters for each route request is therefore crucial to achieving system objec-
tives and satisfying user-level query preferences. To realize this, we formulated a
MOO problem and develop a MOGA-based heuristic algorithm to solve it.

4.3 Mathematical Formulation

Let Qt = {q1, q2, q3, ...} be the input representing the set of all queries received in
time window t, while P = {p1, p2, p3, ...} is a system parameter representing all
partitions in the service region. For each q, vector p′

q represents the candidate
partitions derived from optimal sequence of grids (OSG) [26] where tasks will
be assigned. Vector rq is an input parameter representing the ratio of selected
node intersections for the partitions in p′

q. Vectors vq, and eq are based on the

22

subgraphs of said partitions. They represent per-partition base counts of node
intersections and edge/road segments. For brevity, the following sections will use
the symbol “⊙” to denote element-wise multiplication of vectors (and matrices).

4.3.1 Processing Throughput

Processing throughput P(q) can be defined as a function of the total calculation
time of all requests processed by each RSU as mentioned in Sec. 4.1. These in-
clude: (1) the region info calculation time, (2) origin and destination partitions’
info calculation times, (3) initial route calculation time, (4) origin and destina-
tion partitions’ PIR route calculation times, and (5) the overall communication
overhead for the query. To simplify calculations, it is assumed that the level of
system load (i.e., simultaneous active queries per RSU) is normal and that none
of the RSUs are overloaded. This is formalized and explained further later on
alongside the discussion on PIR route calculation in Eqn. 4.3. This assumption
must be made because the effect of system load on the processing time result can-
not be directly controlled by the optimization parameters: number of retained
node intersections rq, and size of the privacy-cloaked area aq. This implicitly
assumes that there are enough RSUs to properly handle the requests that might
be generated from each routing task. Proper handling for this requires load bal-
ancing mechanisms which is outside the scope of the optimization discussed in
this chapter.

Given normal system load, the calculation time for the region information
request can be considered a constant as it is not expected to change drastically
from one query to another, and can be pre-calculated to further reduce its effect
on the processing time. The constant Cri is defined to represent the typical region
info calculation time based on preliminary evaluation results.

The partition information request calculation time can also be assumed to be
constant, and can be pre-calculated by the RSUs independently of routing tasks
and should simply be a matter of relaying already existing data. Thus, we also
represent this with a constant, Cpi. The total information calculation time can
then be defined as a single constant, Cit = Cri + 2 · Cpi.

The initial route calculation time, R(p′
q), estimates the route calculation time

between the query q’s origin and destination partition pair, p′
q. Typically, route

23

calculation time would be proportional to the size and structure of the graph.
However, as the use of a pre-trained model based on the optimal sequence of grids
(OSG) is used by the proposed system, the time needed to make the initial route
decision is only equivalent to the time needed to calculate Ê(ps, pd, τps) once.
Thus, given normal system load, this is assumed to be equivalent to a simple
constant time lookup Crc corresponding to the typical initial route calculation
time obtained during preliminary evaluations. This is therefore defined as:

R(p′
q) = ExecT ime(Ê(ps, pd, τps)) ≈ Crc (4.1)

The route calculation defined by R(p′
q) and calculated via OSG represents

the preliminary route calculation prior to adding the privacy-protected sections.
Privacy-protected route calculation time is represented by I(p′

q) or I(v′
q, xq), as

defined in Eq. 4.2, which is the time taken by private route retrieval using PIR.

I(p′
q)←→I(v′

q, xq) = (Csearch + Cload) · (xq · v′
q)2 (4.2)

where v′
q = (vq⊙rq) is the actual selected node count for each partition, xq is an

indicator vector with a value of 1 if the partition uses PIR, while Csearch and Cload

are the PIR search time scaling factor and PIR database load time scaling factor
respectively. The vector xq ensures that PIR is done only on the all-pairs shortest
path databases of the cloaked areas (i.e., the origin and destination partitions),
and keeps I(p′

q) low by minimizing resource-intensive PIR operations.
Since PIR requires a lot of computation power, we also constrain RSUs in

each partition to have a capacity in terms of the number of PIR requests to be
processed at each time slot t. This constraint is represented as

∀p ∈ P, |{q | q ∈ Qt, src(q) = p ∨ dst(q) = p}| ≤ Cap(p) (4.3)

where Cap(p) is the computation capacity of partition p, and src(q) and dst(q)
are source and destination partitions in q. The overall communication delay for
a query is then:

C(p′
q) = F (lq)⊙ ζ(p′

q) (4.4)

where ζ(p′
q) estimates the output size in bytes, and F (lq) estimates the per-link

transfer time per byte (i.e., inverse of bandwidth) where vector lq is represented

24

by an array of tuples corresponding to each partition in p′
q and the next partition

after it. The processing throughput for the candidate partitions p′
q associated

with a query q is defined as:

P(q) = 1
1T · [R(p′

q) + I(p′
q) + C(p′

q)] + Cit
(4.5)

which represents the processing throughput (number of queries per unit time)
before normalization. Fig. 4.3 (Right) shows the effect of node intersection ratio
rq on the normalized P (q).

4.3.2 Privacy Protection Level

To preserve location privacy, PIR is applied on critical sections of the route which,
to minimize computation costs, are in the vicinity of the origin and destination
partitions only. Location privacy then depends on the chosen size of the cloaked
area around said sections, and the selected node intersection ratio for the parti-
tions within them. This decreases re-identifiability of exact locations by retaining
more intersections and increasing the coverage of the privacy-protected sections.
Privacy protection level for a query is formally defined as

V(q) = 1T · [(aq
γ ⊙ v′

q) · Clp] (4.6)

where aq is the estimated area of each candidate partition, γ is a system parameter
controlling the effect of aq, v′

q is the actual selected node count for each candidate
partition, and Clp is the location privacy normalization factor. Clp is obtained
from the inverse of the mean number of intersections for all base partitions in the
service region, while γ is determined empirically by choosing a value that prevents
V(q) from easily outweighing other objectives when the per-partition node count
vq is naturally large (e.g., in cities).

4.3.3 Travel Time Accuracy

To assess the quality of any section of the route, travel time accuracy is defined
as a metric. It is formally defined as the ratio between the estimated travel time
for a candidate solution and that of an optimal solution as shown below:

A(q) = 1T ·M(vq, rq) (4.7)

25

Figure 4.3: (Left) Mean travel time accuracy A(q) and Selected Node Intersection Ratio
rq; (Right) Processing Throughput P (q) to actual processing time 1

P (q) (in seconds) with
empirically-found values for P (q)max = 5.0 (five queries every second) and λ = −1.6.

where vq is the base node count per partition, and rq is the selected node inter-
section ratio per partition. M(vq, rq) estimates the difference from the optimal
travel time through the candidate partitions given vq modified by rq. In this
paper, M(vq, rq) is modelled based on preliminary analysis of route travel times
in the service region. The travel times of 500 optimal routes are compared against
500 candidate routes after randomly removing a certain percentage of candidate
node intersections within each partition, simulating varying levels of rq until
nearly all candidates are removed. The results are shown in Fig. 4.3 (Left).
Based on this, the function can be modeled as:

M(vq, rq) ≈M(rq) = rq

eλ·(1−rq) (4.8)

where λ is the empirically-determined steepness of the curve based on the pre-
liminary results obtained from Fig. 4.3 (Left).

26

Table 4.1: Individual Objective Score Explanations
P(q) V(q) A(q)

Measure:
queries per second

Measure:
candidate nodes

in area

Measure:
convergence to

optimal travel time

0.1 1 queries/sec 12.2 nodes 10%

0.5 2.5 queries/sec 61 nodes 50%

1.0 5 queries/sec 122 nodes 90%

4.3.4 Objective Functions

The individual objective scores for a set of queries, Qt, are computed using the
following functions

P (Qt) =
∑

q∈Qt
P(q) ·HP (q)
|Qt|

(4.9)

V (Qt) =
∑

q∈Qt
V(q) ·HV (q)
|Qt|

(4.10)

A(Qt) =
∑

q∈Qt
A(q) ·HA(q)
|Qt|

(4.11)

where H∗(q) computes the numerical equivalents of the user’s preferences. Indi-
vidual objective results are normalized against the empirically-determined values
in Table 4.1. The goal is to maximize P (Qt), V (Qt), and A(Qt), subject to the
constraint in Eq. (4.3) about the maximum number of PIR requests processed in
each partition. Thus, the objective function is

Maximize (P (Qt), V (Qt), A(Qt)) s.t. (4.3) (4.12)

The above optimization problem belongs to the NP-hard class. The disjunctively
constrained knapsack problem [43], which is known to be NP-hard, is a special
case of our problem. This can be shown by supposing that there is only one
partition g with computation capacity Cap(g) corresponding to a knapsack ca-
pacity, and the tuples of possible choices of aq and rq and the tuple of individual
objective values P (q), V (q), and A(q) are regarded as items, where only one
choice among many possible choices of aq and rq can be made for each q and is
represented as the disjunctive constraints.

27

4.4 Multi-objective Optimization

Algorithm 1: NSGA-II Based Optimization
Input: Set of queries Qt

Output: Set of solutions Yt

1 begin
/* 1: Generate parent population */

2 R0 ← GenerateParents(Qt);
/* 2: Generate Offspring */

3 F′ ← NonDominatedSort(R0);
4 S0 ← GenerateOffspring(F0,R0);

/* 3: Evolve solutions */
5 k ← 0;
6 while k < MAX_ITERATIONS do
7 Rk+1 ← NSGAIISort(Rk,Sk);
8 Ck+1 ← Selection(Rk+1);
9 Mk+1 ← Crossover(Ck+1);

10 Sk+1 ←Mutation(Mk+1);
11 k ← k + 1;

/* 4: Extract solutions */
12 Yt ← ExtractSolutions(Sk);
13 return Yt

A multi-objective approach was used to find diverse sets of non-dominated
candidate solutions for the aforementioned problem, using NSGA-II as the base
algorithm, with the full method being described in Algorithm 1. An initial parent
population R0 is generated based on Qt with initially-random values for two
sets of rq and aq (for the origin and destination partitions each). R0 is then
sorted in a non-dominated manner as per NSGA-II and used to generate an
initial offspring population, S0. Solutions are then evolved for several iterations.
Every iteration, regular NSGA-II non-dominated sorting is first done followed by
selection, crossover, and mutation. The final sets of solutions are extracted from
the final offspring population, SN .

To further increase solution diversity, a modified fitness proportionate selec-
tion algorithm is developed. Four selection fitness criteria were used: balanced,
processing throughput based, privacy protection level based, and travel time ac-

28

Algorithm 2: Modified Fitness Proportionate Selection
Input: Query set Qt, Population Rk, Pairs to select Nselect

Output: Pairs of individuals for Crossover Ck

1 begin
2 Initialize bselect, pselect, vselect, aselect ← [], Ck ← {};
3 foreach r ∈ Rk do
4 bselect[r]←Mean(P (r.Qt) + V (r.Qt) + A(r.Qt));
5 pselect[r]← P (r.Qt);
6 vselect[r]← V (r.Qt);
7 aselect[r]← A(r.Qt);

8 for i ∈ [0, ..., Nselect] do
9 pool← Random({bselect, pselect, vselect, aselect});

10 c0, c1 ← pool[Random(Rk)], pool[Random(Rk)];
11 Ck ← (c0, c1);

12 return Ck

curacy based. The aim is to increase the chance of solutions with the best results
for each of these objectives being retained each iteration. This is described in
Algorithm 2.

4.5 Evaluation

In this section, the proposed multi-objective optimization method is validated
via a case study based on simulating the road network of the central region of
Osaka, Japan. The resulting parameters and its effect on the overall system are
then discussed.

4.5.1 Mobility and Vehicle Trip Data

In this experiment, the road network of the Chuo and Kita wards — the most
populous areas in Osaka, Japan [44] — are used to simulate the effectiveness of the
optimization method. Mobility data is generated via simulations using VISSIM
and VISUM traffic simulation software [45] over a three-hour time period from
9AM to 12PM. The simulated road network was then divided into 64 grids, where
each grid is assumed to be an independent partition having at least one RSU. To

29

simulate vehicle routing, it is given an Origin-Destination (OD) matrix [46] with
vehicles dispatch frequencies from various zones in the city. All experiments were
initiated with the same OD matrix. Four hours of traffic data were generated
consisting of 50,894 vehicles across an area 20km2 of Osaka city. The mobility
data consists of vehicle flow speed per road segment gathered at a time resolution
of every 10 seconds. Several OD pairs were selected from this matrix and used
to generate the set of queries, Qt, used as inputs to the optimization algorithm.

