
Doctoral Dissertation

Structured Representation Learning for
Structured Prediction

Yiran Wang

Program of Information Science and Engineering

Graduate School of Science and Technology

Nara Institute of Science and Technology

Supervisor: Professor Taro Watanabe

Natural Language Processing Lab. (Division of Information Science)

Submitted on December 15, 2023

A Doctoral Dissertation

submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of Engineering

Yiran Wang

Dissertation Committee:

Professor Taro Watanabe (Supervisor)

Professor Satoshi Nakamura (Co-supervisor)

Associate Professor Hiroyuki Shindo (Co-supervisor)

Doctor Yuji Matsumoto (RIKEN AIP)

Structured Representation Learning for
Structured Prediction1

Yiran Wang

Abstract

Structured prediction tasks, e.g., part-of-speech tagging, (nested) named en-

tity recognition, and constituency parsing, are considered to be fundamental and

essential techniques of natural language processing. In recent years, emerging

deep-learning models, especially pre-trained language models, have provided fan-

tastic ways to obtain informative representation, and have been continuously

refreshing the leaderboards of these tasks. However, existing models typically

employ universally applicable representation learning techniques, without con-

sidering the unique characteristics inherent to each specific task. Furthermore,

lack of interpretability also keeps them a black box to humans, and the inability

to explain their decision-making mechanism hindered researchers from further

improving them.

In this dissertation, I mainly focus on leveraging the task-specified character-

istics of these structured prediction tasks to learn structured and interpretable

representations for solving these issues.

First of all, I factorize representation according to the hierarchical structures

of the nested named entity recognition task. A carefully designed algorithm

is introduced to explicitly exclude the harmful influence from the best path of

1Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science

and Technology, December 15, 2023.

i

previous level. By additionally introducing the chunk selection strategies and

switching the encoding to be the innermost first scheme, I obtained level-wise

representation and also pushed the performance to better results.

Moreover, I also factorize the representation for the conventional structured

prediction tasks. With the proposed contrastive hashing methods, narrowing the

representation bottleneck to be only 24 bits (almost) without sacrificing perfor-

mance becomes possible. These learned discrete bits are demonstrated having

properly preserved the necessary features of the downstream tasks, therefore,

can provide researchers with a more interpretable tool to analyze the internal

mechanism of the black-box neural networks.

The main contribution of this dissertation is that I proposed two representa-

tion learning methods to learn structured representation for structured prediction

tasks. Numerous experiments and discussions are provided to show the effective-

ness and efficiency of my methods.

Keywords:

Representation Learning, Structured Prediction, Nested Named Entity Recogni-

tion, Contrastive Learning, Hashing, Interpretability

ii

Acknowledgements

First and foremost, I want to express my heartfelt gratitude to Professor Taro

Watanabe. His invaluable advice and detailed suggestions on my research have

been instrumental in helping me clarify my thoughts and identify hidden chal-

lenges in my ongoing projects. His unwavering encouragement, particularly dur-

ing times when my experiments faced setbacks, has been a source of strength for

me. It’s hard to imagine how I could have completed this dissertation without

his continuous support and guidance.

I would like to extend my sincere thanks to Professor Yuji Matsumoto. He

welcomed me into his research lab years ago, providing an environment where I

could receive solid and comprehensive doctoral training. His patience and meticu-

lous attention to detail have been crucial in helping me navigate the complexities

of my ongoing research projects and in refining my academic papers. Learning

from him has given me a glimpse into the qualities that a true researcher should

possess, and for that, I am truly honored to be one of his students.

I’m also very thankful to Associate Professor Hiroyuki Shindo. From the very

beginning of my doctoral course, he has provided consistent guidance and men-

torship. His teachings have equipped me with a variety of experimental skills and

valuable knowledge that have been beneficial to my academic journey.

In addition, I’d like to extend my gratitude to Dr. Masao Utiyama for offering

me the opportunity to work at NICT. His abundant encouragement and academic

support have been invaluable. Furthermore, working at NICT has given me the

chance to connect with a wide range of skilled researchers, adding great value to

my academic journey.

Besides, I want to thank Professor Satoshi Nakamura for his constructive com-

ments and insightful suggestions that have enriched the quality of this disserta-

tion.

iii

As a member of both the Matsumoto and Watanabe laboratories, I’ve had

an enriching and challenging study abroad life. The feedbacks and intellectual

discussions from all lab members have greatly enhanced my academic experience.

A special mention must go to our lab secretary, Ms. Yuko Kitagawa, who has

been providing remarkable helps in both research and daily life, particularly for

international students like me.

Finally, big thanks to my parents and friends. They’ve always supported me

and respected my choices, helping me stay strong on this journey.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Organization . 4

2 Background 5

2.1 Structured Prediction . 5

2.1.1 Part-of-speech Tagging . 6

2.1.2 Named Entity Recognition 6

2.1.3 Nested Named Entity Recognition 7

2.1.4 Constituency Parsing . 7

2.2 Interpretability . 8

2.2.1 Probing . 9

2.2.2 Clustering and Hashing . 10

2.2.3 Compressing . 10

3 Learning Level-wise Representation 12

3.1 Introduction . 12

3.2 Baselines . 14

3.3 Proposed Methods . 15

3.3.1 Encoding Schemes . 15

3.3.2 Influence of the Best Path 17

3.3.3 Chunk Selection . 18

3.3.4 Neural Network Architecture 21

3.3.5 Training and Inference . 22

3.4 Experiments . 24

3.4.1 Datasets . 24

v

3.4.2 Settings . 24

3.4.3 Main Results . 27

3.4.4 Ablation Studies . 32

3.4.5 Case Studies . 36

3.4.6 Discussions . 38

3.5 Conclusion . 41

3.6 Limitations and Future Work . 41

4 Learning Bit-wise Representation 42

4.1 Introduction . 42

4.2 Proposed Methods . 45

4.2.1 Contrastive Hashing . 46

4.2.2 Instance Selection . 47

4.2.3 Transformer Hash Layer 50

4.2.4 Hashing Stage Architecture 52

4.2.5 Validation Stage Architecture 52

4.2.6 Training and Inference . 53

4.3 Experiments . 54

4.3.1 Datasets . 54

4.3.2 Settings . 54

4.3.3 Main Results . 55

4.3.4 Ablation Studies . 59

4.3.5 Case Studies . 60

4.3.6 Discussions . 63

4.4 Conclusion . 67

4.5 Limitations and Future Work . 69

5 Conclusion 70

5.1 Summary . 70

5.2 Limitations . 71

vi

List of Figures

1.1 The overview of this dissertation. 2

3.1 An example of the nested NER task. The underlines of differ-

ent colors show the boundaries of entities, while ORG, ROLE, and

PER indicate the organization, role and person entity categories,

respectively. 13

3.2 The architecture of the proposed nested NER model. These cells

indicate chunks obtained from the proposed multi-output bidirec-

tional LSTM. At each level, the CRF layer selects the most salient

chunks from the remaining chunks and utilizes them for decoding.

Transparent cells indice used chunks from previous levels. To save

space, we only display the decoding procedures for the first two

levels. 22

3.3 Curves of max, logsumexp, and softmax-x functions along with

their gradients. 36

3.4 Chunk distributions of the naive, max, and logsumexp potential

functions, respectively. Each row displays the chunk selection pref-

erences with respect to levels, syntactic labels, and semantic labels,

respectively. 39

4.1 Examples of our method on the named entity recognition task. We

assign each word a binary code, i.e., these hexadecimal numbers,

and use them as the sole input to recognize entities. PER and PROD

are the entity labels for person and product, respectively. 43

vii

4.2 Derivation of the sentence She ate the pumpkin that Luna smashed,

and the sentence She ate the pumpkin that was smashed by Luna.

These hexadecimal numbers below each token are the hashing re-

sults of bidirectional and incremental parsing, respectively. 44

4.3 The architecture of the hashing stage model for named entity recog-

nition. The transformer hash layer (§4.2.3) produces both contex-

tual representation h and ego-attention scores s (§4.2.3) for the

task-specific fine-tuning and contrastive hashing (§4.2.1), respec-

tively. Solid lines indicate the positive instance, while dotted lines

show negatives. Note that the token Frodo appears twice in dif-

ferent sentences, thus, to avoid including false positives and false

negatives (§4.2.2), there is no arrow pointing from the first Frodo

to the second one. 51

4.4 Examples of the hashing and constituency parsing results. There

are three numbers below each token, the first two are represented

in hexadecimal (32 bits), and indicate the hashing results of the

bidirectional (RoBERTa) and unidirectional (GPT2) pre-trained

language models, respectively. The third number is taken from

Kitaev et al. [40] for comparison and is represented in decimal.

The red and blue parts indicate the exact different bits. 61

4.5 Examples of the hashing and constituency parsing results. There

are three numbers below each token, the first two are represented

in hexadecimal (32 bits), and indicate the hashing results of the

bidirectional (RoBERTa) and unidirectional (GPT2) pre-trained

language models, respectively. The third number is taken from

Kitaev et al. [40] for comparison and is represented in decimal.

The red and blue parts indicate the exact different bits. 62

4.6 Derivation of the sentence Angmar stabbed Frodo with a blade, and

the sentence Frodo held the ring. 63

4.7 Derivation of the sentence The quick brown fox jumps over the lazy

dog, and the sentence The lazy dog jumps over the quick brown fox. 64

viii

4.8 The heatmap of bits distribution. The sub-figure above shows

the distribution of bits concerning different syntactic information,

while the one below corresponds to semantic information. The

number inside cell represents the probability of this label being

assigned a 1 at the n-th bit position. For example, the 6 at the

bottom left corner indicates that among all of the LANGUAGE labels,

only 6% of them are assigned a 1 at the first bit position. 65

4.9 Derivation of the sentence Fear cuts deeper than swords with dif-

ferent code sequence as inputs. The red part indices the flipped

bits. 67

4.10 Derivation of the sentence Fear cuts deeper than swords with dif-

ferent code sequence as inputs. The red part indices the flipped

bits. 68

ix

List of Tables

3.1 Statistics on the ACE2004, ACE2005, GENIA, and NNE datasets.

|Y| means the label size, and m shows the maximal depth of entity

nesting. 25

3.2 Experiments on the ACE2004 dataset. The bold numbers indicate

the best performance, while the underlined numbers represent the

second-best results. Numbers in parentheses are the standard vari-

ance. 28

3.3 Experiments on the ACE2005 dataset. 29

3.4 Experiments on the GENIA dataset. 30

3.5 Experiments on the NNE dataset. 31

3.6 Ablation study on the influence of the encoding schemes and po-

tential functions. 32

3.7 Ablation study of level-wise performance. 33

3.8 Ablation study on various attention mechanisms. 35

3.9 Case study. Brackets mark the boundary of entities, and the cor-

responding categories are annotated in the lower right corner. Ad-

ditionally, PER, GPE, and FAC indicate that the entity types are

person, geopolitical entity, and artifact, respectively. 37

3.10 Speed comparison on the dataset ACE2005. The numbers indicate

the average processing speed in terms of words per second. 40

4.1 Statistics on the WSJ and OntoNotes datasets for the three tasks. 54

4.2 Hyper-parameters on all tasks. The first block shows the hyper-

parameters on hashing stage, while the second one shows the vali-

dation stage. 55

x

4.3 The main results on part-of-speech and named entity recognition

experiments. The results of our methods are displayed in two rows,

which indicate the performance in hashing and validation stages,

respectively. |θ| columns show the number of parameters, and the

bold numbers indicate the best validation performance in the

settings. 56

4.4 The main results on bidirectional and incremental parsing exper-

iments. The results of our methods are displayed in two rows,

which indicate the performance in hashing and validation stages,

respectively. |θ| columns show the number of parameters, and the

bold numbers indicate the best validation performance in the

settings. 57

4.5 Ablation study on the different similarity functions and objective

functions on the OntoNotes dataset. The numbers on the left and

right sides of→ represent the hashing and validation performance,

respectively. 58

4.6 Ablation study on the named entity recognition experiments, along

with the β coefficient. The two rows display hashing and validation

performance, respectively. 59

4.7 Ablation study on the OntoNotes experiments, along with the tem-

perature τ , which controls the strength of penalties on hard nega-

tive instances [97]. 60

xi

Chapter 1

Introduction

1.1 Motivation

Structured prediction tasks, such as part-of-speech tagging, nested named entity

recognition, and constituency parsing, are considered fundamental and essential

techniques in natural language processing. Generally speaking, these tasks aim to

detect linguistic structures within given sentences. For example, part-of-speech

tagging assigns a syntactic label to each token. Named entity recognition identi-

fies the boundaries of existing entities in sentences and assigns a semantic label to

each one. Nested named entity recognition allows for entities to be nested within

other entities. Constituency parsing identifies the grammatical constituents of a

sentence.

In recent years, emerging deep learning models, particularly pre-trained lan-

guage models, have provided innovative methods for obtaining informative repre-

sentations and have continually refreshed the leaderboards for these tasks. They

offer a universal solution for natural language processing, which involves feeding

the input sentences into a universal encoder to transform the original discrete

symbolic tokens into informative high-dimensional continuous representations.

These vectors are then used for downstream tasks. However, these models com-

monly do not take the task-specific characteristics of structured prediction tasks

into consideration. As a result, they fail to leverage structural information for

structured prediction, leading to performance loss. Moreover, hidden states from

these models are typically unstructured continuous high-dimensional vectors con-

sisting of only human-unreadable floating-point numbers. This issue makes the

1

Structured Predictions

Representation Learning

(Chapter 3)

Introduce Structures To

(Chapter 4)

Induce Structures From

Figure 1.1: The overview of this dissertation.

internal mechanism black boxes to humans, and the inability to explain their

decision-making mechanisms in ahead hinders researchers from further advanc-

ing them.

In this dissertation, I claim that incorporating structures into representation

learning is beneficial for various structured prediction tasks. On the one hand,

explicitly introducing target structures helps the model leverage the structural

information to avoid suboptimal solutions. On the other hand, implicitly induc-

ing target structures from downstream structured prediction tasks aids in reor-

ganizing the task-specific features in a more interpretable manner, unveils the

internal decision-making mechanisms, and offers potential inspiration for future

researchers to design more efficient representation learning methods.

Firstly, in Wang et al. [101], I analyze the representation learning issues in

existing methods and identify a problem where the best path exerts a harmful

influence on the decoding of subsequent levels. Therefore, I propose a carefully

designed algorithm to explicitly exclude the influence of the best path from pre-

vious levels. By introducing chunk selection strategies and altering the encoding

scheme to prioritize innermost entities, the model is designed to learn level-wise

representations to adapt to the hierarchical structures of nested named entity

recognition, consequently achieving better performance.

Moreover, in Wang et al. [100], I focus on compressing and interpreting the

continuous representations from pre-trained language models. Using the pro-

posed contrastive hashing methods, it becomes feasible to narrow and discretize

the representation bottleneck to only 24 bits without significantly compromising

performance. These induced bit-wise representations preserve all the essential

features required for downstream tasks. Compared with token-level tags from

2

previous work, my method not only indicates whether the syntactic properties

of two given tokens are different but also distinguishes exactly which bits they

differ in. In this sense, my method can be considered as implicitly inducing tar-

get structures and representing them in a 24-bit format, which is equivalent but

differs from the original structure format. In this way, my model provides re-

searchers with a more interpretable tool for analyzing the internal mechanisms of

black-box neural networks.

1.2 Contribution

The contributions are of this dissertation are the followings,

1. For nested named entity recognition tasks, I analyze how information from

other levels may affect the entity detection on current level and propose a

hierarchical representation learning method to explicitly exclude the influ-

ence of the best path. Besides, I propose an encoding scheme and chunk

selection strategies. This method focuses on hierarchical structures and

thus learns level-wise representations.

2. I provide experiments on nested named entity recognition to demonstrate

that my methods successfully exclude the influence from previous levels and

obtain effective level-wise representations.

3. For the issue of interpretability, I propose novel contrastive hashing methods

to compress and discretize the continuous vectors from pre-trained langauge

models down to only 24 bits. In addition, I introduce an instance selection

strategy and transformer-based ego-attention to further ensure the task-

relevant information. This method focuses on interpretability and thus

learns bit-wise representations.

4. I conduct extensive experiments on various structured prediction tasks to

demonstrate that my model completely preserves task-relevant information

and obtains informative and compact bit-wise representations.

3

1.3 Organization

This dissertation organizes as follows.

Chapter 1 introduces the motivation and contributions of this dissertation.

Chapter 2 brings fundamental concepts and related work. On the one hand, I

introduce various structured prediction tasks, such as part-of-speech tag-

ging, (nested) named entity recognition, and constituency parsing. On the

other hand, I describe the workflow of pre-trained language models, the

interpretability issues, and the existing attempts on resolving them.

Chapter 3 aims to enhance the performance of nested named entity recogni-

tion by explicitly incorporating its hierarchical structures to learn level-

wise representation learning. It begins by explaining how does the best

path influence the subsequent levels on decoding. After that, I propose a

novel method to explicitly exclude the influence of the best path, along with

chunk selection strategies and an innermost-first encoding scheme. I con-

duct numerous experiments to demonstrate the efficiency and effectiveness

of my model. Finally, I also display the chunk distribution to intuitively

illustrate the mechanism of level-wise representation learning.

Chapter 4 focuses on improving the interpretability of conventional structured

prediction tasks by implicitly inducing targets structures and compressing

them as a novel bit-wise representation learning. In this chapter, I first in-

troduce the existing attempts on compressing and interpreting continuous

vectors from pre-trained language models, and then proposes a novel con-

trastive hashing method, by applying it along with instance selection and

an ego-attention mechanism, my model becomes capable of hashing the

continuous vectors to discrete codes. Experiments and discussions shows

that using these binary as the sole inputs, performance on various tasks are

still kept, and the outputs cases and bit distribution reveal more details

about what information is preserved by these bits exactly.

Chapter 5 gives a summary of this dissertation and discusses the limitations and

potential future work.

4

Chapter 2

Background

2.1 Structured Prediction

Structured prediction tasks aim at detecting structures from plain sentences.

The most commonly known tasks include part-of-speech tagging, named entity

recognition, and constituency parsing. The training goal is generally minimizing

the negative log-likelihood of the target structure of the given input sentence,

L = − log
s (y | x)∑

y′∈Y s (y′ | x)
(2.1)

and inference aims at searching the most probable structure in the space of valid

structures.

y∗ = arg max
y′∈Y

s (y′ | x) (2.2)

Where x, y, and Y are the input sentence, target structure, and the search space

consist of all valid target structures, respectively.

Generally, enumerating all valid structures in the entire search space to compute

the partition function, i.e., the denominator part of Equation 2.1, is intractable

due to the exponential size. Therefore, structured prediction models commonly

rely on probabilistic structured distributions, such as Conditional Random Field

[42] (CRF) and Cocke–Kasami–Younger Algorithm [33] (CKY), for efficient train-

ing and inference. These probabilistic structured distributions build upon the

sum-product algorithm [41] to significantly reduce time complexity by factoriz-

ing the probabilistic graph into a product of local functions, thus resulting in

remarkable acceleration.

5

Additionally, Eisner [20] revealed the fact that the inside-outside algorithm

[6] and the forward-backward algorithm [8], which are widely used in structured

prediction for inference, are conceptually equivalent to the back-propagation algo-

rithm [76]. This makes implementing probabilistic structured distributions much

easier and also makes them more efficient.

2.1.1 Part-of-speech Tagging

Part-of-speech tagging aims to classify the syntactic categories of each token in

given sentences. Before the era of deep learning, traditional statistics-based mod-

els [72, 62, 52] commonly followed the paradigm of feeding hand-crafted features

into probabilistic structured distributions and then performing sequential label-

ing. However, these hand-crafted features are highly dependent on experience,

thus limiting performance and application. Early-stage deep learning methods

noticed that morphological features [30, 73, 10] are beneficial to part-of-speech

tagging and can simultaneously address the out-of-vocabulary issue. During this

stage, the standard architecture [54, 43] was commonly employing a bidirectional

Long Short-term Memory [27] (LSTM) followed by CRF. After that, contextual

information was demonstrated can remarkably enhance accuracy, and these work

[2, 66] finally lead to the new paradigm of pre-trained language models [18, 49, 45].

2.1.2 Named Entity Recognition

Named entity recognition extends the task to span-level by simultaneously de-

tecting the boundaries of named entities and assigning semantic labels to them.

In the field of information extraction, named entities are often noun phrases that

refer to real-world objects, such as persons, organizations, products, etc. De-

tecting these entities is considered the first step in linking them with real-world

knowledge.

