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Abstract 

 

γ-Secretase is an intramembranous protease that generates Aβ, a pathogenic 

molecule in Alzheimer’s disease. Although previous studies revealed that γ-secretase 

cleavage occurs successively and more than one hundred γ-secretase substrates were 

identified, the underlying mechanisms of the cleavage by γ-secretase are only poorly 

understood. Understanding the cleavage mechanism and specificity of γ-secretase is 

essential, as it may contribute to developing new drugs and therapies targeting 

Alzheimer’s disease. In this study, we estimated the number of pockets in the active 

site of γ-secretase, the amino acid properties which the active site recognizes, and the 

preferred amino acids for each pocket. Using six pocket models, ten types of peptide 

properties, and 88 machine learning methods, we exhaustively examined 5,280 

regression models trained by the quantitation data of γ-byproduct of Amyloid beta 

precursor protein cleavage. Using these models, we conducted cleavage site 

predictions for 35 identified cleavage sites, and obtained a model with the highest 

prediction accuracy of 85.7%. Notably, cleavage simulations by the best regression 

model reproduced characteristic cleavages of γ-secretase for APP and Notch1 

substrates. Furthermore, in silico cleavage of random peptides revealed amino acid 

preferences in the cleavage site region of γ-secretase, which we further validated 

experimentally. We interpreted the model and estimated that the active site of γ-

secretase consisted of seven contiguous pockets and the active site recognized amino 

acid properties associated with protein secondary structure. Further investigation of 

the model obtained in this study is expected to advance our fundamental 

understanding of the cleavage mechanism of γ-secretase and provide helpful 

information for developing γ-secretase inhibitors. 
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1. Introduction 

1.1 Increase in dementia patients 

As the population ages, the number of dementia patients is projected to increase. 

According to one study, the number of dementia patients estimated at 57.4 million 

worldwide in 2019 is projected to triple to 152.8 million by 2050 [1]. A study conducted 

in Japan predicted an increase in the number of patients with dementia. This study 

projected that the prevalence of dementia in the population aged 65 years and older will 

exceed 20% by 2030 and 25% by 2035 in 42 prefectures. By 2045, the prevalence of 

dementia will exceed 25% in all prefectures except Tokyo [2]. 

The increase in the number of dementia patients will significantly affect not only the 

patients themselves but also their families. Caring for patients is time-consuming and 

expensive, and the financial burden is significant. In addition, changes in the patient's 

self-perception and behavior can significantly stress family relationships. In response to 

this critical situation, there is a need to establish methods for preventing and treating 

dementia. 

While there are many causes of dementia, the most significant cause is Alzheimer's 

disease (AD), estimated to be responsible for 60-80% of patients diagnosed with 

dementia [3]. Therefore, AD is considered a central research target for dementia 

treatment, and research on its prevention and treatment is underway. Establishing 

preventive and therapeutic methods for AD is a significant challenge before the further 

aging of the population. 

 

1.2 Alzheimer's disease 

AD is a progressive neurodegenerative disorder of the brain [3]. The exact cause of AD 

remains unclear. However, various hypotheses regarding its onset have been proposed 

based on numerous experimental and observational results, and research into the 

treatment of Alzheimer's has been conducted based on these hypotheses. Among these, 

the widely accepted mechanism for the onset of AD is the amyloid cascade hypothesis 

[4]. According to this hypothesis, the pathogenesis of AD is explained as follows. First, 

Amyloid Beta (Aβ), produced by the cleavage of amyloid precursor protein (APP) on 

the surface of the brain's nerve cell membranes, accumulates between the brain nerve 

cells, forming senile plaques. This is followed by the accumulation and phosphorylation 

of the tau protein, leading to neurofibrillary changes. As a result, neuronal cell death is 

induced, leading to the onset of AD. 
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According to this amyloid cascade hypothesis, the fundamental cause of the onset of 

Alzheimer's is believed to be the accumulation of Aβ. Therefore, inhibiting the 

accumulation of Aβ may suppress the onset and progression of AD. Drug discovery 

research based on this idea is currently being conducted, and γ-secretase, the enzyme 

that cleaves APP to produce Aβ, is the target of inhibitor development. 

 

1.3 γ-Secretase 

γ-Secretase is an enzyme that localizes to the plasma membrane as a complex of four 

subunits: presenilin, Nicastrin, APH-1 (anterior pharynx-defective 1), and PEN-2 

(presenilin enhancer 2) [5]. Among these, presenilin is responsible for protein cleavage 

activity. γ-Secretase cleaves single-pass membrane proteins, and cleavage occurs in the 

transmembrane region. 

γ-Secretase generates Aβ by cleaving the single-pass transmembrane protein APP within 

the cell membrane. In the process of generating Aβ, γ-secretase performs consecutive 

cleavages mainly based on a tripeptide cleavage (Fig. 1) [6]. This consecutive cleavage 

occurs primarily via two pathways. One begins with the ε49 site cleavage and repeats a 

tripeptide cleavage three times to produce Aβ40 (Aβ40 Line: Aβ49 → Aβ46 → Aβ43 → 

Aβ40), and the other starts with the ε48 site cleavage and repeats a tripeptide cleavage 

twice to produce Aβ42 (Aβ42 Line: Aβ48 → Aβ45 → Aβ42). Of these two pathways, 

the most common is the former Aβ40 line. Cleavage by γ-secretase is not limited to 

tripeptides; cleavage of tetrapeptides and pentapeptides has been confirmed, and it is 

known that there are cleavage pathways that produce other Aβs such as Aβ37 and Aβ38 

by combining these cleavages [7]. 
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Figure 1. Two pathways of APP cleavage. 
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The process of Aβ produced from APP by consecutive cleavage by γ-secretase has been 

clarified. However, the mechanism of γ-secretase cleavage remains unclear. DM Bolduc 

et al. proposed a model to explain the tripeptide cleavage by γ-secretase based on 

experiments using several APP mutants in which amino acids in the APP sequence were 

replaced with aromatic amino acids [8]. According to their model, the binding site of γ-

secretase consists of three consecutive pockets, and one in the middle is smaller than the 

others. They suggest that the size of the amino acids that bind to the pockets determines 

cleavage. However, cleavage can occur in sequences that do not fit their model, so the 

cleavage phenomenon of γ-secretase cannot be explained by the size of the amino acids 

alone. Since enzymatic cleavage is a chemical reaction, it can be thought that not only 

the size of the amino acids in the sequence but also the physicochemical properties of 

each amino acid are determinants of cleavage. However, it is still unclear what 

physicochemical properties contribute to cleavage. 

Furthermore, the specificity of the enzyme, that is, what kind of sequence is more likely 

to be cleaved by γ-secretase, is unknown. Knowing the protein sequence that γ-secretase 

is likely to cleave may provide insights for designing new preventive strategies. For 

example, it may be useful for designing specific inhibitors or modulators of γ-secretase. 

Understanding the cleavage mechanism and specificity of γ-secretase is important, as it 

may potentially contribute to developing new drugs and therapies targeting AD. 

 

1.4 Medications of Alzheimer's disease 

Currently, there are two types of drugs used for AD: cholinesterase inhibitors and 

NMDA receptor antagonists. One of the factors contributing to the cognitive decline in 

AD patients is the deficiency of a neurotransmitter called acetylcholine in the brain. 

Cholinesterase inhibitors suppress the activity of acetylcholinesterase, an enzyme that 

breaks down acetylcholine, thereby reducing the degradation of acetylcholine in the 

brain and alleviating cognitive decline [9]. Another cause of cognitive decline in AD 

patients is neuronal damage induced by excessive stimulation caused by the excitatory 

neurotransmitter glutamate. NMDA receptor antagonists are used as a treatment for 

moderate to severe AD, and they are believed to provide neuroprotection by inhibiting 

the NMDA receptors, which are receptors for the neurotransmitter glutamate in the brain, 

thus suppressing excessive neuronal excitability [10]. These drugs primarily serve to 

slow down the progression of symptoms and do not constitute a cure for AD itself. 

Although not yet in practical use, there have been efforts to develop drugs to inhibit γ-

secretase. Semagacestat and Avagacestat are representative examples of γ-secretase 

inhibitors, which aim to inhibit the production of amyloid-β peptide. However, 
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Semagacestat caused an increased risk of skin cancer, associated with inhibition of 

Notch signaling, and worsened cognitive function, so phase III clinical trials were 

terminated [11]. Later studies showed that Semagacestat does not inhibit APP cleavage, 

but is a pseudo-inhibitor that causes increased gamma-byproducts and Aβ accumulation 

within neuronal cells. Semagacestat-induced cognitive decline may be due to synaptic 

dysfunction and neuronal loss caused by intra-neuronal Aβ accumulation [12]. Because 

Semagacestat was a pseudo-inhibitor, it would be a mistake to consider the failure of 

Semagacestat in clinical trials as the failure of γ-secretase inhibitors. Avagacestat was 

described as a Notch-sparing inhibitor but was stopped in phase II trials because of an 

increased risk of skin cancer and gastrointestinal problems [11]. Some have reported that 

Avagacestat actually lacks Notch-sparing properties, so future inhibitor-based treatment 

strategies are still expected to develop inhibitors with higher selectivity for APP over 

Notch cleavage. 

