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A Fully-Pipelined Inference Accelerator for

Deep Convolutional Neural Networks∗

NGUYEN VAN CAM

Abstract

Due to the high speed and power efficiency of the field-programmable gate

array (FPGA), many FPGA-based inference accelerators for deep convolutional

neural network (CNN) have been widely adopted. Large-scale CNNs require in-

tensive computations as well as a large amount of storage space and memory

access. However, low bandwidth off-chip memories are a main challenge for data

transmission between external memory and FPGA-based CNN inference acceler-

ator.

In this research, we develop the following to improve performance and power

efficiency. First, we use a high bandwidth memory (HBM) to expand the band-

width of data transmission between the off-chip memory and the accelerator.

Second, a fully-pipelined manner, which consists of pipelined inter-layer com-

putation and a pipelined computation engine, is implemented to decrease idle

time among layers. Third, a multi-core architecture with shared-dual buffers is

designed to reduce off-chip memory access and maximize the throughput.

We designed the proposed accelerator on the Xilinx Alveo U280 platform with

in-depth Verilog HDL instead of high-level synthesis as in the previous works

and explored the VGG-16 model to verify the system during our experiment.

With a similar accelerator architecture, the experimental results demonstrate

that the memory bandwidth of HBM is 13.2× better than DDR4. Compared with

other accelerators in terms of throughput, our accelerator is 1.9×/1.65×/11.9×
better than FPGA+HBM2 based / low batch size GPGPU / low batch size

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science

and Technology, June 02, 2023.
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CPU. Compared with the previous DDR+FPGA / DDR+GPGPU / DDR+CPU

based accelerators in terms of power efficiency, our proposed system provides 1.4-

1.7×/1.7-12.6×/6.6-37.1× improvement with the large-scale CNN model.

Keywords:

Convolutional Neural Network (CNN), Deep Neural Network (DNN), Image Clas-

sification, FPGA, High Bandwidth Memory (HBM), Accelerator, Power Effi-

ciency.
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1 Introduction

1.1 Overview

Nowadays, research on Deep Neural Networks (DNN) is showing a huge improve-

ment over traditional algorithms in machine learning [1, 2, 3, 4]. Various network

models, such as convolutional neural networks (CNNs) and recurrent neural net-

works (RNNs), have been proposed for image, video, and speech processes. CNN

improved the image classification accuracy [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and

further improved object detection [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]

with its superior feature extraction. RNN achieves high performance in extract-

ing time-continuous features such as speech recognition [28, 29, 30, 31, 32], video

captioning [33, 34, 35, 36, 37], etc. In general, DNN is highly suitable for a wide

range of pattern recognition problems. This ability makes DNN a promising

candidate for many artificial intelligence applications.

Table 1. Top-1 Accuracy and Resource Utilization of State-of-the-Art Convolu-

tional Neural Network Models.
Metrics AlexNet ResNet152 MobileNet ShuffleNet

Year 2012 2016 2017 2017

#Param 60M 57M 4.2M 2.36M

#Operation 1.4G 22.6G 1.1G 0.27G

Top-1 Accuracy 61% 79.3% 70.6% 67.6%

M: Million (×106), G:Giga (×109).

Recent deep convolutional neural networks (CNNs) have became popularly

used due to their superior efficiency in computer vision fields [38, 39, 40, 41,

42, 43, 44], such as image classification, object recognition, pedestrian detection,

object tracking, etc. CNNs are computationally intensive models that achieve

high accuracy on large datasets [45, 46, 47, 48, 49]. However, they require a huge

amount of computational cost, storage space, and high bandwidth memory access.

For example, the CNN models from Table 1 [50] show that the ResNet152 model

has high performance but the model is very complicated instead. Specifically, the
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number of learned parameters is up to 57 million parameters. If each parameter

is 32-bit then it takes at least 218MB of memory to store them. In addition, the

number of calculations is up to 22.6 billion. Latest models such as MobileNet or

ShuffleNet have significantly reduced number of learned parameters and number

of calculations compared to ResNet152 model, but obviously the accuracy will

decrease. The balance between accuracy with storage space, computational cost,

and power consumption for CNN models on platforms is still a critical problem

today.

Central processing unit (CPU) and general purpose graphic processing unit

(GPGPU) are two well-known general-purpose hardware platforms. GPGPUs

can achieve performance up to 10 TOPS, while CPU can only achieve 10- 100

GFLOPS [50]. GPGPUs that specialize in parallel processing are called ”Sin-

gle Instruction Multi-Data (SIMD)” [51, 52]. GPGPUs are more suitable than

CPUs for large amounts of training data, matrices, and complex operations in

deep learning. Therefore, GPGPUs with massively parallel computational ca-

pacity are widely used for large-scale, high-cost CNN models. Despite producing

high performance for CNN implementation, GPGPUs still suffer from huge power

consumption requirements, resulting in poor power efficiency. Particularly, em-

bedded devices and mobile devices are not possible to use GPGPU to process the

large-scale data efficiently.

To improve power efficiency, field programmable gate array (FPGA) plat-

form, which can achieve high performance and low power cost, is a good can-

didate for replacing GPGPU to improve power efficiency[53, 54, 55, 56, 57].

More specially, FPGA-based accelerators have greater reconfigurability and short-

ened deployment time compared to application specific integrated circuit (ASIC)

[58, 59, 60]. The performance of current FPGA platforms can achieve, for ex-

ample, 9.2 TFLOPS by Intel Stratix 10 FPGA [61] or even 40 TFLOPS by Intel

Agilex FPGA platform [62].

Many existing FPGA-based CNN inference implementations with low-bandwidth

computation [63, 64, 65, 66, 67, 68], compression mechanisms [69, 70, 71] or quan-

tization [72, 73, 74, 75, 76, 77] have been applied for low numerical precision

to reduce the external memory bandwidth pressure. In addition, using on-chip

buffers (e.g., [78, 79, 80]) is a popular solution for limiting bandwidth memory.
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However, CNN models are becoming larger for analyzing and extracting features

from input images , requiring more arithmetic operations and storage space. The

existing FPGA-based CNN inference accelerators with off-chip memory (DDR)

could not satisfy the memory bandwidth requirement for computation with large-

scale CNN model due to FPGA resources constraints.

The release of high bandwidth memory (HBM) combined with the accelerator

on FPGA promises to create highly efficient CNN inference accelerators. From

the specification of the Xilinx Alveo U280 platform, the bandwidth memory of two

HBM2 (second-generation of high bandwidth memory) DRAM stacks can achieve

460 GB/s at 900 MHz clock rate, which is more than 12× the performance of

DDR4 memory bandwidth (only 38 GB/s [81]). Moreover, many evaluations

have been conducted to demonstrate the experimental performance of HBM2.

For instance, Huang et al. [82] validated the much higher memory throughput of

HBM2 than DDR4 (425 GB/s vs. 36 GB/s). Moreover, Samsung HBM2 through-

put can achieve 3× improvement and save 80% power consumption compared to

the GDDR-based system [83]. Based on the above advantages, the combination

of FPGA-based accelerators and HBM2 promises to improve performance but

also maintain power efficiency compared to the GPGPU platform.

1.2 Research Contribution

This study’s main contributions can be summarized as follows:

• We implement a CNN inference accelerator on the FPGA and HBM2 plat-

form at the system-on-chip level with in-depth Verilog HDL instead of high-

level synthesis as the previous researchs. The real memory bandwidth of

HBM2 is 13.2× larger than DDR4’s bandwidth.

• In order to increase the accelerator’s performance, we adopt a fully-pipeline

mechanism, which contains inter-layer pipeline and a pipelined architecture

inside of computation engine.

• The proposed accelerator consists of a multi-core architecture with dual

buffers for storing the feature maps and shared-dual buffers for saving kernel

parameters to reduce the off-chip memory access and improve the through-

put.
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• We implement the small/large scale VGG-16 model on CIFAR-100/ImageNet

dataset to evaluate the accelerator. Then, we closely analyze the effect of

HBM2 on the accelerators by making a fair comparison to the HBM2 based

and DDR memory based. Since the existing FPGA-based CNN inference

accelerators have poor performance and low flexibility, the proposed sys-

tem is compared to other high-performance and high-flexibility hardware

platforms such as DDR+CPU/DDR+GPGPU with various batch sizes in

terms of throughput and power efficiency.

• The throughput of the proposed system reaches 912.7 GOP/s and 22.48

GOP/s/W in peak throughput and power efficiency, which surpasses NVIDIA

GeForce RTX3090 GPGPU, Intel i9-10940 CPU, and FPGA-based CNN in-

ference accelerators [84, 85, 86] .

1.3 Dissertation Layout

The thesis is divided into five chapters which are organized as follows:

• Chapter 1 introduces the overview, contributions, and layout of this re-

search.