Existing named entity recognition models commonly utilize architecture simi-

lar to that used in part-of-speech tagging, therefore, both can be categorized as

sequential labeling tasks. They have also followed similar developmental trajec-

tories, such as employing CNNs and LSTMs to construct word representations

from the character level, and then shifting to using pre-trained language models.

6

2.1.3 Nested Named Entity Recognition

However, these conventional models are not designed for nested named entity

recognition, therefore, they are inherently incapable of detecting entities nested

within other entities. Fortunately, a large number of recent papers across various

types have proposed methods to address the case of nested entities. I introduce

them in the following paragraphs.

Layered Model Models in this category employ an encoder to update the token

representation from level to level. For example, Ju et al. [32] dynamically updates

span-level representations for the next layer of recognition based on recognized

inner entities. Fisher and Vlachos [22] proposed a merge and label method to

further enhance this idea.

Region-based Model Lin et al. [47] proposed an anchor-region network to

recognize nested entities by first detecting anchor words and entity boundaries,

and then classifying each detected span.

Hypergraph-based Model Lu and Roth [51] proposed a hypergraph struc-

ture in which edges are connected to multiple nodes to represent nested entities.

Muis and Lu [58] and Wang and Lu [95] addressed the spurious structures and

ambiguity issues of the hypergraph structure.

Parsing-based Model Finkel and Manning [21] indicated that all these nested

entities are located in some non-terminal nodes of the constituency parses of the

original sentences. Therefore, they proposed using a CRF constituency parser to

obtain them. However, its cubic time complexity limits its applicability.

2.1.4 Constituency Parsing

Constituency parsing, also known as phrase parsing, aims to extract constituency-

based parses, which are designed to reflect the syntactic structures of the input

sentences. Input tokens make up the terminal nodes of the parses, while other

intermediate nodes consist of non-terminal nodes. To address this task, previous

research has proposed a variety of solutions, which can primarily be categorized

7

into methods represented by Cross and Huang [17], known as transition-based

methods, and methods represented by Stern et al. [80], known as graph-based

methods. Transition-based methods build phrases by iteratively shifting tokens

from a buffer to a stack and reducing partially built parses to form larger parses.

In contrast, graph-based methods formalize this task as dynamic programming

decoding. The architectures of graph-based methods [91, 39, 83, 107] are generally

similar to the sequential labeling models, but have the CRF decoder replaced with

the CKY decoder. In this dissertation, I mainly focus on the graph-based method.

2.2 Interpretability

Deep learning methods, especially the recently popular pre-trained language mod-

els, have significantly improved the performance of various tasks, they have be-

come the de facto new paradigm. The new paradigm involves introducing a neural

encoder with strong capabilities to extract information from discrete input sen-

tences and then produce differentiable continuous high-dimensional vectors for

downstream inference. These vectors are supposed to contain as much as possi-

ble task-relevant information that is beneficial for task prediction, therefore, these

kinds of methods are also commonly known as representation learning methods.

Although the conventional approach is to randomly initialize the encoder and

train it along with the task decoder, the recently popular pre-trained language

models claim that pre-training the encoder with a huge amount of raw text cor-

pus and then fine-tuning them on the downstream task leads to much better

performance.

However, it is still difficult to explain what actually happens within these mod-

els and what preserved information leads in such extraordinary improvements.

Being called black boxes is not only due to the fact that the continuous vectors

of these models are incomprehensible to human, but also because the internal

mechanism by which they make decisions is also still completely unknown. These

characteristics make further improving their performance extremely difficult.

Therefore, improving the interpretability of neural networks has become an

important and urgent task for researchers, and there is already much existing

work in this line. Early work focused on probing syntactic and semantic properties

8

from the continuous vectors of pre-trained models. Subsequent papers attempted

clustering and hashing tricks to obtain meaningful discrete outputs. After that,

some recently published papers have also tried directly compressing continuous

vectors into interpretable discrete tokens.

2.2.1 Probing

Tenney et al. [85, 84] may be considered as the most effective approaches at the

early stage of neural network interpretability field. They proposed a suite of

probing tasks to measure what kind of linguistic information is captured by pre-

trained language models. According to their results, they found that traditional

pipelines are rediscovered by pre-trained language models. Such that vectors from

low-level layers generally preserve morphological and syntactic information that

helps in part-of-speech tagging, while higher-level information focuses more on

semantic and task-relevant features.

Later work further found that syntactic trees can be recovered from continuous

vectors. On the one hand, Vilares et al. [92], Kim et al. [36], and Bai et al. [5]

successfully induced parses by simply calculating the syntactic distances among

token representations according to their different distance definitions. Jawahar

et al. [31] and Htut et al. [29], on the other hand, pointed out that syntactic

structure is not directly encoded in self-attention weights. These papers provide

some insight into how pre-trained language models encode syntactic information.

However, all of them rely on the assumption that the desired features are pre-

served in these continuous vectors in a human-readable format and hypothesize

that some simply defined measurements can effectively reveal the syntactic fea-

tures. In practice, it is completely possible that information is stored in some

hard-to-define format, such as nonlinear subspaces.

On the semantic level, pre-trained language models do not perform as well as

they do on syntactic tasks. They fail at capturing numbers [94] and struggle with

understanding named entities [7], fortunately, these issues can be significantly

improved with sufficient fine-tuning. Therefore, although they are generally con-

sidered capable of extracting syntactic-level information, their proficiency at the

semantic level is deficient.

9

2.2.2 Clustering and Hashing

Unlike the aforementioned indirect probing approaches, providing a direct geo-

metric perspective for explanation is always much more intuitive. However, high

dimension makes visualization become extremely complicated. Although some

useful tools such as t-SNE [56] and UMAP [56] have been proposed, they often

fail on capturing the desired linguistic features from such high-dimensional spaces

and then commonly result in hard-to-understand token distributions in projected

3-dimensional spaces.

Reif et al. [74], Wiedemann et al. [102], and Pasini et al. [61] proposed em-

ploying clustering approaches on the continuous representations of pre-trained

language models. Their results show that the representation space is divided

into multiple subspaces, where different syntactic and semantic features are dis-

tributed. Work in this line also provides some insights on the famous king −
man + woman = queen equation [57]. However, they generally only offer coarse-

grained qualitative explanations rather than fine-grained quantitative ones.

Different from clustering, hashing is a far more straightforward method that

discards and quantizes the continuous representations of pre-trained language

models, replacing them with discrete labels instead. These discrete labels are

often called codebook and are associated with an additional trainable embedding

weight. These methods assume that vectors often contain subtle and irrelevant

information that should be eliminated. However, the discrete nature of labels

naturally prevents them from being applied to end-to-end deep learning frame-

works, making them difficult to train and hard to retain desired information.

Recently, Ou et al. [60] and Qiu et al. [69] proposed solving these issues by maxi-

mizing mutual information and achieved significant improvements in performance

on document retrieval tasks. Xue and Aletras [104], on the other hand, replaced

the input embedding layer with a hash function and trainable codebook, thereby

extending the transformer to be vocabulary-independent.

2.2.3 Compressing

In recent, Li and Eisner [46] propose to maximize the mutual information between

discrete tokens and the targets, while at the same time minimizing the mutual

10

information between discrete tokens and inputs. This method is generally known

as the information bottleneck [86], and Li and Eisner [46] extended it by intro-

ducing a stochastic variational inference method to estimate mutual information

efficiently and applied it to obtaining discrete tags.

Kitaev et al. [40] on the other hand directly quantize the hidden states as

discrete tags and then use them in downstream training to achieve satisfactory

performance. However, these obtained discrete tags are distinct and indepen-

dent of each other. They only indicate whether two vectors contain different

information, but cannot quantify their differences or pinpoint exactly where they

differ.

11

Chapter 3

Learning Level-wise

Representation

3.1 Introduction

Named Entity Eecognition (NER), as a key technique in natural language process-

ing, aims to detect entities and assign semantic category labels to them. Early

research [30, 54, 43] proposed employing deep learning methods and achieved

significant performance improvements. However, in many specialized domains,

particularly in scientific fields like biomedical science [99], entities are allowed

to nest within other entities, which is known as Nested Named Entity Recogni-

tion (nested NER). Figure 3.1 illustrates an example of the nested NER task.

Correctly and efficiently detecting all existing nested entities is one of the most

important prerequisites for various downstream tasks, such as relation extraction

and entity linking. Therefore, nested NER plays a critical role in natural language

processing.

However, existing methods primarily focus on flat named entity recognition,

where entity nesting does not exist, therefore, they cannot satisfactorily handle

nested entities. Recently, a large number of papers have proposed novel methods

[22, 98] for the nested NER task. Among them, layered approaches solve this

task through multi-level sequential labeling. In these approaches, entities are

divided into several levels, where the term level indicates the depth of entity

nesting, and sequential labeling is performed repeatedly. As a special case of the

layered method, Shibuya and Hovy [78] observed that short entities are always

12

Former Hogwarts headmaster Albus Dumbledore
ORG ROLE PER

ROLE

ROLE

PER

Figure 3.1: An example of the nested NER task. The underlines of different colors

show the boundaries of entities, while ORG, ROLE, and PER indicate the

organization, role and person entity categories, respectively.

nested within longer entities. Once the outer entity is detected, inner entities

are considered to exist within the span of the detected outer entity. Thus, they

search for inner entities only within these spans, rather than throughout the entire

sentence. Additionally, they found that searching for the best path within the

span of the detected entity results only in identifying the known outer entity itself,

as it is located along the best path. Therefore, they instead detect inner entities by

searching for the second-best path, applying a conventional Conditional Random

Field [42] (CRF) with the same potential function.

We argue that inner entities are unlikely to be located on the second-best path.

Because Shibuya and Hovy [78] continue to use the same potential function, any

path in the remaining search space that shares the many labels with the best

path will obtain the high emission scores. Therefore, searching for entities along

the second-best path is likely to yield a path with many overlaps with the best

path, making it unlikely to contain the expected inner entities. For this reason,

we claim that even though Shibuya and Hovy [78] have the best path excluded

from the search space, the influence of the best path is not excluded. Thus,

forcing inner entities to be located on the second-best path of the current level,

as done by Shibuya and Hovy [78], leads to contradictory optimization goals and

ultimately harms performance.

In this research, we employ a different potential function at each level to address

this issue. We aim to achieve this by introducing an encoder that generates

multiple hidden states at each time step. At each level, we select some of these

hidden states for entity recognition and then remove those hidden states that

interact with the labels of the best path before proceeding to the next level. In

13

this manner, the emission scores for the best path labels differ from level to level,

allowing us to explicitly exclude the influence of the best path. Furthermore, we

also propose three different selection strategies to leverage the information among

hidden states.

Moreover, Shibuya and Hovy [78] proposed recognizing entities from outermost

to inner. We empirically demonstrate that extracting the innermost entities first

yields better performance. This may be because some long entities do not contain

any inner entities, so using an outermost-first encoding mixes these entities with

other existing shorter entities at the same levels, thereby causing the encoder

representations to become dislocated. In this research, we convert entities to the

commonly used IOBES encoding scheme [71], and address nested NER by applying

CRF level by level.

Our contributions are considered as the follows,

1. We design a novel nested NER algorithm that explicitly excludes the influ-

ence of the best path by using a different potential function at each level.

2. We propose three different selection strategies to fully utilize the informa-

tion among hidden states.

3. We empirically demonstrate that recognizing entities from the innermost to

the outer layers results in better performance.

4. We provide extensive experimental results to demonstrate the effectiveness

and efficiency of our proposed method on standard benchmark datasets

across diverse domains, namely ACE2004, ACE2005, GENIA, and NNE.

3.2 Baselines

As a special case of the layered method, Shibuya and Hovy [78] detect entities

from level to level. They first search the best path by applying a CRF to detect

the outermost entities. After obtaining these longer entities in the given sentence,

they narrow their search space by searching only on the spans of the detected

entities. This is because shorter entities can only be nested within longer entities.

From the second level onwards, they only focus on the second-best path, as they

14

demonstrate that searching the best path within the span of a detected entity

only yields that known outer entity. They continue to detect inner entities using

the same potential function until no more specific inner entities can be found.

In addition, they also designed a special algorithm to efficiently search for the

second-best path by excluding the known best path.

On the other hand, Wang et al. [98] proposed another layered method. They

enumerate all l-gram spans by iteratively merging neighboring spans using a

convolutional neural network. At each level, they first predict the entity category

of each span according to its representation. Then, they merge the representations

of neighboring l-gram spans to construct the representations of all (l + 1)-gram

spans for the next level. In this way, the method reduces the sentence length level

by level, arranged in a pyramid shape, which accounts for the name.

3.3 Proposed Methods

Formally speaking, named entity recognition task aims at recognizing entities

in a given sequence, i.e., x1, . . . , xn. For nested NER, entities may be nested

within longer entities, whereas for flat named entity recognition, no such nesting

occurs. Existing algorithms address flat named entity recognition by applying

a sequential labeling method, which assigns each token a label, i.e., y1, . . . , yn

where yt ∈ Y , to simultaneously determine the span and category of each entity

and non-entity. To tackle nested NER, our method builds upon previous layered

methods and extends the sequential labeling approach with a multi-level encoding

scheme. In this encoding scheme, we divide entities into various levels according

to their nesting depths and apply the sequential labeling method level by level to

detect all entities.

3.3.1 Encoding Schemes

Different from part-of-speech tagging, which is only a token-level task, named

entity recognition further detects the boundaries of entities. Therefore, sequential

labeling also needs to extend the label set through an encoding scheme to give

them the ability to recognize boundaries. Currently, one of the most commonly

used encoding scheme is BIOES [71], which contains several different labels. O

15

indicates the current token is not an entity, S- means this is a single token entity,

while B-, I-, and E- are used for multi-token entities and stand for the beginning,

intermediate, and end of an entity, respectively.

Shibuya and Hovy [78] suggested identifying the outermost entities first and

then recursively detecting the nested inner entities. However, our findings indicate

that starting with the innermost entities yields better performance. We use the

sentence illustrated in Figure 3.1, as an example to illustrate the details of these

two encoding schemes. The outermost-first encoding scheme are presented below.

Former Hogwarts headmaster Albus Dumbledore

(level 1) B-PER I-PER I-PER I-PER E-PER

(level 2) B-ROLE I-ROLE E-ROLE B-PER E-PER

(level 3) O B-ROLE E-ROLE O O

(level 4) O S-ORG S-ROLE O O

(level 5) O O O O O

(level 6) O O O O O

In this example, the outermost entity Former Hogwarts headmaster Albus Dum-

bledore appears at the first level, while the innermost entities Hogwarts and head-

master appear at the fourth level. Besides, we keep all examples to have the same

number of levels by filling the remaining levels, which contain no entities, with

the label O. For the ACE2004, ACE2005, and NNE datasets, the maximal depth

of entity nesting is 6, thus, examples in these datasets have 6 levels. For the

GENIA dataset, the maximal level is only 4.

Former Hogwarts headmaster Albus Dumbledore

(level 1) O S-ORG S-ROLE B-PER E-PER

(level 2) O B-ROLE E-ROLE O O

(level 3) B-ROLE I-ROLE E-ROLE O O

(level 4) B-PER I-PER I-PER I-PER E-PER

(level 5) O O O O O

(level 6) O O O O O

However, we find that detecting from the innermost entities results in better

performance as follows. In this encoding scheme, the innermost entities Hog-

warts, headmaster, and Albus Dumbledore appear at the first level. Note that the

16

innermost-first encoding scheme is not the simple reverse of the outermost-first

encoding scheme. For example, the entity Former Hogwarts headmaster and the

entity Albus Dumbledore appear at the same level in the outermost-first scheme,

but they appear at different levels in the innermost-first scheme.

3.3.2 Influence of the Best Path

Although the second-best path searching algorithm is proposed as the main con-

tribution of Shibuya and Hovy [78], we claim that forcing inner entities to be

located on the second-best path of the current level is not optimal. To clarify

the issue, consider the target paths at levels 3 and 4 from the innermost-first

encoding example above. The best path at level 3 is B-ROLE, I-ROLE, E-ROLE, O,

O. Therefore, the path most likely to be the second-best is one that shares many

labels with the best path, rather than those that have no overlap with the best

path at all. For example, the path B-ROLE, I-ROLE, E-ROLE, O, S-ORG is more

likely to be selected than the actual target label sequence at level 4, i.e., B-PER,

I-PER, I-PER, I-PER, E-PER. In addition, Shibuya and Hovy [78] reuse the same

potential function at all higher levels. This indicates that, for instance, at level

3 and time step 1, the target label is B-ROLE, therefore, their model encourages

the emission scores of label B-ROLE to be larger than the emission score of the

non-target label B-PER,

h⊤
1 vB-ROLE > h⊤

1 vB-PER (3.1)

while at level 4, the target at the first time step turns to be B-PER, their model

naturally shifts to optimizing the opposite objective.

h⊤
1 vB-ROLE < h⊤

1 vB-PER (3.2)

These two optimization goals are contradictory and eventually hurt performance.

Therefore, we claim that although they exclude the best path from the search

space, the influence of the best path is not excluded.

To separate the influence between different levels, the crux of the matter is

to introduce different emission scores for different levels and to ensure that each

emission score is used and only used at one level. For example, by introducing

17

level-wise hidden states, the optimization goals are no longer contradictory.

h3⊤
1 vB-ROLE > h3⊤

1 vB-PER (3.3)

h4⊤
1 vB-ROLE < h4⊤

1 vB-PER (3.4)

This is because h3
1 and h4

1 are two distinctive hidden states to be used only at

levels 3 and 4, respectively.

To achieve this goal, we introduce a novel encoder (§3.3.4) to produce m hidden

states at each time step, such as h1
t , . . . ,h

m
t , where m is the number of levels. We

use it to replace the conventional encoder that can only output a single hidden

state ht ∈ Rdh at each time step. We maintain these chunks by removing the

used chunk from them to ensure that each chunk is used and only used at one

level. To distinguish between our multiple hidden states and the conventional

single hidden state, we use the term chunks from now on to refer to these hidden

states hl
t ∈ Rdh/m. The chunk dimension is restricted to be dh/m to keep the

total number of parameters unchanged.

3.3.3 Chunk Selection

After obtaining m chunks from our specialized encoding layer, our method re-

peatedly applys conditional random fields to detect entities from level to level.

At each time step, our algorithm selects one chunk from the remains for detec-

tion and removes the selected chunk before moving to the next level. From the

representation learning aspect, the complete information of all these m levels are

distributed in these m chunks, each chunk preserve only a fraction of it. There-

fore, we need a chunk strategy to select the most relevant chunk from the remains

the current level. For clarity, we use the notation Hl
t to denote the chunk set at

level l, and use Hl to refer to all of these chunk sets at level m across time steps,

i.e., Hl
1, . . . ,Hl

n.

The Naive Selection Strategy

First of all, the most intuitive selection strategy is to follow the original chunk

order and simply select the l-th chunk for level l. At level l, regardless of the

label, the emission score is calculated by multiplying the selected chunk hl
t with

18

the embedding of each label. In this manner, this naive potential function can

be defined as follows,

ϕ (ylt−1, y
l
t,Hl

t) = Aylt−1,y
l
t

+ hl⊤
t vylt

(3.5)

where A ∈ R|Y|×|Y| is the transition matrix, Y is the label set, Aylt−1,y
l
t

indicates

the transition score from label ylt−1 to label ylt, and vylt
∈ Rdh/m is the embedding

of label ylt. In this case, the l-th chunk hl
t ∈ Hl

t is just the chunk that have

an interaction with the best path, thus its influence to the best path should be

removed as we discussed above. We achieve this by removing it from the chunk

set Hl
t.

Hl+1
t = Hl

t \ {hl
t} (3.6)

The Max Selection Strategy

However, one concern with the naive potential function is that it implicitly as-

sumes the outputs of the encoder are arranged in level order rather than in some

other particular order, such as syntactic or semantic order. For example, it is

possible that the encoder gathers ROLE-relevant information in the 3rd chunk but

remains PER relevant information to the 5th chunk. More specifically, at level 3

time step 1, naive potential function forces

h3⊤
1 vB-ROLE > h3⊤

1 vB-PER (3.7)

However, if there exists another chunk, say h5
1, which contains more B-PER rele-

vant information. Then optimizing the following target is more reasonable.

h3⊤
1 vB-ROLE > h5⊤

1 vB-PER (3.8)

From the perspective of representation learning, this means that we are not only

increasing the confidence of assigning h3
1 a B-ROLE tag but also encouraging it to

be the most salient chunk. More specifically, this strategy ensures that the confi-

dence of assigning a B-PER label to the current level is always lower than B-ROLE,

regardless of any remaining level. Therefore, the emission score h3⊤
1 vB-ROLE should

not only be larger than the emission scores of other labels with respect to it, e.g.,

h3⊤
1 vB-PER, but also be larger than the emission scores of all possible labels with

respect to all remaining chunks, e.g., h5⊤
1 vB-PER.