4.5.2 NSGA-II Configuration

For the NSGA-II algorithm combined with the modified selection method de-
scribed in Algo. 2, a Simulated binary crossover (SBX) with a crossover proba-
bility of pc = 0.5 and a distribution index of ηc = 15 was used. As is typical for
real-coded NSGA-II, the mutation method used was polynomial mutation with
a mutation probability of pm = 0.5 and a distribution index of ηm = 30. The
algorithm was run for 10 generations with 85 offspring for a total population size
of 90 for each generation.

4.5.3 Experiment Setup

The performance of the proposed optimization algorithm is compared against two
other well-known bounded optimization algorithms: SLSQP [47] and L-BFGS-
B [48]. As both are single-objective algorithms, an overall utility score, U(Qt),
based on the averaged individual objective scores was used as their objective
function.

A set of queries is then generated as mentioned in the previous section and
then assigned a set of preference values (HP (q), HV (q), HA(q)). For simplicity,
only one of the three objectives can be designated as HIGH preference while the
two others are automatically set to LOW preference. The generalized preference
function is described as

H∗(q) =
0.8 if HIGH preference for ∗

0.1 otherwise
(4.13)

Up to 100 queries are generated per query set with the assumption that approx.
100 queries arrive per 5-minute time frame. Note that this is only to accommodate

30

the execution times of the slowest optimization algorithm and, in practice, should
be lower. Up to 100 different query sets are randomly-generated with different
seeds and transformed into usable inputs for each algorithm, which are then
executed for a total of 100 runs. The final solutions are evaluated in terms of
their overall performance accounting for per-query individual objective scores
(P(q), V(q), and A(q)), and execution times.

Table 4.2: Other Parameter Values for the Experiment
Parameter Value Description

|Qt| 100 Number of Queries

γ 0.5 Partition area control parameter

λ -1.6 Accuracy control parameter

Cri 1.64 secs Region info calc time

Cpi 16.25 secs Partition info calc time

Cit 34.14 secs Total info calc time (Cit = Cri + 2Cgi)

Crl 6.0 secs Per partition OSG route lookup time

Csearch 1.041× 10−2 PIR search time factor

Cload 9.369× 10−3 PIR load time factor

Ccomp 1× 10−12 Computation power factor

Clp 122 Location Privacy factor

For the other parameters besides aq and rq, the predetermined constant values
are summarized in table 4.2. Csearch, Cload, and Ccomp were determined by con-
ducting element retrieval and database loading tests over SealPIR [29] v3.2.0 using
the default Brakerski/Fan-Vercauteren (BFV) homomorphic encryption scheme,
with a database upper bound of N = 216 elements, a BFV plaintext modulus of
log(t) = 12, and the SealPIR-specific dimensionality factor, d = 2. λ is based on
preliminary experiments described in Sec. 4.3.3. Clp and γ are empirically deter-
mined as described in Sec. 4.3.2. All experiments were performed on a Macbook
Pro with a 2.9 GHz Intel Core i7 processor and 16 GB DDR3 memory.

31

Figure 4.4: Performance of NSGA-II, L-BFGS-B, and SLSQP in optimizing the indi-
vidual objectives (P (q), V (q), A(q)) and individual utility (U(q))

Figure 4.5: Comparison of execution times between different algorithms

32

4.5.4 Experiment Results

The average per-query individual objective scores (for Qt = 100) shown in Fig. 4.4
suggest that the proposed optimization method achieves higher privacy protection
(V (q)) at the cost of slightly lower processing throughput (P (q)) scores for half
of all queries. The balanced utility per query (U(q)) and travel time accuracy
(A(q)) are about the same throughout.

A large difference also exists between execution times as shown in Fig. 4.5
where SLSQP and L-BFGS-B both grow rapidly with more queries while NSGA-
II grows slowly and linearly. Since this must be run regularly, shorter execution
times are better for practicality and service quality.

The fitness proportionate selection method also allows NSGA-II to produce a
diverse set of solutions as shown in Table 4.3, which highlights the trade-offs of
focusing on one objective over others. In this example case, processing prefer-
ence results in reduced privacy and accuracy, while accuracy preference trades
away some processing throughput on the origin partition for higher accuracy and
privacy. In this case, privacy protection preference is the middle-ground, max-
imizing both processing throughput and accuracy at the slight cost of privacy
protection. Note that these are only the best solutions for each objective among
90 other solutions produced after 10 generations of execution, making the choice
of final solution flexible enough to be tailored based on the actual distribution of
user preferences among the input queries.

4.6 Summary

In this chapter, an adaptive user-centric approach called Privacy-Preserving Route
Planning via Multi-objective Optimization (P2RoP-MO) was proposed and eval-
uated. The approach protects critical portions of the routes around the origin
and destination locations using PIR combined with a dynamic Spatial Cloaking
technique. However, as Privacy as an objective does not exist in isolation, and
must therefore be considered alongside other objectives — in particular, Utility
and Performance. A multi-objective optimization (MOO) problem was therefore
formulated to encapsulate the processing throughput, privacy protection, and
route accuracy objectives for each batch of route queries received by the system.

33

Afterwards, a NSGA-II-based multi-objective optimization algorithm was devel-
oped to solve it. Through simulations it was shown that the approach obtained
better trade-offs between the aforementioned objectives than other MOGAs.

However, several critical issues remain. Firstly, the optimization step is rather
slow as it takes 118.98 secs (30.15 secs when done in parallel) to run NSGA-II for
around 10 generations on a single batch of queries. This problem is compounded
by the second issue which is that optimization essentially delays all of the queries
in the same batch. Essentially, ∼ 120 seconds of optimization time would be
added on top of the expected processing time for each query making it impractical
for actual route planning. The final issue is that the routes in between the
protected areas are not protected at all by design to reduce processing times,
etc. As a consequence, this gives the adversary additional information that can
ultimately be used to reveal the user’s entire route. Thus, an improved approach
that addresses all these issues is presented in the following chapter.

34

Table 4.3: Variations in solutions (aq and rq) for one example query

Origin Destination Visualization

aq ∼ 4.87 grids/partitions

rq 20.58% of nodes

P (q) 5 queries/sec 5 queries/sec

V (q) 40 nodes 91 nodes

A(q) 73.34% 73.34%

aq ∼ 11.01 grids/partitions

rq 32.30% of nodes

P (q) 5 queries/sec 5 queries/sec

V (q) 122 nodes 96 nodes

A(q) 90.0% 90.0%

aq ∼ 12.55 grids/partitions

rq 92.78% of nodes

P (q) 1.45 queries/sec 5 queries/sec

V (q) 122 nodes 122 nodes

A(q) 90.0% 90.0%

35

5 HPRoP: Hierarchical Privacy-
Preserving Route Planning

In this chapter, we consider an improved approach called Hierarchical Privacy-
Preserving Route Planning (HPRoP) that addresses the critical issues and
vulnerabilities with P2RoP-MO while also improving Privacy, Utility, and Per-
formance. This is done by using a different road network partitioning method
and a novel hierarchical route planning algorithm as will be discussed in great
detail throughout this chapter. In addition to this, a pair of new privacy metrics
were also formulated in order to more comprehensively describe route privacy be-
yond that of “partial” route privacy in P2RoP-MO. A comprehensive evaluation
of HPRoP is then presented towards the end of this chapter.

5.1 Models and Assumptions

This section presents the assumptions and mathematical models related to the
road network graph’s partitioning and the “approximate” routes that can be
derived from it.

5.1.1 Road Network Partitioning Model

Most modern route planning algorithms can already deal with very large road
networks, but typically do not incorporate route privacy protection mechanisms
out of the box, as they tend to significantly increase processing and communica-
tion overhead as mentioned in Sec. 2.3. However, if the route planning task can
be divided, then the additional processing cost incurred by the privacy mecha-
nism can be distributed across multiple devices instead and ultimately improve

36

Table 5.1: Summary of Symbols used in Sec. 5.1
Symbol Description

G = (V, E) Road network graph with road segments E and intersections V

lG(u, v) Weight of a road segment having endpoints (u, v)

s, d Source (s) and Destination (d) vertices

rG(s, d) Path/route between s and d

LG(rG(s, d)) Total weight of path/route rG(s, d)

RG(s, d) All possible paths between s and d

ρG(s, d) Shortest path between s and d

GP = (P, C) Partition graph derived from G with the set of all partitions P and the
connections between them C

p = (Vp, Ep) A partition (i.e., a subgraph of G) consisting of road segments Ep and
endpoints Vp within it

NBpu Set of all neighboring partitions for partition pu

ℓ Partition level

L Maximum partition level (0 ≤ ℓ ≤ L)

P ℓ Subset of partitions in P at level ℓ

pℓ
i A partition belonging under P ℓ with a given index i

xu Representative vertex for the partition pu

cpupv A connection between partitions pu and pv through shortest path
ρG(xu, xv)

distG(u, v) Shortest path distance between u and v in G

D(p) Database of shortest paths for partition p

C(ρ0, ..., ρn) Arbitrary route combination heuristic

r∗
G(u, v) Approximate shortest path between u and v

α(r∗
G(u, v)) Optimal route approximation metric

RPS performance as mentioned in Sec. Sec. 3.2. The assumption, of course, is
that the road network has already been divided into different partitions.

An arbitrary partitioning of the road network graph G is represented by a
separate partition graph GP = (P, C) where the vertices P represent partitions
and the edges C represent connections between them. Each partition p ∈ P is a
subgraph p = (Vp, Ep) such that Vp ⊆ V and Ep ⊆ E. Each connection cpupv ∈ C

37

is a shortest path ρG(xu, xv) between the representative vertices xu, xv ∈ V of
any two neighboring partitions pu, pv ∈ P where xu ∈ Vpu ∧ xv ∈ Vpv . Two
partitions are considered “neighbors” if ∃ e = (u, v) s.t. e ∈ E∧u ∈ Vpu ∧v ∈ Vpv .
Finally, the set of all neighboring partitions for pu is defined as NBpu = {pv|pv ∈
P ∧ (cpupv ∈ C ∨ cpvpu ∈ C)}

Representative vertices are ideally chosen to minimize the shortest path dis-
tance to all other vertices in the partition. Vertices with high graph central-
ity are good candidates, but our preliminary experiments show that it is vi-
able to simply choose the vertex closest to the geospatial average of the co-
ordinates of each partition’s vertices with no impact on routing performance.
Thus, representative vertices were chosen via this method. It then follows that
lGP

(pu, pv) = LG(ρG(xu, xv)). For simplicity, the shortest path distance between
any u, v ∈ G is represented by distG(u, v), while distGP

(pu, pv) refers to the short-
est path distance between their containing partitions, pu, pv ∈ P .

Partitions are defined in a hierarchical manner with the maximum partition
level being L, and the subset of partitions for each level ℓ < L denoted as
P ℓ ⊆ P such that P ℓ ⊂ P ℓ−1 for ℓ > 0. A partition may also be defined as
pℓ

i where ℓ is the partition’s level and i is the partition’s index at that level given
P ℓ = {pℓ

0, pℓ
1, . . . , pℓ

n}. The base level partition set P 0 contains only one parti-
tion/subgraph p0

0 = G at ℓ = 0. Conversely, p0
0 might be composed of several

smaller partitions p1
0, p1

1, p1
2, and p1

3 at ℓ = 1 such that all of them are subgraphs
of p0

0, and so on. For clarity, partition levels will henceforth be referred to by their
position (i.e., higher or lower) instead of their subgraph’s size. Each partition pℓ

has three sets of shortest path data as depicted in Fig. 5.1: (1) the shortest paths
within the partition pℓ (black edges), (2) the shortest paths to its neighboring
partitions, NBpℓ (blue edges), and (3) the shortest paths between the containing
partition, pℓ−1, to its own neighbors, NBpℓ−1 (green edges). This database of
shortest paths is represented by D(pℓ).

