Doctoral Dissertation

Human-Robot Interaction System
for Non-Expert Users to Create and Debug

Robot Behaviors Using Visual Programming

Pattaraporn Tulathum

Program of Information Science and Engineering
Graduate School of Science and Technology

Nara Institute of Science and Technology

Supervisor: Kenichi Matsumoto

Software Engineering Laboratory (Division of Information Science)

Submitted on January 31, 2023



A Doctoral Dissertation
submitted to Graduate School of Science and Technology,
Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of Engineering

Pattaraporn Tulathum

Thesis Committee:

Supervisor  Kenichi Matsumoto
(Professor, Division of Information Science)
Takahiro Wada
(Professor, Division of Information Science)
Takashi Ishio
(Associate Professor, Division of Information Science)
Raula Gaikovina Kula
(Assistant Professor, Division of Information Science)
Tsukasa Ogasawara
(Vice President, Nara Institute of Science and Technology)
Gustavo Garcia
(Visiting Associate Professor, Nara Institute of Science and Technology)
Jun Takamatsu

(Senior Researcher, Microsoft)



Human-Robot Interaction System
for Non-Expert Users to Create and Debug

Robot Behaviors Using Visual Programming®

Pattaraporn Tulathum

Abstract

This dissertation proposes a robot behavior creator, a robot simulator, and de-
bugging features to develop a Human-Robot Interaction system for non-expert users.
As a problematic consequence of an aging society with an increasing labor shortage,
there is a need for service robots to efficiently support work in many places, such
as convenience stores. Especially for non-expert users (e.g., shop staff) who do not
understand a robotic system, it is challenging to create desired robot behaviors. This
requires a tool to enable non-expert users to create and fix issues in robot behavior
programs.

This thesis provides a concept of a robot behavior program for non-expert users
based on the human decision-making process with the implementation of a robot
behavior creator and debugger. It consists of two features: (i) Behavior Trees im-
plemented on a graphical user interface; and (ii) a robot simulator. Furthermore,
this thesis provides a subjective system evaluation with non-expert users to show
the effectiveness of the proposed system. The results with ten subjects show that
non-expert users can create and fix robot behaviors based on the given tasks in
the convenience store scenario. According to the System Usability Scale (SUS), the

proposed system has a good usability level.

*Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
and Technology, January 31, 2023.



The proposed system also provides four debugging features for the robot behavior
programming: (i) breakpoints, (ii) node execution monitoring, (iii) execution log,
and (iv) robot variables. These features allow non-expert users to identify and fix
issues in the system. The experimental results show that 14 non-expert users could
achieve all the assigned tasks. According to the SUS, the proposed system has a
high marginal usability level. However, only one non-expert user could utilize the
breakpoints. Based on the experimental results and interviews with non-expert users,
the concept of breakpoints is not easy to understand and use for creating a program.

Overall, this dissertation demonstrates that the proposed methods enable non-
experts users to create, edit and debug robot behavior programs through experiments

with non-expert subjects.

Keywords:

Human-Robot Interaction (HRI), Robot Behaviors, Creating and Debugging System,

Non-Expert Users, Behavior Trees

i



Ok NEMEDIERS & T /3w %2 Y7 )b
T 5 I & D170 e L —Fa )
La—x 2 OaORY N UART I aVY AT A

Pattaraporn Tulathum

AR

ATl R —FITELUZAMEORY hDA VY EIF7 7V a vy A
TADOMPFIZERZ ST, Ay MEIEERY —)b, By vy Ialb—4& &
FOTNY THREZIRET D, AR Z 4D @bt 2 ORMBED ERIC &
D, fEEEZEZET 2 - AORY RO OLNT WD, FICORY bV AT A
CHRR 2 R - W IEREEE EERY) TR L TR, SR EL LSRRy b
D8N % EY) BIT5 Z L IFIERICHECH S, TDAD, ERFI—FTEOR
v NOEEERER - BIETEX2 LRV —UBREL RS, LY AT LE. FE
BI—YTERIY IV RROY FTORY NIMET O VS A% ERTE
LRy NEEERBSRE BRI T CEET AN 275 2 e TES04HRY
MYIalb—a%2#EETE, X () FI79 71 NV aA—HFA T —A%
FANTEREINAZEAIETY ) =L ([) BRY MY I alb—&I2 k2T
BRRED 2 DM OREE I N D, 10 ADOHERE IZ X 2 EBROFE, FRABETEL 5
ZHONERMDOTFTEARY NOTEIZ/ENK - BIETHZZENARTHEI L %
KUz, YAT A=Y T4 A7 —)b (SUS) IZ& X, BEVATAIZR
ﬁ@1~WEU?4%ﬁbfwéltﬁﬁﬂotoit\%ivx?A@ I

Ry NIETO T T IV I DEDIZ (1) TV—2RA Vb, (i) / — RETEH
(iii) %ﬁtlﬁ‘ (iv) BARY NEEL D 42071\ JERERIRHIET 2, ZhbHD
BREIZ LY, EMRTARAVI—YTE VAT LAOMELZRHEL, BIETHZ L

#1%50£V®%%\M%@#ﬂﬁﬁmmWM%#7v JRA Y NEIEH
7% BRI RL R RN KBRS SRR R AT SR L, 2023 4E 1 A 31 H.

il



TERMPO, A1 VAC2—DFER, TV —2RA1 Y bOEIEREL D6 <,
Ta7 7 AMEBRIZFALDSWI EWFHETH D L FEZHND, SUS IZLE,
BEVATAIZITANARELRI—T L) T2 Z2HL TV IR Dol K
MDD ELBEBIIATD 4 DTh D, H—I2, ERFERITOORY NEET D
T ADOMREREUZ, B2, IVEZIVAANT 28U -BEICAD
TNZ—rRy NEEEL, ORY MBI 7O I L%2ERKLUTANT DR
W NEIEERRY — VR L 2, B2, ERI 0 Ry MIE o s o A0
MERZ2REL, BIET2-00 4 DDOF7 /)Ny JTHREZERHR L /-, HBIUIZ, TR
W NTOT TSIV TORBROBZNIERG L — T & D BN Y AT LG %
11277,

F—U—F

ta—vYORY VY& T2 3V (HRI), BRY DT &Rk, 73y 7
TBHYAT A, FERME, ENTETY Y —

v



Acknowledgements

This dissertation is a task with many challenges and obstacles. I would like to
express my gratitude to all the supporters and advisers who helped me along the
way by kindly sharing their knowledge and advice.

I would like to express my deep gratitude to Professor Kenichi Matsumoto for
giving me opportunities to study in his laboratory during last two years in the doc-
toral course. Moreover, thank you for providing a kind guidance and encouragement
until I could achieve the PhD.

I would like to express my sincere gratitude to Doctor Tsukasa Ogasawara for
giving me opportunities to study in his laboratory since the master’s course. None of
this would have been possible without his kindness, wisdom, and continued support,
I could not complete this work and achieved the PhD.

I am very grateful to Associate Professor Takashi Ishio for sharing his advanced
knowledge in software engineering field. His valuable comments always were a great
motivation.

I am very grateful to Assistant Professor Raula Gaikovina Kula for his gener-
ous advice and sharing experiences. His suggestion could help me overcome many
struggles related to research and daily life.

I am very grateful to Doctor Jun Takamatsu for sharing his advanced knowledge
in robotics field. Your advice and comments are helpful and have given me a wider
perspective and opportunities.

I am also grateful to Associate Professor Gustavo Garcia for your valuable sug-
gestions and questions for new perspectives in research and daily life.

This thesis could not have been possible without the efforts of the rest of my the-
sis committee: Professor Kenichi Matsumoto, Professor Takahiro Wada, Associate
Professor Takashi Ishio, Assistant Professor Raula Gaikovina Kula, Doctor Tsukasa
Ogasawara, Associate Professor Gustavo Garcia, and Doctor Jun Takamatsu. I
would like to thank you for your invaluable time spent reviewing my dissertation
and providing comments and suggestions.

I would like to thank all members of the Software Engineering laboratory, the

Robotics laboratory, and NAIST for being good friends, teaching me the Japanese



language and culture, and supporting me several times. It was a very touching
moment, a great lesson, and unforgettable memories.

To my dear teammates in the NAIST-RITS-Panasonic team, thank you for shar-
ing many advanced knowledge, interesting experiences, and wonderful moments since
2018. Especially Associate Professor Gustavo Garcia, Dr. Lotfi El Hafi, and Dr.
Masaki Yamamoto, thank you for being good and respectful examples in both work
and life.

To all my dear friends in Japan, especially thanks to Pedro Miguel Uriguen Eljuri
and Tomoko Yui, who have always been my great friends and shared wonderful
moments and experiences. Without you, my life in Japan would have been more
suffering.

To all my dear friends in Thailand, especially Benjarut Sripetchdanon, Chutiphon
Kongsompot, and Supapid Eknikom, thank you for always wishing each other good
things even though we are far apart.

To my beloved boyfriend, Assistant Professor Bodin Chinthanet. Thank you
for always being by my side both in joys and in sorrows. Since I was studying at
Kasetsart University, I found that you are a role model and an impressive senior.
Thank you for choosing me and going through several difficult times.

Last but not least, I would like to thank my family for their love and encourage-
ment. They always find a way of making me feel the distance and supporting me
with their affection and understanding. Especially to my two younger sisters, Tan

and Pare, who always support me mentally and allow me to follow my dreams.

vi



List of Publications

Refereed Journal Paper

« Robot Behavior Debugger for Non-Expert Users in Convenience
Stores Using Behavior Trees

Pattaraporn Tulathum, Bunyapon Usawalertkamol, Gustavo Alfonso Garcia

Ricardez, Jun Takamatsu, Tsukasa Ogasawara, and Kenichi Matsumoto.
Advanced Robotics, vol. 36, no. 17-18, 2022, pp. 951-966.

(Accepted as a journal paper)

Refereed International Conference Proceedings Paper

« Human-Robot Interaction System for Non-Expert Users in Conve-
nience Stores Using Behavior Trees

Pattaraporn Tulathum, Bunyapon Usawalertkamol, Gustavo Alfonso Garcia

Ricardez, Jun Takamatsu, Tsukasa Ogasawara, and Kenichi Matsumoto.
in Proceedings of the 2022 IEEE/SICE International Symposium on System
Integration (SII), 2022, pp. 1072-1077.

(Accepted as a conference paper)

vii



CONTENTS

1 Introduction 1
1.1 Motivation and objective . . . . . . . . ..o 1
1.1.1  Human-Robot Interaction (HRI) . ... ... ... ... ... 2

1.1.2  Operating environment . . . . . . . .. .. .. ... ... 3

1.1.3 Robot behavior . . . . ... ... ... .. ... . ... ... 4

1.2 Contributions . . . . . . . ... 5
1.3 Dissertation layout . . . . . . ... oo 6

2 Related works 8
21 Overview . . . . . ..o e 8
2.2 Human-Robot Interaction . . . .. ... .. ... .. ... ...... 8
2.3 End-User robot programming . . . . . ... ... ... ... ..... 9
2.4 Design of debugging system . . . . . ... ... 10

3 Proposed system 12
3.1 Overview . . . . .. 12
3.2 Robot behavior program . . . . .. .. ... o 0oL 13
3.2.1  Concept of a robot behavior program . . . . . ... ... ... 13

viil



3.2.2 Behavior Tree . . . . . . . .

3.3 Robot Behavior Creator . . . . .. .. ... ... ... ........
3.3.1 Behavior Tree GUIl editor . . . . .. ... ... ... .....
3.3.2 Robot simulator . . . . . .. ... oo

3.4 Robot Behavior Debugger . . . . . .. .. ... ... ... ...
3.4.1 Breakpoint . .. .. ...
3.4.2 Node execution monitoring . . . . . . . ... ...
343 Executionlog . . .. .. .. oo
3.4.4 Robot variable . . . . ... oo L oo

Experiments

4.1 Experimental Setup . . . . . .. ..o o oL
4.1.1 Convenience store setup in the simulator . . . . . . ... ...

4.2  Experiment for the robot behavior creator . . . . . . ... ... ...
4.2.1 Procedure of the experiment . . . . . . ... ... ... ....
4.2.2 Participants . . . .. ...
423 Tasks. . . . . .

