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A Study on Automating Meta-Analysis
Statistical Analysis by Employing Natural

Language Processing Techniques∗

Mutinda Faith Wavinya

Abstract

Meta-analyses aggregate results of different clinical studies to assess the ef-
fectiveness of a treatment. Despite their importance, meta-analyses are time-
consuming and labor-intensive as they involve reading hundreds of research ar-
ticles and extracting data. The number of research articles is increasing rapidly
and most meta-analyses are outdated shortly after publication as new evidence
has not been included. Automatic extraction of data from research articles can
expedite the meta-analysis process and allow for automatic updates when new
results become available. In this research, we propose a system for automatically
extracting data from research abstracts and performing statistical analysis.

First, we created a corpus consisting of 1011 PubMed abstracts of breast can-
cer randomized controlled trials annotated with the core elements of clinical trials:
Participants, Intervention, Control, and Outcomes (PICO). We then proposed a
BERT-based named entity recognition (NER) model to identify PICO informa-
tion from research abstracts. After extracting the PICO information, we parse
numeric outcomes to identify the number of patients having certain outcomes for
statistical analysis.

The NER model extracted PICO elements with relatively high accuracy,
achieving F1-scores greater than 0.80 in most entities. We assessed the per-
formance of the proposed system by reproducing the results of an existing meta-
analysis. The data extraction step achieved high accuracy, but the statistical
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analysis step achieved low performance because abstracts sometimes lack all the
required information.

In this work, we proposed a system for automatically extracting PICO in-
formation from research abstracts for the purpose of performing meta-analysis
statistical analysis. We evaluated the performance of the system by reproducing
an existing meta-analysis and the system achieved a relatively good performance,
though more substantiation is required.

Keywords:

Evidence-Based Medicine (EBM), Automatic Meta-analysis, Natural Language
Processing (NLP), Randomized Controlled Trial (RCT), Named Entity Recogni-
tion (NER)
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1. Introduction

1.1 Background
Evidence-based medicine (EBM) is an approach where doctors and health care
professionals use the best available research evidence to guide them in making
clinical decision about the care of patients [49]. EBM involves incorporating indi-
vidual clinical expertise with the best available external evidence such as relevant
clinical research literature [49]. Meta-analyses are one of the essential tools in
EBM and clinical and health policy decision-making because they provide the
highest form of medical evidence [23, 15]. A meta-analysis is a type of a quanti-
tative study that combines the results of different studies that are all focused on
same disease, treatment, or outcome to determine if a treatment is effective or
not. Regardless of their importance, meta-analyses tend to be time-consuming,
labor-intensive, and expensive as they require domain experts to manually search,
read, and extract data from hundreds of research articles written in unstructured
natural language. The number of research articles is increasing exponentially and
it is becoming almost impossible to keep up with the high number of biomed-
ical literature [4]. For instance, a recent study showed that more than 50,000
research articles related to the COVID-19 pandemic have been published and
more articles are being published every day [60]. The large number of research
articles increases the time required to conduct a meta-analysis. Previous research
showed that on average it takes about 67 weeks, from registration to publication,
to finalize a meta-analysis [8]. This poses a challenge for practitioners in the
infectious disease field where informed decisions have to be made promptly. Fur-
ther, most meta-analyses are outdated shortly after publication as they have not
incorporated new evidence which might alter the results [51].

Automatic meta-analysis systems have the benefit of reducing the time-taken
in conducting a meta-analysis so as to help in timely dissemination of medical
evidence and allow for automatic updates when new evidence becomes avail-
able. According to surveys on automation of meta-analysis, different strategies
for automating the various meta-analysis stages (searching the databases for rel-
evant literature, screening, data extraction, and statistical analysis) have been
proposed [30, 39]. Marshall and Wallace [39] suggests that systems for searching
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literature, identifying randomized controlled trials (RCTs), and screening articles
have attained a good performance and are ready for use. The systems for the
data extraction and statistical analysis, on the other hand, are still not readily
available. The scarcity of publicly available corpora, which are usually expensive
to create, is one barrier to the development of high-performance systems.

Techniques for extracting core elements of clinical trials, i.e., Participants, In-
tervention, Control, and Outcomes (PICO) from research abstracts and full-text
articles have been widely studied [30]. Although various methods for extract-
ing PICO information from research articles have been proposed, fewer attempts
have been made to extract detailed information for the outcomes, especially nu-
meric texts identifying the number of patients having certain outcomes [48, 55].
Extraction of numeric texts is important for statistical analysis to determine the
effectiveness of the intervention. Summerscales et al. [55] used conditional ran-
dom field-based approach to extract various named entities including treatment
groups, group sizes, outcomes, and outcome numbers from research abstracts.
Their annotations are however less extensive and the corpus is not publicly avail-
able for reproducibility. Pradhan et al. [48] developed a Web application for
extracting data from ClinicalTrials.gov, a clinical trials database. Although Clin-
icalTrials.gov is an important source of clinical trials data, it has a small number
of studies and mainly focuses on clinical trials in the United States [48].

The goal of this work is to provide a system that automates data extraction
in order to support meta-analysis statistical analysis. To achieve this, first we
create a publicly corpus annotated with the core components of clinical trials, i.e.,
Participants, Intervention, Control, and Outcomes (PICO). We annotate in detail
numeric texts especially those that identify the number of participants having
certain outcomes. The annotation of the numeric texts is important for statistical
analysis to determine the overall effect of an intervention. Currently, the corpus
consists of 1011 research abstracts extracted from the PubMed database. The
abstracts are of randomized controlled trials (RCTs) related to breast cancer,
which is one of the leading causes of deaths in the world1. We focus on RCTs as
they are considered the gold standard for clinical research methods.

This research utilizes the current state-of-the-art natural language process-
1https://www.who.int/news-room/factsheets/detail/cancer

2



Figure 1: Proposed system architecture

ing (NLP) models to extract PICO information from research abstracts. We
use abstracts because they are easily accessible and they provide a concise sum-
mary of the full-text article especially the main results. The proposed system
(shown in Figure 1) performs various steps including extracting data from re-
search abstracts, parsing numeric outcomes to identify the number of patients
having specific outcomes, converting extracted data into a structured format for
statistical analysis, and visualizing the results. We assess the performance of the
proposed system by using it to reproduce the results of an existing meta-analysis.
The results show potential in automating the tasks and hope to increase interest
in research on automating the entire integrated meta-analysis process.

1.2 Objectives
One of the motivations of this research is the scarcity of publicly available corpora
to train models for automatic extraction of PICO information from RCT litera-
ture. Most of the existing corpora are not publicly available. Furthermore, most
of the existing corpora lack detailed annotations especially annotation of numeric
values which are necessary for meta-analysis statistical analysis. To address this
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gap, we created a publicly available corpus consisting of 1011 research abstracts
with detailed annotations of PICO information. Extraction of PICO information
at a sufficient level of detail is crucial for the progress on automatic meta-analysis
systems.

A second motivation is that previous studies do not go beyond PICO in-
formation extraction. In order to determine the effectiveness of an interven-
tion/treatment, it is necessary to extract detailed information such as the number
of participants who experienced certain outcomes. In this research, in addition
to extracting PICO information from research abstracts, we parse numeric val-
ues to identify the number of patients who experienced specific outcomes for the
purpose of statistical analysis.

The objectives of this research therefore include:

1. Create a publicly available corpora with detailed annotations of the core
elements of clinical trials, i.e., Participants (P), Intervention (I), Control
(C), and Outcomes (O) (Chapter 2).

2. Develop a model for automatic extraction of PICO elements from RCT re-
search abstracts by utilizing natural language processing techniques (Chap-
ter 3).

3. Transform the extracted PICO information into structured format by pars-
ing numeric texts to identify the number of patients who experienced par-
ticular outcomes for the purpose of statistical analsyis (Chapter 4).

4. Evaluate our system by replicating the results of existing meta-analyses
(Chapter 4).

1.3 Outline
The rest of the dissertation is structured as follows: Chapter 2 describes the
creation of the PICO corpus including the source of the data, detailed annota-
tion guidelines, and the corpus statistics. Chapter 3 describes natural language
processing techniques for extraction of PICO information from RCT research ab-
stracts. Chapter 4 outlines the approaches for PICO information normalization.
We also explain the process of parsing numeric texts and converting the extracted
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information into structured format for statistical analysis. Chapter 5 concludes
the dissertation, discusses the limitations and possible future directions.
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2. A Publicly Available PICO Corpus to Support
Automatic Data Extraction from RCT Liter-
ature

2.1 Background and related work
There are few manually annotated corpora to support automatic extraction of
core PICO elements from clinical trials RCT studies. Most of these corpora,
however, are not publicly available. Furthermore, most of the annotations are
not detailed enough to support information extraction for meta-analysis. This is
because they largely lack detailed annotation of the PICO elements and especially
annotation of numerical values which are necessary for meta-analysis statistical
analysis. The existing corpora annotate PICO elements both at the sentence-level
and entity-level. Even though the sentence-level annotations can be used for tasks
such as question answering and document retrieval, they are not sufficient for
meta-analysis which requires more fine-grained annotations of the PICO elements.

