
Doctor’s Thesis

Task-relevant Model-based Reinforcement
Learning for Contact-rich Robotic Tasks

Cheng-Yu Kuo

September 14, 2023

Program of Information Science and Engineering
Graduate School of Science and Technology
Nara Institute of Science and Technology



A Doctor’s Thesis
submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Cheng-Yu Kuo

Thesis Committee:
Professor Takamitsu MATSUBARA (Supervisor)
Professor Takahiro WADA (Co-supervisor)
Assistant Professor Hikaru SASAKI (Co-supervisor)
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Cheng-Yu Kuo

Abstract

This thesis presents “task-relevant model-based reinforcement learning” to learn
complex robot dynamics and perform tasks in contact-rich environments. Model-
based Reinforcement Learning (MBRL) offers a promising solution for capturing
complex robot dynamics that pose challenges for analytic solutions attempting to
capture them accurately. However, controlling the robot with an MBRL-learned
dynamics model is limited to the available entries of the robot state, which may
not be sufficient for completing the intended task. To enhance standard MBRL’s
ability, we present the task-relevant MBRL, that reformulates the robot state to 1)
satisfy the requirements of the intended task, 2) be adequate for dynamics learn-
ing with MBRL, and 3) be able to adjust the motion behavior while performing
the task. Our method is verified through two contact-rich applications, including
improving contact-safety during the process of learning common kitchen tasks
and achieving walking acquisition with a compliant bipedal robot. Our method’s
success in both setups demonstrates its effectiveness and applicability to various
robotics applications that require flexibility, robustness, and safety in uncertain
and contact-rich environments.
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1. Introduction

1.1. Modern Robots and Their Challenges

Recent years have seen remarkable advancements in the field of robotics. The
applications of robotics have expanded beyond highly controlled settings, such as
manufacturing factories, to more uncertain and dynamic environments, such as
open or contact-rich environments. This expansion is due to the integration of
modern robotic systems with cutting-edge technologies, especially allowing for the
introduction of elastic components that make these robots function similarly to
animal anatomy and physiology [1–4]. These elastic components have significantly
enhanced the impact tolerance of robots, allowing them to operate more flexible
and efficiently, while also contributing to their agility and operating safety.

However, introducing these elastic components significantly increases the com-
plexity of the robot’s dynamics. This makes it challenging to accurately capture
an analytical dynamics model of the robot. These modeling errors can cause
imprecise control, such as unexpected oscillations and positioning errors.

1.2. Compliant Robots for Contact-rich Tasks

Compliant robots, with their high tolerance for impacts, are best suited for
contact-rich environments that require robots to interact with dynamic and un-
predictable surroundings. Such environments pose challenges due to uncertain
sensory feedback, unpredictable contacts, and variable environmental conditions.
When performing contact-rich tasks, the robot’s dynamics are largely affected,
as in object manipulation tasks [5–7], or even fully reliant, as in legged locomo-
tion [8, 9], on physical interactions with the environment. Despite the challenges
in analytically capturing the dynamics of a compliant robot, these effects make it

1



even more difficult. Consequently, researchers are shifting their focus to learning-
based approaches to tackle these complex robotic problems.

1.3. Learning-based Methods for Robot Control

Learning-based methods for robot control have shown significant promise in ad-
dressing the challenges posed by modern robots and contact-rich tasks [10, 11].
These challenges include handling external uncertainties such as environmental
changes [12] , as well as internal uncertainties like sensing errors [13, 14]. These
methods employ machine learning algorithms to learn control policies (Model-
free Reinforcement Learning [15, 16], MFRL), controller parameters (Bayesian
Optimization [17, 18], BO), or dynamics learning for control (Model-based Re-
inforcement Learning [19, 20], MBRL). Studies with these methods have allows
modern robots to operate effectively in uncertain and dynamic environments.

Although MFRL and BO have yielded impressive results in robotic appli-
cations, they are considered black-box approaches that are task-specific and
training-sample-intensive. They require not only enormous training samples but
also re-training from scratch for different robot-tasks. Therefore, many studies
rely on virtual scaling approaches such as Sim-to-Real for efficient learning of the
intended task [13, 21–23]. However, these approaches lengthen the learning pro-
cess, making it difficult to expand to different robot systems or tasks, limit the
ability of onsite learning, and have difficulty in handling unexpected situations
that were not covered in the training process.

1.4. Model-based Reinforcement Learning

1.4.1. The Strength of Model-based Reinforcement
Learning

On the other hand, Model-based Reinforcement Learning (MBRL) [24, 25] of-
fers an attractive solution for robots to autonomously learn their dynamics and
perform tasks through control planning methods that use the learned dynamics
model, such as Model Predictive Control (MPC) [26–28]. Since MBRL learns
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the robot’s state-transition dynamics instead of the robot-task, it is more gen-
eralized over tasks and much more robust to environmental changes when using
online planning with newly observed states during operation. Moreover, MBRL
has demonstrated impressive sample efficiency with a probabilistic model (prob-
abilistic MBRL) [29], which is suitable for learning robot dynamics onsite, where
hardware sample collection is both demanding and time-consuming.

1.4.2. The Limitation of Model-based Reinforcement
Learning

Although MBRL is sample-efficient, more generalizable, and more robust to en-
vironmental changes, it has significant limitations. The optimization objective of
MPC has to be formulated based on the available entries of the robot state. In
other words, MPC cannot perform the intended task if the corresponding entries
are not available in the pre-defined robot state. One solution is to accommodate
all possible entries in a robot state. However, the computation cost of MPC
largely depends on the model’s dimensionality, requiring a compact dynamics
model when high control frequency is anticipated.

With the above in mind, a robot state with the following features is considered
necessary for MBRL:

1. The robot state should be compact enough to achieve the desired control
frequency.

2. The entries in the robot state should be sufficient for performing the in-
tended task.

3. The entries in the robot state should be adequate for MBRL to learn the
state-transition dynamics of the robot system

1.5. The Task-relevant Model-based
Reinforcement Learning

This thesis presents “task-relevant model-based reinforcement learning,” which
uses a reformulated task-relevant robot state that fulfills the above-mentioned
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features. Specifically, we reformulate a task-relevant robot state that contains
relevant entries for the intended robotic task. The task-relevant robot state is
transformed from the standard robot state to ensure that the dynamics learned
through MBRL are sufficient to express the underlying dynamics of the robotic
system. This is essential because MPC relies on the prediction of the learned
dynamics, and deficient state can lead to severe modeling and prediction errors.

By utilizing the task-relevant state, MPC can solve the optimization problem
and find the control relative for achieving the intended task based on a state-
formulated objective function. Additionally, we establish a task-relevant control
space for MPC exploration, allowing us to adjust the characteristics of the robot’s
motion for secondary objectives.

In summary, task-relevant MBRL consists of three parts (see Fig. 1.1):

1. Task-relevant Robot State that adequately expresses the underlying dynam-
ics of the robotic system.

2. Task-relevant Task Objective that is formulated based on the task-relevant
robot state, which is used by MPC to solve the optimization problem.

3. Task-relevant control space that enables the user to adjust the characteris-
tics of the robot’s motion.

1.6. Performance Verification

The effectiveness of task-relevant MBRL is verified through two distinct applica-
tions with different robot systems:

1. Extending the robot state to improve contact-safety during the process of
learning kitchen tasks with compliant robot arms.

2. Condensing the robot state to achieve compliant bipedal robot walking with
real-time planning and onsite learning capability.

4



Figure 1.1. This figure explains the difference between standard MBRL and the presented task-
relevant MBRL.

1.6.1. Application 1:Extending Robot-state for Improving
Contact-safety During Learning Process

In our first application, we utilize the task-relevant MBRL scheme to develop
a contact-safe MBRL for robots operating in contact-rich environments. Our
method enables safe contact behavior during the learning process, which is typi-
cally challenging in MBRL due to sample scarcity in the early stages of learning.

During the early stages of learning, we cannot rely on the inaccurate data-
driven dynamics model to generate reliable controls for the intended task. Al-
though operating with these unreliable controls is considered necessary explo-
ration, they can cause damage to the robot and its surroundings, especially in
contact-rich environments.

To mitigate this risk, we utilize the task-relevant MBRL as follows:

1. Task-relevant Robot State: We reformulated an extended robot state that
accommodates model-uncertainty such that the accuracy of the learned
model becomes accessible for MPC planning.

2. Task-relevant Task Objective: A standard objective that encourage the in-
tended contact-rich task completion.
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3. Task-relevant control space: We utilize the uncertainty information in the
robot state to establish an uncertainty-aware control space that encourage
cautious behavior when the learned model is inaccurate.

This reformulation allows us to correlate the robot’s behavior with the learning
process to improve operating safety.

We verified the effectiveness of our method by conducting kitchen tasks that
exemplify contact-rich environments. These tasks included a particle mixing task
with both simulated and hardware robots, as well as a particle scooping task with
a hardware robot. Our results showed that our method required a less intensive
learning process with lower measured contact forces, providing evidence of its
effectiveness.

1.6.2. Application 2: Condensing Robot-state to Achieve
Compliant Bipedal Robot Walking

In our second application, we utilize the task-relevant MBRL scheme to achieve
walking with a compliant bipedal robot. The deployment of compliant bipedal
robots in human-centric environments holds great potential. However, their com-
plex dynamics pose challenges to analytical approaches. Therefore, MBRL is a
promising solution to learn a fully data-driven dynamics model to capture such
high complexity dynamics.

While MBRL is capable of learning a data-driven dynamics model to express
high complexity dynamics, bipedal walking tasks require a high control frequency
to secure stability. However, the computation expense of MBRL is highly depen-
dent on dynamics dimensionality. A higher dimension dynamics model is needed
to accommodate the compliance dynamics of a compliant bipedal robot.

To address this issue, we utilize the task-relevant MBRL scheme with the law of
conservation of energy to reformulate a condensed robot state for a spring-loaded
bipedal robot. Specifically, we the task-relevant MBRL for compliant bipedal
robot walking is formulated as follows:

1. Task-relevant Robot State: We reformulated an energy-state that expresses
the robot’s Center-of-Mass (CoM) dynamics with potential and kinetic en-
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ergies. We view the installed springs as temporary energy containers and
treat all actuators as energy sources.

2. Task-relevant Task Objective: We designed a reference walking trajectory
for MPC planning based on the energy entries of the energy-state.

3. Task-relevant control space: We utilize both energy-state and the reference
walking trajectory for establish an energy-state-aware control space that
enhance MPC planning reliability.

This reformulation allows us to significantly reduce the dynamics dimensionality
and achieve the high control frequency required for the bipedal walking task.

We verified the effectiveness of our method by learning a walking task with
simulated and hardware planar spring-loaded bipedal robot. In simulation, we
performed walking on uneven terrains and walking at various walking speeds,
including fixed and alternating speeds. For the hardware experiment, we per-
formed walking at a fixed speed to demonstrate the real-world capability of our
method. All results showed successful on-site walking acquisition with a compact
nine-dimension dynamics model, 40Hz real-time planning, and on-site learning
within a few minutes.

1.7. Summary

This thesis presents "task-relevant model-based reinforcement learning" for learn-
ing robot dynamics and performing tasks through MPC. The method reformulates
a task-relevant robot state that contains sufficient entries for the intended task,
and is suitable for MBRL to learn the state-transition dynamics of the robot
system. By utilizing the task-relevant state, MPC can solve the optimization
problem and find the control relative for achieving the intended task based on a
state-formulated objective function. The effectiveness of task-relevant MBRL is
verified through two distinct contact-rich applications (see Fig. 1.2):

1. Extending robot state to enhance operating safety during the learning pro-
cess.
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2. Condensing robot state to achieve learning and performing walking skills
with compliant bipedal robot.

The success in both applications show the effectiveness and applicability of our
method. The presented “task-relevant model-based reinforcement learning” can
potentially be applied to various robotics applications that require high flexibility,
robustness, and safety in uncertain and contact-rich environments.

Figure 1.2. This figure illustrates how the task-relevant MBRL is employed in both applications
presented in this thesis.

1.8. Thesis Structure

The contents of this thesis are structured as follows:

• Chapter 2 provides the preliminary information.

• Chapter 3 details the first application, which explains how task-relevant
MBRL was utilized to improve contact-safety during the learning process
of kitchen tasks.

• Chapter 4 details the second application, which explains how task-relevant
MBRL was utilized to achieve walking with a spring-loaded bipedal robot.
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• Chapter 5 raises some open issues that require further study and investiga-
tion.

• Finally, Chapter 6 presents the conclusion to this thesis.
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2. Preliminaries

The Model-based Reinforcement Learning (MBRL) with Gaussian Process (GPs)
dynamics has demonstrated high sample-efficient [29, 30]. However, the control
frequency of probabilistic Model Predictive Control (pMPC) [31] with a GPs
dynamics model is inversely proportional to the squared training sample size,
leading to a trade-off between having a higher control frequency or a more ac-
curate dynamics model trained with larger amount of samples. This trade-off
is insignificant if offline planning is applied, such as PILCO [29], or low online
control frequency is acceptable [30]. Nevertheless, rapid responses are anticipated
for handling the frequently-changing environmental uncertainties during contact-
rich applications. Therefore, we implement the Fourier-featured Linear Gaussian
Model (LGM-FF) [32] for dynamics modeling to approximate a standard GPs
dynamics and alleviate the trade-off between sample size and control frequency.