• Chapter 2 gives an overview of the deep neural network. Then, the prelim-

inary of convolution neural networks is summarized. Finally, the details of

structure, features and specifications of High Bandwidth Memory (HBM)

on Xilinx Alveo U280 board are presented.

• Chapter 3 analysis the related works and their drawbacks.

• Chapter 4 shows the details of the system architecture. In this chapter,

the structure of the system , accelerator and their workflow are presented.

Moreover, the system experiment setup is also showed in detail.

• Chapter 5 analysis the results. This chapter also evaluates by compar-

ing with related works and CNN inference implementation on DDR-based

CPU/GPGPU.
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2 Background and Related Work

This chapter firstly introduces the background of Artificial Intelligence history.

Then, the overview of Artificial Neural Networks (ANNs), Deep Neural Networks

(DNNs), and Convolutional Neural Networks (CNNs) is summarised. Next, I

present an overview of the structure and features of High Band Memory (HBM).

Finally, the drawbacks of CNN inference accelerators based on the Central Pro-

cessing Unit (CPU), General Purpose Graphic Processing Unit (GPGPU), and

Field Programmable Gate Array (FPGA) are analyzed in detail and the solutions

are also given.

2.1 Overview of Artificial Intelligence

Artificial intelligence (or AI) can be defined as ”the study of making computers

that do things that humans need intelligence to do” [87]. This expanded definition

includes not only the first human thought processes, but also technologies that

help computers achieve intelligent tasks even if they do not necessarily simulate

thought processes human thought. AI is a field of research that synthesizes and

analyzes computational agents that operate intelligently. Actors are activities in

an environment to perform a certain task. In reality, the agents can be worms,

airplanes, people, robots, companies, etc.

The core goal of AI is to learn the principles that make intelligent behavior

possible in natural or artificial systems. This is done by:

• Analysis of natural and man-made agents.

• Construct and test hypotheses about what it takes to build intelligent

agents.

• Design, build, and test computational systems that perform common tasks.

Artificial intelligence develops with the aim of replacing human intelligence with

machines.
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2.1.1 History of AI

AI technology has been interesting and engaging since its inception. For decades,

it has been one of the key technologies for robotics. From the development of this

technology, we will see that we are moving towards advanced mobile intelligence

and getting closer and closer. The field of artificial intelligence dates back to

the 1940s. World War II and the need for rapid technological advancement to

combat the enemy prompted the creation of the field thanks to mathematician

Alan Turing and neuroscientist Grey Walter [87].

The 1st Burst:

Emergence of the

first generation

robot and intelligent

software

The 1st Winter:

No confidence on 

development of AI 

due to hardware 

resource constraint,…

The 2nd Burst:

Exploration of 

neural network

The 2nd Winter:

The traditional AI 

methods lack of 

interaction and poor 

in generalization

The 3rd Burst:

Breakthrough of 

big data and deep 

learning

1956 (Birth of AI) 1974 1980 1987 1993 Present 

Figure 1. Overview of AI history.

In 1956, the famous Dartmouth Conference proposed the claim: ”It is possible

to describe exactly any aspect of learning or any other feature of intelligence so

that a machine can be built to emulate it” [88]. Therefore, this conference has

been recognized as the birth of AI. Over the past 60 years, AIs have gone through

various stages based on their specific development features, as shown in Fig. 1 [89].

In addition, because of certain criticisms and limitations, AI also experienced two

winter periods (freezing, almost no significant development). However, in all these

years, researchers never stop their work in related techniques, and breakthroughs

of various applications are also accompanied.

The first phase, named the Inference Age (1956-1974), is considered the golden

age for AI development. The most important task in this stage is to make com-

puters capable of logical reasoning. With the emerging smart techniques, people

have gone through many ”unbelievable” changes. For example, robots could both

look and behave like humans, or machines could learn to speak and communicate

with people [90]. At that time, all researchers were optimistic that AI can be

easily achieved by logical reasoning.

However, AI failed to keep its growth in the 1970s. The optimism and con-

fidence of AI researchers set extremely high expectations and caused them to
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overlook real difficulties. economic problems they faced, such as hardware re-

source constraints, etc. As a result, financial support was eventually cut off for

scalar research into AI. By 1974, almost no funding for AI projects could be

found. The first “winter” (freeze) in AI development officially begins.

As the 1980s entered, knowledge engineering (perceptron) became the key

word of AI research, the second phase of the re-evolution of AI (1980 - 1987).

Significant technological development during this period must have been a com-

bination of multiperceptron and back-propagation methods. During this period,

the emphasis of AI research was changed from laboratory research to practical

applications.

With the commercialization of AI techniques, there are more and more spe-

cialized systems, natural language processing systems, and more. engaged in

this field. Accordingly, it has achieved great economic and social benefits, and

demonstrated the broad prospects of AI applications. However, in the late 1980s,

after more than a decade of prosperity and significant progress in several fields,

AI research began to emerge in crisis once again. In general, there are mainly

two problems: one is the so-called interaction problem, which is the traditional

AI method that is difficult to interact with the environment. The second is poor

generalization, that is, traditional AI methods are only suitable for certain spe-

cialized systems, difficult to scale to larger and broader complex systems.

After the second “freeze period”, AI has begun a new round of discovery

since the early 1990s (1993 - present), when it was successfully applied across

the technology industry. The impressive point of this period was that computers

should have a certain ability to learn on their own with or without human help

[89]. To this end, massive data with rich information is indispensable, and the core

task is to analyze potential features and patterns embedded in unstructured big

data from multiple sources. This task has brought a new challenge to traditional

AI methods. Instead of conventional research, it is divided into competitive

subfields that focus on specific problems or approaches. Deep Learning is a good

example and the most important one is the Deep Belief Network (DBN) proposed

by Geoff Hinton et. al. in 2006, which demonstrated how a multi-level neural

network can be efficiently pre-trained with large amounts of known data. After

several years of development, deep learning was successfully applied in image
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recognition producing more accurate results than human candidates in 2011. The

achievements mentioned above are inseparable. Now is a new era for AI research,

and it will certainly bring more benefits and promote the development of mobile

intelligence.

2.1.2 AI Research Approaches

In the history of development, scientists divided into 4 main problems to solve

about AI: acting humanly, thinking humanly, thinking rationally, acting ratio-

nally.

In which, the level of computer simulation like a human is the most difficult,

and this is also the goal that scientists are aiming for. In addition, AI also focuses

on the ability of computers to reason, including the following characteristics:

• Reasoning: the ability to solve problems using logical reasoning.

• Knowledge: the ability to represent knowledge about the surrounding world

(understanding how many objects and situations exist in the real world,

being able to classify those objects/events).

• Planning: the ability to set and achieve stated goals based on demonstrated

knowledge.

• Communication: the ability to understand human written and spoken lan-

guage.

• Perception: the ability to reason about the world from visual images,

sounds, and other sensory inputs.

There are two approaches when researching or developing AI-related problems:

• Rules-based techniques: this was the approach in the early days when the

field of AI was studied. This technique is based on pre-fixed rules (knowing

possible cases in advance and the behaviors corresponding to that case),

they work on the principle of ”if - then”, ”opposite” again - then” (if-then-

else). The limitation of this technique is the limit of possible scenarios.

Instances that are newly spawned during the operation will not be pro-

cessed.
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• Machine learning techniques. This technique well addresses the limitation

of the rules-based approach. Possible cases may or may not be present,

newly arising cases are handled based on the characteristics of the data set

that the system has learned.

Since the 1950s, Machine Learning (ML), a subset of Artificial Intelligence

(AI), has revolutionized several fields over the past few decades. Neural Network

(NN) is a subfield of ML and it is this subfield that gives rise to Deep Learning

(DL). Since its inception, DL has created more disruption than ever, showing out-

standing success in almost every application area. Fig. 2 shows the relationship

between deep learning (bottom) and artificial intelligence (top) [91]. Deep learn-

ing (Deep-Learning, DL), which uses the deep learning or hierarchical learning

architecture, is an ML class that was largely developed from 2006 on. Learning

is a process that involves estimating model parameters so that the learned model

(algorithm) can perform a particular task. For example, in an Artificial Neu-

ral Network (Artificial NeurAl Network, ANN), the parameters are the weight

matrix. DL, on the other hand, consists of several layers in between the input

and output layers, allowing multiple stages of hierarchical non-linear information

processing units to be presented to exploit the learning and sample classification

[92, 93] . The learning method based on data representation can also be defined

as representation learning [94]. Recent literature states that DL-based represen-

tation learning consists of a system of features or concepts in which high-level

concepts can be defined from low-level and low-level concepts can be defined.

defined from high levels. Several studies have shown that DL has been described

as a universal learning method capable of solving almost all kinds of problems

in various application domains. In other words, DL is not a solution to solve a

particular problem [95].

