職

准教授

名

奈良先端科学技術大学院大学

平成23年度~平成27年度

1. 機関番号

3. 研究種目名

5. 課題番号

6. 研究課題

7. 研究代表者

5

研究者

3 1

4

1

番 号

基盤研究(B)

4

5 3 9 徳田 崇

6

2 3 3 6 0 1 5 7

0

研究代表者名

3

体内埋め込み型マイクロチップによる非観血的・連続血糖測定技術の実現

平成24年度科学研究費助成事業(科学研究費補助金)実績報告書(研究実績報告書)

2. 研究機関名

4. 補助事業期間

所 属

物質創成科学研究科

部局

研	究	者	番	号	研	究 :	分扌	旦者	名	所属研究機関名・部局名	職	3
	+			-								
	_			_								
<u>: </u>	-:	:		<u>-</u>								
研究実												
—	ス濃度 用した	を継 。CM	続的I 0Sチ	に計測 ップよ	するため に形成可	、CMC 能なF	OS チ Ptバ	- ップ ンプ	表面電極に	の計測回路の開発と最適化を行った。過酸化水素電極として こ、グルコースオキシダーゼを担持させた高分子コーティン 3、アクティブピクセルセンサ回路を電気化学計測に応用し	、Ptベー グ膜(PHE	- ラ MA
ルコー のを利	た。CN 訓練部	IOSイ を確	メー: 認し:	ジセン たとこ	′サにおけ ろ、通常	る光板の電気	検出 気化:	回路で 学アン	である ソプロ	る、アクティブピクセルセンサ回路を電気化学計測に応用し; 3路(ポテンショスタット回路)では計測できない微小なグル; 「オードテストデバイスの試作を行い、機能評価を開始した。	た回路を コース酸	提化
のを利 形成し	炽灯枝肚	成功	した。	,また	:、光給電	のた	めの	フォ	トダイ	「オードテストデバイスの試作を行い、機能評価を開始した。		
のを利 形成し	計測に	.12%-73										
のを利 形成し	計測に	.12%-73										
のを利 形成し	計測に	-1-2-73										
のを利 形成し	計測に	-1-20-73										
のを利 形成し	計測に											

10. キーワード			
(1) CMOS	₍₂₎ 体内埋め込みデバイス	(3) 血糖值計測	₍₄₎ バイオチップ
(5) 糖尿病	(6)	(7)	(8)
		_	
11. 現在までの達成度			
(区分)(2)おおむね	頁調に進展している。		
(理由)			
│研究前半の最重要項目であ │の一つについてある程度、	5るCMOSチップ上の微小回路によるグル: 達成の見通しが立ったため。	コース計測の原理に目途を得す	ており、目標とするデバイスの基本機能
12. 今後の研究の推進方策	j		
(今後の推進方策)	`		
	■現に注力する。平成25年度は、給電方式	式の検討をさらに進めるとと:	もに、パルス変調方式をベースとする信
号出力について、方式、チ	一ップ搭載回路、周辺システムの研究開	発を行っていく。	もに、パルス変調方式をベースとする信

13.研究発表(平成24年度の研究成果)

[雑誌論文] 計(0)件 うち査読付論文 計(0)件

著 者 名		論 文 標	題		
雑誌名	査読の有無	巻		発行年	最初と最後の頁
				i i i	
				<u>i i i </u>	
	載論文のDOI(デジタルオブジェ	クト識別子)			

[学会発表] 計(2)件 うち招待講演 計(0)件

	I		
発 表 者 名		発 表 標 題	
上嶋 和弘, 立川 展也, 野田 俊彦, 笹川 清隆, 徳田 崇, 太田 淳	CMOS 集積回路を用いた体内埋め	込み型グルコースセンサの開発	
学 会 等 名	発表年月日	発 表 場 所	
応用物理学会春季講演会	2013年03月28日	神奈川工科大学	

発表者名			発 表 標 題	
立川 展也, 野田 俊彦, 笹川 清隆, 徳田 崇, 太田淳	CMOS集積	回路を用いた体内埋め込る	み型グルコースセンサの	D基礎検討
学 会 等 名		発表年月日		発 表 場 所
応用物理学会学術講演会		2012年09月12日	愛媛大学	

[図書] 計(0)件

[図書] 計(0)件					
著 者 名			出 版 社		
	.			74.7-6-	(1) 0 > \(\sigma \)
	書名			発行年	総ページ数
14.研究成果による産業財産権の出願・取得状況					
〔出願〕 計(0) 件					
	₹¥ ₽□ ÷v	∤午♪!! ±½	女类时女佐《廷琴 巫□	山阪左口口	
産業財産権の名称	発明者	権利者	産業財産権の種類、番号	出願年月日	国内・外国の別
	•		•		-
(BD/B) \$1/0\/H					
[取得] 計(0)件		n			
産業財産権の名称	発明者	権利者	産業財産権の種類、番号	取得年月日	国内・外国の別
			ľ	出願年月日	┪
				山原十万口	-
	=				-
15.備考					
13.補气					