19

In addition, from the optimization perspective, optimizing Equation 3.8 is much

harder than forcing Equation 3.7, due to h5⊤
1 vB-PER > h3⊤

1 vB-PER. This encourages

each label embedding to be well-separated [48]. In other words, this new selection

strategy leads to the following sequences.

hσ1⊤
t vy1t

> hσ2⊤
t vy2t

> . . . > hσm⊤
t vymt

(3.9)

Where σl is the index of the selected chunk at level l. However, for the naive

potential function, the above inequality does not always hold. In summary, at

each level, the max function selects the most salient chunk from the remaining

chunks.

Therefore, rather than adhering to the original chunk orders, we propose allow-

ing each label yj to select the most salient chunk when computing the emission

score. We define the max potential function as follows,

ϕ (ylt−1, y
l
t,Hl

t) = Aylt−1,y
l
t

+ max
h∈Hl

t

h⊤vylt
(3.10)

After decoding, we update the chunk sets by removing the chunks that have

interactions with the labels on the best path.

Hl+1
t = Hl

t \ {arg max
h∈Hl

t

h⊤vylt
} (3.11)

The LogSumExp Selection Strategy

Furthermore, the log-sum-exp operation is a well-known differentiable approxi-

mation of the max operation. We introduce it as the third potential function,

ϕ (ylt−1, y
l
t,Hl

t) = Aylt−1,y
l
t

+ log
∑
h∈Hl

t

exph⊤vylt
(3.12)

The chunk set is updated in the same manner as Equation 3.11. We refer to this

potential function definition as logsumexp for the remainder of this dissertation.

One advantage of the log-sum-exp operation is that it back-propagates gradients

to all of its inputs, as indicated in Equation 3.14. This is in contrast to the max

operation, which only accumulates gradients to the maximal input, as shown in

Equation 3.13. The max operator could lead to excessive gradient accumulation

for specific chunks, which might result in sub-optimal performance.

20

∂ maxn
i=1 xi

∂ xi

=

1 (i = arg maxn
i=1 xi)

0 (otherwise)
(3.13)

∂ log
∑n

i=1 expxi

∂ xi

=
expxi∑n
i=1 expxi

(3.14)

3.3.4 Neural Network Architecture

The neural network architecture of our model is mainly based on previous work,

with only a few modifications, which we will briefly introduce in this section.

Figure 3.2 displays the details of the architecture.

Embedding Layer

Following previous work of Shibuya and Hovy [78], we convert words to em-

beddings wt ∈ Rdw and employ a character-level bidirectional Long Short-term

Memory [27] (LSTM) to obtain character-based word embeddings ct ∈ Rdc for

leveraging the morphological information. The concatenation of them is fed into

the encoding layer as the token representation xt = [wt, ct] ∈ Rdx .

Encoding Layer

We employ a three-layered bidirectional LSTM to encode sentences and to obtain

contextual information,

[h1, . . . ,hn] = LSTM ([x1, . . . ,xn]) (3.15)

where ht ∈ Rdh is the hidden state. In contrast to the encoders used in previous

work, which can only output a single hidden state at each time step, we divide

the hidden state ht into m chunks,

[h1
t , . . . ,h

m
t] = ht (3.16)

where hj
t ∈ Rdh/m, and then define the collection of them as the first level chunk

set, i.e., H1
t = {hj

t}mj=1 for entity detecting.

21

BiLSTM

Former Hogwarts headmaster Albus Dumbledore

Embedding

CRF

O S-ORG S-ROLE E-PERB-PER O S-ROLE E-ROLE OO

CRF

(Level 1) (Level 2)

<latexit sha1_base64="J2IynnnHg80h24XDSJkQvNkAgbI=">AAAB+3icbVA7T8MwGHTKq5RXKCOLRYXEVCWoPMZKLIxFog+pDZHjOK1Vx45sB1FF+SssDCDEyh9h49/gtBmg5STLp7vvk88XJIwq7TjfVmVtfWNzq7pd29nd2z+wD+s9JVKJSRcLJuQgQIowyklXU83IIJEExQEj/WB6U/j9RyIVFfxezxLixWjMaUQx0kby7fooECxUs9hc2SR/cH3XtxtO05kDrhK3JA1QouPbX6NQ4DQmXGOGlBq6TqK9DElNMSN5bZQqkiA8RWMyNJSjmCgvm2fP4alRQhgJaQ7XcK7+3shQrIp4ZjJGeqKWvUL8zxumOrr2MsqTVBOOFw9FKYNawKIIGFJJsGYzQxCW1GSFeIIkwtrUVTMluMtfXiW986Z72by4azXarbKOKjgGJ+AMuOAKtMEt6IAuwOAJPINX8Gbl1ov1bn0sRitWuXME/sD6/AES7JRt</latexit>

h1
1

<latexit sha1_base64="q1cpwkuaXOEFKTqsE9bKQaAjjFU=">AAAB+3icdVDNS8MwHE3n15xfdR69BIfgqbRjunkbePE4wX3AVkuapltYmpYkFUfpv+LFgyJe/Ue8+d+YbhP8fBDyeO/3Iy/PTxiVyrbfjdLK6tr6RnmzsrW9s7tn7ld7Mk4FJl0cs1gMfCQJo5x0FVWMDBJBUOQz0venF4XfvyVC0phfq1lC3AiNOQ0pRkpLnlkd+TEL5CzSVzbJPeem7pk122o0nda5A38Tx7LnqIElOp75NgpinEaEK8yQlEPHTpSbIaEoZiSvjFJJEoSnaEyGmnIUEelm8+w5PNZKAMNY6MMVnKtfNzIUySKenoyQmsifXiH+5Q1TFbbcjPIkVYTjxUNhyqCKYVEEDKggWLGZJggLqrNCPEECYaXrqugSPn8K/ye9uuWcWadXjVq7sayjDA7BETgBDmiCNrgEHdAFGNyBe/AInozceDCejZfFaMlY7hyAbzBePwCWtpTI</latexit>

h2
1

<latexit sha1_base64="NBS+yKYrL+Kd+Vvf7fQlkd43z6o=">AAAB+3icdVDNS8MwHE3n15xfdR69BIfgqbRjunkbePE4wX3AVkuapltYmpYkFUfpv+LFgyJe/Ue8+d+YbhP8fBDyeO/3Iy/PTxiVyrbfjdLK6tr6RnmzsrW9s7tn7ld7Mk4FJl0cs1gMfCQJo5x0FVWMDBJBUOQz0venF4XfvyVC0phfq1lC3AiNOQ0pRkpLnlkd+TEL5CzSVzbJvfqN45k122o0nda5A38Tx7LnqIElOp75NgpinEaEK8yQlEPHTpSbIaEoZiSvjFJJEoSnaEyGmnIUEelm8+w5PNZKAMNY6MMVnKtfNzIUySKenoyQmsifXiH+5Q1TFbbcjPIkVYTjxUNhyqCKYVEEDKggWLGZJggLqrNCPEECYaXrqugSPn8K/ye9uuWcWadXjVq7sayjDA7BETgBDmiCNrgEHdAFGNyBe/AInozceDCejZfFaMlY7hyAbzBePwCWuJTI</latexit>

h1
2

<latexit sha1_base64="T/LiBixmj8mWX7RRgKZePZAxaPc=">AAAB+3icdVDNS8MwHE3n15xfdR69BIfgqbQ63bwNvHic4D5gqyVN0y0sTUuSiqP0X/HiQRGv/iPe/G9Mtwl+Pgh5vPf7kZfnJ4xKZdvvRmlpeWV1rbxe2djc2t4xd6tdGacCkw6OWSz6PpKEUU46iipG+okgKPIZ6fmTi8Lv3RIhacyv1TQhboRGnIYUI6Ulz6wO/ZgFchrpKxvn3snNiWfWbKvecJrnDvxNHMueoQYWaHvm2zCIcRoRrjBDUg4cO1FuhoSimJG8MkwlSRCeoBEZaMpRRKSbzbLn8FArAQxjoQ9XcKZ+3chQJIt4ejJCaix/eoX4lzdIVdh0M8qTVBGO5w+FKYMqhkURMKCCYMWmmiAsqM4K8RgJhJWuq6JL+Pwp/J90jy3nzDq9qtda9UUdZbAPDsARcEADtMAlaIMOwOAO3INH8GTkxoPxbLzMR0vGYmcPfIPx+gGbRpTL</latexit>

h3
3

<latexit sha1_base64="on6NAlyp3NbG094nz/8cB0RmE+E=">AAAB+3icdVDNS8MwHE3n15xfdR69BIfgqbRa3bwNvHic4D5gqyVNsy0sbUqSiqP0X/HiQRGv/iPe/G9Mtwl+Pgh5vPf7kZcXJIxKZdvvRmlpeWV1rbxe2djc2t4xd6sdyVOBSRtzxkUvQJIwGpO2ooqRXiIIigJGusHkovC7t0RIyuNrNU2IF6FRTIcUI6Ul36wOAs5COY30lY1z37058c2abbl1p3HuwN/EsewZamCBlm++DUKO04jECjMkZd+xE+VlSCiKGckrg1SSBOEJGpG+pjGKiPSyWfYcHmolhEMu9IkVnKlfNzIUySKenoyQGsufXiH+5fVTNWx4GY2TVJEYzx8apgwqDosiYEgFwYpNNUFYUJ0V4jESCCtdV0WX8PlT+D/pHFvOmXV65daa7qKOMtgHB+AIOKAOmuAStEAbYHAH7sEjeDJy48F4Nl7moyVjsbMHvsF4/QCczJTM</latexit>

h3
4

<latexit sha1_base64="Ld3teJ9xcsoSTThpCdnqCQ7Vk1k=">AAAB+3icdVDNS8MwHE3n15xfdR69BIfgqbSyuXkbePE4wX3AVkuapltYmpYkFUfpv+LFgyJe/Ue8+d+YbhP8fBDyeO/3Iy/PTxiVyrbfjdLK6tr6RnmzsrW9s7tn7ld7Mk4FJl0cs1gMfCQJo5x0FVWMDBJBUOQz0venF4XfvyVC0phfq1lC3AiNOQ0pRkpLnlkd+TEL5CzSVzbJvcaN45k126o3nda5A38Tx7LnqIElOp75NgpinEaEK8yQlEPHTpSbIaEoZiSvjFJJEoSnaEyGmnIUEelm8+w5PNZKAMNY6MMVnKtfNzIUySKenoyQmsifXiH+5Q1TFbbcjPIkVYTjxUNhyqCKYVEEDKggWLGZJggLqrNCPEECYaXrqugSPn8K/ye9U8s5sxpX9Vq7vqyjDA7BETgBDmiCNrgEHdAFGNyBe/AInozceDCejZfFaMlY7hyAbzBePwCbSpTL</latexit>

h1
5

<latexit sha1_base64="3paEkJIcWvMZXGNsZGeNqiOd5Bg=">AAAB+3icbVA7T8MwGHR4lvIKZWSxqJCYqgTKY6zEwlgk+pDaEDmO01p17Mh2EFWUv8LCAEKs/BE2/g1OmwFaTrJ8uvs++XxBwqjSjvNtrayurW9sVraq2zu7e/v2Qa2rRCox6WDBhOwHSBFGOeloqhnpJ5KgOGCkF0xuCr/3SKSigt/raUK8GI04jShG2ki+XRsGgoVqGpsrG+e++3Du23Wn4cwAl4lbkjoo0fbtr2EocBoTrjFDSg1cJ9FehqSmmJG8OkwVSRCeoBEZGMpRTJSXzbLn8MQoIYyENIdrOFN/b2QoVkU8MxkjPVaLXiH+5w1SHV17GeVJqgnH84eilEEtYFEEDKkkWLOpIQhLarJCPEYSYW3qqpoS3MUvL5PuWcO9bFzcNeutZllHBRyBY3AKXHAFWuAWtEEHYPAEnsEreLNy68V6tz7moytWuXMI/sD6/AEV9pRv</latexit>

h3
1

<latexit sha1_base64="a9x4ChpEnaKN/bmpeS3cMGpmHOI=">AAAB+3icbVA7T8MwGHR4lvIKZWSxqJCYqqQqj7ESC2OR6ENqQ+Q4TmvVsSPbQVRR/goLAwix8kfY+Dc4bQZoOcny6e775PMFCaNKO863tba+sbm1Xdmp7u7tHxzaR7WeEqnEpIsFE3IQIEUY5aSrqWZkkEiC4oCRfjC9Kfz+I5GKCn6vZwnxYjTmNKIYaSP5dm0UCBaqWWyubJL7zYemb9edhjMHXCVuSeqgRMe3v0ahwGlMuMYMKTV0nUR7GZKaYkby6ihVJEF4isZkaChHMVFeNs+ewzOjhDAS0hyu4Vz9vZGhWBXxzGSM9EQte4X4nzdMdXTtZZQnqSYcLx6KUga1gEURMKSSYM1mhiAsqckK8QRJhLWpq2pKcJe/vEp6zYZ72bi4a9XbrbKOCjgBp+AcuOAKtMEt6IAuwOAJPINX8Gbl1ov1bn0sRtescucY/IH1+QMV+JRv</latexit>

h2
2

<latexit sha1_base64="4mYwlpchL4Qj3lc+RO7SBVS3wbc=">AAAB+3icbVA7T8MwGHTKq5RXKCOLRYXEVCWlPMZKLIxFog+pDZHjuK1Vx45sB1FF+SssDCDEyh9h49/gtBmg5STLp7vvk88XxIwq7TjfVmltfWNzq7xd2dnd2z+wD6tdJRKJSQcLJmQ/QIowyklHU81IP5YERQEjvWB6k/u9RyIVFfxez2LiRWjM6YhipI3k29VhIFioZpG50knmNx7Ofbvm1J054CpxC1IDBdq+/TUMBU4iwjVmSKmB68TaS5HUFDOSVYaJIjHCUzQmA0M5iojy0nn2DJ4aJYQjIc3hGs7V3xspilQez0xGSE/UspeL/3mDRI+uvZTyONGE48VDo4RBLWBeBAypJFizmSEIS2qyQjxBEmFt6qqYEtzlL6+SbqPuXtYv7pq1VrOoowyOwQk4Ay64Ai1wC9qgAzB4As/gFbxZmfVivVsfi9GSVewcgT+wPn8AF3yUcA==</latexit>

h3
2

<latexit sha1_base64="9bZY/+4/tA/DPsqd9de663HY6WQ=">AAAB+3icbVA7T8MwGHR4lvIKZWSxqJCYqgTKY6zEwlgk+pDaEDmO01p17Mh2EFWUv8LCAEKs/BE2/g1OmwFaTrJ8uvs++XxBwqjSjvNtrayurW9sVraq2zu7e/v2Qa2rRCox6WDBhOwHSBFGOeloqhnpJ5KgOGCkF0xuCr/3SKSigt/raUK8GI04jShG2ki+XRsGgoVqGpsrG+f++YPr23Wn4cwAl4lbkjoo0fbtr2EocBoTrjFDSg1cJ9FehqSmmJG8OkwVSRCeoBEZGMpRTJSXzbLn8MQoIYyENIdrOFN/b2QoVkU8MxkjPVaLXiH+5w1SHV17GeVJqgnH84eilEEtYFEEDKkkWLOpIQhLarJCPEYSYW3qqpoS3MUvL5PuWcO9bFzcNeutZllHBRyBY3AKXHAFWuAWtEEHYPAEnsEreLNy68V6tz7moytWuXMI/sD6/AEV+pRv</latexit>

h1
3

<latexit sha1_base64="thd+o2FCr1vqu0XA/J8L79DHji8=">AAAB+3icbVA7T8MwGHTKq5RXKCOLRYXEVCWlPMZKLIxFog+pDZHjuK1Vx45sB1FF+SssDCDEyh9h49/gtBmg5STLp7vvk88XxIwq7TjfVmltfWNzq7xd2dnd2z+wD6tdJRKJSQcLJmQ/QIowyklHU81IP5YERQEjvWB6k/u9RyIVFfxez2LiRWjM6YhipI3k29VhIFioZpG50knmnz80fLvm1J054CpxC1IDBdq+/TUMBU4iwjVmSKmB68TaS5HUFDOSVYaJIjHCUzQmA0M5iojy0nn2DJ4aJYQjIc3hGs7V3xspilQez0xGSE/UspeL/3mDRI+uvZTyONGE48VDo4RBLWBeBAypJFizmSEIS2qyQjxBEmFt6qqYEtzlL6+SbqPuXtYv7pq1VrOoowyOwQk4Ay64Ai1wC9qgAzB4As/gFbxZmfVivVsfi9GSVewcgT+wPn8AF36UcA==</latexit>

h2
3

<latexit sha1_base64="AabhRvZ/88L2RxMKsc23215WO2Q=">AAAB+3icbVA7T8MwGHTKq5RXKCOLRYXEVCWoPMZKLIxFog+pDZHjOK1Vx45sB1FF+SssDCDEyh9h49/gtBmg5STLp7vvk88XJIwq7TjfVmVtfWNzq7pd29nd2z+wD+s9JVKJSRcLJuQgQIowyklXU83IIJEExQEj/WB6U/j9RyIVFfxezxLixWjMaUQx0kby7fooECxUs9hc2ST3Ww+ubzecpjMHXCVuSRqgRMe3v0ahwGlMuMYMKTV0nUR7GZKaYkby2ihVJEF4isZkaChHMVFeNs+ew1OjhDAS0hyu4Vz9vZGhWBXxzGSM9EQte4X4nzdMdXTtZZQnqSYcLx6KUga1gEURMKSSYM1mhiAsqckK8QRJhLWpq2ZKcJe/vEp65033snlx12q0W2UdVXAMTsAZcMEVaINb0AFdgMETeAav4M3KrRfr3fpYjFascucI/IH1+QMXgJRw</latexit>

h1
4

<latexit sha1_base64="C8EqxnZvrU5jEX7cl1kDzRCmsSQ=">AAAB+3icbVA7T8MwGHR4lvIKZWSxqJCYqqQqj7ESC2OR6ENqQ+Q4TmvVsSPbQVRR/goLAwix8kfY+Dc4bQZoOcny6e775PMFCaNKO863tba+sbm1Xdmp7u7tHxzaR7WeEqnEpIsFE3IQIEUY5aSrqWZkkEiC4oCRfjC9Kfz+I5GKCn6vZwnxYjTmNKIYaSP5dm0UCBaqWWyubJL7rYemb9edhjMHXCVuSeqgRMe3v0ahwGlMuMYMKTV0nUR7GZKaYkby6ihVJEF4isZkaChHMVFeNs+ewzOjhDAS0hyu4Vz9vZGhWBXxzGSM9EQte4X4nzdMdXTtZZQnqSYcLx6KUga1gEURMKSSYM1mhiAsqckK8QRJhLWpq2pKcJe/vEp6zYZ72bi4a9XbrbKOCjgBp+AcuOAKtMEt6IAuwOAJPINX8Gbl1ov1bn0sRtescucY/IH1+QMZBJRx</latexit>

h2
4

<latexit sha1_base64="t9L0vUY10FQcBBmguaQiOxFWank=">AAAB+3icbVA7T8MwGHTKq5RXKCOLRYXEVCVVC4yVWBiLRB9SGyLHcVqrjh3ZDqKK+ldYGECIlT/Cxr/BaTNAy0mWT3ffJ58vSBhV2nG+rdLG5tb2Tnm3srd/cHhkH1d7SqQSky4WTMhBgBRhlJOuppqRQSIJigNG+sH0Jvf7j0QqKvi9niXEi9GY04hipI3k29VRIFioZrG5ssncbz00fLvm1J0F4DpxC1IDBTq+/TUKBU5jwjVmSKmh6yTay5DUFDMyr4xSRRKEp2hMhoZyFBPlZYvsc3hulBBGQprDNVyovzcyFKs8npmMkZ6oVS8X//OGqY6uvYzyJNWE4+VDUcqgFjAvAoZUEqzZzBCEJTVZIZ4gibA2dVVMCe7ql9dJr1F3L+utu2at3SzqKINTcAYugAuuQBvcgg7oAgyewDN4BW/W3Hqx3q2P5WjJKnZOwB9Ynz8aipRy</latexit>

h2
5

<latexit sha1_base64="Fq43QAchYXrxMnL1U6JYm4uVt+M=">AAAB+3icbVA7T8MwGHTKq5RXKCOLRYXEVCXQAmMlFsYi0YfUhshx3NaqY0e2g6ii/BUWBhBi5Y+w8W9w2gzQcpLl0933yecLYkaVdpxvq7S2vrG5Vd6u7Ozu7R/Yh9WuEonEpIMFE7IfIEUY5aSjqWakH0uCooCRXjC9yf3eI5GKCn6vZzHxIjTmdEQx0kby7eowECxUs8hc6STzmw8Xvl1z6s4ccJW4BamBAm3f/hqGAicR4RozpNTAdWLtpUhqihnJKsNEkRjhKRqTgaEcRUR56Tx7Bk+NEsKRkOZwDefq740URSqPZyYjpCdq2cvF/7xBokfXXkp5nGjC8eKhUcKgFjAvAoZUEqzZzBCEJTVZIZ4gibA2dVVMCe7yl1dJ97zuXtabd41aq1HUUQbH4AScARdcgRa4BW3QARg8gWfwCt6szHqx3q2PxWjJKnaOwB9Ynz8cDpRz</latexit>

h3
5

Figure 3.2: The architecture of the proposed nested NER model. These cells in-

dicate chunks obtained from the proposed multi-output bidirectional

LSTM. At each level, the CRF layer selects the most salient chunks

from the remaining chunks and utilizes them for decoding. Transpar-

ent cells indice used chunks from previous levels. To save space, we

only display the decoding procedures for the first two levels.