This section introduced the basic knowledge of MBRL we implemented for
our applications. Including how we model the LGM-FF dynamics; how we ex-
ploit probabilistic state predictions with the LGM-FF dynamics; how we utilized
pMPC for online planning; and how the MBRL learning process is formulated.

2.1. Probabilistic Dynamics Acquisition

2.1.1. Nominal Dynamics Model for Robotic System

Consider a data-driven dynamics model f (·) : X × U → X that represents a
robotic system’s true state-transition dynamics under a fixed time interval:

xt+1 = f (x̃t) + ϵ, (2.1)
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where x̃t :=
[
x⊤
t ,u

⊤
t

]⊤
∈ RD+U is the state-control vector with the robot’s state

x ∈ X ⊂ RD and control signal u ∈ U ⊂ RU . Additionally, ϵ ∼ N (0,Σn) is the
system noise with Σn = diag [σn−1, ..., σn−D] corresponding to each dimension
of the state. Given N collected state-control tuples from the robotic system,
latent dynamics models f := {fi}∀i=1,...,D are trained independently for each
state dimension with input X̃ := [x̃1, ..., x̃N ] and target y := {y1, ...,yD} with
yi := [x1,i,xN,i], where xN,i denotes the i-th dimension of the N -th collected
state xN .

2.1.2. Extracting Fourier Features from Covariance
Kernel Expansions

Under the Bochner’s theorem [33], Fourier transforming a GPs covariance kernel
expansions of two input vectors k (x̃, x̃′) will return a proper distribution. There-
fore, we can approximate the kernel expansion by drawing all rows of V ∈ Rm×D

i.i.d from the Fourier transformed covariance kernel ρ (ω) [34,35]:

k (x̃, x̃′) =
∫
ρ (ω) exp

(
iω⊤ (x̃− x̃′)

)
dω

≈ n−1 exp (iV (x̃− x̃′))
= n−1 cos (V (x̃− x′))
= n−1 (cos (V x̃) cos (V x̃′) + sin (V x̃) sin (V x̃′))
= ϕ(x̃)⊤ϕ(x̃′),

(2.2)

and we obtain the feature map ϕ(x̃) : X× U→ R2m as

ϕ (x̃) = n− 1
2

[
cos (V x̃)⊤ , sin (V x̃)⊤

]⊤
. (2.3)

In our following applications, a bias term is added to the feature map. Thus, our
use of feature map is defined as

Φ (x) :=
[
1,ϕ (x̃)⊤

]⊤
: X× U→ RM , (2.4)

where M = 2n+ 1 is the user-defined feature size.
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2.1.3. Approximating Gaussian Process Dynamics via
Fourier-featured Linear Gaussian Model

With the Fourier feature map from Eq. (2.3), we utilize the Fourier-featured Lin-
ear Gaussian Model (LGM-FF) [32] to approximate the standard GPs dynamics
for modeling the state-transition dynamics model f (·). The for each state di-
mension i = 1, ..., D, the predictive distribution’s mean µi and variance σ2

i given
input x̃⋆ is obtained via:

p
(
fi (x̃⋆) |X̃,yi

)
∼ GP (µi (x̃⋆) ,σi (x̃⋆)) (2.5)

µi (x̃⋆) = w⊤
i Φi (x̃⋆) ∈ R (2.6)

σ2
i (x̃⋆) = Φi (x̃⋆)⊤ A−1

i Φi (x̃⋆) ∈ R, (2.7)

where w is the corresponding weight, obtained through Maximum a posteriori
[36, 37] estimation as:

wi = σ−2
n,iA

−1
i Φi (x̃⋆) yi ∈ RM×1, (2.8)

Ai = σ−2
n,iΦi (x̃⋆) Φi (x̃⋆)⊤ + λiIM ∈ RM×M , (2.9)

where the optimization variables σn,i and λi are obtained via Maximum Marginal
Likelihood Estimation [36, 38]. The feature size M is depends on the complexity
of the system dynamics, where where a higher complexity state transition will
require larger amount of features to fit. For finding the proper feature size, simply
increase the value of M gradually until the LGM-FF accurately fits the sample.

By having N training samples, the computation cost of training an LGM-FF
model is O (DNM3). In comparison, training a standard GPs model is O (DN3),
in which the training time increases significantly as the sample size grows.

2.2. Finite-horizon Model Predictive Control
with Uncertainty Propagation

Given all latent dynamics models predict and train independently, the subscrip-
tion i = 1, ..., D that indicates each prediction dimension is omitted in this section.
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In addition, a probabilistic state is denoted as p (x) ∼ N (µ,Σ), with correspond-
ing mean vector µ = [µ1, ..., µD]⊤ and covariance matrix Σ = diag [σ2

1, ..., σ
2
D].

2.2.1. State Predictions with Uncertainty Propagation by
Exploiting Moment-matching Techniques

As the LGM-FF outputs a single-step predictive state as a probabilistic distri-
bution with mean and variance, Eq. (2.5), multi-step state predictions requires
uncertainty propagation of obtain. Following the Fubini’s Theorem [39], the
moment-matching technique propagates state uncertainties by integrating the
dynamics model over the inputted state distribution and approximate the corre-
sponding future states as a Gaussian distribution, as illustrated in Fig. 2.1 [29,40].

Figure 2.1. This figure illustrates the process of approximating a Gaussian distributed predictive
state via exploiting moment-matching technique.

Specifically, given a probabilistic state p (xt) ∼ N (µt,Σt) and a determinis-
tic control signal p (ut) ∼ N (ut, diag [0U ]) where 0U denotes a U -dimensional
column vector of zeros, each latent dimension of the predictive state p (xt+1) ∼
N (µt+1,Σt+1) is obtained by integrating the dimension-specific LGM-FF model
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over the state distribution p (xt):

µt+1 = µMM (p (xt) ,ut)

= Ext [f (x̃t) |µt,Σt] =
∫

µ (x̃t) p (xt)dxt

=
∫

w⊤Φtp (xt)dxt = w⊤qt ∈ R,

(2.10)

σ2
t+1 = σ2

MM (p (xt) ,ut)
= varxt,f [f (x̃t) |µt,Σt]
= Ext

[
σ (x̃t)2 |µt,Σt

]
+ Ext

[
µ (x̃t)2 |µt,Σt

]
− Ext [µ (x̃t) |µt,Σt]2

=
∫

Φ (x̃t)⊤ A−1Φ (x̃t) p (xt)dxt

= tr
(
A−1Qt

)
+ w⊤Qtw −

(
w⊤qt

)2
∈ R.

(2.11)

where Φt := Φ (x̃t), and analytic solutions for

qt :=
∫

Φtp (xt)dxt, (2.12)

Qt :=
∫

ΦtΦ⊤
t p (xt)dxt (2.13)

are provided in Appendix A.1.
With the above in mind, we summarize the state prediction with uncertainty

propagation via exploiting moment-matching on LGM-FF as follows:

p (xt+1) = fMM (p (xt) ,ut)
subject to p (xt) ∼ N (µt,Σt) , ∀t ∈ N

with latent predictions µt+1 = µMM (µt,Σt,ut)
σ2
t+1 = σ2

MM (µt,Σt,ut)


. (2.14)

The computation cost of exploiting moment-matching with standard GPs dy-
namics is O (DN2), where D is the state dimension and N is the training sample
size that increases as the learning process progresses. In comparison, exploiting
moment-matching with LGM-FF has a computation cost of O (DM2), where M
is the number of Fourier features, resulting a fixed time consumption for predic-
tion. In addition, previous works has demonstrated that M ≪ N in robotics
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tasks [12, 32].

2.2.2. Finite-horizon Probabilistic Model Predictive
Control

Model Predictive Control (MPC) is a process that finds the optimal control by re-
lying on future predictions via the system’s dynamics model [41]. Several pieces of
research has proofed the mathematics convergence and stability of a probabilistic
MPC (pMPC) [26, 31, 42, 43], an MPC with data-driven probabilistic dynamics,
and its effectiveness in robotics applications are also demonstrated [12,29,30].

Specifically for each time-step t, pMPC finds the optimal H-step control se-
quence u⋆ = [û1, ..., ûH ] that minimizes a user-defined finite-horizon loss L (·) by
recursively exploit probabilistic state predictions:

minimizeu⋆ L (p (xt)) =
H+1∑
k=2

E [ℓ (x̂k) |p (x̂k)] ∈ R

subject to p (x̂k+1) =fMM (p (x̂t) ,ut) , x̂1 = xt

p (x̂k) ∼ N
(
µ̂t, Σ̂t

)
, k =1, ..., H + 1

ûk ∈ U, k =1, ..., H


, (2.15)

where ℓ (·) is the immediate loss. The computation cost of pMPC planning with
LGM-FF dynamics model is O (HDM2), depending on prediction horizon H, the
state dimension D and the Fourier feature size M . By truncating the planning
horizon H short, a lower computation cost enables pMPC to recursively solve
the problem with newly observed state at a fixed and high control frequency,
thus making it more robust to environmental changes than long-horizon pMPC
planning [29].

2.3. Model-based Reinforcement Leaning

Model-based Reinforcement Learning (MBRL) [24, 44] is a process that learns
the systems dynamics model from training samples that collected from actual
trial-and-error. During the trial-and-error (or the planning phase), the system
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will operate the optimal control via pMPC with the model trained with previ-
ously collected samples. Meanwhile, new samples are also collected during the
planning phase and the model will get updated in the upcoming training phase.
By recurring the planning and training phase, we can obtain a dynamics model
with improved accuracy by collecting more training samples, while we can also
expect a better performance by planning with a higher accuracy dynamics model.

2.3.1. Model-based Reinforcement Learning Process

In MBRL learning process, trials will repeat until reaching the desired perfor-
mance, where a trial is defined as completing one planning and one training phase.
In each trial’s planning phase, finite steps are repeated at a fixed frequency un-
til any user-defined termination condition is satisfied. During each time-step t,
the pMPC determine an H-step optimal control sequence u⋆ = [û1, ..., ûH ] that
minimizes the finite-horizon loss L (xt) based on the observed state xt. The first
control sequence is selected, ut := û1 and applied to the system. After the plan-
ning phase is terminated, the MBRL enters training phase and refines its model
using samples collected from all previous trials.

2.3.2. Ahead pMPC Planning for Delay Compensation

As the pMPC finds the optimal control based on the observed state, its planning
time will cause a delay between state observation and applying the optimal con-
trol. Due to the delay, the model accuracy will suffers from inconsistent control
between each training sample. Similar to the parallel MPC workflow [28] and the
asynchronous control [45], we implement the ahead pMPC planning to alleviate
the delay and the inconsistency control issue. In specific, the pMPC plans for
an n step ahead control sequence ut+n based on a predicted state x̂t+n obtained
by recursively exploiting state prediction via Eq. (2.14). As the control signal
ut at time-step t was previously planned and applied right after the state ob-
servation, the ahead pMPC compensates for the control delay and improves the
control consistency of training samples, Fig. 2.2. Furthermore, the ahead pMPC
can increase control frequency as the pausing is no longer necessary.
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Figure 2.2. Example of control delay compensation with one-step (n = 1) ahead pMPC plan-
ning.
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Algorithm 1: MBRL with Ahead pMPC
Initial inputs:
Empty sample set: X̃, y
Trial-end termination condition: Xend
Finite-horizon loss function: L (·); Immediate loss function: ℓ (·)
Ahead pMPC steps: n

MBRL process:
while (not reaching the desired performance) do

ResetSystem()
t = 0
# Get initial moment-matching prediction model

fMM ← TrainModel(X̃, Y )
# Get Initial state

x0 ← GetState()
# Initial ahead pMPC planning

p (x̂1) ∼ N (x0, 0D)
for i = 1, ..., n do

u⋆ = arg minu L (p (x̂i))
ui = u⋆ (1)
p (x̂i+1) = fMM (p (x̂i) , ui)

while xt /∈ Xend do
t += 1

# Get current state
xt ← GetState()

# Operate the optimal control
Operate(ut)

# Future state predictions via Eq. (2.14)
p (x̂t) ∼ N (x0, 0D)

for i = 1, ..., n do
p (x̂t+i) = fMM (p (x̂t+i−1) , ut+i−1)

# n-step ahead pMPC planning via Eq. (2.15)
u⋆ = arg minu L (p (x̂t+n))
ut+n = u⋆ (1)

# Save sample to corresponding sets
x̃t =

[
x⊤
t , u⊤

t

]⊤

yt ← GetState()
X̃ =

{
X̃, x̃t

}
, Y = {Y , yt}
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3. Extended Robotic State by
Incorporating
Model-uncertainty to Enhance
Contact Safety During the
Model-based Reinforcement
Learning Process

3.1. Contact Safety and Model-uncertainty

3.1.1. Model-uncertainty of Probabilistic Model-based
Reinforcement Learning

Probabilistic Model-based Reinforcement Learning (MBRL) is an attractive op-
tion for robotics scenarios due to its effectiveness and high sample efficiency
[44, 46]. This allows for on-site learning of robotic tasks. However, the fully
data-driven dynamics model cannot accurately represent the system dynamics
during the early stages of the learning process when there is data scarcity, caus-
ing high model-uncertainty, as illustrated in Fig. 3.1. While model-uncertainty
is high, we cannot expect the probabilistic Model Predictive Control (pMPC) to
generate reliable control for the intended robotic task. Although applying these
unreliable controls is required as exploration, it could damage the robot itself and
its surroundings in a physical environment. This is particularly important when
the robot is performing a contact-rich task in a contact-rich environment, such as
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performing common kitchen tasks (Fig. 3.2). As safety is always the primary con-
sideration and the learning process occurs on-site, a contact-safe learning process
in MBRL must be considered.