5.1.2 Approximate Shortest Path Model

Our approach relaxes the shortest path problem by accepting approximate short-
est paths between two areas (in this case, partitions) containing s and d in place
of the exact shortest path between the two points. This, in turn, reduces the

38

Figure 5.1: Types of shortest paths stored by each partition
number of queries required to obtain a route (hence, faster route completion
times) at the cost of potentially having slightly longer paths. These are formally
defined here as follows. Given an arbitrary s, d ∈ V , the exact shortest path
ρG(s, d) rarely coincides with the shortest path ρGP

(xs, xd) where xs and xd are
the representative vertices in the same partitions as s and d, respectively. This
is because only routes between representative vertices of partitions in P can be
produced from GP , and it is highly likely that s ̸= xs or d ̸= xd. However, it
it is still possible to “complete” the route by adding in the missing start and
end sections. Letting C(ρ1, ..., ρn) be a route combination heuristic, the simplest
“completed” route would be:

r∗
G(s, d) = C(ρG(s, xs), ρGP

(xs, xd), ρG(xd, d)) (5.1)

This can be generalized further by replacing ρGP
(xs, xd) as follows:

r∗
G(s, d) = C(ρG(s, xs), ρGP

(x1, x2), . . . , ρGP
(xn−1, xn), ρG(xd, d)) (5.2)

where x1 = xs and xn = xd. In this work, these kinds of combined paths are
designated as approximate shortest paths, and their quality is measured based on
how well they approximate their counterpart exact shortest paths. This metric
is defined as the optimal route approximation:

α(r∗
G(s, d)) = lG(r∗

G(s, d))
dist∗

G(s, d) (5.3)

39

where lG(r∗
G(s, d)) is the total weight of the approximate shortest path, and

distG(s, d) is the total weight of the exact shortest path in G.

5.1.3 Assumptions

In addition to the general assumptions mentioned in Sec. 3.1, this approach adds
several more. First, it is assumed that the road network can be divided into
smaller subgraphs recursively for a number of times to produce a hierarchy of
partitions as per Sec. 5.1.1. Each partition at the same level is also assumed to
have almost the same number of vertices in order to guarantee a minimum level of
privacy for the entire RPS. The rationale here is that having the same number of
vertices makes it harder to determine the source and destination partitions simply
by observing the PIR retrieval times for an external adversary. Unfortunately,
it is impossible to guarantee that this would apply to adjacent partitions across
different service regions because road networks inherently vary in density by a lot
in the real world. For example, the road network of a city may be significantly
different from the suburban areas that typically border them. Because of this, we
have to assume that there is only one service region and that all route planning
must occur within its confines. Each highest-level partition is assumed to be
handled by a distinct physical or virtual device for the purpose of the RPS.
Additionally, it is assumed that each partition can calculate, build, and maintain
its own database of shortest paths D(p) independent of its other tasks. This per-
partition database is assumed to be queryable by users in a privacy-preserving
manner through PIR.

5.2 Key Idea

HPRoP expands upon the key idea behind PIR-based P2RPS first presented in
Sec. 3.2 but in such a way that the privacy issue encountered in P2RoP-MO
relating to unprotected intermediate routes is avoided. As mentioned before, the
basic idea was to divide up the road network graph into several smaller partitions
to reduce the time complexity of PIR-based route planning. However, when the
smaller partitions themselves are dense subgraphs (such as in an urban setting),
time complexity may still be an issue. P2RoP-MO attempted to solve this by

40

flexibly choosing between larger and smaller grids and reducing nodes within the
partitions but was limited only to protecting “partial” routes. Recognizing this,
it then becomes clear that the route planning algorithm or method itself must be
modified in order to achieve the desired objectives. In this section, we discuss two
modifications to Dijkstra’s algorithm that will allow it to function in a PIR-based
RPS with a pre-partitioned network graph. These two algorithms serve as guides
for building an intuition towards the hierarchical route planning algorithm that
will be presented in Sec. 5.4.

Table 5.2: Summary of Time and Space Complexity for Sec. 5.2

Space Complexity Time Complexity

Naive O(|V |2 · Lmax
G) O(|V |2)

EPR-D O(Np · [Np +N adj
p]) O(Np·[Np+N adj

p]·[|V |+|E|log|V |])

APR-D O([N 2
p +Nc] ·R∗,max

G) O([N 2
p +Nc]·[(|P |+|C|log|P |)+2)])

5.2.1 Exact Partial Region Dijkstra’s Algorithm (EPR-D)

As mentioned at the end of Sec. 3.2, dividing the road network into partitions
allows a rudimentary PIR-based RPS to be developed such that time complexity
becomes O(|V | ·Np) where Np = 1/|P | ·∑p∈P |Vp| is the average vertex count per
partition, while the per-partition space complexity becomes O(Np · |V | · Lmax

G).
However, this still presents a problem for larger partitions in urban road networks
which can be very dense, leading to high time and space complexity. This space
complexity problem can be mitigated further by storing only edge weights between
adjacent vertex pairs as this is the minimum information needed by Dijkstra’s
algorithm. This is also known as the adjacency matrix representation which
readily maps into a database which can then be used with any PIR scheme.
We designated this PIR-adapted approach as Exact Partial Region Dijkstra’s
Algorithm (EPR-D), since it simply partitions and distributes graph data across
several edge servers, and produces exact shortest paths. A notable disadvantage
is its use of separate PIR queries to retrieve information for each vertex since the
original algorithm tends to scan a lot of vertices which can make route completion

41

times very long. It is also possible to reidentify routes based on the sequence of
edge servers queried by the user. This is examined further in Sec. 5.3. This is
reflected in its average time complexity of O(Np · [Np +N adj

p] · [|V |+ |E|log|V |])
where N adj

p = 1/|P | · ∑
p∈P |V adj

p | is the average number of vertices adjacent to
other partitions, in turn, represented by V adj

p = {v|v /∈ Vp∧ [(u, v) ∈ E∧u ∈ Vp]}.
Meanwhile, its average per-partition space complexity is O(Np ·[Np +N adj

p]). This
is summarized in Table 5.2.

5.2.2 Approximate Partial Region Dijkstra’s Algorithm
(APR-D)

A possible solution to the time complexity issue is by allowing the RPS to produce
approximate shortest paths instead of exact shortest paths. This can be done as
follows: (1) calculate an approximate route between source and destination par-
titions ps and pd using Dijkstra’s algorithm over partition graph GP , (2) retrieve
subpaths to both s and d from within their respective partitions via database
lookup, and (3) merge all obtained paths to form the final route. We designated
this approach as Approximate Partial Region Dijkstra’s Algorithm (APR-D),
since it produces approximate routes instead of exact ones. While it is signifi-
cantly faster than EPR-D, it requires more space (since full routes are stored).
It also has weaker privacy guarantees since routes between distant areas tend to
follow the same intermediate route as will be expanded upon in Sec. 5.3. Since
the database has to store complete routes, the space complexity is larger than
EPR-D’s being at O([N 2

p +Nc]·R∗,max
G) whereNc = 1/|P |·∑p∈P |Cp| is the average

number of external connections from each partition. The different stages have dif-
ferent time complexities, with the first stage having O([N 2

p +Nc]·[|P |+|C|log|P |])
and the second stage having O(2 · N 2

p +Nc). The combined time complexity is
then O([N 2

p +Nc] · [(|P | + |C|log|P |) + 2)]) which is significantly less than that
of EPR-D since |P | << |V |. The complexity is summarized in Table 5.2.

42

5.3 Privacy Metrics

To evaluate the effectiveness of a privacy-preserving PIR-based RPS, objectively
quantifiable privacy metrics must first be established in the RPS context. Thus,
the two models presented in this section jointly characterize the privacy of the
different kinds of information that can be leaked by an RPS in Sec. 5.1.3.

Table 5.3: Summary of Symbols used in Sec. 5.3
Symbol Description

Ω(s, d) Endpoint location privacy metric

RG(u, v) Arbitrary routing mechanism operating on some graph G

Qs,d Query sequence used to obtain a route from s to d

Q∗ An arbitrary query sequence for no specific route

Φ(Q∗) Route privacy metric for some candidate query sequence Q∗

Ps,d Partition sequence derived from some query sequence Qs,d

k(Qs,d, Q∗) Indicator function for checking if Q∗ can replace Qs,d and vice versa

VX A subset of V containing only the representative vertices

5.3.1 Endpoint Location Privacy Model

As mentioned in Sec. 5.1.1, the partition database is used to store the shortest
paths for each partition, and is queried privately using PIR in our approach. The
queried partitions are assumed to be knowable by adversaries, but strong privacy
is still guaranteed for exact locations within each partition. Let RGP

(s, d) be a
routing mechanism which returns the approximate shortest path ρGP

(s, d), and
suppose that the origin location s is replaced with a nearby location s′. If s′ is
still in the same partition as s (i.e., s′ ∈ Vps), then RGP

(s′, d) = RGP
(s, d). The

same applies replacing d with any d′ ∈ Vpd
. An adversary knowing only RGP

(s, d)
would be unable to distinguish s, d from all other possible s′, d′ as long as s′ ∈ Vps

and d′ ∈ Vpd
. Thus, location privacy is guaranteed for s and d within ps and pd

respectively.
The privacy for any s, d pair is then proportional to the number of possible

s′, d′ pairs that can be drawn between Vps and Vpd
. This is designated as the

43

endpoint location privacy metric:

Ω(s, d) = 1− 1
|Vps| · |Vpd

|
(5.4)

where Vps and Vpd
give the sets of all vertices in ps and pd, respectively. Note

that while having more vertices per partition (i.e. larger |Vps| and |Vpd
|) is ad-

vantageous for endpoint location privacy, this also means higher computation
overhead for PIR. Extensive preliminary experiments with the PIR scheme used
by our approach showed that the retrieval times scaled almost linearly with the
database size at a rate of roughly 1

45000 ≈ 2.22×10−5 seconds per record. That is,
a database with |Vp|2 ≈ 10000 routes was found to have an average retrieval time
of ∼ 0.25 seconds, while another with |Vp|2 ≈ 100000 routes took ∼ 2 seconds.

5.3.2 Route Privacy Model

Endpoint location privacy assumes that a route’s origin and destination partition
are already known, and thus quantifies only the privacy of the exact origin and
destination points. This section focuses on the privacy of the routes themselves.
As with endpoint location privacy, it is assumed that the queried partitions are
knowable by adversaries. It is also assumed that they have in-depth knowledge
about the algorithms used by the RPS.

Let Qs,d = {q0, . . . , qn} be the query sequence that a user must perform to
obtain a route from s to d. This sequence can be transformed into a partition
sequence Ps,d = {p0, . . . , pn} (where p0 = ps and pn = pd) using a function
fqp : Q −→ P that maps every element of Q to its handling partition in P . If the
partitioning is hierarchical, then only the highest-level partitions are considered
since they already contain the shortest path data of lower-level partitions as stated
in Sec. 5.1.1.

Note that partition sequences are not simply partitions along the final route.
For instance, in the case of Dijkstra’s algorithm, they can be thought of as the
entire sequence of “scanned” vertices as depicted in Fig. 5.2. It is therefore
possible for several routes to share the same partition sequence (though unlikely
in the case of Dijkstra’s). This is modeled as an indicator function that identifies
whether or not a candidate Q∗ can replace Qs,d for calculating rGP

(s, d) and vice

44

Figure 5.2: Queried Partitions using Dijkstra’s algorithm to calculate two routes with
the same origin but different destinations (∼ 1 km away from each other). The numbers
indicate how many queries were handled by each partition.

versa:

k(Qs,d, Q∗) =

1 if fqp(Qs,d) = fqp(Q∗)
0 otherwise

(5.5)

With this, the lower bound for the total number of distinct routes that share Q∗

is:
∑

s′,d′∈VX

k(Qs′,d′ , Q∗) (5.6)

where VX ⊆ V contains only the representative vertices (e.g., xu, xv) associated
with the partition graph GP as described in Sec. 5.1.1. This ensures that routes
where ps′ ̸= ps and pd′ ̸= pd are counted with equal importance as the route
where ps′ = ps∧pd′ = pd — hence, the focus on distinct routes. Finally, the route
privacy can then be quantified for any Q∗ as follows:

Φ(Q∗) = 1− 1∑
s′,d′∈VX

k(Qs′,d′ , Q∗) (5.7)

45

5.4 Hierarchical Privacy-Preserving Route
Planning

Our proposed approach, Hierarchical Privacy-Preserving Route Planning (HPRoP),
is built up from several key design choices to meet particular requirements. That
is, HPRoP should be able to:

• REQ1: Compose feasible approximate shortest paths by carefully choosing
its component routes from the appropriate partitions,

• REQ2: Privately retrieve component route information from said partitions
with minimal processing overhead,

• REQ3: Produce an approximate shortest path with good optimal route
approximation values (i.e., α(r∗

G(s, d))→ 1.0),

• REQ4: Ensure a good level of privacy protection for the user’s exact origin
and destination points, and intermediate route,

• REQ5: Reflect dynamic and up-to-date road conditions, and

• REQ6: Scale reasonably well with changes in client demand and computa-
tional resource availability over time and per area.

