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Understanding How Developers Present
Code Snippets in README Files∗

Supavas Sitthithanasakul

Abstract

As the most popular Open Source version control platform that hosts more
than 330 million repositories. GitHub serves as a social coding platform that hosts
services for software projects. Having newcomers continually join the projects and
participate in the development process is critical for the success of the projects.
One of the ways to encourage participation is through documentation.

Good software documentation is an invaluable asset to any software repository,
as it helps stakeholders to use and understand software. The software repositories
often release README files as a meta-file document to highlight vital information
about their software. A README file plays an essential role as the initial point
of contact for developers in Open Source Software (OSS) projects.

To understand content in README files, code snippets are straightforward
communication to understand the functionality of the software, and may lower
natural language barriers for international users. To understand the code snip-
pets, the expertise of developers is key to comprehending idioms (i.e., code ele-
ments) found in the code snippets. Code snippets may contain both basic and
proficient elements, which might pose a challenge for novice clients. While basic
code snippets are generally easy to comprehend, proficient elements may be more
difficult to understand for those lacking expertise. Measuring the readability of
code snippets is subjective since there are various practices and styles of coding,
especially in different domains of software.

This thesis presumes that the software domain is the crucial determinant in
the differentiation of required competency levels for comprehending code snippets

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
and Technology, August 30, 2023.
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by clients. Firstly, this thesis reveals the prevalence of the competency levels of
code snippets in README files by using pyceft, a tool that detects and calcu-
lates the required competency level to comprehend each Python element. The
results affirm prior studies by indicating that developers predominantly present
basic and independent code snippets in the README files. Secondly, a quanti-
tative analysis is conducted to investigate how developers present code snippets
in README files from various software domains.

In summary, the results of this thesis highlight how developers present dif-
ferent competency levels of code snippets in relation to the domains of software.
The key implications of this thesis comprise (i) the methodology to analyze the
correlation between the competency level of code snippets and the software do-
main, and (ii) guidelines for developers to present code snippets that align with
the appropriate competency level for their software domain.

Keywords:

Software documentation, README file, Code Competency level, Code snippet,
PyPI library, Software domain
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1 | Introduction

As the most popular Open Source version control platform that hosts more than
330 million repositories1. GitHub serves as a social coding platform that hosts
services for software projects, such as pull requests, and issue tracking [62, 83].
One of the advantages of a social coding platform is to gather contributions to
software projects [20]. Having newcomers continually join the projects and par-
ticipate in the development process is critical for the success of the projects [79].
One of the ways to encourage participation is through documentation [1].

Good software documentation is an invaluable asset to any software repository,
as it helps stakeholders to use, understand, maintain, and evolve a system [3].
To advertise, attract, and possibly onboard interested developers to the projects,
the software repositories often release README files as a meta-file document
to highlight vital information about their software. GitHub suggests README
files follow a specific format in order to help developers quickly locate important
information [43].

A README file plays an essential role as the face of a software project and
the initial point of contact for potential users and contributors in Open Source
Software (OSS) projects. According to GitHub, a README file is a starting point
to inform other developers why the project is useful, what they can do with the
project, and how they can use it [43]. With a markdown syntax, developers can
put visual content such as images, videos, or code snippets rather than only texts
in the README files [42]. While using various visual contents, it is important
for developers to utilize them and keep their README files clean to increase
project accessibility and attractiveness [1, 62, 83].

1https://github.com/about
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To understand content in README files, Liu et. al. [62] state that code
snippets are straightforward communication to understand the functionality of
the software, and may lower natural language barriers for international users. A
code snippet is one of the visual contents that demonstrate how software and
APIs should be used [41, 71, 86]. Providing simple code snippets is preferable to
clients (i.e., developers or users that use the software) who might struggle with
how to use the software [15, 16].

To understand the code snippets, Robles et al. [89] stated that the expertise
of developers is key to comprehending idioms (i.e., code elements) found in the
code snippets. Code snippets may contain both basic and proficient elements,
which might pose a challenge for novice clients. While basic code snippets are
generally easy to comprehend, proficient elements may be more difficult to under-
stand for those lacking expertise. Prior study implies that code snippets should
be readable with easy understandability, and reasonable complexity for code com-
prehension [7]. Other studies show that proficient code is written to improve the
readability and execution performance of software [54, 107]. Measuring the read-
ability of code snippets is subjective since there are various practices and styles
of coding, especially in different domains of software [77, 103].

Based on the argument about how proficiency of code snippets in the README
files should be. This became my motivation to reveal the usage of different com-
petency levels of code snippets in README files and the domain of software.
I hypothesize that README files from each software domain comprise
different ratios of competency levels of code snippets, which are corre-
lated with the level of proficiency required for clients to comprehend
the code elements. In this thesis, I conduct qualitative analysis with the goals
of investigating (i) the prevalence of different competency levels of code snippets
in README files, and (ii) whether the software domain affects how developers
present different usage of code snippets in README files.

1 Contributions

The main contributions of this thesis can be listed as follows.

• A qualitative study on the identifying competency level of code snippets in

2



README files.

• The empirical study to analyze the correlation between the usage of code
snippets in README files and the topics of PyPI libraries.

• The replication package and dataset of this thesis which available at
https://doi.org/10.5281/zenodo.7273175.

2 Organization of Thesis

Understanding How Developers Present
Code Snippets in README Files
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competency level of Python

code snippets

Chapter 5: Usage of Python
code snippets in different topics

Figure 1.1. An overview of the scope of the thesis.

In this section, I describe an outline of this thesis. Figure 1.1 illustrates the
structure of the thesis. The details of the rest of this thesis are listed as follows:

• Chapter 2 presents the background of this thesis which comprises (i) the
importance of README files, (ii) the competency level of code snippets,
and (iii) the case study of this thesis.

• Chapter 3 discusses the key studies that are related to this thesis.

• Chapter 4 presents a quantitative study to identify the competency level
of code snippets in README files.

• Chapter 5 presents an analysis of the correlation between the competency
level of code snippets in README files and the topics of PyPI libraries.

• Chapter 6 concludes the study in this thesis, and direction for future
works.

3



2 | Background

The purpose of this chapter is to describe the background and case study of
this thesis. Section 1 introduces GitHub as a social coding platform. Section 2
introduces the importance of software documentation. Section 3 introduces the
README file and the contents inside. Section 4 describes the importance of
code snippets in the README file. Finally, Section 5 describes the PyPI library
which is a case study of this thesis and the tool for calculating competency levels
required to comprehend Python code snippets.

1 Social Coding Platform

As a social coding platform, GitHub is the most popular Open Source version con-
trol platform that serves as a repository for hosting services for software projects,
such as pull requests, issue tracking, and work processes [62, 83]. At the time of
this study, GitHub hosted more than 330 million repositories and served over 100
million developers1.

One of the advantages of a social coding platform is to gather contributions
to software projects from members of the community [20]. Having newcomers
continually join the projects and participate in the development process is critical
for the success of the projects [79]. To increase successful of the projects, they
must find ways to encourage new developers to contribute to the development
activities of the project. One of the ways to encourage participation is through
documentation [1].

1https://github.com/about
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2 Software Documentation

Good software documentation is an invaluable asset to any software repository, as
it helps stakeholders to use, understand, maintain, and evolve a system [3]. There
are various artifacts of software documentation such as code snippets [66, 67, 68,
105], classes and methods [34, 72, 90], code comments [95], test cases [56, 57, 78],
database schemas [59], user reviews [25], user stories [49], commit messages [19,
45, 60], release Notes [73, 74], and bug reports [51, 63, 85] However, a large body
of research pointed out that software documentation suffers from insufficient and
inadequate content [2, 87], obsolete and ambiguous information [2, 102], and
incorrect and unexplained examples [2].

To advertise, attract, and possibly onboard interested developers to Open
Source Software (OSS), the software repositories often release README files as
meta-file documents to highlight vital information about their software. It is
often the first item that a visitor will see when visiting the repository. According
to GitHub [43], it is a starting point to inform other visitors why the repository
is useful, what they can do, and how they can use it.

3 README File

When accessing the repository in GitHub, the README file is one of the first
things that the user encounters. It contains a free-form description of the repos-
itory and can be considered a front page for the repository [48]. The README
files play an essential role in shaping a developer’s first impression of a software
repository and in documenting the software project that the repository hosts [83].
Informative README files have various beneficial purposes.

Figure 2.1 shows an example of README file from the software repository
‘Elasticsearch Python Client’ 2. Most of the README files are created in a
Markdown (MD) format. Developers (i.e., authors of the README files) might
present visual content such as images, videos, or code snippets rather than only
texts [42]. While using various visual contents, it is important for developers to
utilize them and keep their README files clean to increase project accessibility

2https://github.com/elastic/elasticsearch-py
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and attractiveness [1, 62, 83].
One of the primary purposes of the README file is to serve as a tutorial for

getting started. The README file usually contains various information about a
software repository such as overview, installation, usage, features, and license [71,
83]. After reading through the README file, clients are expected to be able to
install and use the library as quickly as possible [41]. However, we sometimes
found that some software repositories present empty content in their README
files or do not even create it.