4.3 Experiment for robot behavior debugger . . . ... ...
4.3.1 Procedure of the experiment . . . . . . ... ... ... ....
4.3.2 Participants . . . . .. ...
4.3.3 Tasks. . . . . . . e

4.4 Evaluation . . . . .. ...

Results

5.1 Experimental results of robot behavior creator . . . . . . . ... ...

5.2  Experimental results of robot behavior debugger . . . . . . . . .. ..

Discussion

Conclusion

7.1 Summary . .o oL e

7.2 Opportunities for Future Research . . . . . . . . ... ... ... ...

X

27
27
27
29
29
30
31
35
35
36
36
42

44
44
48

55



LisT OF FIGURES

1.1

1.2

3.1

3.2

3.3

3.4

3.5

3.6

Examples of HRI applications in various environments and situations
such as bookstores, restaurants, hospitals, and convenience stores.
An example of a situation in a convenience store where a robot inter-

acts with a customer who is shopping in the store. . . . . . . . . . ..

Overview of the proposed system shows the working process and users’

Concept of human making decision by paring a human action as con-
dition and a robot reaction as action from the perspective of the robot
Example of a Behavior Tree that represents the robot behavior to
check whether or not a human is waving her hand . . . . . . . .. ..
Proposed robot behavior creator to assist non-expert users in creating
a robot behavior program. . . . .. .. ..o oo
A comparison of the simulator with a human avatar between the case
where a robot behavior is successfully executed. (a) shows the case
that robot interacts with a human avatar waving and (b) shows the
case that robot interacts with a human avatar picking . . . . . . . ..
Proposed robot behavior debugger to assist non-expert users in finding

and fixing issues in the robot behavior program. . . . . . .. .. . ..

15



3.7

3.8

3.9

4.1
4.2

4.3
4.4
4.5
4.6
4.7

5.1
2.2
2.3
0.4
2.5
2.6

Example of breakpoint feature usage. Non-expert users can turn ON

a breakpoint at any node to pause the executed program intentionally.

A comparison of the node execution monitoring feature between the
case where a robot behavior is successfully executed. (a) shows the
case that robot is able to detect a human waving, otherwise, (b) shows
ISSUES OCCUT .« « v v v v vt e e et e e e e e e
A comparison of the node status logging feature between the case
where a robot behavior is successfully executed. (a) shows the case
that robot is able to detect a human waving, otherwise, (b) shows

ISSUES OCCUTL  + v v v v o e v e e e e e e e s,

Convenience store environment for the simulation in my experiment. .
The given robot behavior program of the first task. A buggy tree with
bugs is highlighted in red. To solve this task, the non-expert users
have to understand the conditions and actions that the robot will use
to make a decision and the rule of the robot behavior program that
always executes a tree from top-to-bottom and left-to-right . . . . . .
Example of solutions for the second task. . . . . .. ... ... ....
Example of solutions for the third task. . . . . . .. ... ... ....
Robot behavior program for the first task. . . . . .. ... ... ...
Robot behavior program for the second task. . . . . . ... .. .. ..
Example of solutions for the third task. To solve this task, the sub-
jects have to understand the concept of the robot behavior programs
for creating the robot behavior program and use the debugging func-

tionalities to solve issues based on the situation. . . . . . . . . . . ..

Numbers of attempts that users spent during the experiments

Distribution of the result from SUS score. . . . . .. ... ... ...
Number of attempts to finish each task from both experiments . . . .
Time to finish each task from both experiments . . . ... .. .. ..
Distribution of the result from SUS score from both experiments . . .

Mapping of the SUS score and the adjective rating. . . . . ... ...

X1

23

24

25

28

32
33
34
38
39

41

46
47
20
ol
52



6.1 Examples of a complex robot behavior program that contains various

nodes and branches. . . . . . . . .

xii



LisT OoF TABLES

4.1

4.2

4.3

4.4

0.1

5.2

The list of human actions and robot reactions available in my experi-

Demographic of the experimental subjects for the first experiment (ten
graduate students). . . . . . ...
Demographic of the subjects in the second experiments. (u-student =
undergraduate student). . . .. ... L L
Ten questions of the System Usability Scale for evaluating a robot
behavior creation system. Participants have to give a score from 1

(strongly disagree) to 5 (strongly agree). . . . . ... ... ... ...

Number of subjects that are able to fix and create the Behavior Trees
correctly for each task. . . . . . . ... ... ... L.
Number of subjects that are able to fix and create the Behavior Trees

correctly for each task. . . . . . .. ... oL

Xiil

45

48



CHAPTER

INTRODUCTION

1.1 Motivation and objective

In recent years, many countries such as Japan have been facing labor shortage issues
(e.g., decreasing productivity, reducing innovation and development, and difficulty
in scaling the business) caused by a declining fertility rate and an aging society [1].
With the advancement of robot technology, robots can be used to facilitate human
beings in their daily lives, which is an alternative way to reduce the labor shortage
problem [2]. One of the concerns when using robots in a real-world environment is
their suitability for the situation and location, as users must consider factors such
as human and environmental safety or the accuracy of the work assignments. To
address this challenge, robot users who do not have the knowledge and understanding
of robots (i.e., non-expert users) should consider and decide on their own how the

robot will work according to the situation and location.



The objective of this dissertation is to provide support to non-expert users in
configuring the robot behavior by themselves. Specifically, this dissertation proposes
a system for non-expert users to create, test, and debug a robot behavior program
without the requirement of robot programming experience. The proposed system
was designed based on analogies of software development by providing visual in-
formation and drag-and-drop composition to assist the users in making a program.
The proposed system was evaluated with 24 subjects in total for two experimen-
tal purposes. The first experiment was conducted to evaluate to find out whether
those subjects are able to create the robot behavior program with the GUI with ten
subjects who have no experience with robot programming. The second experiment
was evaluated with 14 subjects who could potentially be robot users in the example
scenario in terms of effectiveness and usability to create robot behavior programs.
The evaluation results show that non-expert users can use the proposed system to

create, test, and debug robot behavior programs.

1.1.1 Human-Robot Interaction (HRI)

As labor shortage issues can have a negative impact on business and the economy,
adopting a robot is one of the alternatives that can reduce the labor shortage prob-
lems and facilitate human beings in their daily lives as a robot can autonomously
interact, communicate, and deliver service to customers [3]. HRI becomes essential
as the robot should respond to human needs and cooperate to reduce human work-
loads. Service robots are one example of HRI being used to serve customers in differ-
ent locations and purposes as they can interact with humans and the environment.
Figure 1.1 shows that the service robots perform tasks in various environments and
situations such as bookstores, restaurants, hospitals, and convenience stores. Each
environment has different location settings, target users, and purposes. Therefore,
robot behaviors have to be designed differently based on different environments and
situations. For example, a serving robot in a restaurant requires to work interactively

while a cleaning robot in a hospital requires to work silently.



Figure 1.1. Examples of HRI applications in various environments and situations

such as bookstores, restaurants, hospitals, and convenience stores.

1.1.2 Operating environment

Convenience stores are one of those service locations where store employees and
robots can work together in the same environment [4]. In such an environment,
it is challenging for robots as they must respond automatically to human behavior
and be ready to cope with a constantly changing environment [5]. For example,
robots can make in-store management quick and easy, performing a variety of tasks
such as stocking items on shelves and cleaning the environment. Robots can also
interact with and serve customers while shopping in the store. Moreover, robots
can help improve store operations as they can work continuously in 24-hour stores.
Therefore, the robot behavior has to be appropriately programmed to handle the
dynamic environment. As in the case of humans, robots should be able to observe
customer actions and decide on appropriate interactions. Fig. 1.2 shows the example

of a situation in a convenience store, where a customer is looking for something.



Observed human action

= Looking

Desired robot reaction

“Are you looking

@ for something?”

Figure 1.2. An example of a situation in a convenience store where a robot interacts
with a customer who is shopping in the store.

b}

When the robot notices that the customer is “looking,” it responds to the behavior
by saying “Are you looking for something?” However, the robot reaction can be
anything decided by users to communicate with the customer such as speech (e.g.,
“Welcome,” “Thank you,” and “Please wait a moment”) and movement (e.g., waving

the robot arm, stop or continue working, and move to a different place).

1.1.3 Robot behavior

Robot behavior refers to the actions and movements of a robot in responding to its
conditions from surrounding environments such as humans, other robots, animals,
or the layout of the working places. Using sensors, the robot can perceive informa-
tion and make sense of its surroundings and situations. After that, it will obtain
that data to process and decide to perform behaviors. Choosing a suitable robot
behavior is challenging due to several factors. For example, a robot often operates
in complex environments that can change quickly and unpredictably. Moreover, the

robot may need to communicate with humans, surrounding environments, or other



robots. Therefore, it is difficult to design proper robot behaviors. Another factor is
the target user of the robot.

In this research, two types of robot users were considered based on their expertise
in robotics [6, 7]. The first one is expert users, such as robotics engineers with
knowledge and experience in robot programming. The second one is non-expert
users, such as shop assistants with no robotic knowledge or experience. Expert users
can customize the robot behavior, but they may not be familiar with the actual
in-store environment and require requirements from non-expert users. Non-expert
users, on the other hand, are more familiar with the store environment and know
what behavior the robot is supposed to behave in the store. However, they need to
rely on expert users to edit or reprogram the robot behavior because they do not

have the knowledge and experience to do it themselves.

1.2 Contributions

The contributions of this dissertation are five-fold. First, a concept of a robot be-
havior program for non-expert users. Second, a robot behavior creator with the
simulated convenience store environment. Third, a robot behavior debugger for
identifying the issues in the robot behavior program. Forth, a subjective evaluation
with real non-expert users. Fifth, a discussion of the evaluation results with a list
of comments from non-expert users for future researchers. The following is a brief

description of each contribution:

1. A concept of a robot behavior program for non-expert users based on the human
decision-making process. The robot behavior program describes the interaction
of a robot and surrounding environments by a series of if-then rules, such as a
pair of human actions and its robot reaction. This concept is represented by

using Behavior Trees. (Chapter 3: Section 3.2)

2. A robot behavior creator that allows non-expert users to create and test the
robot behavior program. This includes a graphical user interface and a visu-
alization of the simulated convenience store environment. Non-expert users

can create the program and test it in the provided simulator, which can be



used to observe how the robot interacts with the human avatar. (Chapter 3:
Section 3.3)

3. A robot behavior debugger that allows non-expert users to identify issues in the
robot behavior program. There are four available debugging features including
(i) breakpoint, (ii) node execution monitoring, (iii) execution log, and (iv)

robot variable monitoring. (Chapter 3: Section 3.4)

4. A subjective evaluation with non-expert users who do not have any experience
in robot programming. This evaluation confirms the effectiveness of the pro-
posed system for creating and fixing the robot behavior program in terms of
(i) the number of non-expert users who can finish tasks, (ii) the spent time,
and (iii) the system usability (SUS score). (Chapters 4 and 5)

5. A discussion and lessons learned from the experimental results. This shows
how non-expert users perceive the proposed system based on their comments.
The discussion provides insight into the potential factors that may affect the
effectiveness of the proposed system. It also opens the possibility to improve

the proposed system for future researchers. (Chapter 6)

1.3 Dissertation layout
The rest of this dissertation is organized as follows:

Chapter 2 This chapter introduces the ideas of human-robot interaction (HRI),
end-user robot programming, and debugging system design. It also provides

the related works for each idea.

Chapter 3 This chapter introduces the proposed solution to create, test, and de-
bug robot behavior programs for non-expert users. First, the concept of the
robot behavior program and behavior trees are detailed. After that, the details

of a robot behavior creator and a robot behavior debugger are presented.



Chapter 4 This chapter explains the experiments for evaluating the proposed sys-
tem. First, the details of the environment for the proposed system are ex-
plained. Then, the task descriptions with the participant information are pre-

sented. Finally, the tasks for evaluating the proposed system are discussed.