Figure 3.1. This figure illustrates the relationship between model-uncertainty and sample
scarcity.

3.1.2. Enhancing Contact-safety During the Learning
Process

Tactile exploration, through touching an unknown object, exemplifies the contact-
safe behavior of the learning process. When humans lack sufficient knowledge
about an object, their fundamental fear and intolerance of uncertainty elicits
cautious behaviors when approaching it to maximize survival [47, 48]. Inspired
by this concept, a robot can also exhibit contact-safe exploration behaviors by
moving cautiously during high uncertainty. Therefore, it may be reasonable to
associate model uncertainty with the robot’s control space to achieve this behav-
ior.

We present a contact-safe MBRL that reduces the intensity of unexpected in-
tensive contacts during the learning process by promoting a safety characteristic:
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Figure 3.2. This figure provides examples of contact-rich kitchen tasks, where unsafe and
intensive contact behaviors can result in damage to the robot or its environment.

The robot takes small and gentle actions while the model-uncertainty is high and
performs the intended task confidently when the model-uncertainty is reduced
as exploration becomes sufficient. Such safety is achieved by an uncertainty-
aware approach that associates the learning progress with the control space of
the probabilistic Model Predictive Control (pMPC) optimization problem. Pre-
vious research handled pMPC control space using a differentiable squashing func-
tion [29], but this approach may result in unreliable predictions near constraint
boundaries [49]. To associate the implicit model-uncertainty with the pMPC op-
timization problem to improve contact safety during exploration, a task-relevant
state that explicitly accommodates the model-uncertainty is necessary for refor-
mulating the robot state

A deterministic-reformulated probabilistic model predictive control (pMPC)
[31] was proposed to support dynamic and state-associated control space by fol-
lowing Pontryagin’s Maximum Principle [50]. This was achieved by prolonging
the state with the prediction uncertainty from the standard Gaussian Process
(GPs)-based dynamics model. By using a similar concept [31], we deterministi-
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cally reformulated a task-relevant robotic state for the LGM-FF dynamics. This
allows us to explicitly accommodate model uncertainty into the robot state while
maintaining high sample efficiency and low computation cost when performing
robotic tasks. By making model uncertainty an explicit part of the robotic state,
we can use this information to constrain pMPC exploration within an adjustable
uncertainty-aware control space to achieve the intended safety characteristics.

3.1.3. Existing Methods for Enhancing Contact-safety

Safe Contact-rich Manipulations using Reinforcement Learning

To enhance contact safety in contact-rich robotic scenarios, two common Rein-
forcement Learning (RL) approaches have been developed.

The first approach involves learning to generate “safe” policies to avoid colli-
sions. For example, Levine et al. [51] created a unified control policy by learning
from a set of desired trajectories that considered safety, and Yamada et al. [52]
switched to a collision-avoidance model-based policy if the model-free RL policy
was likely to cause a collision during an object-manipulation task in an obstructed
environment.

The second approach involves learning a controller to adjust robot stiffness
with RL to avoid intensive contacts. For example, Martín-Martín et al. [53]
safely performed surface-wiping and door-opening tasks with a model-free RL-
learned variable impedance controller that penalized forces exceeding a payload.
Beltran et al. [54] learned the gain of the paralleled position/force controller to
perform fail-safe ring/peg insertion tasks, and Wirnshofer et al. [55] achieved a
safe peg insertion task with an RL-learned controller that combined a compliance
controller with a set of goal-directed policies.

While the approaches mentioned above focus on contact safety during exe-
cution, they do not consider safety during exploration. Furthermore, their de-
sired behaviors are expressed in terms of reward/loss functions. However, multi-
objective optimizations require careful setups to prevent convergence issues [56].

In contrast, we prioritize the contact-safety during the learning process (or the
exploration) by implementing an uncertainty-aware control space, and optimizing
for a single objective loss function to achieve the intended robotic task.
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Utilizing Uncertainties Information with Probabilistic Methods

Uncertainty in probabilistic approaches provides rich information, which has been
utilized for various purposes in prior works. Some used uncertainty to encourage
agents to expand their exploration coverage [57, 58], while others planned for a
policy that minimizes uncertainty [29,30].

Lee et al. [59] proposed a guided uncertainty-aware approach that directs the
robot to an uncertain area and switches to a reinforcement learning (RL) policy
to perform a peg-in-hole task. LaGrassa et al. [60] performed a door-opening task
by patching the model-based reinforcement learning (MBRL) with an imitation-
learned model-free local policy when the MBRL’s dynamics model contains high
uncertainty.

In contrast to the above studies, our method explores a novel application that
associates model uncertainty with the predictive model control (pMPC) limits to
adjust the agent’s MBRL learning behavior.

3.2. Methodology

3.2.1. Extended Robot State for Accommodating
Model-uncertainty

Our objective is to achieve a contact-safe learning process by associating model-
uncertainty with MBRL exploration such that the risk of causing damage to the
environment or the robot itself can be reduced. Specifically, this is achieved with a
uncertainty-aware pMPC control space that is associated with model-uncertainty.
Therefore, such model-uncertainty has to be explicitly accessible from the robotic
state.

Given a robotic state xt ∈ X ⊂ RD and control ut ∈ U ⊂ RU , a Gaussian
distributed predictive state p (xt+1) ∼ N (µt+1,Σt+1) is obtained via exploiting
moment-matching with LGM-FF dynamics model, as shown in Eq. (2.14):

p (xt+1) = fMM (p (xt) ,ut), (3.1)

where the predictive covariance matrix Σt indicates the model-uncertainty.
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In order to allow pMPC to access such implicit model-uncertainty while solving
optimization problems to achieve contact safety, we reformulated a deterministic
robotic state st :=

[
µ⊤
t ,1⊤Σt

]⊤
∈ S ⊂ R2D that accommodates the predictive

mean and the diagonal elements of the covariance as deterministic entries, where 1
denotes a column vector of ones. Meanwhile, a deterministic formulated dynamics
model fu (·) : 2D + U → 2D is presented to adopt the state changes:

st+1 =
 µt+1

Σt+11

 = fu (st,ut) =



µMM,1 (µt,Σt,ut)
...

µMM,D (µt,Σt,ut)
σ2
MM,1 (µt,Σt,ut)

...
σ2
MM,D (µt,Σt,ut)


, (3.2)

where µMM,i (·) ,σ2
MM,i (·) is the moment-matching equation from Eq. (2.14), with

i = 1, ..., D indicates the corresponding latent dimension.
In the following applications, robots are velocity-controlled with discrete accel-

eration control signals. Therefore, the entries of the deterministic reformulated
state s are defined as follows:

s :=


µp

µṗ

Σp1
Σṗ1

, (3.3)

where p ∈ Rk and ṗ ∈ Rk are the actuators’ position velocity of a k-Degree-
of-Freedom (DoF) robot with µp, µṗ, Σp and Σṗ are their corresponding mean
vector and covariance matrices.
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3.2.2. Contact-safe Exploration with Model Predictive
Control

Contact-safe Characteristics During Exploration

In the following text, the term “action” refers to the robot’s behavior, while
“control” denotes the control command sent to the agent.

Using the deterministically reformulated robot dynamics model and state, we
present a contact-safe MBRL with uncertainty-aware pMPC control space to
reduce the intensity of unexpected intensive contacts during the learning process.
Specifically, our method promotes two safety characteristics:

1. Safety-Measure-A: We encourage the agent to take smaller actions by
limiting control during high uncertainty.

2. Safety-Measure-B: We encourage the agent to choose controls that reduce
high velocities during high uncertainty.

We include “Safety-Measure-B” because limiting control with “Safety-Measure-
A” also restricts the agent’s ability to reduce its velocity.

Probabilistic Model Predictive Control with Uncertainty-aware
Control Space

We establish an uncertainty-aware control space to constrain pMPC exploration
during periods of high model-uncertainty. This is based on the ability to mea-
sure uncertainty from the predictive state of the deterministically reformulated
dynamics model (Eq. 3.2).

Given a state st, for all receding horizonH, we established an uncertainty-aware
control space for pMPC to solve the optimal control problem that minimizes the
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finite horizon loss L (·):

minimize L (st) =
H+1∑
k=2

ℓ (ŝk)

subject to ŝk+1 = fu (ŝk, ûk)
ŝ1 = st

ŝk ∈ S, k = 1, ..., H + 1
ûk ∈ U′, k = 1, ..., H
U′ = gu (U, ŝk) ⊂ U



, (3.4)

where ℓ (·) : S → R is the immediate loss, ŝ1, ..., ŝH+1 are the predictive state
horizon within the pMPC optimization problem, and gu (·) : S × U → U is the
uncertainty-aware control space the is designed to meet the Safety-Measure-A
and Safety-Measure-B.

The Uncertainty-aware Control Space

In the following, we assume a standard control space that has an upper bound
and a lower bound denoted by U ∈ [umin,umax], where umin,umax ∈ U are the
boundaries.

We present linear control space that use scaling and translating mechanisms to
achieve two desired safety characteristics. During high uncertainty, the scaling
mechanism scales down the control space to satisfy Safety-Measure-A, which pre-
vents intensive actions. However, scaling down the control space also limits the
robot’s ability to reduce momentum. Therefore, the translating mechanism trans-
lates the control space in the negative direction of the robot’s velocity to prevent
high momentum and ensure full Safety-Measure-B. Therefore, the uncertainty-
aware control space is obtained via:

U′ = gu (U, ŝk) = [Ks (ŝk) umin −Kt (ŝk) , Ks (ŝk) umax −Kt (ŝk)] ∈ U, (3.5)

where Ks (·) : S → R and Kt (·) : S → R are the scaling and translating factor
that modifies the control space (see Fig. 3.3).

To fulfill Safety-Measure-A, we have identified the following requirements for
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Figure 3.3. This figure illustrates the scaling and translating mechanisms of the uncertainty-
aware control space. The scaling contributes to encouraging gentle behaviors, and the translat-
ing prevent high momentum (or velocity µṗ) during high model-uncertainty.

the function Ks (·):

(A1) The value should decrease during periods of high uncertainty to limit in-
tensive action during these times.

(A2) The value must be constrained within the range of (0, 1] to prevent a control
space with zero range, negative range, or a range exceeding the standard
control space.

(A3) The value should return to 1.0 during low uncertainty to enable the robot
to perform its intended task confidently within the standard control space
U.

(A4) The function must have a parameter for adjusting the uncertainty sensitivity
to achieve adjustable awareness.

Similarly, to achieve Safety-Measure-B, we have identified the following require-
ments for the function Ks (·):

(B1) The value should increase with velocity during high uncertainty to provide
greater stopping power when both momentum and uncertainty are high.

(B2) The value should have a minimum of 0 during low uncertainty to enable the
robot to achieve high momentum when needed within the standard control
space U.
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(B3) The function must have a parameter for tuning the uncertainty sensitivity
to achieve adjustable awareness.

(B4) The function must have a parameter for tuning the velocity sensitivity to
achieve adjustable stopping power.

We present factoring functions with exponential decay mappings for scaling
(Ks (·)) and translating (Kt (·)) that satisfy the two desired safety characteristics.
These functions are simple mappings of non-linear decay or growth (by flipping
the decay function) within the range of [0,1] under non-negative real inputs.

Ks (ŝ) = (1− βs)︸ ︷︷ ︸
(A3)

(A1)︷ ︸︸ ︷
exp(− αs︸︷︷︸

(A4)

∥Σp∥2) + βs︸︷︷︸
(A2)

, (3.6)

Kt (ŝ) =
(B1)︷ ︸︸ ︷

(1− exp(− αt︸︷︷︸
(B3)

∥Σp∥2))

︸ ︷︷ ︸
(B2)

γt︸︷︷︸
(B4)

µṗ
, (3.7)

where αs, αt ∈ R≥ 0 are the adjustable uncertainty-awareness parameters. The
velocity sensitivity is denoted by γt ∈ R≥ 0 and is typically set as the ratio
of the control’s feasible upper bound to the agent’s maximum velocity. This
prevents over-translation. βs represents the minimum scaling value. To ensure a
consistent scale of uncertainty, the uncertainty at the current state is estimated
by measuring only the position variance Σp.