Related studies found that software repositories with quality README files
tend to be more popular and sustainable [11, 35, 37]. One of the interview
results conducted by Qiu et al. [84] noted that “a good README allows [one]
to understand what this project is about, how to install it, and how to use it. It
also gives examples of code snippets for its API and their effects”. The study by
Liu et al. [62] also found that software repositories that contain the usage sections
in README files tend to be more popular (i.e., have a higher median number of
stars). However, previous studies reported that developers do not always follow
best practices or recommendations to create README files [13, 26]

4 Code Snippets in README File

In the usage sections of README files, developers usually provide code snip-
pets to visually explain and demonstrate the usage of their software reposito-
ries [22]. For instance, in the Quick Start section in Figure 2.1, a code snippet
is one of the visual contents that demonstrate how software and APIs should
be used [41, 71, 86]. Before using the software, it is necessary to comprehend
the code snippets that are presented in the README files. Thus, the under-
standability of code snippets is a crucial aspect that might significantly influence
program comprehension efforts [92]. There are various ways to write code snip-
pets, developers could use elements that do not require a deep comprehension,
especially for educational purposes [65]. As shown in the prior studies [15, 16, 94],
clients prefer code snippets that are easy to understand because it is suitable for
novices to get started.

However, some README files might contain advanced code snippets. In par-

6



Figure 2.1. An example of README file from the software repository ‘Elastic-
search Python Client’
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ticular, when developers are more concerned about the performance and security
of their software [23]. In the case of Python code writing style, the Python de-
veloper community prefers to write code in the ‘Pythonic’ way, which is more
elegant and readable code [4]. However, elements written in Pythonic code seem
to require a deep knowledge of the language [89]. Especially on some libraries
that are huge and comprise advanced code snippets which sometimes provide
more functionalities than clients needed [52].

5 Case Study: Python Package Index (PyPI) Li-
braries

To validate my thesis statement, it is necessary to analyze (i) how developers
present code snippets with different competency levels in README files, and (ii)
whether the domains of software correlate with the usage of code snippets. How-
ever, to the best of my knowledge, there is no prior study on these points. Since
there are various categorizations for differentiating each software, e.g., program-
ming languages, architectures, purposes of software usage [46]. So, to properly
and accurately validate the correlation between the competency level of code
snippets in README files from different software domains, I decided to use
README files of Python libraries from the Python Package Index (PyPI) as a
case study in this thesis.

5.1 pycefr: A tool for calculating competency level of Python
code snippets

Nowadays, Python is one of the most used programming languages [17]. It is
known to be versatile and suitable for a wide range of people, from novices to
experienced developers [89]. From an example of the Python code snippet in Fig-
ure 2.1, it comprises various Python elements connected to each other. The
Python elements can be various types of statements or constructs [89], e.g., data
types, containers, variable assignments, branching and looping control, functions,
exceptions and tracebacks, and classes [29].

The Python code snippets can be written in different ways depending on the

8



Table 2.1. Competency level of Python elements based on pycefr [89]
Competency Level Example of Python elements

A Print, If statement, List,
Basic level Open function (files), Nested list

B List with a dictionary, Nested dictionary,
Independent level with, List comprehension, dict attribute

C slots , Generator function,
Proficient level Meta-class, Decorator class

programming experience of developers. In the README files, clients might en-
counter code snippets that are composed solely of basic elements or that combine
both basic and advanced elements. To assist clients in estimating the proficiency
level required to comprehend Python code snippets, Robles et al. [89] created
pycefr, a tool that analyzes a given Python code snippet, then, reports the de-
tected Python elements and calculates the competency level of each element. It
was created based on the “Common European Framework of Reference for Lan-
guages: Learning, Teaching, Assessment”, or CEFR [76], which is a guide to
describe the performance of foreign natural language learners. As shown in Ta-
ble 2.1, pycefr calculate Python elements into three groups of competency level
(i.e., ‘A’: Basic, ‘B’: Independent, and ‘C’: Proficient).

5.2 Domain categorization of PyPI libraries by using the
classifiers

The domains of PyPI libraries can be categorized based on behavior and charac-
teristics, which are implemented for different purposes [53]. In the PyPI search
page3, the topic is one of the classifiers used for categorizing domains of libraries
based on their characteristic. Figure 2.2, shows the topics (i.e., as highlighted by
the dark gray boxes) and subtopics (i.e., as highlighted by the light gray boxes).
The topic helps clients to know whether the library is created for their project
or not. Currently, there are 24 topics existing. According to the PyPI classifiers

3https://pypi.org/search
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page4, these topics are usually defined by the library’s developers in the ‘setup.py’
file which is located in the root directory of the libraries. Then the defined topics
will be listed in the classifiers section. The example in Figure 2.3 shows how the
topics are listed on the library page of library ‘sshconf’5 as highlighted by the
gray box.

As different topics of PyPI libraries intend to serve different kinds of clients, I
suspect that it may affect how developers introduce the usage of their libraries in
the README file. Specifically, I hypothesize that the topic of PyPI libraries is
one of the factors that affect README files from different topics to have different
usage of code snippets. Based on all the above reasons, I decided that PyPI is a
suitable case study to validate my thesis statement.

4https://pypi.org/classifiers
5https://pypi.org/project/sshconf
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Topic

Subtopic

Figure 2.2. A hierarchical structure of topics of PyPI libraries
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Figure 2.3. Example of PyPI library ‘sshconf’ displaying how the topics are listed

12



3 | Related Studies

Complementary related studies are introduced throughout the thesis. This chap-
ter describes key related works.

1 Studies on the Usage of Software Documenta-
tion

Treude et al. [97] gathered works from the data and information quality commu-
nity and then propose a framework that decomposes documentation quality into
ten dimensions of structure, content, and style. Lethbridge et al. [55] explored
how developers use and maintain documentation, using several data-gathering
approaches. The study confirmed that developers typically do not update doc-
umentation as timely or completely as software process personnel and managers
advocate. Robillard et al. [88] advocated for a new vision of on-demand devel-
oper documentation, to promote automated developer documentation generation.
They discussed the challenges of on-demand developer documentation in the ar-
eas of information inference, document request, and document generation. Uddin
and Robillard [99] identified ambiguity, incompleteness, and incorrectness as the
three most severe problems that lead API documentation to fail, based on sur-
veys with 323 IBM software professionals. Several recent papers have analyzed
open source software documentation. Hata et al. [38] investigated the character-
istics of links in source code comments, the purpose of those links, and how they
evolve and decay, using GitHub as a data source. Their results show that links
are prevalent in source code repositories and that licenses, software homepages,
and specifications are common types of link targets. Specifically, links are rarely
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updated, but many link targets evolve. Wattanakriengkrai et al. [101] used a
mixed-method approach to analyze the role of academic paper references con-
tained in these repositories. They found that academic papers from top-tier SE
venues are not likely to reference a repository, but when they do, they usually
link to a GitHub software repository.

2 Studies on the Content in README Files

Hauff et al. [39] claimed that the README files can be used to learn more about
a developer’s skills and interests. It is a wealth of information that the developers
should be familiar with if they own a repository. Portugal et al. [82] summarized
requirements-related information by using Music Application as a domain exem-
plar and focusing on the README file perspective of GitHub repositories. Decan
et al. [24] found that 40.9% of all R packages on GitHub have a README file that
contains instructions to install the package from GitHub. They analyzed these
README files by using a regular expression. Sharma et al. [93] explored the
possibility of developing a cataloging system by automatically extracting func-
tionality descriptive text segments from README files of GitHub repositories.
Zhang et al. [106] built a recommendation system called RepoPal to detect simi-
lar repositories based on their motivation, i.e., repositories whose README files
contain similar contents are likely to be similar to one another. Hassan and Wang
[36] proposed the named entity recognition(NER) technique to automatically ex-
tract software build commands from software readme files and Wiki pages, and
combine the extracted commands for software building. Kelley and Garijo [47] in-
troduced a framework for automatically extracting scientific software metadata
from README files and then structuring the extracted metadata into a Knowl-
edge Graph of scientific software. Mao et al. [64] proposed SoMEF, a software
metadata extraction framework that is designed to help highlight the most im-
portant parts of scientific software documentation. This framework processes
the README files in GitHub repositories and then automatically extracts which
parts of their text refer to the description, installation, invocation, or citation of
a software component. Greene and Fischer [32] developed CVExplorer, a tool to
extract, visualize, and explore relevant technical skills data from README files
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in GitHub, such as languages and used libraries.

