
Doctoral Dissertation

An Infrastructure for Collaborative Machine

Learning on Resource-Constrained

Heterogeneous Environments

Kundjanasith Thonglek

Program of Information Science and Engineering

Graduate School of Science and Technology

Nara Institute of Science and Technology

Supervisor: Professor Hajimu Iida

Software Design and Analysis Laboratory (Division of Information Science)

Submitted on June 1, 2023

A Doctoral Dissertation

submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Kundjanasith Thonglek

Thesis Committee:

Supervisor Hajimu Iida

(Professor, Division of Information Science)

Kazutoshi Fujikawa

(Professor, Division of Information Science)

Kohei Ichikawa

(Associate Professor, Division of Information Science)

Keichi Takahashi

(Assistant Professor, Tohoku University)

Chawanat Nakasan

(Lecturer, Kasetsart University)

An Infrastructure for Collaborative Machine

Learning on Resource-Constrained

Heterogeneous Environments∗

Kundjanasith Thonglek

Abstract

Collaboration has been vital for the rapid and successful growth of the soft-

ware industry. Software development infrastructures, such as GitHub for source

codes and DockHub for container images, allow individuals from diverse back-

grounds and organizations to work together and create complex and large-scale

software that even big tech companies find it challenging to develop and main-

tain. However, such collaborative infrastructure is not yet available for machine

learning models. This presents an opportunity to introduce LiberatAI into com-

puter science for removing the barrier to the collaborative development of ma-

chine learning models from the limitation of data privacy and existing resource

constraints.

In this dissertation, I propose LiberatAI, an infrastructure for collaboratively

developing machine learning models that allow researchers to work together and

potentially build better models than big companies can. LiberatAI applies fed-

erated learning to train the models while preserving data privacy. LiberatAI

allows individuals to collaboratively train models on their environments, which

are usually heterogeneous. Three modules in LiberatAI support training a model

on diverse storage, computing, and communication resources. (1) Compressor

module is proposed to reduce the model size to fit the storage capacity of the en-

vironment. (2) Aggregator module is proposed to aggregate the models trained

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Sci-

ence and Technology, June 1, 2023.

i

on heterogeneous computing resources. (3) Sparsifier module is proposed to spar-

sify the model for exchanging the model between a server and clients. LiberatAI

was evaluated using state-of-the-art neural network models to detect COVID-19

cases from chest X-ray images. COVID-19 detection is one of the most popular

machine learning applications for privacy-sensitive data. As a result, the ensem-

ble model with heterogeneous structures on six different hardware environments

from LiberatAI produces accuracy higher than a trained single COVID-NET by

5.39%.

Keywords:

Collaborative Development, Distributed Computing, Edge Machine Learning,

Federated Learning, Privacy Preservation, Resource Heterogeneity

ii

Contents

1. Introduction 1

1.1 Motivation and Goal . 2

1.2 Organization of the Dissertation 6

2. Training Models with Heterogeneous Storage Resources 7

2.1 Introduction . 7

2.2 Background . 9

2.2.1 Compression of Neural Networks 9

2.2.2 Retraining Compressed Neural Networks 11

2.2.3 Automated Compression of Neural Networks 12

2.3 Methodology . 12

2.3.1 Overview . 12

2.3.2 Quantization . 13

2.3.3 Retraining . 14

2.3.4 Compression . 15

2.3.5 Optimization . 17

2.4 Evaluation . 18

2.4.1 Experimental Setup . 19

2.4.2 Visualization of the Optimization Process 21

2.4.3 Model Size and Accuracy 24

2.4.4 Effect of Optimization Algorithm 27

2.4.5 Effect of Retraining . 28

2.4.6 Runtime . 29

2.4.7 Comparison to Previous Studies 32

2.4.8 An Example of a Quantization Configuration 34

2.4.9 Discussion . 35

2.5 Conclusion and Future Work . 36

3. Training Models with Heterogeneous Computing Resources 38

3.1 Introduction . 38

3.2 Background . 39

3.2.1 Federated Stochastic Gradient Descent 39

iii

3.2.2 Federated Averaging . 40

3.2.3 Combining Heterogeneous Neural Networks 42

3.3 Methodology . 42

3.3.1 Overview . 42

3.3.2 Tuning of Weights . 44

3.3.3 Optimization Algorithms 45

3.4 Evaluation . 46

3.4.1 Experimental Setup . 46

3.4.2 An Example of the Optimized Weights 48

3.4.3 Accuracy of Optimization Methods 49

3.4.4 Runtime of Optimization Methods 50

3.4.5 Results for Different Combinations of Models 50

3.4.6 Results for Different Datasets 52

3.4.7 Discussion . 53

3.5 Conclusion and Future Work . 53

4. Training Models with Heterogeneous Network Resources 55

4.1 Introduction . 55

4.2 Background . 56

4.2.1 Federated Learning Algorithms 57

4.2.2 Reducing Communication Costs in Federated Learning . . 58

4.3 Methodology . 60

4.3.1 Server Executes . 60

4.3.2 Clients Update . 60

4.4 Evaluation . 62

4.4.1 Experimental Environment 63

4.4.2 Comparison to Distributed Learning 64

4.4.3 Comparison to the Existing Methods 66

4.4.4 Results for Different Models 68

4.4.5 Results for Different Datasets 69

4.4.6 Distribution of Parameter Updates 71

4.5 Conclusion and Future Work . 72

iv

5. LiberatAI Infrastructure 73

5.1 System Architecture . 73

5.2 Evaluation . 74

5.2.1 Experimental Setup . 75

5.2.2 Results for Heterogeneity of Storage Resource 77

5.2.3 Results for Heterogeneity of Computing Resource 78

5.2.4 Results for Heterogeneity of Communication Resource . . . 79

5.2.5 Results for Heterogeneity of Storage and Computing Re-

sources . 80

5.2.6 Results for Heterogeneity of Storage and Communication

Resources . 81

5.2.7 Results for Heterogeneity of Computing and Communica-

tion Resources . 83

5.2.8 Results for Heterogeneity of Storage, Computing, and Com-

munication Resources . 84

5.2.9 Runtime Analysis . 86

5.3 Conclusion and Future Work . 90

6. Conclusion 93

6.1 Summary . 93

6.2 Future Work . 95

Acknowledgements 96

References 98

List of Publication 114

v

List of Figures

1 Collaboration on GitHub and DockerHub 1

2 Overview of traditional collaborative machine learning 3

3 Overview of federated learning . 4

4 Overview of LiberatAI . 5

5 Workflow of Edge Machine Learning 7

6 Overview of the proposed method 13

7 Data before and after vector quantization 14

8 Retraining quantized model without labeled data 14

9 An output from a neural network model 15

10 Flowchart of NSGA-II . 16

11 Calculation of hypervolume . 17

12 The objective space of LeNet5 when applying the proposed method 22

13 The objective space of RNN when applying the proposed method 23

14 Percentage of model size and accuracy during optimization 24

15 Pareto fronts . 25

16 Confusion matrices of the original and compressed LeNet5 models 26

17 Pareto fronts for different optimization algorithms 27

18 Runtime of different optimization algorithms 27

19 Accuracy of LeNet5 before and after retraining over the different

retraining dataset . 28

20 Model performance of the models before and after retraining . . . 28

21 Runtime of the proposed method with and without accuracy con-

straint . 30

22 Comparison of proposed and existing methods using LeNet5 . . . 30

23 Comparison of quantized classification models for different auto-

mated quantization methods . 31

24 Comparison of quantized semantic similarity models for different

automated quantization methods 32

25 Comparison of quantized unidirectional regression models for dif-

ferent automated quantization methods 33

26 Comparison of quantized bidirectional regression models for differ-

ent automated quantization methods 34

vi

27 Comparison of objective space between an exhaustive search and

the proposed method . 36

28 Overview of the proposed method 43

29 Optimized weights (Setup C, CIFAR-10 dataset and TPE opti-

mization) . 48

30 Comparison of accuracy with different optimization methods (Setup

A and R-Cellular dataset) . 49

31 Improvement of accuracy during the trials (Setup A and R-Cellular

dataset) . 50

32 Comparison of runtime with different optimization methods (Setup

A and R-Cellular dataset) . 51

33 Accuracy of global and average accuracy of local models between

federated and distributed learning 65

34 Comparison of sparse communication methods for federated and

distributed learning (𝑄 = 0.1) . 66

35 Accuracy of global model and total communication cost (VGG16

model and CIFAR10 dataset) . 68

36 Percentage of reduced communication cost for different models . . 69

37 Average transferred model size for each model architecture with

the different datasets . 70

38 Distribution of parameter updates for each model 71

39 Workflow of LiberatAI . 74

40 Pareto front and runtime for compressing each machine learning

model . 77

41 Accuracy of global model for heterogeneous federated learning . . 78

42 Accuracy and runtime of with and without the sparsifier module . 79

43 Pareto front for each model with storage capacity constraints . . . 80

44 Accuracy of a global model for heterogeneous federated learning . 81

45 Pareto front for COVID-NET with storage capacity constraints . 82

46 Accuracy of global model and total communication cost 83

47 Runtime without and with sparsifier module for different 𝑄 84

48 Result for applying aggregator and sparsifier modules 85

49 Pareto front for each model with storage capacity constraints . . . 86

vii

50 Communication cost when applying aggregator and sparsifier . . . 87

51 Runtime for applying sparsifier 87

52 Training time of models on different devices 88

53 Runtime diagram for local training in federated learning 89

54 Estimated training time . 90

List of Tables

1 Approaches for model compression 10

2 Specification of classification models 18

3 Specification of regression models 19

4 Specification of semantic similarity models 19

5 Datasets used for training and retraining 20

6 Hyperparameters for NSGA-II . 21

7 Hardware specification . 21

8 Size of each layer in the original and compressed LeNet5 models . 35

9 Hardware specification . 46

10 Experimental setup . 47

11 Dataset specification . 47

12 Model specification . 48

13 Comparison of accuracy using different models (R-cellular dataset

and TPE optimization) . 51

14 Comparison of accuracy using different combination of models (R-

cellular dataset and TPE optimization) 52

15 Comparison of accuracy using different datasets (Setup C and TPE

optimization) . 52

16 Experimental Setup . 63

17 Model specification . 63

18 Learning methods and hyperparameters 67

19 Model specification . 75

20 Distribution of chest X-ray images 75

21 Hardware specifications of each device 76

viii

1. Introduction

source
code

source
code

source
code

Co
m
m
it

C
om

m
it Com

m
it

Pu
ll

Pull

Pull

container
image

container
image

container
image

Co
m
m
it

C
om

m
it Com

m
it

Pu
ll

Pull

Pull

Figure 1: Collaboration on GitHub and DockerHub

Collaboration is crucial for fostering creativity, driving innovation, and achiev-

ing success in our increasingly interconnected society. Collaboration has been

vital for the rapid and successful growth of the software industry. Software de-

velopment infrastructures, such as GitHub for source codes and DockHub for

container images as shown in Fig. 1, allow individuals from diverse backgrounds

and organizations to work together and create complex and large-scale software

that even big information technology companies find it challenging to develop

and maintain. However, such collaborative infrastructure is not yet available for

machine learning models. This fact has led to the current situation where state-of-

the-art machine learning models can only be built by a handful of big companies

such as Google, Amazon, Meta, and Microsoft, which have access to gigantic

datasets and massive amounts of computing resources. Inspired by the success

of software development infrastructures, an infrastructure for collaboratively de-

veloping machine learning models could allow researchers to work together and

potentially build better models than big companies can.

1

The simplest approach for building a machine learning model by collective

effort is to aggregate the datasets contributed by participants into a single repos-

itory and train a model using the aggregated datasets. However, this approach

is often infeasible with privacy-sensitive data, because data privacy, security, and

ownership prevent institutions from sharing their data with others. As a result,

machine learning models built through collaboration were trained only using pub-

lic datasets, and their size and diversity were inherently limited.

Federated learning was proposed to preserve data privacy for building a ma-

chine learning model collaboratively. In federated learning, each client trains the

model over their local dataset on their environments and then each client uploads

the trained model to a server without exposing the training dataset. Afterward,

the trained models from every client are aggregated on a server. However, train-

ing the same model on all clients is infeasible due to resource constraints. For

this reason, I proposed an infrastructure to handle training the model on hetero-

geneous storage, computing, and network resources.

1.1 Motivation and Goal

Building a highly accurate machine learning model requires a well-designed model

architecture and a high-quality training dataset [1]. Since it is challenging for a

single researcher to build a well-designed model and high-quality dataset, col-

laborative development to exchange valuable knowledge and experience among

domain experts is imperative [2]. Such collaboration has been vital for the rapid

and successful growth of the software industry [3]. Online software development

platforms such as GitHub allow individuals from diverse backgrounds and or-

ganizations to work together and create complex and large-scale software [4].

However, software development platforms are designed to manage source codes

and are not suitable for building datasets.

Datasets for machine learning are usually constructed from data collected from

many data sources to increase their size and diversity as shown in Fig 2. However,

sharing data with each other is not always possible due to privacy policies and

license limitations [5]. Therefore, federated learning has been proposed to train a

machine learning model while preserving data privacy [6]. In federated learning,

the data remains on the devices or servers where it is collected, and only model

2

ServerClient

 Client A Model

Data A

 Client B

Data B

Data Storage

Trained
Model

Data B

Data A

(1) Transfer local dataset to a server

(1) Transfer local dataset to a server

(2) The model is trained over the collected datasets

Figure 2: Overview of traditional collaborative machine learning

updates are exchanged between the parties involved in the training process as

shown in Fig 3. This helps to address privacy concerns. It also enables model

training on a much larger and more diverse dataset, as the data can come from

multiple sources.

In practical situations, however, it is not always possible for all user devices

to use the same model due to the resource constraints of edge devices that limit

the ability to purchase high-performance computing and storage systems. Ad-

ditionally, the available physical space, power supply, and network quality are

also limiting factors. Hence, enabling federated learning in heterogeneous en-

vironments is important in achieving high model accuracy since the large size

and diversity of the training dataset are necessary to train the model from di-

verse environments. The limitation of each heterogeneous client environment is

considered when the machine learning models are trained or used for inference [7].

Since each model requires different hardware resources for training or infer-

ence, I focus on the heterogeneity of existing client hardware resources. In this

dissertation, I consider three aspects of hardware heterogeneity: storage, com-

puting, and communication. To the best of my knowledge, a federated learning

platform that considers the various limitations of heterogeneous environments on

clients does not exist yet.

3

ServerClient

 Client A

Model

Data A

Model Trained
Model

 Client B

Data B

Model Trained
Model

(1)

(1)

(2)

(2)

Aggregation

(3)

Trained
Model

Trained
Model

(3)

Aggregated
Model(5)

(5)

(4)

(1) Distribute the models to every client
(2) Each client performs local training on the local dataset

(3) The trained models are returned to a server for aggregation
(4) On a server, the model is aggregated with the trained models

(5) The aggregated model is distributed to every client for continued local training

Figure 3: Overview of federated learning

This dissertation proposes LiberatAI, an infrastructure that enables the col-

laborative development of machine learning models on heterogeneous environ-

ments while preserving data privacy. Figure 4 shows the overview of LiberatAI.

Federated learning is applied to train the models without exchanging the raw

dataset between a server and clients. LiberatAI extends my three previous works

to support training a model on diverse storage, computing, and communication

resources. First, LiberatAI employs my method for reducing the model size to fit

in heterogeneous storage capacity constraints [8]. Second, LiberatAI employs my

method for aggregating the heterogeneous trained models from diverse computing

resources [9]. Third, LiberatAI employs my method for sparsifying the models

for saving the communication cost when the models are exchanged between a

server and the clients [10]. The contribution of this dissertation is to build a

collaborative machine learning infrastructure that integrates these my previous

technologies to allow users to use appropriate models and reduce the required

storage, and communication cost for each client so that it accommodates a vari-

ety of devices in edge computing environments. As a result, I show how LiberatAI

efficiently builds models across heterogeneous environments.

I expect that LiberatAI will remove the barrier for the collaborative develop-

4

 Institute A

LiberatAI

model

data A data A

 Institute B

data B data B

 Institute X

model

data X data X

Commit Commit Pull

model

Model repository

Figure 4: Overview of LiberatAI

ment of machine learning models from the limitation of data privacy and hetero-

geneous environments. It is often infeasible to distribute the same model to every

edge device because of hardware limitations such as computing performance and

storage space. Traditional collaborative development of machine learning mod-

els requires sharing their dataset and retraining the model from scratch. Many

machine learning models will be built to support multidisciplinary research since

researchers are able to contribute the existing models without training the models

from scratch which requires a significant amount of computing resources.

LiberatAI will allow machine learning developers or researchers to develop ma-

chine learning models collaboratively. Research communities in both academia

and industry will be expanded and crossed over multidisciplinary because of the

infrastructure. The number of research collaborations will be continuously in-

creased because the barrier of data usage and hardware resources has already

been eliminated. LiberatAI might enable emerging models in various research

fields especially the fields that utilize privacy-sensitive data when it is available.

Furthermore, LiberatAI will attract many researchers to build research commu-

nities by sharing their knowledge and experience with each other.

5

1.2 Organization of the Dissertation

The rest of this dissertation is structured as follows. Chapter 2 explains the

proposed method for reducing the size of models to fit in heterogeneous stor-

age resources while maintaining the accuracy of models. This chapter evaluates

the proposed method using the compression of various neural network models

for classification, regression, and semantic similarity tasks. Chapter 3 describes

the proposed method to aggregate the diverse models trained on heterogeneous

computing resources. This chapter evaluates the proposed method to ensemble

the models with four different structures for image classification. The optimized

weights of weighted average ensembling are demonstrated to weight each model

structure. Chapter 4 shows the proposed method to sparsify the models for

exchanging the models between a server and clients on heterogeneous network re-

sources. This chapter compares the proposed method to the existing methods on

communication cost and model accuracy. Chapter 5 presents how I integrate my

proposed methods to handle training the models on heterogeneous environments

for building LiberatAI infrastructure. This chapter evaluates LiberatAI using

state-of-the-art neural network models to detect COVID-19 cases from chest X-

ray images, which is one of the most popular machine learning applications for

privacy-sensitive data. Lastly, chapter 6 concludes this dissertation and discusses

future works.

6

2. Training Models with Heterogeneous Storage

Resources

2.1 Introduction

Edge Machine Learning is gaining much attention from the academia and industry

because edge devices have more computing power than ever [11]. Figure 5 presents

the workflow of Edge ML, where models are deployed and executed on edge

devices instead of cloud servers. Edge ML provides better data privacy and less

response time because datasets do not need to be uploaded to the cloud as in

conventional cloud-based machine learning [12].

Server Client

Model

Input	Data

Updated	model

Input	Data

Inference	ResultModel

Model Inference	Result

Updated	model

Figure 5: Workflow of Edge Machine Learning

The key restrictions for running machine learning models on edge devices are

limited computing resources and storage space [13]. The amount of computing

resources that is required to run a model depends on its size and complexity [14].

In particular, recent neural networks involve complex layer structures and many

parameters, which requires a large amount of computing resources. Thus, re-

searchers have recently studied various model compression methods to reduce

the required storage space for deploying machine learning models on resource-

constrained edge devices [15]. In this chapter, I particularly focus on reducing

the model size for storing and transferring the models due to the limitation of

storage space on edge devices. Compressing neural network models reduces the

size of the model, but as a trade off, the compression loses accuracy. This is

because compression might eliminate some of the weights that have a significant

impact on the accuracy of models [16]. Minimizing the loss of model accuracy

while maximizing the compression ratio is the challenge in model compression.

7

To minimize the accuracy loss of compressed models, finding an optimal

configuration for the compression and retraining process are important. Sev-

eral model compression techniques including low-rank factorization [17], optimal

brain surgeon [18], learning structured sparsity [19] and temporal sequence mod-

eling [20] have been proposed recently. However, these existing techniques require

a significant amount of trial and error to find the optimal configurations for com-

pressing the model size without significant accuracy loss [21].

Retraining is a method for increasing the accuracy of a trained model by

performing the training process again. Previously proposed retraining methods

usually rely on labeled datasets [22]. A labeled dataset is a collection of sam-

ples that have already been labeled to classify specific object features. In the

training of neural network models, labeling is a crucial step [23], and is a lengthy

process [24]. Labeling is especially expensive when it requires knowledge from do-

main experts. Moreover, labeled datasets are not always available due to license

restrictions and privacy policies (e.g., patent licenses, confidentiality agreements,

and general data protection regulation). For this reason, retraining with unla-

beled datasets is incredibly useful when labeled datasets are inaccessible.

This chapter proposes a method to automatically find the optimal configura-

tions for compressing and retraining the neural network models without labeled

data. The proposed method employs a multi-objective optimization algorithm to

simultaneously minimize model size and maximize model accuracy. The proposed

method suggests multiple compression configurations that generate models with

different model size and accuracy, from which users can select the configurations

that suit their needs. Furthermore, I propose a retraining method that does not

require the labeled dataset to be a training dataset. This chapter extends my

previous work [8] on retraining quantized neural networks and removes the need

for hand-tuning by users to find the best configuration. The contribution and

novelty of this chapter are summarized as follows:

• I propose a method that automatically finds the optimal configurations for

compressing and retraining models.

• I propose a retraining method for compressed models that does not require

labeled datasets.

8

A motivating use case of the proposed method is to create multiple models

tailored to the hardware constraints of diverse devices. For example, consider

a voice recognition model for a voice assistant application that runs on mobile

devices. Although a minor loss in accuracy is acceptable since there are no serious

consequences even if the model output is incorrect, users would still want to run a

model that achieves the highest accuracy within the hardware constraints of their

mobile devices. In such case, finding a single compression configuration that fits

all users is not possible. On the other hand, the proposed method can provide

multiple configurations each with different hardware requirements.

2.2 Background

This section describes a brief overview of existing techniques for compressing and

retraining neural network models.

2.2.1 Compression of Neural Networks

Recent neural networks are becoming increasingly larger to achieve higher accu-

racy [25]. However, not every parameter in a model contributes to the model

accuracy. Based on this observation, model compression eliminates unnecessary

parameters in a model with an aim to reduce its size while maintaining its original

accuracy. Designing an efficient model compression method requires understand-

ing the structure of a model, identifying redundant parameters, and eliminating

those parameters with acceptable loss of accuracy.

Cheng et al. [26] surveyed various methods for compressing neural networks.

They are classified into four approaches: (1) transferred/compact convolutional

filters, which redesigns a compact model using convolutional filters with reduced

size [27], (2) knowledge distillation, which redesigns a compact model of the en-

tire model [28], (3) low-rank factorization, which reduces the model size using

matrix decomposition [29], and (4) parameter pruning and sharing, which elimi-

nates redundant parameters [30]. Table 1 shows the comparison of these existing

approaches.