Development of antibody drugs targeting Aβ has also been underway. On June 7, 2021, 

the U.S. Food and Drug Administration (FDA) granted the Accelerated Approval of 

Aducanumab for the treatment of AD. This made Aducanumab the first AD drug 

approved since 2003. Aducanumab is a monoclonal antibody that selectively targets 

aggregated Aβ, and it has been confirmed that monthly intravenous infusions of 

Aducanumab for one year in prodromal or mild AD patients result in a dose-dependent 

and time-dependent reduction of brain Aβ [13]. The FDA approved this drug based on 

its ability to decrease brain amyloid-β plaques; however, many experts believe that the 

clinical trial data do not definitively prove that Aducanumab significantly delays 

cognitive decline, leading to a contentious debate regarding its effectiveness [14]. Like 

Aducanumab, Lecanemab is a monoclonal antibody targeting Aβ and was granted the 

Accelerated Approval in the U.S. in January 2023, followed by full approval from the 

FDA in July 2023 [15]. Lecanemab reduced markers of amyloid in early AD and 

produced moderate reductions over placebo in measures of cognitive function at 18 

months, but simultaneously, it was associated with amyloid-related imaging 

abnormalities (ARIA) such as brain microhemorrhages and cerebral edema [16]. When 

considering the use of Lekanemab, careful attention must be given to the potential risks 

of severe adverse events associated with ARIA. 

 

1.5 Purpose of this study 

This study was conducted to estimate the protein cleavage mechanism and sequence 

specificity of γ-secretase. Specifically, we aimed to estimate the following: how many 

pockets make up the active site of cleavage for γ-secretase, what physicochemical 

properties of amino acids the active site recognizes, and what kinds of amino acids, 
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when near the cleavage point, make cleavage more or less likely to occur. Using 

experimental data that measured the amount of cleaved APP fragments as training data, 

we utilized machine learning to model the substrate cleavage phenomenon by γ-

secretase. From the models created, we selected those that reflected the characteristics of 

γ-secretase's consecutive cleavage. We interpreted these models to estimate the protein 

cleavage mechanism and sequence specificity of γ-secretase. 
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2. Development of a substrate cleavage site prediction 

model for γ-secretase and estimation of its cleavage 

mechanism 

2.1 Introduction 

In this chapter, substrate cleavage models for γ-secretase were created using training 

data from experimental measurements of APP cleavage by γ-secretase. We created 5280 

regression models to predict the amount of substrate cleavage by γ-secretase by 

combining six pocket models of the active site of γ-secretase, ten physicochemical 

properties of amino acids, and 88 machine learning methods. To select a model that 

reflects the consecutive cleavage feature of γ-secretase among these models, we devised 

a method for predicting substrate cleavage points using regression models, targeted 35 

known cleavage points for cleavage point prediction, and selected the model with the 

highest prediction accuracy. By interpreting the selected model, the number of pockets 

in the active site of γ-secretase, physicochemical properties of amino acids the active site 

recognizes were estimated. 

 

2.2 Materials and Methods 

2.2.1 Training Dataset 

The training dataset [12] used to create regression models is listed in Table 1. This 

dataset contains 35 APP fragments ranging from three to six amino acids in length and 

their amount. In the experiment where these data were measured, no fragments with less 

than two or more than six sequences were detected (Okochi. M, unpublished data). 

Therefore, this dataset is considered to contain almost all the cleavage fragments of APP 

produced by the cleavage of γ-secretase. Although this is a small dataset, it is considered 

full of information on APP cleavage by γ-secretase. 
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Table 1. Levels of γ-byproducts used as the training data 

fragment peptide amount 

MVG 0 

VGG 0 

GGV 0 

GVV 36.08 

GGVV 0 

VVI 12.09 

GVVI 0 

VIA 21.89 

VVIA 25.61 

GVVIA 0 

IAT 206.44 

VIAT 0 

VVIAT 26.26 

ATV 0 

IATV 0 

VIATV 0 

TVI 34.19 

ATVI 0 

IATVI 0 

VIV 150.67 

TVIV 0 

ATVIV 0 

IATVIV 0 

IVI 6.5 

VIVI 5.59 

TVIVI 0 

VIT 55.08 

IVIT 0 

VIVIT 0 

ITL 206.36 

VITL 26.78 

IVITL 0 

VIVITL 0 

TLV 0 

LVM 0 

  (fmol/dish) 
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2.2.2 Pocket model for the cleavage active site 

When enzymatic cleavage of a substrate occurs, the substrate binds to the cleavage 

active site of the enzyme. Simplistically, the substrate is considered to fit into pockets 

aligned with the cleavage active site of the enzyme. In this study, we modeled the 

cleavage active site of γ-secretase as a series of pockets based on the definition by 

Schechter et al. [17]. Two integer parameters, L and R, were used to define this pocket 

model. Both L and R are parameters that specify the number of pockets, where L refers 

to the number of pockets on the N-terminal side from the cleavage site, and R refers to 

the number of pockets on the C-terminal side from the cleavage site. The substrate 

sequences these pockets recognize are denoted as PL- ... -P2 -P1-P1'-P2'- ... -PR', and 

the pockets as SL- ... -S2 -S1-S1'-S2'- ... -SR'. The cleavage site is located between P1 

and P1', and it is at this position that cleavage of the substrate occurs. The pocket model 

specified by the parameters L and R is denoted as L+R pocket. As an example, a 4+3 

pocket is shown in Fig. 2. 

 

Figure 2. Pocket model. 

The number of pockets in the cleavage active site of an enzyme is expected to vary from 

enzyme to enzyme. In this study, we estimated the pocket size of γ-secretase by using 

six different pocket models, where R is fixed to three and integers one, two, three, four, 

five, and six are specified as L, following the model of Bolduc et al. [8]. These pocket 

models were used to retrieve sequence information around the cleavage site recognized 

by the pocket when a given peptide fragment sequence was cut from the substrate. 

 

2.2.3 Compression of amino acid property information by principal 

component analysis 

2.2.3.1 AAindex 

The active site of γ-secretase is thought to recognize some physicochemical properties of 

the amino acids in the substrate sequence to determine cleavage. To estimate the 
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physicochemical properties involved in the cleavage of γ-secretase, we used AAindex, a 

database of numerical indices representing various physicochemical properties of 20 

amino acids [18]. These physicochemical properties were collected from the existing 

literature and contained 566 indices (release 9.2). In this study, we decided to use 553 of 

these 566 indices that did not contain missing values. 

 

2.2.3.2 Compression of AAindex by principal component analysis 

The 553 indices are too large to consider individually, and it is unlikely that cleavage by 

γ-secretase is determined by only one indexed amino acid property. Instead, it is natural 

to assume that multiple amino acid properties are simultaneously involved in cleavage 

determination. Therefore, principal component analysis was performed on the 553 

indexes, and new amino acid property information was created by integrating the 553 

indexes. Principal component analysis was performed after standardizing AAindex. Of 

the principal components obtained as a result of the principal component analysis, 

principal components 1 through 10 (PC1 through PC10) were used as the amino acid 

physical property value information in this study. The principal component scores for 

each PC for the 20 amino acids are shown in Table 2. 
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Table 2. The principal component scores for each PC for the 20 amino acids 

PV denotes the proportion of variance. The cumulative proportion calculated by the sum of PVs is 89.05 

 

 

PC A R N D C Q E G H I L K M F P S T W Y V PV (%) 

PC1 -0.23  7.97  14.84  17.89  -8.01  7.67  11.75  15.99  0.32  -20.15  -17.45  11.40  -15.77  -18.95  16.39  12.33  4.81  -17.15  -8.10  -15.55  34.39 

PC2 -5.52  15.38  0.05  2.86  -7.99  8.85  11.37  -21.05  8.14  -5.72  -3.18  13.07  4.64  0.45  -10.94  -7.86  -5.86  8.57  3.21  -8.49  15.83 

PC3 16.18  -1.08  -4.02  -0.04  -6.96  1.78  10.99  1.37  -4.78  2.71  11.18  5.65  3.10  -3.89  -14.19  1.33  0.18  -12.83  -12.67  5.98  11.7 

PC4 -1.28  -0.41  5.58  1.96  14.58  0.34  -2.73  5.14  4.47  -3.72  -6.42  -1.68  2.24  -2.47  -18.55  3.34  1.39  0.09  -0.38  -1.49  6.966 