3 Studies on the Code Snippets

The code snippet is one of the crucial content in the README files. Robil-
lard [87] found that 78% of developers learned Application Programming Inter-
faces (APIs) by reading documentation (i.e., README files) and 55% of them
learned code snippets in the examples section. Developers are concerned about
the quality of code snippets, which is one of the signals when choosing open
source software projects for making contributions [84]. Mora et al. [23] found
that Non-functional properties such as performance and security are important
factors for developers looking to incorporate libraries in their projects, which
refers to the efficiency of its underlying code snippets. Code snippets are also
studied for other purposes. Kawaguchi et al. [46] proposed MUDABlue, a web
tool that automatically categorizes software domains by relying on only code snip-
pets. Zhang et al. [106] detected similar repositories by using code snippets as
one of the inputs for heuristics. Alexandru et al. [4] explored how Python devel-
opers understand the term Pythonic by means of quality code, which could hold
for other programming languages and ecosystems. Escobar-Avila et al. [27] pro-
posed a novel approach to automatically categorize software by using semantic
information recovered from bytecode and an unsupervised algorithm to assign
categories to software systems. Linares-Vásquez et al. [58] proposed an approach
to use Application Programming Interface (API) calls from third-party libraries
for automatic categorization of software applications that use these API calls.
This approach enables different categorization algorithms to be applied to reposi-
tories that contain both code snippets and bytecode of applications. Bajracharya
et al. [8] presented structural-semantic indexing (SSI), a technique to associate
words to source code entities based on similarities of API usage. Tian et al.
[96] proposed LACT, a technique to automatically categorize software systems in
open-source repositories. It is used to index and analyze source code documents
as mixtures of probabilistic topics. Gilda [30] studied the automatic identification
of the programming language by utilizing an artificial neural network based on
supervised learning and intelligent feature extraction from the code snippets. Mi
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et al. [70] proposed DeepCRM, a deep learning-based model for code readabil-
ity classification by using convolutional neural networks (ConvNets). Cao et al.
[14] proposed an approach to classifying code elements in a document into contex-
tual code elements and salient code elements. They filtered the noise traceability
links between a software document and its contextual code elements to get a
higher-quality link set. Baltes and Diehl [9] conducted a large-scale empirical
study to analyze the usage and attribution of non-trivial Java code snippets from
Stack Overflow answers in open source GitHub projects. Zhong et al. [108] de-
veloped an API usage mining framework and its supporting tool called MAPO
(Mining API usage Pattern from Open source repositories) for mining API usage
patterns from code snippets automatically. Baltes et al. [10] conducted a research
design and summarized results of an empirical study to analyze attributed and
unattributed usages of Stack Overflow code snippets in GitHub projects. Gupta
et al. [33] presented JCoffee, a tool that leverages compiler feedback to convert
partial Java programs into their compilable counterparts by simulating the pres-
ence of missing surrounding code snippets. Zhou and Walker [109] proposed a
lightweight and version-sensitive framework to detect deprecated API usages in
example code snippets on the web so developers can be informed of such usages
before they invest time and energy into studying them.

4 Studies on the Software Domain

In large software repositories such as GitHub, the categorization of software as-
sumes a crucial role, facilitating clients to browse and search for software that
aligns with their specific requirements [46]. Studies conducted by Borges et al.
[12] indicated that software repositories can be mainly categorized into two dis-
tinct types, i.e., domain (e.g., application software, system software, web libraries,
and software tools) and programming language. Various studies have considered
the software domain as a differentiating factor or as a means to identify software
with similar characteristics. Linares-Vásquez et al. [61] proposed CLANdroid, a
tool for automatically detecting closely related applications in Android by relying
on advanced Information Retrieval techniques and five semantic anchors: iden-
tifiers, Android APIs, intents, permissions, and sensors. The results show that
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CLANdroid is useful for detecting similar Android apps across different domains.
Altarawy et al. [5] presented Lascad, a language-agnostic software categorization
and similar application detection tool by applying Latent Dirichlet Allocation
(LDA) and hierarchical clustering to reveal which software belongs to the same do-
main in terms of similar functionalities. McMillan et al. [69] created an approach
for automatically detecting closely related applications (CLAN) which helps users
detect similar applications for a given Java application. Grechanik et al. [31] of-
fered an approach called Exemplar (EXEcutable exaMPLes ARchive) for finding
highly relevant software projects from a large archive of executable applications.
Hayes-Roth et al. [40] presented DSSA, a domain-specific software architecture
that is developed for a large application domain of adaptive intelligent systems
(AISs). It provides a reference architecture designed to meet the functional re-
quirements shared by applications in the AISs domain. Nafi et al. [75] proposed
the CroLSim model to detect similar software applications across different pro-
gramming languages. They define a semantic relationship among cross-language
libraries and API methods using functional descriptions and a word-vector learn-
ing model. Wang et al. [100] proposed an SVM-based categorization framework
to classify the massive number of software hierarchically based on online profiles
across multiple repositories.

Based on the related studies, the code snippet is one of the most important
contents in the README files. To effectively utilize software repositories, clients
are encouraged to fully comprehend the code snippets in the README files. In
this thesis, I believe that the competency level of code snippets in README files
may be affected by different characteristics of software domains. To the best of
my knowledge, there is no prior work that conducted a study on how developers
present code snippets with different competency levels in the README files.
I believe that this study highlights the challenges and information about the
correlation between competency levels of code snippets and software domains for
developers, clients, and researchers.
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4 | Identifying the Competency
Level of Python Code Snip-
pets

1 Introduction

In software repositories, the README file is one of the most important docu-
ments that serve as a manual to use the software [83]. The well-written README
files may assist clients in understanding necessary information about the software
(e.g., overview, installation, example, contribution, and license) [43]. However
many README files are left unattended with no or less useful information about
the repositories.

Fan et al. [28] found that README files from popular repositories tend to
present more code snippets as an example usage. They found that unpopular
README files might not present detailed enough code snippets. The code snip-
pet is an important element in the README file that developers can use to
visually demonstrate the usage of the repositories [22].

Casalnuovo et al. [15] found that clients prefer code snippets that are easy to
comprehend, so they can achieve a better understanding of the repository usage.
In contrast, In Python programming, Zhang et al. [107] found that developers
sometimes prefer to introduce advanced code snippets (pythonic code) because
these codes provide better readability and execution performance. As seen by
the facts from both points of view, to the best of my knowledge, there is no
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related work that studies the extent of the competency level of code snippets in
README files.

In this chapter, I quantitatively investigate the prevalence of the competency
level of code snippets in README files. By using PyPI libraries as a case study,
I extract Python code snippets from 1,620 README files of each library. As
motivated by an example in Figure 4.1, Python code snippets may comprise both
basic and proficient code elements. The goal of this chapter is to investigate the
prevalence of different competency levels of Python code snippets in README
files. By identifying the competency levels of each Python code element and then
categorizing README files based on the competency level of code snippets, the
results show that 45% - 50% of README files from PyPI libraries comprise in-
dependent Python code snippets while 34% - 43% comprise only basic Python
code snippets. Even though the README files mainly comprise basic Python
code elements. However, The popular proficient README files tend to have a
balanced amount of different competency levels of code snippets while approxi-
mately half of the code snippets in the unpopular proficient README files are
proficient level.

The rest of this chapter is organized as follows. Section 2 describes the
methodology to identify competency levels of Python code snippets in README
files. Section 3 describes the result in this chapter. Section 4 discusses the im-
plication of this chapter. Section 5 describes threats to validity of this study.
Finally, Section 6 summarizes the results of this chapter.

2 Method

To identify the competency level of Python code snippets and their prevalence in
README files, I conducted a quantitative study to systematically analyze how
different competency levels of code snippets are presented in README files. The
study would reveal the prevalence of Python code snippets from each competency
level. The overview approach study of this chapter is shown in Figure 4.2. The
detail of studying is described as follows.
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Proficient element (Simple
List Comprehension)

Basic element (From, Import)

Independent element (If
statements expression (else))

Figure 4.1. An example of different competency levels of Python elements in
Python code snippet.

Python repositories
on GitHub

PyPI libraries on
Libraries.io

Data integration
and filtering

README files

Identifying the competency level of Python code snippets

README file Python Code snippets pycefr Code competency level report

Basic
README files

Independent
README files

Proficient
README files

Figure 4.2. An overview approach to identify the competency level of Python
code snippets
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2.1 Data Preparation

In this chapter, I created the dataset by gathering README files from Github
repositories that hosted PyPI libraries and then extracted Python code snippets.
Table 4.1 shows a summary of the dataset in this chapter. The detail of dataset
preparation is described as follows.

Step 1: Data integration and filtering. In this step, I gather a list
of GitHub repositories that hosted PyPI libraries by integrating datasets from
two sources. The first dataset was provided by Wattanakriengkrai et al. [101]. I
contacted the authors and obtained the list of 770,217 GitHub repositories written
in Python, which were created between 2014 and 2018. For the second dataset, I
extract the list of PyPI libraries from the dump dataset from Libraries.io1. The
latest updated date of the dump dataset is 2020, January 12. Next, I integrated
both datasets together, which resulted in 4,612 repositories of PyPI libraries
remaining. Finally, I apply the filters to exclude the following four cases: (i) the
repositories do not contain README files at the root directory, (ii) the README
files not written in English, (iii) the README files not contain Python code
snippet, and (iv) the topic of libraries are not defined in PyPI website2. After
filtering, there are 1,620 repositories that contain qualified README files.

Step 2: Data labelling. In GitHub, each repository has different popu-
larity. I hypothesize that the competency level of code snippets is one of the
factors that affect the popularity of the repositories. In this step, I categorize
the popularity of repositories based on their number of stars. However, there is
a skewness in the distribution of the number of stars, because only a minor pro-
portion of repositories acquired a high number of stars. Following prior studies
[6, 28, 81, 104], I applied the 20/80 boundary which is commonly used to split
the skewed dataset. I labeled the top 20% of repositories that acquired the most
number of stars as popular. For the bottom 70% of repositories, I labeled them
as unpopular. The remaining 10% of repositories are labeled as a gap, so I can
analyze the difference with respect to the number of stars between the two groups
of repositories more considerably. From 1,620 repositories, 325 repositories that
have at least 84 stars are labeled as popular, the 1,128 repositories that have at

1https://libraries.io/data
2https://pypi.org/
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Table 4.1. Summary of the dataset.
Downloaded date of the README files May, 2022
# GitHub repositories written in Python 770,217
# GitHub repositories that hosted PyPI libraries 4,612
# README files after filtering 1,620
# Python code snippets 5,511

most 38 stars are labeled as unpopular, and the rest 167 repositories are labeled
as gap.