Transferred/compact convolutional filters and knowledge distillation redesign

a compact model with a new structure to reduce the model size. Therefore, these

9

Table 1: Approaches for model compression

Approach

Uses

pre-trained

models

Supports

fully connected

layers

Reduces

redundant

parameters

Loss

of

accuracy

Transferred/compact

convolutional filters
7 7 7 Small

Knowledge

distillation
7 3 3 Large

Low-rank

factorization
3 3 7 Large

Parameter pruning

and sharing
3 3 3 Small

approaches require extra effort including redesigning a new model architecture

and retraining the model compared to simply reusing pre-trained models. On the

other hand, low-rank factorization and parameter pruning and sharing preserve

the original structures of the models, and thus can efficiently reuse the results of

the pre-trained models. Low-rank factorization reduces the model size by using

matrix decomposition, but the decomposition of large matrices is computationally

intensive, and the accuracy of the obtained model is generally low. Parameter

pruning and sharing is a simple approach that reduces only the unnecessary and

redundant parameters that have little impact on accuracy. It does not require

much computation and the loss of accuracy is minimal.

Frankle et al. [31] proposed the lottery ticket hypothesis, which states that a

dense neural network contains a subnetwork that can achieve the same level of

accuracy as the original network after training. Based on this hypothesis, they

proposed a pruning method for reducing the size of neural network. Diffenderfer

et al. [32]. also developed a method based on the lottery ticket hypothesis that

randomly splits a model into subnetworks and trains each subnetwork separately

A subnetwork is then removed from the original model if the accuracy of the

subnetwork is low. However, removing parameters from the model might degrade

the model accuracy significantly because it changes the model architecture [33].

Since the parameter sharing approach does not affect the model architecture,

10

parameter sharing maintains better accuracy than parameter pruning.

Quantization is a widely adopted method based on the parameter sharing

approach for compressing neural networks. It groups parameters into multiple

clusters, and replaces all parameters in the same cluster with a representative

value [34]. As a consequence, the size and computational cost of the model

are reduced in return for slightly degraded accuracy. Vector quantization, one of

quantization methods, outperforms other quantization approaches in compressing

fully connected layers [35], which are known to be the most storage-demanding

layers. Therefore, I applied vector quantization to compress the models.

2.2.2 Retraining Compressed Neural Networks

Applying retraining to compressed neural networks has been shown to increase

the accuracy of compressed models. Retraining is a technique for improving the

accuracy of an already trained neural network model by repeating the training

process [36]. During the retraining process, the weights in a selected subset of

layers are updated.

Sung et al. [37] demonstrated that highly complex models can absorb the

effects of applying weight quantization by retraining, but neural networks with a

limited number of connections cannot. They showed how the retraining method

affects the resiliency of quantized networks.

Chen et al. [38] developed L-DNQ, a layer-wise quantization algorithm for

neural networks that requires only a small subset of the original training dataset.

They proved that the final quantization error of a neural network is bounded

by a linear combination of the layer-wise quantization errors, and formulated

quantization as a discrete optimization problem. A highly efficient algorithm

called Alternative Direction Methods of Multipliers (ADMM) is used to find the

solution for this optimization problem.

Early works showed the existing model compression and retraining methods

require manual effort to find the optimal configurations. The configuration indi-

cates which parameters should be quantized and how much they can be reduced

without significant loss of model accuracy. Finding the optimal configurations

manually wastes computational cost and cannot confirm that the configurations

are optimized.

11

2.2.3 Automated Compression of Neural Networks

Recent methods for automatic compression of neural networks take advantage of

deep reinforcement learning to efficiently find a compression configuration that

reduces the model size while maintaining model accuracy. He et al. [39] proposed

AMC to automatically search the configurations to prune a neural network model

using deep reinforcement learning. AMC has two search protocols for resource-

constrained and accuracy-guaranteed compression. Elthakeb et al. [40] developed

ReLeQ, which is also based on deep reinforcement learning. It uses an asymmetric

reward formulation to control the trade-off between accuracy and compression

rate. Lou et al. proposed AutoQ [41] which is a two-level hierarchical deep

reinforcement learning to automatically quantize the weights in the kernel-wise

and the activation in the layer-wise.

All of these existing automated compression methods utilize single-objective

optimization since they formulate a single reward function based on model size

and model accuracy. Thus, these methods can only provide a single configuration,

while my proposed method is based on multi-objective optimization and provides

a set of optimal configurations.

2.3 Methodology

This section explains the proposed method to automatically find the optimal

configurations for quantization and retraining neural network models without

labeled data.

2.3.1 Overview

Figure 6 shows the four steps in my proposed method: (1) quantization, (2)

retraining, (3) compression and (4) optimization. First, the original model is

quantized using vector quantization. Second, the quantized model is retrained

without labeled datasets to increase the model accuracy while maintaining the

same model size. Third, the retrained model is compressed using gzip. Fourth,

I measure the size and accuracy of the retrained model and then use a multi-

objective optimization algorithm to find a set of potentially better quantization

parameters. These steps are repeated until convergence is reached.

12

Proposed Methodology

Original

Model Quantization

Retraining

size, accuracy

configurations

Compressed
Model

Optimization

Compression

Figure 6: Overview of the proposed method

2.3.2 Quantization

Vector quantization is applied within a compressor module of LiberatAI, which

is a technique used in data compression to divide a large space into smaller parts

and represent the values within each part with a representative value, known as

the centroid. When applied in a compressor module, vector quantization can

help reduce the number of bits needed to represent the parameters of a neural

network, leading to a smaller storage requirement.

For instance, the vector quantization is applied to quantized data into four

clusters and centroids as shown in Fig. 7. Initially, the parameters are divided into

four equally sized groups. The centroid, or representative value of each group, is

then calculated. The parameters within each group are then represented by their

corresponding centroid. As a result, data before and after vector quantization is

shown in Fig. 7a and Fig. 7b, respectively.

In my method, I automatically tune the number of centroids using an opti-

mization method described later in Section 2.3.5. Using few centroids reduces the

13

(a) Before vector quantization (b) After vector quantization

Figure 7: Data before and after vector quantization

model size, but degrades the model accuracy. Since the number and distribution

of parameters vary across layers, the optimal number of centroids is different for

each layer.

2.3.3 Retraining

Unlabeled
Data

Quantized	model

Non-trainable	layer
Trainable	layer

Original	model

Trainable	layer

Output	vector

Loss

Output	vector

Figure 8: Retraining quantized model without labeled data

Following the quantization described in the previous section, I retrain the

quantized model to recover the accuracy without using the original labeled dataset.

Figure 8 illustrates how my retraining method functions. I first separate the lay-

ers in the target model into trainable and non-trainable layers. Specifically, the

quantized layers are identified as non-trainable and the rest as trainable. The

14

Training	data	set

N	data	points	

Neural	network	model

Output	Layer
1 2 M

Output	Vector

1

2

3

N 1 2 M

1 2 M

1 2 M

1 2 M

M

N

Figure 9: An output from a neural network model

quantized layers are not retrained because redundancies have already been elim-

inated and retraining would introduce redundancies again. Retraining only the

non-quantized layers reduces the number of parameters that need to be updated

during the training process. Accordingly, the proposed retraining method de-

creases the training time per epoch, and thus reduces the total retraining time as

well.

I then retrain the quantized model by using the output from the original model

as a teacher signal. To achieve this, both the original and quantized models

receive the same unlabeled dataset, and the output vectors from both models

are retrieved. Figure 9 illustrates an output from the last layer of a model,

which represents the confidence for each class. The output is an 𝑁 × 𝑀 matrix,

where 𝑀 and 𝑁 represent the number of output classes and samples, respectively.

The quantized model is retrained to minimize the loss between the outputs from

original and quantized models. Compared to using a labeled dataset, my method

incurs additional overhead because outputs need to be generated from the original

model. However, the runtime required for generating outputs using the original

model is small compared to the runtime for retraining (approximately 2.8% of

the retraining time).

2.3.4 Compression

The quantization step in my method increases the redundancy in a model by

replacing the parameters with their representative values. However, the quanti-

15

Start

Stop

Initial Population
(initial configurations)

Evaluation
(size, accuracy)

Non-Dominated Sorting
(based on crowding distance)

Offspring

Selection

Crossover

Mutation

Combine Parent and Offspring
Populations

Select Populations
on Pareto Optimal Front

Convergence
criteria Yes

No

Figure 10: Flowchart of NSGA-II

zation step only makes a model amenable to compression and keeps the model

size. In the last step of my method, I use a compression algorithm and eliminate

the redundancy in a model to reduce its size.

In this work, the quantized model is saved as a Hierarchical Data Format 5

(HDF5)1 file after retraining. Subsequently, gzip2 is used to compress the model

by finding the redundant parameters in the quantized layers. Gzip is one of the

most efficient compressor and decompressor since it can compress almost any file

type and is fast enough to compress and decompress data on the fly [42].

1http://www.hdfgroup.org/HDF5
2https://www.gnu.org/software/gzip/

16

0 100 200 300 400 500
Model size [MB]

0

20

40

60

80

100
M

od
el

 a
cc

ur
ac

y
[%

]
Reference PointPareto front

Figure 11: Calculation of hypervolume

2.3.5 Optimization

Finding the best configuration for quantizing a neural network model can be

thought of as a multi-objective optimization problem because a configuration

that maximizes the model accuracy and minimizes the model size at the same

time needs to be found. Although considering other constraints such as memory

footprint, inference time and convergence speed, are interesting, I focus on model

size and accuracy only for simplicity in this chapter. Multi-objective optimization

algorithms can find the optimal configurations faster than a full search. Thus,

I apply the Non-dominated Sorting Genetic Algorithm II (NSGA-II), a state-

of-the-art multi-objective optimization algorithm, to optimize the quantization

configurations.

NSGA-II is a genetic algorithm for multi-objective optimization [43]. There

are three distinctive features of NSGA-II: (1) it uses an elitist principle where

elites of a population are given the opportunity to be carried to the next gener-

ation, (2) it applies crowding distance, which is an explicit diversity preserving

mechanism, and (3) it emphasizes the non-dominated solutions. The optimiza-

tion for model compression should focus on the non-dominated solutions since

17

smaller models might have the possibility to have higher accuracy than the larger

one.

Figure 10 shows the workflow of NSGA-II. NSGA-II starts by generating

an initial population (i.e., quantization configurations in the proposed method).

Next, the optimizer evaluates the compressed models that applied the initial

configurations to obtain their model size and accuracy. NSGA-II uses a non-

dominated sorting method based on crowding distance to provide the solution as

close to the Pareto front as possible. The quantization configurations are ordered

by crowding distance in the objective space. Subsequently, it generates the off-

springs from the previous generation using genetic operations including selection,

crossover, and mutation. Next, the offspring configuration is applied to compress

the model and then evaluate the compressed model. Lastly, select the optimal

configurations on the Pareto optimal front are selected to calculate the conver-

gence of the optimization process. These steps are repeated until the Pareto front

has not changed for five generations.

I use the Hypervolume of the objective space to test the convergence [44].

Hypervolume calculates the volume between the Pareto front and the reference

point as shown in Fig. 11. I defined the reference point (the size of the original

model, 1.0) for both classification and regression because the highest possible

accuracy and the 𝑅2 score of the classification and regression model is 1.0.

2.4 Evaluation

Table 2: Specification of classification models

Name Size [MB] Accuracy

LeNet5 114.06 0.837

DenseNet201 80.28 0.728

ResNet152 235.64 0.748

VGG16 553.43 0.751

C3D 869.11 0.826

This section evaluates the proposed method to investigate the effectiveness of

18

Table 3: Specification of regression models

Model Size [MB] 𝑅2 score

RNN 175.08 0.846

Bi-RNN 325.13 0.849

LSTM 700.20 0.883

Bi-LSTM 1300.30 0.884

GRU 525.25 0.882

Bi-GRU 975.40 0.883

Table 4: Specification of semantic similarity models

Name Size [MB] Accuracy

BERT-base 440.27 0.719

BERT-large 1368.31 0.767

BERT-xlarge 5089.06 0.802

the proposed method using various real-world neural network models for classifi-

cation, regression and semantic similarity tasks. I first describe the experimental

setup and visualize the objective space during optimization. I then assess the

trade off between model accuracy and size. I also investigate the impact of the

multi-objective optimization algorithms and retraining datasets on the perfor-

mance of the compressed models, and the runtime required to quantize models.

Finally, I compare the proposed method to state-of-the-art automated quantiza-

tion methods.

2.4.1 Experimental Setup

The proposed method was evaluated using five classification models (Table 2), six

regression models (Table 3) and three semantic similarity models (Table 4). I used

five image classification models: LeNet5 [55], DenseNet201 [56], ResNet152 [57],

VGG16 [58], and C3D [59]. I used three regression models: the recurrent neural

network (RNN), the long short-term memory network (LSTM), and the gated

19

Table 5: Datasets used for training and retraining

Model
Training

dataset

Retraining

dataset

LeNet5 HARecognition [45] 1D MNIST [46]

DenseNet201

ResNet152 ImageNet [47] CIFAR 100 [48]

VGG16

C3D 3D MNIST [49] ObjectNet3D [50]

RNN

Bi-RNN

LSTM SP500 Stock [51] Historical Bitcoin

Bi-LSTM Market [52]

GRU

Bi-GRU

BERT-base

BERT-large SICK2014 [53] SNLI2015 [54]

BERT-xlarge

recurrent unit network (GRU) [60]. In addition, I created a bidirectional version

for each regression model. A bidirectional layer computes the input data in

two directions, one from past to future and another from future to past [61].

This design helps the network to understand the future state. For the semantic

similarity task, I used three variants of the Bidirectional Encoder Representations

from Transformers (BERT) [62], which are BERT-base, BERT-large, and BERT-

xlarge.

I prepared two datasets for each model as shown in Tab. 5. The initial model

is trained and validated using the first dataset, and the compressed model is

20

Table 6: Hyperparameters for NSGA-II

Hyperparameter Value

Size of the population per generation 10

Number of offspring 10

Crossover method Uniform

Mutation method Inversion

Table 7: Hardware specification

Hardware Specification

CPU Intel Xeon E5-2650 v2 ×2
Main Memory 256 GB

GPU NVIDIA Tesla P100

GPU Memory 16 GB

retrained using the second dataset. I used different datasets for the classification

models because the dimensionality of the input they accept are different (LeNet5

accepts 1D, DenseNet201, ResNet152 and VGG16 accept 2D, and C3D accepts

3D inputs). The regression and semantic similarity models are all trained and

retrained using the same datasets.

In this chapter, the number of centroids is chosen from powers of two ranging

from one to 256. The used NSGA-II hyperparameters are shown in Tab. 6. Lastly,

Tab. 7 presents the hardware used for the evaluation.

2.4.2 Visualization of the Optimization Process

To show the progress of the multi-objective optimization, I visualized the objec-

tive space along with the Pareto front at three points in time during the execution

of the proposed method: (1) first generation, (2) half of the converged generation,

and (3) the converged generation.

Figure 12 shows the objective space of LeNet5 when applying the proposed

method from the first generation until the converged generation (53rd generation).

21

0 20 40 60 80 100
Model size [MB]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pareto
front

Previous
generations

Current
generation

(a) First generation

0 20 40 60 80 100
Model size [MB]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pareto
front

Previous
generations

Current
generation

(b) Half of converged generation

0 20 40 60 80 100
Model size [MB]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pareto
front

Previous
generations

Current
generation

(c) Converged generation

Figure 12: The objective space of LeNet5 when applying the proposed method

The hypervolume of the first generation is equal to 0.44 as shown in Fig. 12a.

After half of the converged generation, the hypervolume is increased to 0.54 as

shown in Fig. 12b. All optimal configurations keep changing through the first

half of optimization. Figure 12c presents the objective space at the converged

generation. For the last generation, the hypervolume is equal to 0.58. Also, there

are eight configurations on the Pareto front which have a smaller size and a higher

accuracy than the first half generation.

Figure 13 shows the objective space of RNN when applying the proposed

method from the first generation until the converged generation. Figure 13a

shows the objective space for the first generation which has hypervolume around

22

0 20 40 60 80 100 120 140 160
Model size [MB]

0.0

0.2

0.4

0.6

0.8

1.0

R2 s
co

re

Pareto
front

Previous
generations

Current
generation

(a) First generation

0 20 40 60 80 100 120 140 160
Model size [MB]

0.0

0.2

0.4

0.6

0.8

1.0

R2 s
co

re

Pareto
front

Previous
generations

Current
generation

(b) Half of converged generation

0 20 40 60 80 100 120 140 160
Model size [MB]

0.0

0.2

0.4

0.6

0.8

1.0

R2 s
co

re

Pareto
front

Previous
generations

Current
generation

(c) Converged generation

Figure 13: The objective space of RNN when applying the proposed method

0.28. After half of the converged generation, the hypervolume is increased to 0.54

as shown in Fig. 13b. Figure 13c presents the objective space at the converged

generation which has hypervolume around 0.57. I found out that the hypervolume

grew when applying the proposed method. Increasing the hypervolume means

the proposed method can find the better configurations when the number of

generations rises.

The Pareto front moves towards a smaller model size and a higher model ac-

curacy as generations pass. During the first half of the optimization, the Pareto

front changes more quickly than during the second half of the optimization since

the approximated Pareto front approaches the true Pareto front. For both classi-

23

fication and regression models, I observed that the optimal configuration on the

Pareto front keeps changing when applying the proposed method.

0 10 20 30 40 50 60
Generations

50

55

60

65

70

75

80

85

Pe
rc

en
ta

ge
 [%

]

LeNet5
RNN

Model accuracy [%]
Model size [%]

Figure 14: Percentage of model size and accuracy during optimization

Furthermore, I analyzed the trade-off between accuracy, compression and com-

putational cost by examining the optimal configuration on the Pareto front that

achieves the highest accuracy for each generation. Figure 14 shows the model

size and accuracy of LeNet5 and RNN during optimization. At the beginning of

the optimization, the model size grew rapidly and reached a plateau after 5 to 10

generations in both models. In contrast, the decrease in model size was relatively

slow during the optimization. In LeNet5, the model size converged after around

50 generations, while the model size of RNN took 40 generations to converge. If

the optimization process is run to the end, a complete Pareto front will be found,

but if a satisfactory configuration is found in the middle, the optimization process

can be stopped at that point.

2.4.3 Model Size and Accuracy

In this evaluation, I optimized each model using my proposed method until con-

vergence and compared the Pareto fronts at the converged generation across mod-

els. Figure 15a shows the Pareto fronts for the five classification models. Here, the

24

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy Compressed LeNet5

Compressed DenseNet201
Compressed ResNet152
Compressed VGG16
Compressed C3D
Original LeNet5
Original DenseNet201
Original ResNet152
Original VGG16
Original C3D

(a) Pareto fronts for classification

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Compressed RNN
Compressed Bi-RNN
Compressed LSTM
Compressed Bi-LSTM
Compressed GRU
Compressed Bi-GRU
Original RNN
Original Bi-RNN
Original LSTM
Original Bi-LSTM
Original GRU
Original Bi-GRU

(b) Pareto fronts for regression

20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Compressed BERT base
Compressed BERT-large
Compressed BERT-xlarge
Original BERT-base
Original BERT-large
Original BERT-xlarge

(c) Pareto fronts for semantic similarity

Figure 15: Pareto fronts

y-axis represents the accuracy while the x-axis represents the relative size com-

pared to the original model. The figure indicates that larger classification models

are more amenable to compression than smaller models since the Pareto fronts of

the larger models are closer to the y-axis. Figure 15b presents the Pareto fronts

for the six regression models. LSTM and GRU might be easier to compress than

RNN because they contain more redundant parameters than RNN. Figure 15c

shows the Pareto fronts for the three semantic similarity models. Larger BERT

might be easier to compress than smaller BERT because larger one might contain

more redundant parameters than smaller one.

What stands out in Fig. 15a is the sharp drop of accuracy under a certain

model size. Taking LeNet5 as an example, its accuracy sharply declines when the

25

model size is reduced to less than approximately 46% of the original. The Pareto

fronts for other classification models follow the same trend. The same trend is

even clearer with the Pareto fronts for regression models shown in Fig. 15b. For

example, RNN is compressed down to 40% of its original size with almost no

degradation of accuracy, but steeply degrades when compressed smaller. I also

observed the same trend with the Pareto fronts for semantic similarity models as

shown in Fig. 15c.

0 1 2 3 4 5 6 7 8 9
Predicted classes

0

1

2

3

4

5

6

7

8

9

Ac
tu

al
 c

la
ss

es

851 4 35 10 10 4 5 17 38 26

33 798 25 0 11 0 30 18 35 50

16 0 905 3 8 16 39 13 0 0

10 3 18 827 12 45 49 22 14 0

24 10 29 22 775 38 58 28 6 10

7 0 31 101 22 804 16 15 2 2

3 1 20 17 12 4 846 35 32 30

5 8 7 9 27 13 7 921 0 3

22 26 35 23 2 14 20 32 803 23

13 39 2 9 2 13 25 33 27 837
0

200

400

600

800

(a) Original model

0 1 2 3 4 5 6 7 8 9
Predicted classes

0

1

2

3

4

5

6

7

8

9

Ac
tu

al
 c

la
ss

es

832 4 35 10 10 13 15 17 38 26

33 782 25 0 20 0 30 19 35 56

16 0 877 3 18 26 39 13 4 4

10 8 18 818 12 45 49 22 14 4

20 10 19 22 812 38 58 21 0 0

26 11 21 95 22 738 21 19 16 31

0 1 20 17 12 4 855 35 26 30

25 28 18 18 15 13 7 841 12 23

22 16 20 18 15 19 10 22 844 14

18 39 7 9 17 13 25 33 27 812
0

100

200

300

400

500

600

700

800

(b) Compressed model

Figure 16: Confusion matrices of the original and compressed LeNet5 models

To assess the effectiveness of my compression method, I chose the models

with the lowest accuracy loss on the Pareto fronts and compared them with their

original models. The accuracy loss of all those models compared to the original

models was less than 1%. For classification models, the model sizes of C3D and

VGG16 are reduced to approximately 60% of their original size, whereas LeNet5

is reduced to 38.39%. This might stem from the fact that LeNet5 is the smallest

model among the classification models, and the fraction of necessary parameters

is larger than the models. For regression models, bidirectional models are reduced

more than unidirectional models. This suggests that bidirectional models have

more redundant parameters than unidirectional models. For semantic similarity

models, larger models are compressed more than smaller models since larger

one has more redundant parameters than smaller one. Finally, I visualized the

confusion matrices for the original and compressed LeNet5 models as shown in

Fig. 16. As expected, the confusion matrices are almost identical.