Decoding Layer

At each level, we run a shared conventional CRF with its corresponding potential

function ϕ (ylt−1, y
l
t,Hl

t) and update the chunk sets until finishing all m levels.

During the training stage, we remove chunks based on the selections of the ground-

truth target labels, while during the decoding stage, the removal depends on the

selections of the predicted labels.

3.3.5 Training and Inference

Following the definition of CRF, the conditional probability function for a given

label sequence at the l-th level, i.e., yl = {ylt}nt=1, is defined as,

p (y l | Hl) =
1

Z(Hl)
exp

n∑
t=1

ϕ (ylt−1, y
l
t,Hl

t) (3.17)

22

Algorithm 1: Training (with max or logsumexp potential function)

input : first level chunk sets H1

input : target label sequences y1, . . . ,ym

output: negative log-likelihood L
L ← 0

for l = 1 to m do

L ← L− log p (y l | Hl)

for t = 1 to n do

Hl+1
t ← Hl

t \ {arg max
h∈Hl

t

h⊤vylt
}

end

end

Z(Hl) =
∑
y′∈Yn

exp
n∑

t=1

ϕ (y′lt−1, y
′l
t ,Hl

t) (3.18)

where Z(Hl) is the sum of the scores of all paths and is commonly known as the

partition function.

During the training stage, we optimize our model by minimizing the sum of

the negative log-likelihoods across all levels.

L = −
m∑
l=1

log p (y l | Hl) (3.19)

During the decoding stage, we iteratively apply the Viterbi algorithm [23] at

each level to search for the most probable label sequences.

ŷl = arg max
y′∈Yn

p (y′ | Hl) (3.20)

The pseudo-code for the training and decoding algorithms using either the max

or logsumexp potential functions can be found in Algorithms 1 and 2, respectively.

23

Algorithm 2: Decoding (with max or logsumexp potential function)

input : first level chunk sets H1

output: recognized entity set E
E ← ∅
for l = 1 to m do

ŷl ← arg max
y′∈Yn

p (y′ | Hl)

for t = 1 to n do

Hl+1
t ← Hl

t \ {arg max
h∈Hl

t

h⊤vŷlt
}

end

E ← E ⋃ label-to-entity (ŷl)

end

3.4 Experiments

3.4.1 Datasets

Following the standard benchmark settings, we conduct experiments on four

nested NER datasets in English with diverse domains, namely, ACE2004 [19],

ACE2005 [93], GENIA [35], and NNE [75]. We split all these datasets into train-

ing, development, and test sets in accordance with the methodology followed by

Shibuya and Hovy [78] and Wang et al. [98]. Among these, ACE2004, ACE2005,

and NNE datasets are in the news domain and have up to 6 levels, while the

GENIA dataset belongs to the biomedical domain and is relatively shallow, with

a maximum of 4 levels. Specifically, the NNE dataset contains 427 distinct la-

bels, making it far more fine-grained than the other datasets, which have up to

29 distinct labels. Detailed dataset statistics can be found in Table 3.1, where

|Y| represents the size of the label set and m is the maximum depth of entity

nesting. The number of entities is displayed according to level and data split.

3.4.2 Settings

For the initialization of word embeddings, we utilize 100-dimensional pre-trained

GloVe embeddings [65] for the ACE2004, ACE2005, and NNE datasets. For

24

Dataset
Sentences Entities |Y| m

(Level) Train Dev Test Train Dev Test

ACE2004

1 3,480 448 421 17,305 2,002 2,379

29 6

2 1,994 216 295 3,967 413 546

3 620 66 85 804 84 100

4 91 10 7 104 13 8

5 11 2 1 13 2 1

6 2 0 0 2 0 0

Overall 6,198 742 809 22,195 2,514 3,034

ACE2005

1 4,488 616 719 19,911 2,651 2,467

29 6

2 2,096 277 265 3,939 479 466

3 610 69 62 751 82 83

4 85 6 11 91 6 12

5 4 0 1 6 0 1

6 2 0 0 2 0 0

Overall 7,285 968 1,058 24,700 3,218 3,029

GENIA

1 11,800 1,341 1,407 42,967 4,072 5,007

21 4

2 3,123 327 433 3,939 388 574

3 98 1 15 99 1 15

4 1 0 0 1 0 0

Overall 15,022 1,669 1,855 47,006 4,461 5,596

NNE

1 14,851 697 1,273 164,907 7,055 13,963

427 6

2 17,417 873 1,474 64,836 2,775 5,544

3 9,442 354 817 16,444 560 1,465

4 1,644 62 186 1,842 70 212

5 101 3 12 105 3 12

6 2 0 0 2 0 0

Overall 43,457 1,989 3,762 248,136 10,463 21,196

Table 3.1: Statistics on the ACE2004, ACE2005, GENIA, and NNE datasets. |Y|
means the label size, and m shows the maximal depth of entity nesting.

the GENIA dataset, we use 200-dimensional biomedical domain-specific word

25

embeddings1 [14]. In addition, we randomly initialize 30-dimensional vectors

for character embeddings. The hidden state dimension dc of the character-level

LSTM is set to 100, i.e., 50 in each direction. Therefore, the dimension dx of the

token representation is 200. We apply dropout [79] to the token representations

before feeding them into the encoder.

The hidden state dimension of the three-layered bidirectional LSTM is set to

600 for the ACE2004, ACE2005, and NNE datasets, i.e., 300 in each direction.

For the GENIA dataset, it is set to 400. The choice of different dimensions is

influenced by the maximal depth of entity nesting m in each dataset. In other

words, we keep the chunk dimensions across all datasets to be 100. We apply

layer normalization [4] and a dropout ratio of 0.5 after each bidirectional LSTM

layer.

Differing from the approach of Shibuya and Hovy [78], we employ a single CRF

rather than using different CRFs for various entity types. Furthermore, our CRF

is shared across different levels, meaning that the same CRF is used for entity

detection at all levels.

Our model is optimized using stochastic gradient descent (SGD), with a de-

caying learning rate given by the formula ητ =
η0

1 + γ · τ , where τ is the index of

the current epoch. For the ACE2004, ACE2005, GENIA, and NNE datasets, the

initial learning rates η0 are 0.2, 0.2, 0.1, and 0.2, and the decay rates γ are 0.01,

0.02, 0.02, and 0.02 respectively. We set the weight decay rate, the momentum,

the batch size, and the number of epochs to be 10−8, 0.5, 32, and 100 respec-

tively. Specifically, we use a batch size of 64 for the GENIA dataset. Gradients

exceeding a value of 5 are clipped.

Besides, we conduct experiments to assess how our model performs when in-

corporating contextual word representations. Both BERT [18] and Flair [2] are

popular choices for this purpose in previous works and have demonstrated their

effectiveness in significantly enhancing model performance. In these configura-

tions, we concatenate the contextual word representations with the word and

character representations to form a more comprehensive token representation,

i.e., xt = [wt, ct, et], where et denotes the contextual word representation. It’s

worth noting that we do not fine-tune these pre-trained language models in any

1https://github.com/cambridgeltl/BioNLP-2016

26

of our experiments.

BERT The contextual word vectors are obtained from a pre-trained transformer-

based model [89, 18]. In our experiments, for the ACE2004, ACE2005, and NNE

datasets, we use the general domain checkpoint bert-large-uncased. For the

GENIA dataset, we use the biomedical domain checkpoint BioBERT large v1.1
2 [44]. We average all BERT subword embeddings from the last four layers to

build 1024-dimensional vectors.

Flair The embeddings are obtained from a pre-trained character-level bidi-

rectional LSTM language model. We concatenate these vectors obtained from

the news-forward and news-backward checkpoints for ACE2004, ACE2005, and

NNE, and use the pubmed-forward and pubmed-backward checkpoints for GE-

NIA to build 4096-dimensional vectors.

Experiments are all evaluated using precision, recall, and F1. All of our exper-

iments were run four times with different random seeds, and the averaged scores

are reported in the following tables.

Our model is implemented with PyTorch [63] and we run experiments on a

GeForce GTX 1080Ti with 11 GB memory.

3.4.3 Main Results

Table 3.2 shows the performance of previous work and our model on the ACE2004

datasets. Our model substantially outperforms most of the previous work, espe-

cially when compared with our baseline Shibuya and Hovy [78]. When utilizing

only word embeddings and character-based word embeddings, our method ex-

ceeds theirs by a 2.64 F1 score and also achieves comparable results with the

recent competitive method [98]. In the case of utilizing BERT and further em-

ploying Flair, our method consistently outperforms [78] by 1.09 and 0.60 F1 scores,

respectively.

On the ACE2005 dataset, as shown in Figure 3.3, our method improves the

F1 scores by 1.98, 0.72, and 0.59, respectively, compared with Shibuya and Hovy

[78]. Although our model’s performance is generally inferior to Wang et al. [98],

2https://github.com/naver/biobert-pretrained

27

Method Precision Recall F1

Wang et al. [96] 74.9 71.8 73.3

Wang and Lu [95] 78.0 72.4 75.1

Straková et al. [81] 78.92 75.33 77.08

Shibuya and Hovy [78] 79.93 75.10 77.44

Wang et al. [98] 80.83 78.86 79.83

Our Method (Naive) 81.12 77.71 79.38 (0.31)

Our Method (Max) 81.90 78.05 79.92 (0.10)

Our Method (LogSumExp) 81.24 78.96 80.08 (0.22)

with Bert

Straková et al. [81] 84.71 83.96 84.33

Shibuya and Hovy [78] 85.23 84.72 84.97

Wang et al. [98] 86.08 86.48 86.28

Our Method (Naive) 86.19 85.28 85.73 (0.24)

Our Method (Max) 86.27 85.09 85.68 (0.09)

Our Method (LogSumExp) 86.42 85.71 86.06 (0.10)

with Bert and Flair

Straková et al. [81] 84.51 84.29 84.40

Shibuya and Hovy [78] 85.94 85.69 85.82

Wang et al. [98] 87.01 86.55 86.78

Our Method (Naive) 86.56 85.65 86.11 (0.24)

Our Method (Max) 86.96 85.45 86.19 (0.17)

Our Method (LogSumExp) 86.74 86.11 86.42 (0.31)

Table 3.2: Experiments on the ACE2004 dataset. The bold numbers indicate the

best performance, while the underlined numbers represent the second-

best results. Numbers in parentheses are the standard variance.

our proposed method with the max selection strategy is slightly superior to them

by 0.05 in F1 score when adding BERT in.

Furthermore, on the biomedical domain dataset GENIA, as shown in Fig-

ure 3.4, our method consistently outperforms Shibuya and Hovy [78] by 0.18, 1.62,

28

Method Precision Recall F1

Ju et al. [32] 74.2 70.3 72.2

Wang et al. [96] 74.5 71.5 73.0

Wang and Lu [95] 76.8 72.3 74.5

Luo and Zhao [53] 75.0 75.2 75.1

Lin et al. [47] 76.2 73.6 74.9

Straková et al. [81] 76.35 74.39 75.36

Shibuya and Hovy [78] 78.27 75.44 76.83

Wang et al. [98] 79.27 79.37 79.32

Our Method (Naive) 79.45 77.22 78.32 (0.26)

Our Method (Max) 80.68 77.03 78.81 (0.04)

Our Method (LogSumExp) 79.49 77.65 78.55 (0.12)

with Bert

Straková et al. [81] 82.58 84.29 83.42

Shibuya and Hovy [78] 83.30 84.69 83.99

Wang et al. [98] 83.95 85.39 84.66

Our Method (Naive) 84.23 84.17 84.20 (0.30)

Our Method (Max) 85.28 84.15 84.71 (0.09)

Our Method (LogSumExp) 83.95 84.67 84.30 (0.13)

with Bert and Flair

Straková et al. [81] 83.48 85.21 84.33

Shibuya and Hovy [78] 83.83 84.87 84.34

Wang et al. [98] 84.90 86.08 85.49

Our Method (Naive) 84.17 84.88 84.52 (0.21)

Our Method (Max) 84.70 84.76 84.73 (0.21)

Our Method (LogSumExp) 84.81 85.06 84.93 (0.24)

Table 3.3: Experiments on the ACE2005 dataset.

and 1.57 in F1 scores, respectively. Although the low scores of Shibuya and Hovy

[78] are due to their use of the general domain checkpoint bert-large-uncased,

instead of our biomedical domain checkpoint, our model is still superior to Straková

29

Method Precision Recall F1

Ju et al. [32] 78.5 71.3 74.7

Wang et al. [96] 78.0 70.2 73.9

Wang and Lu [95] 77.0 73.3 75.1

Luo and Zhao [53] 77.4 74.6 76.0

Lin et al. [47] 75.8 73.9 74.8

Straková et al. [81] 79.60 73.53 76.44

Shibuya and Hovy [78] 78.70 75.74 77.19

Wang et al. [98] 77.91 77.20 77.55

Our Method (Naive) 78.83 75.32 77.03 (0.13)

Our Method (Max) 78.80 75.71 77.22 (0.10)

Our Method (LogSumExp) 78.58 76.21 77.37 (0.15)

with Bert

Straková et al. [81] 79.92 76.55 78.20

Shibuya and Hovy [78] 77.46 76.65 77.05

Wang et al. [98] 79.45 78.94 79.19

Our Method (Naive) 78.83 78.07 78.45 (0.32)

Our Method (Max) 79.20 78.16 78.67 (0.18)

Our Method (LogSumExp) 78.83 78.27 78.54 (0.02)

with Bert and Flair

Straková et al. [81] 80.11 76.60 78.31

Shibuya and Hovy [78] 77.81 76.94 77.36

Wang et al. [98] 79.98 78.51 79.24

Our Method (Naive) 79.28 78.31 78.79 (0.17)

Our Method (Max) 79.51 78.25 78.87 (0.04)

Our Method (LogSumExp) 79.20 78.67 78.93 (0.26)

Table 3.4: Experiments on the GENIA dataset.

et al. [81] by 0.47 and 0.62 in F1 scores, who used the same checkpoint as us.

On the NNE dataset, as shown in Table 3.5, our method slightly but consis-

tently outperforms Wang et al. [98] by 0.08, 0.19, and 0.22 in F1 scores, respec-

30

Method Precision Recall F1

Wang et al. [96] 77.4 70.1 73.6

Wang and Lu [95] 91.8 91.0 91.4

Wang et al. [98] 93.37 93.91 93.64

Our Method (Naive) 93.65 93.69 93.67 (0.05)

Our Method (Max) 94.04 93.23 93.63 (0.04)

Our Method (LogSumExp) 93.97 93.52 93.75 (0.05)

with Bert

Wang et al. [98] 93.97 94.79 94.37

Our Method (Naive) 94.49 94.52 94.50 (0.03)

Our Method (Max) 94.84 93.56 94.58 (0.07)

Our Method (LogSumExp) 94.67 94.47 94.56 (0.03)

with Bert and Flair

Wang et al. [98] 93.97 94.98 94.47

Our Method (Naive) 94.59 94.65 94.62 (0.03)

Our Method (Max) 94.79 94.44 94.61 (0.04)

Our Method (LogSumExp) 94.67 94.71 94.69 (0.06)

Table 3.5: Experiments on the NNE dataset.

tively. We hypothesize that this is because the NNE dataset contains many more

sentences and entity types than the other three datasets. Our method is much

more capable of learning meaningful representations when data are sufficient.

As for these three potential functions, we notice that the max and logsumexp

potential functions generally work better than the naive potential function. These

results demonstrate that the chunk selection strategies of the max and logsumexp

can leverage information from all remaining chunks and constrain the hidden

states of the LSTM to be more semantically ordered. When we use BERT and

Flair, the advantage of the max and logsumexp potential functions is less obvious

compared with the case when we use only word embeddings and character-based

word embeddings, especially on the GENIA dataset. We hypothesize that BERT

and Flair can provide rich contextual information, therefore, selecting chunks in

31

Encoding Scheme ϕ Precision Recall F1

Outermost First

Naive 79.08 76.57 77.80 (0.26)

Max 79.07 75.11 77.04 (0.20)

LogSumExp 79.05 76.39 77.70 (0.32)

Innermost First

Naive 81.12 77.71 79.38 (0.31)

Max 81.90 78.05 79.92 (0.10)

LogSumExp 81.24 78.96 80.08 (0.22)

Table 3.6: Ablation study on the influence of the encoding schemes and potential

functions.

the original order is sufficient. Thus, our dynamic selection mechanism can only

slightly improve model performance.

3.4.4 Ablation Studies

Influence of the Encoding Scheme

We also conduct experiments on the ACE2004 dataset to measure the influence

of the outermost-first and innermost-first encoding schemes. As shown in Ta-

ble 3.6, the innermost-first encoding scheme consistently works better than the

outermost-first encoding scheme across all potential functions. We hypothesize

that outermost entities do not necessarily contain inner entities, especially for

longer ones, and that placing those diversely nested outermost entities at the

same level would disrupt the encoding representation. Furthermore, when we

use the outermost-first encoding scheme, our method is superior to Shibuya and

Hovy [78], which further demonstrates the effectiveness of excluding the influence

of the best path.

Level-wise Performance

We display the performance on the ACE2005 dataset at each level in Table 3.7.

The max potential function at the first three levels consistently achieves higher

precision scores than the naive and logsumexp potential functions, while simul-

32

Level
Naive Max LogSumExp

Precision Recall Precision Recall Precision Recall

1 80.83 80.12 82.14 79.51 80.98 80.12

2 73.91 68.67 74.76 70.76 73.85 70.76

3 60.09 48.80 65.26 49.10 60.17 53.01

4 100.00 16.67 37.50 10.42 66.67 14.58

5 0.00 0.00 0.00 0.00 0.00 0.00

6 - - - - - -

Overall 79.45 77.22 80.68 77.03 79.49 77.65

Table 3.7: Ablation study of level-wise performance.

taneously obtaining the lowest recall scores. The logsumexp potential function,

on the contrary, achieves the highest recall scores but fails to obtain satisfactory

precision scores. Because most entities are located at the first two levels, the max

and logsumexp achieve the best overall precision and recall scores, respectively.

Because the max operator back-propagates gradients to only one of its inputs,

while the log-sum-exp operator back-propagates gradients to all of its inputs

according to their normalized weights, it is possible for the max operator to

accumulate excessive gradients to some particular chunks. As a result, it might

be prone to converging to sub-optimal model performance.

Connection to Attention Mechanism

The heat maps of chunk selection in Figure 3.4 raises a question about the con-

nection between our methods and the attention mechanism [91]. In this section,

we will briefly explain the connections and present the results of ablation stud-

ies to demonstrate that our methods are either equivalent to or better than the

attention mechanism.

As mentioned in Section 3.3.3, our dynamic chunk selection strategies enable

each label to choose the most similar chunk to it. Therefore, the concept of

replacing our dynamic selection strategies with an attention mechanism could be

realized by allowing each label embedding to attend to all the remaining chunks

33

and constructing a chunk vector by aggregating information from all of them.

h̃
l

t = attention (query = vylt
, key = Hl, value = Hl) (3.21)

Subsequently, h̃
l

t is used to compute the dot product with the label embedding,

similar to Equation 3.5.