Chapter 5 This chapter presents the results of the experiments. It includes the
performance of participants to solve given tasks, system usability test, and

discussion.

Chapter 6 This chapter addresses the lessons learned from the results of subjective

evaluations including feedback from the subjects.

Chapter 7 This final chapter concludes the dissertation and highlights the features

of the proposed solutions.

,—| Summary .

o The motivation of this dissertation is the necessity of using robots to solve

labor shortage issues.

« My objective is to develop a system for non-expert users to create, test,
and debug a robot behavior program without the requirement of robot
programming experience.

o The contributions of this dissertation are five-fold: First, a concept of a
robot behavior program. Second, a robot behavior creator with the
simulator. Third, four robot behavior debugging features. Forth, a
subjective evaluation with real non-expert users. Fifth, a discussion of the

evaluation results.




CHAPTER

RELATED WORKS

2.1 Overview

Allowing non-expert users to program a robot makes the technology more accessible
and reduces issues such as labor shortages. This chapter introduces the related
works of this dissertation including (i) Human-Robot Interaction (HRI), (ii) End-
user Robot Programming, and (iii) the design of debugging system.

2.2 Human-Robot Interaction

Human-Robot Interaction is a rapidly growing field of study that involves under-
standing how humans interact with robots and developing effective, efficient, and
user-friendly systems [8]. HRI plays an important role in service robots for studying

robot behaviors to interact and assist humans in daily lives [3, 9, 10]. Using robots to

8



serve human is one possible way to deal with the aging problem and labor shortage
problem [11] as a variety of environmental factors that influence the spread of tech-
nologies (e.g., labor costs, power dynamics within organizations and the character
of particular job responsibilities [12]). A convenience store is one of the challenging
places where a service robot can cooperate and coexist with humans [13]. In this
situation, the service robot has to make responses based on the behavior [4, 5]. Shi
et al. [14] reported that some shop owners agreed that they would rather operate
robots than hire people because the robot cost is cheaper and more likely to attract
customers. Therefore, the robot behaviors need to be explicitly configured. To make
service robots work in different environments, the robot behaviors need to be con-
figured specifically. Oishi et al. [15] created a prototype tool for non-expert users
to configure pre-programmed robot behaviors, but did not allows them to custom
the complex behaviors. However, expert users do not know the appropriate robot
behaviors for the actual environment. In contrast, non-expert users know the needed
behaviors but do not have the knowledge and experience to make them [6]. Overcom-
ing that limitation is quite a challenge as it is needed to find a convenient approach
to empower non-expert users to configure robot behavior by themselves [16]. In this
dissertation, I use Behavior Trees to represent a robot behavior program. This allows
non-expert users to use drag-and-drop composition to create a program instead of

writing the actual source code.

2.3 End-User robot programming

End-user Robot Programming enables non-experts to program robots without exten-
sive prior knowledge or experience, leading to greater accessibility and wider use of
robots in everyday life [17, 18, 19]. Creating robot programs by end-users, especially
non-expert users, is interesting as they may have different perspectives from the ex-
pert users (e.g., robot engineers). However, empowering non-expert users to create
robot programs for end users can be challenging as they have neither knowledge nor
experience [20, 21]. Weintrop [22] reported that I can encourage non-expert users
to make a program via more accessible methods such as drag-and-drop program-

ming instead of the traditional typing method. There are several studies that have



proposed visual programming tools to create a robot program. For example, Akiki
et al. [23] proposed block-based programming that helps end-users including non-
expert users to make robot programs by preparing interfaces and functionality from
expert users. Mayr-Dorn et al. [24] assessed end-user programming of robotics in
industrial production cells. They highlighted that non-programmers would need ad-
ditional assistance for robot programming. Savidis [25] proposed the programming
experience requirements for visual programming based on standard programming
environments. Coronado et al. [26] showed a comparison between different GUI
frameworks for non-expert user programming, Behavior Tree and Block-based tools,
based on their functionality but did not evaluate those tools in the real situation
with humans. Balakirsky et al. [27] proposed an ontology approach to perform a
simple kitting task. Iovino et al. [28], Nicolau et al. [29], Marcotte and Hamilton
[30] showed that the Behavior Tree is one of the popular frameworks for describing
the behavior of artificial intelligence or robots. Tulathum et al. [6], Rovida et al.
[31], Marzinotto et al. [32] used the extended Behavior Tree to describe the robot
behavior program. Other researchers attempted to generate the Behavior Tree from
human demonstration [33]. Unlike related works, I not only focus on providing a
tool for non-expert users to create the robot behavior program but also focus on the

testing and debugging process as well.

2.4 Design of debugging system

The design of a debugging system is a critical aspect of end-user robot programming,
as it helps to identify and resolve errors in robot behavior, resulting in more reliable
and accurate performance. Debugging is a basic term in software development and
it is defined as “the attempt to pinpoint and fix the source of an error” [34]. In
practice, debugging is a complex process influenced by users’ experience levels and
the tools they have at their disposal. Lawrance et al. [35], Bednarik [36] found that
software developers usually find a clue in the program first for debugging tasks.
Tkeda and Szafir [37, 38] reported that the provided visualization tool via 2D and
3D displays could improve the expert users’ debugging capabilities. Eclipse IDE,

a well-known tool for the Java language, provides features for debugging software

10



such as showing logs, variables, and breakpoints [39]. Murphy et al. [40], Beller
et al. [41], and Perscheid et al. [42] reported that the breakpoint feature is one
of the most frequently used features in software development practice. Bednarik
[36], Grigoreanu et al. [43], Manfredi et al. [44], Cao et al. [45], on the other hand,
investigated the strategy to debug a program by end-user. They found the end-users
use a sensemaking model in the debugging process and usually rely on both code
and graphical representation of the code or data. For debugging the program with
interactive data, Hoffswell et al. [46], Tolksdorf et al. [47] demonstrated a tool that
allows developers to replay and inspect information of data logs over time step-by-
step. In terms of robotics debugging research, Campusano and Bergel [48] extracted
the log traces and visualized the state of the robot using a state machine model. In
this dissertation, I provide four debugging features including (i) breakpoint, (ii) node
execution monitoring, (iii) execution log, and (iv) robot variables to allow non-expert

users to figure out the problems.

,—| Summary .

o Related works on HRI and end-user programming focus on the graphical

interface for creating a robot program.

o This dissertation not only focuses on the graphical interface for creating
the robot behavior program but also focuses on debugging and testing
with visualization and simulation.

o This dissertation also provides approaches to evaluate the effectiveness of

the robot behavior creator and debugger.

11



CHAPTER

PROPOSED SYSTEM

3.1 Overview

This chapter describes a visual programming approach to support non-expert users
in creating a robot program without knowledge and experience. The key concept of
the proposed system is to allow non-expert users in making pairs of human actions
and robot reactions to create a program using drag-and-drop composition through
GUI without coding. After creating a program, non-expert users can confirm the
result via the simulated convenience store environment with the actions of the human
avatars. Moreover, non-expert users can fix issues in the robot behavior program
using provided four debugging features in order to speed up debugging process.
This chapter is organized as follows. Section 3.1 shows the overview of the pro-
posed system, challenges, and examples of the system usage. Section 3.2 presents the

details of the robot behavior creator with the idea and concept of the robot behavior

12



program. Finally, Section 3.3 presents the robot behavior debugger with its idea and

concept of each feature.

3.2 Robot behavior program

This section introduces the overview of the proposed system. Figure 3.1 shows the
working process and users’ roles. To use the robot behavior creator, expert users need
to prepare sets of human actions and robot reactions as a preliminary process. Then,
non-expert users can use those functionalities to create a robot behavior program by
making pairs of human actions and robot reactions from the prepared sets. After
that, non-expert users can test their created programs via the robot simulator to see
how a robot responds to a customer in a simulated convenience store environment.
When the non-expert users observe that there is an unexpected result, they can
use the proposed debugger to debug the program via four components including
breakpoints feature, node execution monitoring feature, node status logging feature,
and robot status feature. Examples of my system usages are shown in the following
link: https://youtube.com/playlist?list=PLCMeFFUGH8tqqzykNbLwf6uudgF1
yLLsN

3.2.1 Concept of a robot behavior program

The concept of a robot behavior program is a mimic of the human decision-making
process [49]. The decision-making process starts with humans collecting a piece of
information from the past and the present. Then, they use this information to reason
and decide what to do in the next step. During the reasoning process, humans have
to set some criteria in order to make a decision based on the collected information.
By looking at the robot perspective, human action can be used as a condition for
deciding which response should be made. Figure 3.2 shows an example of how a
human makes a decision in the robot perspective. Human action is considered as the
condition while robot reaction is considered as the action of the robot. From this

example, if human action is waving, robot should react by saying “Welcome!”.

13


https://youtube.com/playlist?list=PLCMeFFUGH8tqqzykNbLwf6uudgF1yLLsN
https://youtube.com/playlist?list=PLCMeFFUGH8tqqzykNbLwf6uudgF1yLLsN

Expert user’s role

Non-expert user’s role

* Humanactions | = L_— " "~ " |
* Robot reactions § Out of focus

Create

Robot behavior Debug

program

Test Debug cycle Debugger

T

Simulator
Find a bug

>
(@]
—+
c
i
=
(@]
(on
(@)
—t

Figure 3.1. Overview of the proposed system shows the working process and users’

roles.

14



“Welcome!” | Stop moving

O‘I(E O‘IC

“Welcome!”

O‘l()

Figure 3.2. Concept of human making decision by paring a human action as condition

and a robot reaction as action from the perspective of the robot

15



3.2.2 Behavior Tree

O
? Fallback
Fallback
D/\O

=» Sequence A:Robot say | will clear the space
Sequence Robot_say_| will_clear_the space
) [IN] Breakpoint

)

O, O

A:Robot_say Welcome
Is_customer_waving

Robot_say Welcome
[IN] Breakpoint [IN] Breakpoint

Figure 3.3. Example of a Behavior Tree that represents the robot behavior to check

whether or not a human is waving her hand

The Behavior Tree is a tree-like structure representing task switching in the robot
under various conditions to construct a robot behavior program [32, 50]. Figure 3.3
shows an example of Behavior Tree which can be interpreted as: (i) the robot will say
“Welcome” when a human waves hands, otherwise (ii) the robot will say “I will clear
the space.” The concept of the Behavior Trees is that the program must be executed
step by step from top-to-bottom and left-to-right. Moreover, the Behavior Trees
provide human readability, code reusability, and modularity. Therefore, non-expert

users can use it to create robot programs by mimicking human thinking processes for

16



deciding whether to do or skip a task. Note that this dissertation uses the simplified
version of the Behavior Tree, which the differences are discussed in Chapter 6.

The proposed system uses four Behavior Tree nodes to represent the robot be-
havior program, namely, (i) condition node, (ii) action node, (iii) sequence node,
and (iv) fallback node. Each node has its own status (i.e., success, running, and
failure), which returns after executing that node and may affect the other nodes.
The essential nodes for creating a program are the condition node and the action
node, which the robot uses to make a decision and respond to a human. The condi-
tion node represents the human actions that the robot uses to make decisions before
proceeding to the next node. The action node represents how the robot responds to
human actions (e.g., speech, and motion). To make a robot performs complex ac-
tions, additional nodes are needed for considering whether to continue or skip a task.
Therefore, this dissertation uses the sequence node and the fallback node because the
concepts of these nodes are straightforward to decide whether to continue the task
as long as the node status is success, or to try executing the node until its status is
success, respectively. The sequence node is a control node that is used to decide how
to continue doing the tasks. This node will visit each child node from the leftmost
child to the right sequentially until successfully executing every node. If the status
of all nodes under the sequence node are success, the status of the sequence node
will also be success. Otherwise, the status of the sequence node will be failure. The
fallback node is another control node that is used to decide what to do or if a task
should be skipped. This node will visit each child node from the leftmost child to the
right sequentially until finding the first child node that is successfully executed. If
the status of all nodes under the fallback node are failure, the status of the fallback
node will be failure too. If at least one of the child nodes succeeds, the status of the

fallback node will be success.