26

2.4.4 Effect of Optimization Algorithm

0 20 40 60 80 100
Model size [MB]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

BRKGA
NSGA-II
NSGA-III
Original

Figure 17: Pareto fronts for different optimization algorithms

BRKGA NSGA-II NSGA-III
Optimization algorithms

0

50

100

150

200

250

Ru
nt

im
e

[m
in

ut
es

]

Without model accuracy constraint
With model accuracy constraint

Figure 18: Runtime of different optimization algorithms

To assess the impact of different optimization algorithms, I have evaluated

the quality of quantization configurations and runtime with different other op-

timization algorithms. Here I considered two other multi-objective optimization

algorithms: Biased Random Key Genetic Algorithm (BRKGA) [63] and Non-

dominated Sorting Genetic Algorithm III (NSGA-III) [64]. Figure 17 compares

the Pareto fronts of LeNet5 for BRKGA, NSGA-II and NSGA-III. Evidently,

NSGA-II and NSGA-III are able to find better configurations than BRKGA.

NSGA-II and NSGA-III output very similar configurations, but NSGA-III takes

27

longer runtime than NSGA-II (Fig. 18). As well, I observed the same trend when

I applied these multi-objective optimization algorithms to VGG16, C3D, LSTM,

Bi-LSTM and BERT-xlarge.

2.4.5 Effect of Retraining

0 20 40 60 80 100
Model size [MB]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Before retraining
After retraining on 1D MNIST
After retraining on EMNIST
After retraining on Kuzushiji
After retraining on Arabic
Original LeNet5

Figure 19: Accuracy of LeNet5 before and after retraining over the different

retraining dataset

LeN
et5

Den
seN

et2
01

Re
sN

et1
52

VGG16 C3D

BER
T-b

ase

BER
T-la

rge

BER
T-x

lar
ge

Models

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Original model Quantized model
before retraining

Quantized model
after retraining

(a) Accuracy

RNN
Bi-R

NN
LST

M

Bi-LS
TM GRU

Bi-G
RU

Models

0.0

0.2

0.4

0.6

0.8

1.0

R
2 s

co
re

Original model Quantized model
before retraining

Quantized model
after retraining

(b) 𝑅2 score

Figure 20: Model performance of the models before and after retraining

I compared the accuracy before and after applying the proposed retraining

method to LetNet5 to evaluate if the proposed method improves the accuracy of

28

the compressed models. Figure 19 presents the Pareto fronts for LeNet5 before

and after retraining. As the figure indicates, the retraining process was able to

successfully improve the accuracy of LeNet5 with all model sizes. Moreover, I

selected the configuration on the Pareto front that achieved the highest accuracy

before and after retraining, and plotted the accuracy for all models. The results

are shown in Fig. 20a and Fig. 20b. An interesting finding is that smaller models

show less improvement of accuracy after retraining. This might suggest that

severely quantized small models have lost crucial information that cannot be

recovered using retraining.

Furthermore, I varied the retraining datasets to observe the impact of differ-

ent retraining datasets on the model performance after retraining. 1D MNIST,

EMNIST [65], Kuzushiji [66] and Arabid [67] datasets are used to retrain LeNet5

after compression. Figure 19 indicates that varying the retraining dataset only

slightly affects the accuracy of models. The results indicated that the impact

of the retraining dataset to the final accuracy is minimal (less than 3%). Be-

cause the proposed method is designed for retraining on unlabeled datasets, the

retraining dataset does not have to have the exact same pattern and distribution

as the original datasets, the proposed method can retrain the models on different

retraining datasets without significant loss of accuracy.

The same trend is observed in other models as well. In summary, the proposed

retraining method can effectively improve the accuracy of compressed neural net-

work models.

2.4.6 Runtime

I measured the runtime to find the optimal configurations with and without

imposing a constraint on model accuracy. Introducing a constraint is expected

to reduce the runtime because it narrows down the objective space to search.

Here, I constrain the accuracy of classification and semantic similarity models to

their original accuracy minus 10% and the 𝑅2 score of regression models to their

original score minus 0.1.

Figure 21a shows the runtime of the proposed method for classification and

regression models. Evidently, the runtime becomes faster when imposing con-

straints. The maximum speedup is achieved with C3D by 75.53%. I found that

29

LeN
et5

Den
seN

et2
01

ResN
et1

52
VGG16 C3D RNN

Bi-R
NN

LST
M

Bi-LS
TM GRU

Bi-G
RU

Models

0

100

200

300

400

500

Ru
nt

im
e

[m
in

ut
es

]

Without model accuracy constraint With model accuracy constraint

(a) Classification and regression

BERT-base BERT-large BERT-xlarge
Models

0

500

1000

1500

2000

2500

3000

Ru
nt

im
e

[m
in

ut
es

]

Without model accuracy constraint With model accuracy constraint

(b) Semantic similarity

Figure 21: Runtime of the proposed method with and without accuracy constraint

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

Figure 22: Comparison of proposed and existing methods using LeNet5

classification models benefit from imposing constraints more than the regression

models in terms of speedup.

Among the classification models, C3D has the longest runtime because it has

the most number of convolutional layers. In contrast, LeNet5 has the shortest

runtime because it has the least number of convolutional layers. The number of

layers impacts the runtime since the number of configurations that need to be

considered is directly proportional to the number of configurations that needs to

be optimized by the proposed method.

All regression models have the same number of layers but each model has a

30

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(a) DenseNet201 model

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(b) ResNet152 model

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(c) VGG16 model

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(d) C3D model

Figure 23: Comparison of quantized classification models for different automated

quantization methods

different type of recurrent layer. I observed that optimizing bidirectional models

takes longer than optimizing unidirectional models. This is because bidirectional

models require more time to retrain than the unidirectional models. RNN has

the shortest runtime among the regression models since it is simpler than LSTM

and GRU because LSTM and GRU are developed based on a simple recurrent

neural network layer [68].

A complex model requires a longer runtime to retrain than a simple model.

Since the BERT models are much more complex and larger than the other models,

the runtime to retrain these models is also significantly longer than the runtime

of the classification and regression models as shown in Fig. 21b.

Therefore, the runtime of the proposed method is mainly affected by the

following three factors: (1) the accuracy constraint, (2) the number of layers in

31

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(a) BERT-base model

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(b) BERT-large

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(c) BERT-xlarge model

Figure 24: Comparison of quantized semantic similarity models for different au-

tomated quantization methods

the model, and (3) the structure and complexity of the model.

2.4.7 Comparison to Previous Studies

I compared the proposed method to three existing automated quantization meth-

ods: AMC, ReLeQ, and AutoQ. The hyperparameters of the existing methods

were chosen based on their original set up. The ratio for updating the target

model (𝜏) in AMC was set to 0.01. The threshold for relative accuracy below

which the model accuracy loss may not be recoverable (𝑡ℎ) in ReLeQ was set

to 0.4. The fixed learning rate for the actor and critic networks in AutoQ was

set to 10−3. The proposed and existing methods were evaluated on the same

32

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

R
2 s

co
re

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(a) RNN model

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

R
2 s

co
re

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(b) LSTM model

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

R
2 s

co
re

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(c) GRU model

Figure 25: Comparison of quantized unidirectional regression models for different

automated quantization methods

hardware. Also, the configuration of training and retraining the model was the

same for the proposed and existing methods including model architecture, train-

ing dataset, and retraining dataset. Note that these existing methods provide

only a single quantization configuration, but my method provides a set of multi-

ple optimal quantization configurations for multi-objective problems. Moreover,

existing methods require the original training dataset to recover the accuracy of

quantized models.

Figure 22 plots the results for quantizing LeNet5 using different automated

quantization methods. The result clearly reveals that the proposed method was

able to find better quantization configurations than the existing methods. The

same pattern was observed with other model architectures. The results of other

33

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

R
2 s

co
re

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(a) Bi-RNN model

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

R
2 s

co
re

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(b) Bi-LSTM model

0 20 40 60 80 100
Model size [%]

0.0

0.2

0.4

0.6

0.8

1.0

R
2 s

co
re

Proposed method
AMC method
ReLeQ method
AutoQ method
Original model

(c) Bi-GRU model

Figure 26: Comparison of quantized bidirectional regression models for different

automated quantization methods

neural network models using different automated quantization methods are shown

in Figs 23, 24, 25, and 26

2.4.8 An Example of a Quantization Configuration

Here, I take LeNet5 as an example and examine one of the quantization config-

urations suggested by the proposed method. I selected the configuration that

achieves the highest accuracy. This configuration reduces the size of LeNet5 from

114.06 MB down to 70.27 MB with just 0.02% loss in accuracy. Table 8 shows the

size of each layer before and after compression. LeNet5 is composed of five layers

in total: three convolutional layers and two dense layers. The result indicates

34

Table 8: Size of each layer in the original and compressed LeNet5 models

Type
Original

size [MB]

Compressed

size [MB]

of

centroids

1 Conv. 7.46 - -

2 Conv. 10.66 - -

3 Conv. 8.88 - -

4 Dense 17.41 15.01 128

5 Dense 69.64 30.53 256

that the convolutional layers are kept uncompressed, and the two dense layers

are compressed using 128 and 256 centroids, respectively.

Generally, the size of deeper layers is larger than the size of shallower layers.

Table 8 indicates that the size of dense layers is larger than the size of convo-

lutional layers in LeNet5. Fully connected layers are amenable to compression

without significant loss of accuracy because they have a large number of param-

eters, and likely to contain redundant parameters.

2.4.9 Discussion

Conventional model compression methods require manual effort to find the op-

timal configuration. Users need to manually try every possible configuration to

find the optimal configuration, which wastes computing resources and runtime.

For instance, finding the optimal quantization configuration for LeNet5 using an

exhaustive search required evaluating 1010 configurations, since there were 10 pa-

rameters each with 10 possible levels of quantization (number of centroids). In

contrast, the proposed method reduced the number of configurations to be eval-

uated (10 × 53) because the optimization converged at the 53rd generations and

10 compressed models were evaluated at each generation.

I also compared the configurations found by the exhaustive search and my

proposed method. Figure 27 shows a comparison of the objective space between

the exhaustive search and the proposed method to find the optimal configurations

for LeNet5. Clearly, the exhaustive search evaluated more configurations than

35

Proposed Method

Exhaustive Search

Calculate
Pareto front

Calculate
Pareto front

Figure 27: Comparison of objective space between an exhaustive search and the

proposed method

the proposed method. Interestingly, the final Pareto fronts completely matched.

Therefore, the proposed method can automate to reduce the computing time from

the exhaustive search to find the optimal configuration for quantization and for

retraining the models. However, there is no guarantee that the proposed method

always finds the optimal configurations since it is based on a heuristic search

(genetic algorithm).

2.5 Conclusion and Future Work

This chapter proposed a method to automatically find the optimal configura-

tions for quantization and for retraining neural network models without labeled

data. The proposed method first compresses the model using vector quantiza-

tion and then recovers the accuracy using retraining. My retraining method does

not require labeled datasets. Furthermore, I use the NSGA-II multi-objective

optimization algorithm to automatically find the optimization configuration for

quantization that simultaneously minimizes the size and maximizes the accuracy

of the model.

36

The proposed method was evaluated using state-of-the-art neural network

models for classification, regression, and semantic similarity tasks. Convergence

criteria for the proposed method is the hypervolume, which increases when the

number of generations is rises. As a result, the proposed method reduced the size

of the models at least 30% while maintaining less than 1% loss of accuracy. Fur-

thermore, retraining without labeled data can successfully improve the accuracy

of the compressed model. Lastly, the runtime of the proposed method is related

to three main factors: (1) applying the model accuracy constraint, (2) the num-

ber of layers which is used to find the optimal centroids, and (3) the structure

and complexity of the model which affects the retraining time in the proposed

method.

In the future, I plan to assess the generality of my method using a variety

of neural networks with diverse structures. I also plan to extend my proposed

method beyond neural networks and apply to different machine learning algo-

rithms. Additionally, I will investigate multi-objective optimization methods

other than NSGA-II. Various aspects of neural network models, such as mem-

ory utilization, inference time, and converging speed, should be examined as

optimization objectives.

37

3. Training Models with Heterogeneous Comput-

ing Resources

3.1 Introduction

Federated learning trains a single global model on a centralized server from train-

ing data distributed over a large number of edge devices, while it also trains

personalized local models on each edge device. The first framework for feder-

ated learning was proposed by Google in 2016 [69]. Federated learning has been

introduced because of data privacy concerns and data license agreements. For

example, the ubiquitous use of cameras in a home environment raises privacy

concerns, which is an impediment to install smart home systems [70]. For this

reason, edge devices need to have the capability to train neural networks lo-

cally [71]. These powerful devices are therefore recently used by many people

and produce massive amounts of data including their private information. Thus

it is important to use their data while keeping their privacy.

Ensuring data privacy is one of the advantages when applying federated learn-

ing because it does not require transferring the local data from edge devices to

a centralized server. Furthermore, it reduces the amount of data transfer be-

tween the edge devices and the centralized server. The global model is trained

by parameters extracted from the local models instead of the local training data

itself [72]. There are several types of parameters used in training the global model

such as model weights and gradients used to update model weights. In addition

to the global model, a personalized local model is built on each edge device by

retraining the global model with the local data [73]. The personalized local model

is able to integrate both the generic characteristics of datasets on all edge devices

and the specific characteristics of the local dataset on each edge device. Users

prefer to use the personalized models because the model is tuned for their private

information.

However, existing federated learning algorithms such as FedSGD [74] and Fe-

dAVG [75] have a critical limitation that assumes the models distributed on the

edge devices share the same homogeneous structure. In practical situations, not

all edge devices can support the same model due to limitations in available com-

38

puting resources, storage capacity, physical space, power consumption, network

bandwidth and so on. In addition, there are advanced edge devices equipped with

accelerators such as GPUs and Google’s Edge TPUs3. They provide impressive

computing performance while occupying less physical space and consuming less

power. Each device therefore has different available hardware and limitations.

To aggregate information from various edge devices and perform federated learn-

ing, I need a method that can handle multiple neural networks with different

structures. For this purpose, I look into a method to ensemble heterogeneous

models.

In this chapter, I focus on the image classification task. I propose a method

based on weighted average to ensemble federated neural networks with heteroge-

neous model structures. It is reasonable to weight each model differently since

the local training dataset may have different amount of data for each output

class. Hence I should not use the same weight to average all models. Black box

optimization is applied to determine the optimal weight values.

3.2 Background

This section gives a brief overview of existing federated learning methods and

combining multiple heterogeneous neural networks.

3.2.1 Federated Stochastic Gradient Descent

Federated Stochastic Gradient Descent (FedSGD) is a federated learning algo-

rithm based on SGD [76]. The global model and local models in FedSGD are

trained in the following manner [77]. In each communication round, the central-

ized server broadcasts the current global model 𝑤𝑡 to all clients (𝑡 is the current

communication round). Each client 𝑘 then computes the gradient 𝑔𝑘 using its

local training data and sends the computed gradient to the server. The server av-

erages the gradients received from all clients and generates the new global model

𝑤𝑡+1 according to Equation 1. Here, 𝜂 denotes the learning rate, 𝑛 denotes the the

total number of samples, 𝐾 denotes the total number of clients and 𝑛𝑘 denotes

the number of training samples on client 𝑘.

3https://cloud.google.com/edge-tpu

39

𝑤𝑡+1 = 𝑤𝑡 − 𝜂
𝐾∑
𝑘=1

𝑛𝑘
𝑛
𝑔𝑘 . (1)

One of the drawbacks of FedSGD is high communication cost. Since FedSGD

needs to frequently communicate between the server and the client [78], it suffers

from slow convergence. The most popular approach to tackle this problem is to

increase the number of local training epochs and decrease the size of local batches

on the client side [79].

3.2.2 Federated Averaging

Federated Averaging (FedAvg) is the current state-of-the-art federated learning

algorithm [80]. FedAvg was designed to alleviate the high communication cost

and and improve the convergence speed of FedSGD [81]. It increases the number

of local training epochs performed on the edge device.

Algorithm 1: Federated Averaging (Server)

1 for 𝑡 ← 1 to number of communication rounds do

2 for 𝑘 ← 1 to number of selected clients do

3 Receive 𝑤𝑘𝑡+1 from client 𝑘

4 end

5 𝑤𝑡+1 ←
∑𝐾
𝑡=1

𝑛𝑘
𝑛 𝑤

𝑘
𝑡+1

6 Send 𝑤𝑡+1 to selected clients

7 end

Algorithm 1 and 2 show the pseudocodes of FedAVG for the server and the

client, respectively. On the server side, a subset of participating clients is ran-

domly selected in each round. Next, the server receives the local model 𝑤𝑘𝑡+1
from each selected client 𝑘. The server then computes the new global model 𝑤𝑡+1
by averaging the local models received from the clients and broadcasts the new

model 𝑤𝑡+1 to the clients. On the client side, the client receives the latest global

model 𝑤𝑡 from the server. The client updates the local model 𝑤𝑘𝑡+1 using its local

training data and sends the updated model 𝑤𝑘𝑡+1 to the server. FedSGD can be

40

Algorithm 2: Federated Averaging (Client)

1 Receive 𝑤𝑡 from server

2 𝑤𝑘𝑡+1 ← 𝑤𝑡

3 for 𝑒 ← 1 to number of local epochs do

4 for 𝑏 ← 1 to number of batches do

5 𝑤𝑘𝑡+1 ← 𝑤𝑘𝑡+1 − 𝜂𝑔𝑘
6 end

7 end

8 Send 𝑤𝑘𝑡+1 to server

thought of as a special case of FedAVG where the local batch size is ∞ and the

number of local training epochs is one.

Both FedSGD and FedAVG assume that all edge devices run the same model.

Therefore, these existing methods cannot aggregate information from heteroge-

neous models. This paper aims at overcoming this limitation and proposes a

federated learning algorithm that is able to combine models with heterogeneous

structures.

While Federated Averaging (FedAvg) is a popular algorithm for federated

learning, there are also other algorithms that can be used in this context. There

are several ways to perform aggregation in federated learning, including:

• Simple Averaging: The simplest and most common method of aggregation

is to take the average of the updated model parameters sent by each client.

The server sums the parameters and divides them by the number of clients

to obtain the new global model.

• Weighted Averaging: In weighted averaging, each client’s update is assigned

a weight based on factors such as its training data size or its past perfor-

mance. The updated model parameters are then combined based on these

weights to produce the new global model.

• Federated Averaging with Local Adaption (FedAvgLA): This method is a

combination of simple averaging and local adaption. It enables each client

to perform additional training on the updated model before sending the

41

update back to the server. The server then performs simple averaging on

the client updates and the locally adapted models to obtain the new global

model.

• Secure Aggregation: In situations where data privacy is a primary con-

cern, secure aggregation methods such as homomorphic encryption or se-

cure multi-party computation can be used to ensure that the client updates

are not exposed to the server or other clients.

The choice of aggregation method depends on several factors, including the size

and complexity of the model, the number of clients, the quality and quantity of

data, and the privacy and security requirements of the application.

3.2.3 Combining Heterogeneous Neural Networks

Ensemble learning combines the predictions from multiple models to produce

a more accurate prediction than only using one of the models [82]. Ensemble

learning has been used in previous works to combine multiple neural networks.

Lee et al. applied ensemble learning to recognize human actions [83]. They

combined multiple LSTM models with different hyperparameters using average

ensemble to model both short-term and long-term dependencies. However, they

did not consider multiple models with heterogeneous structures.

Deng et al. proposed a machine learning model for speech recognition that

uses stacking ensemble to combine two models with different structures (an RNN

and a CNN) [84]. They assumed traditional centralized learning while this chapter

focuses on federated learning.

3.3 Methodology

This section describes the proposed method for ensembling the neural network

models with heterogeneous structures.

3.3.1 Overview

The basic idea behind the proposed method is to ensemble the heterogeneous

models. Naively applying FedSGD or FedAVG is not possible since there does

42

not exist any obvious mapping between parameters in different models. Therefore,

I employ weighted average ensemble as shown in Equation 2. Here, 𝛼𝑖 𝑗 represents

the weight for the 𝑖-th model and 𝑗-th class, 𝑥 is the input image and 𝑦 is the

final output. I employ weighted average because simple average or majority voting

combines all models equally and results in suboptimal performance if the local

training datasets distributed across the edge devices are biased.

𝑦 =
𝑁∑
𝑖=1

𝐶∑
𝑗=1

𝛼𝑖 𝑗 · 𝑚𝑖 (𝑥) (2)

Centralized Server

Proposed method

Edge
Device#1

m1
model

m2
model

m1
model

X1
dataset

Edge
Device#n

m1
model

Xn
dataset

Edge
Device#n+1

m2
model

Y1
dataset

Edge
Device#n+n

m2
model

Yn
dataset

Weighted Average

FedAVG FedAVG

step 1

step 2

step 3

Figure 28: Overview of the proposed method

Figure 28 illustrates the overview of the proposed method. I first deploy

different models on each edge device considering its hardware constraints such as

processing capability and storage capacity. The edge devices train their models

using their local datasets (step 1 in Fig. 28) and send their updated weights to

the centralized server. The server aggregates the updated weights for each global

43

model using FedAVG (step 2). Finally, weighted average ensemble is used to

combine the outputs from each model (step 3).

3.3.2 Tuning of Weights

Algorithm 3: Optimization of weights

Input: 𝑖-th model 𝑚𝑖, images from the tuning dataset 𝑥, labels from the

tuning dataset 𝑦

Parameters: Number of output classes 𝐶, Number of models 𝑁

Output: 𝐶 × 𝑁 matrix 𝛼 where 𝛼𝑖 𝑗 represents the optimized weight for

the 𝑖-th model and 𝑗-th class

1 𝛼𝑖 𝑗 ← 1
𝑁

2 for 𝑒 ← 1 to number of trials do

3 𝛼←sampling(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟)
4 for 𝑑 ← 1 to number of images do

5 𝑜𝑢𝑡𝑝𝑢𝑡 ← ∑𝑁
𝑖=1

∑𝐶
𝑗=1 𝛼𝑖 𝑗 · 𝑚𝑖 (𝑥𝑑)

6 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦←validate(𝑦𝑑 , 𝑜𝑢𝑡 𝑝𝑢𝑡)
7 end

8 set parameters(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟, 𝛼)
9 set target(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

10 optimize(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟)
11 end

12 return 𝛼

The weight 𝛼 for the weighted average ensemble is tuned by following the

procedure as shown in Algorithm 3. I use black box optimization algorithms to

tune 𝛼. The specific optimization algorithms I consider are shown in the next

subsection.