This approach is divided into subgroups based on the learning method:

Supervised Learning - SL: Is an approach of Machine Learning to make

computers capable of learning. It is a method that uses previously labeled data

to infer the relationship between input and output. These data are called training

data and they are input - output pairs. Supervised learning will look at these

training sets so that it can make an output prediction for a new input that has

never been encountered. For example house price prediction, email classification.
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Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking Neural Networks

Deep Learning

Figure 2. Deep Learning in the context of Artificial Intelligence.

In SL, observables are required to be labeled first. This is one of the disadvantages

of this method, because it is not always easy to correctly label observations. For

example, in translation, a sentence of the original language can be translated

into many different versions in the language to be translated. However, labeled

observations is also the advantage of SL because once a large dataset has been

correctly labeled, training becomes much easier than when unlabelled data.

Unsupervised Learning - UL: Unsupervised learning uses previously un-

labeled data to make inferences. We don’t know the output data or the label,

only the input data. The UL algorithm relies on the structure of the data to do

something, such as grouping or reducing the dimensions of the data to facilitate

storage and computation. This method is often used to find the structure of a

data set. However, there is no method of evaluating the structure to find out

whether it is true or false. For example, clustering data, extracting the main

component of a certain substance.

Reinforcement Learning - RL: The RL method focuses on making it pos-

sible for an agent in the environment to act in such a way as to obtain as much

reward as possible. Unlike SL, it does not have a pre-labeled data pair as input

and also does not evaluate actions as true or false. It is the problem that helps

a system automatically determine the behavior based on the situation to achieve

10



the maximum benefit (maximizing the performance). Currently, RL is mainly

applied to Game Theory, algorithms need to determine the next move to achieve

the highest score.

2.1.3 Some applications of AI

AI has wide applications in science and manufacturing industries, especially in

the field of analysis and processing of huge volumes of data (Big Data). Some

applications such as:

• Natural Language Processing (NLP) [96, 97]: word processing, human-

machine communication, etc.

• Recognition (Pattern Recognition) [98, 99]: speech recognition, handwrit-

ing, fingerprint, computer vision (Computer Vision), image processing, etc.

• Search Engine [100, 101].

• Medical diagnostics [102, 103, 104]: X-ray image analysis, automated diag-

nostic systems.

• Bioinformatics [105, 106]: Gene sequence classification, Gene/Protein for-

mation process.

• Physics [107, 108]: analyzing astrophotography, interactions between par-

ticles, etc.

• Economics - finance [109, 110]: detecting financial fraud, credit card fraud,

analyzing the stock market, etc.

• Game [111, 112]: automatically play chess, decide the actions of virtual

characters.

• Robots [113, 114]: support or act on behalf of humans in toxic environments,

etc.
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Input layer

Output layer

Hidden layers

Figure 3. A structure of a neuron with the fixed weight and bias.

2.2 Artificial Neural Networks (ANNs) and Deep Neural

Networks (DNNs)

An Artificial Neural Network (ANN) is a computational model. They are formed

by mimicking the structure and function of the human brain, consisting of billions

of neurons and synapses [115, 116]. A synapse is a connection between nodes, or

neurons Fig. 3, in an artificial neural network. Similar to biological brains, the

connection is controlled by the strength or amplitude of a connection between

both nodes, also called the synaptic weight. Multiple synapses can connect the

same neurons, with each synapse having a different of influence (activation) on

whether the neuron is ”activated” and activate the next neuron or not. An

Artificial Neural Network is first trained using an available data set (traning

phase), then the trained model will be used to predict other input data patterns

(inference phase).

Referring to Fig. 3, y is the output of the neuron and is activated by the

activation function, which determines whether the neuron is activated or not.

For this given neuron, x is the vector of the input variables, w is the weight

vector of the edges, and b is the constant bias [117].

Deep Learning is a complex neural network containing many hidden layers

between the input layer and the output layer Fig. 4. The layers are made up of
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𝑥𝑖−1

𝑥𝑖

𝑥𝑖+1

𝑦𝑗𝒘𝑖𝑗

𝑏

: sum of weighted inputs

𝑦𝑗 = (𝑥𝑖𝑤𝑖𝑗) + bias (b)

: activation functionf

Input layer

Output layer

Hidden layers

Forward Propagation

Backward Propagation

Figure 4. An example of structure of Deep Neural Network (DNN). A DNN

structure consists of three types of layers: Input layer, hidden layer and output

layer. The DNN performs both forward-propagation and back-propagation during

the training phase, and only forward-propagation during the inference phase.

the neurons described above. The number of hidden layers and the number of

neurons at each layer (shape and size) depends on the complexity of the input

data (application) and the designer’s goals. DNN always has a trade-off between

high performance and network complexity (many layers, large number of neurons

leads to high computational cost and latency). The input of a DNN is a set of

values representing the characteristics of the input data (which can be pixels of

the input image, waveform magnitude values, sound, values representing the state

of a system or a game, etc). From those input data, DNN conducts the process

of extracting features and predicting what the meaning of the input data is.

Machine learning works in two main phases: training and inference. To build a

model for a certain application, the data set for that application must be divided

13



into at least two parts: one for the training phase, the other for the inference

phase.

• Training phase. The network ”learns” to form the characteristics of the

network for a given application by performing both forward-propagation

and back-propagation processes. The forward-propagation is the process

of extracting features of input data based on learned parameters to predict

output results. The back-propagation is the process of calculating errors and

adjusting model parameters. Both these processes are performed repeatedly

(epoch) to get the optimal parameters for the model.

• Inference phase. The network only performs the forward-propagation at

this phase. To predict the output results, the optimal parameters, which

have been learned from the training phase and the data in the inference

dataset, are used.
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2.3 Preliminary Convolutional Neural Networks

Convolutional Neural Network (CNN) is a common form of DNN. CNN is a

combination of typical layers: convolutional layer (conv), pooling layer (pool), and

fully connected layer (fc). Each layer generates a higher level abstraction of the

corresponding input data, called feature maps. Currently, there are many types

of CNNs proposed by employing a very deep hierarchy of layers. They are able to

achieve superior performance in many applications such as image understanding

[118, 119, 120], speech recognition [121, 122, 123], robotics [124, 125, 126, 127].

This research only focuses on the task of image classification. Fig. 5 is an example

of an image classification application using CNN, which extracts features from

the input image and outputs the probability of the corresponding class.

CNN inference indicates the CNN feed-forward propagation of a batch of

input images. In this section, the basic computation of each layer in CNN is also

presented in detail and visualized in Fig. 6. Table 3 gives the shape of tensors

(multi-dimensional matrices) and Fig. 6 [128] shows formulas of typical layers in

CNN, where {d, v, u} ∈ {[1 : D], [1 : V ], [1 : U ]}, respectively.

Convolution + Non-linearity Pooling

Fully Connected + Non-linearity Softmax

95.1
2.3

0.5

1.7

0.4

0

0 50 100

Horse

Dog

Cat

Deer

Frog

Bird

Probability (%)

. . .

Convolutional Neural NetworkInput Image Predicted Class

Figure 5. Architecture of the Convolutional Neural Network (CNN) in image

classification application.

Convolutional layers: A convolutional layer extracts the feature (output

feature maps) from the input feature maps as illustrated in Fig. 6(a), (b) and (c)
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Table 2. Dimensions of tensors.
Variable Description

X Input Feature Maps (IFMs)

Y Output Feature Maps (OFMs)

Θ Learned weight tensor

β Learned bias tensor

B Batch size

R Height of square pool window

W/H/C Width / Height / Depth of IFMs

U/V/D Width / Height / Depth of OFMs

K/J Width / Height of kernel window

and the computation in Eq. 1. Each element of the 3-D conv layer output feature

map is the result of element-wise multiplication and accumulation between the

3-D input feature map (or the input image with the first conv layer) and the

learned 4-D weight kernel and added by the learned bias kernel. Eq. 1 shows how

to calculate each output element of the conv layer (OFM), where {d, v, u} ∈ {[1 :

D], [1 : V ], [1 : U ]} , respectively.

Y[d, v, u] = β[d] +
C∑
c=1

J∑
j=1

K∑
k=1

X[c, v + j − 1, u+ k − 1]×Θ[d, c, j, k] (1)

Fully-connected layers: The fc layer, which is a dense convolutional layer,

is the classification layer. These layers can be seen as conv layers with no weight

sharing (i.e W = K and H = J). Moreover, in a same way as conv layers, a

non-linear function is applied to the outputs of fc layers. Each input neuron is

connected to all output neurons (in Eq. 2).

Y[u] = β[u] +
V∑

v=1

X[v]×Θ[v, u] (2)

Activation function: A nonlinear activation function is typically applied

after each conv or fc layer. Various nonlinear functions are used to introduce non-

linearity into the DNN, such as sigmoid, hyperbolic tangent (traditional activation
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Figure 6. An example of the feed forward propagation in (convolution + ReLU)

and max-pooling layers (Batch size B = 1, bias β omitted).

(a): Input feature maps (IFMs) in size of (C, H, W).

(b): Learned weight kernel in size of (D, C, J, K).