Step 3: Python code snippet extraction. In this step, first, I download
the README files from each repository. Similar to the prior work [98], I then
parsed the README files by using markdown format3. According to Fan et
al. [28], in markdown format, all of the code snippets are fenced by lines with
three backticks. For the Python code snippets, it can be denoted by adding
the word ‘python’ after the first three backticks as shown in the example of the
markdown syntax of Python code snippets in Figure 4.3. This notation is called
the info_strings4 (i.e. keyword used to specify the language of the code snippet).
To extract Python code snippets, I use regular expression ˆ(\‘\‘\‘python$) to
detect the beginning of the code snippet, then collect contents in every line until
the ending of the code snippet is detected by using regular expression ˆ(\‘\‘\‘).
Finally, each code snippet is then saved into a Python format file. As a result,
5,511 Python code snippets are extracted from all README files.

2.2 Data Analysis

In this phase, I identify the competency level of Python code snippets, then ana-
lyze the prevalence of each level. The README files are then categorized based
on the highest competency level of Python elements inside the code snippets.
The detail of the analysis is described as follows.

Step 1: Identification of competency level of Python code snippets.
3https://docs.github.com/en/get-started/writing-on-github/getting-started-w

ith-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
4https://github.github.com/gfm/#info-string
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Markdown syntax of Python code snippet

Figure 4.3. An example of markdown syntax of Python code snippet.

In this step, I apply pycefr5 as a tool for identifying the competency level of
code snippets. Each Python element in the code snippets from the Python for-
mat files will be identified and assigned a competency level. Figure 4.1 shows
example of how pycefr detect then assign competency level to the Python ele-
ments. Figure 4.4 shows the CSV-formatted report of the competency level of
Python elements that were detected in the Python code snippets. From the iden-
tification result, I assigned the competency level of each code snippet based on
the highest detected competency level of Python elements. If the code snippet
contains only elements with competency level ‘A’, I define the competency level
of the code snippet as ‘Basic’. If the code snippet contains at least one element
with competency level ‘B’ or ‘C’, I define the competency level as ‘Independent’
or ‘Proficient’, respectively. Finally, the code snippets from the same README
file are then grouped together.

Step 2: Analysis of the prevalence of different competency levels
of Python elements in README files. To analyze the prevalence of each
competency level, I count the number of each type of Python element from all
README files and then group the elements with same competency level together.
From the total number of elements from each competency level, I calculated the
mean, median, standard deviation, and distribution of each competency level
in the README files. In order to statistically validate the differences in the
results, I applied Kruskal-Wallis non-parametric test [50] and the effect size by

5https://github.com/anapgh/pycefr
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Figure 4.4. An example of the CSV-formatted report of competency level of
Python elements in Python code snippet by using pycefr.

using Cliff’s δ [91]. I tested the null hypothesis that ‘the amount of Python
elements from difference competency levels are the same’. The interpretation of
Cliff’s δ is shown as follows: (i) |δ| < 0.147 as Negligible, (ii) 0.147 ≤ |δ| < 0.33
as Small, (iii) 0.33 ≤ |δ| < 0.474 as Medium, or (iv) 0.474 ≤ |δ| as Large.

Step 3: Categorize README files. The objective of this step is to
categorize README files based on the highest competency level of Python code
snippets contained. For the README files that comprise only code snippets
with competency level ‘A’, I define this group as ‘Basic’. In the same way, if the
README file comprises at least one Python code snippet with competency level
‘B’ or ‘C’, I define the group name as ‘Independent’ or ‘Proficient’, respectively.

3 Results

In this section, I analyze the results of the quantitative study of the prevalence
of competency levels of Python code snippets in README files as follows.
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3.1 Prevalence of Python elements in README files

From the analysis result by pycefr, I received a report of competency levels for
each Python element in README files. To analyze the usage of Python elements
in README files, I select the top five presented elements from each competency
level group as shown in Table 4.2.

Overall, the basic elements (Level ‘A’) are the most presented elements in the
README files, especially elements ‘Simple Attribute’ and ‘Simple Assignment’
(i.e., 87.22% and 86.98%, respectively). The independent elements (Level ‘B’) can
be found at approximately 11.30% in README files (i.e., the average prevalence
percentage of each independent element in README files). As expected, the
proficient elements (Level ‘C’) are the less presented elements in the README
files (i.e., the most presented element is ‘Simple List Comprehension’ at 3.52%).

However, by considering the usage of Python elements in each competency
level group, the standard deviation of the basic group is 26.1, which can be
interpreted that there are some elements that are highly presented more than
other elements. As shown in Table 4.2, both elements ‘Simple Attribute’ and
‘Simple Assignment’ are presented at more than 80% while the rest elements are
approximately presented at 65% and 35%. For the independent and proficient
groups, the standard deviations are not considered as high when compared to
the basic group (i.e., 3.92 and 1.19, respectively). So, I can interpret that there
is no type of Python element from the independent and proficient groups highly
presented in README files.

Summary 1: The most presented Python elements in README files
are basic elements ‘Simple Attribute’ (87.22%) and ‘Simple Assignment’
(86.98%). The proficient elements are the less presented (i.e., maximum at
3.52%).

3.2 Python element usage in README files

A README file may comprise multiple competency levels of Python elements.
The statistical calculation of average Python element usage in the README
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Table 4.2. Prevalence of the top presented Python code elements from each
competency level in the README files.

Competency
Python element # README files

Level

Basic

Simple Attribute 1,413 (87.22%)
Simple Assignment 1,409 (86.98%)
From 1,054 (65.06%)
Import 571 (35.25%)
Simple List 564 (34.81%)

Independent

Inherited Class 291 (17.96%)
Import with ‘as‘ extension 188 (11.60%)
With 157 (9.69%)
Nested Dictionary 142 (8.77%)
Simple Class 137 (8.46%)

Proficient

Simple List Comprehension 57 (3.52%)
Super Function 38 (2.35%)
Generator Function (yield) 22 (1.36%)
‘zip‘ call function 12 (0.74%)
Generator Expression 12 (0.74%)

files is shown in Table 4.3. In a single README file, by considering the mean
value, there are approximately 40 basic elements (Level ‘A’) and 3 independent
elements (Level ‘B’) in the popular README file. The unpopular README
file has approximately 22 basic elements and 2 independent elements. For the
proficient elements (Level ‘C’), since the mean values are 0.20 (popular) and 0.16
(unpopular), it can be interpreted that these elements are presented in only a few
README files regardless of the popularity.

If compare all README files together, by considering the median values, more
than half of popular README files have 24 basic elements and 1 independent
element. For the unpopular group, more than half of README files have 14 basic
elements and 1 independent element. However, the number of basic elements in
each popular README file is largely different since the standard deviation (SD) is
62.08. For instance, the library imgaug6 has 389 basic elements in the README

6https://github.com/aleju/imgaug
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file. Again, the proficient element is rarely found across all README files since
the median is 0 and SD values are 1.01 (popular) and 0.74 (unpopular).

The column ‘% of elements’ shows the number of elements from each compe-
tency level group in percentage. As shown in the Table 4.3, more than 90% of
elements are basic level while independent elements are less than 10%. Moreover,
there is no difference in the proportion of competency levels of Python elements
between popular and unpopular groups.

Since the number of proficient elements is less than 1 in Table 4.3, I sepa-
rately calculate the statistics average of Python element usage in the proficient
README file only as shown in Table 4.4. Overall, the characteristic of element
usage is the same with Table 4.3. However, there is an increase in element pro-
portion. Not only increasing proficient elements (considering mean and median
values) but also basic and independent elements. Again, there is no difference
in the proportion of competency levels of Python elements between popular and
unpopular groups.

For the statistical evaluation, the null hypothesis on whether ‘the amount of
Python elements from different competency levels are the same’ is rejected for all
popularity groups in both Table 4.3 and Table 4.4. So, I can interpret that the
proportion of elements from each competency level is significant differences (i.e.,
p-value < 0.001) with a large effect size (Cliff’s δ ≥ 0.496 in all groups).

Summary 2: Popular README files contain approximately 1.5 times
more Python elements than unpopular README files. Especially for the
proficient README files that contain approximately 2 times more Python
elements.

3.3 Competency level of code snippets in README files

After grouping the README files based on the detected highest competency
level of the code snippet, I can summarize the number of code snippets in each
group of README files as follows.

Table 4.5 shows the statistics of the competency levels of Python code snip-
pets from all popularity groups of README files. In a single README file,
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Table 4.3. Summary statistics of Python elements from all README files sepa-
rated by popularity.

Popularity
Competency level of

Mean Median SD % of elements
Python elements

Popular
Basic 40.24 24 62.08 92.65%
Independent 3.02 1 5.69 6.69%
Proficient 0.32 0 1.01 0.66%

Gap
Basic 26.34 17 28.61 94.27%
Independent 1.57 1 3.04 4.98%
Proficient 0.27 0 1.02 0.75%

Unpopular
Basic 22.23 14 29.41 91.72%
Independent 1.93 1 4.33 7.85%
Proficient 0.16 0 0.74 0.43%

Table 4.4. Summary statistics of Python elements from proficient README files
separated by popularity.

Popularity
Competency level of

Mean Median SD % of elements
Python elements

Popular
Basic 67.73 37 115.34 88.07%
Independent 5.02 3 5.81 7.53%
Proficient 2.12 1 1.72 4.40%

Gap
Basic 46.26 29 46.44 90.50%
Independent 2.39 1 4.14 4.07%
Proficient 1.96 1 2.10 5.43%

Unpopular
Basic 51.17 34 47.32 85.72%
Independent 5.07 3 7.03 8.54%
Proficient 2.15 1 1.77 5.74%
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by considering the mean value, there are approximately 3 basic code snippets
and 1 independent code snippet in the popular README file. The unpopular
README file has approximately 2 basic code snippets and 1 independent code
snippet. For the proficient code snippet, since the mean values are 0.22 (popular)
and 0.11 (unpopular), it can be interpreted that the proficient code snippet is
rarely presented in only a few README files regardless of the popularity.