All these are brought together by a novel hierarchical route planning heuristic
presented in the latter half of this section, along with other improvements to
privacy and routing.

5.4.1 Private Information Retrieval (PIR)

HPRoP uses PIR as its core route privacy-preservation mechanism. The choice
of implementation was the SealPIR [29] library configured to use Brakerski/Fan-
Vercauteren (BFV) Homomorphic Encryption (HE) [49] with a database upper
bound of N = 216, a plaintext modulus of log(t) = 12, and a dimensionality
factor, d = 2. This implementation was chosen specifically for its significantly
reduced processing and communication overhead compared to other HE-based

46

Figure 5.3: Road network graph of Osaka City, Japan hierarchically-partitioned using
the Inertial Flow algorithm

ones, making it ideal for an RPS. This along with the hierarchical route plan-
ning heuristic drastically reduces the number of queries and, in effect, the route
completion time.

5.4.2 Inertial Flow Partitioning

Optimal route approximation and endpoint location privacy are highly-dependent
on how the service region is partitioned. Straightforward methods such as grid
partitioning are simple but often result in disjoint partition subgraphs in the
presence of natural barriers like rivers, etc. To mitigate this, one way would
be to ensure that each partition subgraph is a strongly-connected component,
ensuring high internal connectivity and reachability. Examples of road network
graph aware partitioning methods include PUNCH [50], Buffoon [51], and Inertial
Flow [52].

Inertial Flow was chosen for HPRoP as it is a relatively simple algorithm based
on maximum flow which results in balanced partitions and also preserves internal
connectivity. A vertex threshold of around 300 nodes per partition was chosen
instead of an area-based threshold to guarantee an Endpoint Location Privacy
of Ω(s, d) ≈ 99.998% (i.e., < 0.002% probability). Moreover, based on prelimi-
nary experiments with SealPIR, a partition database with 3002 ≈ 90000 routes
is expected to have retrieval times between 1.5 − 2.5 seconds (1.75 seconds on
average) which is viable when combined with HPRoP’s reduced query counts.
A queue is initialized by adding the entire road network graph to it. A graph
from this queue is then used as input to the Inertial Flow algorithm to produce
two balanced partition subgraphs. The simple iterative technique in [53] was

47

Figure 5.4: Cloud-based Architecture (Left) vs Distributed Architecture (Right)

used alongside Inertial Flow to find and apply optimal cuts during this step. If
any of the subgraphs do not yet satisfy vertex threshold, they are simply added
back to the queue. This entire procedure is then repeated until the queue is
empty. Afterwards, every two consecutive cuts was then retroactively denoted as
a separate partition level as shown in Fig. 5.3, and the partitions under each are
then tagged accordingly. Due to the vertex threshold, the highest level partition
may vary greatly from area to area. Some routes therefore require more queries
to complete over other routes, which increases profiling risk. A partition level
threshold ℓthreshold = 3 was therefore imposed such that higher level ones were
reassigned to ℓ = ℓthreshold.

5.4.3 Distributed Architecture

HPRoP leverages the hierarchically partitioned road network by delegating each
partition to a different entity. In the cloud-based scenario, these entities would be
server instances; while, in the edge-based scenario, these would be edge-servers
throughout the smart city. The edge-based architecture presents several advan-
tages. First, it allows PIR queries to be directed only to partitions which have
the information necessary to answer them, effectively distributing the computa-
tional load of using PIR. Second, it allows the system to better scale based on the
number of users, availability of computing resources, etc. which can vary greatly
at different times across different parts of the city as shown in Fig. 5.4. Finally, it
also makes the pre-computation of shortest paths to neighboring partitions more
efficient since it can be done independently by every partition after an initial
exchange of road condition information with said neighbors. This is useful for

48

reflecting dynamic road conditions bound to some local area.

5.4.4 Heuristic Algorithm

HPRoP uses a simple heuristic algorithm to arrive at an approximate shortest
path as follows:

1. Initialization: Find an initial basis route between the lowest level partitions
containing source and destination, then move up one level.

2. Subroute Connection: Connect the source and destination partitions at the
current level to the basis route using subroutes.

3. Basis Route Merging: Merge the subroutes into the basis route.

4. Repeat steps (2) to (3) until the highest partition level is reached

Algorithm 3: Hierarchical Route Planning Heuristic
Input: Source node s, Destination node d, Current level lc

Output: The final route r∗

1 begin
2 lo ← FindBaseLevel(s, d);
3 r∗ ← RetrievePath(plo

s , plo

d , “from source”);
4 Initialize lc ← lo + 1;
5 while lc ≤ lthreshold do
6 Initialize rlc

s , rlc

d ← [];
7 if lc < (lthreshold − 1) then
8 rlc

s ← GetSubroute(s, lc, r∗, “from source”);
9 rlc

d ← GetSubroute(d, lc, r∗, “from destination”);
10 else
11 rlc

s ← GetEndSubroute(s, lc, r∗, “from source”);
12 rlc

d ← GetEndSubroute(d, lc, r∗, “from destination”);

13 r∗ ←MergeRoutes(r∗, rlc
s , rlc

d);
14 lc ← lc + 1;

15 return r∗;

49

Figure 5.5: Initialization: Find SP be-
tween lowest-level partitions containing
s (blue circle) and d (green) separately.

Figure 5.6: Initialization: Use discov-
ered path as basis route (purple line)
for the next level

Figure 5.7: Source Subroute Conn.:
Find and connect source subroute (blue
line) to basis route (purple line)

Figure 5.8: Dest. Subroute Conn.:
Find and connect dest. subroute (green
line) to basis route (purple line)

Figure 5.9: Basis Route Merging:
Merge routes and use as new basis route
(purple line)

50

Algo. 3 runs exclusively on the client-side, sending PIR queries to edge servers
handling specific partitions. Route information is obtained solely through these
PIR queries, and, thus, no information is leaked by the queries themselves. How-
ever, the number of queries, their timestamps, and the partitions they were sent
to are still assumed to be known to the adversary. Additionally, since the num-
ber of PIR queries contribute a lot to processing overhead, one of the algorithm’s
main goals is to reduce the number of queries that need to be made in order to
complete a route.

The algorithm starts with an Initialization step (lines 2-4 in Algo. 3) which
finds an approximate shortest path between the lowest level partitions containing
s and d separately as shown in Fig. 5.5. This level is denoted as the base level lo =
arg minl (pl

s ̸= pl
d). For simplicity, this is just denoted as FindBaseLevel(s, d)

in Algo. 3. The client then sends a PIR query to partition plo
s , retrieving a route

to partition plo
d . This corresponds to RetrievePath(pu, pv,D) which retrieves the

shortest path between two partitions taking into account some direction flag D.
This flag simply indicates whether the path is being calculated from the source or
the destination, which will be relevant later. The retrieved route is then denoted
as the initial basis route r∗ shown in Fig. 5.6. At the end of this step, the current
level variable lc is also initialized (line 4).

The main loop starts from the Subroute Connection steps (lines 6-9 in Algo.
3). The algorithm for Subroute Connection itself is described in Algo. 4. A
subroute rlc

x is defined as a path that connects a basis partition plc
x to the current

basis route r∗. The basis partition given by plc
x is always the source or destination

partition at level lc containing some vertex x, and is used to obtain the source or
destination sub-partitions (depending on the direction D) at line 3 of Algo. 4. For
instance, the source subroute is obtained by finding a sequence of shortest paths
from plc

s that connects to the basis route as shown in Fig. 5.7. This step also uses
several important functions, such as: (1) FindRoutePartitions(r∗, l) which gives
the sequence of partitions at level l along r∗, and (2) DoesNotIntersect(rlc

x , r∗)
which is “True” if rlc

x and r∗ have no common vertices. Starting from plc
x , it

builds rlc
x by retrieving a path to nearby connected partitions (line 9) and then

connecting them to the subroute (lines 10-13). Since rlc
x might not yet intersect r∗

during the initial iteration, this is repeated with an updated reference partition

51

(lines 14-15) until an intersection is found. Computing the destination subroute
follows the same steps but first has to reverse the aforementioned sequence (lines
5-7) so that the algorithm can begin from the last route partition. This step is
shown in Fig. 5.8.

The Basis Route Merging step (line 13 in Algo. 3) is performed once the source
and destination subroutes are found. The basic idea is to find the “best” point
at which the subroutes intersect with the basis route and join them there. For
the source subroute, the “best” point is as far as possible from the start of the
basis route; while for the destination subroute, this is as far as possible from the
end of the basis route. This is illustrated in Fig. 5.9. This merged route is then
used as the new basis route. The current level lc is then updated (line 15), and
the loop is restarted. The loop is terminated once lc reaches lthreshold.

The time complexity of this algorithm depends on the required number of PIR
database lookups. Finding the initial basis route and calculating the final routes

Algorithm 4: Subroute Connection
Input: Basis node x, Current level lc, Basis route r∗, Direction D

Output: Subroute at the current level rlc
x

1 begin
2 Initialize rlc

x ← [];
3 pc ← plc

x ; // This retrieves either source or destination sub-partition
depending on direction D

4 RP lc ← FindRoutePartitions(r∗, lc)
5 if D is “from destination” then
6 Reverse(RP lc);

7 i← 0;
8 while DoesNotIntersect(rlc

x , r∗) and i < |RP lc | do
9 rpart ← RetrievePath(pc, RP lc [i],D);

10 if D is “from source” then
11 rlc

x ← rlc
x + rpart;

12 else if D is “from destination” then
13 rlc

x ← rpart + rlc
x ;

14 pc ← RP lc [i];
15 i← i + 1;

16 return rlc
x ;

52

at ps and pd always require a single lookup each. Meanwhile, the number of
lookups at each level depends on the maximum weight of the shortest path in GP

at that level which is given by maxpℓ
u,pℓ

v∈P ℓ |r∗
Gℓ

P
(pℓ

u, pℓ
v)| where Gℓ

P ⊂ GP containing
only that level’s partitions P ℓ and connections Cℓ. The average time complexity
is then:

O

[N 2
p +

∑
ℓ∈L

N ℓ
c] ·

3 +
∑
ℓ∈L

2 · max
pℓ

u,pℓ
v∈P ℓ
|r∗

Gℓ
P
(pℓ

u, pℓ
v)|

 (5.8)

where N ℓ
c is the average number of connections from each partition at level ℓ.

Since HPRoP precomputes and stores shortest path data for multiple levels per
partition, it is necessary to account for N ℓ

c in HPRoP’s space complexity:

O([N 2
p +

∑
ℓ∈L

N ℓ
c] ·R∗,max

G) (5.9)

5.4.5 Route Privacy Mechanism

Route privacy as defined in Sec. 5.3.2 quantifies the privacy based on how many
other possible routes have a query sequence matching that of a given route, where
more matches mean better privacy. That is, an adequate route privacy mecha-
nism should: (1) maximize the matching of query sequences between all possible
routes, and (2) minimize the information gain from the order of queries in the
sequence itself. HPRoP already achieves the latter via hierarchical execution
which can somewhat obfuscate the actual query sequence, but does not necessar-
ily strengthen the former. To address this, the algorithm is extended to pad the
query sequence with dummy queries. The basic idea is to query multiple other
partitions instead of just ps and pd to ensure that the actual origin and desti-
nation partitions are “hidden’ among them. In theory, querying more partitions
would mean better route privacy at the cost of longer route completion times.
Achieving full route privacy, however, would require querying all level partitions
at every iteration of the algorithm at least once, which would require prohibitively
long route completion times. For example, a service region with a total of 463
partitions would require roughly 810 seconds (13.5 minutes) on average to com-
plete a single route. However, simply querying a small random subset of the
aforementioned partitions will not be enough to ensure a certain level of route

53

privacy, since an adversary can simply use the hierarchy of partitions to check
for inconsistencies in the set of queried partitions and easily identify the dummy
ones. Instead, we chose to limit HPRoP to querying all other partitions under
the same parent as the highest level partitions containing s and d. This selection
method is straightforward and ensures that none of the queried partitions can
easily be identified as dummy partitions. Additionally, this ensures that route
privacy will be around Φ(Q∗) ≈ 1− 1/jk where j and k are the total number of
partitions under the same parent partitions as ps and pd, respectively.