ϕ (ylt−1, y
l
t,Hl

t) = Aylt−1,y
l
t

+ h̃
l

t
⊤vylt

(3.22)

Attention mechanisms can be roughly divided into two categories: hard atten-

tion and soft attention. On the one hand, the hard attention mechanism only

selects the chunk with the highest score.

h̃
l

t = attention (query = vylt
, key = Hl, value = Hl) (3.23)

= arg max
h∈Hl

h⊤vylt
(3.24)

Therefore,

ϕ (ylt−1, y
l
t,Hl

t) = Aylt−1,y
l
t

+ h̃
l

t
⊤vylt

(3.25)

= Aylt−1,y
l
t

+

(
arg max

h∈Hl

h⊤vylt

)⊤

vylt
(3.26)

= Aylt−1,y
l
t

+ max
h∈Hl

h⊤vylt
(3.27)

It is easy to notice that Equation 3.27 is equivalent to our max potential function,

i.e., Equation 3.10.

On the other hand, soft attention aggregates information from all chunks by

considering normalized similarities as weights.

h̃
l

t = attention (query = vylt
, key = Hl, value = Hl) (3.28)

=
∑
ĥ∈Hl

softmax (ĥ
⊤
vylt

) · ĥ (3.29)

=
∑
ĥ∈Hl

 exp ĥ
⊤
vylt∑

h∈Hl exph⊤vylt

 · ĥ (3.30)

34

Similarly,

ϕ (ylt−1, y
l
t,Hl

t) = Aylt−1,y
l
t

+ h̃
l

t
⊤vylt

(3.31)

= Aylt−1,y
l
t

+

∑
ĥ∈Hl

(exp ĥ
⊤
vylt∑

h∈Hl exph⊤vylt

)
· ĥ

⊤

vylt
(3.32)

= Aylt−1,y
l
t

+
∑
ĥ∈Hl

 exp ĥ
⊤
vylt∑

h∈Hl exph⊤vylt

 · (ĥ⊤
vylt

)
(3.33)

= Aylt−1,y
l
t

+

∑
h∈Hl

(
exph⊤vylt

)
·
(
h⊤vylt

)
∑

h∈Hl exph⊤vylt

(3.34)

This is, in fact, another differentiable approximation of the max operator.

max (x1, . . . , xn) ≈
∑n

i=1 xi · expxi∑n
i=1 expxi

(3.35)

Since this potential function utilizes the softmax function, we refer to it as

softmax-x.

We conducted experiments on the ACE2004 dataset, and the experimental

results are presented in Table 3.8. It is important to note that the performance

of softmax-x is slightly better than naive, but the F1 score is still much lower than

that of max and logsumexp. To simplify and illustrate the issue, we plotted the

curves of max (x, 0), log (exp x + exp 0), and
x · expx + 0 · exp 0

expx + exp 0
, which represent

the max operator and its two differentiable approximations, in Figure 3.3. The

left part of the figure displays these three curves, while their gradient curves

are shown on the right side. By examining these curves, we can observe that

ϕ Precision Recall F1

Naive 81.12 77.71 79.38 (0.31)

Max 81.90 78.05 79.92 (0.10)

LogSumExp 81.24 78.96 80.08 (0.22)

SoftmaxX 80.93 78.15 79.51 (0.40)

Table 3.8: Ablation study on various attention mechanisms.

35

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

max

logsumexp

softmax-x

−4 −3 −2 −1 0 1 2 3 4
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

∂max

∂x
∂ logsumexp

∂x
∂ softmax-x

∂x

Figure 3.3: Curves of max, logsumexp, and softmax-x functions along with their

gradients.

the gradient of softmax-x is not always monotonically increasing, which leads to

training instability.

3.4.5 Case Studies

In this section, we present some prediction examples in Table 3.9 to compare

the behaviors of different models. In the first example, although the model of

[78] is designed to detect entities from outer to inner, it fails to recognize the

entity griffen bell, which is nested within the outer entity prominent democrats

including griffen bell. In contrast, all three of our potential functions successfully

detected it. Similarly, their model mistakenly predicts gore as a single-word

entity, whereas none of our methods make this mistake. For the longest entity,

gore who . . . in the state, their model correctly detects the opening bracket but

prematurely closes the bracket after this year. Surprisingly, we found that our

naive potential function makes the same mistake, while our max and logsumexp

potential functions correctly close the bracket at the end of the sentence. This

observation supports our claim that our dynamic selection strategies are capable

of leveraging information among all remaining chunks.

36

Method Example

Target [bush]PER in [tennessee]GPE today [where]GPE the race on [the

home turf]GPE is surprisingly tight , announcing the endorse-

ment of [prominent democrats including [griffen bell]PER]PER ,

and taunting [gore [who]PER earlier this year was accused by

[a tenant]PER of failing to properly maintain [rental property

[he]PER owns in [the state]GPE]FAC]PER .

Shibuya and

Hovy [78]
[bush]PER in [tennessee]GPE today [where]GPE the race on the

home turf is surprisingly tight , announcing the endorsement of

[prominent democrats including griffen bell]PER , and taunting

[[gore]PER [who]PER earlier this year]PER was accused by [a ten-

ant of failing to properly maintain rental property [he]PER owns

in [the state]GPE]PER .

Naive [bush]PER in [tennessee]GPE today where the race on the home

turf is surprisingly tight , announcing the endorsement of [promi-

nent democrats including [griffen bell]PER]PER , and taunting

[gore [who]PER earlier this year]PER was accused by a tenant of

failing to properly maintain [rental property [he]PER owns in [the

state]GPE]FAC .

Max [bush]PER in [tennessee]GPE today [where]GPE the race on the

home turf is surprisingly tight , announcing the endorsement

of [prominent democrats including [griffen bell]PER]PER , and

taunting [gore [who]PER earlier this year was accused by a ten-

ant of failing to properly maintain rental property [he]PER owns

in [the state]GPE]PER .

LogSumExp [bush]PER in [tennessee]GPE today [where]GPE the race on the

home turf is surprisingly tight , announcing the endorsement

of [prominent democrats including [griffen bell]PER]PER , and

taunting [gore [who]PER earlier this year was accused by a ten-

ant of failing to properly maintain rental property [he]PER owns

in [the state]GPE]PER .

Table 3.9: Case study. Brackets mark the boundary of entities, and the corre-

sponding categories are annotated in the lower right corner. Addi-

tionally, PER, GPE, and FAC indicate that the entity types are person,

geopolitical entity, and artifact, respectively.

37

3.4.6 Discussions

Chunk Distribution

We analyze the chunk distribution on the test split of the ACE2005 dataset by

plotting heat maps in Figure 3.4. In these heat maps, the numbers indicate

the percentages of each chunk being selected by a particular level or label. For

example, the number 35 in the upper-right corner indicates that, when using

the logsumexp potential function, 35% of predictions at the first level are made

by choosing the sixth chunk. Similarly, the number 78 in the lower-left corner

indicates that 78% of WEA entities are related to the first chunk when leveraging

the naive potential function. To facilitate comparison with the naive potential

function, we arranged the chunk orders of max and logsumexp in a way that does

not lose generality and makes the level-chunk distribution primarily concentrate

on the diagonal.

The naive potential function simply selects the l-th chunk at the l-th level,

resulting in a diagonal heat map. In addition to the first chunk, the logsumexp

potential function also tends to select the sixth and fourth chunks at the first level.

We hypothesize that this is due to most of the B- and S- labels being located

on the first level. This can be confirmed by analyzing the syntactic-chunk heat

map of the logsumexp potential function, where 78% of B- and 70% of S- labels

are associated with the sixth and fourth chunks. Similarly, the max potential

function also exhibits a high probability of selecting the second chunk.

Generally, the chunk distribution of the logsumexp potential function is smoother

than that of max. Additionally, we observe that the O label almost uniformly se-

lects chunks in both the syntactic and semantic heat maps, while other meaningful

labels exhibit distinct preferences.

Syntactic labels S- and B- mainly indicate the beginning of an entity, while

I- and E- denote the continuation and ending of an entity, respectively. In

the syntactic-chunk heat map of the naive potential function, these labels are

uniformly distributed to the first chunk because most of the entities are located on

the first level. However, the max and logsumexp potential functions use different

chunks to represent these distinct syntactic categories.

Likewise, the semantic label GPE, when utilizing the logsumexp potential func-

38

1

2

3

4

5

6

le
ve

l

100 0 0 0 0 0

0 100 0 0 0 0

0 0 100 0 0 0

0 0 0 100 0 0

0 0 0 0 100 0

0 0 0 0 0 100

59 20 6 7 2 7

4 29 22 15 14 16

3 22 30 19 6 20

2 17 27 25 8 21

10 10 12 18 28 22

22 2 3 16 43 14

44 6 4 9 3 35

16 30 19 15 13 6

13 24 34 11 15 4

11 17 20 27 21 4

8 15 14 26 29 8

8 8 9 12 19 43

O

S

B

I

E

sy
nt

ac
tic

13 16 17 18 18 18

84 16 0 0 0 0

81 16 3 0 0 0

13 62 23 2 0 0

81 15 3 0 0 0

14 17 17 18 17 17

84 0 0 0 16 1

82 0 0 0 15 3

2 28 13 0 15 42

45 23 7 1 5 20

16 17 18 16 18 15

0 0 0 70 0 30

0 0 0 19 3 78

32 13 7 34 8 6

40 17 2 19 2 20

1 2 3 4 5 6
chunk
(naive)

O

FAC

GPE

LOC

ORG

PER

VEH

WEA

se
m

an
tic

13 16 17 18 18 18

55 24 20 0 0 0

88 12 0 0 0 0

56 44 0 0 0 0

75 22 3 0 0 0

59 30 10 1 0 0

48 37 15 0 0 0

78 22 0 0 0 0

1 2 3 4 5 6
chunk
(max)

14 17 17 18 17 17

43 13 0 0 13 30

76 6 2 0 9 7

39 20 1 0 14 26

57 9 2 0 9 23

47 17 7 0 12 16

35 16 0 0 18 31

71 1 5 0 9 14

1 2 3 4 5 6
chunk

(logsumexp)

16 17 18 16 18 15

21 5 5 44 5 20

12 5 0 19 2 61

21 5 0 47 5 22

18 4 1 30 2 45

24 11 3 25 4 33

20 7 0 46 6 21

13 0 0 21 14 53

Figure 3.4: Chunk distributions of the naive, max, and logsumexp potential func-

tions, respectively. Each row displays the chunk selection preferences

with respect to levels, syntactic labels, and semantic labels, respec-

tively.

tion, also has a 61% probability of selecting the sixth chunks, rather than con-

centrating solely on the first chunk as in the naive potential function. These

39

Method Batch Training Decoding

Wang et al. [98]

16 1,937.16 3,626.53

32 3,632.64 4,652.05

64 6,298.85 5,113.85

Our Method

16 4,106.03 3,761.03

32 7,219.57 6,893.03

64 10,584.80 11,652.92

Table 3.10: Speed comparison on the dataset ACE2005. The numbers indicate

the average processing speed in terms of words per second.

observations further demonstrate that our dynamic chunk selection strategies are

capable of learning more meaningful representations.

Time Complexity

The time complexity of the encoder isO(n). Additionally, due to our utilization of

the same tree reduction acceleration technique as Rush [77], the time complexity

of the CRF is reduced from O(n) to O(log n). Consequently, the overall time

complexity is O(n + m · log n). Given that m is a constant, this time complexity

can be further simplified to O(n).

However, even with the help of the acceleration trick, the time complexity of

Wang et al. [98], i.e., O(n), remains lower than ours. This is because they utilize

softmax to directly predict the types of each span, without relying on the CRF.

Even in this scenario, the training and inference speed of our model is sig-

nificantly faster than theirs, as indicated in Table 3.10. Furthermore, when we

increase the batch size to 64, the decoding speed becomes more than twice as fast

as their model’s. The primary reason for this improvement is that we do not re-

quire stacking LSTM to 16 layers, and since sentence lengths are generally short,

the log n term in our model’s time complexity does not become a performance

bottleneck.

40

3.5 Conclusion

In this chapter, we introduced a straightforward and effective approach for nested

NER by explicitly excluding the influence of the best path. We achieve this

by selecting and removing chunks at each level to construct different potential

functions. Additionally, we proposed three distinct selection strategies to se-

lect the most salient chunk from the remains. Furthermore, we observed that the

innermost-first encoding scheme outperforms the conventional outermost-first en-

coding scheme. Our extensive experimental results validate the effectiveness and

efficiency of our approach.

3.6 Limitations and Future Work

One limitation of our method is that the number of chunks, i.e., the maximal

depth of entity nesting, needs to be set in advance as a hyper-parameter. How-

ever, in actual industrial applications, the depth of entity nesting is very variant

and difficult to determine in advance. Therefore, directly applying our method

presents certain challenges. In the future work, we aim to extend our method to

handle arbitrary depths of entity nesting.

41

Chapter 4

Learning Bit-wise Representation

4.1 Introduction

Pre-trained language models [18, 49, 45, 70, 26] have already become the de-facto

infrastructure of modern natural language processing. They have significantly im-

proved performance on various tasks, and at the same time have profoundly and

permanently changed the research paradigm. However, lacking interpretability

still keeps them a black box to humans, the inability to explain their decision-

making mechanisms hinders researchers from further improving them. Fortu-

nately, two recently published papers, which focus on compressing and interpret-

ing continuous representation as discrete tags from pre-trained language models,

have shed some light on this issue.

On the one hand, Li and Eisner [46] propose to compress the contextual

representation from pre-trained language models into discrete tags. They uti-

lize the variational information bottleneck [87, 3] to non-linearly interpret high-

dimensional continuous vectors into discrete tags, retaining only the information

that aids the downstream parsing task. These obtained tags form an alternative

tag set and contain necessary syntactic properties. Moreover, the mechanism

of the variational information bottleneck, on which their method relies, is to

maximize the mutual information between latent discrete tags and targets, while

simultaneously minimizing the mutual information between inputs and latent

discrete tags. In this way, only the task-relevant information remains in these

tags.

On the other hand, Kitaev et al. [40] similarly collapse vectors into discrete

42

Angmar stabbed Frodo with a blade
476e71 81e529 fb63e6 e8853d 51cd5c 210628

PER PER

Frodo held the ring
fb63a5 a5bc2d 4cf759 a10628

PER PROD

Figure 4.1: Examples of our method on the named entity recognition task. We

assign each word a binary code, i.e., these hexadecimal numbers, and

use them as the sole input to recognize entities. PER and PROD are the

entity labels for person and product, respectively.

tags by employing a narrow bottleneck that limits the size of the discrete token

vocabulary. Their approach consists of two stages. In the first stage, the con-

textual vectors of tokens are mapped to discrete tags via the vector quantization

method [88]. At the second stage, tags are fed into a downstream model, referred

to as the read-out network in the original paper, for downstream constituency

parsing. Importantly, this read-out network has no access to the continuous vec-

tors but only to these discrete tags, therefore, these tags are forced to encode all

the needed syntactic information. Experiments show that their model achieves

comparable performance with only a few bits for each word.

Different from the two methods above, we provide a novel contrastive hashing

method to obtain binary codes from high-dimensional hidden states of pre-trained

language models. We push the compression limit by further narrowing the in-

formation bottleneck to 24 bits. Following Kitaev et al. [40], we also introduce

a stage to verify whether the information is properly preserved in these binary

codes. Additionally, we train an extremely lightweight model using these bi-

nary codes as the sole inputs. Experiments show that it successfully reproduces

comparable or even slightly better performance than the original full-size model.

Moreover, our method hashes vectors into bit-level binary codes, rather than

using token-level tags as in the two previous works. Therefore, the compressed

codes are much more interpretable and compact. More specifically, our hashing

results not only indicate whether the syntactic properties of two given tokens are

different, but also distinguish exactly which bits they differ in.

43

S

VP

NP

SBAR

S

VP

smashed

133b7d57

9fff7c0a

NP

Luna

3c655f3a

afb28043

WHNP

that

b9c9d4eb

2c93612b

NP

pumpkin

c7defd89

d0021cbd

the

4674f233

746b55e0

ate

389d6f47

fe02344a

NP

She

b4e11add

ff904194

S

VP

NP

SBAR

S

VP

VP

PP

NP

Luna

1633159c

fd330c47

by

d21b4c98

6f978596

smashed

7f4e76c3

dde7740d

was

f66175fd

8cbbc066

WHNP

that

b9c9d4eb

2c93612b

NP

pumpkin

c7ceff89

d0021cbd

the

4674f233

746b55e0

ate

389d6f47

fe02344a

NP

She

b4e11add

ff904194

Figure 4.2: Derivation of the sentence She ate the pumpkin that Luna smashed,

and the sentence She ate the pumpkin that was smashed by Luna.

These hexadecimal numbers below each token are the hashing results

of bidirectional and incremental parsing, respectively.

Our method builds upon contrastive hashing. We introduce a recently pro-

posed Hamming similarity approximation [28] to combine contrastive learning

with deep hashing methods. In addition, we introduce an instance selection

strategy aimed at mitigating issues related to contextual false positives and false

44

negatives. Moreover, we design a novel transformer-based hash layer, in which

each attention head corresponds to a single bit. The entire model is trained to

learn to hash by using both the downstream task objective and the contrastive

hashing objective simultaneously. These two objectives share a portion of the

attention matrix from the hash layer, ensuring that the learned binary codes are

likely to properly preserve task-relevant information.

4.2 Proposed Methods

For many tasks, the standard approach of modern language processing is first

feeding the input sentence, i.e, w1, . . . , wn, into a pre-trained language model to

assign each token a continuous vector, i.e., xi ∈ Rd, and leveraging them in the

downstream task. In this work, we aim to interpret these continuous vectors

as discrete binary codes, i.e., ci ∈ {−1,+1}K where K ≪ d, which contains

task-relevant information as well. In this way, our method converts continuous

vectors to an interpretable format, thereby making the internal mechanism more

transparent and comprehensible.

Our framework consists of two stages. In the first stage, i.e., hashing stage, we

learn to hash the continuous vectors as discrete tokens. We append a transformer-

based hash layer (§4.2.3) to the end of a pre-trained language model and train

the entire model to learn to hash by fine-tuning it on the downstream task.

Novelly, we employ the contrastive hashing method (§4.2.1) and carefully exclude

potentially false positive and negative instances with a selection strategy (§4.2.2).

After training, we utilize the hash layer to re-annotate the entire dataset by

assigning each token a binary code.

In the second stage, i.e., the validation stage, we evaluate whether these bi-

nary codes preserve task-relevant information or simply contain meaningless bits.

Using these binary codes as the sole inputs, we train a much more lightweight

model from scratch. Experiments show that even with such limited capability,

our model still achieves comparable or even slightly better performance than the

original full-size model. Therefore, we claim that our method properly preserves

task-relevant information in these binary codes. The pseudo-code can be found

in Algorithm 3.

45

4.2.1 Contrastive Hashing

Contrastive learning [15, 59, 13, 106, 25] has already been shown to be an effective

representation learning method. Its fundamental concept involves employing an

encoder network to map instances into a continuous representation, i.e., x ∈ Rd.

It then pulls together the positive pairs and pushes apart the negative pairs by

applying the following objective function1.

Lself =− log
exp s(x,x+)∑
x′∈X exp s(x,x′)

= log
∑
x′∈X

exp s(x,x′) −s(x,x+)

where X is the instance batch, and s(x,y) returns the similarity between the

two given instances. Contrastive learning generally expects instances uniformly

distributed on a unit hyper-sphere. Therefore, the most commonly used similarity

function is the cosine function,

s(x,y) =
x⊤y

∥x∥ · ∥y∥ (4.1)

On the other hand, deep hashing methods [12, 82, 28] also aim at mapping in-

stances into informative representation but in discrete space, i.e., c ∈ {−1,+1}K .

They first utilize an encoder network to map instances to continuous score vec-

tors, i.e., s ∈ RK , and then obtain binary codes by taking signs, i.e., c = sign (s).

Besides, deep hashing methods also pull together the positive pairs by encour-

aging all their bits to become the same and at the same time making negatives

pairs have as many as possible different bits. Commonly, this is implemented as

Hamming similarity. To be more specific, for two given score vectors, x,y ∈ RK ,

the similarity is defined as,

s(x,y) =
K∑
i=1

sign (xi) · sign (yi) (4.2)

We notice that deep hashing shares the common fundamental concept with

contrastive learning, except it represents instances in a K-dimensional Hamming

1We omit the temperature τ for clarity.

46

space, i.e., {−1,+1}K , instead of a unit hyper-sphere, i.e., Rd−1. Therefore, we

propose introducing Hamming similarity to extend the contrastive learning to

learn to hash.