2.1.1 Sentence-level annotations

Jin and Szolovits [26] extracted abstracts from the PubMed database whose study
type was RCT. The sentences in the abstract were labeled with one of seven labels:
participants (P), intervention (I), outcomes (O), aim (A), method (M), results
(R), and conclusion (C). The corpus consists of 24,668 abstracts each of which
contain at least one of the P/I/O labels. There are 21,198 abstracts with P label,
13,712 with I label, and 20,473 with O label.

Kim et al. [33] annotated 1,000 MEDLINE structured and unstructured ab-
stracts. The sentences in the abstracts are labeled with seven labels which in-
clude background, population, intervention, outcome, study design, and other.
The sentences can be assigned multiple classes.

Boudin et al. [9] created a dataset with about 15,000 PubMed abstracts. They
extracted structured abstracts and auto-labeled the sentences with P, IC, and
O labels. Structured abstracts contain distinctive sentence headings, and they
selected sentences marked with corresponding PICO elements. Since all abstracts
are not structured, the usefulness maybe limited to structured abstracts context
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only.
Demner-Fushman and Lin [18] extracted 633 abstracts from the MEDLINE

database. The 633 abstracts were annotated with P, condition, and IC labels on a
sentence level. One hundred of the 633 abstracts were annotated with population,
problem, intervention, and comparison on an entity level.

Zhao et al. [66] extracted medical abstracts from journal websites. They
randomly selected 2,000 sentences from the abstracts and annotated them with
patient, intervention, result, study design, and research goal labels. In addition
to the sentence level annotations, they did entity level annotations where they
annotated the gender, age, race, condition, intervention, and study design.

Chabou and Iglewski [12] created a corpus containing about 3,000 abstracts.
The sentences in the abstracts were annotated manually and automatically. The
automatically labeled sentences relied on structured abstracts with explicitly
mentioned headings, that is, patient, intervention, and main outcome.

Chung [13] extracted both structured and unstructured RCTs abstracts from
PubMed. They filtered abstracts on asthma, angina, breast cancer, diabetes,
prostate cancer, heart failure erectile dysfunction, and cardiovascular. They an-
notated sentences both manually and automatically by using the headings in
structured abstracts. The sentences in the unstructured abstracts were labeled
as one of aim, method, results, and conclusion. Sentences in both the structured
and unstructured abstracts were further annotated as P, IC, O sentences. The
corpus contains more than 344 abstracts. Other than Jin and Szolovits [26] and
Kim et al. [33], the rest of the corpora are not publicly available.

2.1.2 Entity-level annotations

De Bruijn et al. [17] retrieved 88 full-text articles from five medical journals;
JAMA, PLoS Clinical Trials, Annals of Internal, NEJM, Lancet, and Lancet
Medicine. They annotated the sentences in each abstract according to its section
(or subsection), i.e., abstract, methods, and so on. They also performed entity
level annotation and labeled various PICO elements which included eligibility,
intervention and control treatments, intervention and control features (medication
dosage, frequency, route, etc), study start and end dates, primary and secondary
outcomes, funding, and so on.
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Brassey et al. [10] created a corpus consisting of abstracts of 1,750 RCTs
randomly selected from PubMed/MEDLINE database. They annotated PIC el-
ements in the title and abstracts.

Kang et al. [31] retrieved 170 RCT research publications from the MEDLINE
database. They annotated entities which included population, intervention &
control, and outcome. They also classify each of the abstracts into one of treat-
ment, prevention, diagnosis, prognosis, and etiology categories.

Bui et al. [11] created a dataset consisting of 48 full-text research articles
which were RCTs. They annotated the texts on both sentence and entity level.
They labeled with labels which identified the N (sample/group size), population
(P), study arm (intervention or control, IC), and outcome (O).

Kiritchenko et al. [34] developed a dataset containing 182 full-text articles.
They annotated 21 entities such as study dates, treatment, control, treatment
dosage, treatment frequency, primary outcomes, secondary outcomes, outcome
time point, funding organization, grant number, and so on.

Summerscales et al. [55] created a corpus consisting of 263 RCT abstracts
of British Medical Journal (BMJ) extracted through PubMed. They annotated
the treatment groups, outcomes, group sizes, and outcome numbers. Their work
is close to our study as they attempted to identify outcome numbers and group
sizes for the purpose of calculating summary statistics, such as absolute risk
reduction. The annotations are however less extensive and the corpus is not
publicly available.

Since constructing large corpora is expensive, Wallace et al. [59] employed a
distant supervision approach to create a large corpora consisting of full-text arti-
cles. They also manually annotated 133 articles for evaluation. Although distant
supervision is a cheap way to construct large datasets, the dataset’s quality might
be low.

Nye et al. [43] developed the EBM-NLP corpus with the aim of facilitating
development of automatic extraction of PICO information from RCT abstracts.
The corpus consists of about 5,000 abstracts of RCTs mostly related to cardio-
vascular diseases, cancer, and autism. The abstracts were annotated by crowd-
sourcing through Amazon Mechanical Turk and a small part (200 abstracts) was
done by medical professionals. The corpus contains fine-grained annotation of
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PICO elements compared to the other previous corpora. They however do not
annotate numeric texts that identify the number of participants who had certain
outcomes. Since most of the previously developed corpora are not publicly avail-
able (as shown in Table 1), the EBM-NLP corpus is one of the largest publicly
available corpora.
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2.2 Corpus annotation
2.2.1 Dataset collection

The corpus in this work consists of abstracts extracted from PubMed2, which is a
free search engine that provides access to the MEDLINE database3. MEDLINE
is one of the largest bibliographic databases maintained by the the U.S. National
Library of Medicine (NLM) and is considered an authoritative source of clinical
literature [18]. It indexes over 29 million references to journal articles in biomed-
ical and life sciences. Each MEDLINE citation contains basic meta-data such as
the article title, authors, affiliations, publication date, abstract text, and so on.

For this research, we extracted English research abstracts related to breast
cancer and whose study type is RCT. Abstracts which were meta-analyses or
systematic-reviews were excluded. This was achieved by using keywords such
as “breast cancer,” “randomized controlled,” “randomised controlled,” “meta-
analysis,” and “systematic review.”

The abstracts were extracted from the PubMed database using the Bio.Entrez
package4 which provides access to several National Center for Biology Information
(NCBI) databases such as PubMed, GenBank, and so on. The Bio.Entrez package
has various functions such as esearch which retrieves the PMID’s (PubMed unique
indentifier number) of documents related to a search query (keywords). The
abstracts were extracted in XML format and we used the Beautiful Soup library5

to extract data from the XML files. The XML documents include many tags such
as the Journal, PubDate, Author, AffiliationInfo, Title, AbstractText, and so on.
The PubMed database mainly provides free access to abstracts, and to access
full-texts mostly one has to retrieve them from external links (some of which are
not open-access).

2.2.2 Annotation process

The extracted research abstracts were manually annotated. The annotation was
performed using BRAT, an open-source web annotation tool [53]. The annota-

2https://pubmed.ncbi.nlm.nih.gov/
3https://www.nlm.nih.gov/medline/medline_overview.html
4https://biopython.org/docs/1.75/api/Bio.Entrez.html
5https://beautiful-soup-4.readthedocs.io/en/latest/
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tors were asked to read and label text spans that identify the PICO elements.
The annotators were required to annotate the shortest possible phrase which can
be considered as the building block for the PICO elements. For each PICO cat-
egory, we developed sub-categories to capture detailed information within each
category. The PICO label hierarchy is shown in Figure 2. Figure 3 shows ex-
amples of abstracts with PICO elements annotated. In total, we annotated 26
sub-categories (entities) which are described below.

• Participants (P)

We annotate text snippets that describe the characteristics of the partici-
pants in a study. We annotate eight entities in the participants category
that include:

– Total participants: the total number of participants in the study.
Examples:

∗ <total-participants>One hundred and seventy-six </total-participants>
metastatic breast cancer patients were randomised to receive doc-
etaxel (100 mg m(-2)) every 3 weeks or 5-fluorouracil+vinorelbine.

∗ We randomly assigned <total-participants >2972</ total-participants>
women, aged 30-70 years, with surgically removed stage I breast
cancer or ductal carcinoma in situ to receive 5 years either fenri-
tinide orally or no treatment.

– Intervention participants: the number of participants in the inter-
vention group.
Examples:

∗ <intervention-participants >Eighty-six</intervention-participants>
patients received 516 cycles of docetaxel; 90 patients received 476
cycles of 5-fluorouracil+vinorelbine

∗ Patients were randomized to undergo ( <intervention-participants
>10</intervention-participants>) or not undergo (10) concomi-
tant resection.

– Control participants: the number of participants in the control
group.

12



Examples:

∗ Eighty-six patients received 516 cycles of docetaxel; <control-
participants >90</control-participants> patients received 476 cy-
cles of 5-fluorouracil+vinorelbine

∗ Patients were randomized to undergo (10) or not undergo ( <control-
participants>10</ control-participants>) concomitant resection.