This is implemented through the Subroute End Connection steps (lines 10-12
in Algo. 3), while the procedure itself is presented in Algo. 5. Instead of stopping
when the subroute and basis route first intersect, this algorithm continues until
all other partitions sharing the same parent plc−1

x as the basis partition have been
queried. This is done by repeatedly drawing a partition psub from a queue of
these same-parent sub-partitions SP lc (line 10). If psub is the same as the current
partition pc, then a part of the subroute is retrieved as normal (lines 11-18). If
it is a route partition, it is instead pushed back to the subpartition queue (lines
19-22). If both prior conditions are not satisfied, then a dummy query is simply
sent to psub (line 24). This ensures that important queries are mixed in with
dummy queries, making it more difficult to determine which ones are relevant.

5.4.6 Shortcut Connections

A simple strategy for improving algorithm performance is through pre-computing
and storing shortest path data to partitions beyond just the adjacent ones. This
reduces the number of queries to complete a route while also improving optimal
route approximation for paths to further away partitions. These paths to non-
adjacent partitions were therefore denoted as Shortcut Connections, represented
as additional edges in the partition graph.

These shortcut connections, however, also increase the pre-computation time
for each partition relative to how many of them need to be made. In addition, the
extent of the road network graph needed for pre-computation also increases based
on the distance to the partitions being connected. It is therefore more useful to
limit the number of partitions to connect to and how far those partitions can
be. HPRoP considers two methods for determining shortcut connections: (1) the

54

Algorithm 5: Subroute End Connection with Dummies
Input: Source or Destination node x, Current level lc, Basis route r∗

Output: Source or Destination subroute at the current level rlc
x

1 begin
2 Initialize rlc

x ← [];
3 pc ← plc

x ;
4 RP lc ← FindRoutePartitions(r∗, lc)
5 if D is “from destination” then
6 Reverse(RP lc);

7 SP lc ← FindSubPartitions(plc−1
x) as Queue

8 j ← 0;
9 while |SP lc−1

x | > 0 do
10 psub ← Pop(SP lc);
11 if psub = pc DoesNotIntersect(rlc

d , r∗) then
12 rpart ← RetrievePath(psub, RP lc [j]);
13 if D is “from source” then
14 rlc

x ← rlc
x + rpart;

15 else if D is “from destination” then
16 rlc

x ← rpart + rlc
x ;

17 pc ← RP lc [j];
18 j ← j + 1;

19 else if psub ∈ RP lc DoesNotIntersect(rlc

d , r∗) then
20 if Index(psub, RP lc) > j then
21 Push(psub, SP lc)
22 Shuffle(SP lc)

23 else
24 SendDummyQuery(psub);

25 return rlc
x ;

55

Figure 5.10: Demonstration of different shortcut connection strategies for improving
the heuristic algorithm’s performance against the base case (Left), where the dark
red shape represents the starting partition, and the lighter red shapes represent the
partitions it connects to. The black outline represents the starting partition’s parent.
(Middle) uses Same Parent Shortcuts, while (Right) uses 1-hop Neighbor Shortcuts.

Same Parent Shortcuts method, and (2) the N-hop Neighbor Shortcuts method.
Same Parent Shortcuts simply connects each partition to all other partitions
under the same parent partition as shown in Fig. 5.10 (Middle). N-hop Neighbor
Shortcuts pre-computes shortcuts to other N -hop away partitions as shown in Fig.
5.10 (Right). Both would theoretically improve the optimal route approximation
when calculating subroutes between non-adjacent partitions and greatly reduce
the possibility of broken routes. HPRoP currently has no mechanisms to handle
these other than deferring to the user’s device to perform local route calculation
to bridge the final gap. The usefulness of these methods are shown through the
results in Sec. 5.5.3.1.

5.5 Evaluation

In this section, the details of the evaluation framework for HPRoP are first pre-
sented prior to showing the actual evaluation results and their analysis.

56

5.5.1 Environment

HPRoP was implemented in Python on a Jupyter notebook for ease of testing
and visualization, with the notebook itself encapsulated in a Docker container
for portability. The execution environment was a dedicated Linux server running
Ubuntu 20.04.1 SMP equipped with a AMD Ryzen Threadripper 3970X 32-Core
processor and 256 GB RAM in total.

The service region was a rectangular geographical area of roughly 546 km2 (i.e.
26 km in width, 21 km in height) encompassing the entire road network of Osaka
City, Japan and a portion of the immediately outlying areas. Its road network
graph consists of |V | = 99, 734 vertices and |E| = 269, 614 edges. The region is
hierarchically partitioned using the Inertial Flow algorithm as shown in Fig. 5.3
based on the parameters in Sec. 5.4.2.

5.5.2 Methodology

Evaluation was done through several metrics under the following categories: (1)
Utility, (2) Privacy, and (3) Performance. The Utility category pertains to the
usefulness of the service, with the Optimal Route Approximation metric falling
under this category. Since the base algorithm in Sec. 5.4.4 cannot guarantee
complete routes, Route Errors are also included here as a metric. Route errors
are then defined as the occurrence count of broken routes during testing. 24 In
turn, a broken route is defined as a route where a subroute connection cannot
be established to the highest level partition containing either s or d, and thereby
results in a route that cannot be completed by HPRoP’s algorithm. The Privacy
category is comprised of the Endpoint Location Privacy, and Route Privacy met-
rics described in Sec. 5.3. The Performance category pertains to how well the
service can deal with higher client demand, dynamic road conditions, etc. with-
out service quality degradation. The Memory Usage, Route Completion Time,
and Pre-processing Time metrics fall under this category.

Evaluation was done by comparing HPRoP to the two baseline PIR-based
approaches — EPR-D and APR-D — previously presented in Sec. 5.2. For the
Utility category, Privacy category, and Route Completion Time metrics, all three
approaches were evaluated by calculating routes for different s, d pairs until 4,000

57

Figure 5.11: Distribution of Optimal
Route Approximation results for different
Shortcut Connection methods

Figure 5.12: Comparison of total Route
Errors for different Shortcut Connection
methods

successful routes have been completed. This termination threshold was chosen
to be sufficiently high enough to capture any route errors that might occur for
HPRoP. It was also decided to randomly-generate the s, d pairs rather than
basing on their distribution on real-world mobility data as was done for PRoP-
MO. In this way, the effectiveness of the algorithm is evaluated over the entire
road network rather than being centered only across several “hotspots”. Note
that both APR-D and EPR-D are guaranteed to produce complete routes so
this metric is no longer evaluated for them. Unlike the evaluation method for
PRoP-MO, calculation of the test routes were done sequentially one-at-a-time
rather than in parallel. This is because HPRoP no longer needs to aggregate
batches of queries first prior to performing route computation. Memory Usage
was evaluated by calculating the projected size of the per-partition databases
for the highest-level partitions. Finally, Pre-processing Time was evaluated by
measuring the time to build each partition’s database.

5.5.3 Results

5.5.3.1 Effect of Shortcut Connections

The base performance of HPRoP under different shortcut connection methods
in Sec. 5.4.6 is first characterized with the goal of finding the method that
maximizes optimal route approximation while minimizing both route completion

58

Figure 5.13: Distribution of Pre-
Computation Times for different Shortcut
Connection methods

Figure 5.14: Distribution of Optimal
Route Approximation results using APR-
D, EPR-D, and HPRoP

time and route errors. Fig. 5.11 shows the resulting distribution of optimal route
approximation values for 4,000 successful test routes under different methods.
Surprisingly, Same Parent Shortcuts have an almost negligible effect on optimal
route approximation, with N-hop Neighbor Shortcuts being a more effective way to
increase the said metric. However, Same Parent Shortcuts were highly effective
in preventing the occurrence of broken routes, reducing the error count to 21.
Further investigation of these remaining errors showed that they were caused by
choosing the same vertex as s and d which results in failure as no routing can be
done by the algorithm. In short, for all 4,000 test routes, Same Parent Shortcuts
seem to eliminate all occurrences of true broken routes — i.e., where the highest
level partitions containing s or d could not be reached. This also validates the
hypothesis that broken routes are caused by a lack of reachability at the final
partition level that can contain more than 4 child partitions due to the deliberate
choice to set ℓthreshold = 3 mentioned in Sec. 5.4.2.

Meanwhile, using 1-hop Neighbor Shortcuts drastically improves the results of
the 75-th percentile from α(r∗) ≈ 1.54 to α(r∗) ≈ 1.28, but anything beyond
2-hop Neighbor Shortcuts is seen to have gradually diminishing returns. Finally,
the overhead caused by the additional shortcut connections is evaluated based
on the pre-processing time metric in Sec. 5.5.2. Fig. 5.13 shows that both
methods increase the per partition pre-processing time to about ∼ 1.5 seconds
once 1-Hop Neighbor Shortcuts are introduced but stabilizes around this value

59

even as the number of hops are further increased. In contrast, the effect of Same
Parent Shortcuts on pre-processing time is minimal, amounting to an increase of
∼ 0.1 seconds on average. Thus, both methods are equally viable in terms of this
metric.

Table 5.4: Summary of Results for different Shortcut Connection Configurations

Normal With Same Parent Shortcuts

0-hop 1-hop 2-hop 3-hop 0-hop 1-hop 2-hop 3-hop

Optimal Route Approximation

Min 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

25% 1.160 1.062 1.018 1.003 1.133 1.060 1.017 1.003

50% 1.314 1.141 1.080 1.052 1.270 1.138 1.079 1.052

75% 1.590 1.287 1.202 1.156 1.510 1.288 1.202 1.156

Max 16.256 5.210 5.371 5.371 15.424 5.210 5.371 5.371

Per-Partition Routes Calculation Time (in seconds)

Min 0.04 0.11 0.19 0.19 0.08 0.11 0.19 0.19

25% 0.16 0.58 1.88 3.33 0.24 0.75 1.92 3.48

50% 0.20 1.43 2.49 4.41 0.47 1.51 2.90 4.75

75% 0.28 1.60 3.36 5.70 1.30 1.74 3.47 6.03

Max 1.27 3.17 5.78 10.55 3.15 3.37 6.75 11.44

Route Errors (per 4,000 successful routes)

Total 231.0 52.0 30.0 24.0 21.0 21.0 21.0 21.0

Table 5.4 summarizes the results discussed so far. Based on these, it was
decided to use 2-hop Neighbor Shortcuts with Same Parent Shortcuts as the rep-
resentative configuration for HPRoP as it offers good optimal route approximation
and short pre-computation times with minimal errors.

5.5.3.2 Optimal Route Approximation

The performance of HPRoP, APR-D, and EPR-D in terms of optimal route ap-
proximation is shown in Fig. 5.14. As expected, EPR-D achieves a constant

60

Figure 5.15: Distribution of Route Privacy Φ(Q∗) results for APR-D, EPR-D, and
HPRoP

optimal route approximation value of α(r∗) = 1.0 since it always produces exact
shortest paths. APR-D produced routes with α(r∗) ≈ 1.44 for the 75-th per-
centile despite operating only over the partition graph. HPRoP produced even
better routes with α(r∗) ≈ 1.20 for the 75-th percentile, whereas APR-D was only
able to achieve this for the 25-th percentile of all results. Additionally, HPRoP
achieves much better worst-case routes than APR-D.