If compare all README files together, by considering the median and stan-
dard deviation (SD) values, more than half of README files have at least 1 basic
code snippet and 1 independent code snippet regardless of the popularity with
the low SD (less than 5.64). However, some of the popular README files contain
a large number of code snippets. For instance, the library quantdsl7 has 35 code
snippets in the README file. Again, the proficient code snippet is rarely found
across all README files since the median is 0 and SD values are 0.64 (popular)
and 0.47 (unpopular).

The column ‘% of codes’ shows the number of code snippets from each com-
petency level group in percentage. As shown in the Table 4.5, more than 50% of
code snippets are basic level while independent code snippets are less than 40%.
Moreover, there is no difference in the proportion of competency levels of Python
code snippets between popular and unpopular groups.

Since the number of proficient code snippets is less than one in Table 4.5, I
separately calculate the statistics average of Python code snippets usage in the
proficient README file only as shown in Table 4.6. Overall, the number of code
snippets is not different with Table 4.5. However, there is a difference in code snip-
pet proportion. The column ‘% of codes’ shows that the popular README files
have the same proportion between basic and proficient code snippets, while the
unpopular README files tend to contain 2 times more proficient code snippets
than basic code snippets. It can be interpreted that in the unpopular README
files, developers prefer to present a few proficient code snippets more than adding
code snippets with various competency levels.

Interestingly, by considering the competency level of README files in each
popularity group as shown in Table 4.7. The result shows that approximately
half of README files comprise at least one independent code snippet regardless

7https://github.com/johnbywater/quantdsl
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of the popularity. However, the popular README files seem to contain 2 times
more proficient code snippets than the unpopular README files.

Summary 3: In spite of the fact that README files mainly comprise
basic Python elements. However, approximately half of README files
comprise at least one independent code snippet. The popular proficient
README files tend to have a balanced amount of different competency
levels of code snippets while approximately half of the code snippets in the
unpopular proficient README files are proficient level.

Table 4.5. Summary statistics of Python code snippets from all README files
separated by popularity.

Popularity
Competency level of

Mean Median SD % of codes
Python codes

Popular
Basic 3.20 1 5.64 57.94%
Independent 1.54 1 2.87 36.07%
Proficient 0.22 0 0.64 5.99%

Gap
Basic 2.14 1 2.26 59.56%
Independent 0.93 0 1.77 33.03%
Proficient 0.20 0 0.85 7.41%

Unpopular
Basic 1.91 1 4.24 58.55%
Independent 0.95 1 1.52 37.37%
Proficient 0.11 0 0.47 4.08%

4 Discussion

Based on the results in this chapter, I made the following recommendations and
highlighted the implications for maintainers and clients of the PyPI libraries, and
software engineering researchers.

Maintainers of the PyPI libraries: The results reveal a statistical pro-
portion of how developers present Python elements in code snippets across each
competency level in the README files. Hence, to improve the quality of the
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Table 4.6. Summary statistics of Python code snippets from proficient README
files separated by popularity.

Popularity
Competency level of

Mean Median SD % of codes
Python codes

Popular
Basic 2.69 2 2.77 38.55%
Independent 1.67 1 2.49 21.71%
Proficient 1.49 1 0.94 39.74%

Gap
Basic 2.13 1 2.83 59.57%
Independent 0.57 0 1.38 33.03%
Proficient 1.47 1 1.88 7.40%

Unpopular
Basic 1.67 1 2.63 24.62%
Independent 1.32 0 2.28 20.58%
Proficient 1.46 1 0.97 54.80%

Table 4.7. Number of the README files from each competency level group
separated by popularity.

Popularity
Competency level of

# README files
README files

Popular

Basic 112 (34.46%)
Independent 164 (50.46%)
Proficient 49 (15.08%)
Sum 325 (100%)

Gap

Basic 69 (41.31%)
Independent 75 (44.91%)
Proficient 23 (13.78%)
Sum 167 (100%)

Unpopular

Basic 484 (42.91%)
Independent 560 (49.64%)
Proficient 84 (7.45%)
Sum 1,128 (100%)
Total README files 1,620
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README files, I suggest maintainers present at least two to four Python code
snippets (one for basic usage and the rest for additional examples). However,
maintainers should mainly present basic code snippets more than proficient code
snippets. As shown in the README file of PyPI library elasticmock8, one code
snippet is used to describe the basic usage of the library while others are used
as examples of advanced usage. In the code snippet, maintainers should keep
their code snippets easy to comprehend by mainly presenting basic elements ap-
proximately 88-92%, independent elements approximately 7-8%, and proficient
elements approximately 0-5%. In this study, I did not consider that developers
may provide natural language as a descriptive text to aid with code comprehen-
sion.

Clients of the PyPI libraries: The results reveal that most of the code
snippets in README files of PyPI libraries are easy to comprehend. There are
40% probability that clients will encounter basic or independent README files
and 10% for proficient README files. These README files have approximately
two to four Python code snippets. There are 5% probability that clients will en-
counter proficient code snippets in the README files. However, in the proficient
README files, 30% - 50% of code snippets will be proficient level. Hence, novice
clients may struggle to fully comprehend proficient README files. In this work,
I did not consider how natural language explanations along with code snippets
aid with code comprehension.

Software engineering researchers: The statistical results show the pro-
portion of Python elements and code snippets in the README files of PyPI
libraries. It reveals that different usage of elements and code snippets can af-
fect the popularity of the PyPI libraries. Hence, I suggest researchers investigate
other effects of the usage of different competency levels of Python code elements
in the README files.

5 Threats to Validity

In this section, I discuss the potential threats to validity as follows.
Internal validity: The main threat to internal validity is the approach to

8https://github.com/vrcmarcos/elasticmock
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collecting Python code snippets from README files. This study relies on reg-
ular expression, so it may not be able to capture all kinds of code snippets on
README files. To mitigate this, I randomly select ten README files, and then
manually compare the number of Python code snippets in README files with
the extracted result from my regular expression patterns. I iteratively checked
and edited the pattern of regular expression until I was able to collect all of the
Python code snippets.

External validity: There are two main threats to external validity in this
study. The first threat is the generalization of the results. The study focuses
solely on PyPI libraries, so, the results may not generalize to other ecosystems
such as npm and Maven. However, I believe that the methodology in this study
can be applied to other ecosystems. Hence, the immediate future work is to
explore the competency level of code snippets from other programming languages
or ecosystems. The second threat is the sample of libraries in our dataset. In
this study, I created the dataset by selecting the libraries regardless of their
popularity (e.g., stars, contributors, dependencies), as I would like to make the
result generalized to all developers and clients regardless of their experience in
Python programming.

Construct validity: In this study, I estimate the competency level of code
snippets based on the highest level of Python elements inside. There are two
main threats to constructing validity in this work. The first threat is that not
all README files provide explanations along with code snippets. (i.e., library
MIDITime9 did provide but library Trip10 did not) So, I decided to limit the
scope of this study to code snippets analysis only. I acknowledge that well-written
README files may sometimes contain explanations that help library users un-
derstand the usage of code snippets. This is indeed an interesting future direction
to study. The second threat is the limitation of analyzing Python libraries based
on topics in our study. Future work should identify other aspects (e.g., stars,
contributors, and dependencies) to explore more benefits of analyzing the compe-
tency level of code snippets in the README files (e.g., increase popularity and
accessibility).

9https://github.com/cirlabs/miditime
10https://github.com/littlecodersh/trip
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6 Conclusion and Future Works

In this chapter, I conducted a quantitative study to investigate the prevalence
of the competency level of Python code snippets in 1,620 README files from
PyPI libraries. By adopting pycefr, a tool for detecting and calculating the
competency level required to understand Python elements in the code snippets, I
found that 45% - 50% of README files from PyPI libraries comprise independent
Python code snippets while 34% - 43% comprise only basic Python code snippets.
Even though the README files mainly comprise basic Python code elements.
However, The popular proficient README files tend to have a balanced amount
of different competency levels of code snippets while approximately half of the
code snippets in the unpopular proficient README files are proficient level.

From the result, it shows that proficient Python code snippets may rarely
be found in the README files. However, I believe that there are reasons or
factors that affect developers to present proficient Python code snippets in their
README files. Thus, this opens up an opportunity for future work to understand
the reasons that affect how developers present different competency levels of code
snippets in their README files.
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5 | Usage of Python Code Snip-
pets in different topics

1 Introduction

Nowadays, there is a large number of Open Source Software (OSS) projects hosted
on various software repositories. For instance, GitHub as one of the largest soft-
ware repositories currently host more than 330 million projects 1. These projects
can be categorized based on the domain or main functionality of the software [27]
(e.g., programming language, library, database, application, and framework).

To utilize the software effectively, developers of the repositories often provide
README files as a manual to use the software [83]. Liu et al. [62] encourages
developers to provide README files with some code snippets in the sections
about ‘Usage’ and ‘Installation’. Antinyan et al. [7] suggests that code snippets
should be readable with easy understandability, and reasonable complexity for
code comprehension. However, some developers are more concerned about the
performance when using their software [23]. So, they may present advanced code
snippets as example usage in README files.