– Age: age of the participants.
Examples:

∗ Fifty-three white women, aged <age>36 to 55 years</age>, with
breast cancer and artificially induced menopause were stratified

∗ Twenty consecutive women ( age range <age>43-61 yrs</age>)

– Eligibility: the selection criteria (inclusion or exclusion) for study
participants.
Examples:

∗ One hundred and seventy-six <eligibility>metastatic breast cancer
patients</eligibility> were randomised to receive docetaxel (100
mg m(-2)) every 3 weeks or 5-fluorouracil+vinorelbine

∗ Fifty-three white women, aged 36 to 55 years, <eligibility>with
breast cancer and artificially induced menopause</eligibility> were
stratified

– Ethnicity: the racial/ethnic group of the participants
Examples:

∗ Fifty-three <ethnicity>white</ethnicity> women, aged 36 to 55
years, with breast cancer and artificially induced menopause were
stratified.

∗ Safety and efficacy results from <ethnicity>Asian</ethnicity>
patients in BOLERO-2 are reported.

– Condition: although breast cancer is the main condition, some stud-
ies focus on conditions associated with breast cancer such as hair loss,
bone loss, depression, pain, and vomiting.
Examples:
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∗ Effect of tamoxifen on <condition>venous thromboembolic events</condition>
in a breast cancer prevention trial.

∗ Effect of shugan liangxue compound for relieving <condition>hot
flashes</condition> in breast cancer patients

– Location: the location where the study was conducted.
Examples:

∗ A total of 703 women from a Basic Health Area of <location>Barcelona</location>,
and with a mobile phone number registered, were invited to par-
ticipate in a breast cancer screening programme

∗ This study was performed at the University of Florence (<loca-
tion>Florence, Italy</location>).

• Intervention and Control (IC)

There are only two entities in this category.

– Intervention: the intervention treatment which includes the medica-
tions (e.g., drugs, chemicals), diagnostic tests (e.g., screening), ther-
apy, and lifestyle changes (e.g., exercise, diet).
Examples:

∗ <intervention>Docetaxel</intervention> vs 5-fluorouracil plus vi-
norelbine in metastatic breast cancer after anthracycline therapy
failure.

∗ Within each stratum, patients were randomly assigned to receive
<intervention>risedronate</intervention> (n = 27) or placebo
(n = 26)

– Control: control treatment which is the alternative to the main in-
tervention.
Examples:

∗ Docetaxel vs <control>5-fluorouracil</control> in metastatic breast
cancer after anthracycline therapy failure.

∗ Within each stratum, patients were randomly assigned to receive
risedronate (n = 27) or <control>placebo</control> (n = 26)
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• Outcomes (O):

We annotate the outcome measures (primary and secondary end-points),
outcomes that were measured, and intervention events and control events.
Intervention events and control events refer to the number of participants
who experienced a particular outcome in the intervention group and con-
trol group respectively. We aim to capture detailed information for the
outcomes especially the numeric texts that identify the number of partic-
ipants who experienced a particular outcome. In meta-analysis statistical
analysis, these numeric texts are important for calculating summary statis-
tics to ascertain the effectiveness of the intervention.

In the annotation of outcomes and their events, we mainly consider two
types of outcomes, i.e., binary outcomes and continuous outcomes. Binary
outcomes take two values such as the treatment was successful or failed, or
survival (alive or dead). Continuous outcomes are not as straightforward
as binary outcomes. Continuous outcomes such as pain are measured on a
numerical scale (for instance, pain scores on a scale of 0 and 10). Continuous
outcomes are usually measured at different time points (such as at baseline
and at followup) and the results reported as mean, standard deviation,
median, or quartiles.

We created labels to capture the various types of numeric texts in the in-
tervention and control groups. We use “iv,” “cv,” “bin,” and “cont” to
represent intervention group, control group, binary outcome, and contin-
uous outcome, respectively. In addition, binary outcomes numeric texts
tend to be absolute values or percentage values. We use “abs” and “per-
cent” to label absolute and percentage values respectively. Further, for the
continuous outcomes, we also designed labels to capture the different types
of numeric texts. We use “mean,” “sd,” “median,” “q1,” and “q3” to rep-
resent mean, standard deviation, median, first quartile, and third quartile
respectively. In total, we have 16 entities for the outcomes category.

– Outcome measure examples:

∗ The primary end point was the <outcome-measure>incidence of
contralateral breast cancer</outcome-measure> 7 years after ran-
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domization.
∗ <outcome-measure>Overall survival</outcome-measure> was a

secondary endpoint.
– Binary outcome examples:

∗ <iv-bin-abs>Four</iv-bin-abs> patients in the intervention group
and <cv-bin-abs>two</cv-bin-abs> in the control group were
<outcome>lost to follow-up</outcome>.

∗ After 20 years, <iv-bin-percent>50.4%</iv-bin-percent> of the
women in the XRT group <outcome>died</outcome> compared
with <cv-bin-percent>54.0%</cv-bin-percent> in the non-XRT
group.

– Continuous outcome examples:
∗ The <outcome>median PFS</outcome>of test group was signif-

icantly longer than that of control group, <iv-cont-median>39.1
weeks</iv-cont-median> vs <cv-cont-median>14.0 weeks</cv-cont-
median>.

∗ <outcome>Depression scores</outcome> at follow-up were sig-
nificantly lower in the exercise group (M = <iv-cont-mean>4.78</iv-
cont-mean> SD = <iv-cont-sd>3.56</iv-cont-sd> ) compared
to the control group (M= <cv-cont-mean>6.91</cv-cont-mean>,
SD =<cv-cont-sd>5.86</cv-cont-sd> ).

2.3 Corpus statistics
The corpus contains 1011 manually annotated abstracts. The abstracts were
annotated by two annotators. One of the annotators was hired from an annotation
company and has extensive experience annotating medical documents and the
second annotator is one of the authors. The first annotator annotated all the
abstracts while the second annotator annotated 45% of the abstracts. The inter-
annotator agreement was calculated based on Cohen Kappa and achieved a score
of 0.72. Cohen Kappa, κ is calculated as:

κ =
Po − Pe

1− Pe

, (1)
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Figure 2: Annotation label hierarchy
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Figure 3: Abstracts with PICO elements annotated
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where Po is the relative agreement between the annotators and Pe is the hypo-
thetical probability that the annotators agree by chance. The cohen Kappa score
is a number between -1 and 1 where high value indicates high agreement between
the annotators and lower score means chance agreement [14].

Currently the corpus has 17,739 entities and the frequencies of the annotated
entities are shown in Table 2. The most frequent entity type is outcome, which
comprises about 28% of all the annotations. Continuous outcomes quartile values
(q1 and q3) are the least frequent entity types. Table 2 also shows the number
of abstracts containing each of the entities. The entities found in most abstracts
are intervention, outcome, and control which are in 100%, 97%, and 94% of the
abstracts, respectively. Most abstracts do not contain continuous outcomes values
(mean, median, sd, q1, q3), ethnicity, and location.

Annotator disagreement: Annotator disagreements were mainly found in
the outcome and eligibility entities. The outcome and eligibility entities mostly
contain more than two words. The main source of disagreement in the annotation
was mainly due to the annotators identifying different limits of the start and end
spans. The disagreement for the other entities was lower since the entities could
be identified by one or two words. Numerical entities had the fewest annotation
disagreements.

2.4 Conclusion
In this work, we presented a publicly available corpus consisting of 1011 abstracts
related to breast cancer RCTs. The corpus provides detailed annotation of PICO
elements. For the outcomes we especially annotate in detail numeric texts that
identify the number of participants having certain outcomes. This is important
for statistical analysis to determine the effectiveness of a treatment. The corpus
will facilitate NLP research on automatic information extraction from biomedi-
cal literature and contribute towards evidence-based medicine. Since the corpus
consists of breast cancer related abstracts, one of the future works is to extend it
to include other types of cancer. Since most of the intervention treatments, out-
comes, and outcome measures are common across different types of cancer, the
corpus can be extended using various machine learning techniques. The corpus
is publicly available at https://github.com/sociocom/PICO-Corpus.
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Table 2: Corpus statistics: The frequency of each entity (sub-category) and the
number of abstracts in which each entity is found.