5.5.3.3 Endpoint Location Privacy

Endpoint Location Privacy Ω(s, d) describes how well the exact s, d is kept private
as described in Sec. 5.3.1. Since Inertial Flow partitioning was used, evaluation
results showed that all three approaches were able to achieve an average endpoint
location privacy of Ω(s, d) = 0.999982. Thus, each route is indistinguishable from
approximately 99% of all other routes between the same partitions, making all
three approaches equally viable.

5.5.3.4 Route Privacy

Route Privacy Φ(Q∗) describes how well a route is kept private based on how
many other routes share a query sequence similar to its own as described in Sec.
5.3.2. To evaluate this, a lookup table for the routes between each s, d ∈ Vx such
that s ̸= d was done separately for EPR-D, APR-D, and HPRoP to account for
their unique querying behaviors as shown in Fig. 5.16.

Fig. 5.15 shows a comparison of the route privacy distributions across all three

61

Figure 5.16: Visualization of Queried Partitions for APR-Dijkstra (Center), EPR-
Dijkstra (Right) and HPRoP (Left) for the same route. Numbers indicate partitions
that were queried multiple times.

approaches. EPR-D showed the worst route privacy, achieving Φ(Q∗) > 0 only
for the 25-th percentile of all results. APR-D performed only slightly better with
Φ(Q∗) > 0 for about 50% of all results, while achieving Φ(Q∗) ≥ 0.5 for only
25% of them. This is expected since both have no inherent privacy mechanisms,
yet this does illustrate that APR-D is still better than EPR-D in terms of route
privacy. HPRoP, in contrast, has route privacy of Φ(Q∗) ≥ 0.80 for the 50-th
percentile of all results, while also achieving Φ(Q∗) ≥ 0.50 for the 75-th percentile,
surpassing both EPR-D and APR-D. However, further analysis of the routes
showed that the worst-case route privacy (i.e. Φ(Q∗) = 0.0) still happens for
∼ 12.2% of all test routes. This suggests that HPRoP does not fully guarantee
route privacy for all cases although this can be increased further by adding more
dummy queries.

Additionally, the relationship between optimal route approximation α(r∗) and
route privacy metric Φ(Q∗) was also analyzed for HPRoP. This was done to
determine whether some trade-off exists between the two metrics. The results
in Fig. 5.17 show that majority of the routes have α(rs,d) < 1.2 across widely-
varying levels of route privacy. This suggests that the two metrics have little
effect on one another, and performing a simple Pearson correlation confirms that
there is only a weak positive correlation (ρ ≈ 0.104) between the two.

62

Figure 5.17: Distribution of Optimal Route Approximation and Route Privacy results
using HPRoP for 4,000 test routes. Note that both axes were reoriented to show the
best results on the lower left.

Figure 5.18: Distribution of the required
number of queries for route completion

Figure 5.19: Distribution of total PIR re-
trieval times in seconds

63

5.5.3.5 Route Completion Time

Obtaining a route using any of the three algorithms (APR-D, EPR-D, and HPRoP)
requires the client to make multiple PIR queries to the RPS. That is, a single
PIR query is required for each vertex scan in EPR-D, while APR-D requires it
for each partial route between partitions. In HPRoP, a single PIR query is re-
quired to retrieve each subroute. Query count is thus defined as the number of
PIR queries that need to be made in order for the client to complete a route (i.e.
for the underlying algorithm to terminate). Route completion time is the time
taken to complete a route which is directly proportional to the query count. It
is also equivalent to the total processing overhead for an RPS. In this work, it
is calculated based on projections derived from the preliminary experiments on
SealPIR database retrieval times mentioned at the end of Sec. 5.3.1. The em-
pirically derived value of roughly 1

45000 ≈ 2.22 × 10−5 seconds per record is then
used to calculate the route completion times which are shown in Fig. 5.19. Note
that we opted to use projections here instead of simulating the actual results as
the latter would take a prohibitively long time to conclude in the case of EPR-D
(and, to a lesser extent, APR-D). For instance, APR-D requires ∼ 214 queries
on average which is expected to take 5.55 minutes (333.26 seconds) per route.
EPR-D is even worse, requiring ∼ 4, 958 queries on average which would take
at least 2.15 hours (7,731.47 seconds) just to complete a single route. Both are
clearly impractical from the perspective of any modern RPS. This is in contrast
to HPRoP which requires significantly less queries on average (at ∼ 25 queries)
and takes only 23.55 seconds per route. This is because HPRoP’s algorithm by-
passes the need to explore large sections of the partition and road network graph
as it already starts with a very coarse route between the origin and destination
partitions at the lowest level to guide its route search. APR-D and EPR-D, in
contrast, explore outwards from the origin, checking every unexplored partition
or vertex on the way as per Dijkstra’s algorithm.

5.5.3.6 Memory Usage

Memory usage depends on the size of the route databases maintained by each
partition, which is very important in a distributed environment with resource-
constrained devices. Fig. 5.20 shows the distribution of per partition memory

64

Figure 5.20: Distribution of Per-Partition
Memory Usage (in MB) for the different
approaches

Figure 5.21: Distribution of Per-Partition
Pre-processing Time results (in seconds)
for the different approaches

usage across the three approaches. APR-D and HPRoP calculate and store a
similar number of routes, thus requiring an allocation of around 20-160 MB per
partition. EPR-D has a significantly smaller memory footprint at around 0.5-
4 MB per partition because it essentially stores a next-hop matrix instead. In
practice, however, the memory usage of all three approaches are well within the
capabilities of standard edge servers.

5.5.3.7 Pre-processing Time

The pre-processing time metric is total time needed to build each partition’s
database during the pre-processing phase, which determines how often it can be
updated during operation. As shown in Fig. 5.21, EPR-D require less than ≤ 0.5
seconds per partition on average since it only needs to calculate the routes inside
each partition, while APR-D requires ≤ 1.5 seconds since it also needs to calculate
routes to immediately neighboring partitions in addition. Meanwhile, HPRoP
needs to calculate routes inside each partition, routes to neighboring partitions,
and routes to other partitions under the same parent. This results in slightly
longer pre-processing times at 1-5 seconds per partition. Regardless, the pre-
processing time for all three approaches are clearly fast enough to accommodate
frequent updates even in under dynamic road conditions.

65

Figure 5.22: Visualization of differences in HPRoP routes at 1.19 < α(rs,d) < 1.2:
(Left) shows an example of minimal deviation (∼ 1.0 km) from the actual SP;
(Right) shows an example of maximal deviation (∼ 5.63 km) from the actual SP

5.5.4 Discussions

5.5.4.1 Optimal Route Approximation and Actual Route Lengths

In evaluating the Utility of HPRoP, Optimal Route Approximation was used as
a measure of “fitness” for the produced routes by comparing them to the ac-
tual shortest paths obtained via Dijkstra’s Algorithm. While this works well for
comparisons, it also tends to conceal the total length of the actual routes. For
instance, a low Optimal Route Approximation does not automatically mean that
the produced routes are short. Thus, the difference in length between HPRoP’s
route and the actual shortest path (henceforth, simply called Optimal Route De-
viation) can vary greatly for the same Optimal Route Approximation value. This
can be seen in Fig. 5.22 where the Optimal Route Deviation varies between ∼ 1.0
to∼ 5.63 km despite their Optimal Route Approximation values being nearly sim-
ilar (i.e. α(rs,d) = 1.192 and α(rs,d) = 1.198). Conversely, low Optimal Route
Deviation does not necessarily mean better Optimal Route Approximation. This
can be seen in Fig. 5.23 where two routes with Optimal Route Deviation values of
0.95 and 0.96 km have somewhat different Optimal Route Approximation values
(α(rs,d) = 1.035 and α(rs,d) = 1.162 respectively). However, while lower Opti-
mal Route Approximation values do not automatically guarantee shorter routes,
it does guarantee a lower median Optimal Route Deviation than higher values.

66

Figure 5.23: Visualization of differences in HPRoP routes with an Optimal Route De-
viation between 0.95 km and 1.0 km; (Left) shows an example with good Optimal
Route Approximation (∼ 1.035); (Right) shows an example with bad Optimal Route
Approximation (∼ 1.162)

Figure 5.24: Relationship between Optimal Route Approximation and Optimal Route
Deviation (difference between lengths of HPRoP’s route and the actual shortest path)

67

Figure 5.25: Maximum values for Op-
timal Route Approximation given a se-
lected percentage of all produced routes

Figure 5.26: Maximum values for Route
Completion Time given a selected per-
centage of all produced routes

This is seen in Fig. 5.24 where the median Optimal Route Deviation increases in
a near-linear manner with increasing Optimal Route Approximation. In short,
a lower Optimal Route Approximation remains preferable despite the potential
variance in the range of Optimal Route Deviation values.

5.5.4.2 Scalability

While the performance results for memory usage and pre-processing time in Sec-
tion 5.5 indicate that HPRoP is viable to deploy on Edge Servers in a Smart
City environment, this does not necessarily mean that it scales for larger (e.g.
continent-sized) road networks. We also performed some additional experiments
on the road networks of two other large cities, namely: Tokyo (34 × 36 km ≈
1, 224 km2, 228, 838 vertices, 611, 745 edges), and New York (50 × 50 km ≈
2, 500 km2, 98, 336 vertices, 252, 810 edges). As a stress test, we also conducted
an experiment which included the road network of Shanghai along with parts
of Wuxi, Suzhou, and Jiaxing (150 × 180 km ≈ 27, 000 km2, 192, 560 vertices,
475, 142 edges). For each road network, 1,000 s, d pairs were randomly-generated
and used as inputs to HPRoP. Results showed that Optimal Route Approxima-
tion behaved in a relatively similar manner despite the difference in road network
sizes as shown in Fig. 5.25. However, a noticeable difference may be observed
in the maximum Route Completion Times in Fig. 5.26 which clearly shows that
the Tokyo and Shanghai road networks take significantly longer. Based on the

68

time complexity of HPRoP given by Eq. 5.8, the biggest contributor to route
completion time is the number of queries in ∑

ℓ∈L
2 · max

pℓ
u,pℓ

v∈P ℓ
|r∗

Gℓ
P
(pℓ

u, pℓ
v)|, where

r∗
Gℓ

P
(pℓ

u, pℓ
v) is the shortest path in GP between any pu and pv at level ℓ. Because

of HPRoP’s hierarchical execution, for 0 < ℓ < 3, this shortest path will simply
have a length of 2 because there is always a direct connection between any two
partitions at those levels. However, for ℓ = 3, using Dummy Queries means that
each partition at ℓ = 3 under the same parent has to be queried at least once to
preserve privacy — in turn contributing to longer route completion times. Upon
investigation, it was found that the maximum same parent partition count for
10% of the partitions in the Tokyo (∼ 27 partitions) and Shanghai (∼ 22 par-
titions) road networks are more than twice that of Osaka (∼ 11 partitions) and
New York (∼ 11 partitions) — which can, in turn, explain the significant dif-
ference seen in Fig. 5.26. Note, however, that these large partition counts are
mostly a consequence of setting the maximum level to ℓ = 3 which was specifically
tailored towards Osaka City’s road network. Adjusting this parameter will most
likely allow HPRoP to accommodate larger and more complex road networks.
Based on these preliminary results and the subsequent investigation, it can be
said that HPRoP is likely to be scalable to larger road networks though further
investigation is required to validate this.

5.5.4.3 Improving Route Completion Times

While HPRoP’s performance in terms of the route completion time showed that it
performed significantly better at ∼ 23.55 seconds per route than both EPR-D (at
∼ 7, 731.47 seconds per route) and APR-D (at ∼ 333.26 seconds per route), it is
still much slower than most modern RPS which typically have route completion
times of less than one second — although it should be noted that these provide
no privacy guarantees at all. However, there are several avenues to improve
upon this can be explored. The first is to replace PIR with a lighter privacy-
preserving database querying method like Structured Encryption (see Sec. 2.3.1)
and then work-around its privacy leakage issues somehow. Another way can be to
parallelize the sending of real and dummy queries at the final iteration of HPRoP
to significantly cut down on the biggest source of redundant latency to route
completion time. Likewise, the maximum partition level can also be adjusted

69

such that the maximum number of same parent partitions is significantly reduced.
The last two methods, however, may have significant impacts on the Endpoint
Location Privacy and should therefore be carefully investigated. Finally, it may
also be possible to optimize the routing queries themselves in the same manner
as PRoP-MO in order to achieve better route completion times for the users that
have a preference for it. However, as with PRoP-MO, the issue with the delays
introduced by batching must also be resolved in order for it to be viable.