First, 𝛼 is initialized to a uniform value. In each trial, the black box optimizer

suggests a new candidate for 𝛼 based on the historical data of parameters and

achieved accuracy (line 2 in Algorithm 3). The combined output is then computed

by multiplying the weight 𝑎 with the output vectors from each model 𝑚𝑖 (line

4). The accuracy of the ensemble model is calculated (line 5) and the obtained

44

accuracy is fed back to the optimizer (line 7–9). This procedure is repeated for a

fixed number of trials.

3.3.3 Optimization Algorithms

1. Grid Search (GS): Grid Search performs an exhaustive search over a given

subset of the parameter space. It requires a huge main memory to create

the high dimensional parameter space, but it can be easily parallelized since

the parameters are usually independent from one another [85].

2. Random Search (RS): Random Search computes all combinations by ran-

dom selection. It can be generalized to continuous and mixed spaces [86].

3. Particle Swarm Optimization (PSO): Particle Swarm Optimization com-

putes the candidate of parameters by moving the particles around the

parameter space based on the position and velocity of the particle. The

movement of particle is influenced by its local best target value [87].

4. Bayesian Search (BS): Bayesian Search creates a probabilistic model to

search the candidate of parameters. Based on the evaluations of the candi-

date parameters, it updates the probabilistic model and finds the optimal

parameters [88].

5. Tree Parzen Estimator (TPE): Tree Parzen Estimator is similar to bayesian

search but it uses a different probabilistic model. It models the best pa-

rameter set as a function of the target value, while bayesian search creates

a probabilistic model of the objective function [89].

6. Sequential Model based Algorithm Configuration (SMAC): Sequential Model

based Algorithm Configuration constructs an explicit regression model to

describe the dependence of target value performance on the set of parame-

ters [90].

TPE and SMAC are both sequential model-based optimization (SMBO) al-

gorithms [91]. SMBO builds a probabilistic model for each pair of parameter set

and targeted value in each trial, and then the probabilistic model requires to cal-

culate the parameter set for next trials based on the historical pair of parameter

45

set and targeted value. Thus, the number of historical pairs is increased when the

number of trials is increasing. For this reason, SMBO algorithms are very slow

but more accurate than GS, RS, PSO and BS, which are not SMBO algorithms.

3.4 Evaluation

This section evaluates the proposed method from four aspects to investigate the

characteristics of the ensemble model created with the proposed method. I first

evaluate the accuracy achieved with each optimization method along with its

runtime. I then investigate if the proposed method can be applied to different

combinations of heterogeneous models and datasets.

3.4.1 Experimental Setup

Table 9: Hardware specification

Hardware Specification

CPU Intel Xeon E5-2650 v2 (2.20 GHz, 12 cores)

Main Memory 256 GB

GPU NVIDIA Tesla P100

GPU Memory 16 GB

Table 9 presents the hardware used for the evaluation. Using this server,

I simulate the centralized server and all edge devices for the experiments. To

evaluate the proposed method, I prepared three experimental setups using two,

three and four different models, respectively. Table 10 details of each setup. I

evaluated my method with four image classification datasets as shown in Table

11: R-Cellular, CIFAR-10, CIFAR-100 and ImageNet. Since the smallest dataset

(CIFAR-10 and CIFAR-100) contains 70,000 images, I divided each dataset into

48,000 images for training, 10,000 images for tuning and 10,000 images for vali-

dation. The training dataset is distributed over the edge devices while the tuning

and validation datasets are deployed on the centralized server.

I simulated 1,200 edge devices in all setups. In a communication round, 1,000

devices are randomly selected to participate in the federated learning. Each edge

46

Table 10: Experimental setup

Setup

A B C

Total # of devices 1,200 1,200 1,200

of models 2 3 4

of devices per model 600 400 300

of images per model 24,000 16,000 12,000

MobileNet 3 3 3

DenseNet169 3 3 3

ResNet50 3 3

VGG16 3

Table 11: Dataset specification

Name # of images # of output classes

R-Cellular 73,000 1,108

CIFAR-10 70,000 10

CIFAR-100 70,000 100

ImageNet 100,000 1,000

device performs 10 local epochs in a communication round and sends its update

local model to the server. The server updates the global model and broadcasts

the new model to the edge devices. I perform 10 communication rounds in all

experiments. Thus, the local batch size is 4 (4 images × 10 communication

rounds). Once the FedAVG step is complete, the optimization step is performed

for 50 trials.

I selected four image classification models (MobileNet, DenseNet169, ResNet50

and VGG16) to evaluate the proposed method. Table 12 summarizes the required

storage size (MB) to deploy the models and the required number of floating point

operations (MFLOPs) in each epoch. Since VGG16 occupies large storage space

(553.43 MB) and requires a lot of computation (276.68 MFLOPs), not all edge

47

Table 12: Model specification

Name Size [MB] MFLOPs

MobileNet 17.02 8.52

DenseNet169 57.23 28.77

ResNet50 102.55 51.27

VGG16 553.43 276.68

devices can run VGG16 using their limited resources. On the other hand, if I

deploy MobileNet to all edge devices, it would waste the resources of devices

that could handle larger models capable of achieving higher accuracy. Through

the evaluation, I will confirm that my method efficiently leverages heterogeneous

environments and achieves a good accuracy close to that of running VGG16 on

all edge devices.

3.4.2 An Example of the Optimized Weights

1 2 3 4 5 6 7 8 9 10
Output class

MobileNet

DenseNet169

ResNet50

VGG16

M
od

el

0.1

0.2

0.3

0.4

0.5
Op

tim
ize

d
we

ig
ht

Figure 29: Optimized weights (Setup C, CIFAR-10 dataset and TPE optimiza-

tion)

Figure 29 visualizes the weights to average the heterogeneous models opti-

mized using the proposed method in the experimental setup C with the CIFAR-10

dataset. For the same output class, models with darker cells are weighted heavier

48

than the models with lighter cells. Figure 29 clearly reveals that the optimized

weight for each output class and each heterogeneous model is different. Tak-

ing the 8th output class as an example, MobileNet has the highest weight while

DenseNet169 has the lowest weight. This suggests that MobileNet is able to iden-

tify the 8th class more accurately than DenseNet169. In this manner, models that

achieve higher accuracy on a particular class will have higher weights assigned to

them after the weight optimization.

3.4.3 Accuracy of Optimization Methods

TPE SMAC BS PSO RS GS
Optimization methods

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

75.65 73.86 71.98 71.17 70.78 70.05

Figure 30: Comparison of accuracy with different optimization methods (Setup

A and R-Cellular dataset)

Tuning the weights to ensemble the heterogeneous models is the key in my

proposed method. I evaluated the accuracy with respect to the optimization

methods for tuning the weights. I used the experimental setup A, which ensembles

MobileNet and DenseNet169, and the R-Cellular dataset. Figure 30 shows the

achieved accuracy using each of the optimization methods. Figure 31 shows the

trends of improvement during the trials. Before applying the proposed method,

the accuracy of the combined model was 63.19%. This is effectively averaging the

outputs from each model since the weights are uniformly initialized before the

optimization. After performing 50 optimization trials, TPE achieved the highest

49

0 10 20 30 40 50
Trials

64

66

68

70

72

74

76

Ac
cu

ra
cy

 [%
]

TPE
SMAC
BS
PSO
RS
GS

Figure 31: Improvement of accuracy during the trials (Setup A and R-Cellular

dataset)

accuracy, 75.65%, while GS produced the lowest accuracy, 70.05%. However, the

differences are not that significant. Similar results were also observed with the

other experimental setups B and C.

3.4.4 Runtime of Optimization Methods

I compared the runtime required for tuning the weights with different optimiza-

tion methods. Here I used setup A and the R-Cellular dataset. Figure 32 shows

the comparison of runtime. Evidently, optimization methods that achieve higher

accuracy require longer runtime. TPE was the slowest taking more than 3 hours

to complete the optimization whereas GS was the fastest only taking 17 minutes.

I also measured the runtime using experimental setups B and C and observed

the same trend. Moreover, I also found out that the runtime increases with the

number of models and the number of output classes of each model.

3.4.5 Results for Different Combinations of Models

The purpose of this evaluation is to confirm that the proposed method is still

effective if the number of heterogeneous model increases. I measured the accuracy

of the proposed method with varying number of heterogeneous models (R-Cellular

50

TPE SMAC BS PSO RS GS
Optimization methods

0

2000

4000

6000

8000

10000

12000

Ru
nt

im
e

[s
ec

on
ds

]

10,865.33

5,134.48

3,139.27
2,234.28

1,238.29 1,028.18

Figure 32: Comparison of runtime with different optimization methods (Setup A

and R-Cellular dataset)

Table 13: Comparison of accuracy using different models (R-cellular dataset and

TPE optimization)

Model Centralized FedAVG

MobileNet 75.43 75.29

DenseNet169 75.94 75.71

ResNet50 76.29 76.14

VGG16 78.57 77.92

dataset and TPE optimization). In addition, I measured the accuracy of each

model when trained with a centralized and a distributed dataset using FedAVG

as baselines.

Table 13 shows the comparison of accuracy using the different models over

centralized and decentralized R-cellular dataset. Table 14 shows the comparison

of accuracy using different combinations of models (R-Cellular dataset and TPE

optimization). Table 14 indicates that the accuracy of the proposed method in

setup A, which combines MobiletNet and DenseNet169, is 75.65%. In FedAVG,

MobiletNet and DenseNet169 achieve 75.29% and 75.71%, respectively. This

suggests that the proposed method is able to effectively combine its constituent

51

Table 14: Comparison of accuracy using different combination of models (R-

cellular dataset and TPE optimization)

Combination of Models Proposed

MobileNet + DenseNet169 75.65

MobileNet + DenseNet169 + ResNet50 76.02

MobileNet + DenseNet169 + ResNet50 + VGG16 77.43

heterogeneous models without significant overhead in terms of accuracy. The

proposed method can combine the heterogeneous models in setup A, B, and

C to 75.65%, 76.02%, and 77.43%, respectively. Furthermore, MobiletNet and

DenseNet169 trained with a centralized dataset each reach 75.43% and 75.94%

accuracy, which is very close to FedAVG and the proposed method. Thus I

conclude that the overhead of federated learning is minimal.

The same trend is observed in setups B and C as well. In summary, the pro-

posed method can effectively combine different combinations of models without

incurring significant loss of accuracy.

3.4.6 Results for Different Datasets

Table 15: Comparison of accuracy using different datasets (Setup C and TPE

optimization)

Dataset Centralized FedAVG Proposed

R-Cellular 78.57 77.92 77.43

CIFAR-10 89.95 89.67 89.36

CIFAR-100 88.56 88.37 88.29

ImageNet 86.86 86.42 85.88

Lastly, I confirm that the proposed method can be applied to datasets with the

different number of output classes. Table 15 shows the accuracy of the proposed

method for the four datasets. In addition, the accuracy of VGG16 models trained

using centralized and decentralized datasets is shown as baselines. The accuracy

52

of the ensemble of the four models (77.43%) is very close to a VGG16 model

training using FedAVG (77.92%). The difference of accuracy between VGG16

and the proposed method is consistently less than 1% for all datasets. The

accuracy of the proposed method is even comparable to a VGG16 model trained

using a centralized dataset.

3.4.7 Discussion

The proposed method was evaluated by varying the number of output classes in

the datasets and the number of models with heterogeneous structures. I found

that the runtime of the proposed methods increases with the number of classes

in the dataset and the number of heterogeneous models. This is because the

proposed method needs to iterate over every output class of every heterogeneous

model.

I found that TPE achieves the highest accuracy among the six optimization

methods I compared. On the other hand, TPE takes the longest runtime. This

is likely because TPE defines the parameter space as a tree structure, thus it

requires longer time to set up the parameter space and to traverse the tree struc-

ture to select the parameter to optimize. However, TPE is the best parameter

optimization method in terms of accuracy because the tree traversal is able to to

select the optimized parameter and lookup the optimized parameter in the next

trial by focusing on the same sibling.

3.5 Conclusion and Future Work

In this chapter, I proposed a novel federated learning algorithm for neural network

models with heterogeneous structures. The proposed method utilizes weighted

average ensemble to combine the outputs from different models. The proposed

model aggregator allows for combining models with heterogeneous structures,

which enables training on different input formats. However, to perform ensem-

bling, the output format of the training dataset must be the same. If clients

train their models using different output formats, it may lead to inconsistencies

in the proposed method. The proposed model aggregator component is enabled

gathering data from various data sources since it allows for combing the model

53

with the diverse structures from heterogeneous computing resources. Thus, the

proposed model aggregator component can extend data diversity to training the

machine learning models with a federated learning approach.

Moreover, Black box optimization is used to tune the weights for the output

classes of each model. I compared six black box optimization algorithms (grid

search, random search, particle swarm optimization, bayesian search, tree Parzen

estimator and sequential model-based algorithm configuration) and found that

TPE was able to achieve the highest accuracy. However, TPE took the longest

runtime among the six methods.

As a future work, I will enhance the proposed method to regression and local-

ization tasks. In addition, other parameter optimization techniques and federated

learning algorithms will be investigated. Due to the current implementation of

the proposed model aggregator component, the ensembled model does not return

to the clients but the aggregated model is returned to the clients. The size of the

ensembled model is increased so that users need additional resources to execute

the ensembled model. In the future, I will propose a method for building the

ensembled model to be able to execute on the client ’s hardware resources.

54

4. Training Models with Heterogeneous Network

Resources

4.1 Introduction

Currently, there has been a rise in the use of edge devices since edge devices

have more computing power than ever [92]. Massive complex structured and

unstructured data are being generated and accumulated over a large number of

edge devices [93]. The collected data on mobile devices is advantageous for deep

learning, which requires a significant amount of data [94]. However, transferring

raw data directly from clients to a server is not a preferred procedure as it lacks

data privacy and consumes a lot of network resources [95]. Thus, federated learn-

ing has been introduced to address these issues. Federated learning is a machine

learning method to train a single global model on a centralized server by indi-

rectly using training data distributed across a large number of edge devices. In

federated learning, the clients transfer only the trained local models instead of

the raw data, and it mitigates privacy and network communication issues [96]. It

also allows each edge device to train a client-specific local model, while training

the global model [97].

Nevertheless, there is still room for improvement in reducing the communi-

cation cost of federated learning, since just transferring the trained models still

consumes a significant amount of network resources [98]. Federated learning is

executed over a large number of edge devices that are often connected to wire-

less networks such as cellular networks. Since wireless networks provide lower

bandwidth compared to wired networks, communicating the models between the

server and clients takes longer and thus limits the frequency of model updates [99].

Thus, by improving the communication efficiency, the global model on the server

can be continuously and efficiently updated, and the performance of federated

learning can be improved [100].

There are two popular approaches to reduce the required communication cost

for federated learning: (1) reducing the number of communication rounds [101],

and (2) reducing the amount of communication in each round [102]. However, if

the number of communication rounds is reduced, the global model may miss local

55

training information that could have been obtained in the omitted rounds, and

thus the model cannot be continuously updated [103]. Reducing the communica-

tion cost in each round can also be divided into two approaches: (1) transferring

whole models from selected clients [104] and (2) transferring compressed models

from all clients [6]. In particular, transferring compressed models is a promising

approach because it can balance the trade-off between communication cost and

model accuracy by adjusting the compression ratio [105].

In this chapter, I propose a method to transfer sparse models instead of dense

models for reducing the communication cost on both uplink and downlink in

federated learning. The proposed method constructs a sparse model by selecting

only parameters that have been updated significantly. I compute the absolute

difference between the parameters of the local model before and after training, and

exchange only the upper quantile of the updated parameters between the server

and the clients. This parameter-wise selection approach increases the opportunity

to reduce the communication cost since it omits the unnecessary parameters and

keeps the necessary parameters for transfer. It is reasonable not to transfer

the parameters that do not have significant updates in the local model, since

they may not have much impact on the global model update. Additionally, the

proposed method allows adjusting the trade-off between the model accuracy and

the communication cost with a hyperparameter. This hyperparameter controls

the level of sparsification, i.e. what fraction of the model are exchanged between

the server and clients.

4.2 Background

This section gives a brief overview of existing techniques to reduce the commu-

nication cost in federated learning.

Edge computing is a backbone of the federated learning then the technical

challenges of edge computing are also the challenges of federated learning [106].

Computing on edge devices should consider the limitation of client’s resource

constraints and unstable network communication [107]. I focus on the challenge

of running federated learning on unreliable and asymmetric connections due to

wireless network connection. Federated learning applications are often executed

over slow and unstable internet connections as WiFi [108]. Federated learning

56

Algorithm 4: Federated averaging (ServerExecutes)

1 Parameter: 𝑅 is the number of communication rounds, 𝑁 is the number

of clients, 𝐶 is the fraction of selected clients, 𝑤𝑛𝑟 is the local model for

client 𝑛 at round 𝑟, 𝑤𝑟 is the global model at round 𝑟

1: Initialize 𝑤0

2: for 𝑟 = 1, 2, . . . , 𝑅 do

3: 𝑆𝑟 ← A random set of 𝐶 × 𝑁 clients

4: for 𝑛 ∈ 𝑆𝑟 do
5: 𝑤𝑛𝑟+1 ← ClientsUpdate(𝑤𝑟)

6: end for

7: 𝑤𝑟+1 ← 1
𝑁

∑𝑁
𝑖=1 𝑤

𝑖
𝑟+1

8: end for

algorithm is an algorithm to describes transferring and updating the local and

global models [109].

4.2.1 Federated Learning Algorithms

Federated Stochastic Gradient Descent (FedSGD) is a popular conventional fed-

erated learning algorithm based on SGD [76]. The state-of-the-art of federated

learning algorithm is Federated Averaging (FedAVG) [110]. FedAVG was devel-

oped to reduce the communication costs of FedSGD and improve the convergence

speed [81]. The number of local training epochs performed on the client is in-

creased compared to FedSGD.

Algorithm 4 and 5 show the pseudocodes of FedAVG for the server and the

client, respectively. On the server side, a subset of participating clients is ran-

domly selected in each round. Next, the server receives the local model 𝑤𝑛𝑟+1
from each selected client 𝑛. The server then computes the new global model 𝑤𝑟+1
by averaging the local models received from the clients. On the client side, the

client receives the latest global model 𝑤𝑟 from the server. The client updates the

local model 𝑤𝑛𝑟+1 using its local training data. Here, 𝜂 and 𝑔 denote the learning

rate and the gradient, respectively. Each client sends the updated model 𝑤𝑛𝑟+1 to

the server. FedSGD can be considered as a special case of FedAVG where the

57

Algorithm 5: Federated averaging (ClientsUpdate)

1 Parameter: 𝐸 is the number of epochs, 𝐵 is the number of batch sizes,

𝑤𝑛𝑟 is the local model for client 𝑛 at round 𝑟

1: Receive 𝑤𝑟 from the server

2: Initialize 𝑤𝑛𝑟+1 ← 𝑤𝑟

3: for 𝑒 = 1, 2, . . . , 𝐸 do

4: for 𝑏 = 1, 2, . . . , 𝐵 do

5: 𝑤𝑛𝑟+1 ← 𝑤𝑛𝑟+1 − 𝜂𝑔𝑛
6: end for

7: end for

8: Transfer 𝑤𝑛𝑟+1 to server

local batch size is ∞ and the number of local training epochs is one. In addition,

FedAVG allows assigning the fraction of selected clients to reduce the number of

participated clients in each communication round.

4.2.2 Reducing Communication Costs in Federated Learning

I categorize the existing methods for reducing communication costs in federated

learning into two approaches: (1) transferring uncompressed models from selected

clients and (2) transferring compressed models from all clients.

The most common approach for transferring the whole model from selected

clients is constructing the criteria to decide which clients should be selected. Wu

et al. proposed a method to measure the similarity between the global model

and the local model on each client using the gradient distribution [111]. They

scored each client and adjust its participation probability of each client using

the similarity score between the local and global models. Park et al. proposed

FedPSO [112] to reduce the number of selected clients in each round using particle

swarm optimization. They used particle swarm optimization to select the clients

based on their loss values of local training. However, the loss value is not a good

performance indicator for representing the performance of a local model since the

local training datasets are often not identically distributed across the clients.

Yao et al. proposed FedMMD [113] to select the clients that participate in

58

each communication round using maximum mean discrepancy, a distance measure

in the probability space. They computed the maximum mean discrepancy of a

local model before and after the local training, and transfer the local model to

the server only if the maximum mean discrepancy reaches a threshold.

Compared to the method of deciding whether to select or not on a client-by-

client basis, the model compression methods can select data to be transferred at

a finer granularity. We, therefore, focus more on the model compression methods

for federated learning in this paper. Konnecy et al. worked on compression of

transferred models using techniques such as Low Rank Approximation, Random

Masking, and Quantization [105]. However, they compressed uplink communica-

tion only since the uplink is typically slower than the downlink. In contrast, my

method considers reducing communication cost in each round by transferring the

compressed model from all clients, and also reducing the communication cost of

both uplink and downlink.

Sparsification and compression are both techniques used to reduce the size of

machine learning models and minimize communication costs in federated learning.

In the context of federated learning, sparsification is preferred over compression

at the beginning step because the initialized global model needs to be distributed

to every client without sparsification. After every client has an initialized local

model, sparsification can be applied to reduce the communication cost between a

server and clients. Since sparsification focuses on eliminating parameters, it can

significantly reduce communication costs compared to compression techniques,

which only reduce redundant parameters.

Aji et al. introduced sparsification of models for distributed learning [114].

Their proposed method exchanges only the top updated parameters of the global

and local models. The server then transfers the same sparse global model to all

clients. However, I propose a method to exchange different sparse models for each

client in order to improve the performance of federated learning in terms of both

communication efficiency and accuracy. The main difference between distributed

learning and federated learning is that distributed learning proposes to achieve

high accuracy over a single dataset, while federated learning proposes to achieve

high accuracy over multiple datasets across the clients. Therefore, my proposed

method transfers different sparse models in order to optimize the models to the

59

local dataset on each client.

4.3 Methodology

The basic idea behind the proposed method is to sparsify the models exchanged

between the server and clients. Parameters in neural networks are usually con-

structed as a graph data structure where each node does not update its weight

as others [115]. The most updated parameters might have the most impact on

model performance since it affects the cumulative changing of the graph more

than the less updated parameters. Thus, I compute the absolute difference of

model parameters before and after local training, and construct a sparse model

that contains only the upper quantile of updated parameters. The server con-

structs a sparse global model for each client with the same sparsification pattern

as the local model received from the client, and sends it to the client.

4.3.1 Server Executes

Algorithm 6 shows the pseudocode of the proposed method on the server.

At the initialization step, the server distributes the global model to all clients.