PC5 3.27  -8.55  -1.89  5.76  10.25  1.43  8.10  -7.91  0.91  -2.69  -1.37  -5.95  6.77  -1.15  7.25  -2.19  -2.61  0.88  -7.25  -3.07  5.475 

PC6 -1.91  8.07  -3.08  -5.34  8.28  2.43  -3.43  -8.99  -0.70  1.96  -1.85  1.97  -1.92  -4.03  3.69  2.81  6.09  -8.38  -1.91  6.23  4.536 

PC7 3.56  3.14  -2.56  -8.80  1.77  1.11  -4.68  5.66  4.16  -3.91  0.39  4.47  6.85  -0.59  3.66  -1.75  -4.03  0.85  -4.72  -4.58  3.251 

PC8 -0.65  -5.38  5.38  -1.37  -4.88  0.44  -3.22  -4.15  9.09  0.01  0.86  -1.11  3.36  2.35  0.07  3.33  2.65  -5.93  0.18  -1.05  2.548 

PC9 3.46  -2.17  -0.12  -2.00  -1.27  0.45  -2.60  -3.59  -3.03  -3.81  1.59  1.01  -1.60  -1.19  -0.77  6.08  6.92  7.83  -2.61  -2.57  2.223 

AASS10 -2.22  -5.70  4.67  -1.34  4.06  0.35  -1.07  -1.83  -2.92  1.22  4.69  8.69  -2.85  -1.30  0.60  0.10  -4.55  -0.75  1.39  -1.23  2.137 
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2.2.4 Generation of regression models of γ-secretase cleavage 

2.2.4.1 Machine learning algorithms 

We applied the caret package (short for Classification And REgression Training) to 

develop regression models, which contain functions to streamline the model training 

process for complex regression and classification problems [19]. In the present study, we 

compared 88 regression models in Table 3 because we did not have information for 

choosing suitable regression models. These are classified into non-ensemble- and 

ensemble-type models. The former is classified into nine subcategories, and the latter 

into four subcategories. 

 

2.2.4.2 Generation of regression models 

The process of creating the regression model is illustrated in Fig. 3. In the figure, an 

example with a 4+3 pocket is shown. First, the kth APP fragment in the training data is 

mapped to its original location in the APP sequence. Since the fragment is cleaved at the 

C- and N-terminal ends, we align the cleavage point of the pocket model to these 

cleavage points and extract the pocket-bound sequences (Step 1). These are combined in 

the order of C-terminally cleaved sequence and N-terminally cleaved sequence to create 

an amino acid vector (Step 2). Then, an amino acid score vector is created by replacing 

the elements of this amino acid vector with the corresponding scores of certain principal 

components (Step 3). Using machine learning, a regression model is created that uses 

this amino acid score vector as an input to predict the amount of cleavage  of the APP 

fragment (Step 4). We define the function  as the transformation operation 

described in Steps 1 through 3 that creates a 2(L+R) amino acid vector from the 

substrate fragment sequence using the L+R pocket and replaces the elements of this 

amino acid vector with the score of the principal component p to create an amino acid 

score vector. 

 

2.2.4.3 RMSE 

To evaluate the goodness of fit of the regression models, we calculated the RMSE given 

by the equation , where  is the value of the i-th observation (Table 1) 

and  is the predicted value of the corresponding i-th prediction. The RMSEs were 

plotted by ggplot2 3.3.5. 
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Table 3. Machine learning algorithms used in the present study 

category approach name in caret 

Kernel(15) 
gaussprLinear, gaussprPoly, gaussprRadial, kernelpls, krlsPoly, krlsRadial, rvmRadial, svmLinear, svmLinear2, svmLinear3, 

svmPoly, svmRadial, svmRadialCost, svmRadialSigma, widekernelpls 

Linear(15) bayesglm, bridge, glm, glmStepAIC, icr, leapBackward, leapForward, leapSeq, lm, lmStepAIC, pcr, pls, plsRglm, simpls, superpc 

Sparse(10) blasso, blassoAveraged, enet, glmnet, lars, lars2, lasso, penalized, ridge, spls 

Neural Networks(8) avNNet, brnn, dnn, mlpWeightDecayML, monmlp, msaenet, nnet, pcaNNet 

Decision Tree(8) ctree, ctree2, evtree, partDSA, rpart, rpart1SE, rpart2, WM  

kNN(2) knn, kknn 

Spline(4) bam, gam, gamSpline, gcvEarth 

Fuzzy(4) ANFIS, DENFIS, HYFIS, SBC 

Others(3) null, ppr, spikeslab 

Ensemble Linear(3) BstLm, glmboost, xgbLinear 

Ensemble Decision 

Tree(11) 
blackboost, bstTree, cforest, nodeHarvest, parRF, ranger, Rborist, RRFglobal, rf, treebag, xgbTree 

Ensemble Spline(3) bagEarth, bagEarthGCV, bstSm 

Others(2) gamboost, gamLoess 
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Figure 3. The schema for creating regression models based on γ-byproducts. 
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2.2.5 Model validation using substrate cleavage endpoint prediction 

2.2.5.1 Validation dataset 

To predict the substrate cleavage points of γ-secretase using the regression model, we 

collected 26 substrates for which both the initial (ε-like) and terminal (γ-like) cleavage 

sites were known. These are summarized in Table 4, with the initial cleavage sites of 

sequential cleavage indicated by red arrows and the terminal cleavage site indicated by 

blue arrows. 
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Table 4. Summary of reported γ-cleavage sites 

Substrate Sequence and its cleavage site (↓) Ref. 

Alcadein-α VPSTAT↓VVIVVCVSFLVFMIIL↓GVFRI [20] 

Alcadein-β AATLII↓VVCVGFLVLMVVLG↓LVRIH [20] 

Alcadein-γ VPSIAT↓VVIIISVCMLVFVVAM↓GVYRV [20] 

APLP2 SALIGL↓LVIAVAIATVIVSL↓VMLRK [21] 

APP MVGGVV↓IAT↓VIV↓ITL↓VMLKK [22, 23, 24] 

CD44 LASLLA↓LALILAVCI↓AVNSR [25, 26] 

CTFβ-GA GVV↓IAT↓VIVG↓ALVML [27] 

CTFβ-GAζtoγ VIATGA↓VIT↓LVMLK [27] 

CTFβ-GG GVV↓IAT↓VIVGGL↓VMLKK [27] 

CTFβ-GGζtoγ VIATGG↓VIT↓LVMLK [27] 

CTFβ-LL GVV↓IAT↓VIVLLL↓VMLKK [27] 

CTFβ-LLγtoγ' GVVLL↓T↓VIVIT↓LVMLK [27] 

CTFβ-LLζtoγ VIATLL↓VIT↓LVMLK [27] 

CTFβ-ΔI47-L49 MVGGVV↓IAT↓VIV↓VMLKK [27] 

CTFβ-ΔL49 MVGGVV↓IATVIVI↓TVMLK [27] 

CTFβ-ΔL52 MVGGVV↓IAT↓VIVITL↓VMKKK [27] 

CTFβ-ΔM51L52 MVGGVV↓IAT↓VIV↓ITLVK [27] 

CTFβ-ΔT48L49 MVGGVV↓IATVIV↓IVMLK [27] 

CTFβ-ΔV50-L52 MVGGVV↓IATVIV↓ITLKK [27] 

hEpCam VIAVIV↓VVVIAVVAGIV↓VLVIS [28] 

mEpCam IIAVIV↓VVSLAVIAGIV↓VLVIS [28] 

Neuregulin 1 GICIAL↓LVVGIMC↓VVAYC [29] 

Notch1 LMYVAA↓AAFVLLFFVGCG↓VLLSR [30, 31] 

rNotch3 PLLVA↓GAVLLLVILVLGV↓MVARR [32] 

rNotch4 AGVIL↓LALGALL↓VLQLI [32] 

rVEGFR1 TLTCT↓CVAATLFWLLL↓TLFIR [32] 

Red and blue arrows represent the major initial and terminal cleavage sites reported, 

respectively. 