5.6 Summary

In this chapter, a PIR-based RPS called Hierarchical Privacy-Preserving Route
Planning (HPRoP) was proposed which extends the key idea in Sec. 3.2 by
using Inertial Flow partitioning to divide the road network and combining it
with a novel hierarchical route planning heuristic algorithm to produce routes
that can adequately approximate the actual shortest paths while also providing
endpoint location privacy and route privacy. More importantly, HPRoP addresses
the issues and vulnerabilities that were present in the previous approach, P2RoP-
MO, by eliminating the need for an optimization step entirely and extending route
privacy protection to include the whole route instead of only the parts close to
the origin and destination. Furthermore, HPRoP reliably produced routes with
an optimal route approximation of α(r∗) ≤ 1.2, while also achieving near-optimal
endpoint location privacy at Ω(s, d) ≈ 1.0 and good route privacy at Φ(Q∗) ≥ 0.5.
In terms of performance, HPRoP has a route completion time of around 23.55
seconds on average which is reasonable for a privacy-preserving RPS. It’s viability
for deployment in a distributed/edge-based smart city context were also shown
through its relatively small memory footprint (20-160 MB for each partition’s
database), and short pre-processing times (2-5 seconds per partition) which are
well within the capabilities of conventional edge servers.

70

6 Conclusion

6.1 Summary

As RPS become increasingly ingrained in the daily activities of modern-day com-
muters, vehicle owners, and even automated vehicles as essential tools for navi-
gating urbanized spaces, making them more resilient and robust to the actions of
malicious entities has also become very crucial. Privacy-preserving RPS is one of
the steps towards achieving this by protecting the privacy of users’ route-related
information. The key idea behind the approaches presented in this dissertation
is that of the PIR-based RPS which enables users’ client devices to retrieve of
pre-calculated routes in some remote database without the server discovering the
route retrieved. This, however, is not practical as it is because of the time and
space complexity required to deal with large, dense road network graphs that are
typical of modern cities.

To address this problem, two approaches are presented in this dissertation: (1)
an initial approach called Practical PIR-based Route Planning via Multi-Objective
Optimization (P2RoP-MO), and (2) an improved approach called Hierarchical
Privacy-Preserving Route Planning (HPRoP). The initial approach, P2RoP-MO,
uses multi-objective optimization to balance the trade-off between Privacy, Util-
ity, and Performance in order to make the PIR-based RPS more practical. It was
able to achieve acceptable trade-offs between said objectives but was bogged down
by its slow, batch-based optimization step, and did not protect the intermediate
section of the route by design. Thus, the improved approach, HPRoP, was devel-
oped which uses a different road network partitioning method called Inertial Flow
and combines that with a novel hierarchical route planning heuristic algorithm to
produce near-optimal routes with good endpoint location privacy and good route
privacy. Besides addressing the issues with P2RoP-MO, HPRoP also reliably

71

produced routes with an optimal route approximation of α(r∗) ≤ 1.2 alongside
near-optimal endpoint location privacy (Ω(s, d) ≈ 1.0) and good route privacy
(Φ(Q∗) ≥ 0.5). It was also able to achieve this with an average route completion
time of around 23.55 seconds while taking up a relatively small memory footprint
(20-160 MB for each partition’s database), and having short pre-processing times
(2-5 seconds per partition). This makes it more suitable for a real-world smart
city context with existing distributed/edge-based server infrastructure.

6.2 Future Work

While HPRoP is a good step towards realizing P2RPS, a significant number of
improvements and alternative approaches remain to be explored. In terms of
improving the Performance of HPRoP, the ideas presented in Sec. 5.5.4.3 can
be considered. These improvements include: (1) using lighter privacy-preserving
database query mechanisms, (2) parallelizing algorithm execution, and (3) opti-
mizing the service region partitioning parameters. More efficient data structures
for storing route information should also be explored since the current route
databases contain a lot of redundant information in terms of shared sections —
eliminating these could result in better execution times. The hierarchical routing
algorithm itself can be replaced with a more sophisticated routing algorithm such
as Contraction Hierarchies [24] which speeds up routing via shortcut edges on the
network graph itself. This, however, requires a radical overhaul of the road net-
work partitioning and indexing of routes that may be incompatible with HPRoP.
Next, the Utility (or quality) of HPRoP’s routes can be improved by considering
machine learning based predictive techniques [26,27] for guiding the hierarchical
algorithm in choosing the best sequence of partitions to query to result in a close-
to-optimal route. In terms of improving Privacy, more sophisticated techniques
for choosing dummy queries can be considered, as well as realizing out-of-order
query execution for full route privacy. Finally, HPRoP’s limitation of being con-
strained to a single fixed service region can also be addressed in a scalable manner
by treating each “service region” as a separate partition and simply performing
privacy-preserving routing on that macro-level partition graph instead.

72

Acknowledgements

First and foremost, I would like to express my utmost gratitude to my supervisor,
Professor Keiichi Yasumoto, who has provided a huge amount of support and
being instrumental in making this research — and even just the chance to take
this Ph. D. course in Japan — possible in the first place. He has helped in finding
the key insights and refining the fundamental ideas that constitute the backbone
of this research. He has inspired me to see seemingly impossible research problems
as merely “complex and difficult” and, having found initial solutions, motivated
me to seek out progressively better ones. I am truly grateful for everything.

I would also like to thank all the thesis committee members — Professor Fu-
jikawa, Professor Kadobayashi, Professor Suwa, and Professor Matsuda — for
providing me invaluable feedback and insights on how the quality of the research
(as well as this dissertation) can be improved to the utmost. Their comments
have been very helpful in making me recognize and address the “blind spots” in
my research’s methodology and subsequent results caused by being overly famil-
iar with the material. To that end, I would also like to thank our international
and domestic collaborators — Professor Das, Professor Bhattacharjee, Professor
Dubey, Professor Yamana, and Professor Yamaguchi — with whom the project
from which the initial idea behind this research originated in the first place. Col-
laborating with them facilitated an exchange of ideas and information between
fields that I normally would not have known about and explored beforehand. I
would also like to thank both former and current faculty members of the Ubiqui-
tous Computing Systems Laboratory — Professor Matsui, Professor Nakamura,
Professor Mizumoto, Professor Fujimoto, and Professor Arakawa — for fostering
and nurturing a very active research environment. Likewise, I would also like
to thank my colleagues — Jose Paolo Talusan, Research Dawadi, and Professor
Hyuckjin Choi — who have been very great and supportive friends during my

73

time in the laboratory, and our laboratories secretaries — Nao Yamauchi, Megumi
Kanaoka, and Eri Ogawa — for all their help and advise in administrative matters
and Japan life.

Most importantly, I would like to thank my family back in the Philippines: to
my parents — Jerome and Grace — who supported me in my decision to pursue
my Ph. D. degree and an atypical future career in research, and to my siblings —
Paolo, Charlene, and Angela — for supporting me (and one another) and sticking
together through great and not-so-great times.

Lastly, I would like to thank Gema for her unwavering support and overflowing
patience on my admittedly overly long journey of seeing this research through to
the very end.

74

Bibliography

[1] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Show me how
you move and i will tell you who you are,” in Proceedings of the 3rd ACM
SIGSPATIAL International Workshop on Security and Privacy in GIS and
LBS, pp. 34–41, 2010.

[2] V. Primault, A. Boutet, S. B. Mokhtar, and L. Brunie, “The long road to
computational location privacy: A survey,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 3, pp. 2772–2793, 2018.

[3] Y. Liang, Y. Liu, and B. B. Gupta, “Pprp: preserving-privacy route planning
scheme in vanets,” ACM Transactions on Internet Technology, vol. 22, no. 4,
pp. 1–18, 2022.

[4] J. Zhou, S. Chen, K.-K. R. Choo, Z. Cao, and X. Dong, “Epns: Efficient
privacy preserving intelligent traffic navigation from multiparty delegated
computation in cloud-assisted vanets,” IEEE Transactions on Mobile Com-
puting, 2021.

[5] M. Li, Y. Chen, S. Zheng, D. Hu, C. Lal, and M. Conti, “Privacy-preserving
navigation supporting similar queries in vehicular networks,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 19, no. 2, pp. 1133–1148,
2020.

[6] B. Baruah and S. Dhal, “A security and privacy preserved intelligent vehicle
navigation system,” IEEE Transactions on Dependable and Secure Comput-
ing, 2022.

[7] U. I. Atmaca, C. Maple, G. Epiphaniou, and M. Dianati, “A privacy-
preserving route planning scheme for the internet of vehicles,” Ad Hoc Net-
works, vol. 123, p. 102680, 2021.

75

[8] E. Ghosh, S. Kamara, and R. Tamassia, “Efficient graph encryption scheme
for shortest path queries,” in Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security, pp. 516–525, 2021.

[9] C. Zhang, L. Zhu, C. Xu, K. Sharif, C. Zhang, and X. Liu, “Pgas:
Privacy-preserving graph encryption for accurate constrained shortest dis-
tance queries,” Information Sciences, vol. 506, pp. 325–345, 2020.

[10] C. Liu, L. Zhu, X. He, and J. Chen, “Enabling privacy-preserving shortest
distance queries on encrypted graph data,” IEEE Transactions on Depend-
able and Secure Computing, vol. 18, no. 1, pp. 192–204, 2018.

[11] B. Chor and N. Gilboa, “Computationally private information retrieval,”
in Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pp. 304–313, 1997.

[12] D. J. Wu, J. Zimmerman, J. Planul, and J. C. Mitchell, “Privacy-preserving
shortest path computation,” arXiv preprint arXiv:1601.02281, 2016.

[13] K. Mouratidis, “Strong location privacy: A case study on shortest path
queries,” in 2013 IEEE 29th International Conference on Data Engineering
Workshops (ICDEW), pp. 136–143, IEEE, 2013.

[14] L. Zhang, J. Li, S. Yang, and B. Wang, “Privacy preserving in cloud envi-
ronment for obstructed shortest path query,” Wireless Personal Communi-
cations, vol. 96, no. 2, pp. 2305–2322, 2017.

[15] F. Farokhi, I. Shames, and K. H. Johansson, “Private routing and ride-
sharing using homomorphic encryption,” IET Cyber-Physical Systems: The-
ory & Applications, vol. 5, no. 4, pp. 311–320, 2020.

[16] C. Benevolo, R. P. Dameri, and B. D’auria, “Smart mobility in smart city,”
in Empowering organizations, pp. 13–28, Springer, 2016.

[17] Z. Fan, X. Song, R. Jiang, Q. Chen, and R. Shibasaki, “Decentralized
attention-based personalized human mobility prediction,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 3,
no. 4, pp. 1–26, 2019.

76

[18] J. Feng, C. Rong, F. Sun, D. Guo, and Y. Li, “Pmf: A privacy-preserving
human mobility prediction framework via federated learning,” Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 4, no. 1, pp. 1–21, 2020.

[19] S. Sheng, E. Pakdamanian, K. Han, Z. Wang, J. Lenneman, and L. Feng,
“Trust-based route planning for automated vehicles,” in Proceedings of
the ACM/IEEE 12th International Conference on Cyber-Physical Systems,
pp. 1–10, 2021.

[20] C. Samal, L. Zheng, F. Sun, L. J. Ratliff, and A. Dubey, “Towards a socially
optimal multi-modal routing platform,” arXiv preprint arXiv:1802.10140,
2018.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT press, 2009.

[22] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A search
meets graph theory.,” in SODA, vol. 5, pp. 156–165, Citeseer, 2005.

[23] T. Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto,
K. Tenmoku, and K. Mitoh, “A fast algorithm for finding better routes by ai
search techniques,” in Proceedings of VNIS’94-1994 Vehicle Navigation and
Information Systems Conference, pp. 291–296, IEEE, 1994.

[24] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, “Exact routing in
large road networks using contraction hierarchies,” Transportation Science,
vol. 46, no. 3, pp. 388–404, 2012.

[25] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, “Customizable
route planning in road networks,” Transportation Science, vol. 51, no. 2,
pp. 566–591, 2017.