The server then receives the sparse local model from each client (line 4). The

sparse local models are aggregated to a dense global model using averaging (line

6). Next, a sparse global model is created by replacing the parameters of the

sparse local model received from the client with the updated parameters of the

global model (line 10). The same sparsification pattern is maintained by leaving

the dropped parameters (𝑝 is NULL) in the local model as NULL (line 12). The

sparse local model is compressed using gzip4.

4.3.2 Clients Update

Algorithm 7 shows the pseudocode of the proposed method on the clients.

Each client receives the sparse global model from the server (line 1). Next, a

dense local model is constructed by replacing the NULLs in the received sparse

global model with the dense local model from the previous round (line 2–7). The

dense local model is then trained using the local dataset (line 8–12). I then

4https://www.gnu.org/software/gzip/

60

Algorithm 6: Proposed method (ServerExecutes)

1 Parameter: 𝑅 is the number of communication rounds, 𝑁 is the number

of clients, 𝑤𝑛𝑟 is the local model for client 𝑛 at round 𝑟, 𝑤𝑟 is the global

model at round 𝑟

1: Initialize 𝑤0

2: for 𝑟 = 1, 2, . . . , 𝑅 do

3: for 𝑛 = 1, 2, . . . , 𝑁 do

4: 𝑤𝑛𝑟+1 ← ClientsUpdate(𝑤𝑛𝑟)

5: end for

6: 𝑤𝑟+1 ← 1
𝑁

∑𝑁
𝑖=1 𝑤

𝑖
𝑟+1

7: for 𝑛 = 1, 2, . . . , 𝑁 do

8: for 𝑝 ∈ parameters of 𝑤𝑛𝑟+1 do

9: if 𝑝 is not NULL then

10: 𝑤𝑛𝑟+1 [𝑝] ← 𝑤𝑟+1 [𝑝]
11: else

12: 𝑤𝑛𝑟+1 [𝑝] ← NULL

13: end if

14: end for

15: end for

16: end for

compute the threshold for sparsification. I compute the absolute differences of

parameters before and after local training, and use their 𝑄-quantile value as

the threshold (line 13). The parameter 𝑄 is supplied by the user to adjust the

communication cost and model accuracy. For instance, if 𝑄 is set to 0.9, the top

10% of the parameters are selected for transfer. Afterwards, a sparse local model

is constructed by replacing the parameters less than the threshold with NULLs

(line 14–18). The sparse local model is then compressed using gzip. At last, the

compressed sparse local model is sent to the server (line 19).

In sparse distributed learning, the same global model is broadcasted to all

clients. In constrast, my proposed method for federated learning sends the global

model to each client with different sparsification patterns. In my method, the

sparsification pattern of the global model depends on the sparsification pattern

61

Algorithm 7: Proposed method (ClientsUpdate)

1 Parameter: 𝐸 is the number of epochs, 𝐵 is the number of batch sizes,

𝑄 is the quantile, 𝑤𝑛𝑟 is the local model for client 𝑛 at round 𝑟

1: Receive 𝑤𝑛𝑟 from the server

2: for 𝑝 ∈ parameters of 𝑤𝑛𝑟 do

3: if 𝑝 is NULL then

4: 𝑤𝑛𝑟 [𝑝] ← 𝑤𝑛𝑟−1 [𝑝]
5: end if

6: end for

7: Initialize 𝑤𝑛𝑟+1 ← 𝑤𝑛𝑟
8: for 𝑒 = 1, 2, . . . , 𝐸 do

9: for 𝑏 = 1, 2, . . . , 𝐵 do

10: 𝑤𝑛𝑟+1 ← 𝑤𝑛𝑟+1 − 𝜂𝑔𝑛
11: end for

12: end for

13: threshold ← Quantile(|𝑤𝑛𝑟 − 𝑤𝑛𝑟+1 |, 𝑄)
14: for 𝑝 ∈ parameters of 𝑤𝑛𝑟+1 do

15: if |𝑤𝑛𝑟 [𝑝] − 𝑤𝑛𝑟+1 [𝑝] | < threshold then

16: 𝑤𝑛𝑟+1 [𝑝] ← NULL

17: end if

18: end for

19: Send 𝑤𝑛𝑟+1 to the server

of the local model received in the previous communication round. It means that

only the parameters sent to the server due to large updates confirmed in the

local training will be updated back with the parameters of the aggregated global

model. This prevents unnecessary updates of the local model and also helps the

local model maintain high accuracy on its local dataset.

4.4 Evaluation

This section evaluates my proposed method from four aspects. First, I com-

pare the proposed method to the sparse communication method for distributed

62

Table 16: Experimental Setup

Configuration Value

of communication rounds (𝑅) 10

of clients (𝑁) 10

of local epochs (𝐸) 5

of local batch sizes (𝐵) 8

Table 17: Model specification

Name Size [MB] # of Parameters

VGG16 553.43 138,357,544

ResNet152 243.21 60,419,944

DenseNet201 82.92 20,242,984

MobileNet 17.02 4,253,864

learning. Second, I compare the proposed method to existing communication

reduction methods for federated learning. Third, I evaluate the proposed method

using four state-of-the-art neural network models for image classification task to

assess the impact of the model size on the performance of the proposed method.

Lastly, I investigate if the proposed method can be applied to different datasets.

4.4.1 Experimental Environment

I measured the communication cost and accuracy of the global model to evaluate

the practical applicability of the proposed method. The communication cost on

both uplink and downlink communication was measured by estimating the num-

ber of bytes transferred over the network connection. All sparse global and local

models were stored for each communication round. Then, for each communica-

tion round, I calculated the size of each sparse local model and the size of sparse

global model multiplied by the number of participating clients to estimate the

total number of transferred bytes. The experimental setup for federated learning

is shown in Table 16. The experimental environment was set up using Docker,

63

and the server and clients were executed in separate containers.

I conducted my experiments using four neural network models and four datasets.

Table 17 shows the specifications of the models used to evaluate the proposed

method, VGG16, ResNet152, DenseNet201, and MobileNet. These four models

represent state-of-the-art image classification models of different scales. Although

large-scale models can achieve higher accuracy than small-scale models, not all

edge devices can deploy large scale models due to resource constraints. Thus, I

evaluated the proposed method using models with different scales.

The experiments were conducted using CIFAR10, CIFAR100, MNIST, and

FMNIST datasets. These four datasets are the most popular datasets used to

evaluate image classification tasks. CIFAR10 and CIFAR100 consist of 60,000

images (50,000 training samples and 10,000 testing samples) each of which is

a 32×32 pixel 3-channel image. MNIST and FMNIST consist of 70,000 images

(60,000 training samples and 10,000 testing samples) each of which is a 28×28
pixel single-channel image. The training samples are distributed equally to each

client, and the testing samples are stored on the server to evaluate the accuracy

of the global model.

4.4.2 Comparison to Distributed Learning

I compared the performance of the proposed sparse communication method for

federated learning and that of the existing method for distributed learning [114].

Here, distributed learning refers to the setup where the server sends the same

sparsified model to all clients, whereas in the proposed method the server sends

a different sparsified model to each client. While distributed learning focuses on

training a global model to achieve high accuracy over a single dataset, federated

learning is expected to maintain the accuracy of both global and local models

over the global and local datasets. Thus, I measured the accuracy of global

model and the average accuracy of local models between my federated learning

and the existing distributed learning. The global model was evaluated using the

testing samples on the server and the local model was evaluated using the training

samples on its own local device.

Figure 33 presents the accuracy of global model and average accuracy of local

models between federated learning and distributed learning in the case of VGG16

64

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Q value

74

75

76

77

78

79

80

81

Ac
cu

ra
cy

 [%
]

Accuracy of global model
(federated learning)
Accuracy of global model
(distributed learning)

Accuracy of local models
(federated learning)
Accuracy of local models
(distributed learning)

Figure 33: Accuracy of global and average accuracy of local models between

federated and distributed learning

model on CIFAR10 dataset while varying the value of the hyperparameter 𝑄,

which adjusts the communication cost. I found out that both the accuracy of the

global model the average accuracy of local models of my proposed method are

higher than that of the existing distributed learning. Moreover, I found out that

the variance of local model accuracy of the distributed learning is larger than

that of my method as shown in Fig. 33.

Figure 34 shows the accuracy of global and local models at each communi-

cation round for the existing distributed learning and my federated learning. In

the distributed learning, I observed a large variance in the accuracy of the local

model during the training process as shown in Fig. 34a. The global model with

the same sparsification pattern used in distributed learning reduces the accuracy

of the local model because the local model is initialized with the generalized global

model for each communication round. On the other hand, the accuracy of local

models of my federated learning is more stable than that of distributed learning

as shown in Fig. 34b. In the federated learning, the accuracy of global model is

improved continuously unlike in the distributed learning.

Although distributed learning, which aims to achieve high accuracy with only

a single global dataset, is expected to achieve higher accuracy in the global model,

65

1 2 3 4 5 6 7 8 9 10
Communication round

55

60

65

70

75

80

Ac
cu

ra
cy

 [%
]

Accuracy of global model
Accuracy of local models

(a) Distributed learning

1 2 3 4 5 6 7 8 9 10
Communication round

55

60

65

70

75

80

Ac
cu

ra
cy

 [%
]

Accuracy of global model
Accuracy of local models

(b) Federated learning

Figure 34: Comparison of sparse communication methods for federated and dis-

tributed learning (𝑄 = 0.1)

the results show that my federated learning model achieved higher accuracy in

the global model as well. This may be due to the fact that distributed learning,

which transfers the same global model to all clients, is not able to build highly

accurate local models, which also leads to a decrease in the accuracy of the global

model.

4.4.3 Comparison to the Existing Methods

I compared the performance of the proposed method and existing learning meth-

ods for communication reduction: FedAVG, FedPSO, FedMMD, Low rank ap-

proximation, Random masking, and Quantization. Figure 35 shows the relative

communication cost and global model accuracy for VGG16 model on CIFAR10

dataset. Each method can be adjusted for accuracy and communication reduc-

tion by hyperparameters. Table 18 shows the hyperparameters of each method.

The original communication cost indicates the total communication cost when

FedAVG is applied with 𝐶 set to 1.0.

FedPSO, FedMMD, Low rank, Random mask, and Quantization do not reduce

communication cost by more than 50% since they reduce the uplink communi-

cation only. FedAVG and the proposed method are the only two methods that

can reduce the communication cost by more than 50%. However, the accuracy

of the global model in FedAVG decreases sharply when reducing the fraction of

66

Table 18: Learning methods and hyperparameters

Name
Hyper-

parameter
Description

FedAVG 𝐶

The fraction of clients selected

in each communication round.

All clients will participate

in the communication round

if 𝐶 is set to one.

FedPSO 𝛼

The inertia weight of swarm optimization

for each client during optimization.

Varying 𝛼 value does not reduce

the communication cost. I set 𝛼 to

0.1 which produce the highest accuracy.

FedMMD 𝜆

The coefficient of MMD loss between

the global and local models.

The clients have less MMD loss compare

than the previous round will be selected.

Low rank

approximation
𝐾

The rank of the low-rank matrix

to be converted.

Random mask 𝑀
The size of random mask to generate

a random sparsification pattern.

Quantization 𝐵 The quantized bit used for bit-quantization.

the selected clients. On the other hand, the accuracy of the global model in the

proposed method decreases slowly when increasing 𝑄.

The results show that the proposed method outperforms FedAVG in terms of

the required communication cost and the accuracy of the global model. FedAVG

decreases the number of selected clients to reduce communication cost, and thus

some local datasets are not used in the training. On the other hand, the proposed

method does not eliminate the number of clients, but instead replaces the transfer

of dense local models with sparse local models, and removes parameters that are

less updated in the model.

67

20 40 60 80 100
Communication cost [%]

70

72

74

76

78

80

82

Ac
cu

ra
cy

 [%
]

C=1.0

C=0.1

=0.1
=0.9

=0.1

K=10

K=1

M=1.0

M=0.1

B=8

B=1

Q=0.9
Q=0.1

FedAVG
FedPSO
FedMMD
Low rank
Random mask
Quantization
Proposed method

Figure 35: Accuracy of global model and total communication cost (VGG16

model and CIFAR10 dataset)

4.4.4 Results for Different Models

I investigated the impact of model size on the reduction of the required com-

munication cost and global model accuracy using the proposed method and the

existing methods. The experiments were conducted for the model with different

size on the CIFAR10 dataset.

Figure 36 presents the optimal results of the communication cost reduction

ratio of the proposed method and the existing methods for four image classi-

fication models (VGG16, ResNet152, DenseNet201, and MobileNet) when the

accuracy of the global model satisfies an acceptable accuracy. Here, the accept-

able accuracy is defined as 5% lower than the original accuracy. The results

indicate that the reduction of the communication cost from FedPSO, FedMMD,

Low rank approximation, Random mask, and Quantization are almost identical

for all model architectures. Low rank approximation achieves the least reduction

when compared to other methods.

FedPSO and FedMMD reduce the communication costs by building criteria

to reduce the number of clients selected to only those that fulfil the criteria. The

number of selected clients based on the criteria will be a small number as one to

three clients in each communication round. This number of selected clients does

not vary much in FedPSO and FedMMD. Therefore, the communication cost of

those methods does not vary much either since the variation of the communica-

68

Fe
dA

VG

Fe
dP

SO

Fe
dM

M
D

Lo
w

ra
nk

Ra
nd

om
 m

as
k

Qu
an

tiz
at

io
n

Pr
op

os
ed

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
ed

uc
ed

co

m
m

un
ica

tio
n

co
st

 [%
]

(a) VGG16

Fe
dA

VG

Fe
dP

SO

Fe
dM

M
D

Lo
w

ra
nk

Ra
nd

om
 m

as
k

Qu
an

tiz
at

io
n

Pr
op

os
ed

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
ed

uc
ed

co

m
m

un
ica

tio
n

co
st

 [%
]

(b) ResNet152

Fe
dA

VG

Fe
dP

SO

Fe
dM

M
D

Lo
w

ra
nk

Ra
nd

om
 m

as
k

Qu
an

tiz
at

io
n

Pr
op

os
ed

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
ed

uc
ed

co

m
m

un
ica

tio
n

co
st

 [%
]

(c) DenseNet201

Fe
dA

VG

Fe
dP

SO

Fe
dM

M
D

Lo
w

ra
nk

Ra
nd

om
 m

as
k

Qu
an

tiz
at

io
n

Pr
op

os
ed

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
ed

uc
ed

co

m
m

un
ica

tio
n

co
st

 [%
]

(d) MobileNet

Figure 36: Percentage of reduced communication cost for different models

tion cost depends on the number of selected clients. On the other hand, Low

rank, Random Mask, and Quantization are compression techniques that do not

consider the model architecture, and the compression ratio depends on the num-

ber of redundant parameters, not the model architecture. Thus, the reduction in

communication costs through these methods is similar for all models. However,

the communication cost reduction by FedAVG and the proposed method depends

on the model architecture. The communication cost reduction by the proposed

method outperforms the others in VGG16 and ResNet152, but not so much in

DenseNet201 and MobileNet.

4.4.5 Results for Different Datasets

In this evaluation, I measured the average of transferred model size against the

accuracy of the global model by varying the dataset since I aim to investigate

the performance of the proposed method to reduce communication cost on dif-

69

100 101 102

Average of Transferred Model Size [MB]

20

40

60

80

Ac
cu

ra
cy

 [%
]

VGG16
ResNet152

DenseNet201
MobileNet

(a) CIFAR10

100 101 102

Average of Transferred Model Size [MB]

20

40

60

80

Ac
cu

ra
cy

 [%
]

VGG16
ResNet152

DenseNet201
MobileNet

(b) CIFAR100

100 101 102

Average of Transferred Model Size [MB]

20

40

60

80

Ac
cu

ra
cy

 [%
]

VGG16
ResNet152

DenseNet201
MobileNet

(c) MNIST

100 101 102

Average of Transferred Model Size [MB]

20

40

60

80

Ac
cu

ra
cy

 [%
]

VGG16
ResNet152

DenseNet201
MobileNet

(d) FMNIST

Figure 37: Average transferred model size for each model architecture with the

different datasets

ferent model architectures and datasets. The average of transferred model size

represents how much the proposed method is able to reduce the size of each

architecture model for transferring between a server and the clients.

Figure 37 shows the global model accuracy and average transferred model

size for different model architectures and datasets. Each line connects 18 markers

representing different 𝑄 values. In this evaluation, I varied 𝑄 from 0.1 to 0.9 at an

interval of 0.1, and 0.91 to 0.99 at an interval of 0.01. In the case of CIFAR10, the

proposed method reduced the average transferred model size of VGG16 from 553

MB to 32 MB (94.21% of reduction), while the global model accuracy was 76.39%.

This is slightly (1.93%) higher than the global model accuracy of MobileNet when

the average transferred model size is 17 MB as shown in Fig. 37a. If the proposed

method reduces the average transferred model size of VGG16 with the same

reduction size in the case of CIFAR100 dataset then the global model accuracy

of VGG16 is significantly higher than the global model accuracy of MobileNet

70

0.0 0.2 0.4 0.6 0.8 1.0
N

i = 1
xi + 1 xi

0

20

40

60

80

100

Fr
eq

ue
nc

y
[%

]

VGG16
ResNet152
DenseNet201
MobileNet

Figure 38: Distribution of parameter updates for each model

by 9.64% as shown in Fig. 37b. In addition, I observed that the global model

accuracy of VGG16 is slightly higher than the global model accuracy of MobileNet

by 3.32% in the case of MNIST dataset but the global model accuracy of VGG16

is significantly higher than the global model accuracy of MobileNet by 9.10% as

shown in Fig. 37c and Fig. 37d.

Application requirements and resource limitations need to be considered when

selecting the model to deploy on the clients and server. The selected model must

meet the requirements in terms of computing, storage and network resources of

every edge device, and achieve the model accuracy required by the application.

Typically, a larger model is able to achieve accuracy higher than a smaller model.

The proposed method can reduce the communication cost of a large model until

consume the network resources slightly larger than a small model while maintain-

ing significantly higher accuracy.

4.4.6 Distribution of Parameter Updates

The proposed method reduces the communication cost of a large model more

than a small model with most models. Figure 38 plots the frequency of updated

values per communication round and per client for each model architecture. I

found out that the frequency of small updated parameters in a larger model is

higher than in a smaller model. Updating parameters in neural network models

represents how much the model changes, which means small models require more

71

updating than large models [116]. Therefore, the proposed method can reduce the

communication cost of large models more than small models since large models

update the parameters with the lower threshold of parameters than small models.

Generally, a larger model achieves higher accuracy than a smaller model [117].

However, the proposed method reduces the communication cost of a large model

to be slightly larger than of a small model while a smaller model has slightly

lower accuracy on CIFAR10 and MNIST datasets. Furthermore, I found out that

the proposed method is able to reduce the communication cost of a large model

to be slightly larger than of a small model while a smaller model has significantly

lower accuracy on CIFAR100 and FMNIST datasets. Hence, deploying the model

on the edge devices for federated learning depends on the use case scenario or

resource constraints.

4.5 Conclusion and Future Work

In this chapter, I proposed a novel method to reduce the communication cost for

federated learning on both uplink and downlink communication. The proposed

method utilizes exchanging the most updated parameters of neural network mod-

els. I used diverse models and datasets to evaluate the proposed method in terms

of model accuracy and communication cost. The proposed method achieved a

reduction in the communication costs approximately 90% compared to the tra-

ditional method for VGG16. Moreover, I found out that the proposed method

reduces the communication cost of larger models more than smaller models since

the threshold of updated parameters in a large model is greater than in a small

model. In some cases, a small model achieve slightly lower accuracy than a larger

model with a slight difference in communication cost.

A future work is to investigate other neural network models to improve re-

ducing the required communication cost for federated learning while maintaining

the accuracy of a global model. Updating the parameters in other neural network

models should be observed during the local training procedure on each local edge

devices for reducing communication cost efficiently. In addition, larger number of

edge devices should be used to evaluate the performance of the proposed method.

72

5. LiberatAI Infrastructure

This section explains the proposed infrastructure to enable the collaborative de-

velopment of machine learning models on heterogeneous environments while pre-

serving data privacy.

5.1 System Architecture

LiberatAI enables the collaborative development of machine learning models on

heterogeneous environments while preserving data privacy. Users can train the

model with their local dataset on their environments and share the trained model

via LiberatAI for aggregating the model with others from other developers or re-

searchers because each model requires different hardware and software resources

for training or inference. Federated learning is applied to train the models collab-

oratively by keeping the dataset on the client side to protect data exploitation.

The model is exchanged between a server and clients instead of exchanging the

raw data. Since edge devices have more computing power than ever, I can de-

ploy and train the model on the client side. However, each environment has its

own limitation so LiberatAI provides the model and execution environment which

is compatible with the existing client’s hardware and software environments to

avoid the problem of insufficient and incompatible resources.

Training models on the client side is not trivial because the limitation of client

hardware needs to be considered. LiberatAI is composed of four main modules:

(1) compressor module for reducing the model size to fit in heterogeneous stor-

age capacity to handle heterogeneous storage resources by applying the proposed

method in chapter 2, (2) aggregator module for aggregating the heterogeneous

trained models from diverse computing resources to handle heterogeneous com-

puting resources by applying the proposed method in chapter 3, and (3) sparsifier

module for saving the communication cost when the models are exchanged be-

tween a server and the clients to handle heterogeneous communication resources

by applying the proposed method in chapter 4

Figure 39 presents the workflow of LiberatAI.

1. User selects a model in the model repository.

73

ServerClient

Model compressor

Model

Model repository

(1) User selects a model in the model repository

(2) User submits their hardware resource constraints

Compressed model

Executable environment

Dataset

(4) User trains model on their data

Model aggregator

(5) User returns the trained model

Aggregated model

(6) M
odels are aggregated and stored

Trained
model

Compressed model

Model sparsifier

Model sparsifier

(3) User downloads model

Figure 39: Workflow of LiberatAI

2. User submits the hardware resource constraints of their client device.

3. User downloads the machine learning model which is compatible for their

hardware resource.

4. User uses the model to train on their own dataset in the executable envi-

ronment

5. After local training, the user uploads the trained model to the server via

the model sparsifier.

6. The trained model is stored in the model repository and is aggregated to

the existing model.

5.2 Evaluation

This section evaluates LiberatAI when applied to a real-world machine learn-

ing application. I measure the accuracy of the aggregated model, the model

size, and the communication cost to investigate training the models in diverse

environments including heterogeneous storage, computing, and communication

74

Table 19: Model specification

Name Size [MB] MFLOPs

COVID-NET 394.65 198.58

ResNet152 243.19 121.07

ResNet101 179.83 88.39

DenseNet201 82.91 40.13

MobileNet 17.27 8.52

Table 20: Distribution of chest X-ray images

Dataset COVID-19 Negative COVID-19 Positive Total

Training 13,992 15,994 29,986

Testing 200 200 400

resources. Lastly, I model and estimate the training time using LiberatAI in

large-scale deployments.