We can adjust the agent’s learning behavior by changing its uncertainty-awareness
parameters αs and αt. For example, we can use the standard contact-unsafe
MBRL with αs and αt equal to 0, or a contact-safe MBRL with excessive uncertainty-
awareness, where lnαs and lnαt equal 10. As an example where we assume a
single dimensional velocity mean µṗ, Fig. 3.4 exemplifies the relationship be-
tween states s and control space modification factors Ks (·) , Kt (·) under under
βs, γt = 0.2. Note that the translating is only active while µṗ ̸= 0 under a certain
level of uncertainty.
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Figure 3.4. This figure shows the relationship between the scaling factor Ks (·), translating fac-
tor Kt (·) and the state s under different uncertainty-awareness αs, αt settings. Color indicates
corresponding values.

3.3. Experimental Evaluation

3.3.1. Contact-rich Kitchen Tasks

Mixing and scooping operations are common tasks in cooking [61]. However,
completing these tasks involves extensive contact between different objects, mak-
ing it challenging to learn them from scratch using robotic hardware without
causing damage to the robot or its environment. Therefore, they are suitable for
demonstrating the effectiveness of our method.

We conducted both simulated and hardware experiments with HEBI robotic
hardware, as shown in Fig. 3.5. The simulated robot emulates a hardware mixing
setup to evaluate our method’s effectiveness under various uncertainty-awareness
settings. Hardware experiments verified the real-world potential of our method.

The mixing task’s goal is to perform a circulating movement with the attached
tool and mix the particles inside the container. The scooping task’s goal is to
scoop particles from one container and pour them into another.
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Figure 3.5. This figure shows the robot setup for the following experiments. Left: Mixing task
using a simulated 2-DoF robotic arm built with HEBI parts. (The blue stick represents the
reference target position for each step). Middle: Mixing task using a hardware 2-DoF robotic
arm built with HEBI parts. Right: Scooping task using a hardware 4-DoF robotic arm built
with HEBI parts.

3.3.2. Learning Implementation and Control Objectives

State Definition for Model-based Reinforcement Learning

Model-Based Reinforcement Learning (MBRL) learns the fully data-driven state-
transition dynamics of a robot, as shown in Eq. 3.2. Therefore, learning requires
a carefully defined robotic state. Since the actuators’ behavior is periodic, we
defined the position and velocity of a k-degree-of-freedom (DoF) robotic arm in
Eq. 3.3 as follows:

p :=
sin Θ
cos Θ

 , ṗ := Θ̇, Θ =


θ1
...
θk

, (3.8)

where Θ denotes the vector that contains rotational positions of all k actuators.
To achieve smooth movements, both simulated and hardware robots are velocity-
controlled with a discrete acceleration control signal of u = ∆ṗ/∆t. This control
signal is generated via pMPC.
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Task Objective of Probabilistic Model Predictive Control

The objective of our experiments is to learn the robot’s dynamics from scratch
while it performs the intended task. We achieve this by tracking provided hints:
the world-space reference end-effector trajectories for each task. To emphasize the
impact of unexpected contacts during the learning process, force/torque sensors
are used, and the reference trajectories of the tasks do not contain stiff contacts.

For the simulated mixing task, the reference trajectory follows a circulating
pattern with a diameter of 0.1 meters and a period of five seconds. The hardware
mixing task has the same diameter as the simulated mixing task but with a
period of three seconds. The reference trajectory for the scooping task consists
of a series of positions and orientations for the spoon, which were recorded from
human demonstrations of scooping and transporting particles from one container
to another in world-space.

For better demonstration of our method, the immediate loss ℓ (·) in Eq. 3.4 does
not contain a regularization term for control sigma u. Our method is responsible
for all the behavior changes during the learning process of MBRL. With the above
in mind, the immediate loss ℓ (·) is designed to fulfill the trajectory tracking
objective:

ℓ (st) = kp∥pee⋆t − peet ∥2︸ ︷︷ ︸
position loss

+ ko∥oee⋆t − oeet ∥2︸ ︷︷ ︸
orientation loss

, (3.9)

where kp, ko ∈ R≥0 are corresponding weights and peet ,o
ee
t are the robot’s end-

effector position and orientation in the world-space at time step t that track
references pee⋆t ,oee⋆t . The end-effector position in world-space peet ,o

ee
t is obtained

by forward kinematics, where joint positions are calculated via an Euler equation
from the state s:

Θ̂ = Re [−i (µcos Θ + iµsin Θ)]. (3.10)

In the followings, the tracking error is defined as ∥pee⋆t − peet ∥2 . All the ex-
periments share these parameters: number of features M = 65; pMPC receding
horizon H = 3; all entries of umin and umax are −0.2 and 0.2 rad/s; βs = 0.3 and
γt = 0.2 in Eq. 3.6 and Eq. 3.7, respectively; kp and ko = 1.0 in Eq. 3.9.
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3.3.3. Simulation Experiments and Results

Simulated Environment Setup

Mixing Task: We simulate a real particle-mixing task environment using the
Mujoco simulator (see Fig. 3.5-left). The two-Degree-of-Freedom (DoF) arm is
0.65 m in total length, with a 0.02 m-diameter cylinder-shaped stick attached to
its end-effector. The stick is 0.5 m long and does not touch the bottom of the
bowl during mixing. A force sensor is attached to the stick to measure contact
forces. The bowl has a diameter of 0.24 m and is fixed beneath the arm, filled
with 900 particles that are 0.03 m in diameter and have a total mass of 9 kg.
The learning process consists of 12 trials, each with 100 steps taken at 0.1-second
intervals.

Comprehensive Comparisons

This section demonstrates the effectiveness of our contact-safe MBRL by com-
paring the following three setups

• Uncertainty-aware: our uncertainty-aware MBRL where the pMPC control
space is associated with model-uncertainty.

• Fixed: The standard MBRL with uncertainty-awareness parameters set to
αs, αt = 0 that has a fixed (unmodified) control space.

• Linear Changing: The contact-safe MBRL with globally evaluated uncer-
tainty via sample size that increase linearly during the learning process.
(Replacing ∥Σp∥2 in Eq. (3.6) and Eq. (3.7) with N−1).

We conducted 20 experiments to test our method under different uncertainty-
awareness settings and compared it to the above two baselines. We measured the
learning efficiency by averaging the tracking error across all trials and evaluated
the contact intensity reduction by averaging the top 3%, 5%, and 10% measured
stick forces.

(1) Contact-safe MBRL vs. standard MBRL (contact-unsafe): This compar-
ison aims to demonstrate the effect of changing the uncertainty-awareness pa-
rameters, αs and αt. Figure 3.6 shows the results of 20 learn-from-scratch tri-
als with “fixed” and our method, using different uncertainty-awareness settings:
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[αs = 0, lnαs = 6, lnαs = 9] and [αt = 0, lnαt = 6, lnαt = 9]. Here, αs = 0 or
αt = 0 disables the corresponding control space modifying mechanism. All re-
sults with lnαs = 9 are highly sensitive to model uncertainty and failed to per-
form the task due to overly conservative behavior. In comparison, other results
show similar learning efficiency with “fixed”, where tasks are learned within eight
trials. By comparing the average “max stick forces,” our method significantly
reduces contact intensity during the learning process, especially with the setting
{lnαs, lnαt = 6}, which has high learning efficiency while being contact-safe.

(2) Uncertainties for contact-safe MBRL: Fig. 3.7 demonstrates the benefits
of utilizing the model uncertainty of our method over “linear changing” when
operating in the best uncertainty-awareness setting we experienced, which was
{lnαs, lnαt = 6}. Results for “fixed” are also provided. Although the learning
efficiencies of the two baselines and our method are similar, “linear changing”
and our method show significantly lower averaged contact forces throughout the
learning process. However, in the 8th, 9th, and 11th trials, the contact forces
observed in “linear changing” have a higher standard deviation than those in
our method, indicating that “linear changing” has a higher possibility of encoun-
tering intensive contacts. This is because “linear changing” globally evaluates
uncertainty by sample size, which cannot handle novel situations after collecting
a certain amount of samples. In contrast, our method adaptively evaluates uncer-
tainty by model uncertainty, which is based on exploration coverage. As a result,
the Ks (·) value of our method is adaptive and holds higher variances throughout
15 trials, resulting in the lowest overall contact intensity.

Contact-safe MBRL Behavior Analysis

We selected the individual results of the following settings to demonstrate the
scaling and translating mechanisms’ roles (Fig. 3.8):

(1): The standard contact-unsafe MBRL {αs, αt = 0}.

(2): Contact-safe MBRL with uncertainty-awareness settings {αs = 0, αt = 6}
(scaling disabled).

(3): Contact-safe MBRL with uncertainty-awareness settings {αs = 0, αt = 9}
(scaling disabled).
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Figure 3.6. This figure shows the relationship between uncertainty-awareness and robot’s ex-
ploration behavior. The left half of the display shows the average tracking error, while the right
half shows the measured “max stick force” over 20 experiments for each uncertainty-awareness
setting. The red dashed line indicates 2 cm to distinguish task acquisition status, while the
blue dashed line indicates the eighth trial and measures task completion and learning efficiency.
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Figure 3.7. The upper figure shows the average “max 5% stick force.” The middle figure shows
the average “Kx (·)” value, which is inversely proportional to the uncertainty level. The bottom
figure shows the average tracking error, illustrating learning efficiency. All values are averaged
over 20 experiments, and color fills illustrate the 95% confidence interval. “fixed” refers to
contact-unsafe MBRL, while “linear changing” refers to {ln αs, ln αt = 6} contact-safe MBRL
with global uncertainty, which replaces position uncertainty ∥Σp∥2 with inverted sample size
N−1. “Ours” refers to our contact-safe MBRL with settings {ln αs, ln αt = 6} .

(4): Contact-safe MBRL with uncertainty-awareness settings {αs = 6, αt = 0}
(translating disabled).

(5): Contact-safe MBRL with uncertainty-awareness settings {αs = 9, αt = 0}
(translating disabled).

(6): Contact-safe MBRL with uncertainty-awareness settings {αs = 6, αt = 6}.

Fig. 3.8 illustrates the stick force and velocity observations during the MBRL
learning process under various uncertainty-awareness settings throughout twelve
trials.

Fig. 3.8-(A) shows that increasing αt effectively reduces momentum while ex-
ploring novel area. However, without scaling, intensive contacts occur despite
the lower velocities (Fig. 3.8-(B)). This is because contacting the bowl’s edge
can significantly reduce the stick’s velocity, limiting the effect of the translating
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mechanism (Fig. 3.9: upper), and disabling the scaling mechanism allows inten-
sive control signals. Consequently, safety measures are disabled when the robot
contacts with objects, which is considered contact-unsafe acts.

Fig. 3.8-(C) emphasizes the essence of safety-measure-B, or the translating
mechanism. While the translating mechanism is disabled, intensive contacts oc-
curred because the robot’s capability to reduce its velocity when exploring novel
areas is limited by the scaling mechanism, as illustrated in Fig. 3.9: lower. In
other words, if the robot approaches novel areas with high momentum, the abil-
ity to slow down is gradually limited as model-uncertainty increases. Exploration
with high momentum in novel areas can increase the risk of intensive contacts,
which is also considered contact-unsafe acts.

On the other extreme, setting (5) shows overly conservative behavior, result-
ing in task acquisition failure. This is because its excessively high uncertainty-
awareness limits the robot’s ability to perform the task despite it being considered
safe to do so.

Lastly, Fig. 3.8-(D) shows that enabling both scaling and translating mecha-
nisms with proper uncertainty-awareness allows the robot to acquire the task at
lower contact forces and explore areas that frequently have contacts safely.

3.3.4. Hardware Experiment and Results

Hardware Environment Setup

Mixing Task: The configuration for the mixing task on the hardware robot is
similar to that used in the simulation setup. A stick is attached to the end-
effector without making contact with the bottom of the bowl during mixing. The
metal bowl used has a diameter of 0.24 m and is filled with cut drinking straws
to simulate a cooking ingredient. The learning process consists of 15 trials with
each trial containing 100 steps that last for 0.1 seconds each.

Scooping Task: The scooping task involves a four-degree-of-freedom arm with a
spoon attached to the end-effector, and two bowls: one filled with pieces of straw
and one empty. During the learning process, the arm is gravity-compensated and
velocity-controlled. This experiment demonstrates the effectiveness of our method
in changing learning behavior in a large workspace. The learning process consists
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Figure 3.8. This figure illustrates the behavior analysis under various uncertainty-awareness
settings throughout twelve trials. The upper half shows the stick force, and the bottom half
shows corresponding velocity during the learning process. Each figure shows the top-view with
bowl boundary (black solid lines) and the reference mixing trajectory (black dashed lines). Color
differences indicate the maximum value observed at each location in the bowl. The labels (1)-(6)
correspond to different uncertainty-awareness settings: (1) standard contact-unsafe MBRL, (2)-
(3) scaling disabled, (4)-(5) translating disabled, and (6) the best combination setting. Panel
(A) shows that translating reduced the velocity of entering a novel area. Panel (B) shows
that intensive contacts are disabled during scaling. Panel (C) shows that intensive contacts
occur when exploring a novel area if translating is disabled. Panel (D) shows that contacts are
explored safely when both scaling and translating are enabled.

Figure 3.9. This figure illustrates the changes in control limits with/without scaling (upper),
as well as with/without translating (lower).
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of 40 trials and 65 steps, each of which has 0.2-second intervals. For hardware ex-
periment, we compare our uncertainty-aware MBRL (with uncertainty-awareness
parameter {αs, αt = 5}) with “linear changing” and “fixed” as in simulation ex-
periment.