[26] M. Wilbur, C. Samal, J. P. Talusan, K. Yasumoto, and A. Dubey,
“Time-dependent decentralized routing using federated learning,” in 2020
IEEE 23nd International Symposium on Real-Time Distributed Computing
(ISORC), IEEE, 2020.

77

[27] J. P. V. Talusan, M. Wilbur, A. Dubey, and K. Yasumoto, “Route planning
through distributed computing by road side units,” IEEE Access, vol. 8,
pp. 176134–176148, 2020.

[28] M. Chase and S. Kamara, “Structured encryption and controlled disclosure,”
in Advances in Cryptology-ASIACRYPT 2010: 16th International Confer-
ence on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings 16, pp. 577–594, Springer, 2010.

[29] S. Angel, H. Chen, K. Laine, and S. Setty, “Pir with compressed queries
and amortized query processing,” in 2018 IEEE symposium on security and
privacy (SP), pp. 962–979, IEEE, 2018.

[30] M. H. Mughees, H. Chen, and L. Ren, “Onionpir: Response efficient single-
server pir,” in Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 2292–2306, 2021.

[31] S. J. Menon and D. J. Wu, “Spiral: Fast, high-rate single-server pir via
fhe composition,” in 2022 IEEE Symposium on Security and Privacy (SP),
pp. 930–947, IEEE, 2022.

[32] A. Henzinger, M. M. Hong, H. Corrigan-Gibbs, S. Meiklejohn, and
V. Vaikuntanathan, “One server for the price of two: Simple and fast single-
server private information retrieval,” Cryptology ePrint Archive, 2022.

[33] A. Beimel, Y. Ishai, and T. Malkin, “Reducing the servers computation in
private information retrieval: Pir with preprocessing,” in Advances in Cryp-
tology—CRYPTO 2000: 20th Annual International Cryptology Conference
Santa Barbara, California, USA, August 20–24, 2000 Proceedings 20, pp. 55–
73, Springer, 2000.

[34] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th annual sym-
posium on foundations of computer science (Sfcs 1986), pp. 162–167, IEEE,
1986.

[35] M. O. Rabin, “How to exchange secrets with oblivious transfer,” Cryptology
ePrint Archive, 2005.

78

[36] Confidential Computing Consortium, “A technical analysis of con-
fidential computing v1.3.” |https://confidentialcomputing.io/wp-
content/uploads/sites/85/2023/01/CCC-A-Technical-Analysis-of-
Confidential-Computing-v1.3_Updated_November_2022.pdf|. Accessed:
Oct. 27, 2023.

[37] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution en-
vironment: what it is, and what it is not,” in 2015 IEEE Trust-
com/BigDataSE/Ispa, vol. 1, pp. 57–64, IEEE, 2015.

[38] M. Henson and S. Taylor, “Memory encryption: A survey of existing tech-
niques,” ACM Computing Surveys (CSUR), vol. 46, no. 4, pp. 1–26, 2014.

[39] P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted execution environments:
properties, applications, and challenges,” IEEE Security & Privacy, vol. 18,
no. 2, pp. 56–60, 2020.

[40] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R.
Sadeghi, “Software grand exposure:{SGX} cache attacks are practical,” in
11th USENIX Workshop on Offensive Technologies (WOOT 17), 2017.

[41] C. Dwork, A. Roth, et al., “The algorithmic foundations of differential pri-
vacy,” Foundations and Trends® in Theoretical Computer Science, vol. 9,
no. 3–4, pp. 211–407, 2014.

[42] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[43] T. Yamada, S. Kataoka, and K. Watanabe, “Heuristic and exact algorithms
for the disjunctively constrained knapsack problem,” Information Processing
Society of Japan Journal, vol. 43, no. 9, 2002.

[44] Ministry of Land, Infrastructure, Transport and Tourism, Japan, “Fy2015
road traffic census summary.” |http://www.mlit.go.jp/road/census/h27/|.
Accessed: Oct. 4, 2020.

79

|
|

[45] PTV Group, “Visum and vissim traffic simulators.”
|https://www.ptvgroup.com/en/|. Accessed: Oct. 4, 2020.

[46] Kinki Regional Development Bureau, Ministry of Land, Infrastructure,
Transport and Tourism. |https://www.kkr.mlit.go.jp/plan/pt/|. Accessed:
Oct. 4, 2020.

[47] K. Schittkowski, “Nonlinear programming methods with linear least
squares subproblems,” in Evaluating Mathematical Programming Techniques,
pp. 200–213, Springer, 1982.

[48] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-b:
Fortran subroutines for large-scale bound-constrained optimization,” ACM
Transactions on Mathematical Software (TOMS), vol. 23, no. 4, pp. 550–560,
1997.

[49] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryp-
tion,” Cryptology ePrint Archive, 2012.

[50] D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck, “Graph
partitioning with natural cuts,” in 2011 IEEE International Parallel & Dis-
tributed Processing Symposium, pp. 1135–1146, IEEE, 2011.

[51] P. Sanders and C. Schulz, “Distributed evolutionary graph partitioning,” in
2012 Proceedings of the fourteenth workshop on algorithm engineering and
experiments (ALENEX), pp. 16–29, SIAM, 2012.

[52] A. Schild and C. Sommer, “On balanced separators in road networks,” in In-
ternational Symposium on Experimental Algorithms, pp. 286–297, Springer,
2015.

[53] G. Aggarwal, S. Gollapudi, and A. K. Sinop, “Sketch-based algorithms for
approximate shortest paths in road networks,” in Proceedings of the Web
Conference 2021, pp. 3918–3929, 2021.

[54] F. Tiausas, K. Yasumoto, J. P. Talusan, H. Yamana, H. Yamaguchi, S. Bhat-
tacharjee, A. Dubey, and S. K. Das, “Hprop: Hierarchical privacy-preserving

80

|
|

route planning for smart cities,” ACM Trans. Cyber-Phys. Syst., vol. 7, oct
2023.

[55] F. Tiausas, J. P. Talusan, Y. Ishimaki, H. Yamana, H. Yamaguchi, S. Bhat-
tacharjee, A. Dubey, K. Yasumoto, and S. K. Das, “User-centric distributed
route planning in smart cities based on multi-objective optimization,” in
2021 IEEE International Conference on Smart Computing (SMARTCOMP),
pp. 77–82, 2021.

[56] J. P. Talusan, F. Tiausas, S. Stirapongsasuti, Y. Nakamura, T. Mizumoto,
and K. Yasumoto, “Evaluating performance of in-situ distributed processing
on iot devices by developing a workspace context recognition service,” in
2019 IEEE International Conference on Pervasive Computing and Commu-
nications Workshops (PerCom Workshops), pp. 633–638, IEEE, 2019.

[57] M. J. Islam, J. P. Talusan, S. Bhattacharjee, F. Tiausas, S. M. Vazirizade,
A. Dubey, K. Yasumoto, and S. K. Das, “Anomaly based incident detec-
tion in large scale smart transportation systems,” in 2022 ACM/IEEE 13th
International Conference on Cyber-Physical Systems (ICCPS), pp. 215–224,
IEEE, 2022.

[58] M. J. Islam, J. P. Talusan, S. Bhattacharjee, F. Tiausas, A. Dubey, K. Ya-
sumoto, and S. K. Das, “Scalable pythagorean mean based incident detec-
tion in smart transportation systems,” ACM Transactions on Cyber-Physical
Systems, 2023.

81

Publication List

Journals

[1] F. Tiausas, K. Yasumoto, J. P. Talusan, H. Yamana, H. Yamaguchi, S. Bhat-
tacharjee, A. Dubey, and S. K. Das, “Hprop: Hierarchical privacy-preserving route
planning for smart cities,” ACM Trans. Cyber-Phys. Syst., vol. 7, oct 2023
(for Chapter 5)

International Conferences

[1] F. Tiausas, J. P. Talusan, Y. Ishimaki, H. Yamana, H. Yamaguchi, S. Bhat-
tacharjee, A. Dubey, K. Yasumoto, and S. K. Das, “User-centric distributed route
planning in smart cities based on multi-objective optimization,” in 2021 IEEE In-
ternational Conference on Smart Computing (SMARTCOMP), pp. 77–82, 2021
(for Chapter 4)

Other Publications

[1] J. P. Talusan, F. Tiausas, S. Stirapongsasuti, Y. Nakamura, T. Mizumoto,
and K. Yasumoto, “Evaluating performance of in-situ distributed processing on
iot devices by developing a workspace context recognition service,” in 2019 IEEE
International Conference on Pervasive Computing and Communications Work-
shops (PerCom Workshops), pp. 633–638, IEEE, 2019
[2] M. J. Islam, J. P. Talusan, S. Bhattacharjee, F. Tiausas, S. M. Vazirizade,
A. Dubey, K. Yasumoto, and S. K. Das, “Anomaly based incident detection in
large scale smart transportation systems,” in 2022 ACM/IEEE 13th International
Conference on Cyber-Physical Systems (ICCPS), pp. 215–224, IEEE, 2022
[3] M. J. Islam, J. P. Talusan, S. Bhattacharjee, F. Tiausas, A. Dubey, K. Ya-
sumoto, and S. K. Das, “Scalable pythagorean mean based incident detection in
smart transportation systems,” ACM Transactions on Cyber-Physical Systems,
2023

82

	1 Introduction
	1.1 Background
	1.2 Problem Statements
	1.3 Organization of Dissertation

	2 Related Literature
	2.1 Smart Mobility and Privacy
	2.2 Route Planning Systems (RPS)
	2.3 Privacy-Preserving RPS (P2RPS)
	2.3.1 Structured Encryption-based Techniques
	2.3.2 PIR-based Techniques
	2.3.3 Other Encryption-based Techniques
	2.3.4 Other Privacy Techniques

	2.4 Multi-objective Optimization

	3 Assumptions and Key Ideas
	3.1 Assumptions
	3.1.1 Road Network Model
	3.1.2 Deployment Environment
	3.1.3 Network Architecture
	3.1.4 Threat Model
	3.1.5 Privacy-Preservation Mechanisms
	3.1.6 Privacy-Preserving Route Planning Service (P2RPS)
	3.1.7 Privacy Scope and Limitations

	3.2 Key Idea

	4 Practical PIR-based Route Planning via Multi-Objective Optimization (P2RoP-MO)
	4.1 Assumptions
	4.2 Key Idea
	4.3 Mathematical Formulation
	4.3.1 Processing Throughput
	4.3.2 Privacy Protection Level
	4.3.3 Travel Time Accuracy
	4.3.4 Objective Functions

	4.4 Multi-objective Optimization
	4.5 Evaluation
	4.5.1 Mobility and Vehicle Trip Data
	4.5.2 NSGA-II Configuration
	4.5.3 Experiment Setup
	4.5.4 Experiment Results

	4.6 Summary

	5 HPRoP: Hierarchical Privacy- Preserving Route Planning
	5.1 Models and Assumptions
	5.1.1 Road Network Partitioning Model
	5.1.2 Approximate Shortest Path Model
	5.1.3 Assumptions

	5.2 Key Idea
	5.2.1 Exact Partial Region Dijkstra's Algorithm (EPR-D)
	5.2.2 Approximate Partial Region Dijkstra's Algorithm (APR-D)

	5.3 Privacy Metrics
	5.3.1 Endpoint Location Privacy Model
	5.3.2 Route Privacy Model

	5.4 Hierarchical Privacy-Preserving Route Planning
	5.4.1 Private Information Retrieval (PIR)
	5.4.2 Inertial Flow Partitioning
	5.4.3 Distributed Architecture
	5.4.4 Heuristic Algorithm
	5.4.5 Route Privacy Mechanism
	5.4.6 Shortcut Connections

	5.5 Evaluation
	5.5.1 Environment
	5.5.2 Methodology
	5.5.3 Results
	5.5.3.1 Effect of Shortcut Connections
	5.5.3.2 Optimal Route Approximation
	5.5.3.3 Endpoint Location Privacy
	5.5.3.4 Route Privacy
	5.5.3.5 Route Completion Time
	5.5.3.6 Memory Usage
	5.5.3.7 Pre-processing Time

	5.5.4 Discussions
	5.5.4.1 Optimal Route Approximation and Actual Route Lengths
	5.5.4.2 Scalability
	5.5.4.3 Improving Route Completion Times

	5.6 Summary

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography
	Publication List