3.3 Robot Behavior Creator

The system consists of a Behavior Tree GUI editor and a robot simulator. Figure 3.4
shows the robot behavior creator. This system allows non-expert users to create a

robot behavior program via GUI and test it with the robot simulator.

17



Prepared functionalities Robot behavior programs
by expert users by non-expert users

Human actions (= Robot’s condition)

Control
Fallback

Actvlon

Stop moving “Welcome!”

S Control P
o Robot stops moving
-al Breakpoint: OFF
2 Condition Condition Condition Condition Action

o Is customer Is customer Is customer Is customer waving? Robot says “Welcome”

'5 waving? picking? doing nothing? Breakpoint: OFF Breakpoint: ON

S

© p

ﬁ Robot reactions (= Robot’s action) Robot simulator

0 ——

whd

o

K]

o

(14

Qe Qe :‘ :

. . , g

L ]
Action Action
Robot stops Robot says
moving “Welcome!”
Behavior tree monitoring Log with status

14/02/2022 09:00:02 Root
14/02/2022 09:00:02 Fallback --
14/02/2022 09:00:02 Sequence --
Control 14/02/2022 09:00:02 Customer is waving --

Fallback 14/02/2022 09:00:02 Robot says welcome -

Control Action .
Sequence Robot stops moving ) Variables

Breakpoint: OFF [14/02/2022 09:00:02]:
Human action: “Waving”

Robot status: “Running”

Robot behavior debugger

Condition Action Difference between human and robot: 0.5 m
Is customer waving? Robot says “Welcome”
Breakpoint: OFF Breakpoint:

Figure 3.4. Proposed robot behavior creator to assist non-expert users in creating a

robot behavior program.

3.3.1 Behavior Tree GUI editor

I provide a Behavior Tree GUI to allow non-expert users to create robot behavior

programs by constructing nodes and edges visually. First, expert users need to

18



prepare a set of human actions and robot reactions as Behavior Tree condition nodes
and action nodes, respectively. Then, non-expert users can choose desired Behavior
Tree nodes in the panel using drag-and-drop into the creative space to create the

program. This system uses Groot! as the Behavior Tree GUI.

3.3.2 Robot simulator

A robot simulator that allows non-expert users to test their created robot behavior
programs. The simulator is a supporting tool for non-expert users that provides a
graphical simulated robot working in a convenience store environment. After creating
a robot behavior program, non-expert users can test their program via the provided
robot simulator to see how the virtual robot interacts with the actions of human
avatar. Figure 3.5 shows examples of human actions in simulator which are waving
and picking. Therefore, non-expert users can visualize how the robot responds to
human actions. The simulator is not only for testing the program but can support
users to find bugs in the program. When non-expert users observe any issues in the
simulation (e.g., a robot responds to the human with a wrong reaction), they can
use that information to fix the bugs via the Behavior Tree GUI editor. This system

uses Gazebo? as the robot simulator.

3.4 Robot Behavior Debugger

In addition to the robot behavior creator, I propose a robot behavior debugger to
assist non-expert users to fix issues in the robot behavior program. Figure 3.6 shows
my current proposed system in the solid frame to add debugging abilities. The robot
behavior debugger has four features: (i) breakpoint, (ii) node execution monitoring,

(iii) execution log, and (iv) robot variables.

LGroot, https://github.com/BehaviorTree/Groot
2Gazebo, http://gazebosim.org/

19



LA IR =0l

L2 e

(b) Simulator with a human avatar picking.

Figure 3.5. A comparison of the simulator with a human avatar between the case
where a robot behavior is successfully executed. (a) shows the case that robot inter-
acts with a human avatar waving and (b) shows the case that robot interacts with a

human avatar picking

20



Prepared functionalities Robot behavior programs
by expert users by non-expert users

Human actions (= Robot’s condition)

1
1
1
1
1
1
1
|
I
'O
I
1 @©
1
1 9 Condition
: o Is customer

= aving?
: 9 waving
' 3
= . : .
) Robot reactions (= Robot’s action)
10
!4 “Welcome!’
i
1
' (o) | &
| A
1 N
: Action
| Robot says
1 “Welcome!”
1

Behavior tree monitoring Log with status

m 14/02/2022 09:00:02 Root
14/02/2022 09:00:02 Fallback --
14/02/2022 09:00:02 Sequence --

Control 14/02/2022 09:00:02 Customer is waving --

Fallback 14/02/2022 09:00:02 Robot says welcome --
Control Action =
Sequence Robot stops moving Variables

Breakpoint: OFF [14/02/2022 09:00:02]:
Human action: “Waving”

Robot status: “Running”

Robot behavior debugger

Condition Action Difference between human and robot: 0.5 m
Is customer waving? Robot says “Welcome”
Breakpoint: OFF Breakpoint: ON

Figure 3.6. Proposed robot behavior debugger to assist non-expert users in finding

and fixing issues in the robot behavior program.

21



3.4.1 Breakpoint

A breakpoint is a feature that can be set to suspend the execution of the running
program [51]. Breakpoints help developers to pause the program and check the status
of the working environment to find the root cause of issues in their code, as shown
in Figure 3.7. With the similar nature of creating the robot behavior program and
writing the code, 1 proposed the breakpoint feature to pause the robot behavior
in the program at the specific nodes. Moreover, my system allows users to pause
and continue the program with multiple breakpoints. The example of breakpoint
usage is shown in Figure 3.7. When the program finds the first breakpoint, it will
pause and continue from the specific node until it reaches the next breakpoint. By
using breakpoints, non-expert users can observe the robot behavior in the simulated

environment through the following features that I propose.

3.4.2 Node execution monitoring

To visually show the progress of robot behavior, I can visually show it on the Behavior
Tree directly. Hence, I provide the feature to monitor the status of node execution
within the Behavior Tree by highlighting nodes and edges in different colors. The
example of the execution monitoring as shown in Figure 3.8. The status color codes
are the following: (i) Orange for running, (ii) Green for success, and (iii) Red for

failure.

3.4.3 Execution log

Logging information is used to observe how the events occurred or how the program
runs. It is important to understand the current status of the robot behavior to
address bugs in the robot behavior program. In this work, I provide the information
of node status that is being processed in the program with a timestamp. The example
of execution log is shown in Figure 3.9. The status that I provide consists of (i)

running, (ii) success, (iii) failure, and (iv) break (i.e., when reached a breakpoint).

22



? Fallback

Fallback

°
->Sequence A:Robot_say_|_will_clear_the_space
Sequence Robot_say_|_will_clear_the_space
° [IN] Breakpoint

°
Is_customer_wavir A:Robot_say_Welcome
Is_customer_waving

[IN] Breakpoint

(a) Behavior Tree GUI after turning ON the breakpoint

foot@nrp:~/nrp# rosrun nrp_intUIt{Ve_programming check_breakpoint.

Py
[INFO] [1645929929.687982, 0.000000]: Logging and Breakpoint subsc

ribers are running

02:45:47 Robot_say I will clear_the_space --
02:45:47 Fallback --
02:45:47 Root -- RUNNING

02:45:47 Fallback -- RUNNING
02:45:47 Sequence -- RUNNING
02:45:47 Is_customer_waving --
02:45:47 Sequence --

:45:47 Robot_say I will clear_the _space -- BREAK

Press Enter to resume:

(b) Log after turning ON the breakpoint

Figure 3.7. Example of breakpoint feature usage. Non-expert users can turn ON a

breakpoint at any node to pause the executed program intentionally.

23



File Tools Help

 BehaviorTree

.
? Fallback
Fallback
.

°
->Sequence A:Robot_say | will_clear_the_space
Sequence Robot_say_|_will_clear_the_space

. (IN] Breakpoint

e °
A:Robot_say_Welcome
Is_customer_waving Robot_say_Welcome

[IN] Breakpoint [IN] Breakpoint

.
? Fallback
Fallback
.

° °
->Sequence A:Robot_say_|_will_clear_the_space
Sequence Robot_say_|_will_clear_the_space
° [IN] Breakpoint OFF

L]
A:Robot_say_Welcome

Is_customer_waving

(b) Behavior Tree monitoring with some failure status (i.e., some red nodes).

Figure 3.8. A comparison of the node execution monitoring feature between the case
where a robot behavior is successfully executed. (a) shows the case that robot is able

to detect a human waving, otherwise, (b) shows issues occur

24



Sequence --
Fallback --

Root -- RUNNING
Fallback -- RUNNING
Sequence -- RUNNING
Is_customer_waving --
Robot_say_Welcome --
Sequence --

Fallback --

Root -- RUNNING
Fallback -- RUNNING
Sequence -- RUNNING
Is_customer_waving --
Robot_say Welcome --
Sequence --

Fallback --

(a) Log status with success status.

Sequence --

Robot_say_I will_clear_the_space --
Fallback --

Root -- RUNNING

Fallback -- RUNNING

Sequence -- RUNNING
Is_customer_waving --

Sequence --

Robot_say I will clear_the_space --
Fallback --

Root -- RUNNING

Fallback -- RUNNING

Sequence -- RUNNING
Is_customer_waving --

Sequence --
Robot_say I will clear_the_space --
Fallback --

(b) Log status with failure status.

Figure 3.9. A comparison of the node status logging feature between the case where
a robot behavior is successfully executed. (a) shows the case that robot is able to

detect a human waving, otherwise, (b) shows issues occur

25



3.4.4 Robot variable

As mentioned by the subjects in my preliminary study, it is hard to understand the
robot and human status in the simulator. To fill this gap, I propose a debugging
feature to show the robot status, current human action, and distance between them

which are gathered from the simulator.

,—| Summary

e The key concept of the proposed system is to allow non-expert users in

making pairs of human actions and robot reactions to create a robot
behavior program using drag-and-drop composition through GUI.

e The robot behavior program is represented by Behavior Trees.

e The robot behavior creator allows non-expert users to create the robot
behavior program and test it in the simulated convenience
store environment.

o There are four features for the robot behavior debugger including (i)
breakpoint, (ii) node execution monitoring, (iii) execution log, and (iv)

robot variables.

26



CHAPTER

EXPERIMENTS

4.1 Experimental Setup

This chapter describes the experimental setup, the details of the subjects, tasks, and
subjective evaluation of the robot behavior creator and the robot behavior debugger.
Specifically, the details of a convenience store in the simulator and the experimental

procedure are explained below.

4.1.1 Convenience store setup in the simulator

As shown in Figure 4.1, the convenience store environment setup in the simulator
has one robot with two shelves and one human avatar that is in the robot’s working
area. The URbe robot arm which has 7 degrees of freedom mounted on a mobile

base in front of shelves (i.e., 60 centimeters) is used for the experiments.

27



(a) Human, robot, and convenience store environment in Gazebo sim-
ulator

Shelf 1

UR5e robot
with end-effector
on mobile base

(b) Top-view diagram of human, robot, and convenience store.

Figure 4.1. Convenience store environment for the simulation in my experiment.

28



During the experiment, the human avatar can change position within or outside
the robot working area (i.e., 1 meter). This human avatar can perform actions
depending on the given tasks. As shown in Table 4.1, there are four human actions

and eight robot reactions that can be used within the proposed system.

Table 4.1. The list of human actions and robot reactions available in my experiment.
Robot reactions

Human actions

Speech Motion
- Waving their hands - Saying “Please go ahead” - Halting the current task
- Looking for an item - Saying “Welcome” - Continue the current task
- Picking an item - Saying “Thank you”

- Approaching a robot within 1 m | - Saying “I will clear the space”
- Saying “Please wait a moment”

- Saying “I will resume my work”

4.2 Experiment for the robot behavior creator

The objective of this experiment is to evaluate whether or not non-expert users can
create and test robot behavior programs by using the concept of pairing human
action and robot reaction. The details of the procedure, participants, and tasks are

shown in the following sections.