Sub-category Tag count Number of abstracts
Participants (P)
total-participants 1094 (6%) 847 (84%)
intervention-participants 887 (5%) 674 (67%)
control-participants 784 (4%) 647 (64%)
age 231 (1%) 210 (21%)
eligibility 925 (5%) 864 (85%)
ethinicity 101 (1%) 83 (8%)
condition 327 (2%) 321 (32%)
location 186 (1%) 168 (17%)
Intervention &
Control (IC)
intervention 1067 (6%) 1011 (100%)
control 979 (6%) 949 (94%)
Outcomes (O)
outcome 5053 (28%) 978 (97%)
outcome-measure 1081 (6%) 413 (41%)
iv-bin-abs 556 (3%) 288 (28%)
cv-bin-abs 465 (3%) 258 (26%)
iv-bin-percent 1376 (8%) 561 (55%)
cv-bin-percent 1148 (6%) 520 (51%)
iv-cont-mean 366 (2%) 154 (15%)
cv-cont-mean 327 (2%) 154 (15%)
iv-cont-median 270 (2%) 140 (14%)
cv-cont-median 247 (1%) 133 (13%)
iv-cont-sd 129 (1%) 69 (7%)
cv-cont-sd 124 (1%) 67 (7%)
iv-cont-q1 4 (0%) 3 (0%)
cv-cont-q1 4 (0%) 3 (0%)
iv-cont-q3 4 (0%) 3 (0%)
cv-cont-q3 4 (0%) 3 (0%)
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3. Extracting PICO Elements from RCT Litera-
ture

3.1 Background and related work
Information extraction is a task whose objective is to extract information from
data. Named Entity Recognition (NER) is an information extraction task aiming
to extract specific entities from text and classify them into predefined categories,
such as disease, medication, symptom, etc. In NER, given an input sequence x =

(x1, x2, ..., xn), the task is to predict a predict label sequence y = (y1, y2, ..., yn),
where n is the number of words in the sequence. NER is a common natural
language processing (NLP) task and various approaches have been studied over
time. Previous studies on extraction of PICO elements have proposed various
models including rule-based, Support Vector Machines (SVM), Hidden Markov
Models (HMM), Conditional Random Fields (CRF), and deep learning-based
models [30].

3.1.1 Rule-based and machine learning models

Rule-based approaches are one of the earliest approaches used to extract PICO
information from research abstracts. Demner-Fushman and Lin [18] proposed a
rule-based approach where they first identified the sentences containing the PICO
information and then created different rule patterns to extract the PICO elements.
Kelly and Yang [32] used regular expressions to extract number of participants,
gender, ethnicity, age, study duration, and so on. Regular expressions and rules
are useful when finding patterns that adhere to a particular structure. However,
they rely heavily on hand-crafted rules and therefore have some limitations. First
limitation is that they are a brute force approach where one needs to be aware
of all the possible patterns. Second, creating sets of rules/patterns for each
named entity class is time consuming. Third, the rules tend to be domain specific
and cannot be transferable to other domains. Moreover, sometimes they require
domain knowledge and expertise for their development.

SVM [25, 16] based approach has also been used to extract participants in-
formation from RCTs abstracts [24]. SVM classifiers make binary decision on
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whether a token belongs to one of pre-defined classes. The basic foundation of
SVM is to learn a linear hyperplane that separates positive samples from negative
samples by a large margin. Given an input training sequence x = (x1, x2, ..., xn)

with label sequence y = (y1, y2, ..., yn), SVM learns a function f(x) = wx+ b = 0

of a separating hyperplane with maximum margin. Both w and b are parameters
learned from the training dataset, where w is a weight vector and b is a bias that
determines the offset of the hyperplane from the origin. Margin is the separation
between the hyperplane and the support vectors (data points that are closest to
the hyperplane). A data sample x is classified as positive if f(x) = wx+b > 0 and
negative otherwise. When there exists more than two classes, multiple classifiers
are used to classify the samples.

HMMmodels are some of the earliest approaches for solving NER tasks [20, 6].
Xu et al. [64] used HMM-based approach to extract participants demographics,
diseases, symptoms and so on from research abstracts. HMM is a generative
statistical model which uses the Viterbi algorithm [57] to assign the most likely
target sequence to each word sequence. HMM can be represented with three pa-
rameters: λ = (A,B,Π), where, Π represents the start probability, A represents
the transition probability, and B represents the emission probability. Start prob-
ability (Π) is the probability that a particular tag will appear first in a sentence.
Transition probability (A = aij) is the probability that the subsequent tag j will
appear in a sentence given the current tag i. Emission probability B = bj(m) is
the probability of an output sequence occurring given state j. During the train-
ing phase, HMM takes annotated training data as input and outputs the three
parameters. In the testing phase, HMM takes sentence and the obtained three
parameters and outputs the sequence of states from which named entities can be
detected.

Summerscales et al. [54] utilized CRF-based models [35] to extract treatments,
groups, and outcomes from research abstracts. CRF models are probabilistic
models that take into consideration neighboring examples as contextual features.
Given an input sequence x = (x1, x2, ..., xn) with label sequence y = (y1, y2, ..., yn),
CRF models the conditional probability as:

P (y|x, λ) = 1

Z(x)
exp

n∑
i=1

∑
j

λjfi(x, i, yi−1, yi).
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Z(x) is a normalization factor defined as:

Z(x) =
∑
y∈Y

n∑
i=1

∑
j

λjfi(x, i, yi−1, yi).

Here, fi(x, i, yi−1, yi) is a feature function which computes probability by tak-
ing into account the current and previous class labels. λ is a learning weight
attributed to the feature function and is calculated during training.

Rule-based, SVM, HMM, and CRF-based models are useful in information
extraction. However, they heavily rely on hand-crafted features. Designing hand-
crafted features is time-consuming and might require domain knowledge in de-
termining useful features. In recent years, deep learning-based models gained
popularity because they can learn hidden features automatically.

Jin and Szolovits [27] proposed a long-short-term memory (LSTM) model
to extract PICO elements and later proposed model an improved model that
consists of bidirectional LSTM (bi-LSTM) model with a CRF layer on top (bi-
LSTM-CRF) [28]. Bi-LSTM-CRF model can capture dependencies in both left
and right directions of the input sequence. The bi-LSTM-CRF model consists of
an embedding layer, a bi-LSTM layer, and a CRF layer. Given an input sequence
s = (s1, s2, ..., sn) with a label sequence y = (y1, y2, ..., yn), the embedding layer
maps each token to a vector representation x = (x1, x2, ..., xn), where xi is the to-
ken embedding of si. The bi-LSTM layer takes the embedding layer token/word
embeddings as input and outputs a contextualized vector consisting of two hid-
den states (forward and backward). The CRF layer conditional probability is
calculated as:

P (y|x) = eS(x,y)∑
ŷ∈y e

S(x,ŷ)
,

where x is the input sequence, y is the label of the sequence, and S is the score
of the prediction result sequence. For a given sequence, the probability score is
calculated as:

s(x, y) =
n∑

i=0

Ayi,yi+1
+

n∑
i=1

Pi,yi ,

where Ayi,yi+1
is the transition scores and Pi,yi is the emission scores. In training

phase, the maximum likelihood of probability of gold label sequences are maxi-
mized. The final predicted label is calculated based on the highest score which is
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expressed as:
y∗ =

∑
argmaxS(x, ŷ).

3.1.2 Pre-trained language models

Pre-trained language models such as Bidirectional Encoder Representations from
Transformers (BERT) have recently attracted attention due to their state-of-the-
art performance in various NLP tasks including NER [19]. Pre-trained language
models learn general language representation from lots of general domain corpus
such as Wikipedia and BooksCorpus. BERT is pre-trained on large corpus of
unlabeled data and the bidirectional nature of the model means that it learns
information from left to right and right to left, and this is what makes it a
powerful language model.

Pre-trained language models consists of two stages; pre-training and fine-
tuning. The pre-training stage consists of self-supervised tasks which include
masked language modelling (MLM) and next sequence prediction (NSP). In
MLM, words are randomly masked (hidden) and the language model predicts
the masked words to complete the sentence. In NSP, the language model learns
relationships between sentences and predicts the next sentence in a pair. In fine-
tuning stage, the models are trained with a small amount of labeled data and
adapted to various NLP tasks such as NER.

BERT model takes a sequence of tokens as input. It has special tokens, [CLS]
and [SEP]. [CLS] is a classification which is the first token of the input sequence
and [SEP] token is the last token of the input sequence. The maximum input
sequence size of the BERT model is 512 tokens including the [CLS] and [SEP]
tokens. Sequences longer than 512 tokens are usually truncated and shorter
sequences are padded with the [PAD] token to fill the unused slots.

The BERT model architecture for NER task is as shown in Figure 4. Given
a sequence of input tokens x = (x1, x2, ..., xn) and the token gold labels y =

(y1, y2, ..., yn), each input token is mapped to its embeddings e = (e1, e2, ..., en).
The hidden layer outputs the hidden vector h = (h1, h2, ..., hn) which is then
passed to the fully connected layer for prediction. The prediction for the i-th
token is calculated as

P (ŷi|xi) = softmax(Whi + b),
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where yi si the gold label, xi is the ith-token, hi is the final hidden state of the i-th
token, and W and b are hyperparamaters. During training, the model minimizes
the cross-entropy loss:

CrossEntropy = −
n∑

c=1

yclogP (ŷc|xc),

where yc is the gold label and P (ŷc|xc) is the softmax probability for the cth class.
During testing, the model predicts the class as:

Predictioni = argmax(logP (ŷc|xc)).

Figure 4: BERT model for NER task

Traditional BERT models cannot attend to long sequences and are limited
to a maximum of 512 tokens at a time. This is due to the self-attention op-
eration which grows quadratically with sequence length. Modified transformer
models, such as Longformer [5], have been created to overcome this problem. In
Longformer model, the self-attention pattern scales linearly with sequence length
enabling it to process longer documents. It can attend to long sequences of up to
4096 tokens, which is eight times longer than BERT.