Motivated by this evidence, I hypothesized that there may be a correlation
between the domains of software and the usage of code snippets. In this chapter,
I created the dataset based on the 1,620 PyPI libraries from Chapter 4. Then I
filtered the dataset based on the PyPI topics resulting in 1,598 README files
of PyPI libraries as a case study. I then conducted a quantitative study with the

1https://github.com/about - (Accessed 23 May 2023)
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goal of analyzing whether the topics of PyPI libraries affect the usage of Python
code snippets in README files.

The results show that developers tend to create a similar proportion of all
competency levels of README files in most topics but have a different proportion
in certain topics. Proficient developers present a similar amount of independent
and proficient Python elements in the code snippets.

The rest of this chapter is organized as follows. Section 2 describes my study
design to analyze a correlation between the domains of software and the usage of
code snippets. Section 3 describes the result in this chapter. Section 4 discusses
the implication of this chapter. Section 5 describes threats to validity of this
study. Finally, Section 6 summarizes the results and future works of this chapter.

2 Study Design

The goal of this study is to analyze whether the topics of PyPI libraries affect
the usage of Python code snippets in README files. This section describes the
research questions and study procedure to achieve the goal.

2.1 Research Questions

In this study, I define the following research questions (RQs).

• RQ1: To what extent do different topics of PyPI libraries have different
proportions of competency levels of README files? The motivation of this
RQ is to investigate the proportions of competency level of README files
from each topic of PyPI libraries. Each topic has different characteristics
and purposes of usage, so, I hypothesize that some topics may comprise a
higher proportion of proficient README files.

• RQ2: To what extent do different topics of PyPI libraries have different
proportions of Python elements in each competency level group? This RQ
is a detailed analysis of the usage of Python elements in README files. The
motivation of this RQ is that some topics of PyPI libraries may comprise the
same proportions of competency level of README files but have different
proportions of Python elements from the same level.
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• RQ3: How do developers present proficient Python code snippets in profi-
cient README files? The motivation of this RQ is to investigate whether
developers with high proficiency in Python programming tend to present
proficient Python elements more than basic or independent elements.

• RQ4: How do developers present various types of code snippets in README
files from different topics of PyPI libraries? The motivation of this RQ is
that developers not only present Python code snippets but also other types
of code snippets in README files. I hypothesize that topics of libraries
may affect how developers present different types of code snippets in each
section of README files.

2.2 Data Preparation

In this chapter, I created the dataset based on the 1,620 PyPI libraries from
Chapter 4. First, I extracted the topics of each library and then extracted different
types of code snippets and their sections in the README files. The summaries
of the dataset in this chapter are shown in Table 5.1, Table 5.2, and Table 5.3.
The detail of dataset preparation is described as follows.

Step 1: Topic extraction from PyPI libraries. According to the PyPI
classifier page2, PyPI libraries can be classified into 24 topics (including the topic
Other). The library can belong to single or multiple topics. Each topic of libraries
may have different usage and proportions of code snippets due to the characteris-
tics of the topics. First, I crawl the PyPI page of each library by using requests3

to get page content in HTML format. I then apply BeautifulSoup4 to find an
HTML structure of the list of topics in the classifiers section. I filtered only the
topics that comprise at least 30 libraries, which resulted in 1,598 libraries that
belong to 23 topics remaining as shown in Table 5.1. The libraries that belong
to the topic Other are excluded from this study. Table 5.2 shows the number of
README files in each competency level group. Table 5.3 shows Python elements
from each competency level group after filtering. Note that some README files

2https://pypi.org/classifiers
3https://pypi.org/project/requests
4https://pypi.org/project/beautifulsoup4

37

https://pypi.org/classifiers
https://pypi.org/project/requests
https://pypi.org/project/beautifulsoup4


belong to multiple groups. In this case, I duplicated the README files and then
separated them into the corresponding group.

Step 2: Code snippet types and sections extraction and categoriza-
tion. In this step, I used regular expressions to extract the info_strings5 (i.e.
keyword used to specify the language of the code snippet), and section headings6

from each README file while referencing the GitHub Flavored Markdown Spec
(GFM)7. Since there is various type of code snippets, I classify them as follows.

• Python source code: Code snippet written using Python syntax.

• Command script: Code snippet that is typically executed as a command
in a terminal and is usually written in bash, shell, etc.

• Configuration: Code snippet used for setting or customizing, typically
written in a markup language format, e.g., XML, YAML, etc.

• Source code: Code snippet that is written in a programming language
other than Python.

• Markup language: Code snippet that utilizes a text-encoding structure
(tags) and is not intended for configuration, e.g., HTML, MD, etc.

For the section of each code snippet, I used the tool provided by the prior study
[83] to categorize the sections into 8 categories (i.e., What, Why, How, When,
Who, Reference, Contribution, and Other). However, sections that belong to the
category Other are excluded from this study. Note that the tool may categorize
some sections into multiple categories.

2.3 Data Analysis

To answer all RQs, I adopt the heatmap visualization as same as Islam et al. [44].
The heatmap uses colored-scale cells to show a two-dimensional matrix relation-
ship between two data. I analyze the relationships between competency levels of

5https://github.github.com/gfm/#info-string
6https://github.github.com/gfm/#atx-heading
7https://github.github.com/gfm
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Table 5.1. Prevalence of the README files in each topic.
Topic # README files
Software Development 932 (58.32%)
Scientific/Engineering 346 (21.65%)
Internet 289 (18.09%)
Utilities 264 (16.52%)
System 123 (7.70%)
Text Processing 78 (4.88%)
Database 49 (3.07%)
Multimedia 46 (2.88%)
Communications 37 (2.32%)
Office/Business 36 (2.25%)
Security 35 (2.19%)

code snippets in README files and topics of PyPI libraries by using a heatmap
to visualize the relationships of the following pairs: (i) the relationship between
competency levels of README files and topics of PyPI libraries, (ii) the relation-
ship between topics of PyPI libraries and Python elements, (iii) the relationship
between competency levels of README files and Python elements, and (iv) the
relationship between types of code snippets and sections in README files. The
heatmap reports the frequency counts in the percentage of each relationship that
is reflected in the cells.

In order to statistically validate the relationships, I apply Pearson’s chi-
squared test (χ2) [80]. I also investigate the effect size by using Cramér’s V
(ϕ′) [21] which can be ranged from 0 (i.e., no association at all) to 1 (i.e., perfect
association). The interpretation is shown in Table 5.4 according to [18]. The null
hypothesis is that ‘there is no association between the comparing pair’.

3 Results

From the quantitative study on the usage of code snippets in README files from
each topic of the PyPI libraries, I can analyze each RQ as follows.
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Table 5.2. Number of the filtered README files from 23 topics separated by
popularity.

Popularity
Competency level of

# README files
README files

Popular

Basic 108 (33.75%)
Independent 163 (50.94%)
Proficient 49 (15.31%)
Sum 320 (100%)

Gap

Basic 69 (41.82%)
Independent 74 (44.85%)
Proficient 22 (13.33%)
Sum 165 (100%)

Unpopular

Basic 476 (42.76%)
Independent 554 (49.78%)
Proficient 83 (7.46%)
Sum 1,113 (100%)
Total README files 1,598

3.1 RQ1: To what extent do different topics of PyPI li-
braries have different proportions of competency levels
of README files?

The heatmaps of Figure 5.1 show the percentage of README files from each
competency level group that belongs to each topic separated by the popularity
groups. By considering the percentage in the heatmaps, I describe the result
interpretation as follows.

• Topic Software Development has the highest percentage of README files
from all competency level groups, followed by topics Scientific/Engineering
and Internet. Topic Database has the lowest percentage of README files
in the popular group, while topic Security has the lowest percentage of
README files in the unpopular group.

• In the popular group, developers mainly create basic README files in top-
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Table 5.3. Prevalence of the top presented Python code elements from each
competency level group in the README files from all topics.

Competency level Python element # README files

Basic

Simple Attribute 1,395 (87.30%)
Simple Assignment 1,390 (86.98%)
From 1,039 (65.02%)
Import 565 (35.36%)
Simple List 555 (34.73%)

Independent

Inherited Class 287 (17.96%)
Import with ‘as’ extension 187 (11.70%)
With 156 (9.76%)
Nested Dictionary 140 (8.76%)
Simple Class 136 (8.51%)

Proficient

Simple List Comprehension 55 (3.44%)
Super Function 38 (2.38%)
Generator Function (yield) 22 (1.38%)
‘zip’ call function 12 (0.75%)
Generator Expression 12 (0.75%)

ics Utilities (10%) and Text Processing (7.6%). In contrast, topics System
and Communication mainly comprise proficient README files instead. For
the unpopular group, developers mainly create basic README files in topic
System (8.6%). In contrast, topic Scientific/Engineering mainly comprises
proficient README files instead.

• To validate the relationship between the competency level groups of README
files and topics, the statistical test is applied to each popularity group. Ac-

Table 5.4. Cramér’s V effect size interpretation.
df* Negligible Small Medium Large
1 [0, 0.10) [0.10, 0.30) [0.30, 0.50) 0.50 or more
2 [0, 0.07) [0.07, 0.21) [0.21, 0.35) 0.35 or more
10 [0, 0.03) [0.03, 0.10) [0.10, 0.17) 0.17 or more
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cording to Pearson’s chi-squared test, the null hypothesis fails to reject in
the popular and gap groups, i.e., the relationship between competency level
groups and topics in these groups is not significant (p-value ≥ 0.3), while
the effect size is small (Cramér’s V values are 0.135 and 0.196, respectively).
However, in the unpopular group, the null hypothesis is rejected, i.e., the
relationship between competency level groups and topics in the unpopular
group is significant (p-value < 0.05), while the effect size is small (Cramér’s
V 0.103). It can be interpreted that the topics of PyPI libraries are as-
sociated with how developers present different competency levels of code
snippets in README files in the unpopular group but very slightly in the
popular group.