Mixing Task

As the hardware robot was not installed with load cells, we measure joint torques
from actuator sensors to estimate contact forces. We expect that the measured
torque will increase as more intensive contact occurs.

Fig. 3.10 shows that all three methods has a similar learning efficiency where the
mixing task were learned at around 11th trial. While having a similar learning
efficiency, Fig. 3.11 shows that our method significantly reduced the measured
torque during the learning process, resulting a contact-safe learning process that
we anticipated.

Figure 3.10. This figure shows the tracking error of each method during the mixing task learning
process.

By comparing the environmental differences between each method (see Fig. 3.12),
we find that our method produces a much clearer environment after the learning
process, with a lower density of scattered straw cuts. These results demonstrate
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Figure 3.11. This figure shows the measured torque for each method during the mixing task
learning process. The solid lines indicate the maximum measured torque, while the dashed lines
represent the average measured torque within each trial. Standard deviation is shown as color
shades.

the real-world feasibility of our method, producing similar results to those found
in the above simulation experiments.

Figure 3.12. This figure illustrates the environmental differences between each method after
learning the mixing task. The intensity of the learning process can be evaluated by the density
of scattered straw cuts in the environment.
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Scooping Task

We conducted 40 trials to learn the scooping task with a 4-DoF robotic arm,
demonstrating the scalability of our contact-safe MBRL scheme to more complex
tasks. The objective of the scooping task is to follow a human-demonstrated
trajectory to scoop and transport straw cuts from one container to another, as
shown in Figure 3.13. All three methods (“contact-safe,” “fixed,” and “linear
changing”) successfully completed over six scoops within the 40 trial learning
process.

Figure 3.13. This figure illustrates the scooping task trajectory. The orange line showcases the
scooping trajectory from the front view.
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Similar to what we observed in the simulation results shown in Fig. 3.8, our
method results in a much more condensed exploration trajectory throughout the
40-trial learning process (see Fig. 3.14). In comparison, both the “fixed” and
“linear changing” approaches waved the spoon across the scene during the learn-
ing process, which is considered dangerous in such a contact-rich environment.
As in the mixing task, we compare the density of scattered straw cuts in the
environment after six success scoops after the learning process. Fig. 3.15 demon-
strates that our method results in a significantly lower density of scattered straw
cuts during the learning process. This demonstrates the method’s effectiveness
in improving contact safety during the learning process.

3.4. Discussion

3.4.1. Possibilities of Utilizing Model-uncertainty for
Various Purposes

In our application, we use model uncertainty to encourage the robot to behave
cautiously during the early stages of the learning process. This helps prevent
damage during sample scarcity. Although our experimental results show that
our method has similar learning efficiency to standard MBRL, it is important to
note that our application’s workspace and robot system are relatively small and
simple. Tasks with larger scales may still suffer from reduced learning efficiency
due to cautious exploration.

There are several possible applications for utilizing model-uncertainty. One
example is using greedy exploration to encourage the robot to explore more ag-
gressively during periods of high model-uncertainty. This can effectively increase
learning efficiency when trying to learn the robot system’s dynamics. This ap-
proach is particularly effective for learning various tasks by quickly gaining a
comprehensive understanding of the robot’s dynamics, which can later be en-
hanced and refined through various assigned tasks.

Another example is the ability to switch between analytic and learned dynamics
according to the level of model-uncertainty. This approach allows for a higher
success rate in performing the task. During periods of high model uncertainty,
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Figure 3.14. This figure illustrates the exploration trajectory of the scooping task from the
top view. Each line indicates one of 40th trajectories of each method. The black line is the
human-demonstrated trajectory that transport the straw cuts from the darker grey container to
the light grey container. The result shows that our method has a much condensed exploration
coverage around the target trajectory, resulting a less intensive learning process.

the task can be performed using an inaccurate analytic dynamics model. As
learning progresses, the approach can gradually switch to a learned data-driven
dynamics model to better adapt to environmental uncertainties that are difficult
to capture analytically.
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Figure 3.15. This figure illustrates the environment outcome after six success scoops with the
presented uncertainty-aware control space, the fixed control space and the linearly changing
control space.
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3.4.2. The Definition and Attainment of Cautious
Behaviors

The cautious behavior we defined is characterized by small actions and low mo-
mentum. These characteristics are achieved by adjusting the control space (dis-
crete accelerations) through scaling and translating mechanisms. However, the
definition of caution in robotics is vague, and our heuristic method for achieving
this objective is specific to velocity-controlled robots.

Therefore, to achieve the objective of having a robot act cautiously during high
uncertainty, our method reformulates the robotic state and accommodates such
uncertainty. This allows control planning to access the model’s uncertainty, but
the user must adjust the control space based on their own definition of caution
and how they control the robot.

3.5. Conclusion

This application utilizes task-relevant MBRL to improve contact safety during
the learning process by incorporating model uncertainty.

To achieve this, we extend the robot state to accommodate model uncertainty
and establish an uncertainty-aware control space to associate learning progress
with robot behavior. The uncertainty-aware control space encourages the robot to
explore cautiously when model uncertainty is high and predictions are inaccurate,
and perform the intended task confidently after the model uncertainty reduces.

The effectiveness of improving contact safety during the learning process is
validated through particle mixing tasks with simulated and hardware robots, and
particle scooping tasks with a hardware robot. The results show that accommo-
dating model uncertainty with the presented task-relevant MBRL can effectively
reduce contact intensiveness during the learning process, while achieving a similar
learning efficiency compared with standard MBRL.
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4. Condensed Robotic State by
Incorporating
Energy-exchange Dynamics
For Learning Spring-loaded
Bipedal Robot Walking with
Model-based Reinforcement
Learning

4.1. Spring-loaded Bipedal Robot and
Energy-exchange Dynamics

4.1.1. High-complexity Dynamics of Spring-loaded
Bipedal Robot

Bipedal robots are gaining attention from researchers due to their potential for
deployment in human-centric environments. Impressive results in bipedal robot
locomotion have been achieved with rigid bipedal robots [62–64]. However, highly
rigid bipedal robots are not suitable for mimicking human behavior, especially
when handling impacts during running or hopping, where human tissues and
muscles act elastically [65].

The Spring-loaded Inverted Pendulum (SLIP) model is widely used as a basis
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for modern bipedal robots to add compliance [2,66–68]. These compliant bipedal
robots utilize springs in their multiple leg linkages to achieve prismatic compliance
and potentially resemble humans in anatomy and behavior [69, 70]. This type
of robot can handle impacts and traverse different terrains [67, 71], providing
the captivating prospect of a non-organic machine performing human-associated
tasks. However, the increased compliance of these robots results in a complex
dynamic system, making analytical approaches challenging due to the following
reasons:

1. These robots utilize a multi-body-with-springs mechanism, which has a dif-
ferent mass distribution than the standard SLIP model. Additionally, their
springs exhibit non-linear and non-centripetal behavior under impacts.

2. As a floating-based robot, the dynamics of a bipedal robot largely depend
on its contact conditions that provide support during locomotion.

3. Capturing an accurate analytical dynamics model of a spring-loaded bipedal
robot is challenging.

4.1.2. Existing Studies of Learning Compliant
Locomotion Skills

Several learning-based studies tackled the problem of compliant bipedal locomo-
tion and achieve different bipedal maneuvers. These methods include Model-
free Reinforcement Learning (MFRL) [22, 72] and Bayesian Optimization (BO)
[23, 73]. However, both MFRL and BO are black-box approaches that are task-
specific and data-intensive, requiring virtual scaling like Sim-to-Real to learn
each gait. To enhance generalizability, parameterized policies are learned with
MFRL and BO to achieve different walking speeds [74, 75], walking heights [76],
or both [77]. Nevertheless, these policies are limited to the predefined walking
parameters involved in the training, and adding new parameter requires long re-
learning. This not only lengthens the learning process, but also limits on-site
learning capability.

Probabilistic Model-based Reinforcement Learning (MBRL) is a promising so-
lution for achieving high sample efficiency and generalizability in robotics. MBRL
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involves learning a data-driven dynamics model of a robot and can perform dif-
ferent skills using probabilistic Model Predictive Control (pMPC) with different
objectives [31,78]. However, MBRL’s computational expense [79] has made previ-
ous studies on bipedal locomotion mainly conducted in simulation [80,81] or with
hardware robots using offline planning [82], which cannot handle environmental
changes.

Furthermore, the compliance dynamics of compliant bipedal robots require
more training samples and higher dimensional dynamics, making the implemen-
tation of MBRL for compliant bipedal locomotion challenging. The increase in
sample size and model dimension largely impacts the control frequency because
the computation load of pMPC depends on either the training sample size [30]
or model dimension [32].

In conclusion, approaches based on MFRL and BO require large amounts of
data and have limited generalizability, making on-site learning difficult and re-
quire enormous training cycle to learn new skills. Conversely, model-based re-
inforcement learning (MBRL) approaches are sample-efficient, but require high
computational loads that challenge real-time planning ability.Therefore, the key
to increasing the feasibility of MBRL implementation on compliant bipedal robots
is to explore a simplified and compact dynamics model.

4.1.3. Condensing Robot State Following the Law of
Conservation of Energy

The interaction of any robot’s mechanical system with its environment can be
characterized by energy exchange [83]. In addition, Hutter et al. demonstrated
the energy flows between the robot’s kinetic, gravitational, and spring’s elastic
energy [84] during running with a SLIP robotic leg. Therefore, we can express a
spring-loaded bipedal robot’s CoM dynamics as gravitational and kinetic energy,
and view its springs as a energy container. Furthermore, by viewing actuators
as the energy source of the robot, we can obtain their provided energy by taking
the integral of motion of their Equation-of-Motion (EoM) [85].

With the above in mind, we present an energy-based method that uses MBRL
to learn a data-driven state transition dynamics of the robot in a task-relevant
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formulation of energy-state, as shown in Fig. 4.1. The robot’s energy-state inter-
action is characterized as Energy-exchange Dynamics (EED). By formulating the
robot’s state as an energy-state, we effectively reduce the dimensionality of the
dynamics model. This relaxes the computation burden of MBRL and improves
real-time planning capability.

Figure 4.1. This figure illustrates the interaction of Energy-Exchange Dynamics (EED) of a
spring-loaded bipedal robot. Energy flows between gravitational, kinetic, and elastic energy,
with actuators serving as energy sources that supply energy to the system. This study employs
the concept of EED to formulate a condensed energy-state for learning and performing bipedal
walking with MBRL.

4.1.4. Dynamics Complexity Reduction for Bipedal
Robot Dynamics

As a floating-based robot, a bipedal robot’s dynamics are highly dependent on
the changing contact conditions while performing locomotion skills. For instance,
the robot behaves differently between single support and double support phases.
To handle such dynamic dissimilarity, a common approach in bipedal locomotion
is the Finite State-Machine (FSM) [86]. This method decomposes the locomotion
task into pre-defined state phases for switching to the proper controller of that
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phase.
A similar concept is used for MBRL applications. The dynamics are decom-

posed over phases and modeled with dedicated models to cope with dynamic
dissimilarity between phases. This can potentially reduce model complexity.

4.2. Methodology

4.2.1. Spring-loaded Inverted Pendulum Bipedal Robot
Model

In this section, we use a simple Spring-loaded Inverted Pendulum (SLIP) formu-
lated planer bipedal system to explain our method.

Consider an m-kg point-mass planer bipedal robot system with k spring-loaded
actuators, characterized by a spring constant matrix K ∈ Rk×k. We assume the
following variables are available from sensor readouts: The system’s Center-of-
Mass (CoM) height h, CoM velocity v ∈ RV , spring deflections ΘS ∈ Rk. and all
actuated joints’ position and velocity Θ, Θ̇ ∈ Rk that includes spring deflections.

4.2.2. Condensed Robot State for Dimensionality
Reduction

MBRL with LGM-FF dynamics, as shown in Eq. 2.5, can be computation-
ally expensive when dealing with high-dimensional dynamics. However, high-
dimensional dynamics are necessary to accommodate the additional compliance
dynamics added to the bipedal robot. Therefore, to make MBRL implementation
on compliant bipedal robots more feasible, a reduced-dimensional robotic state
that is sufficient to express robot dynamics and effective for locomotion tasks is
needed.

Inspired by the law of conservation of energy [87], which states that the en-
ergy within a closed system cannot be generated or destroyed, we reformulated
an energy-state for MBRL that expresses the dynamics of the robot’s CoM as
energy, views its elastic components as temporary energy containers, and char-
acterizes their interaction as energy exchange. By viewing elastic components
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as temporary energy containers, this reformulation allows us to treat all springs
as a single container and avoid modeling them individually [88]. Moreover, by
treating the robot’s actuators as energy sources to the system, we can achieve fur-
ther reduction in dimensionality by concealing state entries that can be implicitly
expressed.