(c): Output feature maps (OFMs) in size of (D, V, U).

(d): OFM in size of (D, V, U) after activating by ReLU function.

(e): OFM in size of (D, V/2, U/2) after sub-sampling by max-pooling.

function), or the modern non-linear activation function is rectified linear unit

(ReLU)], which has become popular in recent years due to its simplicity and

its ability to enable fast training. Eq. 3 shows the rectified linear unit (ReLU)

formula, which is exampled in Fig. 6(c) and (d).

Y[d, v, u] = max(0,X[d, v, u]) (3)

Max-pooling layers: A variety of computations that reduce the dimension-

ality of a feature map are referred to as pooling. Pooling, which is applied to

each channel separately, enables the network to be robust and invariant to small

shifts and distortions. Pooling combines, or pools, a set of values in its receptive

field into a smaller number of values. It can be configured based on the size of

its receptive field (e.g., 2 × 2) and pooling operation (e.g., max or average), as

shown in Fig. 6(e) with max-pooling. As shown in Eq. 4, max-pooling of the

input feature maps (IFMs) is the selection of the maximum element in a neigh-

borhood R × R elements. As a result, the dimensionality of the feature maps

is down-sampled. This layer helps to reduce the storage space and number of

17



computations for subsequent layers.

Y[d, v, u] = max
p,q∈[1:R]

(X[d, v + p− 1, u+ q − 1]) (4)
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2.4 High Bandwidth Memory

Figure 7. High Bandwidth Memory and 2.5D structure (Source: Samsung).

High bandwidth memory (HBM) uses a 3D-stacked die technology (through

silicon via, TSV) to stack multiple interconnected DRAM chip. HBM is a high-

speed and employs 2.5D system in package (SiP) memory technology [129, 130,

131, 132]. HBM2 (second-generation high bandwidth memory) allows to stack

either four or eight DRAM dies on top of each other (See Fig. 7 [133, 134]).

Multiple DRAM dies can stack on the same package. This significantly reduces

the HBM package area compared to conventional multi-chip DRAM products.

Furthermore, the closed DRAM stacks not only save the movement power of

data, signals but also improve the movement speed due to a shorter distance.

Xilinx takes advantage of silicon stacking technologies of HBM to place the

FPGA and the HBM DRAM beside each other in the same package. The re-

sult is a co-packaged HBM DRAM structure capable of multi-terabit per second

bandwidth [130, 134]. This provides system designers with a significant step

function improvement in bandwidth, compared to other memory technologies.

Fig. 8 shows the communication between the HBM2 (physical) and the user logic

(FPGA) [135]. Xilinx integrates two 4 GB HBM2 stacks (8 GB in total) and

FPGA on the Alveo U280 card, divided into eight memory channels (MCs). Each

MC is further divided into two 64-bit pseudo channels (PCs) occupying their own

physical memory space. Each PC interacts with the FPGA via the standard ad-

vanced extensible interface (AXI). Two HBM2 stacks on the Alveo U280 card
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Figure 8. FPGA and HBM2 communication on Alveo U280 card.

consist of 32 AXI3 ports in total. An AXI3 port occupies a 2Gb, corresponding

256 MB (8 GB/32) memory region on HBM2. Note that, each AXI3 port can

also access all memory regions on HBM2 via the crossbar switcher (SW) [136].

However, this takes more power and latency than using its own memory region.

Furthermore, each HBM2 port operates at an independent clock rate.
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2.5 Related Works

Many CNN inference accelerators have been developed. Their designs have fo-

cused on increasing the inference speed while reducing the power consumption

to the lowest possible level. In this section, we present three drawbacks of the

existing CNN inference accelerators.

=?

"cat"

error

"dog""dog""dog""dog"

labels

backward

forward

forward
"dog"

Training on CPU/ GPGPU

Inference on the accelerator/ FPGA
L
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rn

ed
 K

er
ne

l

Figure 9. Current approach for the CNN accelerator.

First, the general-purpose graphic processing unit (GPGPU) is a well-known

general-purpose hardware platform. Graphics processing units (GPUs) are origi-

nally developed to generate and display of 3D graphics. GPUs consist of massive

processing cores and achieve high speed by paralleling the computing processors.

Because of the high parallelism and processing capacity, the general-purpose uti-

lization of GPUs is becoming a trend in many fields of high-performance comput-

ing [137]. The GPGPU is a good candidate for accelerating large-scale CNN-based

applications by performing operations with massively parallel computational ca-

pacity. However, having all cores work in parallel leads to huge power consump-

tion and poor power efficiency, which is the biggest challenge of the GPGPUs

[55, 138]. Therefore, current approaches have been widely investigated FPGA-
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based CNN inference accelerator due to its power efficiency benefits, besides tak-

ing advantage of GPGPU’s high-performance computing for the training phase

Fig. 9. In this research, we design an FPGA-based CNN inference accelerator

in order to increase power efficiency. The accelerator has a multi-core architec-

ture combined with shared-dual buffers to reduce external memory access due

to broadcasting the same learned kernel among cores. In addition, the pipeline

mechanism is used for inter-layers and inner of computation engines to speed up

the inference phase.

Second, many studies have proposed FPGA-based techniques to improve the

performance of CNN inference. For instance, calculation in the original CNN

uses the number 32-bit floating-point, which gives a low calculation error but is

very complicated. Therefore, most of reseachers developed FPGA-based CNN

accelerators with low bit width by replacing the 32-bit floating-point with 32-bit

fixed-point [66]. [63, 64, 68, 75, 84, 85, 86, 139] used 16-bit fixed-point, even

[140, 141] utilized ternary and [67, 142, 143, 144, 145] replaced by binary com-

putation unit. Low-bit-width computation significantly reduces computational

and power costs, which of course has to be sacrificed in terms of accuracy. Other

works [146, 147, 148] used on-chip memory for low external memory access and

increasing reusability the learned kernel parameters. In addition, pipelined ar-

chitecture [149, 150] has been explored to speed up inference time. Although

these FPGA-based CNN inference accelerators significantly improve the perfor-

mance of the accelerator, they still use double data rate memory (DDR) for the

external memory to store the learned kernel parameters. Data transmission with

the narrow bandwidth DDR between the external memory and the accelerator

creates the bottleneck of the conventional CNN inference accelerator, especially

with large-scale CNN models. To address this problem, we replace DDR memory

with HBM2 as the external memory, which significantly ease the jam in learned

kernel parameters transmission.

Third, R. Kuramochi et al. [151] used FPGA and HBM2 with high-level syn-

thesis (HLS) to develop a CNN inference accelerator on the Alveo U50 platform.

The latency of this proposal showed a 43% improvement compared to previous

research. Their efficiency optimization [151] was obtained from both HBM2 and

a randomly wired convolutional neural network (RWCNN) model. However, the
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contributions of the HBM2 or RWCNN model was not presented clearly. Further-

more, although that work is 1.98 and 5.53× better than NVIDIA RTX 2080 Ti

GPGPU and Intel i7-8700K CPU, respectively, only the batch size of 1 is used in

the comparison. The evaluation results should be compared to those of GPGPU

and CPU at various batch sizes. In this work, we describe in detail HBM2 im-

plementation with Verilog HDL level (not high-level synthesis) and make a fair

comparison with DDR memory-based CPU/GPGPU at several batch sizes. In

addition, the effect of HBM2 and DDR memory on the accelerator in terms of

throughput and power efficiency is analyzed. Consequently, we can reveal the

superiority and trade-off factors when replacing DDR memory with HBM2.
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3 System Architecture

CNN is a multiple layer model, the layers are dependable each other. An inter-

layer pipeline architecture helps the inference process running in parallel and

continously, which increases overall inference throughput. However, this requires

a large number of hardware resource and high bandwidth pressure for multiple-

layer weights loading. We take advantage of high-bandwith off-chip memory to

load weights in parallel for inter-layer computation. In this section, we present

the fully-pipelined manner (pipeline in inter-layer and computation engine) and

describe the structure of the proposed accelerator. Next, the strategy of the

accelerator is explained in detail.

Figure 10. Overview of accelerator architecture.

3.1 Accelerator Architecture

The feed-forward propagation goes through L layers to get the final classified

result. By using a pipeline mechanism between layers, the output generated in
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the previous layer is immediately fed to the next layer (inter-layer pipeline). This

means that all layers are executed in parallel, significantly reducing the latency

for feed-forward propagation. The operation of each convolutional (conv) layer

is detailed as pseudo code in Fig. 11. The output feature maps (OFMs) are

calculated row by row, where υ is incremented up to V. Note that the fc layer is

dense of the conv layer. Therefore, OFMs at the fc layer are also computed as

Fig. 11, which contains X[C, 1, 1],Θ[D,C, 1, 1], β[D],Y[D, 1, 1].