17  

2.2.5.2 Prediction of substrate cleavage termination site using regression 

models  

γ-Secretase is expected to cleave substrates other than APP successively, although their 

γ-byproducts have not been experimentally determined. For model validation, we 

devised a method using a regression model to calculate the probability of cleavage 

occurring at each site in substrate sequences. We used this method to predict the 

termination point of γ-secretase successive cleavage. In the present study, we assumed 

that only 3-5 peptide cleavage occurred because the length distribution of APP peptides 

cleaved by γ-secretase was between three and five, and γ-byproducts longer than six 

amino acids were not observed. Firstly, the cleavage initiation site in a targeted substrate 

sequence is designated as position 0. The site which is q amino acids away from position 

0 in the N-terminal direction of the sequence as position q. Secondly, we define P(r) as 

the probability of cleavage occurring at position r and calculated P(3), P(4) and P(5) as 

follows: , , and . We also 

define  as the probability that t amino acids are cleaved from position s and its 

formula as , where  represents the amino acid vector obtained 

from the sequence between positions u and s.  is a function that converts the 

amino acids in a sequence to the j-th principal component scores of the corresponding 

amino acids. P(1), P(2), , and  are defined as 0 because of the assumption that 

only 3-5 peptide cleavage occur. Using , P(r) is expressed as 

. For example, P(9) is obtained from relative occurrences in 

all paths from the initiation site to position 9, i.e., 

. 

If the cleavage probability at the termination site  is the maximum 

in comparison to those for positions between termination site – 2 and termination site + 

2, the termination position is correctly predicted. We assessed the performance of 

machine learning algorithms using 26 substrate peptides whose initiation and 

termination sites are reported.  

  

2.2.6 Factor loading analysis of AAindex 

To interpret the physical property information of the amino acids represented by the PCs 

made as compressed values of AAindex, the correlation coefficients between the 

principal component scores and the 553 indices were calculated 
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2.3 Results 

2.3.1 Creation of regression models 

In this study, we constructed numerous regression models to infer the γ-secretase 

cleavage mechanism. These models take a partial sequence from substrates as input and 

output a predicted amount of cleavage by γ-secretase. The process of a regression model 

receiving a partial sequence and predicting its cleavage amount includes extracting 

substrate sequence information recognized by the active site of γ-secretase using a 

pocket model and then replacing the amino acids in the extracted sequence information 

with their physicochemical properties. This operation faithfully incorporates the 

movement occurring when γ-secretase cuts out a partial sequence of the substrate and 

also embodies the idea that the active site of γ-secretase recognizes the physicochemical 

properties of the amino acids in the substrate sequence to determine cleavage. Therefore, 

it is considered that the regression models created here serve as models for the 

phenomena that occur when γ-secretase cleaves the substrate. If the number of pockets, 

physicochemical properties of the amino acids, and regression algorithm used for 

training are well chosen, we think it is possible to obtain a regression model that can 

explain the cleavage phenomenon by γ-secretase. The objective of this study, which is to 

estimate the cleavage mechanism of γ-secretase, is thought to be achieved by examining 

such regression models. 

In creating a regression model, it is necessary to specify the number of pockets of the 

active site of γ-secretase, the physicochemical properties of the amino acids recognized 

by the pocket, and the functional relationship that determines the correlation between the 

sequence information recognized by the pockets during cleavage and the amount of 

cleavage. However, all of this information is unknown beforehand. Therefore, by 

exhaustively testing combinations of six pocket models, ten types of physical property 

information created by integrating AAindex, and 88 regression algorithms and training 

them with APP cleavage data, a total of 5,280 regression models were created. 

We initially examined the goodness of fit, the difference between values of the training 

and predicted data, of generated models. As shown in Fig. 4A–F, the Root Mean 

Squared Errors (RMSEs) of regression models were plotted for the different numbers of 

non-prime sites and PCs. A very well fit with RMSE≤5 was observed in 244 models, 

suggesting that these regression models precisely reproduced APP successive cleavage. 

These models spread widely for different numbers of pockets and PCs. Notably, the 

medians of RMSE of regression models generated with PC9 were the largest, 

irrespective of the number of pockets. 
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Figure 4. RMSE of regression models. RMSEs of the models were separately shown 

with a various number of pockets, PCs, and machine learning algorithms. Each dot 

represents the RMSE of one model for different parameters. L + R pocket model means 

the numbers of N-sided and C-sided pockets centered at cleavage site, respectively. 
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2.3.2 Validation of regression models 

The construction of regression models revealed that well-fitted models could be 

developed for any number of pockets and PC conditions. However, the good fit to the 

training data alone does not necessarily indicate that the model successfully encapsulates 

the characteristics of γ-secretase. To select a regression model which reflects the 

characteristics of γ-secretase, we planned to examine regression models with other γ-

secretase substrates. Successive cleavages of γ-secretase substrates other than APP are 

highly expected, although their γ-byproducts have not been experimentally determined 

yet. Instead, initial cleavage sites corresponding to the ε-cleavage site of APP and 

terminal cleavage sites corresponding to the γ-cleavage site for several substrates have 

been reported (major cleavage sites are summarized in Table 4). We noticed that this 

information could be used for evaluating the generated regression models. Because the 

regression models estimate the amount of 3–5 amino acid peptide cleaved at two sites, 

designating one cleavage site allows regression models to calculate relative cleavage 

probabilities at the subsequent potential cleavage sites at 3–5 amino acids away from the 

designated site. Moreover, cleavage probabilities at positions more than five amino acids 

away from the designated site could be calculated by summing up all the possible 

theoretical permutations of 3–5 acid-spaced cleavages since one cycle of successive 

cleavage occurs at 3–5 amino acids intervals. Accordingly, we calculated cleavage 

probabilities by assigning the reported initial cleavage site into regression models. We 

evaluated terminal cleavage prediction by comparing the predicted probabilities of 

cleavages near the reported terminal cleavage sites. 

The prediction accuracies of models were calculated by the percentage of correctly 

predicted substrates, as shown in Fig. 5. Some models predicted as accurately as more 

than 80%. The best model hits 85.7% of the terminal cleavage sites, i.e., 30 over 35 

cleavage sites, and is constructed with the SBC algorithm [33], the number of non-prime 

sites, and PC9. Detailed results of individual substrates are summarized in Table 5. 
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Figure 5. Percentage of correct predictions of terminal cleavage of regression models. 

Each dot represents the percentage of correct prediction of one model for different 

numbers of pockets and PC parameters. A red arrow indicates the most accurate model. 

L + R pocket model means the numbers of N-sided and C-sided pockets centered at 

cleavage site, respectively. 
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Table 5. Summary of reported and predicted γ-cleavage sites 

Substrate Sequence and its cleavage site (↓) S or F 

Alcadein-α VPSTAT↓VVIVVCVSFLVFMIIL↓GVFRI S 

Alcadein-β AATLII↓VVCVGFLVLMVVLG↓LVRIH F 

Alcadein-γ VPSIAT↓VVIIISVCMLVFVVAM↓GVYRV S 

APLP2 SALIGL↓LVIAVAIATVIVSL↓VMLRK S 

APP MVGGVV↓IAT↓VIV↓ITL↓VMLKK S S S 

CD44 LASLLA↓LALILAVCI↓AVNSR S 

CTFβ-GA GVV↓IAT↓VIVG↓ALVML S F 

CTFβ-GAζtoγ VIATGA↓VIT↓LVMLK S 

CTFβ-GG GVV↓IAT↓VIVGGL↓VMLKK S S 

CTFβ-GGζtoγ VIATGG↓VIT↓LVMLK S 

CTFβ-LL GVV↓IAT↓VIVLLL↓VMLKK S S 

CTFβ-LLγtoγ' GVVLL↓T↓VIVIT↓LVMLK F S 

CTFβ-LLζtoγ VIATLL↓VIT↓LVMLK S 

CTFβ-ΔI47-L49 MVGGVV↓IAT↓VIV↓VMLKK S S 

CTFβ-ΔL49 MVGGVV↓IATVIVI↓TVMLK S 

CTFβ-ΔL52 MVGGVV↓IAT↓VIVITL↓VMKKK S S 

CTFβ-ΔM51L52 MVGGVV↓IAT↓VIV↓ITLVK S S 

CTFβ-ΔT48L49 MVGGVV↓IATVIV↓IVMLK S 

CTFβ-ΔV50-L52 MVGGVV↓IATVIV↓ITLKK S 

hEpCam VIAVIV↓VVVIAVVAGIV↓VLVIS S 

mEpCam IIAVIV↓VVSLAVIAGIV↓VLVIS S 

Neuregulin 1 GICIAL↓LVVGIMC↓VVAYC S 

Notch1 LMYVAA↓AAFVLLFFVGCG↓VLLSR S 

rNotch3 PLLVA↓GAVLLLVILVLGV↓MVARR S 

rNotch4 AGVIL↓LALGALL↓VLQLI F 

rVEGFR1 TLTCT↓CVAATLFWLLL↓TLFIR F 

S or F represent successful or false prediction by the best regression model, respectively. 
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Selection by the prediction of the terminal cleavage sites provided some regression 

models with better accuracy. We wondered whether these models not ostensibly but 

fundamentally reproduced successive cleavage of γ-secretase. Thus, we plotted cleavage 

probabilities at each peptide bond in substrates to evaluate the whole process of 

successive cleavages by the models (Fig. 6, 7, and 8). We first focused on APP cleavage, 

which occurs in two primary product lines with sequential cleavages at the 49/46/43/40 

and 48/45/42/38 sites. As shown in Fig 6A, the probability plots starting from ε49 

showed clear successive cleavages in the order: ITL, VIV, and IAT for the ε49 line. 