Longformer uses a sliding window self attention mechanism (known as local
attention) to capture context. For instance, if we assume a context window of
length w, each token attends to w/2 tokens to the left and to the right of the
current token. If the sequence length is n, the complexity is O(n.w) which scales
linearly. In addition, the authors of the Longformer model also applied a dilation
to the sliding window so as to increase the size of w without using extra memory.
Dilation refers to the ability to skip a token to allow the attention to reach further
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tokens. For instance, if the dilation size is d, the number of gaps between each
token in the window will be d. This does not affect model performance since
transformer architecture includes multiple attention heads across multiple layers
which can learn and attend to multiple tokens and texts properties.

3.1.3 Evaluation Metrics

To evaluate NER tasks, standard evaluation metrics of Precision, Recall, and
F1-measure are commonly used.

• Precision is the ratio of the correctly identified entities to the number of all
identified entities.

P =
TP

TP + FP

• Recall is the ratio of correctly identified entities to the number of actual
entities in the gold set.

R =
TP

TP + FN

• F1-measure is the weighted mean of precision and recall.

F1 = 2 ∗ P ∗R
P +R

TP (true positive) is the number of entities that were correctly identified, FP
(false positive) is the number of entities that were incorrectly identified, and FN
(false negative) is the entities that the model failed to identify.

3.2 Methods
3.2.1 Data pre-processing

The pre-processing step mainly involves acronym expansion. In research arti-
cles, acronyms are frequently used to avoid repeating long terms and save space.
Even though acronyms simplify writing and reading, they are a major obstacle
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to natural language text understanding tasks [47]. Generally, acronyms can have
multiple common expansions which depend on a particular context. Acronyms
commonly occur in the words preceding their first occurrence in parentheses, for
example, “Randomized controlled trials (RCT) of scalp cooling (SC) to prevent
chemotherapy induced alopecia (CIA)”. In this research, we employ a rule-based
method using regular expressions for acronym expansion. The first step in iden-
tifying acronyms is to look for terms in parenthesis that are between two and ten
characters long. Regular expressions are then used to find expansion candidates
in the surrounding text.

3.2.2 PICO elements extraction

Data extraction aims to extract PICO elements from research abstracts. This
task is formulated as a sequence labelling task, i.e., given a token, classify it as
one of pre-defined named entity recognition (NER) tags. As deep learning models
have gained a lot of attention in NLP tasks, we adopt BERT-based models for
this task. BERT has achieved state-of-the-art performance in NER tasks and has
also proven to be effective for small datasets [19]. BERT is a language model
pre-trained on huge amounts of unlabeled data and can be fine-tuned to specific
tasks such as NER.

We chose three pre-trained transformer-based models, i.e., BioBERT [36],
BlueBERT [46], and Longformer [5]. BioBERT is pre-trained on different com-
binations of general and biomedical domain corpora. It is initialized with BERT
[19] and further pre-trained on biomedical domain texts (PubMed abstracts and
PubMed Central full-text articles). BlueBERT is also initialized with BERT and
further pre-trained on PubMed abstracts and clinical notes from MIMIC-III [29].
Longformer is initialized with the RoBERTa model [37] and further pre-trained
with books, wikipedia, realnews, and stories.

Moreover, we developed a web-based system6 for extracting PICO information
from RCTs abstracts. The system was developed using Python. When using
the system, shown in Figure 5, a user inputs free-text and selects the model to
use for information extraction. Currently, two models, that is, BioBERT and
Longformer, are available. The system then extracts PICO information from the

6https://aoi.naist.jp/autometa-demo-v2/
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input text and outputs the results in a table as shown in the Figure 5.

3.2.3 Experimental settings

Our corpus consists of 1011 PubMed abstracts annotated with PICO elements
(discussed in Chapter 2). The dataset was split into 80% training set and 20%
test set. We developed BERT-based models for data extraction (NER) and com-
pared the performance of general-purpose (Longformer) and biomedical domain
(BioBERT, BlueBERT) BERT models. The BioBERT and BlueBERT models
cannot attend to sequences longer than 512 tokens. BERT uses WordPiece [62]
tokenization and a word can be broken down into more than one sub-words.
In the corpus, some abstracts were found to have more than 512 tokens after
the WordPiece tokenization process. The default strategy for the BioBERT and
BlueBERT models is to truncate long sequences and ignore the tokens after the
maximum number is reached. Since truncation leads to loss of information, we
split sequences longer than the maximum length into multiple chunks so as to
preserve all the information. The split was done in a sentence-wise manner, i.e.,
if the number of tokens in an abstract is more than 512, we split the abstract
into individual sentences, then split the sentences into two halves to create two
almost equal chunks. If the number of tokens is greater than 1024, the abstracts
are split into three chunks and so on. The abstracts were split into sentences
using the NLTK sentence tokenizer package7.

In the experiments, we followed the standard pre-trained BERT models for
sequence classification. The pre-trained models were fine-tuned on our corpus.
The fine-tuning was done by setting the maximum sequence length to 512 tokens
for the BioBERT and BlueBERT models and 4096 tokens for the Longformer
model. The number of epochs was set to 10, batch size was set to 2, and the
learning rate was set to 2e-5 for the BioBERT model and 5e-5 for BlueBERT and
Longformer models. Moreover, since neural networks provide different results
when initialized with different seeds, we trained each of the models with five
different seeds and averaged the results.

7https://www.nltk.org/api/nltk.tokenize.sent_tokenize.html
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Figure 5: NER system for automatic extraction of PICO elements
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3.3 Results and discussion
The performance of the NER model was evaluated using Precision, Recall, and
F1 score in the test set and the results are shown in Table 3. BioBERT_split and
BlueBERT_split are the model results where sequences longer than 512 tokens
were split into multiple chunks. The Longformer model did not require splitting
of abstracts because the maximum sequence length for Longformer is 4096 tokens
and there were no abstracts with tokens exceeding the maximum number.

The performance was relatively high with sub-categories such as total-participants
and outcome-measure achieving F1-scores greater than 0.90. Most of the other
sub-categories achieved F1-scores greater than 0.80. F1-score was zero for the
entities with lowest frequency such as cont-q1-iv, cont-q1-cv, cont-q3-iv, and
cont-q3-cv. In overall, BioBERT and Longformer models achieved the highest
performance in almost all of the entities.

The Longformer model, which is a general purpose model, performed well com-
pared to the biomedical domain BERT models (BioBERT and BlueBERT). One
likely explanation is that the biomedical domain BERT models have a maximum
sequence length of 512 tokens and longer sequences are truncated resulting in loss
of important contextual information. The Longformer model has a maximum se-
quence length of 4096 tokens and could therefore build contextual representation
of the entire context.

The input of the NER models was the entire abstract. It is common practice in
tasks like these to use a sentence as the input. In this task, identification of most
entities depends on data from the entire abstract, and hence using data from
a single sentence would be insufficient. By using the entire abstract as input,
we can incorporate context clues from other sentences to enhance the model
performance. However, since some abstracts were longer than the standard input
length for BERT models (512 tokens), long abstracts were split into multiple
chunks sentence-wise.

The splitting of long sequences was expected to increase model performance,
however, there was no change in the model performance. This could be attributed
to loss of useful contexts caused by splitting. In this research, it is necessary to
extract information from the entire abstract. The default strategy for BERT
models is to truncate long texts hence leading to loss of important information.
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The purpose of splitting the abstracts into multiple chunks was to enable extrac-
tion of information from the entire abstracts. Even though splitting the abstracts
did not improve the performance, we were able to avoid loss of information due
to truncation.

The confusion matrices for each of the models are as shown in Figure 6. Since
there are many sub-categories, the confusion matrices show the results for the
major categories for clarity purposes. The BioBERT model has a true-positive
rate of 0.943, false-positive rate of 0.002, false-negative rate of 0.057, and true-
negative rate of 0.998. The BioBERT_split model has a true-positive rate of
0.943, false-positive rate of 0.002, false-negative rate of 0.057, and true-negative
rate of 0.998. The BlueBERT model has a true-positive rate of 0.935, false-
positive rate of 0.002, false-negative rate of 0.06, and true-negative rate of 0.998.
The BlueBERT_split model has a true-positive rate of 0.937, false-positive rate of
0.002, false-negative rate of 0.006, and true-negative rate of 0.998. The longformer
model has a true-positive rate of 0.961, false-positive rate of 0.001, false-negative
rate of 0.04, and true-negative rate of 0.999. All the models achieved relatively
high performance with longformer model having the highest true-positive rate
and lowest false negatives.

Error analysis

We performed an error analysis and identified misclassified entities, boundary
detection, and missed entities as the major types of errors.