Fig. 10 shows an overview of the accelerator architecture, and Fig. 11 illus-

trates in detail the structure of the computation engine (CE). The proposed sys-

tem uses the second-generation high bandwidth memory (HBM2) as the external

memory to store all input images and learned kernel parameters. Accordingly,
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Figure 12. I/O signals of address generator block (AGB).

HBM2 communicates with the proposed CNN inference accelerator through mul-

tiple AXI buses. The accelerator uses a multi-core architecture (N cores, Core1,

..., CoreN). The cores work in parallel and share the same dual kernel local

memories (KLMs). Inside each core, there are L computation engines (CE1, ...,

CEL). A CE has an associated dual feature local memory (FLM) to store that

CE’s OFMs and also feeds the IFMs to the next CE. The input images and ker-

nel parameters are loaded into the dual local memory IMG LM and KLM in a

batch-by-batch manner from HBM2. The data arbiter module (DAM) contains

L address generator blocks (AGBs). They point to the memory region containing

the kernel parameters in the HBM2, which the accelerator needs. Then, the DAM

allocates input images and kernel parameters read from the HBM2 to the correct

IMG LM and KLM, respectively.

The dual local memory (LM) is used inside the accelerator to store input

images (IN LM ), the classified results (OUT LM ), the kernel parameters (KLM),

and save input/output feature maps (FLM). This saves time instead of being

stored in external memory. LMs are dual buffers (two banks), which operate in

parallel in a ping-pong style. One bank is used for the writing process, while the

other is for the reading process.

The data arbiter module (DAM) consists of L address generator blocks

(AGBs) corresponding to L KLMs. Each AGB is assigned to a CE. The DAM

communicates directly with the multiple-interface HBM2 by burst transmission

via AXI4 interfaces. Each AGB also occupies multiple HBM2 ports. Depending

on the kernel workload of each layer, the number of HBM2 ports is allocated

differently at each AGB. The specific numbers are detailed in Section 4.2.
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The learned kernel parameters of each layer are divided into #Kbatch batches

and loaded to the corresponding KLM one by one. Then, the kernel batch is

inputted to the respective CE. The capacity of the transferred kernel batch is

len(KBatch) bytes according to Eq. 5, where len(Kernel layer) is the kernel

parameter capacity of a layer. The #KBatch value is configured by the designer

depending on the capacity of the KLM. The minimum capacity of the KLM must

be 2× len(KBatch) bytes (dual-buffer). The kernel batches are loaded from the

HBM2 into the KLM via #Port AXI4 ports in parallel. Then, each port loads

len(Workload) bytes of data as in Eq. 6.

As input to AGB, KBatch id (1, ..., #KBatch) denotes which kernel batch

the CE needs for the next computation and Addr offset is the starting address

each port accesses. This region is predefined by the finite state machine (FSM)

controller. From there, AGB as the AXI master generates signals for AXI4 burst

transmission according to Eq. 7, Eq. 8, Eq. 9, where Burst len is 1, ..., or 256,

Addr base is reading address, Data width is 256 bits and #Transfer is the

number of burst transmissions by each port. Note that HBM2 is the AXI slave

used to return kernel parameters to AGB Fig. 12.

len(KBatch) =
len(Kernel layer)

#KBatch
(5)

len(Workload) =
len(KBatch)

#Port
(6)

Burst len = 1, 2, 4, 8, 16, 32, 64, 128, 256 (7)

Addr base = (KBatch id − 1) × len(Workload) + Addr offset (8)

#Transfer =
len(Workload)

Data width×Burst len
(9)

The computation engine (CE) is the central computation block of the

system, which is illustrated in Fig. 11. It executes the computations for the

convolution, max-pooling, and fully connected layers, as shown in Eq. 1, Eq. 2,

Eq. 3, Eq. 4 . CE consists of four phases working in pipelined style, which perform

the multiplication, accumulation, activation function, and comparison operation.

These phases are carried out as follows:

27



• Phase 1: Performing multiplications of multiple input features and kernels

in parallel.

• Phase 2: Performing an additive calculation between the output results

from Phase 1 according to the adder tree style. The cumulative total value

is stored in the temporary register partial sum (psum). The convolutional

result is the sum of the psum register and the bias value from the learned

kernel.

• Phase 3: Activating the input by the ReLU function in Eq. 3. If the input

is greater than or equal to 0, the output is the input itself. Otherwise, the

output is 0.

• Phase 4: Determining the maximum value from a group of the input values.

This phase is only enabled in the max-pooling and output layers (at the

last fc layer to determine the output label). All CEs are synchronized and

controlled by the FSM controller.
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3.2 Workflow

Core1, ..., CoreN have completely the same structure and operate in parallel

with separate input images but a shared kernel dual-buffer (KLM 1, ..., KLM L).

L computation engines work in a pipeline style in each core. Fig. 13 illustrates the

timing diagram of the pipeline inference process of a core. The diagram shows

execution of AGBs and CEs, which generate AXI4 signals to read the kernel

parameters from HBM2 and to execute the computation, respectively.

The host PC starts the inference phase on the accelerator through the FSM

controller. First, the input image is loaded and stored to IMG LM. Then, the

CEs for the convolutional layer computes OFMs in a row-by-row (R#1, ..., R#V )

manner as shown in Fig. 11. Because the number of kernel parameters for CONV1

is small, they are loaded once. From CONV2 onwards, kernel parameters are

loaded in batches from HBM2 to the dual local memory during the computation

for one row OFMs. After finishing the loading of a kernel batch, CE immediately

starts the calculation using the kernel batch just loaded in KLM and the IFMs

in FLM. While the CE processes the loaded kernel batch and the previously

generated IFMs, AGB simultaneously loads the new kernel batch for the next

computation. This operation is carried out until reaching the end of a row of

OFMs, and then it continues row after row until completion of OFMs for that

convolutional layer. Then CE begins to process a new input image. CEs for the

fully connected layer work like a dense convolutional layer, and kernel parameters

are also batch-loaded by batch and stored in the corresponding KLM. The CEs

perform all four phases. The final output is saved to the OUT LM. At the end

of the outputs for an input image batch, all results are sent back to the host PC

by the DMA mechanism.
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4 Experimental Setup

In this section, we first detail the parameters in this experiment, which are the

size, workload, and computational cost at each layer of a typical CNN, VGG-16

model. Next, the system settings and the size of the accelerator are also described.

4.1 VGG-16 Model

Table 3. Features and performance of VGG-16 model in our experiment.

Model Dataset #Parameter #Operation Top-1 acc Top-5 acc

VGG-16
CIFAR100 15.29M 0.63G 91.2% 98.6%

ImageNet 138.36M 30.96G 73.4% 91.5%

M: Million (×106), G: Giga (×109), (batch size: B=1).

A typical CNN, the VGG-16 model is explored with different sizes, which is

described in Table 2. The VGG-16 model includes typical layers with 13 convolu-

tional (conv) layers, three fully connected (fc) layers, and five max-pooling (pool)

layers. After each convolutional layer and fully connected layer, the activation

function is executed. The order of layers in the VGG-16 model is detailed in Table

3. The max-pooling layer is placed right after the conv2, conv4, conv7, conv10,

and conv13 layers. The number of learned parameters in each layer is the sum

of the corresponding learned weights and learned biases in that layer. Table 3

breaks down the number of kernel parameters for convolutional layers (#p conv)

and fully connected layers (#p fc), as specified in Eq. (10)-(11). There is no

learned parameter in the pool layer. Totally, the number of learned parame-

ters is approximately 15.3 and 138.4 million with small and large-scale models,

respectively.

#p conv = (D × C × J ×K) +D (10)

#p fc = (V × U) +D (11)

Table 4 also shows the number of fixed-point 16-bit operations at each layer.

As mentioned in a previous work [152], each feature in OFMs requires K × K

multiply-and-accumulate (MAC) operations (J=K ). Here, a MAC includes the
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two operations of multiplication and addition. The ReLU function consumes only

one comparison operation. Accordingly, the number of operations in a convolu-

tional layer (#op conv) is given by Eq. (12). Mathematically, the number of

operations in the fully connected layer ((#op fc)) can be computed as Eq. (13).

The max-pooling layers in CNNs summarize the outputs of neighboring neurons

to reduce feature dimensions. As shown in Eq. (14), the number of comparison

operations is #op pool. We select the maximum among neighboring R×R (R=2)

elements, which three comparison operations are used for one output at the pool

layer. In total, there are about 628 million and 30.96 billion fixed-point 16-bit

operations, including additions, multiplications, and comparisons, with small and

large-scale models, respectively. Note that Table 3 deals with a batch size of 1.

#op conv = (D × C × V 2 ×K2 × 2) + (D × V 2) (12)

#op fc = U ×W × 2 (13)

#op pool = D × V × U × 3 (14)
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4.2 Experimental Setup

In this section, the environment setup and the strategy for system verification

are presented in detail.