Notably, by designating the ε48 site as an initial site, the cleavage was predicted to 

proceed sharply in the order: VIT, TVI, and VVIA for the ε48 line as reported [6, 34]. 

Moreover, the model predicted that Notch1 cleavage occurred between V/G, V/L, and 

A/A (Fig. 6C). The cleavage at V/G is a novel unreported one, similar to the ζ-cleavage 

of APP, and indicating the generation of an Nβ30 as an intermediate for the subsequent 

cleavages at the V/L and A/A sites generating Nβ25 and Nβ21, respectively. Thus, the 

best regression model reproduced the characteristic terminal cleavage of Notch1 [35].  
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Figure 6. Visualization of in silico successive cleavage. The probability plots of APP cleavage starting at ε49 and ε48 by the best 

regression model are shown in (A) and (B), respectively. The cleavage probability plot for Notch1 is shown in (C). Red and orange 

arrows represent initial and terminal cleavage sites, respectively. Black arrows indicate corresponding γ-byproducts. 
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Figure 7. Probability plot of γ-secretase cleavage of APP variant substrates. The best regression model simulated the successive γ-

cleavages of APP variants. Red and orange arrows represent initial and terminal cleavage sites, respectively. 
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Figure 8. Probability plot of γ-secretase cleavage of substrates. The best regression model simulated the successive γ-cleavages of 

indicated substrates. Red and orange arrows represent initial and terminal cleavage sites, respectively. 
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As mentioned above, the best model well predicted successive cleavages of previously 

reported substrates. Therefore, we planned to test the best prediction model with a 

previously unanalyzed substrate. Rat APLP1 was chosen because the terminal cleavage 

sites of rat APLP1 were not analyzed before, although the initial cleavage site of rat 

APLP1 and the terminal cleavage site of human APLP1 were reported [24, 34, 36, 37] 

(Fig. 9A). Two amino acids are different between rat and human; rat APLP1 L571 and 

L589 are human APLP1 V582 and M600, respectively. We first plotted the cleavage 

probabilities of rat APLP1 cleavage by the best regression model by inputting the initial 

cleavage site at L/S. As shown in Fig. 9B, terminal cleavages of rat APLP1 were 

predicted to occur at L/I and G/G. Then, we experimentally determined rat APLP1 

terminal cleavage sites from rat primary neurons by MALDI-TOF MS. As predicted, the 

major cleavage site of rat APLP1 was at L/I (Fig. 9C). 



28  

 

Figure 9. Prediction and experimental validation of γ-secretase cleavage of rat APLP1. The diagram shows rat and human APLP1 

sequences around transmembrane domains (A). Amino acids different between rat and human APLP1 are labeled in red and blue, 

respectively. Black arrowheads are reported cleavage sites, while red ones are analyzed in this report. The cleavage probability plot 

of rat APLP1 cleavage was generated by inputting the reported initial cleavage site into the best regression model (B). The rat 

APLP1 terminal cleavage sites were determined by the immunoprecipitation/mass spectrometry, showing that the cleavage between 

amino acid 28 and 29 is the major cleavage site (C). Observed m/z and theoretical molecular mass of rat APLP1β species are shown 

in Table 6. The predicted cleavages for generating APLβ25 and APLβ28 were experimentally observed. The cleavage between 

amino acid 27 and 28 is predicted to be generated from minor initial cleavage between amino acid L33 and L34.  
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Table 6. Observed m/z and theoretical molecular mass of rat APLP1β species 

 
 
2.3.3 Factor loading analysis of PC9 

The physical property information of amino acids recognized by the best model is PC9. 

PC9 is an integrated index combining 553 types of AAindex. In order to interpret the 

physical property information represented by PC9, it is necessary to investigate which 

AAindex is strongly related to PC9. Therefore, the factor loadings between PC9 and the 

553 types of AAindex were calculated, and those with factor loadings of 0.4 or higher 

for positive cases and -0.4 or lower for negative cases were collected. The top 5 

AAindex information with the highest factor loadings in both positive and negative 

cases were summarized in Table 7. 

APLP1 species sequence theoretical mass observed m/z 

rat APLP1β25 DELAPAGTGVSREALSGLLIMGAGG 2341.2 2343.1 

rat APLP1β27 DELAPAGTGVSREALSGLLIMGAGGGS 2485.3 2486.9 

rat APLP1β28 DELAPAGTGVSREALSGLLIMGAGGGSL 2598.3 2598.7 
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Table 7. Top 10 positive and negative amino acid indices by the factor analysis of PC9 

 
(A) Positive top 10 amino acid indices 

Accession number Pearson 
correlation Description of amino acid indices reference 

RICJ880117 0.590  Relative preference value at C"  [38] 
PALJ810107 0.440  Normalized frequency of alpha-helix in all-alpha class [39] 
MAXF760106 0.425  Normalized frequency of alpha region [40] 
GARJ730101 0.408  Partition coefficient  [41] 
VASM830102 0.401  Relative population of conformational state C [42] 
SNEP660104 0.392  Principal component IV  [43] 
GEIM800102 0.348  Alpha-helix indices for alpha-proteins [44] 
QIAN880125 0.334  Weights for beta-sheet at the window position of 5  [45] 
PRAM820103 0.328  Correlation coefficient in regression analysis  [46] 
QIAN880114 0.327  Weights for beta-sheet at the window position of -6  [45] 

 
(B) Negative Top 10 amino acid indices 

Accession number Pearson 
correlation Description of amino acid indices reference 

OOBM850102 -0.511  Optimized propensity to form reverse turn  [47] 
QIAN880138 -0.502  Weights for coil at the window position of 5  [45] 
AURR980101 -0.494  Normalized positional residue frequency at helix termini N4' [48] 
OOBM850104 -0.467  Optimized average non-bonded energy per atom  [47] 
AURR980120 -0.440  Normalized positional residue frequency at helix termini C4' [48] 
ZIMJ680101 -0.381  Hydrophobicity  [49] 

CHOP780207 -0.366  Normalized frequency of C-terminal non helical region [50] 
AURR980117 -0.340  Normalized positional residue frequency at helix termini C' [48] 
VASM830101 -0.339  Relative population of conformational state A [42] 
RICJ880115 -0.333  Relative preference value at C-cap  [38] 
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2.4 Discussion 

2.4.1 The most accurate regression model 

We eventually selected the model with the highest prediction accuracy of 85.7% for the 

terminal cleavage site prediction of γ-secretase substrates. We examined the regression 

model with the prediction of terminal cleavage sites of two different substrates classes: 

APP mutants, intra-substrate changes (Fig. 7), and other γ-secretase substrates as inter-

substrate alterations (Fig. 8). The model predicted both substrates’ classes with more 

than 80% accuracy, indicating that it could distinguish both intra-substrate and inter-

substrate differences of amino acids.  

The best model reproduced well-known characteristic cleavages of the major γ-secretase 

substrate. First, the ε48-product-line cleavage, which starts at ε48 instead of at ε49, was 

reproduced (Fig. 6A and B). Second, the best regression model predicted the cleavage of 

Notch1, a major substrate of γ-secretase, to generate GCG, LLFFV, and AAFV peptides 

as byproducts. Strikingly, AAFV fits with the peptide between Nβ25 and 21 cleavages, 

reported two major Notch cleavages [35], further supporting the high accuracy of this 

model (Fig. 6C). Third, the best regression model could predict γ-secretase successive 

cleavage of a previously unreported substrate, rat APLP1 (Fig. 9). Thus, the best model 

can be utilized to predict how new substrates are successively cleaved. Moreover, the 

strategy with various machine learning algorithms combined with scanning cleavage-

relevant parameters may be versatile for predictions of the cleavages by other 

intramembranous proteases with multiple cleavage sites [51, 52]. 

The best model was created by SBC regression. SBC is the abbreviation of Subtractive 

Clustering and Fuzzy c-Means Rules [33]. The SBC method employs fuzzy clustering to 

identify cluster centers from training data and make predictions by computing the 

distances between input and cluster centers. If an input is closer to a certain cluster, the 

output value is closer to the value of that cluster. By mapping training data into a feature 

space comprised of the 4+3 pocket model and PC9, SBC could find the well-cleaved and 

non-cleaved cluster centers. Therefore, SBC could differentiate between well-cleaved 

and non-cleaved input sequences, resulting in the highest percentage of accurate 

terminal cleavage predictions. 

The model can be utilized to predict consecutive cleavage sites by γ-secretase. 