Center-of-Mass’s Dynamics Reformulation with Its Energy in Physics

Consider a standard robotic state x ∈ X that includes entries for both robot
configuration and motion:

x = [Θ⊤, Θ̇⊤, Θ⊤
S︸ ︷︷ ︸

configuration

,

motion︷ ︸︸ ︷
h, v⊤]⊤ ∈ X ⊂ R3k+V+1, (4.1)

where configuration entries describe the robot’s configuration, while motion en-
tries are necessary to express the dynamics of the robot’s center of mass. By
reformulating the dynamics of the robot’s center of mass (CoM) in terms of
potential and kinetic energy, we can treat the robot’s elastic components as tem-
porary energy storage in the system’s energy exchange dynamics. Therefore, we
reformulate a robot’s energy-state, z̃, as follows:

z̃ = [Θ⊤, Θ̇⊤,︸ ︷︷ ︸
configuration

energy-exchange︷︸︸︷
E⊤ ]⊤ ∈ R2k+V+2, (4.2)

where E ∈ RV+2 contains potential, kinetic and elastic energies:

E =


Eg

Ek

ES

, (4.3)
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where Eg ∈ R is potential energy, Ek ∈ RV is kinetic energy and ES ∈ R is
elastic energy. These energies are obtained via:

Eg = m|g|h, (4.4)

Ek = 0.5mv◦2, (4.5)

ES = 0.5Θ⊤
SKΘS, (4.6)

where g is the gravity vector and ◦ denotes element-wise operation. Without an
external energy source, the system’s total energy remain constant; that is,

1⊤E = const., (4.7)

where 1 is a vector of ones.
By comparing Eq. 4.1 and Eq. 4.2, we can see that reformulating the equation

in terms of energy-state achieved a k−1 dimension reduction to the robotic state.

Actuators’ Dynamics Reformulation with the Energy Conservation
Equation

Consider an Equation-of-Motion (EoM) of the robot’s actuators:

τ = JΘ̈ + KΘ + DΘ̇, (4.8)

where τ := [τ1, ..., τk]⊤ ∈ Rk represents the torque of all actuators, J ∈ Rk×k

is the inertia matrix, and D ∈ Rk×k is the damping matrix. By integrating the
equation of motion of the actuators, we can obtain the energy provided by the
actuators, denoted as Eact ∈ R:

Eact =
∫

τ ⊤Θ̇dt = 1
2(JΘ̇)⊤Θ̇ + 1

2(KΘ)⊤Θ +
∫

(DΘ̇)⊤Θ̇dt,. (4.9)

Assuming that the actuators are the only energy source of the robotic system,
the system’s energy conservation equation is as follows:

1⊤E = Eact + Const. = 1
2(JΘ̇)⊤Θ̇ + 1

2(KΘ)⊤Θ + Const.,. (4.10)
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This equation shows that the robot’s system energy E is a function of the ac-
tuator’s position Θ and velocity Θ̇. Since all entries of the system energy are
obtained from the accessible CoM’s state (h, v) and the spring’s deflection (ΘS),
the actuator joints’ position Θ and velocity Θ̇ are interdependent. As a result,
we can implicitly express and conceal one another. In this work, our design of
the energy-state z ∈ Z conceals velocity entries and is formulated as follows:

z =
Θ

E

 ∈ Rk+V+2, (4.11)

which reduces k dimensions from the state z̃, and reduces 2k−1 dimensions from
the standard robot state in Eq. 4.1.

Learning Energy-exchange Dynamics with Model-based
Reinforcement Learning

With the reformulated energy-state z, MBRL learns an Energy-exchange Dy-
namics (EED) fe for robot control via LGM-FF from Eq. 2.5:

p (zt+1) = fe (p (zt+1) ,ut) + ϵ, (4.12)

where ut ∈ U is the user-defined control signal based on how actuators are con-
trolled and ϵ is the system noise that follows Gaussian distribution.

4.2.3. Task-decomposed Dynamics for Complexity
Reduction

Although modeling the EED significantly reduces the model dimension for a com-
pliant bipedal robot, a high complexity model is required to handle the dynamic
differences caused by changing contact conditions on a floating-based robot.

The Finite State Machine (FSM) [86] breaks down the locomotion task into dis-
tinct phases based on different contact conditions and switches control objectives
between these phases. Drawing inspiration from the FSM, we introduce the task-
decomposed dynamics model which models a lower complexity dynamics model
for each task phase and has distinct control objectives between phases. In addi-
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tion, the probabilistic Model Predictive Control (pMPC) planning in each phase
uses the corresponding task-decomposed dynamics model to leverage prediction
and solve the optimization problem.

Specifically, each of Np predefined task phases P := {Pp}∀p=1...Np
, we model a

distinct EED dynamics model:

fe := {fpe (·)}∀p=1,...,Np
, (4.13)

where the task phase during operation is determined by the energy-state zt at
that moment.

4.2.4. Walking with Probabilistic Model Predictive
Control

Walking Gait Parameter

The leg length of the swing and support legs, as well as their respective orientation
in world-space, are denoted by Lswg, Lsup, ψwswg, and ψwsup, as shown in Fig. 4.2.
The values of L and ψw are assumed to be obtainable from the actuator Θ and
spring’s positions ΘS.

The walking gait is then described by four parameters: the stance leg length
Lstan, the lifted leg length Llift, the desired stride angle θstride, and the desired
velocity of the center of mass vp ∈ RV at the peak.

Walking Gait Phase Definition and Their Motions

The walking gait can be divided into two phases, each with a distinct objective:
Double-support (DS) and Single-support (SS), P = {DS, SS}. During DS, the
rear leg serves as the support leg. The transition between the DS and SS phases
is determined by the ground reaction forces of the feet, Fswg and Fsup, which
have hard thresholds. Variable definitions for our application are detailed in
Section 4.3.3.

The target gait motion is shown in Fig. 4.2, with the following requirements:

• DS phase: The angle between the two legs matches θstride, and the swing leg’s
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length matches the stance leg’s length. We denote these requirements as

RDS =
{
ψwswg = −0.5θstride, ψwsup = 0.5θstride, Lswg = Lstan

}
. (4.14)

• SS phase: The support leg’s length matches the stance leg’s length, such that
the system acts as an inverted pendulum. This requirement is denoted as:

RSS = {Lsup = Lstan}. (4.15)

Figure 4.2. This figure illustrates the walking gait with the swing/support leg definition and
gait parameters.

Walking Trajectory for Double-support Phase

To achieve the desired gait, the system must possess the target energy E⋆ ∈
R, in accordance with the law of conservation of energy and the provided gait
parameters:

E⋆ = E⋆
g + 1⊤E⋆

k = m|g|Lstan + 0.5m1⊤v◦2
p , (4.16)

where E⋆
g ∈ R and E⋆

k ∈ RV are the target gravitational and kinetic energy,
respectively. vp is the desired CoM velocity at the peak. Therefore, the objective
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is to provide a trajectory that pMPC can use to find optimal controls that supply
the system with the necessary energy to progress forward.

As the target energy remains constant, the reference trajectory at time-step t

is:

E⋆
g,t = E⋆

g = m|g|Lstan, (4.17)

E⋆
k,t = E⋆

k = 0.5mv◦2
p . (4.18)

and the corresponding reference trajectory of the DS phase is

TDS
t =

{
E⋆
g,t,E

⋆
k,t

}
. (4.19)

Walking Trajectory for Single-support Phase

Assuming that the system has gained energy after the DS phase, the objective
of the SS phase is to execute a stable leg swing with the swing leg to progress to
the DS phase.

To synchronize the inverted pendulum’s swing motion, the swing leg’s refer-
ences, L⋆swg and ψ⋆swg, must be a function of the support leg orientation ψwsup. As
long as the swing leg’s terminal configuration matches the defined stance config-
uration of the DS phase, the swing leg’s intermediate trajectory can be chosen
according to the desired gait pattern.

We denote the swing leg’s trajectory as follows:

L⋆swg,t = SL
(
ψwsup,t

)
, (4.20)

ψ⋆swg,t = Sψ
(
ψwsup,t

)
, (4.21)

where SL, Sψ : R → R are mappings between the support leg orientation ψwsup and
the reference swing leg’s trajectories. Our design of swing leg trajectory during
the SS phase is detailed in Section 4.3.3. Therefore, the reference trajectory of
the SS phase is

T SS
t =

{
L⋆swg,t, ψ

⋆
swg,t

}
. (4.22)
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4.2.5. Enhance Reliability with Energy-state-aware
Control Space

Expanding the control space can potentially increase the exploration time needed
to find the optimal control. However, performing bipedal locomotion skills re-
quires a high control frequency (short pMPC planning time) to ensure stability.
Therefore, it is necessary to have a control space that filters out unreliable con-
trols but does not limit the robot’s capabilities. These unreliable controls can be
identified by comparing the current robot state and its corresponding reference
trajectory. Thus, we present an energy-state-aware control space that constrains
the exploration control space U of pMPC to reduce the chance of pMPC produc-
ing unreliable controls.

At each time-step t, the modification is based on system’s state xt, the reference
trajectory x⋆

t , the user’s prior knowledge of which control signals are more reliable:

U′
t = ge (zt,T p

t ,U), (4.23)

where g : Z× U→ U′ ⊂ U modifies the control space.
We summarize an H-horizon pMPC with energy-state-aware control space as

follows:

minimizeu⋆ L (p (z)) =
H+1∑
k=2

E [ℓ (ẑk) |p (ẑk)]

subject to p (ẑk+1) = fe (p (ẑk) , ûk)
p (ẑk) ∼ N (µk,Σk) , k = 1, ..., H + 1
ûk ∈ U′

k, k = 1, ..., H
U′
k = ge (zk,T p

t ,U)


, (4.24)

where ẑ1, ..., ẑ1 are the predictive state rollouts with initial state p (ẑ1) = p (ẑ),
L (·) is the finite-horizon loss, and ℓ (·) is the immediate loss.
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4.3. Experimental Evaluation with
Spring-loaded Bipedal Robot Walking

4.3.1. Robot Configuration

Hardware Robot Configuration

In our study, we utilized a spring-loaded bipedal robot [2] with lightweight legs
that have parallel-linkage structures, as shown in Fig. 4.3(a). The robot features
four spring-loaded actuators that drive its lever and thigh links for prismatic
compliance. Its stiffness-to-weight ratio is approximately ten times less than that
of a widely used compliant bipedal robot, Cassie [89]. The legs’ lightness allowed
us to approximate the robot’s Center-of-Mass (CoM) with its hip joint. We
controlled the actuators’ velocity at 40 Hz with a limit of ±6 rad/s. The robot
was attached to a rotational boom and constrained in the sagittal plane. For
conversion between local, task, and world-space, please refer to Appendix A.2.
We computed the hardware results on the on-robot computer with an i7-4700EQ
CPU.

Simulated Robot Configuration

To mimic the real robot, a simulated replica was built in Mujoco [90], as shown
in Fig. 4.3. Friction and damping were added to all joints. The simulated robot
was constrained in the sagittal plane (xz-plane) and controlled at a frequency
of 40Hz, which matched the real robot. Simulated experiments were conducted
using an Apple M1 Max-equipped computer.

4.3.2. Energy-state Definition

Following Eq. (4.11), we define the robot’s energy-state as:

z =


Θ
θT

E

 ∈ R9, (4.25)
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Figure 4.3. This figure shows the robot used in the study: (a) the hardware spring-loaded
planar bipedal robot, and (b) its replica in Mujoco. Corresponding parameters are provided in
Table 4.1.

where θT ∈ R is added to capture world-space leg orientation with definitions of
Θ and E are as follows:

Θ = [ϕswg, ψswg, ϕsup, ψsup]⊤ ∈ R4, (4.26)

E =
[
Eg, ER,

ṖT

|ṖT |
ET , ES

]⊤

∈ R4, (4.27)

where ϕ being the inner angle of each leg corresponding to the leg length L; Eg
is the gravitational energy; ES is the total elastic energy of all springs; ER and
ET are the kinetic energies obtained from radial and tangential CoM velocities
(ṖR, ṖT ), referring to the support leg shown in Fig. 4.4. Directions are added to
the tangential kinetic energies for additional information (positive when walking
forward). Both ϕ and ψ include spring deflections and are configured in task-
space to simplify the walking control problem. They are obtained from actuator
position Θ and spring deflections Θs, as detailed in Appendix A.2.
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Figure 4.4. This figure shows the robot’s configuration with corresponding parameters and
variables definition provided in Table 4.1 and Table 4.2, respectively.

Parameter Value Unit
Gravity (g) 9.807 m/s2

Mass (m) 11.25 kg
lthigh, lshin, lrod 0.25 m
llever, lknee 0.0705 m
θknee 110 Deg
kthigh, kroc 150 Nm/rad

Table 4.1. Parameters of the robot used in this research.

4.3.3. Control Objectives

Parameters for the Desired Walking Gait

Stance leg length Lstan and lifted leg length Llift were measured at joint angles
ϕmin = 14◦ and ϕmax = 37◦, with a target stride angle of θs = 28◦ and a target
velocity of vp = 0.4 m/s in the x-direction at peak. Therefore, the target energy
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Space Variables Description

Local
θ1

Joint 1 position.
Actuator 1 position with spring deflection.

θ2
Joint 2 position.
Actuator 2 position with spring deflection.

Task
ψ Leg’s orientation. Obtained from θ1, θ2.
ϕ Leg’s inner angle. Obtained from θ1, θ2.
L Leg’s length. Obtained from ϕ.