RQ1 Summary: In the popular group, developers tend to create a sim-
ilar proportion of all competency levels of README files in most topics
but have a different proportion in certain topics in the unpopular groups.
For instance, the topic System mainly contains basic README files while
the topic Scientific/Engineering mainly contains proficient README files
instead.
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Figure 5.1. Heatmap of the relationship between competency level groups of
README files and topics of PyPI libraries.

43



3.2 RQ2: To what extent do different topics of PyPI li-
braries have different proportions of Python elements
in each competency level group?

The heatmaps of Figure 5.2 show the percentage of Python elements usage in each
topic of PyPI libraries separated by the popularity groups. In the heatmaps,
Python elements are divided into three groups (i.e., Basic, Independent, and
Proficient) by using the dash lines. To gain insight into how developers present
each Python element in README files from different topics of PyPI libraries, I
analyze the relationship between topics and Python elements as follows.

• In the basic group, elements ‘Simple Attribute’, ‘Simple Assignment’, and
‘From’ are the most generally presented elements across all topics. It can
be implied that these three basic elements are commonly found regardless
of the topics of libraries. In comparison with elements ‘Import’ and ‘Sim-
ple List’, the usage of these elements is slightly different in some topics.
For instance, the element ‘Import’ is less found in topic Internet (6.8%)
in the popular group and topics Internet (6.4%), Database (6.9%) and Of-
fice/Business (8%) in the unpopular group. In contrast, the element ‘Simple
List’ is more found in topics Text Processing (13%), and Office/Business
(10%) in the popular group and topic Office/Business (13%) in the un-
popular group instead. This shows the first evidence that developers from
different topics present different proportions of the same Python element in
README files.

• For the independent group, the usage of elements between the popular and
unpopular groups is more clearly different. In the popular group, some top-
ics have a high usage of certain elements. For instance, element ‘Inherited
Class’ in topic System (13%), element ‘Import with ‘as’ extension’ in topic
Scientific/Engineering (10%), and element ‘With’ in topic Communication
(13%). There are various elements that are not presented in the README
file as indicated by zero (0%) in the heatmap. For the unpopular group,
most elements are similarly presented in most topics except for topics Scien-
tific/Engineering (7.8%), Text Processing (0%), Multimedia (0% and 9%),
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and Communication (0%). Interestingly, developers of topic Security tend
to present more of the independent elements when compared with other
topics in both popular and unpopular groups. These results enhance the
evidence from the basic group that developers from different topics present
different proportions of the same Python element in README files.

• In the proficient group, the prevalence of elements in each topic is quite sim-
ilar to the independent group. Overall, the topics in the popular group have
high usage of certain elements. For instance, the element ‘Super Function’
in topics System (4.8%), and Security (2.8%). However, topic Communica-
tion has high usage of elements ‘Simple List Comprehension’ and ‘Generator
Function (yield)’ in both popular (4.3% and 4.3%, respectively) and unpop-
ular groups (1.1% and 2.2%, respectively). Interestingly, in the unpopular
group, it seems that README files from the topics Office/Business and
Security have no proficient elements.

• To validate the relationship between Python elements in README files and
topics, the statistical test is applied to each popularity group. According
to Pearson’s chi-squared test, the null hypothesis is rejected in the popu-
lar and unpopular groups, i.e., the relationship between topics and Python
elements is significant in these groups (p-value < 0.001), while the effect
size is medium and small (Cramér’s V values are 0.114 and 0.070, respec-
tively). However, in the gap group, the null hypothesis fails to reject, i.e.,
the relationship between topics and Python elements is not significant in
the gap groups (p-value ≥ 0.2), while the effect size is medium (Cramér’s V
0.131). It can be interpreted that the topics of PyPI libraries are associated
with how developers present different Python elements in README files,
especially between popular and unpopular groups.
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RQ2 Summary: README files from some topics of PyPI libraries have
high usage in certain Python elements, especially in the popular group. For
instance, elements ‘Inherited Class’ and ‘Super Function’ in topic System
and elements ‘With’ and ‘Generator Function (yield)’ in topic Commu-
nication. Interestingly, the topics Office/Business and Security have no
presence of proficient elements in the unpopular group.

3.3 RQ3: How do developers present proficient Python
code snippets in proficient README files?

By considering only the proficient group in Figure 5.3, it seems that developers
tend to present a similar percentage of independent elements (i.e., elements high-
lighted by a green box) and proficient elements (i.e., elements highlighted by a
red box) but excluding element ‘Inherited Class’. Since execution performance is
one of the most important factors that developers are concerned with when using
libraries [23]. So, I conducted a manual investigation on how proficient elements
are presented in README files. As a result, I found that elements ‘Simple List
Comprehension’, ‘Generator Function’, and ‘Generator Expression’ were usually
written in a Pythonic way. I believe that one of the reasons that developers tend
to present Pythonic elements is to achieve better execution performance [54].

Since it is obvious that README files in the basic group never contain ele-
ments from higher levels. So, I apply Pearson’s chi-squared to test the association
between the percentages of independent elements (i.e., green box) and proficient
elements (i.e., red box) in the proficient group instead. The null hypothesis fails
to reject in all popularity groups, i.e., the relationship between the independent
elements and proficient elements in the proficient group is not significant (p-value
≥ 0.05), while the effect size is small, large, and small (Cramér’s V values are
0.227, 0.519 and 0.285) for popular, gap and unpopular group, respectively. It
can be interpreted that the percentage of proficient elements is slightly lower than
independent elements in README files regardless of the popularity.
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Figure 5.3. Heatmap of the relationship between competency level group of
README files and Python elements in each popularity group.
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RQ3 Summary: Proficient developers present a similar amount of inde-
pendent and proficient Python elements in the code snippets. The elements
that are usually written in Pythonic way are ‘Simple List Comprehension’,
‘Generator Function’, and ‘Generator Expression’.

3.4 RQ4: How do developers present various types of code
snippets in README files from different topics of PyPI
libraries?

The heatmaps of Figure 5.4 show the percentage of usage of five types of code
snippets in six sections of README files (Section Why is excluded from the
heatmaps due to no presence of code snippet in all topics). However, some topics
have less or none of some type of code snippets and/or less or none of code
snippets in some sections. In this case, I exclude those types of code snippets and
or sections from the heatmaps. By considering the percentage in the heatmaps,
I describe the result interpretation as follows.

• Overall, all types of code snippets are mainly presented in the section Why
followed by sections What and Reference. Topics Software Development,
Scientific/Engineering, System, Text Processing and Office/Business have
a high proportion of code snippets in the section Reference, while topics
Internet, Database and Multimedia have a high proportion of code snippets
in the section What. The topics Utilities, Communication and Security have
a similar proportion of code snippets in both sections What and Reference.

• The content in the How section of the README files is about the usage
and installation of the PyPI libraries. The Command script is the most pre-
sented type of code snippet in the How section except for topics Software
Development, Scientific/Engineering, Utilities, Office/Business and Secu-
rity. The developers of these excluded topics tend to present other types of
code snippets instead. For instance, the type Markup language in the topic
Utilities (80%), and the type Configuration in the topics Scientific/Engi-
neering (85% )and Office/Business (75%).
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Figure 5.4. Heatmap of the relationship between types of code snippets and
sections in README files from each topic. (Cont.)

• The goal of this RQ is to investigate the proportion of the usage of each type
of code snippet in different sections of README files, not the relationship.
So, the statistical test to validate the relationship between the types of code
snippets and sections in README files is not necessary for this RQ.
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RQ4 Summary: All types of code snippets are mainly presented in the
How section of README files, especially the type Command script. De-
velopers from each topic of PyPI libraries tend to present each type of code
snippet in different proportions and sections.

4 Discussion

Based on the results of this study, there is a correlation between the usage of
Python code snippets and the topic of PyPI libraries. In this section, I discuss
implications and recommendations as follows.

Maintainers of the PyPI libraries: The results show that topics of PyPI
libraries affect the competency level of Python code snippets and the location of
each type of code snippet in the README files. Hence, to improve the quality
of README files, maintainers are suggested to adopt my results as a guide-
line to add code snippets in the README files based on the topic of PyPI
libraries. For instance, maintainers of the topic Scientific/Engineering should
consider adding more proficient elements, e.g., ‘Simple List Comprehension’ and
“.zip.’ call function’ because these elements are written in Pythonic which provide
more execution performance. However, if the maintainers are not familiar with
Pythonic code, some elements can be replaced with lower competency elements,
e.g., the element ‘Simple List Comprehension’ (proficient level) can be replaced
by ‘Lambda’ (independent level). In the How section of the README files, the
maintainers of the topic Scientific/Engineering are suggested to provide the type
of code snippets for configuration. As shown in the README file of PyPI li-
brary lisflood-utilities8, it provides an example of a metadata configuration code
snippet for using the library.

Clients of the PyPI libraries: The results show that README files from
some topics of PyPI libraries comprise a higher number of proficient code snippets,
especially the topic Scientific/Engineering. Hence, novice clients may struggle to
comprehend some README files from these topics. Additionally, README files
from some topics of PyPI libraries have high usage in certain Python elements.