However, the Hamming similarity above is not differentiable, directly introduc-

ing it to the contrastive learning framework is intractable. Recently, Hoe et al.

[28] proposed a novel similarity function that takes the sign of one of its inputs

before computing their cosine similarity. They demonstrate that maximizing this

similarity preserves semantic information as well. Therefore, we instead introduce

this approach to our contrastive learning framework to learn to hash.

s(x,y) = cos (x, sign (y)) (4.3)

4.2.2 Instance Selection

One of the most appealing properties of contrastive learning is that it successfully

converts tasks from wh-questions to yes-no questions. Conventional classification

requires specifying target labels for all instances, but contrastive learning only

demands knowing whether two instances are identical or not.

Due to this benefit, effective representation learning becomes possible even in

unsupervised settings. Gao et al. [24] pass instances into a neural network twice

to obtain two semantically identical but slightly augmented representations, i.e.,

x and x+, relying on the independently sampled dropout masks [79]. They

employ the objective Lself to perform representation learning, treat these two

views as positive to each other, and consider all existing instances in the batch as

negatives. This simple method surprisingly works well and results in expressive

representation.

Furthermore, in supervised settings, Khosla et al. [34] proposed leveraging label

information by introducing an objective function capable of handling cases with

47

multiple positive instances.

Lsup =
−1

|X+|
∑

x+∈X+

log
exp s(x,x+)∑
x′∈X exp s(x,x′)

= log
∑
x′∈X

exp s(x,x′)

− 1

|X+|
∑

x+∈X+

s(x,x+)

where the X+ is the set of positive instances. Obviously, the first term of

Lsup and Lself are identical. The difference between them is, Lself pulls to-

gether only one positive while Lsup leverages all of these positive instances, i.e.,

the second term .

However, we observe that tokens are assigned different information in varying

contexts, making it challenging to determine whether two identical tokens truly

form a positive pair. For example, in Figure 4.3, the token Frodo appears in

both sentences. It serves as the subject in the first sentence and as the object

in the second, resulting in dissimilar parses. Therefore, identical tokens may

contain distinct task-relevant information and, in such cases, deserve different

binary codes.

Since it is difficult to determine whether two identical tokens contain identical

task-relevant information in practice, we choose to not include them in either the

positive or the negative set. For the numerator part of the objective function,

we remove all identical token pairs and retain only the augmented version of

each token as the sole positive instance, thereby reverting to the single positive

instance scenario. For the denominator part, we also remove all identical tokens

from X to exclude potential false negatives.

Lhash = − log
exp s(x,x+)∑

x′∈{x+}∪X− exp s(x,x′)
(4.4)

Where X− only contains tokens that are different from x. More specifically, as

shown in Figure 4.3, we consider the second Frodo as neither a positive nor a

negative instance to the first Frodo, and remove it from both the numerator and

the denominator.

48

Algorithm 3: PyTorch-like style pseudocode.

def compute_hash_loss(x, y, tokens):

Equation 4.3

score = cos(x[:, None], y[None, :].sign(), dim=-1)

score = score / tau # [tok, tok]

excludes potentially false positives and negatives

mask = tokens[:, None] == tokens[None, :] # [tok, tok]

score[mask ^ eye] = -float(’inf’)

Equation 4.4

return (score.logsumexp(dim=-1) - score.diag()).mean()

def hashing_step(plm, task_model, inputs, targets):

h1, s1 = plm(inputs) # [bsz, snt, dim], [bsz, snt, K]

h2, s2 = plm(inputs) # [bsz, snt, dim], [bsz, snt, K]

task_loss1 = compute_task_loss(task_model(h1), targets)

task_loss2 = compute_task_loss(task_model(h2), targets)

task_loss = task_loss1 + task_loss2

s1 = flatten(s1) # [tok, K]

s2 = flatten(s2) # [tok, K]

tokens = flatten(inputs) # [tok]

hash_loss1 = compute_hash_loss(s1, s2, tokens)

hash_loss2 = compute_hash_loss(s2, s1, tokens)

hash_loss = hash_loss1 + hash_loss2

Equation 4.10

return task_loss + beta * hash_loss

def reannotate(plm, dataset):

new_dataset = []

for inputs in dataset:

_, s = plm(inputs) # [bsz, snt, k]

codes = s.sign() # [bsz, snt, k]

new_dataset.extend(codes)

return new_dataset

def validation_step(lite_task_model, codes, targets):

logits = lite_task_model(codes)

task_loss = compute_task_loss(logits, targets)

return task_loss

49

The pseudo-code of this objective function can be found in the compute hash loss

of Algorithm 3.

Before introducing our transformer-based hashing layer, we briefly review the

mechanism of multi-head attention [90]. The attention layer first projects the

input vectors into queries, keys, and values. It then constructs output vectors by

aggregating desired information from these key-value pairs.

shi,j =
(Wh

qxi)
⊤(Wh

kxj)√
dh

(4.5)

ahi,j = softmaxj (shi,j) (4.6)

zh
i =

∑
j

ahi,j(W
h
vxj) (4.7)

oi = Wo

[
z1
i , . . . ,z

H
i

]
(4.8)

where Wh
q ,W

h
k ,W

h
v ∈ Rdh×d are the projection weights of query, key, and value

of the h-th head, respectively. The Wo ∈ Rd×(H×dh) is the output weight, d, dh, H

are the input dimension, head dimension, and the number of heads, respectively.

[·, . . . , ·] indicate concatenation and bias terms are omitted for clarity. These

hidden states oi are then fed into a feed-forward network to obtain the output

vectors hi = FFN (oi) ∈ Rd for downstream tasks. Conventionally, the head size

dh is simply bounded to d and H, but we let the dh become an independent hyper-

parameter, therefore, d does not have to equal to dh ×H in our implementation.

4.2.3 Transformer Hash Layer

Intuitively speaking, the mechanism of attention is to selectively aggregate infor-

mation from tokens. The attention score si,j ∈ R estimates the amount of desired

information that token i may obtain from token j. Specifically, si,i estimates how

much desired information is retained in token i itself. Furthermore, by increasing

the number of heads to K, the vector si,i ∈ RK represents the desired information

amount of token i from K different aspects, and can naturally produce K bits by

taking their signs.

Therefore, inspired by the multi-head mechanism, we propose to leverage K

heads to produce K bits. We add an additional transformer layer with its number

of heads increased to K, and use the diagonal entries si,i of its attention matrix

50

Pre-trained Language Model

Transformer Hash Layer

Classifier + CRF

Angmar stabbed Frodo with a bladeFrodo held the ring

S-PER O S-PER O O OS-PER O B-PROD E-PROD

<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h

<latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s

Figure 4.3: The architecture of the hashing stage model for named entity recog-

nition. The transformer hash layer (§4.2.3) produces both contex-

tual representation h and ego-attention scores s (§4.2.3) for the

task-specific fine-tuning and contrastive hashing (§4.2.1), respectively.

Solid lines indicate the positive instance, while dotted lines show nega-

tives. Note that the token Frodo appears twice in different sentences,

thus, to avoid including false positives and false negatives (§4.2.2),

there is no arrow pointing from the first Frodo to the second one.

as the hashing scores to learning to hash, and take their signs to generate binary

codes as the hashing results after training, i.e., ci = sign (si,i). Since si,i repre-

sents a form of attention that one attends to oneself, to distinguish it from the

commonly known term self-attention, We use the term ego-attention to refer to

it throughout the remainder of this dissertation.

In summary, the full attention matrix si,j is utilized in a dual manner: it not

only serves the purpose in the conventional Transformer architecture for comput-

ing the output vectors, but also lends its diagonal entries si,i to learn to hash.

Given that a portion of the attention matrix is shared between these two objec-

51

tives, the learned binary codes are inclined to preserve task-relevant information.

This hypothesis is demonstrated by our experimental results in the validation

stage.

4.2.4 Hashing Stage Architecture

The architecture of the hashing stage model, as shown in Figure 4.3, consists of

one pre-trained language model, one transformer-based hash layer, and the task-

specific layers. We initialize RoBERTa [49] with the checkpoint roberta-base

as the pre-trained language model.

Part-of-speech Tagging We employ a two-layered classifier and a Conditional

Random Field [42] (CRF) to compute the log-likelihood and utilize the Viterbi

algorithm [23] for inference.

Named Entity Recognition We transform the sequence of vectors from the

sub-token level back to the token level by taking the average of the sub-token

vectors of each individual token. We use the same task-specific layers as part-of-

speech tagging.

Constituency Parsing Similarly, we generate the token-level representation

by averaging the vectors of sub-tokens. In addition, following Zhang et al. [107],

we use a biaffine span classifier along with a tree-structured CRF. We identify

the most probable tree from all valid trees using the Cocke–Kasami–Younger

Algorithm [33] (CKY). Following Kitaev et al. [40], we also incorporate GPT-2

[70] using the gpt2-medium checkpoint for incremental parsing.

4.2.5 Validation Stage Architecture

As mentioned above, this stage is only to validate if the task-relevant information

has been properly preserved in these binary codes, and is not to distill knowledge

into a lightweight model. In this stage, we introduce an extremely lightweight

model to ensure that the model lacks the capacity to learn the tasks from scratch.

52

As such, any performance gains are solely owed to the information already pre-

served within the binary inputs. The architecture for this validation stage com-

prises a binary code embedding layer, a conventional transformer layer, and the

same task-specific layers used during the hashing stage.

The binary code embedding layer produces code embeddings through construct-

ing instead of looking up. For a given binary code, c ∈ {−1,+1}K , the binary

code embedding layer simply flips the direction of each bit embedding bi, and

returns the concatenation of these flipped vectors, where bi ∈ Rd/K is the embed-

ding of the i-th bit.

w = [c1b1, . . . , cKbK] ∈ Rd (4.9)

Compared with the learned discrete tags of Kitaev et al. [40], our binary codes

literally encode information at the bit level, while their tags remain at the token

level. Thus, although Kitaev et al. [40] emphasize that their model requires only

K bits per word, in practice, their model demands an embedding matrix with

shape 2K × d, while our real bit-level embedding needs only K × d

K
.

4.2.6 Training and Inference

In the hashing stage, we balance the task-specific loss Ltask and the hashing

loss Lhash, as the hashing step function in Algorithm 3. Besides, our training

procedure is also simpler than Kitaev et al. [40], since we don’t need to employ

the k-mean algorithm [1] to initialize the centroids in the first two epochs.

L = Ltask + β · Lhash (4.10)

In the validation stage, we re-annotate the entire dataset first and then use the

task-specific loss Ltask only to train the lightweight model with only these bi-

nary codes as inputs. The procedures for reannotate and validation step are

described in Algorithm 3, respectively.

53

Dataset Train Dev Test Label

POS 39,832 1,700 2,416 45

NER 59,924 8,528 8,262 73

Parsing 39,832 1,700 2,416 142

Table 4.1: Statistics on the WSJ and OntoNotes datasets for the three tasks.

4.3 Experiments

4.3.1 Datasets

Part-of-speech Tagging We conduct experiments on the English Penn Tree-

bank [55] dataset. The task involves assigning a syntactic label to each token in

a given sentence. We report the accuracy scores on the test split.

Named Entity Recognition The OntoNotes English dataset [67] is used for

evaluation. We transform span annotations into the BIOES encoding scheme

[71], and report the F1 scores on the test split.

Constituency Parsing We evaluate on the English Penn Treebank [55]. Fol-

lowing Zhang et al. [107] and Kitaev et al. [40], we transform the original tree

into those of Chomsky normal form and adopt left binarization with NLTK [9].

We report the F1 scores on the WSJ test split.

4.3.2 Settings

We implement our models with the deep learning framework PyTorch [64] and

fetch weights of pre-trained language model from huggingface/tramsformers

[103].

For each batch, we keep collating sentences until the total number of tokens

reaches 1024. The reason that we don’t use the number of sentences as batch

size is to stabilize contrastive learning, since it is performed at token-level, not

sentence-level. We employ AdamW [37, 50] with 50,000 training steps and 6%

54

Hyper-param POS NER Parsing

β 0.05 0.005 0.001

τ 0.1 0.1 0.1

Dropout 0.1 0.1 0.5

Learning Rate 5e-5 7e-5 5e-5

Dropout 0.1 0.2 0.3

Learning Rate 5e-4 3e-3 1e-3

Table 4.2: Hyper-parameters on all tasks. The first block shows the hyper-

parameters on hashing stage, while the second one shows the validation

stage.

warm-up steps. In the hashing stage, we evaluate the performance with different

number of bits, specifically K ∈ {16, 24, 32}.
We run experiments on a single NVIDIA Tesla V100 graphics card. The hashing

stage takes approximately 2 hours, while the validation stage requires only around

30 minutes. We run the experiments four times with different random seeds. The

reported numbers in the following tables are their averages.

For comparison, we also conduct baseline experiments for each task without

using the contrastive hashing loss, i.e., β = 0. These baseline experiments uti-

lize only the task-specific loss. Comparing these results with the hashing-stage

performance illustrates the impact of contrastive hashing on training, allowing us

to determine whether the contrastive hashing itself negatively affects model per-

formance. Additionally, comparing them with the validation stage performance

reveals how well task-relevant information is preserved.

4.3.3 Main Results

As presented in Table 4.3 and Table 4.4, experiments on the part-of-speech tag-

ging show that 32 bits achieve slightly better results than 16 bits and 24 bits on

both stages. Besides, we notice that results in the validation stage are constantly

superior to hashing stage results, no matter how many bits are used.

For named entity recognition, we achieve 90.39 in F1 score with 24 bits, which is

55

Model

POS NER

RoBERTa RoBERTa

Acc |θ| F1 |θ|

Baseline 98.27 134.2M 90.24 134.2M

16 bits
98.37 132.6M 90.21 132.6M

98.38 0.6M 90.28 0.6M

24 bits
98.39 134.2M 90.27 134.2M

98.38 0.6M 90.39 0.6M

32 bits
98.40 135.7M 90.12 135.7M

98.41 0.6M 90.31 0.6M

Table 4.3: The main results on part-of-speech and named entity recognition ex-

periments. The results of our methods are displayed in two rows, which

indicate the performance in hashing and validation stages, respectively.

|θ| columns show the number of parameters, and the bold numbers in-

dicate the best validation performance in the settings.

even slightly higher than its hashing stage performance, i.e., 90.27. For 16 bits and

32 bits, the validation stage performance also consistently surpasses their hashing

stage performance. We hypothesize that this is because hashing the ego-attention

scores may implicitly exclude some unconfident attention scores that might lead

to wrong predictions. For example, consider a token that barely contains the

desired information of a query, it should be ignored by getting a small attention

score. However, if the network unconfidently assigns it an attention score that is

only slightly less than 0, then its information still occupies a certain proportion

in the final output. On the contrary, our method truncates the attention scores

to be −1 or +1, and eases the issue in some degree.

For constituency parsing, our method outperforms Kitaev et al. [40] with 32,

40, and 48 bits in the bidirectional parsing setting, even they introduce much

more tags, i.e., 256 in total. Besides, our 16 bits and 24 bits settings also achieve

remarkable performance and are only slightly inferior to theirs. In this task, all

experiments in the validation stage show worse results than the corresponding

56

Model

Parsing Parsing

RoBERTa GPT2

F1 |θ| F1 |θ|

Kitaev et al. [38] 95.59 342.8M 93.95 362.5M

Kitaev et al. [40] 95.55 361.4M 94.97 381.1M

Baseline 95.92 136.0M 95.04 422.5M

16 bits
96.00 134.4M 95.02 420.4M

95.24 2.9M 93.76 5.3M

24 bits
95.92 136.0M 95.14 422.5M

95.51 2.9M 93.82 5.3M

32 bits
95.97 137.6M 95.15 424.6M

95.65 2.9M 94.02 5.3M

40 bits
96.09 139.2M 95.14 426.7M

95.75 2.9M 93.98 5.3M

48 bits
96.11 140.8M 95.07 428.8M

95.63 2.9M 94.01 5.3M

Table 4.4: The main results on bidirectional and incremental parsing experiments.

The results of our methods are displayed in two rows, which indicate

the performance in hashing and validation stages, respectively. |θ|
columns show the number of parameters, and the bold numbers indi-

cate the best validation performance in the settings.

57

s(x,y) Lcontrastive NER

cos (x,y)

Lself 90.12→ 88.74

Lsup 90.07→ 86.91

Lhash 90.19→ 88.94

cos (x, sign (y))

Lself 90.15→ 90.21

Lsup 90.19→ 90.04

Lhash 90.27→ 90.39

Table 4.5: Ablation study on the different similarity functions and objective func-

tions on the OntoNotes dataset. The numbers on the left and right

sides of → represent the hashing and validation performance, respec-

tively.

hashing stage results. We hypothesize that this is because constituency parsing

is a span-level classification task, token-level hashing is unable to capture the span

information completely. This may also be the reason that our method works best

on named entity recognition since it is just at the token level.

We notice that hashing stages always yield results similar to the corresponding

baselines, therefore we claim that contrastive hashing loss does not have a nega-

tive impact on the training itself. Introducing the contrastive hashing loss does

not significantly change the model performance, but only produces compact and

interpretable binary codes. Besides, validation stages also achieve comparable

performance to baselines, this fact further shows our method has not affect on

the model inherent capabilities.

For all these tasks, our codes still reproduce comparable or even slightly better

performance than the original full-size model, even with such a lightweight model

in validation stages. We claim that these results demonstrate that our learned

binary codes have properly preserved task-relevant information.

58

β 0 0.001 0.005 0.01 0.05

NER
90.24 90.25 90.27 90.10 90.02

79.60 90.29 90.39 90.24 90.23

Table 4.6: Ablation study on the named entity recognition experiments, along

with the β coefficient. The two rows display hashing and validation

performance, respectively.

4.3.4 Ablation Studies

Influence of the Similarity and Objective Functions

Table 4.5 shows that the similarity and objective functions are essential to our

method. Using the cosine similarity, the model shows relatively high perfor-

mance in the hashing stage, however, the naive cosine similarity can not preserve

information properly, as its performance dramatically drops in validation stage.

Furthermore, the fact that Lhash consistently outperforms both Lsup and Lself

demonstrates our hypothesis that false positives and false negatives are harmful.

Influence of the β Coefficient

Additionally, as indicated in Equation 4.10, the coefficient β serves to balance

the two terms. According to Table 4.6, even though the contrastive hashing loss

requires only a minor proportion of the overall loss, demonstrated by the optimal

performance of a small β = 0.005, it is also critical for preserving information.

Experiments reveal that removing the contrastive hashing loss, i.e., β = 0, results

in a dramatic performance drop.

Influence of the Temperature τ

Table 4.7 shows that the temperature also has an influence on the hashing perfor-

mance. Generally, it controls the strength of penalties on hard negative instances.

We empirically found the sweet spot is around 0.1.

59

τ 0.01 0.02 0.05 0.1 0.2

NER
90.19 90.08 90.02 90.27 90.13

89.13 89.12 89.81 90.39 90.16

Table 4.7: Ablation study on the OntoNotes experiments, along with the tem-

perature τ , which controls the strength of penalties on hard negative

instances [97].

4.3.5 Case Studies

We present the hashing and constituency parsing results to demonstrate the in-

terpretability of our learned binary codes. For comparison with Kitaev et al. [40],

we use the exact same examples as in their paper.

We begin by discussing bidirectional parsing. In our transformer-based hash

layer, each head corresponds to a single bit, and these heads operate indepen-

dently of one another. This design allows each bit to capture distinct and orthog-

onal syntactic and semantic properties. Notably, we observe that the generated

binary codes cluster based on the part-of-speech properties. For example, the past

tense verbs brought and approved receive similar codes even when they appear

in different sentences, differing by only four bits. Similarly, the common nouns

groceries and proposal share 28 bits, highlighting their shared noun properties.

Moreover, since both of these nouns finalize a similar noun phrase, the prepo-

sition the before them is assigned the same code. However, the preposition the

before the council retains quite different bits. We hypothesize these bits indicate

the varied phrase structures. Besides, for the left side two sentences, the final at-

tachments him and himself determine the attachment location of the for phrase.

We observe that only 2 bits differ between them, however, finalizing these phrases

impacts the structures of previous phrases, leading to corresponding changes in

attachment locations. Thus, the subjective Lucas and the predicate verb brought

also flip one bit, respectively, to reflect the different phrase structures. Similarly,

for the right side sentences, Monday and taxes differ in 5 bits, and the attach-

ment locations of all the phrases that depend on this phrase are influenced, thus,

approved, the, and proposal alters their bits as well.