4.2.1 Procedure of the experiment

The experiment for assessing the effectiveness of the robot behavior creator took
around 90 minutes for each subject. The procedure of the experiment is detailed as

follows:

1. Each subject was tutored for up to 30 minutes individually. I instructed the
subjects as follows: (i) introducing HRI in convenience store, (ii) introducing
the robot behavior program, (iii) showing an overview of the robot behavior
creator with the simulator. Participants also got five minutes to practice with

an example task and ask for clarification during the tutoring process.

29



2. Each participant spent approximately 50 to 60 minutes completing three given
tasks. The details of the tasks are stated in Section 4.2.3.

3. Information from the experiment and feedback from subjects were collected for

the evaluation detailed in Section 4.4.

4.2.2 Participants

As this experiment is an exploration to find whether non-expert users understand
the concept of the robot behavior program, I recruited graduate students who did
not have IT-related backgrounds as the experimental subjects. Table 4.2 shows the
demographics of the subjects. My participants consist of four females and six males.
The age range of the participants is from 25 to 31 years old (The median of the
participants is 26 and the standard deviation is 2.39). There are six participants who
are studying in the biological science division and four participants who are studying
in the material science division. For the experience in programming, all participants
do not have any experience in robot programming. There is one participant who
has experience in visual programming (e.g., Scratch: block programming). Five
participants have experience in at least one programming language, but mainly from

university courses (e.g., C#, Java, and Python).

Table 4.2. Demographic of the experimental subjects for the first experiment (ten

graduate students).

Number of subjects | 10
25 to 31 5 old
Age Range o. years o
(Median = 26, SD = 2.39)
F (l - 4
Gender emate
Male = 6
L. Biological Science = 6
Division ) )
Material Science = 4
# participants Robot programming = 0
who have experience | Visual programming = 1
in programming Other programming = 5

30



4.2.3 Tasks

The first task of this experiment is to fix a provided, buggy robot behavior program to
comply with the given situation. This task aims to confirm that subjects understand
the basic concept of the robot behavior program. As shown in Figure 4.2, the given

situation is detailed as follows:
o If a human is waving at the robot, the robot should say “Waving.”
o Otherwise, the robot should say “Please go ahead.”

For the initial buggy robot behavior program in Figure 4.2 (left), there are three
mistakes (i) wrong control node, (ii) wrong action node, (iii) misplaced condition
node. The correct robot behavior program is shown on the right side of the figure.

The second task is to create a simple robot behavior program with only a single
condition. Non-expert users have to create the program from scratch (i.e., no initial
program). Figure 4.3 is the example solution for the second task. The situation in
this task is:

o If the robot detects human waving, then the robot should say the following

sentences:

1. “I will clear the space.”

2. “Please wait a moment.”

o Otherwise, the robot should say “Thank you.”

The third task is to create a more complex robot behavior program with multiple
conditions. Figure 4.4 is the example solution for the third task. The situation in
this task is:

31



S11-01-J9] pue
wo}30q-03-doj WoIJ 991} © $9JNI0X0 sAemTe Jey} weIrdord I01aRYD( 0O Y} JO SN Y} PUER UOISIIOP & SXBU 0}
9STL T[IM J0qOI 91} JBT[} SUOTI}OR PUR SUOTIIPUOD 9} PURISIOPUIL 0} dARY SI9sN }10dX9-U0U ) ‘S SIY} OA0S O,

‘pol1 ur pajySIUSIY ST SSNq YIIM 9911 AFSN(q Yy ¥Se) JS1Y o) Jo wreIisord I0IARYa( JOQOI USALS Y, "¢’ oINS

1jnsaJ paldadx] 93J3 Joineyaq A33ng

aWodPM AeS 30q0y Buinem buiop JawoIsn)
QWOod9M Aes 30q0Y Y

P Buinem Buiop Jawo3isn) awodPdM Aes30q0y

£ 9pOU uOoI}IpuUOod dde|dSIA P 2wod|9M Aes 30q0Y 1Y

Juawow e jlem asead Aes 30qoy aouanbas

jJuswow e jiem asea|d Aes j0qoy Yy

peaye ob aseajd Aes 30q0y dduanbas
peaye ob asea|d Aes j0qoy:y 25UaNbas &

9pou uoIde SUoIp

oeqjed dduanbas

Pedled ¢ 3pou |0J1u0d SuoIp SRR

32



"y[se) Puodas Ay} 10J suonnjos jo sjdurexsy ¢ oINS

jJuswow e jilem asea|d Aes j0qoy aoeds ayy Jea|d |Im | Aes 30q0y Buirem” bulop 1awoiIsn)

jJuswow e jlem asea|d Aes j0qoy: Y ds ayy Jea)d |Im | Aes j0qoy Y

noA Jjueyy Aes joqoy 2ouanbasg

noA jueyy Aes310qoy: Y 5ouanbas ¢«

Adeqjied
Jjoeqjed ¢,

jooy
300y %

33



"yse) paryy oY) 10§ suornos jo ojdwrexyy §'§ oINS

peaye 06 asea)d

34



o If a human is in the robot working area (i.e., within one meter from the robot),

the robot should behave as following conditions:
— The robot should say “Welcome” if it detects a human standstill (i.e., no
action).

— The robot should say “I will clear the space” if it detects a human looking

for items.

— The robot should say “Please go ahead” if it detects a human picking

some items.
— The robot should say “Thank you” if it detects a human waving their

hand.

e Otherwise, the robot should continue the task.

4.3 Experiment for robot behavior debugger

The objective of this experiment is to evaluate whether or not non-expert users can

utilize the breakpoint feature to fix issues in robot behavior programs.

4.3.1 Procedure of the experiment

The experiment for evaluating the effectiveness of the robot behavior debugger took
approximately 90 minutes to complete per subject. The procedure of the experiment

is detailed as follows:

1. Divided 14 subjects into two groups equally. For the first group, the breakpoint
feature was introduced to subjects (i.e., with-breakpoint group). On the other
hand, the breakpoint feature was not introduced to the second group (i.e.,
without-breakpoint group). The hypothesis is that the breakpoint feature can

decrease the number of attempts and time to finish the task.

2. Each subject was tutored for up to 30 minutes individually. I instructed par-

ticipants on the following steps: (i) introducing HRI in convenience store, (ii)

35



showing an overview of the system, (iii) introducing the robot behavior pro-
gram, and (iv) explaining the debugging features. Participants also got five
minutes to practice using the system and ask for any clarification during the

tutoring process.

3. Each participant spent approximately 50 to 60 minutes completing three given
tasks by using the proposed system with the robot behavior debugger (i.e.,
with or without breakpoint feature based on their group). The details of the
tasks are stated in Section 4.3.3. Note that the subjects from with-breakpoint

group were encouraged, but not forced, to use the breakpoint feature.

4. Information from the experiment and feedback from subjects were collected for

the evaluation detailed in Section 4.4.

4.3.2 Participants

As this experiment is an extension of the first experiment, I recruited real non-expert
users who are not graduate students and are more likely to satisfy the requirement
of a convenience store staff job. Table 4.3 shows the demographic details of the
subjects in this experiment. I recruited 14 subjects with ages ranging from 22 to
61 years old (the median of the subjects’ age is 43, and the standard deviation is
13.4). I believe that the subjects that I recruited to do experiments have a similar
background to the actual convenience store staff in Japan and possess the require-
ments of the convenience store staff such as performing basic computer operations
(no programming background is needed). The occupations of the test subjects in
this study were diverse but unrelated to technology, such as non-IT-related college

students, secretaries, plumbers, kindergarten teachers, and housewives.

4.3.3 Tasks

The first task of my experiment is to fix a provided, buggy robot behavior program to
comply with the given situation. This task aims to confirm that subjects understand
the condition and action nodes of robot behavior programs. As shown in Figure 4.5,

the given situation is detailed as follows:

36



Table 4.3. Demographic of the subjects in the second experiments. (u-student =

undergraduate student).

Number of subjects | 14
22 - 61 years old
Age range )
(Medium = 43, SD = 13.4)
Gender Female = 12
Male = 2
. Robot programming = 0
Programming . .
. Visual programming = 0
experience
Other =0
Economy (u-student) = 1
Psychology (u-student) = 1
Food management (u-student) = 1
Field of study Language education (u-student) = 1
(occupation) Education (housewife) = 1
Sediment disaster (plumber) = 1
English education (office worker) = 1
English literature (office worker) = 7

o If a human is looking at the robot, the robot should say “Please go ahead.”
e If a human is waving at the robot, the robot should say “Welcome.”
o If a human is picking an item, the robot should say “Thank you.”

For the initial buggy robot behavior program in Figure 4.5(a), there are two wrong
condition nodes that subjects have to replace. The example solution for this task is
shown in Figure 4.5(b).

The second task is also to fix a robot behavior program, but with more compli-
cated bugs than the first one. This task aims to confirm that subjects understand
the control nodes (i.e., sequence and fallback nodes). As shown in Figure 4.6, the

given situation is detailed as follows:

37



"y[sey 9s11j o) 10J wreidoid Io1ARYR( J0qOY "G'f 2INSI]

‘uorynjos ojdurexs uy (q)

TR voceaa (v [ TR 1 ocvea:a (i) [ YO oodvesss (v [ TR vodvesis (i) [ YO - odve>is (ni) [ TR :1i0c4e>:8 (NI

WNOA jueyy, Aes
noA ueyy Aes j0qoy .y

Bupdid-Bulop 1awo3sn) L2WodPM, Aes Buiaem si JawoIsn) peaye ob aseajd Aes joqoy Buyoo| Bulop JawoIsn)

QwWoddM Aes j0qoy .y peaye ob asea|d Aes joqoy

@suanbas ERIENELS

1bag & QDU bag <«

YS1I-0}-1J0] PUe W0330(-03-d0} WOIJ 9913 © 9INIOXD SAem[e Jer) sureIdord IOIARTRQ }0QOI 9} JO S[NI 9} PUE UOISIIOP B W 0} ST [[IM }0qOI
JR1[) SUOI}OR PUR SUOIIIPUOD 1]} PURISIOPUN 0) dARTY SIAST 119dXe-UOU A1) ‘YSB) SIY) 9AJOS O, "Pal Ul PoIySIysny ssnq o) Yiim aa1y 433nq y (&)

no
noA jueyy Aes joqoy Yy

yoeqjed

38



"y[se) Puodes o1y 10j wrergord 1o1aryeq J0q0Y 9 9INSL]

‘uornjos ojdurexo uy (q)

1004
100y %2

“JYS11-0}-1J9] pue W0330(q-0}-d0o) WOIJ 921}
® 9)N09X0 sAeM[e Jer[) sure1solrd I01ARYA(q J0COI JO S[NLI BT} pue (opou Yorq[[e] pur 9ousnbas ‘*o°1) sopou [01310d o1} Jo 1deouod o1y

MOUY 0} 9ARY SIOST 110dX0-UOU 9] ‘YSe) S} OA[0S O, ‘POl Ul PojySIY3IY IopIo SUOIm pue sopou SUoIm oY) 3m 901} £38nq y (®)

39



o If a human is in the robot range (i.e., one meter) and:

— If a human is picking an item, the robot should say “Thank you.”

— If a human is looking at the robot, the robot should say “I will clear the

space.”
e Otherwise:

— If a human is waving at the robot, the robot should say “Welcome.”

— If a human is looking at the robot, the robot should say “Please go ahead.”

For the initial buggy robot behavior program in Figure 4.6(a), there are two wrong
control nodes to be replaced and one wrong order of nodes. The example solution
for this task is to move the right subtree to the left side and replace two fallback
nodes with sequence nodes as shown in Figure 4.6(b).

The third task is to create the robot behavior program from scratch (i.e., without
a given buggy tree or, simply, an empty tree) that works correctly in the given
situation. This task is inspired by the task in the Future Convenience Store Challenge
(FCSC)!. Unlike the two previous tasks, this task aims to examine whether non-
expert users are able to utilize my proposed system and debugging features. Figure

4.7 is the example solution for the third task. The situation in this task is:

o If a human is in the robot working area (i.e., within one meter from the robot),

the robot should say the following sentences and halt the current task:

1. “Please wait a moment.”