• Misclassified entities: this is where the model detected the correct bound-
aries for entities but assigned them the wrong classes. For example, the
model sometimes misclassified intervention events (e.g., bin-abs-iv) as con-
trol events (e.g., bin-abs-cv) and vice versa. Example (i) in Table 4(a)
shows a situation where the model identified the entities but misclassified
cv-cont-median as iv-cont-median and vice-versa. The reason might be be-
cause intervention events tend to be reported before control events in most
of the samples in our corpus. The model might have then learned the pat-
tern that intervention events are reported before control events when no
other clues are available.
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Table 3: NER models results. Bold texts represent the best score for each sub-
category.

(a) BioBERT model results

BioBERT BioBERT_split
Sub-category Precision Recall F1 Precision Recall F1
Total-participants 0.95 0.95 0.95 0.94 0.94 0.94
Intervention-participants 0.80 0.91 0.85 0.78 0.93 0.85
Control-participants 0.87 0.91 0.89 0.85 0.91 0.88
Age 0.66 0.97 0.79 0.66 0.96 0.78
Eligibility 0.75 0.77 0.76 0.77 0.74 0.76
Ethnicity 0.82 0.89 0.86 0.82 0.96 0.88
Condition 0.86 0.81 0.84 0.84 0.75 0.79
Location 0.75 0.85 0.80 0.73 0.81 0.77
Intervention 0.85 0.82 0.84 0.85 0.82 0.84
Control 0.78 0.80 0.79 0.77 0.76 0.77
Outcome 0.82 0.81 0.81 0.84 0.80 0.82
Outcome-measure 0.79 0.90 0.84 0.81 0.88 0.84
bin-abs-iv 0.75 0.78 0.77 0.81 0.78 0.79
bin-abs-cv 0.79 0.87 0.83 0.77 0.80 0.79
bin-percent-iv 0.87 0.88 0.87 0.83 0.86 0.84
bin-percent-cv 0.88 0.90 0.89 0.87 0.82 0.84
cont-mean-iv 0.78 0.90 0.83 0.80 0.86 0.83
cont-mean-cv 0.86 0.86 0.86 0.81 0.84 0.83
cont-median-iv 0.70 0.80 0.75 0.70 0.86 0.78
cont-median-cv 0.76 0.81 0.78 0.83 0.74 0.78
cont-sd-iv 0.68 0.93 0.79 0.80 0.85 0.82
cont-sd-cv 0.76 0.84 0.80 0.72 0.85 0.78
cont-q1-iv 0.00 0.00 0.00 0.00 0.00 0.00
cont-q1-cv 0.00 0.00 0.00 0.00 0.00 0.00
cont-q3-iv 0.00 0.00 0.00 0.00 0.00 0.00
cont-q3-cv 0.00 0.00 0.00 0.00 0.00 0.00
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(b) BlueBERT model results

BlueBERT BlueBERT_split
Sub-category Precision Recall F1 Precision Recall F1
Total-participants 0.94 0.91 0.92 0.95 0.92 0.94
Intervention-participants 0.72 0.90 0.80 0.73 0.91 0.81
Control-participants 0.81 0.85 0.83 0.79 0.89 0.84
Age 0.67 0.97 0.79 0.66 0.97 0.79
Eligibility 0.73 0.74 0.73 0.73 0.70 0.72
Ethnicity 0.90 0.72 0.80 0.91 0.78 0.84
Condition 0.90 0.70 0.79 0.82 0.77 0.79
Location 0.77 0.67 0.71 0.76 0.76 0.76
Intervention 0.80 0.81 0.81 0.84 0.83 0.83
Control 0.72 0.68 0.70 0.78 0.71 0.74
Outcome 0.81 0.79 0.80 0.81 0.80 0.80
Outcome-measure 0.73 0.84 0.78 0.76 0.86 0.81
bin-abs-iv 0.77 0.75 0.76 0.67 0.76 0.71
bin-abs-cv 0.75 0.79 0.77 0.72 0.84 0.78
bin-percent-iv 0.74 0.85 0.79 0.79 0.81 0.80
bin-percent-cv 0.83 0.73 0.78 0.82 0.79 0.80
cont-mean-iv 0.72 0.74 0.73 0.61 0.81 0.69
cont-mean-cv 0.77 0.74 0.75 0.73 0.76 0.74
cont-median-iv 0.65 0.78 0.71 0.67 0.62 0.64
cont-median-cv 0.80 0.66 0.72 0.75 0.66 0.70
cont-sd-iv 0.62 0.68 0.65 0.59 0.60 0.59
cont-sd-cv 0.67 0.68 0.67 0.56 0.70 0.63
cont-q1-iv 0.00 0.00 0.00 0.00 0.00 0.00
cont-q1-cv 0.00 0.00 0.00 0.00 0.00 0.00
cont-q3-iv 0.00 0.00 0.00 0.00 0.00 0.00
cont-q3-cv 0.00 0.00 0.00 0.00 0.00 0.00
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(c) Longformer model results

Sub-category Precision Recall F1
Total-participants 0.96 0.94 0.95
Intervention-participants 0.79 0.92 0.85
Control-participants 0.89 0.89 0.89
Age 0.78 0.98 0.87
Eligibility 0.89 0.86 0.88
Ethnicity 0.75 0.83 0.78
Condition 0.83 0.79 0.81
Location 0.91 0.79 0.85
Intervention 0.86 0.85 0.86
Control 0.81 0.86 0.83
Outcome 0.85 0.86 0.86
Outcome-measure 0.85 0.95 0.90
bin-abs-iv 0.83 0.83 0.83
bin-abs-cv 0.84 0.85 0.84
bin-percent-iv 0.85 0.90 0.88
bin-percent-cv 0.88 0.85 0.87
cont-mean-iv 0.85 0.87 0.86
cont-mean-cv 0.78 0.91 0.84
cont-median-iv 0.65 0.76 0.70
cont-median-cv 0.75 0.76 0.75
cont-sd-iv 0.83 0.86 0.85
cont-sd-cv 0.77 0.92 0.84
cont-q1-iv 0.00 0.00 0.00
cont-q1-cv 0.00 0.00 0.00
cont-q3-iv 0.00 0.00 0.00
cont-q3-cv 0.00 0.00 0.00
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(a) BioBERT model

(b) BioBERT_split model
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(c) BlueBERT model

(d) BlueBERT_split model
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(e) Longformer model

Figure 6: Confusion matrices for the NER models
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• Boundary detection: here the model identifies shorter or longer entities
than those marked in the gold set. Human annotation could contribute to
this error, because sometimes it is difficult to decide the start and end spans
of some entities. Examples (ii) and (iii) in Table 4(a) show cases where the
models and the annotators identified different spans. These type of error
was common in entities which require more than two words to be identified
especially the outcome and eligibility entities.

Furthermore, the BERT tokenization process also contributed to this type
of errors. We found out that the BERT tokenizer tokenizes decimal numbers
into multiple individual tokens. For example, 56.3 is tokenized to ‘56’, ‘.’,
‘3’. Also, percentage values such as 15% are tokenized to ‘15’, ‘%’. In some
cases, the model predicted the numbers and ‘%’ as different entities.

• Missed entities: this is where the model fails to identify the entities. Exam-
ple (iv) in Table 4(a) shows an example where the model failed to identify
the control entity. In the training set, many control entities are identified
by terms such as placebo and control and hence the reason the model did
not identify it. Example (v) shows a case where the model captured an
entity that was missed during the annotation process.

Table 4(b) shows the number of errors in each of the NER models. The
values were calculated as the percentage of entities out of the total entities whose
predictions were incorrect. Boundary detection errors were the most frequent
errors whereas missed entities were the fewest. The outcome and eligibility entities
contributed to majority of the errors. These entities need more than two words
to be identified, and it was also challenging for human annotators to determine
their spans, as mentioned in Section 2.3.

The Longformer and BioBERT_split model had the least errors whereas the
BlueBERT model had the most errors. These results are consistent with the
results discussed in the previous section, where the Longformer and BioBERT
models achieved the best performance.
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(b) Number of errors in the NER models

Misclassified Boundary Missed
Model entities detection entities
BioBERT 5.67% 8.09% 2.28%
BioBERT_split 5.68% 5.32% 2.46%
BlueBERT 6.47% 9.15% 2.66%
BlueBERT_split 6.28% 8.44% 2.64%
Longformer 3.88% 4.74% 1.61%

3.4 Conclusion
We proposed BERT-based NER models for PICO extraction from RCT literature.
The NER models extracted PICO elements with relatively high accuracy. Some
of the entities achieved F1-scores higher than 0.90 and most of the other entities
achieved F1-scores greater than 0.80. Some entities could not be detected due to
low frequency in the dataset, and hence some of the future work is to increase
the training set to include these entities. In addition, since traditional BERT
models can only process a maximum of 512 tokens, we proposed a technique of
splitting long texts into multiple chunks. This technique avoided information loss
due to truncation, however, the models performance did improve. In future, it is
important to investigate more approaches on effective text splitting to improve
the models performance.
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4. Automating Meta-Analysis Statistical Analy-
sis

4.1 Background and related work
Natural language processing techniques to accelerate data extraction from re-
search abstracts and full-text articles have been widely studied [30]. Most of the
proposed approaches extract the different information which describe the PICO
elements such as the age, study design, medications, medication dosage, med-
ication frequency, outcomes, and so on. These previous studies, however, fail
to extract detailed information for the outcomes, especially numeric texts iden-
tifying the number of patients having certain outcomes [48, 55]. Extraction of
numeric texts is important for statistical analysis to determine the effectiveness of
the intervention. Extracting this information is difficult due to lack of uniformity
and different studies report their results differently.