60

S

VP

NP

PP

NP

him

1613119d

a5ba4dc5

[11]

for

481789a3

2cbc9d31

[24]

NP

groceries

35dff849

f0831d05

[7]

the

4654f232

646b55c0

[11]

brought

3aad6c55

bf453442

[6]

NP

Lucas

b8e44edc

9fb50530

[16]

S

VP

PP

NP

himself

0633119d

ecb84c45

[16]

for

481789a3

2cbc9d31

[24]

NP

groceries

35dff849

f0831d05

[7]

the

4654f232

646b55c0

[11]

brought

3abd6c55

bf453442

[6]

NP

Lucas

b8e44edd

9fb50530

[16]

Figure 4.4: Examples of the hashing and constituency parsing results. There are

three numbers below each token, the first two are represented in hex-

adecimal (32 bits), and indicate the hashing results of the bidirectional

(RoBERTa) and unidirectional (GPT2) pre-trained language models,

respectively. The third number is taken from Kitaev et al. [40] for

comparison and is represented in decimal. The red and blue parts

indicate the exact different bits.

Apart from that, incremental parsing disallows the information from future

tokens, and the future tokens potentially contain syntactic properties that is

needed for committing parsing decisions. Therefore, compressed codes should

not only retain the already revealed information but also be open to all possible

61

S

VP

PP

NP

Monday

1625159d

e8ee6ec5

[246]

on

2a054912

7cce9d88

[93]

NP

proposal

365ff8c9

c4c63cfd

[81]

the

4654f232

646b55e0

[92]

approved

33bd6e55

cf6e149e

[145]

NP

Council

a6e9efb9

c6409039

[120]

The

dc687816

d4b181f8

[122]

S

VP

NP

PP

NP

taxes

1533159c

b442adc1

[255]

on

2a054912

7cce9d88

[93]

proposal

f7de7909

c4c63cfd

[81]

the

4674f233

646b55e0

[92]

approved

319d6f45

cf6e149e

[145]

NP

Council

a6e9efb9

c6409039

[120]

The

dc687816

d4b181f8

[122]

Figure 4.5: Examples of the hashing and constituency parsing results. There are

three numbers below each token, the first two are represented in hex-

adecimal (32 bits), and indicate the hashing results of the bidirectional

(RoBERTa) and unidirectional (GPT2) pre-trained language models,

respectively. The third number is taken from Kitaev et al. [40] for

comparison and is represented in decimal. The red and blue parts

indicate the exact different bits.

upcoming tokens, as called speculation free in Kitaev et al. [40]. Therefore, needed

information is mostly concentrated in the last tokens, and thus they are likely to

obtain varied codes reflecting varied phrases. For example, on the left side, the

last noun tokens him and himself obtain quite different codes, 5 bits different

in total, more than the 2 bits in the bidirectional parsing case above. Besides,

62

S

VP

PP

NP

blade

125a3ddd

d4b4dc99

a

be9cd370

64107882

with

9a83641f

7f449d92

NP

Frodo

3c84538c

7f230c69

stabbed

23bd6755

fb4534ca

NP

Angmar

b8e54edd

9fbd2532

S

VP

NP

ring

37593ddd

d0c01439

the

4654f232

746b55e8

held

31bd6f45

ff48345a

NP

Frodo

aea1ca99

f298a5ba

Figure 4.6: Derivation of the sentence Angmar stabbed Frodo with a blade, and

the sentence Frodo held the ring.

incremental parsing model also commits similar bits for the prepositions in the

groceries and the proposal, i.e., only 1 different bit, but assigns a much different

code to the council, which has 15 nonidentical bits. By comparison, even Kitaev

et al. [40] also assign them distinct tags, e.g., 11, 92, and 122, but it is hard for

them to tell how different they are and where the differences lie exactly. Thus,

we claim that our binary codes are much more informative and interpretable.

4.3.6 Discussions

Bit Distribution

To further demonstrate interpretability by analyzing the specific information pre-

served by each bit, we display the bit distribution in Figure 4.8.

The sub-figure above illustrates the distribution of bits related to different

syntactic information, which serves to indicate the boundary of each entity. It

63

S

VP

PP

NP

dog

13703dd4

d1a31c1d

lazy

a37bdf46

52063510

the

4674f233

746b55c0

over

ea0f0101

58cfb51b

jumps

71bdb417

aa81744a

NP

fox

86e0eff0

b4039818

brown

c9d0cbc7

3201b918

quick

e162cf8d

5284b158

The

dc607816

d4b181f8

S

VP

PP

NP

fox

13703dd4

d4a31c1c

brown

c1d1db46

3201b918

quick

e362df4d

5284b158

the

4674f233

746b55c0

over

eb0f0101

58cfb50b

jumps

71bdb417

a881744a

NP

dog

86e0eff0

a081d819

lazy

e938cf87

52263510

The

dc607816

d4b181f8

Figure 4.7: Derivation of the sentence The quick brown fox jumps over the lazy

dog, and the sentence The lazy dog jumps over the quick brown fox.

is noteworthy that the bit distributions for the non-entity label O are uniform,

such that in all these positions the probability of being assigned a 1 is roughly

around 50%. In contrast, the distribution of bits for other labels exhibits a clear

bias. For instance, examining the 9th bit, we hypothesize that the reason S and

B have 80% and 73% probabilities of being assigned a 1, while the numbers are

only 47% and 17% for E and I, is that both S and B can indicate the beginning

of an entity, but such property is not shared by the other labels.

The sub-figure below reveals more distinct distributional features. Although

the non-entity label O continues to display uniform distribution characteristics,

labels MONEY, NORP, and PERCENT show that the probabilities at the 4th and 17th

bits are skewed to 100% and 0%, respectively. Such a pronounced tendency, low

entropy in other words, suggests that task-relevant information is clearly and

deterministically preserved within these bits, each carrying a distinct meaning.

From the discussion above, we can see that the meaning of these induced

64

O

S

B

E

I

48 53 52 49 44 49 47 58 50 50 48 52 48 44 48 43 51 48 51 55 57 47 49 52

76 42 34 67 65 44 73 48 79 30 94 85 99 51 41 50 58 59 41 24 26 47 84 22

64 22 48 63 67 48 86 48 72 35 72 4 53 57 58 90 39 81 43 18 46 59 54 83

25 26 35 89 73 58 77 58 46 21 58 48 42 88 39 61 30 77 27 38 61 59 61 42

56 11 55 84 34 68 57 45 16 24 42 15 38 82 31 55 82 77 37 37 9 16 26 37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O

ORG

PERSON

DATE

GPE

CARDINAL

MONEY

NORP

PERCENT

WORK_OF_ART

LOC

TIME

EVENT

FAC

QUANTITY

ORDINAL

PRODUCT

LAW

LANGUAGE

48 53 52 49 44 49 47 58 50 50 48 52 48 44 48 43 51 48 51 55 57 47 49 52

75 0 48 99 81 58 65 64 50 16 64 41 70 99 78 73 90 83 42 13 0 40 38 24

69 28 38 99 50 62 93 64 58 0 46 28 50 29 0 72 57 58 60 1 58 61 43 29

0 56 24 34 50 59 72 42 45 91 54 16 45 99 28 91 40 99 28 26 73 18 99 77

99 39 40 45 53 62 46 99 40 0 94 67 67 47 0 19 54 13 30 0 13 100 80 26

23 0 27 70 89 47 86 0 99 62 99 86 76 13 99 51 86 99 0 72 37 0 76 99

5 33 97 100 55 61 100 0 46 27 72 58 27 94 99 61 0 100 0 99 55 0 33 66

99 6 10 99 45 6 33 9 98 4 99 89 89 99 93 95 0 44 54 46 10 0 10 0

58 9 9 100 99 41 58 0 0 41 99 58 41 17 17 41 0 99 99 41 58 41 100 100

71 71 99 93 51 0 100 93 97 99 28 0 77 100 28 93 48 51 77 22 28 99 28 44

100 47 47 70 0 70 70 29 81 0 81 22 100 0 29 0 52 99 0 0 0 99 100 59

55 54 0 0 99 24 99 0 69 0 99 69 76 99 54 69 0 99 55 86 99 99 31 69

72 0 68 99 31 72 72 27 59 27 100 0 100 100 0 40 40 55 0 100 27 59 27 59

99 0 100 70 29 70 100 58 66 7 37 29 70 5 66 0 41 63 0 100 0 100 100 29

0 0 66 65 80 68 100 31 100 0 100 65 34 66 34 0 34 100 65 68 99 34 34 65

0 99 99 0 99 0 99 0 0 0 99 0 99 100 0 99 0 99 0 99 0 0 99 0

48 48 100 79 51 0 100 69 71 30 20 28 51 100 100 20 28 71 0 99 20 30 51 20

53 74 79 79 20 53 100 20 100 6 99 0 79 100 79 100 73 99 39 79 20 100 20 40

5 2 96 5 95 97 6 2 97 0 6 0 97 6 98 96 0 100 93 99 4 99 99 5

Figure 4.8: The heatmap of bits distribution. The sub-figure above shows the

distribution of bits concerning different syntactic information, while

the one below corresponds to semantic information. The number

inside cell represents the probability of this label being assigned a 1

at the n-th bit position. For example, the 6 at the bottom left corner

indicates that among all of the LANGUAGE labels, only 6% of them are

assigned a 1 at the first bit position.

bits become human-understandable in some degree. For example, the 24th bit

65

shows a strong tendency towards only a few labels such as CARDINAL, PERCENT,

and ORDINAL, we hypothesize that this bit preserves information about quantity.

However, at the same time, we also acknowledge that we are currently unable to

provide a clear definition of their meanings.

Bit Flipping Tests

In this section, we study how individual and paired bits impact the final parsing

results. Our first finding is that arbitrary code sequences not always yield valid

parsing results. This is because during the parsing process, Chomsky normal form

and adopt left binarization (§4.3.1) are firstly adopted on the original parsing

tree, intermediate labels are introduced to mark these incomplete non-terminal

nodes. Some code sequences leads to that all nodes are assigned with incomplete

labels, therefore, produces invalid trees. Therefore, We study their sensitivity by

reversing the bits of the code sequence obtained from the hashing stage.

For simplicity, we start with 1-bit flipping tests, as shown in Figure 4.3.6. We

found that bit flips have little effect on the final parsing for most tokens and at

most bit positions. The parser often produces identical trees when given code

sequences with a single bit flipped as inputs. This suggests potential redundancy

in our binary representation, where information might be duplicated in multiple

locations, such as parent nodes. Among all these tokens, only the tokens deeper

and swords are affected by flipping bits. The token deeper changes its own attach-

ment location as well as its parent’s, while the token swords changes its sibling

node.

Subsequently, we conducted further experiments on 2-bit flipping tests, and

most yielded different trees. As shown in Figure 4.3.6, we found that all in-

stances of the token deeper that change the first code from 0b0010 to 0x0110

have the non-terminal label ADVP removed. Interestingly, we did not observe

a similar phenomenon in the 1-bit flipping tests. We hypothesize that this is

because removing the non-terminal label ADVP also requires synchronizing and

coordinating with the structure of parent nodes. To accommodate this change,

their parent nodes also need to flip corresponding bits, as parsing is generally a

span-level task. Therefore, such attachment location changes are not observed in

1-bit flipping tests.

66

S

VP

ADVP

PP

NP

swords

e7d4881a

than

985e1546

ADVP

deeper

20f1585a

cuts

6cb9d880

NP

Fear

fdc37892

S

VP

PP

NP

swords

e7d4881a

than

985e1546

VP

ADVP

deeper

24f1585a

cuts

6cb9d880

NP

Fear

fdc37892

S

VP

PP

NP

swords

e7dc881a

than

985e1546

ADVP

ADVP

deeper

20f1585a

cuts

6cb9d880

NP

Fear

fdc37892

Figure 4.9: Derivation of the sentence Fear cuts deeper than swords with different

code sequence as inputs. The red part indices the flipped bits.

From the above discussion, we can see that the internal decision-making mech-

anisms are somewhat revealed by these bits, but similar to the previous discussion

(§4.3.6), the precise mechanisms remain unclear at this stage.

4.4 Conclusion

In this chapter, we have proposed a contrastive hashing method to generate

interpretable binary codes from pre-trained language models. We designed a

67

S

VP

ADVP

PP

NP

swords

e7d4881a

than

985e1546

deeper

60f1585e

cuts

6cb9d880

NP

Fear

fdc37892

S

VP

VP

PP

NP

swords

e7d4881a

than

985e1546

deeper

60f9585a

cuts

6cb9d880

NP

Fear

fdc37892

S

VP

PP

NP

swords

e7d4881a

than

985e1546

deeper

60f1581a

cuts

6cb9d880

NP

Fear

fdc37892

Figure 4.10: Derivation of the sentence Fear cuts deeper than swords with different

code sequence as inputs. The red part indices the flipped bits.

transformer-based hash layer, incorporated it into the contrastive hashing frame-

work, and introduced a novel instance selection strategy to minimize false pos-

itives and negatives. Experimental results indicate that our lightweight model

achieves superior performance with fewer bits while effectively preserving task-

relevant information. Further analyses show that the generated binary codes

retain syntactic information in a relatively high interpretable and fine-grained

manner. Although we primarily focus on these three tasks, as a novel inter-

68

pretable and compact representation learning method, our approach can be eas-

ily adapted to other applications and may inspire future research on designing

efficient architectures.

4.5 Limitations and Future Work

Our methods outperform previous work by achieving superior performance with

fewer bits during the validation stage. However, there is still potential for im-

provement in non-token level tasks, such as constituency parsing.

Besides, from the interpretability aspect, our binary codes provide a discrete

representation that is more interpretable than previous work. Our models tell not

only if two tokens are different but also show in which bits they differ. However,

at this stage, identifying which bits differ represents the limit of our model’s

interpretability. Questions like what the specific meaning of each bit is and what

is the internal decision making mechanism are still unanswerable.

Moreover, even the limit has been pushed to 24 bits, which is much better

than previous work, this is still not the theoretical limit. For example, the total

number of labels of the named entity recognition task is 73, thus, the theoretical

limit is ⌈log2 73⌉ = 7 bits, which is still fewer than ours.

Future work might focus on further improving the information preservation ca-

pability on constituency parsing. For example, introducing span-level contrastive

hashing instead of the current token-level one, due to the constituency parsing

is inherently span-level classification task. Besides, the augmentation mechanism

simply relies on randomly sampled dropout mask, future work might explore in-

troducing more complex mechanism, such as lexical [105, 68] and tree substitution

[16, 11] to produce harder negative instances.

69

Chapter 5

Conclusion

5.1 Summary

In this dissertation, we studied the benefits of incorporating structures into rep-

resentation learning for different structured prediction tasks.

In Chapter 3, our method first discussed the harmful influence from the best

path of previous level and analyzed how this problem arises. After that, we took

the hierarchical structures of the nested named entity recognition task into ac-

count and designed a model to explicitly exclude the harmful influence from the

best path. Moreover, we further applied chunk selection strategies to fully lever-

age the information between chunks and switched to the innermost-first encoding

scheme. In this way, our model is capable of learning level-wise representation

with the cross-level influence completely excluded. Experimental results indicate

that our method achieves satisfactory performance.

Chapter 4, we focused on improving the interpretability of representation from

pre-trained language models. By compressing the continuous vectors into dis-

crete representations, our models induce compact and fine-grained binary codes

with the task-relevant information completely preserved. Compared with the

token-level tags of previous work, our binary codes not only indicate whether

the syntactic properties of two given tokens are different, but also distinguish

exactly which bits they differ in. Our method is built upon the contrastive hash-

ing method. Additionally, we introduce an instance selection strategy and a

transformer-based hash layer for learning to hash. The experiments demonstrate

that during the validation stage, the lightweight model is capable of achieving

70

performance comparable to that of the full-size model. Therefore, we claim that

task-relevant information is fully preserved in these bitwise representations.

In these two chapters, we proposed two methods on learning level-wise and

bit-wise representations, respectively. We demonstrate that leveraging structural

information is beneficial to various tasks. Chapter 3 shows that explicitly in-

troducing its hierarchical structures helps on improving performance on nested

named entity recognition. Chapter 4 indicates that implicitly inducing struc-

tural information from target structures brings better interpretability and slight

performance improvements. These findings might inspire future work on devel-

oping more efficient and interpretable models by introducing various structures

in representation learning.

5.2 Limitations

Although we have improved performance and interpretability across various tasks

and models, some issues still remain in current approaches.

For nested named entity recognition, the number of chunks is considered a

hyper-parameter that must be determined before training. This limitation hin-

ders its applicability in scenarios with more deeply nested entities, where this

hyper-parameter may not be determinable in advance. Designing a method based

on Principal Component Analysis (PCA) to directly decompose the level-wise

representation could be a future research direction.

Regarding the bit-wise representation, performance on tasks that are not token-

level still needs improvement, such as in constituency parsing. Even though the

bottleneck has been reduced to 24 bits, which is significantly better than in

previous work, it still isn’t the theoretical limit. For instance, the total number

of labels for named entity recognition is 73, so the theoretical limit is ⌈log2 73⌉ = 7

bits, which is still much more compact than our codes. Besides, our model can

only provid limited interpretability. Many questions, such as the internal decision

making mechanisms and the exact meanings of each bit, remain unanswered.

Introducing more complex structures may be a worthwhile direction for future

research.

71

List of Publications

Journal Papers

1. Yiran Wang, Hiroyuki Shindo, Yuji Matsumoto, and Taro Watanabe. 2022.

Nested named entity recognition via explicitly excluding the influence of the

best path. Journal of Natural Language Processing, 29(1):23–52

International Conference Papers

1. Yiran Wang, Taro Watanabe, Masao Utiyama, and Yuji Matsumoto. 2023.

24-bit languages. In Proceedings of the 13th International Joint Conference

on Natural Language Processing and the 3rd Conference of the Asia-Pacific

Chapter of the Association for Computational Linguistics, pages 408–419,

Nusa Dua, Bali. Association for Computational Linguistics

2. Yiran Wang, Hiroyuki Shindo, Yuji Matsumoto, and Taro Watanabe. 2021.

Nested named entity recognition via explicitly excluding the influence of the

best path. In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers), pages 3547–3557,

Online. Association for Computational Linguistics

3. Yiran Wang, Hiroyuki Shindo, Yuji Matsumoto, and Taro Watanabe. 2021.

Structured refinement for sequential labeling. In Findings of the Associa-

tion for Computational Linguistics: ACL-IJCNLP 2021, pages 1873–1884,

Online. Association for Computational Linguistics

4. Jun Liu, Fei Cheng, Yiran Wang, Hiroyuki Shindo, and Yuji Matsumoto.

2018. Automatic error correction on Japanese functional expressions using

character-based neural machine translation. In Proceedings of the 32nd

Pacific Asia Conference on Language, Information and Computation, Hong

Kong. Association for Computational Linguistics

72

Bibliography

[1] Marcel R Ackermann, Marcus Märtens, Christoph Raupach, Kamil

Swierkot, Christiane Lammersen, and Christian Sohler. 2012. Streamkm++

a clustering algorithm for data streams. Journal of Experimental Algorith-

mics (JEA), 17:2–1.

[2] Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual string

embeddings for sequence labeling. In Proceedings of the 27th International

Conference on Computational Linguistics, pages 1638–1649, Santa Fe, New

Mexico, USA. Association for Computational Linguistics.

[3] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy.

2017. Deep variational information bottleneck. In International Conference

on Learning Representations.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer

normalization. arXiv preprint arXiv:1607.06450.

[5] Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang, Jing Bai, Jing Yu,

and Yunhai Tong. 2021. Syntax-BERT: Improving pre-trained transformers

with syntax trees. In Proceedings of the 16th Conference of the European

Chapter of the Association for Computational Linguistics: Main Volume,

pages 3011–3020, Online. Association for Computational Linguistics.

[6] J. K. Baker. 2005. Trainable grammars for speech recognition. The Journal

of the Acoustical Society of America, 65(S1):S132–S132.

[7] Sriram Balasubramanian, Naman Jain, Gaurav Jindal, Abhijeet Awasthi,

and Sunita Sarawagi. 2020. What’s in a name? are BERT named entity

representations just as good for any other name? In Proceedings of the 5th

73

Workshop on Representation Learning for NLP, pages 205–214, Online.

Association for Computational Linguistics.

[8] Leonard E Baum et al. 1972. An inequality and associated maximization

technique in statistical estimation for probabilistic functions of markov pro-

cesses. Inequalities, 3(1):1–8.

[9] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language pro-

cessing with Python: analyzing text with the natural language toolkit. ”

O’Reilly Media, Inc.”.