2. “I will clear the space.”

e Once the human leaves the robot’s working area, the robot should say “I will

resume my work,” then continue the task.

'FCSC, https://wrs.nedo.go.jp/en/wrs2020/challenge /service/fcsc.html

40



"UOIYRNYIS O} UO POSB( SONSSI OAJOS 07 SOI}[RUOIJOUN]
surgsngep oY) osn pue werdord 1otavyaq 10qol1 9y} Suryeard 10j suwrersord rotaeyaq j0qor 9y} Jo 3deouod ot

puejsSIOpuUN 0} dARY $300[qns oY} ‘Yse} SIY} 9A[0S O, 'S} PIIY} oy} I0j suornjos jo opdurexy -L'§ oINS

I S 5 >1535/P e (N1
I oce1a (NI H wiodreara (i) [ I

¥seL 3IeH 30qoy 21 JaWow e jem aseajd Aes 30qoy 350d JaW0}sNd 39339p O;

jse] JeH j0qoy Y Juawow e jiem asea|d Aes j0qoy Yy

oeqes

&

41



4.4 Evaluation

To evaluate the effectiveness of the proposed system, I consider four criteria during
the experiment with each subjects: (i) the correctness of the robot behavior program,
(ii) the number of attempts to finish the task, (iii) the time to finish the task, and
(iv) the usability of the system interface (i.e., SUS score). First, I consider that the
robot behavior program is correct if it can be executed exactly the same as stated in
each task situation. Note that it is possible to have different solutions to fix the robot
behavior programs. If the robot behavior program is correct, I count the number
of attempts and measure the time that non-expert users spent to run the simulator

before finishing a task.

Table 4.4. Ten questions of the System Usability Scale for evaluating a robot behavior
creation system. Participants have to give a score from 1 (strongly disagree) to 5
(strongly agree).

SUS Question list

I think that I would use this interface frequently.

I found this interface unnecessarily complex.

I thought the interface was easy to use.

I would need the help of a technical person to be able to use this interface.

I found the various functions provided by this interface to be well integrated.
I thought the interface design was too inconsistent.

I imagine most people would learn to use this interface very quickly.

I found this interface cumbersome to use.

© 00 N O Uk W N

I feel very confident in using this interface.

—
o

I need to learn a lot of things before I could be an effective user of this interface.

For evaluating the usability of the system interface, I use the System Usability
Scale (SUS) [52]. The SUS contains a set of ten questions with five-points Likert
scale (Strongly disagree: 1, Disagree: 2, Neutral: 3, Agree: 4, Strongly agree: 5) to
obtain feedback about the system as shown in Table 4.4. After each subject answered

all of the questions, I calculated the SUS score as follows:

e For odd questions: subtract 1 from the response.

42



« For even questions: subtract the response from 5.
o Calculate the sum of scores from ten questions and then multiply it by 2.5.

In the end, T get the SUS score for each subject in the range of 0 to 100. The
interpretation of the SUS score provided by Bangor et al. [53, 54] can be found in
Figure 5.6. Additionally, I asked subjects to give their opinions and suggestions for
improving my proposed system.

For the experiment for robot behavior debugger, I also calculated the unpaired
t-test [55] to find whether the results of the three criteria and SUS score for with
breakpoint and without breakpoint groups have significant differences. Note that I

consider that the results are significantly different when the p-value is less than 0.01.

— Summary

e The objective of the first experiment is to evaluate whether non-expert

users understand the concept of the robot behavior program with
graduate students who do not belong to the information science division
and do not have an experience with visual programming.

e The objective of the second experiment is to evaluate whether the
proposed debugging features help non-expert users to identify issues in
the robot behavior program, especially the breakpoint feature.

e The second experiment is an extension of the first one as recruited
non-expert users are not graduate students and are more likely to satisfy
the requirement of a convenience store stafft job.

o There are four criteria for the system evaluation with each subject: (i) the
correctness of the robot behavior program, (ii) the number of attempts to
finish the task, (iii) the time to finish the task, and (iv) the usability of
the system interface (SUS score).

43



CHAPTER

RESULTS

This chapter presents the results of the experiments with non-expert users in two
sections. Section 5.1 shows the results of the experiment for evaluating the robot
behavior creator and the robot simulator. Section 5.2 shows the results of the exper-
iment for evaluating the robot behavior debugger with a comparison of breakpoint

usages.

5.1 Experimental results of robot behavior cre-

ator

Table 5.1 shows the number of subjects who can fix and create the Behavior Trees
correctly for each task. For the evaluation, most of non-expert users can finish every

tasks within 1 attempt. In average, they spent around 2 minutes to finish first and

44



Table 5.1. Number of subjects that are able to fix and create the Behavior Trees
correctly for each task.

# Participants

Tasks # Attempts of pass 4 Attempts of fail Average time [m’s”]
1 2 3
Taskl - Fix 8 1 1 0 2’47
Task2 - Create (single) 10 |0 0 0 2’57
Task3 - Create (multiple) | 8 | 1 0 1 7 10”

second tasks, while took around 7 minutes for the third tasks. Note that there is
only one participant that failed to finish the third task during the experiment time.

Figure 5.1 shows the number of attempts that participants took for finishing our
experiment (i.e., fixing a buggy Behavior Tree and creating Behavior Trees from
scratch). I found that most of the participants were able to finish three tasks with
only one attempt within approximately five minutes. For the first task about fixing
a buggy Behavior Tree, there are two participants who took more than one attempt
to finish the task. For the third task about creating a Behavior Tree from scratch,
only one participant took two attempts to finish the task. The reasons behind these
mistakes are due to the confusion with the question statements and the GUI of Groot.
However, after carefully testing and debugging with the provided simulation, they
were able to finish the given tasks. These results indicate that participants could
utilize the robot simulation for debugging their Behavior Trees.

Figure 5.2 shows the distribution of SUS scores from all participants. I found that
the average SUS score (i.e., Median) is 77.5 out of 100 with a standard deviation of
6.26. According to SUS score interpretation from Bangor et al. [54], our proposed
system is considered to have a “good” usability.

From the interview with participants about the usage of the proposed system,
participants commented that the simulation helps them to test and find the issue
of the desired robot behavior. This is because our simulation can show a reaction
of a robot when it detects a human based on the created behavior. For example,
one participant said that “figuring the issue point from previously created Behavior
Tree can be supported by the simulation.” The other participant also supported that

the simulation “makes me more confident for the Behavior Tree that I had created.”

45



Task 1
1

| (10.0%)
(10.0%)
Fixing a buggy
Behavior Tree Attempt = 1
Attempt = 2
V)
8 (80.0%) Attempt =3
Task 2 Task 3
1
(10.0%)
Creating Behavior .
Trees from scratch 10 (100.0%)
8 (80.0%)

Figure 5.1. Numbers of attempts that users spent during the experiments

Additionally, participants also commented that the simulation helps them to
understand the concept of robot behavior creation. This is because participants can
check the order of robot reaction described in the Behavior Tree from the simulation.
For example, they always “got confused with other computer programs or computer
languages” and “need time for understanding a new concept”, so they thought that
“simulator greatly helps to check what happens to program.”

However, the system still lacks some features as suggested by participants. The
first point is that the system lacks a proper logging system to show what is happening
in the simulation. For example, the proposed system should have the “error warning”
in the case that the robot cannot work properly in the simulation (e.g., cannot
generate sounds or collides with the shelf). By providing the logging system, non-

expert users can understand the situation inside the simulation through the logs.

46



91008 §S WOIJ JNSAI 9} JO UOTINIISI(] g’ 9INSTI]

9J02S SNS
00l 06 08 0L 09 0S (114 o€ 0z (]! 0
L I UL DL LN L AL N L L
“ | | | m |
i i i i H i
s|qeulBeuw Ju9||99x3 poo9) Nle} 1004 a|qeulbeuw sbune.
)s0g 1SI0M aAnoalpy
- WH w0l I
sabuel
a|qeldaooy [euibiep] a|geydaooe JoN

Aypgeydasoy

47



The second point is that the system lacks the proper connection between the robot
behavior system and the robot simulation. Specifically, the system cannot show the
executing node in the simulation in the Behavior Tree. For example, participants
suggested that the system should “shows the current executing node in the Behavior
Tree along with the simulation” and should be able to “stop the loop” of the actions
in the Behavior Tree to see how the robot reacts to the human step-by-step. By
providing such a feature, non-expert users can easily know the current status of
robot behaviors in the simulation.

In summary, our proposed system helps non-expert users to create robot behav-
iors by using Behavior Tree and to test created robot behaviors by using the robot
simulation. I found that the proposed system is considered to have good usability.
From the participant feedback, the simulation can help non-expert users to confirm
the correctness of robot behaviors and to learn the Behavior Tree. For improvement,
I plan to implement a logging system to show errors and warning messages from the
simulation. I also plan to implement the feature to track the current executing node
in the Behavior Tree.

5.2 Experimental results of robot behavior debug-

ger

Table 5.2 shows the number of subjects who can fix and create the Behavior Trees
correctly for each task. I find that every subject from both with breakpoint and
without breakpoint groups can finish the first task correctly. However, only subjects

from the without breakpoint group are able to finish the third task without failing.

Table 5.2. Number of subjects that are able to fix and create the Behavior Trees

correctly for each task.

Task 1 | Task 2 | Task 3
With breakpoint 7 ) 6
Without breakpoint 7 5 7

48



The results show that the differences between with breakpoint group and without
breakpoint group are not significant in terms of the number of attempts and time
to finish the task. Figure 5.3 shows that subjects from both groups spent only one
attempt to finish the first task and a maximum of three attempts for the second task.
The reason for this result is that some subjects identify issues in the programs by
manually checking the Behavior Trees instead of using breakpoints, so they required
more than one attempt to complete the tasks. Figure 5.4 shows that subjects from
without breakpoint group spent slightly less time than the with breakpoint group in
the first task (i.e., fixing condition nodes) and the third task (i.e., creating a new
Behavior Tree). However, in the case of the second task (i.e., fixing control nodes
and reordering nodes), subjects from with breakpoint group spent less time to finish
the task (i.e., 823 < 1,022 seconds). According to the subjects, the second task is
more complicated than others, so the breakpoint is useful for tracing the issue in the
robot behavior program.

Figure 5.5 shows the distribution of SUS scores of subjects from with breakpoint
and without breakpoint groups. I find that the mean SUS score from with breakpoint
group is less than without breakpoint group (i.e., 66.07% < 71.43%). According to
Figure 5.6, the acceptability ranges of our proposed system with breakpoint feature
belong to high marginal level of usability and are acceptable for without breakpoint

feature.

49



syuewitIadxe 1}0q WOIJ YSe)} [oed YSIUYy 0} sjduwajye Jo Ioquuny '¢'G oInsI

€ ISEL ¢oIseL [ YseL
00°] = UBdAl 00°] = UBIA!
00°T = UBIPIIA 00°] = UBIpoIN
| I
SN
e —
SN
e —
SN

jurods{eaiq noynp [
jurodyearq a7

S0

Sl

¢c

g'e

sydwane Jo 1oquinN

50



syuowLIodxo )0 WO} }Se) DRSO [SIUY 0} dWL], ‘f'G 9INSIq

€ ISeL CIseL [ 3SEL
l g, s
S 007091 = UBIPIIAL
e —|
SN
I —
SN —
e —

jurodyearq noyip [
SN
Jurodsearq yup [

00¢

0oy

009

008

0001

002l

001

0091

0081

[s] oy,

51



jutodyeaiq oA [
utodyealq Ay [

symowrtIodxa )0q WOIJ 91098 G WOIJ J[NSAI Y} JO UOIINLIISI(] "G'G 2InS1,]

jurodyea1q JNOYIA

s19sn 119dx9-uUoN

SN

Jurodyea1q yim

0

0z

o
w2
&
w2
g

09 o

08

001

52



"Suryel aA1308[pe o) pue 21008 G S oY) Jo Surddey 9'G 8In3rg

odseaiq ynoupm ()

julodyealq Yupa O QLOOW w:w
00l 06 08 0L 09 0S oy 0¢€ 0c ol 0
FT 1T 71T T T T 1 r1 T
“ | | | | |
i i i i i
a|qeuibew IUEERNE| pooo MO 100d a|qeuibew
iseg 1SIOM
- W o I
a|qeldedoy [euibiepy a|gejydanoe JoN

sBune.
anpoalpy

sabuel
Aypgeydasoy

53



,—| Summary

Non-expert users are able to create and fix the robot behavior program
with only one subject failing to complete tasks by using the robot
behavior creator.