World

θT Torso orientation. Obtained from IMU.

PC

Center-of-mass position.
Approximated with the hip joint.
Obtained from support leg.

ψw
Leg’s orientation in world-space.
Obtained from ψ and θT

Table 4.2. System variables in local-, task-, and world-space.

was obtained as

E⋆ = m|g|Lstan + 0.5m1⊤v◦2
p ≈ 54.426 J. (4.28)

The transition between phases is determined by the ground reaction forces of the
feet, Fswg and Fsup, with the following conditions: a) DS→SS if |Fsup| ≤ 5N,
and b) SS→DS if |Fswg| ≥ 20N. Fswg and Fsup are only used to identify phase
transitions and are not used in the pMPC planning. The difference in phase
transition thresholds prevents recursive phase switching caused by sensing errors.

Reference Swing Leg Trajectory for the Single-support Phase

We designed a human-inspired reference trajectory for our application by incorpo-
rating a recent human gait analysis [91] to execute a stable leg swing. To achieve
a smooth motion, the reference swing leg trajectory was heuristically fitted to the
human gait [91] using multiple sigmoid functions, as shown by the black dashed
lines in Fig. 4.5. The settling angle, θset, marks the point at which the swing leg
is prepared to touch down by maintaining the target configuration (L⋆swg = Lstan

and ψsup − ψ⋆swg = θstride).
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Figure 4.5. This figure illustrates the fitting of swing leg trajectory using multiple sigmoid
functions. The top figure shows the swing motion in the xz-plane, with the foot position’s
mean indicated by a grey dashed line (provided in the analysis [91]), and the ±2 standard
deviation area shown in grey shade. The red line indicates the fitted trajectory. The middle
and bottom figures show the trajectory fitted by the sigmoid functions for leg length and swing
angle, respectively.
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Control Strategy and Task Objective of Probabilistic Model
Predictive Control

The following designs are associated with the reference trajectories TDS
t and T SS

t

from Eq. (4.19) and Eq. (4.22), as well as the requirements RDS and RSS from
Section 4.2.4.

1. Control Strategy for Double-support Phase: A kicking motion is
expected to provide the system with the necessary energy. Therefore, the
control is defined as:

uDS :=
[
ϕ̇sup

]
(4.29)

The immediate loss for the pMPC is set accordingly:

ℓDS (xk) := − exp
(
−|E⋆ − 1⊤Ek|

)
, (4.30)

where the directional kinetic energy in Eq. (4.27) encourages gaining energy
by kicking forward. Following RDS, positions of ϕsup, ψsup, and ψswg are
fixed via PD controllers.

2. Control Strategy for Single-support Phase: The goal is to perform
a leg swing while keeping the body orientation at −5◦ to avoid exceeding
the actuator limits due to hardware constraints. PD controllers hold the
support leg length using RSS, with an additional ψsup = (−5◦ − θT ) to
counteract the torso tilt. Meanwhile, using pMPC, the optimal swing leg
control, uSS :=

[
ϕ̇swg, ψ̇swg

]⊤
, is obtained given the reference state. An

immediate loss is set to:

ℓSS (xk) :=− 0.5 exp (−|ϕ⋆k − ϕswg,k|)− 0.5 exp
(
−|ψ⋆k − ψwswg,k|

)
, (4.31)

where the conversion from L⋆swg,k to ϕ⋆swg,k and obtaining the world-space
leg orientation ψw is provided in Appendix A.2.
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Energy-state-aware Control Space

The purpose is to provide a reliable control space to constrain pMPC exploration.
Since the reference state of pMPC (ϕ⋆swg, ψ⋆swg, E⋆) is already known, we can
determine a theoretical control relative to these references and establish a control
range for pMPC. Specifically, we modify the control space by adding a range of
velocities [−δ, δ] above the theoretical velocities u⋆i :

U′
t := {ui ∈ [u⋆i − δi, u⋆i + δi]}∀ui∈ut

⊂ U. (4.32)

1. Double-support Phase: For all steps, the theoretical kicking velocity
L̇sup⋆ is obtained from the required radial kinetic energy E⋆

R:

E⋆
R = max (E⋆ − Eg − ET , 0), (4.33)

L̇⋆sup =
√

2m−1E⋆
R, (4.34)

where Eq. (4.33) calculates the energy that the radial kinetic energy can
provide, and Eq. 4.34 converts E⋆

R into the theoretical velocity, which is
then converted to ϕ̇⋆sup via Eq. (A.12).

2. Single-support Phase: For all steps, the theoretical velocities ψ̇⋆swg and
ψ̇⋆sup are obtained by scaling the distance between the current state and the
reference trajectory. Specifically, we use the following equations:

ϕ̇⋆swg,t = α
(
ϕ⋆swg,t − ϕswg,t

)
, (4.35)

ψ̇⋆swg,t = α
(
ψ⋆swg,t − ψswg,t

)
, (4.36)

here, α is a scaling factor, and we set the control frequency to α = 40 for
an exact conversion from position to velocity.

Based on the theoretical velocities at each time-step, we define the energy-
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state-aware control space for the DS and SS phase as:

U′
DS =

{
ϕ̇sup ∈

[
ϕ̇⋆sup − δ, ϕ̇⋆sup + δ

]}
, (4.37)

U′
SS =


ϕ̇swg ∈

[
ϕ̇⋆swg − δ, ϕ̇⋆swg + δ

]
ψ̇swg ∈

[
ψ̇⋆swg − δ, ψ̇⋆swg + δ

]
, (4.38)

where δ is defined as 1.2 rad/s for simulated robots and 0.6 rad/s for hardware.
This allows pMPC to explore approximately 20% and 10% of the actuator’s full
capability, respectively.

4.3.4. Model-based Reinforcement Learning Process

In our experiments, MBRL repeated trials until reaching the target sample dura-
tion. In each trial, steps were repeated at a rate of 40 Hz until any termination
condition was satisfied. During each step, the ahead pMPC scheme was applied
to find the optimal control while alleviating control delay, visit Section 2.3.2 for
details. Specifically, at time step t, the pMPC finds the optimal control sequence
u⋆ = [û1, ..., ûH ] of length H = 3 based on the dynamics model of that phase and
a predictive state x̂t+1, as obtained via Eq. (4.12). The first control signal û1 is
then assigned as the one-step-ahead control that will be applied to the system at
time step t+ 1. After each trial is completed, the MBRL model is updated using
samples collected from all previous trials. The learning process is summarized in
Fig. 4.6.

Termination conditions for simulation trials include reaching a target distance
of 20 m, falling over (Pz ≤ 0.35 m), or falling back (Ṗx ≤ −0.75 m/s), where Pz
represents the z-component of PC and Ṗx represents the x-component of ṖC . For
hardware trials, the conditions include reaching joint limits (θ1 /∈ [36.5◦, 143.5◦]
and θ2 /∈ [−40.5◦, 83.5◦]) or the operator engaging the emergency stop when the
robot becomes unstable or reaches a target distance of approximately 8.23 m.

4.3.5. Simulation Experiments and Results

The target sample duration is set to 480 seconds. We evaluate our method on its
ability in three aspects:
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Figure 4.6. The model-based reinforcement learning process with ahead probabilistic model
predictive control.

1. The effectiveness of leveraging Energy-exchange Dynamics (EED) for learn-
ing bipedal walking.

2. The effectiveness of enhancing planning reliability by constraining pMPC
exploration with energy-state-aware control space.

3. The generalizability of our method across walking conditions, including
uneven terrains and different walking speeds.

Leveraging Energy-exchange Dynamics for Learning Bipedal Walking

This section demonstrates the effectiveness of utilizing Energy-exchange Dynam-
ics (EED) by comparing the following three instances:

(a) Standard MBRL, which learns the standard dynamics without energy
terms. The state of standard MBRL is given by:

x =
[
Θ⊤, θT , Θ̇⊤, Pz, ṖR, ṖT ,ΘS

]⊤
∈ R16, (4.39)
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where Pz is the z-element of robot’s CoM position PC ; and ΘS ∈ R4 contains
all four spring’s deflection.

(b) TDE2-MBRL [88], which only considers the spring’s elastic energy as an
energy-state. The state of TDE2-MBRL is given by:

x =
[
Θ⊤, θT , Θ̇⊤,E⊤

]⊤
∈ R13. (4.40)

(c) Ours, which considers both the spring and actuator’s motion as energy-
state. The energy-state of our method is given by:

z =
[
Θ⊤, θT ,E

⊤
]⊤
∈ R9 (4.41)

All three methods are applied with the proposed state-aware control space to
ensure fair comparison.

Fig. 4.7 and Table 4.3 demonstrate that learning EED not only does not im-
pede learning performance, but also reduces the time cost per pMPC optimiza-
tion iteration. This leads to higher success rates and highlights the importance
of increasing optimization iterations. With more iterations within a fixed time
interval, pMPC can possibly find better solutions. In our application, each pMPC
optimization process terminates at 25 ms, as the robot is controlled at 40Hz.

Additionally, Fig. 4.8 shows an example of an energy-state trajectory and
energy-exchange during successful walking with our method. The dashed line
shows the model-predictive trajectory with the learned model. Our method can
capture energy loss during walking and effectively compensate for such energy
loss, leading to successful walking.

Instance State
Dimension

Average Time
per pMPC Iteration

Speed
Improvement

Ours 9 0.58 ms ±4.61% 1.71×
TDE2-MBRL [88] 13 0.83 ms ±2.73% 1.19×
Standard MBRL 16 0.99 ms ±2.84% 1×

Table 4.3. State dimensions and respective average time per pMPC optimization iteration for
each instances, with standard deviations provided in percentages. One pMPC optimization
iteration includes one H-horizon state prediction for optimization in Eq. (4.24).
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Figure 4.7. This figure displays the results of using energy to learn the walking task via
simulation. All three methods were tested using the proposed state-aware control space to
ensure a fair comparison. The success rate of achieving a 20-meter walk for each method is
shown on top of its respective bar. The results demonstrate that MBRL with EED is effective
in learning and performing the walking task, while using a compact robot state.

Enhancing Planning Reliability with Energy-state-aware Control
Space

This section presents the effectiveness of constraining pMPC exploration for en-
hancing the planning reliability by comparing the following three instances:

(a) No pMPC refers to a control method where theoretical velocities, as ob-
tained through Eq. (4.34) to Eq. (4.36), are directly taken as control input
without pMPC planning. This highlights the limitation of using analytical
methods for controlling compliant bipedal robots.

(b) Standard pMPC sets the pMPC control space to the actuator’s perfor-
mance limit, enabling pMPC to search from all possible controls.

(c) Ours, the proposed method that pMPC explores an established control
space around the theoretical velocities.

Fig. 4.9 illustrates that the “No pMPC” was unable to execute the walking
task due to its inability to counteract joint elasticity. The “Standard pMPC”
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Figure 4.8. This figure shows the energy-state’s actual and model-predicted (predicted mean)
trajectory during successful walking in simulation, providing an example of the exchange be-
tween gravitational, elastic, and kinetic energy, as well as the energy loss during the DS phase
that is attribute to joints’ friction and damping. Our method effectively captures this energy
loss, as shown in the model-predicted trajectory.

had a slow learning speed, which resulted from a wide pMPC exploration range.
In contrast, our method exhibited a remarkable improvement in both learning
efficiency and walking reliability. We achieved a 97.1% success rate after only
two minutes of training samples.

In addition, Fig. 4.10 illustrates the swing leg motion of the proposed approach.
The later-stage results (≥240s) show improved tracking capability, with a much
more concentrated trajectory than the early-stage (≤30s) results. This improved
tracking capability contributes to walking stability and a higher success rate, as
shown in Fig. 4.9.
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Figure 4.9. This figure shows the simulation results of constraining the pMPC control space to
enhance planning reliability for performing the walking task. The success rate of achieving a
20-meter walk for each method is displayed above its respective bar. The increase in learning
efficiency and success rate confirms the effectiveness of our method in enhancing planning
reliability.

Figure 4.10. This figure displays the swing leg trajectory, obtained through our method in
simulation (including failed attempts). The results indicate that increasing the number of
training samples collected improves tracking performance, leading to successful completion of
the walking task.
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Generalizability Across Walking Conditions

The same learning framework and settings used in previous experiments were
applied in the following experiments to demonstrate our method’s ability to gen-
eralize across different walking conditions.

First, we evaluate the ability of our method to learn robot dynamics under
unknown terrains that have random ground heights ranging from 0-10mm and
0-15mm (equivalent to 2% and 3% leg length), as shown in Fig. 4.11. The ground
condition is unknown to the robot. The results shown in Fig. 4.12 demonstrate
that our method achieved over 95% and 80% success rates on the 10mm and
15mm terrains, respectively. This shows its ability to handle ground uncertainties
without prior knowledge of the ground’s status.

Figure 4.11. This figure shows the randomly generated uneven terrain that the robot walked
on. The terrain’s unevenness can be observed through the changing shading, as the ground
height is randomly generated between 0 and 15 mm.

Secondly, we tested our method’s ability to walk at different speeds by changing
the velocity of the CoM at peak vp to 0.3m/s, 0.7m/s, and alternating between
these two velocities every five meters to handle continuous speed changes. All
other settings were kept unchanged. The results (refer to Fig. 4.13) showed over
90% success across all three tests, demonstrating our method can generalize over
different and changing walking speeds.