The CUDA Basic Linear Algebra Subroutine (CuBLAS) library is used on

NVIDIA GeForce RTX 3090 GPGPU (2666 MHz core frequency) and 256 GB

DDR4 RAM for the training phase. We use the CIFAR-100 dataset [153] for

the experiment, which includes a total of 60,000 tiny color images with a size of

3 × 32 × 32. Of these, 50,000 images are used for training, and the remaining

10,000 images are used for testing. This dataset has 100 classes.

Host PC

Intel Xeon 

CPU

DDR3 DRAM

Host Program

Alveo U280 Card

HBM2 DRAM

FPGA

CNN

Accelerator

ILA Debugger
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Figure 14. Experimental system setup.

Fig. 14 shows an overview of the experimental setup for system verification.

The proposed CNN accelerator is implemented and verified on a Xilinx FPGA

Alveo U280 Data Center Accelerator Card (16 nm), which includes 8 GB of

second-generation high bandwidth memory (HBM2) DRAM and FPGA compo-

nents. The FPGA on the Alveo U280 card includes more than 1,300k look-up

tables (LUTs), 2,600k flip-flops (FFs), 2,000 36kb block RAMs (BRAMs), 960 ul-

tra RAMs (URAMs), and 9,024 digital signal processors (DSPs). The Alveo U280

card communicates to the host PC by the Peripheral Component Interconnect
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Figure 15. High-level flowchart of the system’s strategy.

Express (PCIe) 3.0 protocol with 8 GT/s (giga transfer per second) at maximum

performance. The host PC integrates an Intel Xeon CPU E5-2620v2@2.10 GHz

and 128 GB DDR3 memory, which stores input images, learned kernel param-

eters, and the host program. The host CPU runs on CentOS 7.9. Due to the

FPGA resource constraint on the Alveo U280 card, the accelerator architecture

consists of four cores (N = 4), each core consisting of 16 computation engines

(L = 16). Table 3 shows that the majority of calculations are performed at

CE2 through CE13. Therefore, we design CEs with different computing abilities.

Specifically, CE1 contains 3×3×3 = 27 multipliers, 28 adders, two registers, and

two comparators. CE2, CE3, ..., CE13 each includes 8× 3× 3 = 72 multipliers,

73 adders, two registers, and two comparators. Each of the three remaining CEs

(for three fc layers) contains 64 multipliers, 65 adders, two registers, and two

comparators.

The CUDA Basic Linear Algebra Subroutine (CuBLAS) library is used on

NVIDIA GeForce RTX 3090 GPGPU (2666 MHz core frequency) and 256 GB

DDR4 RAM for the training phase. We explore both the CIFAR-100 dataset

[153] with tiny color images (3× 32× 32, 100 classes) and ImageNet dataset [?]
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Figure 16. Data allocation on the HBM2.

with large scale images (3 × 224 × 224, 1000 classes) in this experiment. The

datasets include a total of 60,000 with 50,000 images used for training, and the

remaining 10,000 images are used for testing.

The flowchart in Fig. 15 describes how the system works. The learned kernel

parameters and input images are initially stored on the DDR3 memory in the

host PC. Before the accelerator starts the inference processing, all of these learned

kernel parameters and input images are transmitted down to the Alveo U280 card

and stored in the HBM2 by the Xilinx Direct Memory Access (XDMA) module.

After all input images and learned kernel parameters are saved in the HBM2 on

the Alveo U280 card, the host PC activates the inference process on the proposed

accelerator via the FSM controller. When the accelerator is enabled, it operates

as described in Section 3.2. The classification results are output in batches and

sent back to the host PC by DMA manner. Then they are compared with correct

labels in software program (written in C language). This process is repeated until

the accelerator classifies all the testing images.

Fig. 16 illustrates the data allocation in the HBM2 in this experiment. The 8

GB HBM2 on the Alveo U280 card is divided into 32 partitions. Each partition

has a capacity of 256 MB (8 GB/32), which is occupied by one AXI port. That

means 32 partitions are occupied by 32 AXI ports. The XDMA controller takes

up one port of the HBM2 (AXI 00 interface) to perform the DMA process, which

allocates the input images and learned kernel from the host PC to the 31 remain-
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ing HBM2 partitions via an AXI 00 interface. The remaining 31 ports (AXI 01,

AXI 02, ..., AXI 31) of the HBM2 are occupied by the accelerator. These ports

are allocated to load the input images (IN LM ) and the learned parameters for

the 16 layers of the VGG-16 model. The accelerator consists of 16 CEs, corre-

sponding to 16 KLMs. Based on the resource constraint and the kernel capacity

of each layer (calculated as #Parameter × 16-bit), we configure the #KBatch

value as in Table 4 in this experiment, where the minimum capacity of the KLM

in each layer must be 2 × len(KBatch) bytes (dual-buffer) (see Section 3.1).

Particularly at conv1, #KBatch is 1 so KLM capacity is only len(KBatch) bytes.

As for allocating the number of HBM2 ports to a KLM, we split them into

three groups, where each KLM has one, two, or three HBM2 ports, as illustrated

in Fig. 16 and described in Table 5, where #KBatch/one row of OFMs and

#KBatch/ image columns denote the number of DAM’s requests to load kernel

parameters at the respective layer to calculate for one row of OFMs and for all

OFMs (consist of V rows), respectively. We break down the small/large scale

VGG-16 model as layer by layer in Table 4 (Parameter column). At conv layers,

the number of HBM2 ports is allocated to each CE based on the number of

parameters that need to be loaded from HBM2. Here, AGB1, AGB2, AGB3 are

allocated one HBM2 port/AGB; from AGB4 to AGB8 are allocated two HBM2

ports/AGB; from AGB9 to AGB13 are allocated three HBM2 ports/AGB. At

fc layers, we have reduced the pressure of accessing off-chip memory by reusing

loaded parameters to all inputs. The loaded kernel batch is held for computing all

input values before loading a new kernel batch. Besides, the temporary outputs

are stored in FLM for the next computation with the next kernel batch. Hence,

even though fc layers take up most of the parameters (∼90% in large scale CNN

model), we only use one HBM2 port/AGB, instead of allocating a lot of HBM2

ports to AGB at fc layers. Each CE occupies one KLM. Each KLM consists

of one or multiple HBM2 ports (see Fig. 15 and Table 5). Each port works

independently to avoid collisions with each other and among CEs. The width of

the data bus is 256 bits. Applying the optimized strategy allocation in HBM2 in

an earlier work [?] optimized the latency and power to transmit data from the

HBM2 to the accelerator through the individual ports. Ports can also access the

data partition of the other ports, but it will take more latency and power because
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they have to go through the crossbar switcher to arbitrate. Therefore, the learned

parameters of each layer will be allocated by the host program to the partition

closest to the ports occupied by that layer.

An interconnection module is used to connect the HBM2 (AXI3 interface)

with the accelerator (AXI4 interface). The communication between the HBM2

(physical) and the FPGA elements is managed by the HBM2 controller. Fur-

thermore, to clarify the impact of HBM2 and DDR memory on the accelerator

in terms of performance and power efficiency, we replaced HBM2 with DDR4

memory on the Alveo U280 card with the same accelerator architecture. Ac-

cordingly, the FPGA resources consumed on the accelerator are less when using

DDR4 compared to HBM2 (31 vs. 1 AXI interface, 16 vs. 1 AGB).
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5 Experimental Results

In this section, the throughput and power consumption results of the proposed

accelerator are presented. The dynamic power consumption is obtained using the

Xilinx Power Estimator tool. The RTL design is built with Verilog HDL. We

synthesize the bitstream for the hardware design using Vivado 2019.2, which also

presents hardware resources after the implementation step. The throughput is

measured by giga operations per second (GOP/s), which is calculated by Eq.(15),

where #Operation is the number of calculations performed, TFLD (time for the

first load) denotes the latency for loading the first input image batch and the

learned kernel parameter for conv1 layer from HBM2 to local memory), TINF

indicates the inference time of the accelerator, and TDRAIN is latency for backing

(by DMA) classification result from buffer to the host PC. Notice that the time

is measured in seconds (s) and does not include the latency needed to transmit

the input images and kernel parameters from the host PC to HBM2 by the DMA

mechanism.

Throughput =
#Operation(GOP )

(TFLD + TINF + TDRAIN)(s)
(15)

Meanwhile, the power efficiency is measured by giga operations per second

per watt (GOP/s/W). As shown in Eq. (16), the power efficiency is calculated

as the throughput divided by the dynamic power consumed by the system.

Power efficiency =
Throughput(GOP/s)

Power(W )
(16)

We maintain the accelerator architecture and use HBM2 and DDR4 DRAM

memory on the Alveo U280 card for the off-chip memory, respectively. With

this implementation, we can see the difference in the effect of HBM2 and DDR4

memory on the accelerator in terms of memory bandwidth. The memory band-

width (BW ) is measured as shown in Eq. (17), which is the maximum amount of

data exchanged between the off-chip memory and the accelerator in one second

(GB/s). Here, len(A burst transfer) (bytes) is the number of data transferred

in a burst transmission of each port, which is the product of the data bus width

(Width data) and the number of sequential data transferred (Burst len). BW is

the product of the amount of data transferred in one clock cycle Len(A burst transfer)
#Clock cycle

,
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the maximum number of interfaces that can be executed simultaneously (#Port,

31 for HBM2 and 1 for DDR4 memory), and the operating frequency of the

system (Fq).