Predicting the consecutive cleavage sites of substrates in advance can reduce the trial-

and-error process required to identify specific cleavage points in actual experiments. 

This not only enhances experimental efficiency but also contributes to the reduction of 

experimental volume and costs. For instance, to measure the cleavage fragments of APP 

containing 3 to 5 amino acid residues, which were used as the training data, it was 

necessary to prepare individual small-molecule peptides and create calibration curves for 
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each peptide measurement [12]. However, by performing cleavage site prediction in 

advance, it becomes possible to prepare peptides corresponding only to the predicted 

cleavage fragments, thereby achieving a reduction in experimental volume and costs. 

Currently, there is a lack of comprehensive research on γ-byproducts for substrates other 

than APP. Leveraging this model is expected to predict consecutive cleavage points for 

substrates other than APP and further research on the generated γ-byproducts. The 

identification of consecutive cleavage points should serve as an essential foundation for 

considering factors governing consecutive cleavage, and elucidating what factors 

regulate a particular cleavage could potentially contribute to the development of AD 

treatments. For example, identifying factors that control specific cleavage points that 

produce Aβ42 and Aβ38 could help in the development of inhibitors and modulators that 

suppress the production of pathogenic Aβ products, leading to more effective therapeutic 

strategies. 

 

2.4.2 PC9 

PC9 may contain information relevant to γ-secretase proteolysis because of the 

following reasons. First, the best prediction model was generated using PC9. Second, the 

median of PC9 was the best compared to those of PCs in the goodness of fit to predict 

APP successive cleavages (Fig. 4). Third, the median of PC9 for predicting terminal 

cleavages was the best among PCs (Fig. 5). Thus, we calculated the correlation between 

PC9 and the original standardized amino acid index [18] and showed the top ten positive 

and negative amino acid indices. 

Based on the factor loading analysis, the indices related to protein secondary structure 

correlated with PC9. Among the indices related to secondary structure, three indices, 

PALJ810107 [39], MAXF760106 [40], and VASM830102 [42], were positively 

correlated with PC9, while two indices, AURR980101 [48] and AURR980120 [48], 

were negatively correlated. PALJ810107 represents the frequency of amino acids 

appearing in regions composed solely of α-helix (all-alpha). This index can be 

interpreted as an indicator of the ease of α-helix formation for each amino acid. 

MAXF760106 represents the frequency of amino acids appearing in regions that are 

known to form α-helix structures when plotted using backbone dihedral angles. This 

index can be interpreted as the ease of α-helix formation for each amino acid. 

VASM830102 represents the frequency of amino acids appearing in regions known to 

form β-sheet structures when plotted using backbone dihedral angles. This index can be 

the ease of β-sheet formation for each amino acid. 

Regarding negative factor loadings, AURR980120 represents the frequency of amino 
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acids appearing at the position C4', which is located four positions in the C direction 

from the C cap, the end of the C-terminal side of the α-helix structure. This index could 

be interpreted as an indicator of the difficulty of α-helix formation for each amino acid, 

as it exhibits a moderate inverse correlation with the frequency of amino acids appearing 

in positions within the helix, such as C3.  

In summary, the interpretation of these indices suggests that the amino acid 

physicochemical properties represented by PC9 are related to the ease or difficulty of 

forming secondary structures such as α-helix and β-sheet. This may imply that PC9 

contains important information on the transmembrane cleavage of γ-secretase because it 

cleaves its substrates in transmembrane regions, and the substrates are assumed to take 

α-helix conformations. 
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3. Development of a substrate cleavage site prediction 

model for γ-secretase and estimation of its cleavage 

mechanism 

3.1 Introduction 

We have estimated that the active site of γ-secretase possesses a 4+3 pocket structure, 

and the active site recognizes the physicochemical properties of amino acids associated 

with the secondary structure. However, this estimation does not provide information 

about the characteristics of each pocket. It is considered important to uncover the 

properties of each pocket as it would contribute to a deeper understanding of the 

cleavage mechanism of γ-secretase and potentially lead to the development of new drugs 

targeting γ-secretase. In this chapter, we investigated the amino acids recognized by 

each pocket of the model. We aimed to estimate the sequence specificity and make 

further estimations regarding the cleavage mechanism of γ-secretase. 

 

3.2 Materials and Methods 

3.2.1 Visualization of amino acid preference in the cleavage site region 

The method of analyzing frequencies of amino acids which appear at each pocket is 

illustrated in Figure 10. The figure shows an example with three-sequence cleavage. 

First, we randomly generated a million sequences of ten amino acids (Step 1). Since 

cleavage occurs at two points: between a4 and a5, and between a7 and a8, we aligned 

the cleavage point of the pocket model to these two points and created amino acid 

vectors (Step 2). We converted these amino acid vectors using PC9 and input them into 

the model to predict the cleavage amounts of the sequences a5a6a7, then collected the 

sequences with cleavage amounts higher than the threshold of 20 fmol (Step 3). The 

collected sequences consist of two concatenated sequences from the two cleavage points. 

We decomposed them into two sequences and aligned them to the positions of pockets 

P4- ... -P1-P1'- ... -P3' (Step 4). The frequencies of amino acids in the positions were 

calculated. The z-normalized frequencies were visualized as heatmaps (Step 5). In the 

case of four-sequence cleavage, sets of 11 amino acids were generated, while for five-

sequence cleavage, sets of 12 amino acids were generated. The amino acid occurrence 

frequency analysis at each pocket position was carried out using the same approach as in 

the case of three-sequence cleavage. 
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Figure 10. The method of analyzing frequencies of amino acids appearing at each pocket. 
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3.2.2 Biochemical experiments 

Unless otherwise indicated, reagents were purchased from Sigma-Aldrich (St. Louise, 

MO). All experiments were performed at least 3 times and representative blots are 

shown in the figures. 

 

3.2.2.1 cDNA constructs 

The pcDNA3 neo::APPsw LV49/50IW mutant construct was generated by 

QuickChange-based mutagenesis with APPsw cDNA as a template using PrimeSTAR 

Max DNA Polymerase (Takara Bio, Kyoto, Japan, R045A). 

 

3.2.2.2 Cell culture 

HEK293 cells were cultured in DMEM (Nacalai tesque, Kyoto, Japan, 08458-16) 

containing 10% fetal bovine serum and 1% Penicillin/Streptomycin (Nacalai tesque, 

Kyoto, Japan, 09367-34). Transfection into HEK293 cells was performed using 

Lipofectamine 2000 (Invitrogen, Cleveland, CA, 11668019) according to the 

manufacturer’s instructions. 

Rat primary neuron cells (1x106, Lonza, Basel Switzerland, R-CX-500) were seeded on 

a poly-L-lysine coated dish (φ = 10 cm) and cultured in Neurobasal medium (Thermo 

Scientific, Waltham, MA, 21103049) with 2% B27 supplement (Thermo 

Scientific,17504044) and 2 mM GlutaMax-1 (Thermo Scientific, 35050061) for 14 days. 

Overnight culture supernatants of rat primary neuron cells were harvested, centrifuged at 

2,500 x g for 5 minutes, and stored at -80 °C until use. 

 

3.2.2.3 Generation of APP knockout (KO) cells using CRISPR/Cas9 

genome editing 

APPKO HEK293 cells were generated by CRISPR/Cas9 genome editing. The five 20-

nucleotide guide sequences targeting human APP were designed using the CRISPR 

design tool at http://crispr.dbcls.jp/. Five guide RNA sequences for APP were cloned 

into pSpCas9(BB)-2A-Puro (pX459) V2.0, a gift from Feng Zhang (Addgene plasmid # 

62988; http://n2t.net/addgene:62988 ; RRID:Addgene_62988) [53], using the following 

primers;  

APP718-740f, caccgTCGGAACTTGTCAATTCCGC; 

APP718-740r, aaacGCGGAATTGACAAGTTCCGAc; 

APP917-939f, caccgAGAAGAAGCCGATGATGACG; 
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APP917-939r, aaacCGTCATCATCGGCTTCTTCTc; 

APP1095-1117f, caccgCGGGAGATCATTGCTCGGCA; 

APP1095-1117r, aaacTGCCGAGCAATGATCTCCCGc; 

APP1162-1184f, caccgACGGCGGATGTGGCGGCAAC; 

APP1162-1184r, aaacGTTGCCGCCACATCCGCCGTc; 

APP2115-2137f, caccgGCAGCAGGGCGGGCATCAAC; 

APP2115-2137r, aaacGTTGATGCCCGCCCTGCTGCc. 