This section evaluates LiberatAI when applied to a real-world machine learn-

ing application. I measure the accuracy of the aggregated model, the model

size, and the communication cost to investigate training the models in diverse

environments including heterogeneous storage, computing, and communication

resources. Lastly, I model and estimate the training time using LiberatAI in

large-scale deployments.

5.2.1 Experimental Setup

LiberatAI was evaluated in a scenario to train models that detect COVID-19

from chest X-ray images. COVID-19 detection is a typical privacy-sensitive use

case of machine learning because chest X-ray images may be used to identify

patients and could lead to privacy violations [118]. I used COVID-NET, a deep

convolutional neural network model tailored for the detection of COVID-19 [119].

In addition, I selected four other popular image classification models: ResNet152,

ResNet101, DenseNet201, and MobileNet. Table 19 summarizes the specifications

of the models. As for the chest X-ray images to train the models, I used the

75

Table 21: Hardware specifications of each device

Hardware Specification

1 GPU NVIDIA A100 40 GB

CPU Intel Xeon Gold 6230R × 2

Memory 256 GB

2 GPU NVIDIA RTX 3090 Ti

CPU Intel Core i9-12900K × 1

Memory 64 GB

3 GPU NVIDIA RTX 3090

CPU Intel Core i9-9900K × 1

Memory 32 GB

4 CPU Intel Xeon Gold 6230R × 2

Memory 384 GB

5 CPU Apple M1 Max

Memory 32 GB

6 CPU ARM Cortex-A72 × 1

Memory 8 GB

COVIDx dataset, the largest open-access benchmark dataset in terms of the

number of COVID-19 positive patient cases [120]. I divided the COVIDx dataset

into training and testing datasets. The distribution of chest X-ray images is

shown in Tab. 20.

Table 21 presents the devices used to evaluate LiberatAI. Each device rep-

resents a different class of computing hardware. Device #1 represents a GPU-

equipped server, #2 and #3 represent a GPU-equipped desktop PC, #4 repre-

sents a CPU-only server, #5 represents a laptop PC, and #6 represents a mobile

device. I use these various hardware resources for testing the feasibility of collab-

oratively developing models on heterogeneous environments using LiberatAI.

76

5.2.2 Results for Heterogeneity of Storage Resource

The compressor module is evaluated with five image classification models for

COVID-19 detection from chest X-ray images. The five models are trained and

tested over the same training and testing datasets. Each image classification

model has a different model size and model accuracy. In a real-world application,

I cannot deploy large models on limited-resource edge devices. Thus, I have to

compress them for storing the models based on the storage capacity.

0 50 100 150 200 250 300 350 400
Size [MB]

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

COVID-NET
ResNet152
ResNet101
DenseNet201
MobileNet

(a) Pareto front for each machine learn-

ing model

COVID-NET ResNet152 ResNet101 DenseNet201 MobileNet
0

100

200

300

400

500

Ru
nt

im
e

[m
in

ut
es

]

(b) Runtime for compressing each ma-

chine learning model

Figure 40: Pareto front and runtime for compressing each machine learning model

Figure 40a shows the objective space between model size and model accuracy

for each machine learning model when the circles represent the original model and

the triangles represent the optimal compressed model on the Pareto front. When

the accuracy loss of the compressed model is less than 1%, I selected the smallest

compressed model to calculate the compression ratio from the compressor mod-

ule. The compressor module reduced the model size of COVID-NET, ResNet152,

ResNet101, DenseNet201, and MobileNet by 54.37%, 36.18%, 30.48%, 30.02%,

and 29.18%, respectively. The figure indicates that larger classification models

are more amenable to compression than smaller models. MobileNet is compressed

with the smallest compression ratio. This might stem from the fact that Mobile-

Net is the smallest model among the classification models, and the fraction of

necessary parameters is larger than in other models.

I measured the runtime for compressing each machine learning model as shown

77

0 10 20 30 40 50
Communication rounds

0

20

40

60

80

100
Ac

cu
ra

cy
 [%

]

Federated learning
for COVID-NET
Federated learning
for ResNet152

Federated learning
for ResNet101
Federated learning
for DenseNet201

Federated learning
for MobileNet
Ensemble of
heterogeneous models

Figure 41: Accuracy of global model for heterogeneous federated learning

in Fig. 40b. Finding the optimized Pareto front for compressing COVID-NET

takes the longest runtime around 541 minutes. I found out that a smaller model

takes a shorter runtime due to the model size and complexity.

5.2.3 Results for Heterogeneity of Computing Resource

The aggregator module in LiberatAI is evaluated by aggregating the five image

classification models to observe the accuracy of aggregated model. Each image

classification model is deployed to 20 clients so that the total number of clients

is 100 clients. The training dataset of the COVIDx dataset is equally distributed

over every client. The testing dataset of the COVIDx dataset is stored on a

centralized server to evaluate the aggregated model at each communication round.

Figure 41 presents the global model accuracy of federated learning when the

models with heterogeneous structures are deployed on heterogeneous devices. The

accuracy of the global model varies depending on the size and complexity of each

model. COVID-NET produces the highest global model accuracy when applying

homogeneous federated learning to train the models. From an aggregator mod-

ule, the ensemble model produces higher accuracy than homogeneous federated

learning of COVID-NET since the fifth communication round.

Moreover, I investigate the runtime overhead required to aggregate the het-

erogeneous models. The runtime with and without the aggregator module is 381

and 415 minutes, respectively. Hence, the aggregator module added a runtime

78

overhead of 8.19%.

5.2.4 Results for Heterogeneity of Communication Resource

The sparsifier module is evaluated by the communication cost between the cen-

tralized server and clients. Since I focus on the limitation of communication

resources, I only select the largest model, i.e., COVID-NET, to observe the loss

of model accuracy and communication cost. COVID-NET is distributed over 100

clients and each client has an equally distributed training dataset of the COVIDx

dataset. I use the testing dataset of COVIDx dataset to evaluate the global model

in each communication round.

20 40 60 80 100
Communication cost [%]

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

C=0.1

C=0.2

C=0.3
C=0.4

C=0.5

C=0.6
C=0.7

C=0.8 C=0.9
C=1.0

Q=0.9
Q=0.8

Q=0.7
Q=0.6

Q=0.5 Q=0.4 Q=0.3 Q=0.2 Q=0.1

Without sparsifier
With sparsifier

(a) Accuracy of global model and com-

munication cost

Without sparsifier With sparsifier
330

340

350

360

370

380

390

400

410

Ru
nt

im
e

[m
in

ut
es

]

(b) Runtime of with and without the

sparsifier module

Figure 42: Accuracy and runtime of with and without the sparsifier module

The sparsifier module has the 𝑄 parameter that allows adjusting the quan-

tile ratio of the non-updated parameters that are omitted. On the other hand,

communication without the sparsifier module has 𝐶 parameter in the traditional

federated learning algorithm like FedAvg to adjust the fraction of participated

clients in each communication round. Figure 42a presents the global model ac-

curacy and total communication cost without and with the sparsifier module in

LiberatAI. In each communication round, the communication cost is calculated

by the size of the transferred model on both the uplink and downlink directions.

When varying the parameter to adjust the model accuracy and communication

cost, the result indicates that communication with the sparsifier module is able

79

0 50 100 150 200 250 300 350 400
Size [MB]

0

20

40

60

80
Ac

cu
ra

cy
 [%

]

COVID-NET
ResNet152
Storage capacity
is 100 MB

ResNet101
DenseNet201
Storage capacity
is 200 MB

MobileNet
Storage capacity
is 300 MB
Storage capacity
is 400 MB

Figure 43: Pareto front for each model with storage capacity constraints

to maintain higher accuracy and lower communication cost than communication

without the sparsifier module.

I also measured the time for communication both without and with the spar-

sifier module as shown in Fig 42b when 𝑄 and 𝐶 are equal to 0.9 and 0.1, re-

spectively. On average, in every communication round, communication with the

sparsifier module is added overhead around 6.13% from communication without

the sparsifier module. The overhead runtime of the sparsifier module occurs from

finding the updated parameters on the client side and sparsifying the model on

both the server and client sides.

5.2.5 Results for Heterogeneity of Storage and Computing Resources

I evaluate the compressor and aggregator modules at the same time to investi-

gate if the storage and computing constraints can be simultaneously satisfied.

I used five image classification models, COVID-NET, ResNet152, ResNet101,

DenseNet201, and MobileNet where each model architecture is distributed to 20

clients. I set four different storage capacity constraints (100 MB, 200 MB, 300

MB, and 400 MB). Figure 43 presents the Pareto front for each machine learning

model with different storage capacity constraints.

80

0 10 20 30 40 50
Communication rounds

0

20

40

60

80

100
Ac

cu
ra

cy
 [%

]

Federated learning
for COVID-NET
Federated learning
for ResNet152

Federaed learning
for ResNet101
Federated learning
for DenseNet201

Federated learning
for MobileNet
Ensemble of
heterogeneous models

Figure 44: Accuracy of a global model for heterogeneous federated learning

I select the configuration that produces the highest accuracy and fits into the

storage capacity constraint. DenseNet201 and MobileNet can be sent to all clients

without compression since their model size is smaller than 100 MB. ResNet101

is sent to 15 clients because its size is smaller than 200 MB but larger than 100

MB. For the remaining 5 clients, ResNet101 is compressed to 87.23 MB before

being sent. COVID-NET and ResNet152 are sent to 10 clients since their sizes

are between 200 MB and 400 MB. However, for the remaining 10 clients, COVID-

NET is compressed to either 180.08 MB or 73.12 MB, depending on their storage

capacity, and ResNet152 is compressed to either 170.23 MB or 90.23 MB, again

depending on their storage capacity.

As a result of the distribution among original and compressed models based

on storage capacity constraints, I applied the aggregator module to aggregate

the models from heterogeneous clients. Figure 44 indicates that the aggregator

module is able to produce higher model accuracy than homogeneous federated

learning.

5.2.6 Results for Heterogeneity of Storage and Communication Re-

sources

I evaluate the compressor and sparsifier modules at the same time to investigate

if the storage and communication constraints can be simultaneously satisfied. I

used the largest image classification for COVID-19 detection like COVID-NET

81

50 100 150 200 250 300 350 400
Size [MB]

0

10

20

30

40

50

60

70

80
Ac

cu
ra

cy
 [%

]

Storage capacity
is 80 MB
Storage capacity
is 160 MB

Storage capacity
is 240 MB
Storage capacity
is 320 MB

Storage capacity
is 400 MB

Figure 45: Pareto front for COVID-NET with storage capacity constraints

which is distributed to over 100 clients. I set five different storage capacities

(80 MB, 160 MB, 240 MB, 320 MB, and 400 MB) so there are 20 clients for

each storage capacity. For each storage capacity, two clients each were set with

a quantization ratio from 0.0 to 0.9. Figure 45 presents the Pareto front for

COVID-NET with different storage capacity constraints.

I select the configuration that produces the highest accuracy and fits into

the storage capacity by the compressor module as follows. The original COVID-

NET without any compression is distributed to 20 clients with 400 MB of storage

capacity. For deployment to 40 clients with 240 MB or 320 MB of storage capacity,

20 clients with 160 MB of storage capacity, and 20 clients with 80 MB of storage

capacity, the model would be compressed to 180.08 MB, 159.51 MB, and 73.12

MB, respectively.

As a result of the distribution among original and compressed models based

on storage capacity constraints, I applied the sparsifier module to sparsify model

from heterogeneous communication and storage resources. Figure 46 indicates

applying the compressor and sparsifier modules are able to execute federated

learning on heterogeneous communication and storage resources with maintaining

global model accuracy and less communication cost and storage capacity.

82

5 10 15 20 25 30 35 40
Total communication cost per one round [GB]

20

30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

C=0.1

C=0.2

C=0.3

C=0.4

C=0.5
C=0.6 C=0.7

C=0.8
C=0.9

C=1.0

Q=0.9 Q=0.8 Q=0.7
Q=0.6

Q=0.5
Q=0.4 Q=0.3 Q=0.2 Q=0.1

Without sparsifier
With sparsifier

Figure 46: Accuracy of global model and total communication cost

Runtime for applying both compressor and sparsifier is measured to evaluate

the overhead added from LiberatAI. Finding the optimized configurations for

compressing COVID-NET takes around 541 minutes. Figure 47 indicates that

the runtime of the sparsifier module is increased when the number of quantile

ration is increased because it needs computing time to calculate more sparsifier

models than denser ones.

5.2.7 Results for Heterogeneity of Computing and Communication Re-

sources

I evaluate the aggregator and sparsifier modules at the same time to investigate

if the computing and communication constraints can be simultaneously satis-

fied. I used five image classification models: COVID-NET, ResNet152, Res-

Net101, DenseNet201, and MobileNet. Each model architecture is distributed to

20 clients. For each model architecture, there are two clients for each quantization

ratio from 0.0 to 0.9.

Figure 48a presents the accuracy of global models without and with aggregator

and sparsifier modules. Using the aggregator module to combine heterogeneous

models improves the model accuracy to be higher than without the aggregator

module by 1.78%. Interestingly, the sparsifier module maintains the model accu-

racy of the aggregated model from the aggregator module when 𝑄 is less than 0.3.

83

Q=0.9 Q=0.8 Q=0.7 Q=0.6 Q=0.5 Q=0.4 Q=0.3 Q=0.2 Q=0.1
0

100

200

300

400

500

Ru
nt

im
e

[m
in

ut
es

]

Without sparsifier
With sparsifier

Figure 47: Runtime without and with sparsifier module for different 𝑄

Therefore, applying the aggregator and sparsifier modules produces the highest

accuracy and reasonable communication cost when 𝑄 is equal to 0.2 as shown in

Fig. 48b. The total communication cost in one communication round is calculated

from both uplink and downlink directions.

Runtime for applying the aggregator and sparsifier modules is measured to

compute the overhead from the proposed modules as shown in Fig. 48c. Aggregat-

ing the model with heterogeneous structures using the aggregator module added

an overhead runtime of around 7.13%. For the overhead of the sparsifier mod-

ule, the maximum and minimum overhead runtime is added to the conventional

method by 21.97% and 9.74% when 𝑄 is equal to 0.9 and 0.1, respectively.

5.2.8 Results for Heterogeneity of Storage, Computing, and Commu-

nication Resources

I evaluate compressor, aggregator, and sparsifier modules at the same time to in-

vestigate if the storage, computing, and communication constraints can be simul-

taneously satisfied. I used five classification models, COVID-NET, ResNet152,

ResNet101, DenseNet201, and MobileNet, and 20 clients were assigned to each

model architecture with a combination of quantization ratios of 0.0 to 0.9 and

storage capacities of 400 MB and 200 MB.

Figure 45 presents the Pareto front for each model with different storage

capacity constraints. I select the configuration that produces the highest accuracy

84

Q=0.9 Q=0.8 Q=0.7 Q=0.6 Q=0.5 Q=0.4 Q=0.3 Q=0.2 Q=0.1
0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

Without aggregator &
sparsifier

With aggregator &
without sparsifier

With aggregator &
sparsifier

(a) Model accuracy

Q=0.9 Q=0.8 Q=0.7 Q=0.6 Q=0.5 Q=0.4 Q=0.3 Q=0.2 Q=0.1
0

5

10

15

20

25

30

35

To
ta

l c
om

m
un

ica
tio

n
co

st
 p

er
 o

ne
 ro

un
d

[G
B]

Without aggregator &
sparsifier

With aggregator &
without sparsifier

With aggregator &
sparsifier

(b) Communication cost

Q=0.9 Q=0.8 Q=0.7 Q=0.6 Q=0.5 Q=0.4 Q=0.3 Q=0.2 Q=0.1
0

100

200

300

400

500

Ru
nt

im
e

[m
in

ut
es

]

Without aggregator &
sparsifier

With aggregator &
without sparsifier

With aggregator &
sparsifier

(c) Runtime

Figure 48: Result for applying aggregator and sparsifier modules

and is fits in the storage capacity from the compressor module. ResNet101,

DenseNet201, and MobileNet are distributed to all 20 clients without compression

since their model size is below 200 MB. Similarly, COVID-NET and ResNet152

are also sent to 10 clients without any compression since their model size is less

than 400 MB. However, for an additional 10 clients, COVID-NET is compressed to

180.08 MB to fit the storage capacity of 200 MB, while ResNet152 is compressed

to 170.23 MB for these same 10 clients to meet the storage capacity constraints.

As a result of the distribution among original and compressed models based

on storage capacity constraints, I applied the sparsifier module to reduce the

communication cost between a server and clients. Figure 50 indicates the model

accuracy of different total communication costs per one communication round

when applying aggregator and sparsifier modules. It is obvious that applying the

sparsifier module can maintain the model accuracy better with less communi-

85

0 50 100 150 200 250 300 350 400
Size [MB]

0

20

40

60

80
Ac

cu
ra

cy
 [%

]

COVID-NET
ResNet152
ResNet101

DenseNet201
MobileNet

Storage capacity
is 200 MB
Storage capacity
is 400 MB

Figure 49: Pareto front for each model with storage capacity constraints

cation cost better than without the sparsifier module. On average for applying

the aggregator module, I found out that model accuracy is increased by 2.8%

and 1.6% without and with the sparsifier module, respectively. Afterward, the

aggregator module is used to aggregate the model with heterogeneous structures.

The result indicates applying the proposed model aggregator module is able to

enhance model accuracy. However, in the current evaluation of COVID-19 detec-

tion, the evaluation dataset has limited data diversity, resulting in only a slight

improvement.

I measured runtime for applying the sparsifier module without and with the

aggregator module as shown in Fig. 51a and Fig. 51b, respectively. On average,

the runtime is added around 1.18% and 1.54% for without and with the sparsifier

module.

5.2.9 Runtime Analysis

Apart from simultaneously satisfying the storage, computing, and communication

constraints on heterogeneous environments, the runtime is also an important

factor to evaluate the proposed infrastructure. Given the limitation in available

86

5 10 15 20 25 30
Total communication cost per one round [GB]

20

30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

C=0.1

C=0.2

C=0.3

C=0.4

C=0.5
C=0.6 C=0.7

C=0.8
C=0.9

C=1.0

Q=0.9 Q=0.8 Q=0.7
Q=0.6

Q=0.5 Q=0.4 Q=0.3 Q=0.2 Q=0.1

w/o sparsifier
 and w/ aggregator
w/o sparsifier
 and w/o aggregator
w/ sparsifier
 and w/ aggregator
w/ sparsifier
 and w/o aggregator

Figure 50: Communication cost when applying aggregator and sparsifier

Q=0.9 Q=0.8 Q=0.7 Q=0.6 Q=0.5 Q=0.4 Q=0.3 Q=0.2 Q=0.1
0

100

200

300

400

Ru
nt

im
e

[m
in

ut
es

]

Without sparsifier
With sparsifier

(a) Without aggregator module

Q=0.9 Q=0.8 Q=0.7 Q=0.6 Q=0.5 Q=0.4 Q=0.3 Q=0.2 Q=0.1
0

100

200

300

400

500

Ru
nt

im
e

[m
in

ut
es

]

Without sparsifier
With sparsifier

(b) With aggregator module

Figure 51: Runtime for applying sparsifier

resources, I model the training time and estimate the training time in large-scale

heterogeneous environments.

I first model the time for training on the client side. I use actual measurements

to estimate the local training time as shown in Fig. 52. With respect to the

communication time, I assume that only 𝐶 clients can communicate with the

server at the same time, and the throughput of uploading or downloading a model

is constant. Communication and local training are performed in a pipelined

manner as depicted in Fig. 53. For example, once the first group of 𝐶 clients

completes downloading the global model from the server, the first group starts

the local training and the next group starts downloading the global model. As a

87

1 2 3 4 5 6
Resources

0

25

50

75

100

125

150

175

200

Av
er

ag
e

ru
nt

im
e

[m
in

ut
es

]

COVID-NET
ResNet152
ResNet101
DenseNet201
MobileNet

Figure 52: Training time of models on different devices

result, the total training time for a single communication round is modeled as

𝑇𝑡𝑟𝑎𝑖𝑛 =
©­­«
⌈(𝑁/𝐶)−1⌉∑

𝑛=0

[𝑛𝐶+𝐶]
max
𝑖=𝑛𝐶

𝑆𝑖𝑀
𝐵

ª®®¬ +
𝑁

max
𝑖=𝑁−𝐶

𝑡𝑚𝑖𝑟 +
𝑆𝑖𝑀
𝐵
, (3)

where 𝑁 is the total number of clients, 𝐵 is the throughput of communication

between the server and a client, 𝑆𝑖𝑀 is the size of the model and 𝑡𝑚𝑖𝑟 the time for

local training.

On the server side, the time for aggregating and calculating the ensemble of

models must be considered. The total runtime of a single communication round

for training homogeneous models is modeled as

𝑇ℎ𝑜𝑚𝑜 = 𝑇𝑡𝑟𝑎𝑖𝑛 + 𝑎𝑁, (4)

where 𝑎 is the time required for aggregation per client. The total runtime of a

single communication round for training heterogeneous models is modeled as

𝑇ℎ𝑒𝑡𝑒𝑟𝑜 = 𝑇ℎ𝑜𝑚𝑜 + 𝑒𝑀, (5)

where 𝑒 is the ensemble time per model architecture and 𝑀 is the total number

of model architectures. Based on preliminary experiments, 𝑎 is set to 1.14s and

𝑒 is set to 3.28s in this evaluation.

88

Download
model Training model Upload

model

Download
model Training model Upload

model

C
lie

nt
s

 C

1

Download
model Training model Upload

model

Download
model Training model Upload

model

Download
model Training model Upload

model

Download
model Training model Upload

model

1 + C

2C

N-C

N

Time

Figure 53: Runtime diagram for local training in federated learning

I estimate the runtime for homogeneous federated learning when the model is

deployed on the first and sixth environments since the first and sixth devices are

the fastest and slowest devices. For heterogeneous federated learning, COVID-

NET is deployed on the first device, ResNet152 is deployed on the second device,

ResNet101 is deployed on the third device, DenseNet201 is deployed on the fifth

device and MobileNet is deployed on the sixth device. I distributed each model

architecture on a different device balancing the runtime across various devices.

Figure 54a shows the runtime when varying bandwidth from 1Mbps to 500Mbps.

The number of clients is fixed to 1,000 and the number of concurrent connections

is 100. The runtime decreases sharply with the bandwidth up to 20Mbps be-

cause the communication time (the first term in Equation (3)) is the bottleneck

. The bandwidth has no significant impact on the runtime when the bandwidth

is higher than 20MBps.