The robot behavior creator has good usability based on the SUS score.
Only few subjects failed to identify and fix the robot behavior program by
using the proposed debugger.

The robot behavior debugger has high marginal usability based on the
SUS score.

o4




CHAPTER

DISCUSSION

This chapter addresses a discussion and lessons learned from the experimental results
and interviews with non-expert users. The discussion is separated into five points as
follows.

Non-expert users are able to utilize our proposed system. Based on
the experimental results, there are only a few subjects that failed to create and fix
issues within the robot behavior program. As shown in Tables 5.1 and 5.2, only one
subject failed to finish tasks for the first experiment and four subjects failed to finish
tasks for the second experiment (i.e., two subjects per group). This confirms that
non-expert users could understand the concept of the Behavior Trees and use our
proposed system to create and modify the robot behavior program within the time
limit. Moreover, the comments from the subjects also indicated that using our system
is like playing a video game, so it seems to be attractive when the program is visually

displayed. Hence, we conclude that the interactive debugging functionality such

55



"SOUPOURI( PUR SOPOU SNOLIRA SUIRIUOD e} Wrersord 1otarya( 30qo1 xoiduroo © jo sojduwrexy ‘1°9 o0Insiq

Buoim sjeym,
shes j0q0y
uondy

¢.dley awos paau |,
Buikes uewny s|
uopipuod

L&Buipewos Aes
noA piq, sAes joqoy

uonoy

¢Bunjse uewny s|
uonpipuod

«£nok djay | Aepy,
sAes joqoy
uonoy

¢.dlay awos paau |,
Buikes uewny s|
uonipuod

OlIeH,, w>mw joqoy
uonoy

&.OlIBH,
Buikes uewny s|
uonipuod

SWOdPM,
shAes joqoy
uoipy

¢.0lIeH,, Bulkes uewny s|
uopipuod

3SE} 84} SeNURUOD J0GOY
uonoy

Aoeqjed

Bupjoid uewny e s|
uonipuod

[oa]

Buinem uewny e s
uonipuod

¢W g >10gol pue uewny
usaM}aq SOUEB)SIP S|
uonipuod

56



as node execution monitoring with the proposed robot behavior creator is suitable
for non-expert users who do not have experience with any programming languages.
Despite the effectiveness of the proposed robot behavior creator and debugger, one
subject raised a concern related to the interface of the proposed system, In the case
of complex behavior, the robot behavior program may contain lots of nodes and
branches, which may confuse non-expert users as shown in Figure 6.1. One potential
future work to address this issue is by improving the interface of the creator by
allowing users to group several nodes to reduce the complexity of the program.
Non-expert users did not utilize the breakpoint feature to fix Behav-
ior Tree issues. From the experimental result of the robot behavior debugger, I
found that the breakpoint feature does not significantly improve the effectiveness of
debugging the robot behavior program. As shown in Figure 5.4, the difference in
the time to finish each task between the with-breakpoint and without-breakpoint
groups is not significant. Based on the SUS score from Figure 5.5, the score of the
with-breakpoint group is slightly less than the without-breakpoint group (i.e., 66.07
% < 71.43 %). This indicates that the breakpoint feature may confuse non-expert
users, even though it is considered a high marginal level of usability. From the ob-
servations and interviews with subjects, I found that only one was able to use the
breakpoint feature to debug the robot behavior program. One subject mentioned
that they could solve the issues by only checking the Behavior Tree monitoring in-
terface, so they did not try to use the breakpoint feature. Another example comes
from subjects who were unable to finish the tasks. They commented that, in the
second task, the order of nodes is confusing. However, they did not know how to use
the breakpoint feature to identify the issue. Hence, we conclude that the non-expert
users did not understand how to utilize the breakpoint feature to fix the issues within
the Behavior Trees. We suggest that giving more examples on how to use the break-
point feature usage could help non-expert users to use this feature. We also suggest
that simplifying the breakpoint feature can also improve the usability of the system.
Visualization helps non-expert users address the issue. As mentioned by
one subject from the robot behavior debugger experiment, the log status is hard to
see because there are so many lines. Others subjects commented that they mostly

used the information from the monitoring feature and the simulation during the ex-

57



periment. The reason is that these features are easier to understand and observe
than the log which is only text information. Hence, we conclude that visual infor-
mation is easier to understand than textual information. The future direction of the
research is to increase the effectiveness of the debugging functionality by using visual
information.

Impact of the subjects’ characteristics. From the experimental results
shown in Figures 5.2 and 5.6), the average SUS score from the robot behavior cre-
ator experiment is greater than the robot behavior debugger one (i.e., 77.50 % >
66.07 % for with-breakpoint and 71.43 % without-breakpoint). I suspect that the
background and characteristics of subjects impact how they solve tasks in the ex-
periments. For the robot behavior creator experiment, the subjects are graduate
students (i.e., master’s and doctoral students), so their logical thinking might be
stronger than other people. While the subjects from the robot behavior debugger
experiment are a mixture of different jobs. From the interviews, subjects also have
different hobbies which might impact their thinking process. For example, the par-
ticipant who plays Shogi (i.e., Japanese chess) is the only person that could finish all
tasks within one attempt. Another example from the without-breakpoint group is
the participant who plays sports (e.g., American football and baseball) could finish
all tasks in the shortest time (i.e., 21’36") while the average time in the same group
is 29’28". Hence, they might have better logical thinking than other subjects which
results in less time or fewer attempts to finish the task as shown in Figure 5.3 and
5.4. To confirm the impact of subjects’ backgrounds, further investigation is needed.

Some types of Behavior Tree nodes are not required in the robot be-
havior program. From Marzinotto et al. [32], there are six types of Behavior Tree
nodes that can be used to create a program including (i) condition node, (ii) action
node, (iii) sequence node, (iv) fallback node (i.e., selector node), (v) parallel node,
and (vi) decorator node. The most essential nodes for creating a program are the
condition node and the action node, which the robot uses to make a decision and re-
spond to a human. To make a robot performs more complex actions, some additional
nodes are needed for considering whether to continue or skip a task. Hence, in the
dissertation, I decided to use the sequence node and the fallback node because the

concepts of these nodes are straightforward to decide whether to continue as long as

58



the node status is successful or to try until the node status is successful, respectively.
The concepts of the parallel node and the decorator node are redundant to the se-
quence node and the fallback node. The parallel node allows the robot to consider
multiple actions and conditions at the same time, while the decorator node allows the
robot to behave based on certain conditions or the result of actions. In conclusion,
in this dissertation, I selected four types of nodes with the least complexity in order

to make it easier for non-expert users to create their own programs.

,—| Summary

e The simulator greatly helps non-expert users understand how the robot

behavior program works.

e The concept of breakpoint confuses non-expert users and does not
significantly improve the effectiveness of the proposed system.

« Visualization is more preferable for debugging than monitoring logs.

o The background and characteristic of subjects affect how they use the
proposed system.

o Parallel and decorator nodes are not required in the robot behavior

program as four other nodes can represent the robot’s decision-making.

59



CHAPTER

CONCLUSION

7.1 Summary

This dissertation proposes a system that can support non-expert users in creat-
ing, testing, and debugging robot behavior programs without robot programming
experience. The proposed system consists of (i) a robot behavior creator with a
robot simulator and (ii) a robot behavior debugger. To support non-expert users
in making a program, it is crucial to provide an easy-to-use user interface and an
easy-to-understand concept to make a program. Therefore, this research proposes an
approach to create a program mimicking the human decision-making concept [49].
This approach requires considering conditions for making decisions and correspond-
ing actions. The robot behavior creator provides visual information through Behavior
Trees GUI which is a tree-like structure to represent the conditions and actions of

the robot. Moreover, the system provides drag-and-drop composition to assist the

60



users in creating the program by making pairs of conditions and actions. The users
can test their robot behavior program by using the robot simulator. From the eval-
uation with ten non-expert users, I found that the proposed robot behavior creator
and robot simulator can help non-expert users to create and test the robot behavior
program. The robot behavior creator is evaluated with ten non-expert users to find
whether those subjects can create the robot behavior program with the GUIL. The
robot behavior debugger consists of four features, including (i) breakpoint, (ii) node
execution monitoring, (iii) execution log, and (iv) robot variables. From the evalua-
tion with 14 non-expert users, I found that the proposed debugger can help them to
identify and fix the robot behavior program. However, a breakpoint was highlighted

by non-expert users as they were confused about its usage.

7.2 Opportunities for Future Research

This dissertation proposes a Human-Robot Interaction system for non-expert users
to create, test, and debug robot behavior using visual programming. However, there
are still a lot of research aspects that can be done in order to improve usability for
non-expert users. The potential research opportunities are addressed as follows:

An investigation of the impact of non-expert user background to the
visual programming. Based on the results in Chapter 5, non-expert users with dif-
ferent backgrounds tend to have different ways of thinking to create, test, and debug
the robot behavior program. However, the impact of non-expert user backgrounds on
programming efficiency has yet to explore. I suggest that future researchers should
investigate this point in order to understand how non-expert user program a robot
and how to improve the proposed system in the case that users do not have strong
logical thinking skills.

An adaptation of the proposed system in different robot working en-
vironments. As detailed in Chapters 1 and 3, the current version of the proposed
system focuses on the robot that operates in the convenience store. The proposed
system also provides a simulated convenience store environment that includes hu-
man avatars and robots. In fact, both robot behavior creator and robot behavior

debugger can be adapted and used in other HRI scenarios such as different robot

61



working environments. Hence, one of the immediate future works is to implement
the environment of the simulator for various HRI scenarios.

An improvement of the interface of the robot behavior creator. From
the discussion with non-expert users in Chapter 6, they have a concern in the case
that when the robot behavior program is very complex, it can be very hard to read
the Behavior Tree in the proposed robot behavior creator. One possible solution to
this issue is by improving the interface of the robot behavior creator to hide some
parts of the Behavior Tree. Non-expert users should be able to toggle the desired
nodes for showing or hiding sub-trees.

An enhancement of the visual debugger. Based on the comments from
non-expert users in Chapter 6, they agree that visual debugging features such as
node execution monitoring is more preferable than textual logs. In order to make a
tool that is more simple for non-expert users, I suggest that future researchers can
design and convert all text-based debugging features to more interactive visual-based
debugging features.

A simplified version of the breakpoint feature. From the results in Chap-
ter 5, there is only one non-exert user who can fully utilize the breakpoint feature
to debug the issue in the robot behavior program. Based on other comments in
Chapter 6, non-expert users reveal that they do not understand the mechanism of
the breakpoint and do not know how to use it in debugging. From the expert point
of view, the breakpoint feature is one of the most used debugging features for typical
software engineering projects [40]. I still believe that the breakpoint feature is still
useful for non-expert users. However, simplification is needed in order to attract
those users who totally have no experience in programming. Hence, the immediate
future work is to design and implement a simplified version of the breakpoint feature.

This also includes more subjective evaluations with non-expert users.

62



REFERENCES

1]

Keiichiro Hamaguchi. How have japanese policies changed in accepting foreign work-
ers? Japan Labor Issues, 3(14):2-7, 2019.

Eric L. Hsu. Robots as means to address the challenges of an ageing population. The
Routledge Social Science Handbook of Al page 96, 2021.

Daniel Belanche, Luis V. Casald, Carlos Flavidn, and Jeroen Schepers. Service robot
implementation: a theoretical framework and research agenda. The Service Industries
Journal, 40(3-4):203-225, October 2019.