The five guide RNAs in the pX459 vector (1 μg) were co-transfected into HEK293 cells 

using Lipofectamine 2000 as above. Twenty-four hours post-transfection, the cells were 

treated with 1 μg/ml puromycin (Nacalai tesque, Kyoto, Japan, 29455-12) for another 

twenty-four hours. Cells were seeded on a 96-well plate by a limited dilution method to 

separate one cell per well. Single clones were expanded and screened for APP 

expression by immunoblotting analysis. Verified APPKO HEK293 cells were 

maintained in DMEM containing 10% fetal bovine serum and 1% 

Penicillin/Streptomycin. 

 

3.2.2.4 Immunoblot analysis 

APPKO HEK293 cells were transiently transfected with expression vectors carrying 

APPsw cDNA with or without the LV49/50IW mutation. Twenty-four hours after 

transfection, the medium was refreshed and further cultured for twenty-four hours. 

Forty-eight hours after transfection, cells were harvested with ice-cold PBS and frozen at 

-80 °C until use. Aliquots of stored cells were lysed in STEN-lysis buffer (50 mM Tris-

HCl pH 7.6, 150 mM NaCl, 2 mM EDTA, 1% Nonidet P-40), and protein levels were 

normalized by protein assay (Nacalai tesque, Kyoto, Japan, 06385-00). Lysates were 

loaded on 10–20% Tris-Tricine gel (Thermo Fisher Scientific, MA), transferred to 

nitrocellulose membrane, and immunostained by APP C-terminal antibody Y188 (abcam, 

Cambridge, UK, ab32136) or anti-β-Actin (Santa Cruz Biotechnology, Dallas, TX, sc-

47778). The immune reactive bands were detected by enhanced chemiluminescence 

(ECL; Cytiva, RPN2109, Boston MA), and signals were quantified by Amersham 

Imager 600 (Cytiva). The relative CTF was calculated by the band intensities of CTFs, 

the sum of α and β, normalized by the intensity of total APP. The  

relative de novo AICD is calculated by the band intensity of AICD for 2 hours 

normalized by the CTFs band intensity in 0 hours. 
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3.2.2.5 Cell-free γ-secretase assay for the analysis of de novo AICD 

generation 

Preparation of membrane fractions for cell-free γ-secretase assays was performed as 

described [54]. Briefly, HEK293 cell pellets harvested in PBS were resuspended in the 

hypotonic buffer (15 mM Na Citrate pH 6.4, 10 mM DTT, 1 mM EDTA, 1x Complete 

Mini Protease Inhibitor Cocktail (Roche, Basel, Switzerland, 04693124001)) and 

incubated on ice for 30 minutes. Samples were frozen in liquid nitrogen, subsequently 

thawed in the water bath at room temperature, and kept on ice. The cell suspensions 

were centrifuged at 2,500 x g for 20 minutes, and the resultant supernatant was 

supplemented with 5% glycerol and further ultracentrifuged at 100,000 x g for 1 hour. 

The resulting membrane pellets were stored at -80 °C until use. The cell-free assay was 

performed as described [36, 55]. Briefly, cellular membranes from 6 dishes (φ10 cm) 

were incubated in 100 µl of reaction buffer (150 mM Na Citrate pH 6.4, 5 mM 1,10-

Phenanthroline, 5x Complete Mini Protease Inhibitor Cocktail) at 37 °C for 2 hours. 

 

3.2.2.6 MALDI-TOF mass spectrometry (MS) analysis 

Immunoprecipitation combined with mass spectrometry was performed as described [30, 

50]. For the detection of APL1β species, 6 ml of the thawed medium was supplemented 

with 300 µl of 1 M Tris-HCl pH 7.4, 60 µl of 0.5 M EDTA, Protease Inhibitor Cocktail 

(Sigma-Aldrich, St Louis, MO p8340), 4 µl of OA858, an antibody against full-length 

APL1β25 [36], and 10 µl of Protein A Sepharose CL-4B (GE, Boston MA, 17-0780-01) 

and rotated overnight. For the detection of de novo generated AICD species, samples 

after the cell-free assay were sonicated 3 times on ice for 10 seconds and 

ultracentrifuged at 100,000 x g at 4 °C. The resultant supernatants were incubated with 

20 µl Protein A Sepharose 4 Fast Flow (Cytiva, 17061801) and 2.5 µl of Y188 antibody 

and rotated overnight. Beads were washed three times with IP/MS wash buffer (10 mM 

Tris-HCl pH 8.0, 140 mM NaCl, 1 mM EDTA, 0.1% n-octylglucoside) and once with 

pure water. Immunoprecipitates were eluted by TWA (2.5% Trifluoroacetic acid 

(Nacalai tesque, 34901-21)), 50% Acetonitrile (Nacalai tesque, 00404-75) in Water) 

saturated with α-cyano-4-hydroxycinnamic acid (Nacalai tesque, 06700-21) and loaded 

on a stainless plate (MSP96 target ground steel BC, Bruker Daltonics, Bremen, 

Germany, 8280799) and analyzed by MALDI-TOF MS (Microflex, Bruker Daltonics). 

AICD peaks were measured with the reflect mode. Python 3.8.11 and matplotlib 3.4.2 

were used for plotting mass spectrums. 
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3.3 Results 

The most accurate regression model was generated by the SBC machine learning 

method. The characteristic point of SBC algorithm is finding the clusters, one of which 

can be the favorable sequence in the cleavage site region in the case of proteases. Thus, 

we hypothesized that the most accurate regression model would intrinsically contain 

some sequence features around the cleavage site. To extract such sequence features from 

the most accurate model, we conducted in silico cleavage of random sequence peptides 

(also see Materials and Methods). Three different lengths (10–12 amino acids) of 

random peptides, which include 4 non-prime and 3 prime sites of two cleavages 

generating 3–5 amino acid long γ-byproducts, were generated separately. We limited the 

number of random peptides to a million because it is technically not feasible to analyze 

all peptides (2010–2012) in a reasonable time. The best regression model processed 

random sequence peptides to obtain their amount of cleavage. Frequencies of the amino 

acids at individual locations Ri in random peptides that are calculated to be cleaved 

more than 20 fmol in silico were visualized by the heatmaps (Fig. 11A). Surprisingly, 

the order of the frequencies of amino acids in most locations was along with that of PC9. 

Notably, R6 and R7 in three-amino acid spaced cleavage, R7 and R8 in four-amino acid 

spaced cleavage, and R8 and R9 in five-amino acid spaced cleavage commonly showed 

more abundance of tryptophan (W), threonine (T), serine (S), and alanine (A), indicating 

a common amino acid preference near the scissile bond regardless of the number of 

amino acids spaced between the two cleavages. Peptide regions R4–R7 for the three-

amino acid spaced cleavage, R5–R7 for the four-amino acid spaced cleavage, and R6 

and R7 for the five-amino acid spaced cleavage are overlapping regions of the cleavage 

site regions of two cleavages (Fig. 11A). Thus, to better visualize the sequence features 

of the cleavage site regions, we merged two cleavage site regions. As shown in Fig. 11B, 

in all 3–5 amino acids spaced cleavages, P4, P1, and P3’ showed more abundance of 

tryptophan (W), threonine (T), serine (S), and alanine (A), whereas P1’ showed less 

emergence of these amino acids, indicating some preferences of γ-secretase cleavages in 

the cleavage site region. 

To examine the above findings in the computational analysis, we conducted biochemical 

experiments whether the unpreferable amino acid sequence is dodged by γ-cleavage. 

The P1 and P1’ amino acids at ε-49 (Aβ numbering), the major APP initial cleavage site, 

are L and V, respectively. The latter amino acid, V in P1’ is a relatively favorable amino 

acid, whereas L in P1 is not an unfavorable amino acid in the computational results in 

Fig. 11B. Thus, to test our computational result, we prepared APP LV49/50IW, the 

worst preferable cleavage site mutants at P1 and P1’ in the computational analysis (Fig. 

12A). As expected, the γ-secretase cleavage efficiency was reduced by 75% in 

LV49/50IW (Fig. 12B–E), indicating that cleavage at ε-49 in LV49/50IW was indeed 
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not preferable. To investigate this finding further, we analyzed cleavage sites of AICD 

by MALDI-TOF MS. Notably, the major AICD cleavage site was not at ε-49 (Fig. 12D) 

revealing cleavage at ε-49 in LV49/50IW was indeed unpreferable. However, the 

cleavage was shifted to another site as shown by the appearance of a major peak in 

LV49/50IW at ε-47. This shifted ε-cleavage was however not efficient enough to 

compensate the strong loss in total cleavage specificity, likely because IT at P1/P1´for ε-

47 was also not preferred. Taken together, these data validate the predicted preferences 

in the P1 and P1’ sites of γ-secretase cleavage in APP. 
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Figure 11. Sequence feature of γ-secretase cleavage extracted from the best model. Heatmap visualization of frequencies of amino 

acids in random peptides whose cleavage products in silico were more than 20 fmol by the best model following z-score 

transformation. PC9 and L = 4 are the components of the best regression model. Heat maps for cases of 3–5 amino acid spaced 

cleavages were separately shown from the left to the right panel. The frequencies of amino acids in the random peptides were shown 

in (A). The frequencies of two consecutive cleavage sites in (A) were merged in (B). Note that the common preferences in P4, P1, 

P1’, and P3’ were reproduced in additional ten independent experiments. 
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Figure 12. Unpreferable mutations in P1 and P1’ of APP cleavage shifted γ-secretase cleavage site. Sequences around 

transmembrane domains of APP wild type and LV49/50IW were shown in (A). The mutated amino acids were underlined and 

shown in blue. Bigger arrowheads indicate the major cleavage sites. Red arrowheads are cleavage sites that emerged in the mutant. 