8https://github.com/ec-jrc/lisflood-utilities
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For instance, elements ‘Inherited Class’ and ‘Super Function’ in the topic System.
Hence, the clients are suggested to use my results as a recommendation to study
certain elements that are usually found in the README files from topics that
are related to their field.

Software engineering researchers: The results indicate that the topics of
PyPI libraries have an association with the usage of code snippets in README
files. It reveals that some topics have different proportions of competency levels
of Python elements. Additionally, each topic has a different usage of each type
of code snippet in each section of README files. Hence, I encourage researchers
to adopt my methodology to investigate other characteristics (e.g., contributors,
and dependencies) that may be affected by the usage of code snippets in the
README files from different software domains.

5 Threats to Validity

In this section, I describe the threats that may affect this study.
Internal validity: Threats to internal validity concern bias in this study.

The main internal threat that may affect the result is the skewness of the number
of PyPI libraries in my dataset. As shown in Table 5.1, topic Software Devel-
opment takes 58.32% of the dataset while there are 6 out of 11 topics that take
less than 10%. To mitigate this threat, I calculate the correlations between the
competency level of Python code snippets and the topic of PyPI libraries by
converting the number of libraries into percentages.

External validity: Threats to external validity concern the generalizability
of the results. In this study, I define a case study by using Python code snippets
in README files of PyPI libraries from 11 topics. Additionally, in this study,
I apply pycefr to calculate the competency level of Python code snippets. So,
the results may not fully generalize to all ecosystems. However, my methodology
can apply to some ecosystems or programming languages that share the same
characteristics as PyPI or Python, e.g., JavaScript and PHP. Future work may
adopt the algorithm of pycefr to calculate the competency level of different
programming languages and then follow the rest of my methodology.

Construct validity: Threats to construct validity concern the suitability
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of my correlation analysis. In each RQ, I scope my analysis to the correlation
between Python code snippets in README files and the topic of PyPI libraries
only. There is the possibility that other artifacts or components in PyPI libraries
may affect my correlation analysis. Thus, this can be considered for future work.

6 Conclusion and Future Works

In this chapter, I conducted a quantitative study to analyze the correlation
between the topic of PyPI libraries and the usage of code snippets in 1,598
README files. The analysis is based on the interpretation of the heatmap
which visualizes the relationship between the Python elements in code snippets,
the competency level of README files, the topics of PyPI libraries, types of code
snippets, and sections in README files.

The results show that developers tend to create a similar proportion of all
competency levels of README files in most topics but have a different proportion
in certain topics. For instance, the topic System mainly contains basic README
files while the topic Scientific/Engineering mainly contains proficient README
files instead. Proficient developers present a similar amount of independent and
proficient Python elements in the code snippets. The elements that are usually
written in Pythonic way are ‘Simple List Comprehension’, ‘Generator Function’,
and ‘Generator Expression’. Additionally, All types of code snippets are mainly
presented in the How section of README files, especially the type Command
script. Developers from each topic of PyPI libraries tend to present each type of
code snippet in different proportions and sections.

From the result, it seems that the domain of software is one of the reasons
that affect the usage of code snippets in README files. Future work can extend
my methodology to broader categories of software or other ecosystems. I believe
that there are other factors that also affected by the usage of code snippets in
README files.
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6 | Conclusion

As a leading open-source version control platform, GitHub hosts over 330 mil-
lion repositories. It functions as a social coding platform, featuring tools for
software projects, and attracting contributions. Encouraging active engagement
from newcomers is crucial for project success, often achieved through comprehen-
sive documentation.

README files are meta-documents recommended by GitHub for quick access
to essential information. It plays an important role as a welcome page of soft-
ware repositories. The well-written README files should provide the necessary
information for clients to understand the purpose and usage of the repositories.
The popular repositories often comprise some code snippets as visual content to
demonstrate how software should be used.

To utilize the software effectively, clients should be able to comprehend all code
snippets in the README files. However, clients sometimes encounter advanced
elements that might prevent them from comprehending code snippets. One of the
reasons is that some developers are concerned about the execution performance of
their software, so, they prefer to present proficient code snippets in the README
files instead.

In this study, I conducted an empirical study to analyze the correlation be-
tween the competency level of code snippets in README files and the domain
of software. By using PyPI libraries as a case study, I designed the study in this
thesis with the goals of investigating (i) the prevalence of different competency
levels of code snippets in README files, and (ii) whether topics of PyPI libraries
affect how developers present code snippets in README files.

For the first goal, I conducted a quantitative study to investigate the preva-
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lence of the competency level of Python code snippets in 1,620 README files
from PyPI libraries. By adopting pycefr, a tool for detecting and calculating
the competency level required to understand Python elements in the code snip-
pets, I found that 45% - 50% of README files from PyPI libraries comprise
independent Python code snippets while 34% - 43% comprise only basic Python
code snippets. Even though the README files mainly comprise basic Python
code elements. However, The popular proficient README files tend to have a
balanced amount of different competency levels of code snippets while approxi-
mately half of the code snippets in the unpopular proficient README files are
proficient level.

For the second goal, I conducted a quantitative study to analyze the cor-
relation between the topic of PyPI libraries and the usage of code snippets in
1,598 README files. The analysis is based on the interpretation of the heatmap
which visualizes the relationship between the Python elements in code snippets,
the competency level of README files, and the topics of PyPI libraries. The
results show that developers tend to create a similar proportion of all competency
levels of README files in most topics but have a different proportion in certain
topics. Proficient developers present a similar amount of independent and profi-
cient Python elements in the code snippets. Developers from each topic of PyPI
libraries tend to present each type of code snippet in different proportions and
sections.

In summary, the results of this thesis highlight how developers present dif-
ferent competency levels of Python code snippets based on the topics of PyPI
libraries.

1 Implications

Based on the results of this thesis, I made the following recommendations and
highlighted the implications for maintainers and clients of the PyPI libraries, and
also software engineering researchers.

Developers of the PyPI Libraries: to improve the quality of the README
files, I suggest maintainers present at least two to four Python code snippets (one
for basic usage and the rest for additional examples). However, maintainers
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should mainly present basic code snippets more than proficient code snippets.
As shown in the README file of PyPI library elasticmock1, one code snippet
is used to describe the basic usage of the library while others are used as exam-
ples of advanced usage. In the code snippet, maintainers should keep their code
snippets easy to comprehend by mainly presenting basic elements approximately
88-92%, independent elements approximately 7-8%, and proficient elements ap-
proximately 0-5%.

For example, maintainers of the topic Scientific/Engineering should consider
adding more proficient elements, e.g., ‘Simple List Comprehension’ and “.zip.‘ call
function’ because these elements are written in Pythonic which provide more ex-
ecution performance. However, if the maintainers are not familiar with Pythonic
code, some elements can be replaced with lower competency elements, e.g., the el-
ement ‘Simple List Comprehension’ (proficient level) can be replaced by ‘Lambda’
(independent level). In the How section of the README files, the maintainers of
the topic Scientific/Engineering are suggested to provide the type of code snip-
pets for configuration. As shown in the README file of PyPI library lisflood-
utilities2, it provides an example of a metadata configuration code snippet for
using the library.

Clients of the PyPI Libraries: There are 40% probability that clients will
encounter basic or independent README files and 10% for proficient README
files. These README files have approximately two to four Python code snippets.
There are 5% probability that clients will encounter proficient code snippets in
the README files. However, in the proficient README files, 30% - 50% of
code snippets will be proficient level. Hence, novice clients may struggle to fully
comprehend proficient README files.

Additionally, README files from some topics of PyPI libraries have high
usage in certain Python elements. For instance, elements ‘Inherited Class’ and
‘Super Function’ in the topic System. Hence, the clients are suggested to use my
results as a recommendation to study certain elements that are usually found in
the README files from topics that are related to their field.

Software Engineering Researchers: The results reveal that different us-
1https://github.com/vrcmarcos/elasticmock
2https://github.com/ec-jrc/lisflood-utilities
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age of elements and code snippets can affect the popularity of the PyPI libraries,
and also some topics have different proportions of competency levels of Python el-
ements. The results indicate that the topics of PyPI libraries have an association
with the usage of code snippets in README files. Additionally, each topic has
a different usage of each type of code snippet in each section of README files.
Hence, I encourage researchers to adopt my methodology to investigate other
characteristics (e.g., contributors, and dependencies) that may be affected by the
usage of code snippets in the README files from different software domains.

2 Opportunities for Future Research

In this thesis, I studied how developers present code snippets in README files
from the PyPI libraries. There are additional possible aspects that can be done
in order to assist developers in creating quality README files. The outlines of
the research opportunities for the immediate future are listed as follows.

• Integrating with other elements in README files. README files
can contain both texture descriptions and non-textual elements (e.g., im-
ages, badges, and links). Future works should consider analyzing these
elements with the code snippets in order to extend the recommendation to
create quality README files.

• Additional factors in the repositories. Apart from the domain of soft-
ware, there might be other factors that affect the contents of README files
(e.g., stars, download counts, repository ages, and number of contributors).
Future works should apply these factors to analyze the content that must
be considered when creating quality README files.

• Expand studying to other software ecosystems or programming
languages. Although I conducted the study in this thesis by using PyPi
libraries as a case study. I believe that my methodology can be a guideline
for conducting a related study in other software ecosystems or program-
ming languages. Future works should apply additional factors to study
whether the contents of README files are affected by different categories
of software.
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