Additionally, I varied the number of clients as shown in Fig. 54b. Here, the

bandwidth is 500Mbps and the maximum number of connections is 100. When

the number of clients is 1,000, the runtime of heterogeneous federated learning

is slower than that of homogeneous federated learning of MobileNet by 24.47%,

but is faster than that of homogeneous federated learning of COVID-NET, Res-

Net152, ResNet101, and DenseNet201 by 83.73%, 74.89%, 67.51%, and 40.93%,

89

0 100 200 300 400 500
Bandwidth [MBps]

50

100

150

200

250

300
Ru

nt
im

e
[m

in
un

te
s]

Homogeneous FL of
COVID-NET on #6
Homogeneous FL of
ResNet152 on #6

Homogeneous FL of
ResNet101 on #6
Homogeneous FL of
DenseNet201 on #6

Homogeneous FL of
MobileNet on #6
Heterogeneous FL

(a) Varying the network bandwidth

0 200 400 600 800 1000
Number of clients [clients]

101

102

Ru
nt

im
e

[m
in

un
te

s]

Homogeneous FL of
COVID-NET on #6
Homogeneous FL of
ResNet152 on #6

Homogeneous FL of
ResNet101 on #6
Homogeneous FL of
DenseNet201 on #6

Homogeneous FL of
MobileNet on #6
Heterogeneous FL

(b) Varying the number of clients

Figure 54: Estimated training time

respectively. However, heterogeneous federated learning achieved higher model

accuracy than homogeneous federated learning by 1.78% as shown in Fig. 41.

Therefore, LiberatAI enables heterogeneous federated learning to achieve higher

model accuracy and take less runtime than homogeneous federated learning of

COVID-NET, ResNet152, ResNet101, and DenseNet201.

5.3 Conclusion and Future Work

This chapter proposed LiberatAI which is a federated infrastructure to enable the

collaborative development of machine learning models on heterogeneous environ-

90

ments. LiberatAI allows individuals to participate in collaborative development

by training the models on their environments which usually be heterogeneous.

There are three modules were proposed in LiberatAI to support training a model

on diverse storage, computing, and communication resources. (1) compressor

module was proposed to reduce the model size to fit in the storage capacity of

the environment. (2) aggregator module was proposed to aggregate the models

with heterogeneous on heterogeneous computing resources. (3) sparsifier module

was proposed to sparsify the model for exchanging the model between a server

and clients.

LiberatAI was evaluated using state-of-the-art neural network models for the

detection of COVID-19 cases from chest X-ray images. COVID-19 detection is

one of the most popular machine learning applications to apply a machine learn-

ing model on privacy-sensitive data. I trained COVID-NET over six heteroge-

neous environments while preserving data privacy. As a result, LiberatAI allows

collaborative development to develop a machine learning model for detecting

COVID-19 on diverse environments. LiberatAI has an aggregator module to en-

hance prediction accuracy by aggregating heterogeneous machine learning models

from heterogeneous environments and a sparsifier module to reduce communica-

tion costs between a server and clients while maintaining the model accuracy.

The compressor module in LiberatAI finds the configuration automatically for

compressing the model to fit in diverse storage capacities with comparable accu-

racy. Additionally, I conduct the runtime estimation to calculate the runtime for

homogeneous and heterogeneous federated learning based on LiberatAI.

In the future, the generality of LiberatAI will be investigated using a vari-

ety of machine learning applications with diverse structures of machine learning

models. I plan to evaluate LiberatAI on a large number of edge devices and then

improve the resource utilization in the infrastructure. I will make LiberatAI to be

compatible with all machine learning libraries because the current compatibility

of LiberatAI with other libraries is still limited to Scikit-learn, Tensorflow, Keras,

Theano, and PyTorch libraries.

Federated learning preserves data privacy by keeping the training data on the

devices of the users, and not sharing the data with a central server. However,

there are still challenges such as ensuring that the data is properly encrypted

91

may be affected by the privacy-preserving techniques used. Overall, federated

learning is a promising approach for preserving data privacy in machine learning

but requires careful consideration and management of the system to ensure that

data remains secure while allowing for effective model training.

Additionally, I will make LiberatAI as open-source software and available for

the international or domestic research communities to remove the barrier to the

collaborative development of machine learning models from the limitation of data

privacy and existing resource constraints.

92

6. Conclusion

6.1 Summary

In this dissertation, I proposes LiberatAI, an infrastructure that enables the col-

laborative development of machine learning models on heterogeneous environ-

ments while preserving data privacy. Federated learning approach is applied to

train the models without exchanging the raw dataset between a server and clients.

LiberatAI allows individuals to participate in collaborative development by train-

ing the models on their environments which usually be heterogeneous. There are

three modules were proposed in LiberatAI to support training a model on diverse

storage, computing, and communication resources.

To support training a model on heterogeneous storage resources, I proposed

a method for reducing the model size to fit in heterogeneous storage capacity

while maintaining the original model accuracy. To balance the trade-off between

model size and accuracy, conventional model compression methods require man-

ual effort to find the optimal configuration that reduces the model size without

significant degradation of accuracy. The proposed method is automatically find-

ing the optimal configurations for quantization. The proposed method suggests

multiple compression configurations that produce models with different sizes and

accuracy, from which users can select the configurations that suit their use cases.

Additionally, I propose a retraining method that does not require any labeled

datasets for retraining. I evaluated the proposed method using various neural

network models for classification, regression, and semantic similarity tasks and

demonstrated that the proposed method reduced the size of models by at least

30% while maintaining less than 1% loss of accuracy. I compared the proposed

method with state-of-the-art automated compression methods and showed that

it can provide better compression configurations than existing methods.

To support training a model on heterogeneous computing resources, I pro-

posed a method for aggregating the heterogeneous trained models from diverse

computing resources. Existing federated learning algorithms assume that all de-

ployed models share the same structure. However, it is often infeasible to dis-

tribute the same model to every edge device because of hardware limitations such

as computing performance. I propose a novel federated learning algorithm to ag-

93

gregate information from multiple heterogeneous models. The proposed method

uses a weighted average ensemble to combine the outputs from each model. The

weight for the ensemble is optimized using black-box optimization methods. I

evaluated the proposed method using diverse models and datasets and found

that it can achieve comparable performance to conventional training using cen-

tralized datasets. Moreover, I compared six different optimization methods to

tune the weights for the weighted average ensemble and found that tree parzen

estimator achieves the highest accuracy among the alternatives.

To support training a model on heterogeneous network resources, I proposed

a method for saving communication costs when the models are exchanged be-

tween a server and the clients. The proposed method transfers only top-updated

parameters in neural network models to reduce the required communication cost

for federated learning. The proposed method allows adjusting the criteria of up-

dated parameters to trade off the reduction of communication costs and the loss

of model accuracy. I evaluated the proposed method using diverse models and

datasets and found that it can achieve comparable performance to transfer origi-

nal models for federated learning. As a result, the proposed method has achieved

a reduction of the required communication costs by around 90% when compared

to the conventional method for VGG16. Furthermore, I found out that the pro-

posed method is able to reduce the communication cost of a large model more

than of a small model due to the different thresholds of updated parameters in

each model architecture.

Finally, I integrate my proposed methods to build LiberatAI infrastructure.

LiberatAI was evaluated using state-of-the-art neural network models for the de-

tection of COVID-19 cases from chest X-ray images. COVID-19 detection is one

of the most popular machine learning applications to apply a machine learning

model on privacy-sensitive data. I trained COVID-NET over six heterogeneous

environments while preserving data privacy. As a result, LiberatAI allows collab-

orative development to develop a machine learning model for detecting COVID-

19 on diverse environments. LiberatAI has an aggregator module to enhance

prediction accuracy by aggregating heterogeneous machine learning models from

heterogeneous environments and a sparsifier module to reduce communication

costs between a server and clients while maintaining the model accuracy. The

94

compressor module in LiberatAI finds the configuration automatically for com-

pressing the model to fit in diverse storage capacities with comparable accuracy.

Additionally, I conduct the runtime estimation to calculate the runtime for ho-

mogeneous and heterogeneous federated learning based on LiberatAI.

From the result of this dissertation, LiberatAI shows a potential to remove

the barrier for the collaborative development of machine learning models from the

limitation of data privacy and heterogeneous environments. Many machine learn-

ing models will be built to support multidisciplinary research since researchers are

able to contribute the existing models without training the models from scratch

which requires a significant amount of computing resources. LiberatAI will allow

machine learning developers or researchers to develop machine learning models

collaboratively. Research communities in both academia and industry will be

expanded and crossed over multidisciplinary because of the infrastructure. The

number of research collaborations will be continuously increased because the bar-

rier of data usage and hardware resources has already been eliminated. LiberatAI

might enable emerging models in various research fields, especially the fields that

utilize privacy-sensitive data when it is available. Furthermore, LiberatAI will at-

tract many researchers to build research communities by sharing their knowledge

and experience with each other.

6.2 Future Work

In the future, the generality of LiberatAI will be investigated using a variety of

machine learning applications with diverse structures of machine learning mod-

els. I plan to evaluate LiberatAI on a large number of edge devices and then

improve the resource utilization in the infrastructure. Additionally, I will make

LiberatAI as open-source software and available for the international or domestic

research communities to remove the barrier to the collaborative development of

machine learning models from the limitation of data privacy and existing resource

constraints.

95

Acknowledgements

I would like to thank the following people for their wisdom, guidance, and support.

Without their help, this work would never have been possible.

First and foremost, I would like to express my gratitude to Professor Hajimu

Iida for providing a great research environment. His laboratory, Laboratory for

Software Design and Analysis, is a great place to pursue research.

To Professor Kazutoshi Fujikawa, I appreciate for his constructive comments

and feedback made my work come this far. Without him, my research work and

the dissertation would not have been possible.

I would like to express deep appreciation to my supervisors, Associate Profes-

sor Kohei Ichikawa and Assistant Professor Keichi Takahashi for their continuous

support and guidance in my research work as well as my life in Japan. Their

valuable suggestions and comments brought this research to fruition. Without

them, I would not have successfully accomplished the doctoral course.

To Assistant Professor Putchong Uthayopas, who was also my advisor during

my time as an undergraduate student at Kasetsart University. He gave me in-

valuable knowledge in research methodology and widened my vision in the area

of high-performance computing. His insightful suggestion helped shape this re-

search in its initial stage. Without him, I could not come this far. Deep in my

mind, I will always keep his image and he will always be remembered forever.

To Assistant Professor Chawanat Nakasan, I appreciate for his informative

feedback and suggestions always helps raise the quality of this research.

I would like to acknowledge my dissertation committee. Thank you so much

for reviewing my dissertation and for the insightful comments and suggestions

that helped me to improve the overall quality of this dissertation.

To PRAGMA, Dr. Peter Arzberger, Ms. Shava Smallen, and Ms. Nadya

Williams, I appreciate for providing me with a lot of assistance, and advice in

organizing PRAGMA workshops and mentoring PRAGMA Students. I also ex-

press my gratitude towards Dr. Jason Haga and Dr. Prapaporn Rattanatamrong

for their guidance to PRAGMA Students Steering Committee.

To Friendship, I would like to express my thanks to all of my Thai and in-

ternational friends. I feel joyful every time when we stay and travel together.

Without them, my daily life could not be enjoyed like this.

96

Last but not least, I wish to express my highest gratitude to my dearest family

for the support, raising, and educating me with great care since my youth. No

amount of words would sufficiently express my gratitude.

Finally, I would like to thank the Ministry of Education, Culture, Sports,

Science and Technology (MEXT) Scholarship and the Japan Society for the Pro-

motion of Science (JSPS) DC2 Research Fellowship for the monetary support.

This scholarship enables me to live and pursue my research in Japan comfort-

ably. It is a huge honor to be a recipient of this scholarship.

97

References

[1] Soni Singh, K R Ramkumar, and Ashima Kukkar. Machine learning tech-

niques and implementation of different ml algorithms. In 2021 2nd Global

Conference for Advancement in Technology (GCAT), pages 1–6, 2021.

[2] Gregory Moro Puppi Wanderley, Marie-Hélène Abel, Jean-Paul Barthès,

and Emerson Cabrera Paraiso. An advanced collaborative environment for

software development. In 2016 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), pages 002917–002922, 2016.

[3] Carolyn Wong. A successful software development. IEEE Transactions on

Software Engineering, SE-10(6):714–727, 1984.

[4] Ya-Wen Yu, Yu-Shing Chang, Yu-Fu Chen, and Li-Sheng Chu. En-

trepreneurial success for high-tech start-ups – case study of taiwan high-tech

companies. In 2012 Sixth International Conference on Innovative Mobile

and Internet Services in Ubiquitous Computing, pages 933–937, 2012.

[5] Karthik Navuluri, Ravi Mukkamala, and Aftab Ahmad. Privacy-aware big

data warehouse architecture. In 2016 IEEE International Congress on Big

Data (BigData Congress), pages 341–344, 2016.

[6] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,

Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strate-

gies for improving communication efficiency. In NIPS Workshop on Private

Multi-Party Machine Learning, pages 1–10, 2016.

[7] Jeronimo Castrillon, Matthias Lieber, Sascha Klüppelholz, Marcus Völp,

Nils Asmussen, Uwe Aßmann, Franz Baader, Christel Baier, Gerhard Fet-

tweis, Jochen Fröhlich, Andrés Goens, Sebastian Haas, Dirk Habich, Her-

mann Härtig, Mattis Hasler, Immo Huismann, Tomas Karnagel, Sven

Karol, Akash Kumar, Wolfgang Lehner, Linda Leuschner, Siqi Ling, Stef-

fen Märcker, Christian Menard, Johannes Mey, Wolfgang Nagel, Benedikt

Nöthen, Rafael Peñaloza, Michael Raitza, Jörg Stiller, Annett Ungethüm,

98

Axel Voigt, and Sascha Wunderlich. A hardware/software stack for hetero-

geneous systems. IEEE Transactions on Multi-Scale Computing Systems,

4(3):243–259, 2018.

[8] Kundjanasith Thonglek, Keichi Takahashi, Kohei Ichikawa, Chawanat

Nakasan, Hidemoto Nakada, Ryousei Takano, and Hajimu Iida. Retraining

quantized neural network models with unlabeled data. In Proceedings of the

IEEE International Joint Conference on Neural Networks (IJCNN), pages

1–8, July 2020.

[9] Kundjanasith Thonglek, Keichi Takahashi, Kohei Ichikawa, Hajimu Iida,

and Chawanat Nakasan. Federated learning of neural network models with

heterogeneous structures. In 2020 19th IEEE International Conference on

Machine Learning and Applications (ICMLA), pages 735–740, 2020.

[10] Kundjanasith Thonglek, Keichi Takahashi, Kohei Ichikawa, Chawanat

Nakasan, Pattara Leelaprute, and Hajimu Iida. Sparse communication for

federated learning. In 2022 IEEE 6th International Conference on Fog and

Edge Computing (ICFEC), pages 1–8, 2022.

[11] George Plastiras, Maria Terzi, Christos Kyrkou, and Teocharis

Theocharidcs. Edge Intelligence: Challenges and opportunities of near-

sensor machine learning applications. In Proceedings of the IEEE Interna-

tional Conference on Application-specific Systems, Architectures and Pro-

cessors (ASAP), pages 1–7, July 2018.

[12] Farhana Sultana, Abu Sufian, and Paramartha Dutta. Advancements in im-

age classification using convolutional neural network. In Proceedings of the

IEEE International Conference on Research in Computational Intelligence

and Communication Networks (ICRCICN), pages 122–129, November 2018.

[13] Juyong Kim, Yookoon Park, Gunhee Kim, and Sung Ju Hwang. SplitNet:

Learning to semantically split deep networks for parameter reduction and

model parallelization. In Proceedings of the International Conference on

Machine Learning (ICML), pages 1866–1874, August 2017.

99

[14] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen Mc-

Gough. Predicting the computational cost of deep learning models. In

Proceedings of the IEEE International Conference on Big Data (BigData),

pages 3873–3882, December 2018.

[15] Yunhe Wang, Chang Xu, Chao Xu, and Dacheng Tao. Beyond Filters:

Compact feature map for portable deep model. In Proceedings of the In-

ternational Conference on Machine Learning (ICML), pages 3703–3711,

August 2017.

[16] Miguel A. Carreira-Perpinan and Yerlan Idelbayev. Learning-Compression

algorithms for neural net pruning. In Proceedings of the IEEE International

Conference on Computer Vision and Pattern Recognition (CVPR), pages

8532–8541, June 2018.

[17] Tara Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhu-

vana Ramabhadran. Low-rank matrix factorization for deep neural net-

work training with high-dimensional output targets. In Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 6655–6659, May 2013.

[18] Sheng Xu, Anran Huang, Lei Chen, and Baochang Zhang. Convolutional

neural network pruning: A survey. In 2020 39th Chinese Control Conference

(CCC), pages 7458–7463, 2020.

[19] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning

structured sparsity in deep neural networks. In Proceedings of the Inter-

national Conference on Neural Information Processing Systems (NeurIPS),

pages 2074–2082, December 2016.

[20] Yu Cheng, Quanfu Fan, Sharath Pankanti, and Alok Choudhary. Tem-

poral sequence modeling for video event detection. In Proceedings of the

IEEE International Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 2235–2242, June 2014.

[21] Yen-Lin Lee, Pei-Kuei Tsung, and Max Wu. Technology trend of edge

100

AI. In Proceedings of the IEEE International Symposium on VLSI Design,

Automation and Test (VLSI-DAT), pages 1–2, April 2018.

[22] Kenyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on

edge computing research. IEEE Access, 8:85714–85728, May 2020.

[23] Yuji Roh, Geon Heo, and Steven Euijong Whang. A survey on data col-

lection for machine learning: A big data - ai integration perspective. IEEE

Transactions on Knowledge and Data Engineering, 33(4):1328–1347, 2021.

[24] Yue Zhu, James Kwok, and Zhi-Hua Zhou. Multi-Label learning with global

and local label correlation. IEEE Transactions on Knowledge and Data

Engineering, 30(6):1081–1094, June 2018.

[25] Nimrod Busany, Shahar Maoz, and Yehonatan Yulazari. Size and accuracy

in model inference. In Proceedings of the IEEE/ACM International Confer-

ence on Automated Software Engineering (ASE), pages 887–898, November

2019.

[26] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model com-

pression and acceleration for deep neural networks. CoRR, abs/1710.09282,

October 2017.

[27] Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. DarkRank: Acceler-

ating deep metric learning via cross sample similarities transfer. In Pro-

ceedings of the Association for the Advancement of Artificial Intelligence

Conference on Artificial Intelligence (AAAI), pages 2852–2859, October

2018.

[28] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge

in a neural network. In Proceedings of the International Conference on

Neural Information Processing Systems (NeurIPS), pages 1–9, March 2015.

[29] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up con-

volutional neural networks with low rank expansions. In Proceedings of the

British Machine Vision Conference (BMVC), pages 1–13, September 2014.

101

[30] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.

Pruning filters for efficient ConvNets. In Proceedings of the International

Conference on Learning Representations (ICLR), pages 1–13, April 2017.

[31] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Find-

ing sparse, trainable neural networks. In Proceedings of International Con-

ference on Learning Representations, 2019.

[32] James Diffenderfer and Bhavya Kailkhura. Multi-prize lottery ticket hy-

pothesis: Finding accurate binary neural networks by pruning a randomly

weighted network. In Proceedings of International Conference on Learning

Representations, 2021.

[33] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang.

Pruning and quantization for deep neural network acceleration: A survey.

Neurocomputing, 461:370–403, 2021.

[34] Xiaotong Lu, HengWang, Weisheng Dong, FangfangWu, Zhonglong Zheng,

and Guangming Shi. Learning a deep vector quantization network for image

compression. IEEE Access, 7:118815–118825, August 2019.

[35] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Com-

pressing deep convolutional networks using vector quantization. CoRR,

abs/1412.6115, December 2014.

[36] Lei Yang, Shangyou Zeng, Yue Zhou, Bing Pan, Yanyan Feng, and Daihui

Li. Design of convolutional neural network based on tree fork module. In

2019 18th International Symposium on Distributed Computing and Appli-

cations for Business Engineering and Science (DCABES), pages 1–4, 2019.

[37] Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. Resiliency of deep

neural networks under quantization. CoRR, abs/1511.06488, November

2015.

[38] Shangyu Chen, Wenya Wang, and Sinno Pan. Deep neural network quan-

tization via layer-wise optimization using limited training data. In Pro-

ceedings of the Association for the Advancement of Artificial Intelligence

Conference on Artificial Intelligence (AAAI), pages 3329–3336, July 2019.

102

[39] He Yihui, Lin Ji, Liu Zhijian, Wang Hanrui, Li Li-Jia, and Han Song.

AMC: AutoML for model compression and acceleration on mobile devices.

In Proceedings of European Conference on Computer Vision (ECCV), page

1–17, September 2018.

[40] Ahmed Elthakeb, Prannoy Pilligundla, Fatemehsadat Mireshghallah, Amir

Yazdanbakhsh, and Hadi Esmaeilzadeh. ReLeQ : A reinforcement learning

approach for automatic deep quantization of neural networks. IEEE Micro,

40(5):37–45, 2020.

[41] Lou Qian, Guo Feng, Kim Minje, Liu Lantao, and Jiang Lei. AutoQ: Au-

tomated kernel-wise neural network quantization. In Proceedings of Inter-

national Conference on Learning Representations (ICLR), page 1–11, May

2020.

[42] Komal Sharma and Kunal Gupta. Lossless data compression techniques

and their performance. In 2017 International Conference on Computing,

Communication and Automation (ICCCA), pages 256–261, 2017.

[43] Mohd Salihin Ngadiman Yusliza Yusoff and Azlan MohdZain. Overview of

NSGA-II for optimizing machining process parameters. Procedia Engineer-

ing, 15:3978–3983, December 2011.

[44] Ke Shang, Hisao Ishibuchi, Linjun He, and Lie Meng Pang. A survey on the

hypervolume indicator in evolutionary multiobjective optimization. IEEE

Transactions on Evolutionary Computation, 25(1):1–20, 2021.

[45] Federico Cruciani, Chen Sun, Shuai Zhang, Chris Nugent, Chunping Li,

Shaoxu Song, Cheng Cheng, Ian Cleland, and Paul Mccullagh. A pub-

lic domain dataset for human activity recognition in free-living condi-

tions. In Proceedings of the IEEE International Conference on SmartWorld,

Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable

Computing Communications, Cloud Big Data Computing, Internet of Peo-

ple and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CB-

DCom/IOP/SCI), pages 166–171, August 2019.

103

[46] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit

database, 2010.

[47] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-

ageNet: A large-scale hierarchical image database. In Proceedings of the

IEEE International Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 248–255, June 2009.