[10] Bernd Bohnet, Ryan McDonald, Gonçalo Simões, Daniel Andor, Emily

Pitler, and Joshua Maynez. 2018. Morphosyntactic tagging with a meta-

BiLSTM model over context sensitive token encodings. In Proceedings of

the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 2642–2652, Melbourne, Australia. Associ-

ation for Computational Linguistics.

[11] Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Unsupervised parsing

via constituency tests. In Proceedings of the 2020 Conference on Empiri-

cal Methods in Natural Language Processing (EMNLP), pages 4798–4808,

Online. Association for Computational Linguistics.

[12] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S. Yu. 2017.

Hashnet: Deep learning to hash by continuation. In Proceedings of the

IEEE International Conference on Computer Vision (ICCV).

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.

2020. A simple framework for contrastive learning of visual representations.

In Proceedings of the 37th International Conference on Machine Learning,

volume 119 of Proceedings of Machine Learning Research, pages 1597–1607.

PMLR.

[14] Billy Chiu, Gamal Crichton, Anna Korhonen, and Sampo Pyysalo. 2016.

How to train good word embeddings for biomedical NLP. In Proceedings

of the 15th Workshop on Biomedical Natural Language Processing, pages

166–174, Berlin, Germany. Association for Computational Linguistics.

74

[15] Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005. Learning a similarity

metric discriminatively, with application to face verification. In 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’05), volume 1, pages 539–546. IEEE.

[16] Trevor Cohn, Phil Blunsom, and Sharon Goldwater. 2010. Induc-

ing tree-substitution grammars. Journal of Machine Learning Research,

11(102):3053–3096.

[17] James Cross and Liang Huang. 2016. Span-based constituency parsing

with a structure-label system and provably optimal dynamic oracles. In

Proceedings of the 2016 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 1–11, Austin, Texas. Association for Computational

Linguistics.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.

BERT: Pre-training of deep bidirectional transformers for language under-

standing. In Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,

Minneapolis, Minnesota. Association for Computational Linguistics.

[19] George Doddington, Alexis Mitchell, Mark Przybocki, Lance Ramshaw,

Stephanie Strassel, and Ralph Weischedel. 2004. The automatic content

extraction (ACE) program – tasks, data, and evaluation. In Proceedings of

the Fourth International Conference on Language Resources and Evaluation

(LREC’04), Lisbon, Portugal. European Language Resources Association

(ELRA).

[20] Jason Eisner. 2016. Inside-outside and forward-backward algorithms are

just backprop (tutorial paper). In Proceedings of the Workshop on Struc-

tured Prediction for NLP, pages 1–17, Austin, TX. Association for Compu-

tational Linguistics.

[21] Jenny Rose Finkel and Christopher D. Manning. 2009. Nested named entity

recognition. In Proceedings of the 2009 Conference on Empirical Methods

75

in Natural Language Processing, pages 141–150, Singapore. Association for

Computational Linguistics.

[22] Joseph Fisher and Andreas Vlachos. 2019. Merge and label: A novel neural

network architecture for nested NER. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 5840–5850,

Florence, Italy. Association for Computational Linguistics.

[23] G David Forney. 1973. The viterbi algorithm. Proceedings of the IEEE,

61(3):268–278.

[24] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple

contrastive learning of sentence embeddings. In Proceedings of the 2021

Conference on Empirical Methods in Natural Language Processing, pages

6894–6910, Online and Punta Cana, Dominican Republic. Association for

Computational Linguistics.

[25] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-

han Guo, Mohammad Gheshlaghi Azar, Bilal Piot, koray kavukcuoglu,

Remi Munos, and Michal Valko. 2020. Bootstrap your own latent - a new

approach to self-supervised learning. In Advances in Neural Information

Processing Systems, volume 33, pages 21271–21284. Curran Associates, Inc.

[26] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2021. De-

BERTa: Decoding-enhanced BERT with Disentangled Attention. In Inter-

national Conference on Learning Representations.

[27] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.

Neural computation, 9(8):1735–1780.

[28] Jiun Tian Hoe, Kam Woh Ng, Tianyu Zhang, Chee Seng Chan, Yi-Zhe

Song, and Tao Xiang. 2021. One loss for all: Deep hashing with a single co-

sine similarity based learning objective. In Advances in Neural Information

Processing Systems.

[29] Phu Mon Htut, Jason Phang, Shikha Bordia, and Samuel R. Bowman.

2019. Do attention heads in bert track syntactic dependencies?

76

[30] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF

models for sequence tagging. CoRR, abs/1508.01991.

[31] Ganesh Jawahar, Benôıt Sagot, and Djamé Seddah. 2019. What does BERT

learn about the structure of language? In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 3651–3657,

Florence, Italy. Association for Computational Linguistics.

[32] Meizhi Ju, Makoto Miwa, and Sophia Ananiadou. 2018. A neural layered

model for nested named entity recognition. In Proceedings of the 2018

Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, Volume 1 (Long Pa-

pers), pages 1446–1459, New Orleans, Louisiana. Association for Computa-

tional Linguistics.

[33] Tadao Kasami. 1965. An efficient recognition and syntax-analysis algorithm

for context-free languages.

[34] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,

Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Super-

vised contrastive learning. In Advances in Neural Information Processing

Systems, volume 33, pages 18661–18673. Curran Associates, Inc.

[35] J.-D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. 2003. GENIA corpus—a

semantically annotated corpus for bio-textmining. Bioinformatics, 19:i180–

i182.

[36] Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang goo Lee. 2020. Are

pre-trained language models aware of phrases? simple but strong baselines

for grammar induction. In International Conference on Learning Represen-

tations.

[37] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic

optimization.

[38] Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multilingual constituency

parsing with self-attention and pre-training. In Proceedings of the 57th

77

Annual Meeting of the Association for Computational Linguistics, pages

3499–3505, Florence, Italy. Association for Computational Linguistics.

[39] Nikita Kitaev and Dan Klein. 2018. Constituency parsing with a self-

attentive encoder. In Proceedings of the 56th Annual Meeting of the As-

sociation for Computational Linguistics (Volume 1: Long Papers), pages

2676–2686, Melbourne, Australia. Association for Computational Linguis-

tics.

[40] Nikita Kitaev, Thomas Lu, and Dan Klein. 2022. Learned incremental

representations for parsing. In Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages

3086–3095, Dublin, Ireland. Association for Computational Linguistics.

[41] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. 2001. Factor graphs and

the sum-product algorithm. IEEE Transactions on Information Theory,

47(2):498–519.

[42] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001.

Conditional random fields: Probabilistic models for segmenting and labeling

sequence data. In Proceedings of the Eighteenth International Conference

on Machine Learning, ICML ’01, page 282–289, San Francisco, CA, USA.

Morgan Kaufmann Publishers Inc.

[43] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya

Kawakami, and Chris Dyer. 2016. Neural architectures for named entity

recognition. In Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 260–270, San Diego, California. Association for

Computational Linguistics.

[44] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,

Chan Ho So, and Jaewoo Kang. 2019. Biobert: a pre-trained biomed-

ical language representation model for biomedical text mining. CoRR,

abs/1901.08746.

78

[45] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrah-

man Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020.

BART: Denoising sequence-to-sequence pre-training for natural language

generation, translation, and comprehension. In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, pages

7871–7880, Online. Association for Computational Linguistics.

[46] Xiang Lisa Li and Jason Eisner. 2019. Specializing word embeddings (for

parsing) by information bottleneck. In Proceedings of the 2019 Confer-

ence on Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 2744–2754, Hong Kong, China. Association for Computa-

tional Linguistics.

[47] Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun. 2019. Sequence-to-

nuggets: Nested entity mention detection via anchor-region networks. In

Proceedings of the 57th Annual Meeting of the Association for Computa-

tional Linguistics, pages 5182–5192, Florence, Italy. Association for Com-

putational Linguistics.

[48] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. 2016. Large-

margin softmax loss for convolutional neural networks. In Proceedings of

The 33rd International Conference on Machine Learning, volume 48 of Pro-

ceedings of Machine Learning Research, pages 507–516, New York, New

York, USA. PMLR.

[49] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi

Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.

2019. Roberta: A robustly optimized bert pretraining approach.

[50] Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regular-

ization. In International Conference on Learning Representations.

[51] Wei Lu and Dan Roth. 2015. Joint mention extraction and classification

with mention hypergraphs. In Proceedings of the 2015 Conference on Em-

pirical Methods in Natural Language Processing, pages 857–867, Lisbon,

Portugal. Association for Computational Linguistics.

79

[52] Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Zaiqing Nie. 2015. Joint

entity recognition and disambiguation. In Proceedings of the 2015 Confer-

ence on Empirical Methods in Natural Language Processing, pages 879–888,

Lisbon, Portugal. Association for Computational Linguistics.

[53] Ying Luo and Hai Zhao. 2020. Bipartite flat-graph network for nested

named entity recognition. In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics, pages 6408–6418, Online.

Association for Computational Linguistics.

[54] Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-

directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 1064–1074, Berlin, Germany. Association for Computational Linguis-

tics.

[55] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993.

Building a large annotated corpus of English: The Penn Treebank. Com-

putational Linguistics, 19(2):313–330.

[56] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. 2018.

Umap: Uniform manifold approximation and projection. Journal of Open

Source Software, 3(29):861.

[57] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space.

[58] Aldrian Obaja Muis and Wei Lu. 2017. Labeling gaps between words: Rec-

ognizing overlapping mentions with mention separators. In Proceedings of

the 2017 Conference on Empirical Methods in Natural Language Processing,

pages 2608–2618, Copenhagen, Denmark. Association for Computational

Linguistics.

[59] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation

learning with contrastive predictive coding.

80

[60] Zijing Ou, Qinliang Su, Jianxing Yu, Ruihui Zhao, Yefeng Zheng, and Bang

Liu. 2021. Refining BERT embeddings for document hashing via mutual in-

formation maximization. In Findings of the Association for Computational

Linguistics: EMNLP 2021, pages 2360–2369, Punta Cana, Dominican Re-

public. Association for Computational Linguistics.

[61] Tommaso Pasini, Federico Scozzafava, and Bianca Scarlini. 2020. Clu-

BERT: A cluster-based approach for learning sense distributions in multiple

languages. In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, pages 4008–4018, Online. Association for

Computational Linguistics.

[62] Alexandre Passos, Vineet Kumar, and Andrew McCallum. 2014. Lexicon

infused phrase embeddings for named entity resolution. In Proceedings of

the Eighteenth Conference on Computational Natural Language Learning,

pages 78–86, Ann Arbor, Michigan. Association for Computational Linguis-

tics.

[63] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-

Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Pytorch: An imperative

style, high-performance deep learning library. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances

in Neural Information Processing Systems 32, pages 8026–8037. Curran

Associates, Inc.

[64] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-

Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Pytorch: An impera-

tive style, high-performance deep learning library. In Advances in Neural

Information Processing Systems, volume 32. Curran Associates, Inc.

81

[65] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014.

GloVe: Global vectors for word representation. In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational

Linguistics.

[66] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-

pher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized

word representations. In Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, Volume 1 (Long Papers), pages 2227–2237,

New Orleans, Louisiana. Association for Computational Linguistics.

[67] Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, An-

ders Björkelund, Olga Uryupina, Yuchen Zhang, and Zhi Zhong. 2013. To-

wards robust linguistic analysis using OntoNotes. In Proceedings of the Sev-

enteenth Conference on Computational Natural Language Learning, pages

143–152, Sofia, Bulgaria. Association for Computational Linguistics.

[68] Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong Sun. 2021.

Turn the combination lock: Learnable textual backdoor attacks via word

substitution. In Proceedings of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th International Joint Conference

on Natural Language Processing (Volume 1: Long Papers), pages 4873–

4883, Online. Association for Computational Linguistics.

[69] Zexuan Qiu, Qinliang Su, Jianxing Yu, and Shijing Si. 2022. Efficient docu-

ment retrieval by end-to-end refining and quantizing BERT embedding with

contrastive product quantization. In Proceedings of the 2022 Conference on

Empirical Methods in Natural Language Processing, pages 853–863, Abu

Dhabi, United Arab Emirates. Association for Computational Linguistics.

[70] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language models are unsupervised multitask learners.

[71] Lance Ramshaw and Mitch Marcus. 1995. Text chunking using

transformation-based learning. In Third Workshop on Very Large Corpora.

82

[72] Lev Ratinov and Dan Roth. 2009. Design challenges and misconceptions in

named entity recognition. In Proceedings of the Thirteenth Conference on

Computational Natural Language Learning (CoNLL-2009), pages 147–155,

Boulder, Colorado. Association for Computational Linguistics.

[73] Marek Rei, Gamal Crichton, and Sampo Pyysalo. 2016. Attending to char-

acters in neural sequence labeling models. In Proceedings of COLING 2016,

the 26th International Conference on Computational Linguistics: Techni-

cal Papers, pages 309–318, Osaka, Japan. The COLING 2016 Organizing

Committee.

[74] Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Co-

enen, Adam Pearce, and Been Kim. 2019. Visualizing and measuring the

geometry of bert. In Advances in Neural Information Processing Systems,

volume 32. Curran Associates, Inc.

[75] Nicky Ringland, Xiang Dai, Ben Hachey, Sarvnaz Karimi, Cecile Paris, and

James R. Curran. 2019. NNE: A dataset for nested named entity recog-

nition in English newswire. In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, pages 5176–5181, Florence,

Italy. Association for Computational Linguistics.

[76] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.

1986. Learning representations by back-propagating errors. nature,

323(6088):533–536.

[77] Alexander Rush. 2020. Torch-struct: Deep structured prediction library.

In Proceedings of the 58th Annual Meeting of the Association for Compu-

tational Linguistics: System Demonstrations, pages 335–342, Online. Asso-

ciation for Computational Linguistics.

[78] Takashi Shibuya and Eduard Hovy. 2020. Nested named entity recogni-

tion via second-best sequence learning and decoding. Transactions of the

Association for Computational Linguistics, 8:605–620.

[79] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent neural net-

83

works from overfitting. Journal of Machine Learning Research, 15(56):1929–

1958.

[80] Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A minimal span-based

neural constituency parser. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages

818–827, Vancouver, Canada. Association for Computational Linguistics.

[81] Jana Straková, Milan Straka, and Jan Hajic. 2019. Neural architectures

for nested NER through linearization. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 5326–5331,

Florence, Italy. Association for Computational Linguistics.

[82] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian. 2018. Greedy

hash: Towards fast optimization for accurate hash coding in cnn. In Ad-

vances in Neural Information Processing Systems, volume 31. Curran As-

sociates, Inc.

[83] Sho Takase, Jun Suzuki, and Masaaki Nagata. 2018. Direct output connec-

tion for a high-rank language model. In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language Processing, pages 4599–4609,

Brussels, Belgium. Association for Computational Linguistics.

[84] Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. BERT rediscovers the

classical NLP pipeline. In Proceedings of the 57th Annual Meeting of the As-

sociation for Computational Linguistics, pages 4593–4601, Florence, Italy.

Association for Computational Linguistics.

[85] Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas

McCoy, Najoung Kim, Benjamin Van Durme, Sam Bowman, Dipanjan Das,

and Ellie Pavlick. 2019. What do you learn from context? probing for

sentence structure in contextualized word representations. In International

Conference on Learning Representations.

[86] Naftali Tishby and Noga Zaslavsky. 2015. Deep learning and the infor-

mation bottleneck principle. In 2015 IEEE Information Theory Workshop

(ITW), pages 1–5. IEEE.

84

[87] Naftali Tishby and Noga Zaslavsky. 2015. Deep learning and the informa-

tion bottleneck principle.

[88] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. 2017. Neu-

ral discrete representation learning. In Advances in Neural Information

Processing Systems, volume 30. Curran Associates, Inc.

[89] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is

all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information

Processing Systems 30, pages 5998–6008. Curran Associates, Inc.

[90] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention

is all you need. In Advances in Neural Information Processing Systems,

volume 30. Curran Associates, Inc.

[91] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is

all you need. In Advances in neural information processing systems, pages

5998–6008.

[92] David Vilares, Michalina Strzyz, Anders Søgaard, and Carlos Gómez-

Rodŕıguez. 2020. Parsing as pretraining. Proceedings of the AAAI Con-

ference on Artificial Intelligence, 34(05):9114–9121.

[93] Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda.

2006. Ace 2005 multilingual training corpus. Linguistic Data Consortium,

Philadelphia, 57:45.

[94] Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt Gardner.

2019. Do NLP models know numbers? probing numeracy in embeddings.

In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natu-

ral Language Processing (EMNLP-IJCNLP), pages 5307–5315, Hong Kong,

China. Association for Computational Linguistics.

85

[95] Bailin Wang and Wei Lu. 2018. Neural segmental hypergraphs for overlap-

ping mention recognition. In Proceedings of the 2018 Conference on Em-

pirical Methods in Natural Language Processing, pages 204–214, Brussels,

Belgium. Association for Computational Linguistics.

[96] Bailin Wang, Wei Lu, Yu Wang, and Hongxia Jin. 2018. A neural transition-

based model for nested mention recognition. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, pages

1011–1017, Brussels, Belgium. Association for Computational Linguistics.

[97] Feng Wang and Huaping Liu. 2021. Understanding the behaviour of con-

trastive loss. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2495–2504.

[98] Jue Wang, Lidan Shou, Ke Chen, and Gang Chen. 2020. Pyramid: A lay-

ered model for nested named entity recognition. In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, pages

5918–5928, Online. Association for Computational Linguistics.

[99] Yefeng Wang. 2009. Annotating and recognising named entities in clinical

notes. In Proceedings of the ACL-IJCNLP 2009 Student Research Work-

shop, pages 18–26, Suntec, Singapore. Association for Computational Lin-

guistics.

[100] Yiran Wang, Yuji Matsumoto, Masao Utiyama, and Taro Watanabe. 2023.

24-bit languages. In The 13th International Joint Conference on Natural

Language Processing and the 3rd Conference of the Asia-Pacific Chapter of

the Association for Computational Linguistics.

[101] Yiran Wang, Hiroyuki Shindo, Yuji Matsumoto, and Taro Watanabe. 2021.

Nested named entity recognition via explicitly excluding the influence of the

best path. In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers), pages 3547–3557,

Online. Association for Computational Linguistics.

86

[102] Gregor Wiedemann, Steffen Remus, Avi Chawla, and Chris Biemann. 2019.

Does bert make any sense? interpretable word sense disambiguation with

contextualized embeddings.

[103] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement

Delangue, Anthony Moi, Perric Cistac, Clara Ma, Yacine Jernite, Julien

Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin

Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-Art Nat-

ural Language Processing. pages 38–45. Association for Computational

Linguistics.

[104] Huiyin Xue and Nikolaos Aletras. 2022. HashFormers: Towards vocabulary-

independent pre-trained transformers. In Proceedings of the 2022 Confer-

ence on Empirical Methods in Natural Language Processing, pages 7862–

7874, Abu Dhabi, United Arab Emirates. Association for Computational

Linguistics.

[105] Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun

Liu, and Maosong Sun. 2020. Word-level textual adversarial attacking as

combinatorial optimization. In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics, pages 6066–6080, Online.

Association for Computational Linguistics.

[106] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. 2021.

Barlow twins: Self-supervised learning via redundancy reduction. In Pro-

ceedings of the 38th International Conference on Machine Learning, vol-

ume 139 of Proceedings of Machine Learning Research, pages 12310–12320.

PMLR.

[107] Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020. Fast and accurate neural

crf constituency parsing. In Proceedings of the Twenty-Ninth International

Joint Conference on Artificial Intelligence, IJCAI-20, pages 4046–4053. In-

ternational Joint Conferences on Artificial Intelligence Organization. Main

track.

87

	Introduction
	Motivation
	Contribution
	Organization

	Background
	Structured Prediction
	Part-of-speech Tagging
	Named Entity Recognition
	Nested Named Entity Recognition
	Constituency Parsing

	Interpretability
	Probing
	Clustering and Hashing
	Compressing

	Learning Level-wise Representation
	Introduction
	Baselines
	Proposed Methods
	Encoding Schemes
	Influence of the Best Path
	Chunk Selection
	Neural Network Architecture
	Training and Inference

	Experiments
	Datasets
	Settings
	Main Results
	Ablation Studies
	Case Studies
	Discussions

	Conclusion
	Limitations and Future Work

	Learning Bit-wise Representation
	Introduction
	Proposed Methods
	Contrastive Hashing
	Instance Selection
	Transformer Hash Layer
	Hashing Stage Architecture
	Validation Stage Architecture
	Training and Inference

	Experiments
	Datasets
	Settings
	Main Results
	Ablation Studies
	Case Studies
	Discussions

	Conclusion
	Limitations and Future Work

	Conclusion
	Summary
	Limitations