The “cross-performing” test results in Fig. 4.13 show that over 75% success was
achieved when using all 30 models learned with 0.3m/s walking speed to perform
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Figure 4.12. This figure displays the simulation results of 30 learning attempts using our method
to walk on uneven terrain, demonstrating the robustness of our approach in traversing unknown
terrain. The uneven terrain is randomly generated, with ground height ranging from 0-10mm
and 0-15mm. The success rate of achieving a 10-meter walk for each method is shown above
its respective bar.

0.7m/s walking, and vice versa. This emphasizes the advantages of learning robot
dynamics over learning robot tasks.

4.3.6. Hardware Experiment and Results

For hardware validation with our method, we compared our method with “No
pMPC,” which directly applies theoretical control input to attempt walking. Our
goal is to learn the robot’s dynamics from scratch and perform walking with 40 Hz
online planning until the boom reaches a 270◦ rotation, which is approximately an
8.23-meter walking distance (as shown in Fig. 4.14). The target sample duration
of the learning process is set to 180 seconds.

As shown in Fig. 4.15, our method achieved a 73.3% success rate in this walking
task with only approximately 180 seconds of samples, while “No pMPC” failed.
This result demonstrates the real-world capability of our approach, even with a
relatively low-spec CPU (i7-4700EQ) used for this experiment.
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Figure 4.13. This figure displays the simulation results of 30 learning attempts using our method
to walk at different CoM’s peak velocities. The “alternating velocity” alternates between 0.3
m/s and 0.7 m/s every five meters of walking. The “cross-performing” demonstrates the average
walking distance over five trials of using all 30 models learned with 0.3 m/s to perform 0.7 m/s
walking, and vice versa. The success rate of achieving a 30-meter walk for each method is
shown above its corresponding bar.

Figure 4.14. This figure illustrates the walking task with the hardware robot. The goal is to
perform walking until the boom reaches 270◦ rotation.
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Figure 4.15. This figure displays the hardware results of our method learning the walking task.
The walked distance was determined by combining the z-rotation readouts of the IMU and the
boom length. The success rate for achieving the goal distance of 7.5m (accounting for sensor
errors) is shown as a percentage above each corresponding bar. Due to the low-spec on-robot
CPU, the pMPC averaged a time consumption of 2.44 ms per iteration, which is significantly
longer than the simulation experiments. Nonetheless, our method achieved over 70% success
with just three minutes of collected training samples.

4.4. Conclusion

This application uses task-relevant MBRL to alleviate the computational burden
and achieve real-time 40-Hz control for walking with a spring-loaded bipedal
robot.

To learn a compact dynamics model capable of online planning, we condensed
the robot’s state by applying the law of conservation of energy. Specifically, we
reformulated an energy-state where the dynamics of the robot’s CoM is expressed
as potential and kinetic energy, its springs are viewed as a single energy container,
and its actuators are treated as an energy source. The interactions between these
components are characterized as energy-exchange and learned with MBRL.

Based on the energy-state, we designed an energy-state-based reference trajec-
tory that allows MPC to find the optimal control enabling the robot to walk. We
also established an energy-state aware control space to improve the planning relia-
bility. Additionally, we decomposed the robot’s dynamics model into task-phases
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to cope with the dynamics dissimilarity between different contact conditions.
The effectiveness of using task-relevant MBRL to perform bipedal walking tasks

is demonstrated through walking on uneven terrain, walking at different speeds,
and walking at changing speeds with a simulated spring-loaded bipedal robot.
The real-world feasibility is validated through fixed-speed walking with a hard-
ware spring-loaded bipedal robot. All results showed successful on-site walking
acquisition with (1) a compact nine-dimensional dynamics model, (2) 40Hz real-
time planning capability, and (3) on-site learning within a few minutes.
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5. Discussions

5.1. Open Issues

In this section, we discuss some open issues and limitations of the presented “task-
relevant model-based reinforcement learning” approach that require further study
and investigation.

5.1.1. Computation Burden for Higher Complexity
Robots

In the bipedal walking application, we condensed the robot’s state to a lower-
dimensional energy-state. This allowed us to achieve real-time control planning
at 40 Hz on a four Degree-of-Freedom (DoF) planar bipedal robot. However,
implementing Model-based Reinforcement Learning (MBRL) on a more complex
robot (such as a six or eight DoF compliant bipedal robot) may be difficult due
to the high computational expense of MBRL and the adequacy of robot state for
MBRL to learn dynamics, making it challenging to achieve the desired control
frequency. Therefore, we need to overcome the computational burden of MBRL
to enhance the overall applicability of our method.

5.1.2. Stability and Quality of the Long-horizon
Reference Trajectory for the Intended Task

Unlike model-free learning-based approaches, where the user can define a termi-
nal state and let the learning process find the intermediate trajectory, control
planning with our MBRL has a shorter horizon that requires a long-horizon tra-
jectory to recursively solve the control problem. Therefore, the quality of the
reference trajectory is crucial for achieving optimal performance.
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In both applications discussed in this thesis, reference trajectories are heuris-
tically defined as a time series of robotic state entries. Although sufficient for
mimicking the motion of the intended task, these trajectories do not guarantee
the quality of task completion. For example, the quality of mixing cannot be
evaluated as such information is not accessible from the defined robotic state.
Similarly, the swing leg trajectory during the single-support phase of the walk-
ing task only reproduces human motion. While the success of these trajectories
in both simulation and hardware environments suggests feasibility, they do not
guarantee stability.

Therefore, it is crucial for our MBRL scheme to have state entries that are
sufficient for evaluating task completion, and a method that enables us to obtain
a well-thought-out reference trajectory for control planning.

5.1.3. Precise Contact Dynamics Capturing

Our method learns the combined dynamics of the robot and its contacts from
collected data, which makes it difficult to distinguish between the robot dynamics
and the contact dynamics. While this is not a problem when performing tasks
that have similar contact behaviors, the robot’s behavior may vary if the intended
task requires a wide variety of contact behaviors, such as gripping a hard object
immediately after gripping a soft one. Thus, further investigation is needed to
address this limitation.

5.2. Implementation of Task-relevant
Model-based Reinforcement Learning

This section offers a step-by-step guide on how to implement Task-relevant MBRL
for generalizing to different robotic tasks. The main idea behind task-relevant
MBRL is to adapt MBRL to the intended task. As MBRL learns the state-
transition dynamics of the robot system, it is necessary to access the available
robotic state entries of the learned dynamics for task performance. Therefore, it
is crucial to reformulate a sufficiently informative task-relevant state to generalize
to different tasks.
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We concluded five steps for implementing task-relevant MBRL onto new robotic
systems and robotic tasks:

1. Construct a standard robotic state for dynamics learning: To learn
the state-transition dynamics, MBRL requires a sufficient state entry for
predicting the robot’s future state. Therefore, constructing a standard
robotic state is essential for the robot’s dynamics learning.

2. Define the task-relevant state entries of the intended task: Based
on the intended task, define the requirements (or state entries) that are
essential for performing the intended robotic task.

3. Reformulate the standard robotic state to accommodate the task-
relevant state entries: It is important to note that the MBRL learned
dynamics model predicts future states based on state entries. Therefore,
incorporating task-relevant state entries requires a proper reformulation of
the standard robotic state. For example, the energy-state reformulation for
a bipedal robot follows the law of conservation of energy to ensure that the
reformulated state sufficiently describes the dynamics of the robot system.

4. Design a task-relevant reference trajectory for control planning:
Once sufficient state entries for the intended robotic task have been ob-
tained, a task-relevant reference trajectory can be formulated using the re-
formulated robotic state. This allows for control planning when performing
the intended robotic tasks.

5. (Optional) Design a task-relevant control space to adjust the robot’s
motion behavior: In our applications, we use the reformulated state to
improve learning safety for everyday kitchen tasks and planning reliability
for bipedal walking. Similarly, users can define a task-relevant control space
to adjust the robot’s motion behavior.
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6. Conclusion

In recent years, robotics has made significant advancements and is now being used
in a wider range of environments, including unpredictable and dynamic scenarios.
New technology has allowed for the integration of elastic components, which make
robots more flexible and efficient, similar to animal anatomy and physiology.
However, these components also increase the complexity of the robot’s dynamics,
making it difficult to accurately model and control analytically.

Compliant robots are best suited for contact-rich environments where physi-
cal interactions with the environment are necessary, but their dynamics are even
challenging with analytical approaches. Therefore, modern learning-based ap-
proaches are needed to handle such complexity.

This thesis presents “task-relevant model-based reinforcement learning,” which
reformulates standard model-based reinforcement learning (MBRL) so that robots
can learn their dynamics and perform intended tasks with desired motion char-
acteristics. The method reformulates a task-relevant robot state that contains
sufficient entries for the intended task and is suitable for model-based reinforce-
ment learning to learn the state-transition dynamics of the robot system. By
utilizing the task-relevant state, the optimization problem can be solved, and the
control can be found relative to achieving the intended task based on a state-
formulated objective function. In addition, we utilize the reformulated state to
adjust the robot’s motion characteristic, such as improving contact-safety and
planning reliability.

The effectiveness of task-relevant model-based reinforcement learning has been
verified through two distinct contact-rich applications with different robot sys-
tems. The success of our method in both experiments demonstrates its effec-
tiveness and applicability to various robotics applications that require flexibility,
robustness, and safety in uncertain and contact-rich environments.
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A. Appendix: Mathematical
Details for LGM-FF

A.1. Analytic Solution for Integrating Feature
Maps

The followings provides the analytic solution to Eq. (2.12):

qt =
∫

Φtp (xt)dxt =


1∫

cos (V x̃t) p (xt)dxt∫
sin (V x̃t) p (xt)dxt

 =
 1
q̃t



=


1

n− 1
2 exp

(
−1

2

(
V Σ̃t

)◦2
)
◦ cos (V µ̃t)

n− 1
2 exp

(
−1

2

(
V Σ̃t

)◦2
)
◦ sin (V µ̃t)

 ∈ RM ,

(A.1)

where p (xt) ∼ N
(
µt ∈ RD,Σt ∈ RD×D

)
; µ̃t :=

[
µ⊤
t ,u

⊤
t

]⊤
is the state-control

mean; Σ̃t := diag [diag (Σt) ,0U ] is the state-control covariance matrix with
padded U -dimensional zeros column vector, 0U , for control’s dimensions; Φt is
the LGM-FF feature map from Eq. (2.4); V ∈ Rm×D is the sampled feature
matrix from Eq. (2.2), and ◦ denotes element-wise operation.
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The analytic solution to Eq. (2.13) is obtained by

Qt =
∫

ΦtΦ⊤
t p (xt)dxt

=
∫ 

1 cos (V x̃t) sin (V x̃t)
cos (V x̃t) cos (V x̃t) cos (V x̃t) cos (V x̃t) sin (V x̃t)
sin (V x̃t) cos (V x̃t) sin (V x̃t) sin (V x̃t) sin (V x̃t)

 p (xt)dxt

=


1 q̃⊤

t

q̃t
CC CS

CS SS

 ∈ RM×M ,

(A.2)

where CC ∈ Rm×m, CS ∈ Rm×m, and SS ∈ Rm×m are calculated as follow:

CC = G ◦ cos
(
V µ̃t1⊤

n − 1nµ̃⊤
t V ⊤

)
+ H ◦ cos

(
V µ̃t1⊤

n + 1nµ̃⊤
t V ⊤

)
, (A.3)

CS = G ◦ sin
(
V µ̃t1⊤

n − 1nµ̃⊤
t V ⊤

)
+ H ◦ sin

(
V µ̃t1⊤

n + 1nµ̃⊤
t V ⊤

)
, (A.4)

SS = G ◦ cos
(
V µ̃t1⊤

n − 1nµ̃⊤
t V ⊤

)
−H ◦ cos

(
V µ̃t1⊤

n + 1nµ̃⊤
t V ⊤

)
, (A.5)

with G ∈ Rm×m and H ∈ Rm×m defined as

G = n−1 exp
(
−0.5

(
V Σ̃t1⊤

n − 1nΣ̃⊤
t V ⊤

)◦2
)
, (A.6)

H = n−1 exp
(
−0.5

(
V Σ̃t1⊤

n + 1nΣ̃⊤
t V ⊤

)◦2
)
, (A.7)

where 1m is an m-dimensional column vector of ones. Check the originated article
for more details: [32].
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A.2. Joint/Task/World Space Conversion of the
Spring-loaded Bipedal Robot

The conversion between local- (θ1, θ2), task- (ϕ, ψ, L) and world-space (ψw, θT )
are derived by the following equations:

ψw = ψ + θT , (A.8)

ϕ = 0.5 (θknee − θ1 + θ2), (A.9)

ψ = 0.5 (π − θknee − θ1 − θ2), (A.10)

L = (lthigh + lshin) cosϕ, (A.11)

L̇ = (lthigh + lshin) ϕ̇ sinϕ, (A.12)

θi = θacti + θspri , ∀i = 1, 2, (A.13)

where θact and θspr are the readouts of actuator and spring.
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