Summerscales et al. [55] used conditional random field-based (CRF) approach
to extract various named entities including treatment groups, group sizes, out-
comes, and outcome numbers from research abstracts. They created a corpus
with 263 abstract and annotated different entities including treatment groups,
group sizes, outcomes, and outcome numbers. The proposed system first filters
sentences likely to contain the relevant information so as to reduce the amount
of texts to be processed. The selected sentences were those which at contain at
least one integer as such sentences are considered most likely to contain outcome
mentions and outcome numbers. Their approach to extract outcomes and out-
come numbers for the purpose of calculating summary statistics is similar to this
research. However, their annotations are less extensive and their corpus is not
publicly available for reproducibility.

Pradhan et al. [48] developed EXACT, a Python based web application tool
extracting data from ClinicalTrials.gov. ClinicalTrials.gov is a United States clin-
ical trials registry database supported by the United States National Library of
Medicine (NLM)8. EXACT parses the database and extracts data from the stored
clinical trials. EXACT can extract upto 30 different data elements which include

8https://clinicaltrials.gov/
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the baseline information (such as study type, intervention, control, condition,
etc.), outcomes and their events, outcome measures, and adverse events. The
system was evaluated by reproducing the results of three meta-analyses contain-
ing a total of fifteen clinical trials. The data extracted by the EXACT system
were compared to manually extracted data. The system reduced the data ex-
traction time by 60% and the data elements were extracted with 100% accuracy.
EXACT uses data mining techniques rather than machine learning, hence the
data extracted is 100% accurate with no extraction errors. The reason for high
accuracy is because the data was extracted from the ClinicalTrials.gov database
where data is recorded in a structured format. Although the ClinicalTrials.gov
database is an important source of clinical trials data, it has mainly focuses on
clinical trials in the United States. This substantially decreases the number of
studies available for data extraction [48].

The goal of this work is to provide a system that supports meta-analysis
statistical analysis. The proposed system (shown in Figure 1) performs various
steps including extracting data from research abstracts (discussed in Chapter 2),
parsing numeric outcomes to identify the number of patients having specific out-
comes, converting extracted data into a structured format for statistical analysis,
and visualizing the results. We assess the performance of the proposed system
by using it to reproduce the results of existing meta-analysis studies and show
potential in automating the meta-analysis statistical analysis task.

4.2 Methods
4.2.1 PICO elements normalization

Meta-analysis involves combining similar studies to assess the effectiveness of the
intervention (treatment). To automatically group similar studies together and
compare them within a meta-study, it is necessary to normalize the extracted
PICO elements. We focus on the normalization of the intervention, control, and
outcome elements. Since our corpus consists of RCTs related to breast cancer,
all participants are breast cancer patients.

We utilize the UMLS Metathesaurus for the normalization of intervention and
control elements. UMLS comprehensively covers most of the interventions and
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control, especially medications, and hence we did not need to create a normaliza-
tion dictionary manually. We use MetaMap [3], which is a state-of-the-art NLP
tool that maps biomedical text to concepts in the UMLS Metathesaurus. For
each text, MetaMap splits the text into phrases and identifies possible mappings
for each phrase based on lexical look-up and variants.

A dictionary-based approach was employed for outcome normalization. We
extracted all the outcomes from the corpus and manually created a dictionary of
the outcomes and their normalizations. For example, pain, breast pain, less pain,
and mild pain are all normalized to pain. After creating the dictionary in this
manner, we use dictionary string matching techniques to match outcomes and
their normalized versions.

The task of matching an outcome with its normalization is defined as fol-
lows. Given a predefined set of normalized outcomes N , and an input string o

(outcome), find normalized outcome n ∈ N that is most similar to o. For this
task, we utilize a technique that combines Term-Frequency Inverse Document
Frequency (TF-IDF), n-grams, and cosine similarity. TF-IDF creates features
from text by multiplying the frequency of a term in a document (term frequency)
by the importance (inverse document frequency) of the term in the entire corpus.
In TF-IDF, usually the term is a word, but depending on the corpus, n-grams
have been shown to achieve high performance. For each outcome, we represent
the outcome as a vector using TF-IDF and calculate the cosine similarity be-
tween the outcome vector and the normalized outcomes vectors and select the
normalized outcome with the highest cosine similarity score.

Even though BERT-based models are currently widely used for NLP tasks we
utilized a traditional string matching approach for outcome normalization. The
current corpus contains many different outcomes which vary greatly with some
occurring frequently and others occurring less frequently. Although the BERT
models achieve high performance for the outcomes with high frequency, they fail
for the outcomes with less frequency. Therefore, we adopted the approach of TF-
IDF with cosine similarity, which achieves relatively good performance for both
high-frequency and low-frequency outcomes.
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4.2.2 Outcome event matching and creating structured data

Once PICO elements are extracted (as discussed in Chapter 2) and normalized,
studies with the same intervention and outcome are pooled together so as to
compute the overall effect of the intervention. Before calculating the overall
effect of the intervention, each study’s treatment effect is determined first. The
effect is usually calculated using summary statistics such as risk ratio, odds ratio,
or risk difference. In this research, the extracted and normalized PICO elements
are converted into a structured format as shown in Figure 7. To compute the
summary statistics, for each outcome four values are required, i.e., Ee, Ne, Ec,
and Nc.

• Ee is the number of participants in the intervention group that demon-
strated effect of the treatment (intervention events).

• Ne is the total number of participants in the intervention group.

• Ec is the number of participants in the control group that demonstrated
effect of the treatment (control events).

• Nc is the total number of participants in the control group.

The summary statistics (risk ratio (RR), odds ratio (OR), and risk difference
(RD)) used in this study are intended for binary outcomes.

RR =
Ee/Ne

Ec/Nc

OR =
Ee/(Ne− Ee)

Ec/(Nc− Ec)

RD =
Ee

Ne
− Ec

Nc

Ee and Ec are absolute values that correspond to bin-abs-iv and bin-abs-cv re-
spectively (Table 2). Ee and Ec can also be calculated from bin-percent-iv and
bin-percent-cv as explained in an example further down.

Extraction of the number of participants having certain outcomes is chal-
lenging because of lack of uniformity in reporting of results in different articles.
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We use a rule-based approach for this task and assume that an outcome and its
events are reported within the same sentence. If only one outcome is present in
a sentence, we assume that the intervention and control events reported in that
sentence belong to that outcome. If two or more outcomes are present in a sen-
tence, the first occurrence of intervention events and control events are assigned
to the first outcome, the second occurrence of intervention and control events are
assigned to the second outcome, and so on. For example, “Overall survival (100%
treated, 90.6% controls at 5 years) and disease-free survival (96.2% treated, 86.8%
controls at 5 years) were not significantly different in the 2 groups”, we extract
(outcome: overall survival, intervention events: 100%, control events: 90.6%)
and (outcome: disease-free survival, intervention events: 96.2%, control events:
86.8%). In this example, only percentage values are reported and hence we require
knowledge of the number of participants in the intervention and control groups
to calculate the absolute values (Ee and Ec). In some studies, the number of
participants in the intervention and control groups (Ne and Nc) are reported in a
different sentence within the abstract (as shown in the sample abstract in Figure
2) while in other studies they are not reported at all. In the rule-based approach,
if the number of participants are not mentioned in the outcome sentence, we
check if they are mentioned in the other sentences. Moreover, in some studies
words instead of numbers are used, for instance, “Sixty-three percent achieved
a complete response ...”, and hence we need to convert the words to numbers.
Once the abstracts have been processed in this manner, we get structured data
as shown in the bottom part of Figure 7.

4.2.3 Meta-analysis results visualization system

We developed a web-based visualization system9 for visualizing meta-analysis re-
sults. The system was developed using Python and R. R is a powerful and flexible
tool that is commonly used when conducting meta-analyses. The calculations of
summary statistics were implemented using meta [50], which is an R package
commonly used when conducting standard meta-analysis. The results are visual-
ized using forest plots which provide a summary and the extent to which results
from different studies overlap. In the forest plot, the effect size of each study is

9https://aoi.naist.jp/autometavisualization/
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Figure 7: A sample abstract with PICO elements highlighted.
The top part shows the abstract while the bottom part shows the PICO

elements transformed into a structured format.
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shown and the average effect is shown at the bottom of the plot. Also, in the
forest plot, each study is represented by a square whose area represents the weight
of the study in the meta-analysis and horizontal line (95% confidence interval).