Effects of the LV49/50IW mutation on APP metabolism were analyzed by the immunoblot of cell lysates (B) and their quantitation 

(C). de novo Generated AICD species from γ-secretase cleavage assay were analyzed by immunoblot (D), their quantitation (E), 

and mass spectrometry (F). Quantification data are shown as mean ± SEM (n = 5). ‘NS’ indicates not significant, whereas asterisks 

indicate significant difference, ***, p < 0.001 (two-tailed paired t-test). Observed m/z and theoretical molecular mass of AICDs are 

shown in Table 8 and 9. 

 

Table 8. Observed m/z and theoretical molecular mass of AICDs 
AICD species sequence theoretical mass observed m/z 

AICDε48 L645VMLKKKQYTSIHHGVVEVDAAVTPEERHLSKMQQNGYENPTYKFFEQMQN695 6023.9 6022.9 

AICDε49 V646MLKKKQYTSIHHGVVEVDAAVTPEERHLSKMQQNGYENPTYKFFEQMQN695 5910.7 5908.9 

AICDε51 L648KKKQYTSIHHGVVEVDAAVTPEERHLSKMQQNGYENPTYKFFEQMQN695 5680.4 5679.0 

 
Table 9. Observed m/z and theoretical molecular mass of AICDs derived from APP LV49/50IW 

AICD species sequence theoretical mass observed m/z 

AICDε46 IW I643TIWMLKKKQYTSIHHGVVEVDAAVTPEERHLSKMQQNGYENPTYKFFEQMQN695 6325.2 6324.0 

AICDε47 IW T644IWMLKKKQYTSIHHGVVEVDAAVTPEERHLSKMQQNGYENPTYKFFEQMQN695 6212.0 6210.1 

AICDε49 IW W646MLKKKQYTSIHHGVVEVDAAVTPEERHLSKMQQNGYENPTYKFFEQMQN695 5997.8 5995.5 

AICDε50 M647LKKKQYTSIHHGVVEVDAAVTPEERHLSKMQQNGYENPTYKFFEQMQN695 5811.6 5809.3 

AICDε51 L648KKKQYTSIHHGVVEVDAAVTPEERHLSKMQQNGYENPTYKFFEQMQN695 5680.4 5678.1 
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3.4 Discussion 

in silico Cleavage analysis of random peptides revealed amino acid preferences of γ-

secretase cleavage. Tryptophan (W), threonine (T), serine (S), and alanine (A) in P4, P1, 

and P3’ positions and isoleucine (I), glycine (G), histidine (H), tyrosine (Y), glutamate 

(E), and valine (V) in P1’ were commonly observed in 3–5 amino acids spaced 

cleavages (Fig. 11B). Interestingly, this relative valine preference in P1’ is consistent 

with an earlier hypothesis of γ-secretase substrate research [57, 58]. Moreover, the 

cleavage preference shown in Fig. 11B may offer an explanation of the cleavage pattern 

of the familial AD London mutant. The reduction of ε49-cleavage of the London mutant 

(V46I) [59] may be attributed to the isoleucine substitution, which is the most 

unpreferable amino acid in P4 of the ε49-cleavage.  

Thus, we envisaged biochemically examining computational findings by analyzing the 

worst preferable cleavage sites mutant LV49/50IW. To our knowledge, the ε-cleavage in 

APP has long been thought to be rather permissive to mutagenesis [23, 57, 60]. However, 

LV49/50IW showed a drastic shift of major cleavage from ε49 to ε47 (Fig. 12D). Both 

cleavages were at non-preferred P1/P1´sites, which is consistent with the observed 

strong drop in total cleavage efficiency of the LV49/50IW mutant. These results indicate 

preferences of the amino acids around the ε-cleavage site of γ-secretase cleavage. 

Previously Bolduc et al. proposed that the large-small-large S1’-S2’-S3’ pockets in γ-

secretase govern the specificity of cleavage site usage in APP [20]. One may think our 

finding that tryptophan residue does not preferentially occur at P1’ may contradict their 

proposal; S1’ pocket is large enough to accept bulky amino acids. Since V50W or 

M51W mutants allowed normal γ-secretase cleavage as assessed by unchanged Aβ 

formation [8], we speculate that the P1/P1’ combination of I49W50 is problematic with 

accommodation of these side chains into the corresponding subsite pockets. Conversely, 

isoleucine at P1 alone also may not be the cause of this strong reduction of the cleavage 

because isoleucine at P1 was shown to occurs in two substrates EphB2 and CD44 [26, 

61].  

The estimated amino acid preferences of γ-secretase cleavage are expected to be used to 

gain knowledge for the development of new γ-secretase inhibitors. Several inhibitors 

such as E2012 and Nirogacestat have been reported to be Notch sparing [62]. By 

comparing these inhibitors with the estimated amino acid preferences of γ-secretase 

cleavage, it might be possible to infer specific properties associated with inhibitors that 

demonstrate Notch sparing. If the essential features for Notch sparing can be deduced, 

they could be utilized in the design of inhibitors with such properties. In addition, if the 

features necessary for Notch sparing are known, it may be possible to narrow down the 

search space, which may facilitate the screening of inhibitors using a computer. 
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Based on our finding of the sequence preferences around the cleavage site of γ-secretase, 

we propose a possible mechanistic model of γ-secretase cleavage (Fig. 13). After 

substrates encounter γ-secretase, they undergo their extracellular domain size-selection 

by Nicastrin [63] and/or with the recognition by this exosite [64]. Then, substrates are 

translocated to the active site to accommodate amino acids around the membrane 

cytosolic border in the catalytic pocket, thereby undergoing one more selection with 

side-chain compatibility. Among the peptide bonds around the membrane cytosolic 

border of substrates, better preferable sites are selected for catalysis to occur.
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Figure 13. Model of substrate cleavage site selection in the catalytic site of γ-secretase. After the cleavage site region of APP enters 

the catalytic pocket of γ-secretase, a relatively preferred amino acid sequence is chosen depending on its compatibility. In the wild-

type APP, L49/V50 is frequently chosen, as this amino acids pair is compatible with the catalytic site. On the other hand, I49/W50 

in the APP LV49/50IW is not compatible with the active site pocket of γ-secretase, leading to a selection of I47/T48 for an 

alternative cleavage site. Red and blue letters indicate preferable and unpreferable amino acids in the cleavage site regions, 

respectively. 
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4. Conclusion 

Elucidating the substrate cleavage mechanism of γ-secretase is important as it may lead 

to the development of preventive drugs for AD. Therefore, in this study, we estimated 

the number of pockets in the active site of γ-secretase, the physicochemical properties of 

the amino acids recognized by these pockets, and the amino acid preference for each 

pocket. By combining six pocket models, ten principal components (PC1 to PC10) made 

from the AAindex, and 88 regression methods, we created 5,280 regression models 

using the amount of cleaved APP fragments as training data. To select a model that 

reflects the continuous cleavage features of γ-secretase, we collected 35 cleavage sites 

from substrates for which the cleavage initiation and termination sites by γ-secretase 

were known and performed cleavage site prediction using the regression models. As a 

result, the 4+3 pocket-PC9-SBC model showed the highest prediction accuracy of 

85.7%. Factor loading analysis between PC9 and AAindex was conducted to investigate 

the AAindex that strongly influenced PC9. The results revealed that indices related to 

protein secondary structures affect PC9. These findings estimated that the cleavage 

active site of γ-secretase consists of four continuous pockets on the N-terminal side and 

three on the C-terminal side. These pockets recognize physicochemical information 

related to the secondary structure of amino acids in the substrate sequence to determine 

the cleavage. Furthermore, in silico cleavage analysis of random peptides using the 

cleavage model predicted amino acid preferences for the P1 and P1', which were 

confirmed through biochemical experiments. Further investigation of the model is 

expected to promote a fundamental understanding of the cleavage mechanism of γ-

secretase and provide valuable insights for developing γ-secretase inhibitors and other 

related research. 
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