BW =
Len(A burst transfer)

#Clock cycle
×#Port× Fq

=
Width data×Burst len

#Clock cycle
×#Port× Fq

(17)

5.1 Results of the CNN Inference Accelerator
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Figure 17. Breakdown timing for the inference process.
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Figure 18. The proposed CNN inference accelerator results in small and large

scale CNN model:

Throughput (GOP/s) (left) and power efficiency (GOP/s/W) (right).

The proposed architecture contains #Mult multipliers between input feature x

and weight w at each core. Each DSP takes one clock cycle for each calculation at

250MHz frequency. In the ideal state, assuming the weights w and input feature x

40



T
ab

le
5.

C
on

fi
gu

ra
ti
on

fo
r
V
G
G
-1
6
h
ar
d
w
ar
e
im

p
le
m
en
ta
ti
on

(#
M
u
lt
fo
r
on

e
co
re
,
#
P
or
t
fo
r
sh
ar
ed

d
u
al

lo
ca
l
m
em

or
ie
s
(K

L
M
s)
).

#
M
u
lt

#
P
or
t

S
m
al
l
S
ca
le

C
N
N

M
o
d
el

L
ar
ge

S
ca
le

C
N
N

M
o
d
el

Id
ea
l
B
W

(G
B
/s
)

M
ax

B
W

(G
B
/s
)

K
L
M

si
ze

(k
B
)

#
K
B
at
ch
/

#
K
B
at
ch
/

#
K
B
at
ch
/

#
K
B
at
ch
/

ro
w

of
O
F
M
s

im
ag
e

ro
w

of
O
F
M
s

im
ag
e

C
E
1

27
1

1
32

1
22
4

13
.5

3.
83

3.
5

C
E
2

72
1

4
12
8

4
89
6

36
3.
83

36
.0
63

C
E
3

72
1

8
12
8

8
89
6

36
3.
83

36
.0
63

C
E
4

72
2

16
25
6

16
17
92

36
6.
94

36
.0
32

C
E
5

72
2

16
12
8

16
89
6

36
6.
94

72
.0
63

C
E
6

72
2

32
25
6

32
17
92

36
6.
94

72
.0
32

C
E
7

72
2

32
25
6

32
17
92

36
6.
94

72
.0
32

C
E
8

72
2

32
12
8

32
89
6

36
6.
94

14
4.
06
3

C
E
9

72
3

64
25
6

64
17
92

36
9.
52

14
4.
03
2

C
E
10

72
3

64
25
6

64
17
92

36
9.
52

14
4.
03
2

C
E
11

72
3

12
8

25
6

12
8

17
92

36
9.
52

72
.0
16

C
E
12

72
3

12
8

25
6

12
8

17
92

36
9.
52

72
.0
16

C
E
13

72
3

12
8

25
6

12
8

17
92

36
9.
52

72
.0
16

C
E
14

64
1

16
16

15
66

15
66

32
3.
83

64
.1
25

a /
25
6.
5b

C
E
15

64
1

16
16

10
23

10
23

32
3.
83

64
.1
25

C
E
16

64
1

4
4

32
0

32
0

32
3.
83

50
.0
98

A
ll

1
0
8
3

3
1

5
4
1
.5

1
0
5
.2
8

1
1
5
4
.3

a /
1
3
4
6
.7

b

a
F
or

sm
al
l-
sc
al
e
C
N
N

m
o
d
el

(w
/
C
IF
A
R
10
0
d
at
a
se
t)

b
F
or

la
rg
e-
sc
al
e
C
N
N

m
o
d
el

(w
/
Im

ag
eN

et
d
at
as
et
)

41



Table 6. Experimental results on the proposed accelerator with DDR4/HBM2

off-chip memory.

Off-chip Memory DDR4 HBM2

CNN Architecture
4× 16 CEs, 4× 16 CEs,

1 AGB 16 AGBs

FPGA Platform Xilinx Alveo U280

Frequency (MHz) 250

Precision 16-bit fixed-point

#FFs 1,357K (52%) 1,697K (65%)

#LUTs 412K (32%) 721K (55%)

#DSPs 8,684 (96%) 8,681 (96%)

#BRAMs 1,803 (89%) 1,861 (92%)

#URAMs 874 (91%) 897 (93%)

Power (W) 31.1 40.6

Latency
Tiny image

1.535 0.704
(3×32×32)

(ms/image) Large image
132.648 33.921

(3×224×224)

are always available for computation every clock cycle, then the ideal bandwidth

for the proposed accelerator would be calculated by the following formula:

Ideal BW = N bit×#Mult× Freq (18)

where N bit (16-bit fixed-point) and Freq denote the length of each value and the

operating frequency, respectively. Note that cores work in parallel and share the

same weight, so here we only consider #Mult of a core.

The ideal bandwidth of each CE is shown in Table 4. We have a total of

the required bandwidth in the ideal state at 250MHz frequency which will be

541.5GB/s (16×1083×250MHz). However, with HBM2 off-chip memory, the

theoretical maximum bandwidth can reach 460GB/s at 900Mhz frequency, or

127.78GB/s equivalent to ∼4GB/s each port at 250GB/s frequency when all 32
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ports are used up. In fact, the total maximum bandwidth is only 105.28GB/s,

corresponding to 82.4% on average compared to the theoretical maximum band-

width (at 250MHz frequency). The first cause of bandwidth degradation is that

the proposed accelerator only uses 31 ports instead of the full 32 ports. Second,

CEs that use two or three HBM2 ports, the actual bandwidth is achieved by

86.8% (6.94 vs. 4GB/s × 2) or 79.3% (9.52 vs. 4GB/s × 3) compared to the

ideal, respectively. That means the experimental bandwidth does not increase

linearly when increasing the number of ports/CE. Formula (5)-(9) describe how

to calculate #Transfer, which is the number of burst transmissions by each

port. There is always a delay between burst transmissions (config and transmit).

To maximize transmission performance, Burst len should be held at 256 as Eq.

(7). In the proposed accelerator, however, len(KBatch) is divided by each port,

len(Workload) (as Eq. (6)) is not always kept Burst len at the maximum value

(256). This is the second overhead resulting in bandwidth degradation. Over-

all, the experimental bandwidth achieved in this system is 19.44% (105.28 vs.

541.5GB/s) of the required bandwidth when using HBM2 off-chip memory, and

only 1.5% (7.95 vs. 541.5GB/s) if using DDR4 memory (as Table 5).

We break down the execution time of each stage in Fig. 8. Which includes

INTEL indicating the CPU host processing time; DMA represents the latency

for allocating all kernel parameters and input images (all small scale images or

a batch large scale images) from DDR3 (host PC) to HBM2 (Alveo U280) via

PCIe+AXI 00 by DMA mechanism; FIRST LOAD is the latency to load a batch

of input small scale image (or first three-row for large scale images) and kernel

parameters for conv1 ; INF denotes latency for inference phase (accelerator) and

DRAIN represent a time for backing results to host PC.

The proposed accelerator takes advantage of the large hardware resources

from the Alveo U280 FPGA and the feature of sharing kernel parameters among

cores to increase the computational ability of the accelerator. From Table 5,

the proposed system takes up 65% FFs, 55% LUTs, 92% BRAMs, 93% URAMs

and 96% DSPs of the FPGA resource on the Alveo U280 card. Meanwhile, the

proposed accelerator with DDR4 memory takes less 13% FFs and LUTs, 2-3%

URAMs and BRAMs than with HBM2. The reason for this difference is the use of

more AXI4 interfaces in the system to communicate with the off-chip memory (31
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vs. 1 interface), which means the interconnection takes more hardware resources

and DAM uses more AGB (16 vs 1).

Fig.9 illustrates the performance of the proposed system. The peak through-

put can be approximated by the formula below:

Peak Throughput = 2×#Mult× Freq (19)

where index 2 is added for calculations for matrix multiplication (multiplication

and accumulation), #Mult is applied to 4 cores, Freq denotes the operation fre-

quency. In the ideal case (executing continuously at every clock cycle with the

ideal memory bandwidth being 541.5 at 250 MHz frequency) the ideal throughput

can be estimated at 2.166 TOP/s as Eq.(19). The actual throughput achieves

912.7 GOP/s or 891.8 GOP/s for the large/small scale model, which corresponds

to 42.1% or 41.2% of the ideal case, respectively. Although the experimental

bandwidth drops ∼5× (105.28 vs. 541.5 GB/s) compared to the ideal, which

significantly degraded the system throughput. However, taking advantage of the

ability to share kernel parameters between cores (×4 core) has improved the over-

all throughput of the accelerator (only drops ∼2.4× from the ideal throughput).