[48] Alex Krizhevsky. CIFAR-100 dataset, 2010.

[49] David Castro. A 3D version of the MNIST database of handwritten digits,

2019.

[50] Yu Xiang, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher Choy, Hao Su,

Roozbeh Mottaghi, Leonidas Guibas, and Silvio Savarese. Objectnet3D:

A large scale database for 3D object recognition. In Proceedings of the

European Conference Computer Vision (ECCV), October 2016.

[51] Cam Nugent. Historical stock data for all current S and P 500 companies,

2018.

[52] Mark Zielinski. Bitcoin data at 1-min intervals from select exchanges, Jan

2012 to Sept 2020, 2020.

[53] Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Ste-

fano Menini, and Roberto Zamparelli. SemEval-2014 task 1: Evaluation

of compositional distributional semantic models on full sentences through

semantic relatedness and textual entailment. In Proceedings of the 8th In-

ternational Workshop on Semantic Evaluation (SemEval 2014), pages 1–8,

Dublin, Ireland, August 2014. Association for Computational Linguistics.

[54] Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher Man-

ning. A large annotated corpus for learning natural language inference.

In Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing (EMNLP). Association for Computational Linguistics,

2015.

104

[55] Naigong Yu, Panna Jiao, and Yuling Zheng. Handwritten digits recognition

base on improved LeNet5. In Proceedings of the IEEE Chinese Control and

Decision Conference (CCDC), pages 4871–4875, May 2015.

[56] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Wein-

berger. Densely connected convolutional networks. In 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pages 2261–

2269, 2017.

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[58] Taranjit Kaur and Tapan Kumar Gandhi. Automated brain image classifi-

cation based on vgg-16 and transfer learning. In Proceedings of the IEEE

International Conference on Information Technology (ICIT), pages 94–98,

December 2019.

[59] Ching-Kai Tseng, Chien-Chih Liao, Po-Chun Shen, and Jiun-In Guo. Using

C3D to detect rear overtaking behavior. In Proceedings of the IEEE Interna-

tional Conference on Image Processing (ICIP), pages 151–154, September

2019.

[60] Lasani Hussain, Sekhar Banarjee, Sumit Kumar, Aditya Chaubey, and Mo-

tahar Reza. Forecasting time series stock data using deep learning tech-

nique in a distributed computing environment. In Proceedings of the IEEE

International Conference on Computing, Power and Communication Tech-

nologies (GUCON), pages 489–493, September 2018.

[61] Zizhuang Wei, Qingtian Zhu, Chen Min, Yisong Chen, and Guoping Wang.

Bidirectional hybrid lstm based recurrent neural network for multi-view

stereo. IEEE Transactions on Visualization and Computer Graphics, pages

1–1, 2022.

[62] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of deep bidirectional transformers for language under-

standing. In Proceedings of the 2019 Conference of the North American

105

Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 4171–4186, Minneapolis, Minnesota, June 2019.

Association for Computational Linguistics.

[63] Fernando Gonçalves José and G. C. Resende Mauricio. Biased random-key

genetic algorithms for combinatorial optimization. Journal of Heuristics,

17:487–525, 2011.

[64] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective op-

timization algorithm using reference-point-based nondominated sorting ap-

proach, part i: Solving problems with box constraints. IEEE Transactions

on Evolutionary Computation, 18(4):577–601, 2014.

[65] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik.

EMNIST: an extension of MNIST to handwritten letters. CoRR, August

2017.

[66] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb,

Kazuaki Yamamoto, and David Ha. Deep learning for classical japanese

literature. CoRR, 2018.

[67] Mohamed Loey, Ahmed El-Sawy, and Hazem M. El-Bakry. Deep learning

autoencoder approach for handwritten arabic digits recognition. CoRR,

2017.

[68] Shudong Yang, Xueying Yu, and Ying Zhou. LSTM and GRU neural net-

work performance comparison study: Taking yelp review dataset as an

example. In 2020 International Workshop on Electronic Communication

and Artificial Intelligence (IWECAI), pages 98–101, 2020.

[69] Yang Qiang, Liu Yang, Chen Tianjian, and Tong Yongxin. Federated ma-

chine learning: Concept and applications. ACM Transaction Intelligence

System Technology, 10(2):12–19, January 2019.

[70] Erivaldo Fernandes, Guanci Yang, Manh Do, and Weihua Sheng. Detec-

tion of privacy-sensitive situations for social robots in smart homes. In

Proceedings of the IEEE International Conference on Automation Science

and Engineering (CASE), pages 727–732, August 2016.

106

[71] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Arcas. Communication-efficient learning of deep networks from de-

centralize data. In Proceedings of the International Conference on Artificial

Intelligence and Statistics (AISTATS), pages 1273–1282, April 2017.

[72] Qi Qi, Qiming Huo, Jingyu Wang, Haifeng Sun, Yufei Cao, and Jianxin

Liao. Personalized sketch-based image retrieval by convolutional neural

network and deep transfer learning. IEEE Access, 7:16537–16549, January

2019.

[73] Chetan Nadiger, Anil Kumar, and Sherine Abdelhak. Federated reinforce-

ment learning for fast personalization. In Proceedings of the IEEE Inter-

national Conference on Artificial Intelligence and Knowledge Engineering

(AIKE), pages 123–127, June 2019.

[74] Vukasin Felbab, Peter Kiss, and Tomas Horvath. Optimization in federated

learning. In Proceedings of the International Conference on Information

Technologies - Application and Theory (ITAT), pages 58–65, September

2019.

[75] Anit Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and

Virginia Smith. On the convergence of federated optimization in heteroge-

neous networks. CoRR, abs/1812.06127, January 2019.

[76] Johnson Rie and Zhang Tong. Accelerating stochastic gradient descent

using predictive variance reduction. In Proceedings of the International

Conference on Neural Information Processing Systems (NIPS), volume 1,

pages 315–323, December 2013.

[77] Gintare Karolina Dziugaite and Daniel Roy. Entropy-SGD optimizes the

prior of a pac-bayes bound: Generalization properties of entropy-SGD and

data-dependent priors. In Proceedings of the International Conference on

Machine Learning (ICML), pages 1376–1385, February 2018.

[78] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Re-

visiting distributed synchronous SGD. In Proceedings of the International

Conference on Learning Representations (ICLR), pages 1–10, April 2016.

107

[79] Tian Li, Maziar Sanjabi, and Virginia Smith. Fair resource allocation in

federated learning. CoRR, abs/1905.10497, May 2019.

[80] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[81] Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Arcas.

Federated learning of deep networks using model averaging. CoRR,

abs/1602.05629, February 2016.

[82] Faliang Huang, Guoqing Xie, and Ruliang Xiao. Research on ensemble

learning. In Proceedings of the International Conference on Artificial Intel-

ligence and Computational Intelligence (AICI), volume 3, pages 249–252,

January 2009.

[83] Inwoong Lee, Doyoung Kim, Seoungyoon Kang, and Sanghoon Lee. En-

semble deep learning for skeleton-based action recognition using temporal

sliding lstm networks. In Proceedings of IEEE International Conference on

Computer Vision (ICCV), pages 1012–1020, 2017.

[84] Li Deng and John Platt. Ensemble deep learning for speech recognition. In

Proceedings of INTERSPEECH, September 2014.

[85] Feng Xue, Dongliang Wei, Zhi Wang, Tong Li, Yue Hu, and Hongyi Huang.

Grid searching method in spherical coordinate for PD location in a substa-

tion. In Proceeding of the International Conference on Condition Monitor-

ing and Diagnosis (CMD), pages 1–5, September 2018.

[86] Ying Shang and Jizheng Chu. A method based on random search algorithm

for unequal circle packing problem. In Proceedings of the International Con-

ference on Information Science and Cloud Computing Companion (ISCC-

C), pages 43–47, December 2013.

[87] Marc Kirschenbaum and Daniel Palmer. Perceptualization of particle

swarm optimization. In Proceedings of the Swarm/Human Blended Intelli-

gence Workshop (SHBI), pages 1–5, September 2015.

108

[88] Alfredo Garcia, Enrique Campos, and Chenyang Li. Distributed on-line

Bayesian search. In Proceedings of the International Conference on Collab-

orative Computing: Networking, Applications and Worksharing (Collabo-

rateCom), pages 1–5, December 2005.

[89] Meng Zhao and Jinlong Li. Tuning the hyper-parameters of CMA-ES with

tree-structured Parzen estimators. In Proceedings of the International Con-

ference on Advanced Computational Intelligence (ICACI), pages 613–618,

March 2018.

[90] Hutter Frank, Hoos Holger, and Leyton Brown Kevin. Sequential model-

based optimization for general algorithm configuration. In Proceedings

of the International Conference on Learning and Intelligent Optimization

(LION), page 507–523, January 2011.

[91] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-

rithms for hyper-parameter optimization. In J. Shawe-Taylor, R. S. Zemel,

P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neu-

ral Information Processing Systems 24, pages 2546–2554. 2011.

[92] Najmul Hassan, Saira Gillani, Ejaz Ahmed, Ibrar Yaqoob, and Muhammad

Imran. The role of edge computing in internet of things. IEEE Communi-

cations Magazine, 56(11):110–115, Nov 2018.

[93] Amir Gandomi and Murtaza Haider. Beyond the hype: Big data concepts,

methods, and analytics. International Journal of Information Management,

35(2):137–144, Apr 2015.

[94] Yingchun Wang, Jingyi Wang, Weizhan Zhang, Yufeng Zhan, Song Guo,

Qinghua Zheng, and Xuanyu Wang. A survey on deploying mobile deep

learning applications: A systemic and technical perspective. Digital Com-

munications and Networks, Jun 2021.

[95] Zhaoyang Du, Celimuge Wu, Tsutomu Yoshinaga, Kok-Lim Alvin Yau,

Yusheng Ji, and Jie Li. Federated learning for vehicular internet of things:

Recent advances and open issues. IEEE Open Journal of the Computer

Society, 1(01):45–61, Jan 2020.

109

[96] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech

Samek. Robust and communication-efficient federated learning from non-

i.i.d. data. IEEE Transactions on Neural Networks and Learning Systems,

31(9):3400–3413, Sep 2020.

[97] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Fed-

erated learning: Challenges, methods, and future directions. IEEE Signal

Processing Magazine, 37(3):50–60, May 2020.

[98] Luping Wang, Wei Wang, and Bo Li. CMFL: Mitigating communication

overhead for federated learning. In Proceedings of the IEEE International

Conference on Distributed Computing Systems (ICDCS), pages 954–964,

Oct 2019.

[99] Dave Conway-Jones, Tiffany Tuor, Shiqiang Wang, and Kin K. Leung.

Demonstration of federated learning in a resource-constrained networked

environment. In Proceedings of the IEEE International Conference on

Smart Computing (SMARTCOMP), pages 484–486, Aug 2019.

[100] Latif Khan, Madyan Alsenwi, Ibrar Yaqoob, Muhammad Imran, Zhu Han,

and Choong Seon Hong. Resource optimized federated learning-enabled

cognitive internet of things for smart industries. IEEE Access, 8:168854–

168864, Sep 2020.

[101] Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh. FedBoost: A

communication-efficient algorithm for federated learning. In Hal Daumé III

and Aarti Singh, editors, Proceedings of the International Conference on

Machine Learning (ICML), volume 119, pages 3973–3983. PMLR, 13–18

Jul 2020.

[102] Xin Yao, Tianchi Huang, Chenglei Wu, Rui-Xiao Zhang, and Lifeng Sun.

Federated learning with additional mechanisms on clients to reduce com-

munication costs. CoRR, abs/1908.05891, Aug 2019.

[103] Xiaofei Wang, Yiwen Han, Victor Leung, Dusit Niyato, Xueqiang Yan, and

Xu Chen. Convergence of edge computing and deep learning: A compre-

110

hensive survey. IEEE Communications Surveys Tutorials, 22(2):869–904,

Jan 2020.

[104] Jed Mills, Jia Hu, and Geyong Min. Communication-Efficient federated

learning for wireless edge intelligence in IoT. IEEE Internet of Things

Journal, 7(7):5986–5994, Jul 2020.

[105] Sin Kit Lo, Qinghua Lu, Chen Wang, Hye-Young Paik, and Liming Zhu. A

systematic literature review on federated machine learning: From a software

engineering perspective. ACM Computing Surveys, 54(5), Jun 2021.

[106] Yunfan Ye, Shen Li, Fang Liu, Yonghao Tang, and Wanting Hu. Edgefed:

Optimized federated learning based on edge computing. IEEE Access,

8:209191–209198, 2020.

[107] Anuran Mitra, Soumita Biswas, Tinku Adhikari, Arindam Ghosh,

Soumalya De, and Raja Karmakar. Emergence of edge computing: An

advancement over cloud and fog. In 2020 11th International Conference

on Computing, Communication and Networking Technologies (ICCCNT),

pages 1–7, 2020.

[108] Mohammad Salehi and Ekram Hossain. Federated learning in unreliable

and resource-constrained cellular wireless networks. CoRR, abs/2012.05137,

2020.

[109] Latif Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong.

Federated learning for internet of things: Recent advances, taxonomy, and

open challenges. IEEE Communications Surveys & Tutorials, 23(3):1759–

1799, 2021.

[110] Yiwei Li, Tsung-Hui Chang, and Chong Yung Chi. Secure federated aver-

aging algorithm with differential privacy. In Proceedings of the IEEE In-

ternational Workshop on Machine Learning for Signal Processing (MLSP),

pages 1–6, Oct 2020.

[111] Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Chenlin Huang, and Wei

Song. FedProf: Optimizing federated learning with dynamic data profiling.

CoRR, abs/2102.01733, Feb 2021.

111

[112] Sunghwan Park, Yeryoung Suh, and Jaewoo Lee. FedPSO: Federated

learning using particle swarm optimization to reduce communication costs.

MDPI Sensors Journal, 21(2), Jan 2021.

[113] Xin Yao, Tianchi Huang, Chenglei Wu, Rui-Xiao Zhang, and Lifeng Sun.

Towards faster and better federated learning: A feature fusion approach.

In Proceedings of the IEEE International Conference on Image Processing

(ICIP), pages 175–179, Aug 2019.

[114] Alham Fikri Aji and Kenneth Heafield. Sparse communication for dis-

tributed gradient descent. In Proceedings of the International Conference

on Empirical Methods in Natural Language Processing (EMNLP), pages

440–446, Sep 2017.

[115] Chuan Zhang and Weihong Xu. Neural networks: Efficient implementations

and applications. In Proceedings of the IEEE International Conference on

ASIC (ASICON), pages 1029–1032, Oct 2017.

[116] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov,

Sarit Khirirat, and Cedric Renggli. The convergence of sparsified gra-

dient methods. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett, editors, Proceedings of the International

Conference on Neural Information Processing Systems (NIPS), volume 31.

Curran Associates, Inc., 2018.

[117] Alon Brutzkus and Amir Globerson. Why do larger models generalize bet-

ter? A theoretical perspective via the XOR problem. In Kamalika Chaud-

huri and Ruslan Salakhutdinov, editors, Proceedings of the International

Conference on Machine Learning (ICML), volume 97, pages 822–830, 09–

15 Jun 2019.

[118] Kai Packhäuser, Sebastian Gündel, Nicolas Münster, Christopher Syben,

Vincent Christlein, and Andreas Maier. Deep learning-based patient re-

identification is able to exploit the biometric nature of medical chest x-ray

data. Scientific Reports, 12(1):14851, 2022.

112

[119] Linda Wang, Zhong Qiu Lin, and Alexander Wong. Covid-net: a tailored

deep convolutional neural network design for detection of covid-19 cases

from chest x-ray images. Scientific Reports, 10(1):19549, Nov 2020.

[120] Md. Rezaul Karim, Till Döhmen, Michael Cochez, Oya Beyan, Dietrich

Rebholz-Schuhmann, and Stefan Decker. Deepcovidexplainer: Explainable

covid-19 diagnosis from chest x-ray images. In 2020 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM), pages 1034–1037,

2020.

113

List of Publication

Book Chapter

1. Kundjanasith Thonglek, Norawit Urailertprasert, Patchara Pattiyatha-

nee, Chantana Chantrapornchai, ”Damaged Vehicle Parts Recognition us-

ing Capsule Neural Network”, Research Innovations and Trends on Com-

puter Vision and Recognition Systems.

2. Kundjanasith Thonglek, Kohei Ichikawa, Chatchawal Sangkeettrkarn,

Apivadee Piyatumrong, ”Auto-Scaling System Apache Spark Cluster using

Model-Based Deep Reinforcement Learning”, Heuristics for Optimization

and Learning.

Journal Article

1. Kundjanasith Thonglek, Kohei Ichikawa and Keichi Takahashi and Chawanat

Nakasan and Kazufumi Yuasa and Tadatoshi Babasaki and Hajimu Iida,

”Toward Predictive Modeling of Solar Power Generation for Multiple Power

Plants,” in IEICE Transactions on Communications, Jul. 2023.

2. Kundjanasith Thonglek, Keichi Takahashi, Kohei Ichikawa, Chawanat

Nakasan, Hidemoto Nakada, Ryousei Takano, Pattara Leelaprute, Hajimu

Iida, ”Automated Quantization and Retraining for Neural Network Models

Without Labeled Data,” in IEEE Access, vol. 10, pp. 73818-73834, Jul.

2022.

3. Kundjanasith Thonglek, Norawit Urailertprasert, Patchara Pattiyatha-

nee, Chantana Chantrapornchai, ”Vehicle Part Damage Analysis Platform

for Auto insurance Application”, ECTI Transactions on Computer and In-

formation Technology (ECTI-CIT), vol. 15, no. 3, pp. 313–323, Nov. 2021.

Conference Paper

1. Kundjanasith Thonglek, Thanaporn Jinnovart, Arnan Maipradit, ”Privacy-

Preserving Machine Learning for Snoring Detection”, IEEE International

114

Conference on Information and Education Technology, Mar. 2023.

2. Kundjanasith Thonglek, Keichi Takahashi, Kohei Ichikawa, Chawanat

Nakasan, Pattara Leelaprute, Hajimu Iida, ”Sparse Communication for Fed-

erated Learning”, IEEE International Conference on Fog and Computing,

May. 2022.

3. Kundjanasith Thonglek, Kohei Ichikawa, Keichi Takahashi, Kazufumi

Yuasa, Tadatoshi Babasaki, Chawanat Nakasan, Hajimu Iida, ”Enhancing

the Prediction Accuracy of Solar Power Generation using a GAN”, IEEE

International Conference on Green Energy and Smart Systems, Nov. 2021.

4. Sopicha Stirapongsasuti, Kundjanasith Thonglek, Shinya Misaki, Yugo

Nakamura, Keiichi Yasumoto, ”INSHA: Intelligent Nudging System for

Hand Hygiene Awareness”, ACM International Conference on Intelligent

Virtual Agents, Sep. 2021.

5. Kundjanasith Thonglek, Kohei Ichikawa, Kazufumi Yuasa, Tadatoshi

Babasaki, ”LSTM-based Neural Network Model for Predicting Solar Power

Generation”, Technical Committee on Energy Engineering in Electronics

and Communications (IEICE-EE), May. 2021.

6. Kundjanasith Thonglek, Keichi Takahashi, Kohei Ichikawa, Chawanat

Nakasan, Hajimu Iida, ”Federated Learning of Neural Network Models

with Heterogeneous Structures”, IEEE International Conference on Ma-

chine Learning and Applications, Dec. 2020.

7. Thanaporn Jinnovart, Xiongcai Cai, Kundjanasith Thonglek, ”Abnor-

mal Gait Recognition in Real-Time using Recurrent Neural Networks”,

IEEE International Conference on Decision and Control, Dec. 2020.

8. Sopicha Stirapongsasuti, Kundjanasith Thonglek, Shinya Misaki, Bun-

yapon Usawalertkamol, Yugo Nakamura, Keiichi Yasumoto, ”A Nudge-

based Smart System for Hand Hygiene Promotion in Private Organiza-

tions”, ACM International Conference on Embedded Networked Sensor Sys-

tems, Nov. 2020.

115

9. Kundjanasith Thonglek, Keichi Takahashi, Kohei Ichikawa, Chawanat

Nakasan, Hidemoto Nakada, Ryousei Takano, Hajimu Iida, ”Retraining

Quantized Neural Network Models with Unlabeled Data”, IEEE Interna-

tional Joint Conference on Neural Networks, Jul. 2020.

10. Kundjanasith Thonglek, Kohei Ichikawa, Keichi Takahashi, Chawanat

Nakasan, Hajimu Iida, ”Improving Resource Utilization in Data Centers us-

ing an LSTM-based Prediction Model”, HPCMASPA in IEEE International

Conference on Cluster Conference, Sep. 2019.

11. Kundjanasith Thonglek, Norawit Urailertprasert, Patchara Pattiyatha-

nee, Chantana Chantrapornchai, ”IVAA: Intelligent Vehicle Accident Anal-

ysis System”, IEEE International Joint Conference on Computer Science

and Software Engineering, Jul. 2019.

12. Kundjanasith Thonglek, Kohei Ichikawa, Chatchawal Sangkeettrkarn,

Apivadee Piyatumrong, ”Auto-Scaling Apache Spark Cluster using Deep

Reinforcement Learning”, International Conference on Optimization and

Learning, Jan. 2019.

Poster Presentation

1. Kundjanasith Thonglek, Kohei Ichikawa, Keichi Takahashi, Hajimu Iida,

”Federated Learning Infrastructure for Collaborative Machine Learning on

Heterogenous Environments”, PRAGMA Student Workshop, Dec. 2021.

2. Kundjanasith Thonglek, Kohei Ichikawa, Keichi Takahashi, Chawanat

Nakasan, Hajimu Iida, ”SharingNets: an open-source repository for sharing

pre-trained neural networks”, IST-FR, Dec. 2019.

3. Kundjanasith Thonglek, Kohei Ichikawa, Keichi Takahashi, Chawanat

Nakasan, Hajimu Iida, ”Compressing Recurrent Neural Network Models

using Vector Quantization”, PRAGMA Workshop 37, Sep. 2019.

4. Vahid Daneshmand, Renato Figueiredo, Kohei Ichikawa, Keichi Takahashi,

Kunjanasith Thonglek, ”Investigating the Performance and Scalability

116

of Kubernetes on Distributed Cluster of Resource-Constrained Edge De-

vices”, PRAGMA 37, Sep. 2019.

5. Kundjanasith Thonglek, Kohei Ichikawa, Keichi Takahashi, Chawanat

Nakasan, Hajimu Iida, ”Towards Optimal Resource Utilization in Data Cen-

ters using Long Short-Term Memory”, PRAGMA Workshop 36, Apr. 2019.

117