Hiroyuki Okada, Tetsunari Inamura, and Kazuyoshi Wada. What competitions were
conducted in the service categories of the World Robot Summit? Advanced Robotics,
33(17):900-910, September 2019.

Kazuyoshi Wada. New robot technology challenge for convenience store. In 2017
IEEE/SICE International Symposium on System Integration (SII), December 2017.

Pattaraporn Tulathum, Bunyapon Usawalertkamol, Gustavo Alfonso Garcia Ricardez,
Jun Takamatsu, Tsukasa Ogasawara, and Kenichi Matsumoto. Human-robot interac-
tion system for non-expert users in convenience stores using behavior trees. In 2022
IEEE/SICE International Symposium on System Integration (SII), pages 1072-1077,
2022.

63



[7]

[10]

[11]

[12]

[13]

[14]

[15]

Pattaraporn Tulathum, Bunyapon Usawalertkamol, Gustavo Alfonso Garcia Ricardez,
Jun Takamatsu, Tsukasa Ogasawara, and Kenichi Matsumoto. Robot behavior debug-

ger for non-expert users in convenience stores using behavior trees. Advanced Robotics,
36(17-18):951-966, 2022.

Adriana Tapus, Cristian Tapus, and Maja J. Matari¢. User—robot personality match-
ing and assistive robot behavior adaptation for post-stroke rehabilitation therapy.
Intelligent Service Robotics, 1(2):169-183, February 2008.

Yusuke Kato, Takayuki Kanda, and Hiroshi Ishiguro. May i help you?-design of
human-like polite approaching behavior. In 2015 10th ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI), pages 35-42, 2015.

Tian-Miao Wang, Yong Tao, and Hui Liu. Current researches and future develop-
ment trend of intelligent robot: A review. International Journal of Automation and
Computing, 15(5):525-546, April 2018.

Hiroaki Masuzawa, Jun Miura, and Shuji Oishi. Development of a mobile robot for
harvest support in greenhouse horticulture — person following and mapping. In 2017
IEEE/SICE International Symposium on System Integration (SII), December 2017.

Vinh Nhat Lu, Jochen Wirtz, Werner H. Kunz, Stefanie Paluch, Thorsten Gruber,
Antje Martins, and Paul G. Patterson. Service robots, customers and service employ-
ees: what can we learn from the academic literature and where are the gaps? Journal
of Service Theory and Practice, 30(3):361-391, April 2020.

Gabriele Obermeier and Andreas Auinger. Human-computer interaction in physical
retail environments and the impact on customer experience: Systematic literature
review and research agenda. In HCI in Business, Government and Organizations.

eCommerce and Consumer Behavior, pages 51-66. 2019.

Chao Shi, Satoru Satake, Takayuki Kanda, and Hiroshi Ishiguro. How would store
managers employ social robots? In 2016 11th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), March 2016.

Yoha Oishi, Takayuki Kanda, Masayuki Kanbara, Satoru Satake, and Norihiro Hagita.

Toward end-user programming for robots in stores. In Proceedings of the Companion of

64



18]

[19]

[21]

[22]

23]

the 2017 ACM/IEEE International Conference on Human-Robot Interaction, March
2017.

Amy J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Mar-
tin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers, et al. The

state of the art in end-user software engineering. ACM Computing Surveys (CSUR),
43(3):1-44, 2011.

Barbara Rita Barricelli, Fabio Cassano, Daniela Fogli, and Antonio Piccinno. End-user
development, end-user programming and end-user software engineering: A systematic
mapping study. Journal of Systems and Software, 149:101-137, 2019.

Barbara Rita Barricelli, Daniela Fogli, and Angela Locoro. Eudability: A new con-
struct at the intersection of end-user development and computational thinking. Jour-
nal of Systems and Software, 195:111516, 2023.

Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. Addressing ac-
cessibility barriers in programming for people with visual impairments: A literature
review. ACM Transactions on Accessible Computing (TACCESS), 15(1):1-26, 2022.

Chris Paxton, Andrew Hundt, Felix Jonathan, Kelleher Guerin, and Gregory D.
Hager. CoSTAR: Instructing collaborative robots with behavior trees and vision.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), May
2017.

Chris Paxton, Felix Jonathan, Andrew Hundt, Bilge Mutlu, and Gregory D. Hager.
Evaluating methods for end-user creation of robot task plans. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), October 2018.

David Weintrop. Block-based programming in computer science education. Commu-
nications of the ACM, 62(8):22-25, July 2019.

Pierre A. Akiki, Paul A. Akiki, Arosha K. Bandara, and Yijun Yu. EUD-MARS:
End-user development of model-driven adaptive robotics software systems. Science of
Computer Programming, 200:102534, December 2020.

65



[24]

[26]

[29]

[32]

Christoph Mayr-Dorn, Mario Winterer, Christian Salomon, Doris Hohensinger, and
Harald Firschuss. Assessing industrial end-user programming of robotic production
cells: A controlled experiment. Journal of Systems and Software, 195:111547, 2023.

Anthony Savidis. Programming experience requirements for future visual development
environments. In Mutlu Cukurova, Nikol Rummel, Denis Gillet, Bruce M. McLaren,
and James Uhomoibhi, editors, Proceedings of the 1jth International Conference on
Computer Supported Education (CSEDU), pages 284-292. SCITEPRESS, 2022.

Enrique Coronado, Fulvio Mastrogiovanni, and Gentiane Venture. Development of
intelligent behaviors for social robots via user-friendly and modular programming
tools. In 2018 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO),
September 2018.

Stephen Balakirsky, Zeid Kootbally, Craig Schlenoff, Thomas Kramer, and Satyandra
Gupta. An industrial robotic knowledge representation for kit building applications.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1365-1370. IEEE, 2012.

Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ogren, and Christian Smith.
A survey of behavior trees in robotics and ai. Robotics and Autonomous Systems, 154:
104096, 2022.

Miguel Nicolau, Diego Perez-Liebana, Michael O’ Neill, and Anthony Brabazon. Evo-
lutionary behavior tree approaches for navigating platform games. IEEE Transactions
on Computational Intelligence and Al in Games, 9(3):227-238, 2016.

Ryan Marcotte and Howard J Hamilton. Behavior trees for modelling artificial intel-
ligence in games: A tutorial. The Computer Games Journal, 6(3):171-184, 2017.

Francesco Rovida, Bjarne Grossmann, and Volker Kriiger. Extended behavior trees for
quick definition of flexible robotic tasks. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 6793-6800. IEEE, 2017.

Alejandro Marzinotto, Michele Colledanchise, Christian Smith, and Petter Ogren. To-
wards a unified behavior trees framework for robot control. In 201/ IEEFE International
Conference on Robotics and Automation (ICRA), May 2014.

66



33]

[36]

Kevin French, Shiyu Wu, Tianyang Pan, Zheming Zhou, and Odest Chadwicke Jenk-
ins. Learning behavior trees from demonstration. In 2019 International Conference
on Robotics and Automation (ICRA), pages 7791-7797, 2019.

David John Barnes, Michael Kélling, and James Gosling. Objects First with Java: A

practical introduction using BlueJ. Pearson/Prentice Hall, 2006.

Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle Rec-
tor, and Scott D Fleming. How programmers debug, revisited: An information forag-
ing theory perspective. IEEE Transactions on Software Engineering, 39(2):197-215,
2010.

Roman Bednarik. Expertise-dependent visual attention strategies develop over time
during debugging with multiple code representations. International Journal of
Human-Computer Studies, 70(2):143-155, 2012.

Bryce Ikeda and Daniel Szafir. An AR Debugging Tool for Robotics Programmers.
2021.

Bryce Tkeda and Daniel Szafir. Advancing the design of visual debugging tools for
roboticists. In Proceedings of the 2022 ACM/IEEE International Conference on
Human-Robot Interaction, pages 195-204, 2022.

Eclipse desktop & web ides | the eclipse foundation. https://www.eclipse.org/ide/,
2022. (Accessed on 03/18/2022).

G.C. Murphy, M. Kersten, and L. Findlater. How are java software developers using
the eclipse ide? IEEE Software, 23(4):76-83, 2006.

Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. On the dichotomy
of debugging behavior among programmers. In Proceedings of the 40th International

Conference on Software Engineering, pages 572-583, 2018.

Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.
Studying the advancement in debugging practice of professional software developers.
Software Quality Journal (SQJ), 25(1):83-110, 2017.

67


https://www.eclipse.org/ide/

[43]

[47]

[49]

[50]

[51]

Valentina Grigoreanu, Margaret Burnett, Susan Wiedenbeck, Jill Cao, Kyle Rector,
and Irwin Kwan. End-user debugging strategies: A sensemaking perspective. ACM
Transactions on Computer-Human Interaction (TOCHI), 19(1):1-28, 2012.

Ren Manfredi, Margherita Andrao, Francesco Greco, Giuseppe Desolda, Barbara Trec-
cani, and Massimo Zancanaro. Toward a better understanding of end-user debugging
strategies: A pilot study. In Proceedings of the 3rd International Workshop on Em-
powering People in Dealing with Internet of Things Ecosystems co-located with Inter-
national Conference on Advanced Visual Interfaces (AVI), volume 3172, pages 31-35,
2022.

Jill Cao, Kyle Rector, Thomas H Park, Scott D Fleming, Margaret Burnett, and
Susan Wiedenbeck. A debugging perspective on end-user mashup programming. In

2010 IEEE Symposium on Visual Languages and Human-Centric Computing, pages
149-156, 2010.

Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. Visual debugging techniques
for reactive data visualization. In Computer Graphics Forum, volume 35, pages 271—
280, 2016.

Sandro Tolksdorf, Daniel Lehmann, and Michael Pradel. Interactive metamorphic
testing of debuggers. In Proceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, pages 273-283, 2019.

Miguel Campusano and Alexandre Bergel. VizRob: Effective visualizations to debug
robotic behaviors. In 2019 Third IEEE International Conference on Robotic Comput-
ing (IRC), February 2019.

Artificial intelligence and human decision making. Furopean Journal of Operational
Research, 99(1):3-25, 1997.

Michele Colledanchise and Petter Ogren. Behavior trees in robotics and Al: An intro-
duction. CRC Press, 2018.

Cheng Zhang, Dacong Yan, Jianjun Zhao, Yuting Chen, and Shenggian Yang. Bp-
gen: an automated breakpoint generator for debugging. In 2010 ACM/IEEE 32nd

International Conference on Software Engineering, volume 2, pages 271-274, 2010.

68



[52]

[55]

J. Brook. SUS: A 'quick and dirty' usability scale. In Usability Fvaluation In Industry,
pages 207-212. CRC Press, June 1996.

Aaron Bangor, Philip T. Kortum, and James T. Miller. An empirical evaluation of
the system usability scale. International Journal of Human- Computer Interaction, 24
(6):574-594, 2008.

Aaron Bangor, Philip Kortum, and James Miller. Determining What Individual SUS
Scores Mean: Adding an Adjective Rating Scale. Journal of Usability Studies, 4(3):
114-123, May 2009.

Karen K Yuen. The two-sample trimmed t for unequal population variances.
Biometrika, 61(1):165-170, 1974.

69



	Introduction
	Motivation and objective
	Human-Robot Interaction (HRI)
	Operating environment
	Robot behavior

	Contributions
	Dissertation layout

	Related works
	Overview
	Human-Robot Interaction
	End-User robot programming
	Design of debugging system

	Proposed system
	Overview
	Robot behavior program
	Concept of a robot behavior program
	Behavior Tree

	Robot Behavior Creator
	Behavior Tree GUI editor
	Robot simulator

	Robot Behavior Debugger
	Breakpoint
	Node execution monitoring
	Execution log
	Robot variable


	Experiments
	Experimental Setup
	Convenience store setup in the simulator

	Experiment for the robot behavior creator
	Procedure of the experiment
	Participants
	Tasks

	Experiment for robot behavior debugger
	Procedure of the experiment
	Participants
	Tasks

	Evaluation

	Results
	Experimental results of robot behavior creator
	Experimental results of robot behavior debugger

	Discussion
	Conclusion
	Summary
	Opportunities for Future Research