Thanks to the higher reusability of loaded parameters from HBM2 for computa-

tion of the large scale model compared to the small scale model, we can observe a

slight difference in throughput (912.7 vs. 891.8 GOP/s) when implementing the

two models with different sizes from Fig.9.

5.2 Analysis of Limitation and Discussion

In this study, we propose a multi-core accelerator combined with a dual shared

local memory containing kernel parameters to maximize the computing ability

and reduce latency to read kernel parameters from HBM2 off-chip memory. De-

spite the positive results in terms of throughput and power efficiency, we observe

the following weaknesses in the current system, which will be improved in the

future.

First, the accelerator only uses an average of 82.4% (105.28 vs. 127.78 GB/s)

of HBM2’s maximum bandwidth at 250 MHz frequency. The solution for im-

provement would be to utilize all ports (32 ports instead of just 31 ports). In

44



addition, burst transmission performance at each HBM2 port is maximized by

always keeping Burst len at 256.

Second, our proposed accelerator is currently taking full advantage of the

hardware resource available on the Alveo U280 FPGA (96% DSP, 92% BRAM,

93% URAM) to increase the computation and parallelism ability of the inference

process (multi-core, shared local memory and fully pipeline). This results in high

power consumption up to 40.6W. While the maximum experimental bandwidth

of HBM2 off-chip memory can only achieve ∼1/5 the required bandwidth (ideal

state) from the accelerator. A balance between computing ability and response

bandwidth to load kernel parameters from off-chip memory will guide the next

improvement.

Third, the disadvantage of the fully pipeline structure is that accelerators

occupy a large amount of computational and storage resources because CEs are

computed in parallel and intermediate results are cached among different layers.

In this study, we have implemented VGG16 model for the experiment due to

hardware resource constraint. With CNN models with more than 16 layers (i.e.,

VGG19, ResNet50), are being researched to use layer-folding pipeline structure

[154] in the future.
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5.3 Comparison with Other DDR-based Works

Table 7 shows the correlation power consumption, inference performance, and

power efficiency between the proposed system and the existing FPGA-based ac-

celerators. We selected existing FPGA and DDR memory-based accelerators, de-

ployed on the same architecture model (VGG-16) and the large-scale ImageNet

dataset, for a fair comparison. They have been measured to the same units for a

fair comparison of throughput (GOP/s) and power efficiency (GOP/s/W).

The throughput of our experimental accelerator using DDR4 memory is only

1.7× better and even 1.3× worst than the throughput of two earlier accelerators

[84], [85], respectively. Moreover, these accelerators surpass in terms of power

efficiency. However, if the proposed accelerator uses HBM2 off-chip memory, the

throughput is 6.7× and 3× better, respectively. Furthermore, in terms of power

efficiency, the proposed system is 1.6× and 1.7× better. Ma et al. [86] proposed

an accelerator with throughput that is 1.8× (1,605 vs. 912.7 GOP/s) faster

than our proposed system, but there is a tradeoff in power efficiency, making

their system 1.4× (16.1 vs. 22.48 GOP/s/W) worse than ours in this important

factor.

5.4 Comparison with Other HBM2-based Works

Kuramochi et al. [151] proposed an FPGA-based CNN inference accelerator,

which is implemented on the Xilinx Alveo U50 card. Although that system

was explored as parallel architecture (for a randomly wired convolutional neural

network, RWCNN) and used HBM2 for the off-chip memory, our proposed system

is 1.9× (912.7 vs. 474.4GOP/s) better in throughput at a frequency of 250 MHz.

Even if we assume a decrease in the frequency to 200 MHz (equal to their value

[151]), our proposed system’s throughput is still 1.5× better.
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5.5 Comparison with DDR-based CPU/GPGPU

Since the existing FPGA-based CNN inference accelerators have poor perfor-

mance and low flexibility, the proposed system needs to be evaluated with other

high-performance and high-flexibility hardware platforms such as CPU/GPGPU.

The accelerator of Kuramochi et al. [151] was also compared with CPU and

GPGPU in throughput, but the comparison was only with a batch size of 1.

GPGPU can achieve high efficiency with a larger batch size because of its powerful

parallel computing ability. Therefore, in this section, we make a fair comparison

of the proposed system with Intel i9-10940X CPU and NVIDIA GeForce RTX

3090 GPGPU in terms of throughput and power efficiency at various batch sizes.

The system configurations of CPU and GPGPU are given in Table 8, and the

comparison is illustrated in Fig. 19 for throughput and power efficiency among

the DDR-based CPU/GPGPU and the proposed system with both HBM2 and

DDR-based memory. Since the proposed accelerator has 4 cores, a batch size of

4 is the maximum.

Table 8. Environment setup for CPU and GPGPU platform.

Device Intel i9-10940X CPU NVIDIA GeForce RTX 3090 GPGPU

Clock rate used 3.2-4.1GHz 1.74GHz

Memory 8×32GB DDR4 2666MHz

OS CentOS 7.9 Driver 470.57.02

Compiler gcc 4.8.5 CUDA 11.2

Python Pytorch/python3

BLAS Library OpenBLAS cuBLAS

The throughput of the proposed system (with HBM2) and that of the GPGPU

are roughly equivalent at batch sizes of 1 and 2 (Fig. 19(a) and 19(c)). Compared

to the CPU, ours is 6× (223 vs. 37) and 2.8× (446 vs. 160) better in throughput

with the small-scale CNN model, respectively. With the large-scale CNN model,

the proposed accelerator even achieves 8.4× (228 vs. 27 GOP/s) and 9.5× (456

vs. 48 GOP/s) at batch sizes of 1 and 2, respectively. At a batch size of 4, our sys-

tem gains a peak throughput, which is 1.3×/1.65× and 3.3×/11.9× better than

GPGPU and CPU with the small/large-scale models, respectively. The graphs in
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Figure 19. Throughput and power efficiency comparison with DDR-based CPU/

GPGPU.

Fig. 19(a) and 19(c) show that from a batch size of 8 to 128/512, the throughput

of the GPGPU gradually increases, while our system remains constant. At a

batch size of 128/256, GPGPU reaches its best throughput (4,573/3,458), which

is 5×/3.9× higher than our proposed system with the large/small-scale models

at the batch size of 4.

However, the multi-core parallel execution with a large number of batch sizes

makes the GPGPU consume a huge amount of power. At its peak throughput,

the GPGPU consumes up to 249W/311W for small/large-scale models, which

leads to poor power efficiency. The graphs in Fig. 19(b) and 19(d) demonstrates

the superiority of the proposed system in terms of power efficiency, outperforming

the GPGPU, even with various batch sizes. The power efficiency of the proposed

system reaches 5.5/5.6 GOP/s/W and 11/11.2 GOP/s/W for small/large-scale

models at the batch sizes of 1 and 2, respectively. Furthermore, it achieves a

maximum of 22.48 GOP/s/W at the batch size of 4. Compared with the CPU,
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our system is roughly 6.5-21.2×/6.6-37.1× better with small/large-scale models.

Compared with the GPGPU, our system achieves approximately 1.6-4.1×/1.7-

12.6× better with small/large-scale models. The GPGPU achieves its best power

efficiency at a batch size of 128/256 (13.5/13.9 GOP/s/W) with large/small scale

models, which is still 1.7× /1.6× lower than that of our system.
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6 Conclusion

In this study, an FPGA-based CNN inference accelerator is implemented at the

system-on-chip level, and combined with HBM2 as off-chip memory based on

Verilog HDL instead of high-level synthesis as the previous researchs. The pro-

posed accelerator has a multi-core architecture, using shared-dual buffers to re-

duce off-chip memory access and maximize the throughput. Each core works

in a fully-pipeline manner, which consists of inter-layer pipeline architecture

and pipelined computation engines. For evaluation, the proposed system ex-

plores the small/large-scale VGG-16 models with CIFAR100/ImageNet dataset

on the Xilinx Alveo U280 card. As the experimental results, the proposed ac-

celerator reaches 912.7 GOP/s and 22.48 GOP/s/W in peak throughput and

power efficiency with large scale CNN model, respectively. In throughput, our

proposed system is better 6.7× (FPGA+DDR based [84]), 3× (FPGA+DDR

based [85]), 1.9× (FPGA+HBM2 based [151]) with large scale model. Moreover,

our accelerator is better 1.3×/1.65× (DDR+GPGPU based) and 3.3×/11.9×
(DDR+CPU based) in throughput with the small/large-scale models at low batch

size (4). In terms of power efficiency, compared with the previous DDR+FPGA/

DDR+GPGPU/ DDR+CPU based accelerators, our proposed system provides

1.4-1.7×/1.7-12.6×/6.6-37.1× improvement with the large-scale CNN model.
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