When using the visualization system, shown in Figure 8, a user first uploads
a csv file. The file must contain columns for study_name, intervention, control,
outcome, Ee, Ne, Ec, and Nc as shown in the bottom part of Figure 7. After
uploading the file, the user then selects a summary measure and a method for
pooling the studies. The available summary measures include risk ratio, odds
ratio, and risk difference which are commonly used for binary outcomes. The
available pooling methods include inverse variance (Inverse), Mantel-Haenszel
(MH), Peto, generalised linear mixed model (GLMM), and sample size method
(SSW). For risk ratio and risk difference, only the Inverse or MH pooling methods
are used. For odds ratio, inverse, MH, Peto, GLMM, or SSW pooling methods
are used. In addition, the user selects the interventions and outcomes for which
they would like the results to be visualized. The system groups together similar
studies depending on the selected intervention(s) and outcome(s), computes the
summary statistics, and returns forest plots. Each forest plot is a summary of
studies with the same intervention and the same outcome.

4.3 Results and discussion
Even though automatic extraction of PICO elements from abstracts has been
studied widely, only a few studies have attempted extraction of numeric texts that
identify the number of patients experiencing specific outcomes. We developed a
rule-based approach (discussed in Section 4.2.2 above) to parse numeric texts
to identify the patients having certain outcomes. The rule-based approach was
able to extract outcomes and their events from 77% of the outcome sentences
in the gold test set. The rule-based approach however cannot extract outcomes
and their events in cases where the outcomes and events are reported in different
sentences or in studies other than double-arm studies (one intervention group and
one control group).
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Figure 8: Visualization system interface
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4.3.1 System evaluation

To evaluate the performance of the proposed system, we selected two published
meta-analyses and used our system to reproduce the results. The first selected
meta-analysis was conducted by Feng et al. [21] and examines the effect of
platinum-based neoadjuvant chemotherapy on resectable triple-negative breast
cancer patients. The meta-analysis consists of nine studies, Alba et al. [1], Ando
et al. [2], Gluz et al. [22], Loibl et al. [38], Sikov et al. [52], Tung et al. [56],
Minckwitz et al. [58], Wu et al. [61], and Zhang et al. [65]. The results are shown
in Table 5(a). The NER model successfully extracted data from the abstracts of
the nine studies. There was a NER model prediction error in one study as shown
in bold underlined text in Table 5(a). For the study Gluz et al. (2018) and
pathological complete response outcome, the model misclassified Ne as Nc and
vice-versa. In this research, the Ee and Ec values were reported as percentage
values. The absolute values of Ee and Ec were therefore calculated based on the
Ne and Nc values. Since the system extracted Ne and Nc values were incorrect,
the calculated Ee and Ec values were also incorrect.

Although the NER model had high accuracy, there were other factors that
prevented the full reproduction of the meta-analysis. The italic and underlined
texts represent studies where extra post-processing steps were required. For in-
stance, for the studies Loibl et al. (2018) and Sikov et al. (2015), and pathologi-
cal complete response, the studies have multiple intervention and control groups.
The Gluz et al. (2018) and Minckwitz et al. (2014) studies, for the pathological
complete response outcome, the abstracts report results for different sub-groups.
The current system considers only double-arm studies (studies with one inter-
vention group and one control group) and does not perform subgroup analysis,
and these will be one of our important future works. Moreover, in some studies,
the total number of participants in the intervention and control groups (Ne and
Nc) were not reported in the abstracts. The studies where the numbers were not
reported are indicated as NA in Table 5(a). In the Sikov et al. (2015) and Tung
et al. (2020) studies, we were not able to calculate the absolute values for Ee

and Ec because their calculation depends on the Ne and Nc values which were
not reported in the abstracts.

The second selected meta-analysis was conducted by Xu et al. [63] and com-
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pares aromatase inhibitor to tamoxifen in women with advanced breast cancer.
The meta-analysis consists of six studies, Bonneterre et al. [7], Nabholtz et al.
[42], Alfredo et al. [40], Paridaens et al. [44, 45], and Mouridsen et al. [41]. The
outcomes include overall response rate, clinical benefit, and overall survival. The
results are as shown in Table 5(b). The NER model successfully extracted data
from the abstracts of the six studies. There was only one NER model prediction
error as shown in bold underlined text in Table 5(b). For the study Bonneterre
et al. (2000) and overall response rate outcome, the model misclassified control
events (Ec) as intervention events (Ee).

Similarly to the first selected meta-analysis, despite the great accuracy of the
NER model, several issues hindered a complete replication. In some studies, the
total number of participants in the intervention and control groups (Ne and Nc)
were not reported in the abstracts as indicated as NA in Table 5(b). The italic
and underlined texts represents studies where extra post-processing steps were re-
quired. For instance, for study Mouridsen et al. (2004) and overall response rate
outcome, our system identified two intervention events and two control events.
In the Mouridsen et al. (2004) study, the abstract reports the overall response
rate for two sub-groups i.e., younger participants (<70 years) and older partici-
pants (>70 years). Also, in the Alfredo et al. (2003) study and overall survival
outcome, the abstract reported the number of patients that died, and hence extra
calculation to find the overall survival is required.
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4.4 Conclusion
This research proposed a system for automating meta-analysis statistical analy-
sis. The proposed system extracts PICO elements from research abstracts, parses
numeric outcomes to extract the number of patients experiencing certain out-
comes, transforms the extracted information into a structured format, performs
statistical analysis, and visualizes the results in forest plots. We evaluated the
performance of the system by attempting to reproduce the results of existing
meta-analyses. The system extracted PICO elements from the studies with high
accuracy. The statistical analysis step did not perform well owing to lack of some
information in the abstracts and lack of uniformity in the research abstracts were
some abstracts required extra pre-processing. These results however show that
there is potential to automate these tasks and wish to motivate more research
towards fully automating the entire meta-analysis process.
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5. Conclusion

5.1 Limitations and future work
Our research has several limitations. The corpus created for this research consists
of breast cancer related abstracts (Chapter 2), and one of the future works is to
extend it to include other diseases. Even though the current corpus consists of
breast cancer only articles, most of the intervention treatments, control treatment,
outcomes, and outcome measures are commonly used in the other types of cancers.
The corpus can be therefore be extended to include other types of diseases/cancers
by employing machine learning techniques.

The corpus in this study consists of abstracts only and as seen in Section 4.3.1,
abstracts sometimes lack information that are present in the full-text document.
For instance, a manual check of our corpus found that a significant number of
abstracts do not mention the number of participants in the intervention and con-
trol groups. This presents a challenge when determining the number of patients
having certain outcomes for statistical analysis (Section 4.3.1). We also do not
account for participants who drop out of a study and this might affect the final
results. For future work, it is important to consider extracting information from
full-text articles.

We proposed a rule-based system for matching outcomes and their events
(Section 4.2.2). The rule-based approach considers only double-arm studies, i.e.,
studies with one intervention group and one control group. Single-arm studies
and studies with more than multiple intervention or control groups are ignored.
In future, it is necessary to explore other approaches such as relation extraction.

In the statistical analysis step, we consider only binary outcomes. The sum-
mary statistics (odds ratio, risk ratio, and risk difference) used in our results
visualization system (Section 4.2.3) are only focused on binary outcomes. Incor-
porating continuous outcomes and their summary statistics is important future
work. In addition, the current approach calculates the summary statistics from
absolute values. A review of the corpus revealed that some of the abstracts report
the summary statistics that have already been computed. Annotation of these
already calculated summary statistics and incorporating them to the current sys-
tem is a challenging task but an important future work.
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Moreover, some meta-analyses perform subgroup analysis where they compare
the results of different subgroups of participants either by age or cancer type.
Annotation and incorporation of such information is also necessary in future.
Finally, we assessed the performance of the proposed system by replicating the
results of two existing meta-studies (Section 4.3.1). To substantiate the usefulness
of the system, it is important to test it on larger and more complex meta-studies.

5.2 Summary
In this dissertation, we proposed a system for automating data extraction to sup-
port meta-analysis statistical analysis. Our objective is to provide a system that
automates data extraction and statistical analysis, to shorten the time it takes
to carry out a meta-analysis and allow for automatic updates when new results
becomes available. The proposed system extracts PICO elements from research
abstracts, parses numeric outcomes to extract the number of patients experi-
encing certain outcomes, transforms the extracted information into a structured
format, performs statistical analysis, and visualizes the results in forest plots. We
evaluated the performance of the system by attempting to reproduce the results
of existing meta-analyses. The system extracted PICO elements from the studies
with high accuracy. The statistical analysis step did not perform well owing to
lack of some information in the abstracts and lack of uniformity in the research
abstracts were some abstracts required extra pre-processing. These results how-
ever show that there is potential to automate these tasks and wish to motivate
more research towards fully automating the entire meta-analysis process.

In addition, we created a publicly available corpus with detailed annotation of
the PICO elements. The corpus contains 1011 abstracts related to breast cancer
RCTs. The corpus provides detailed annotation for outcomes especially numeric
texts to identify the number of participants having certain outcomes. This is
important for statistical analysis to determine the effectiveness of a treatment.
The corpus will facilitate NLP research on automatic information extraction from
biomedical literature and contribute towards evidence-based medicine. The cor-
pus is publicly available at https://github.com/sociocom/PICO-Corpus.
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