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Abstract

Much garbage is produced daily in homes due to living activities, including
cooking and eating. The garbage must be adequately managed for human well-
being and environmental protection. Although the existing IoT-based smart
garbage systems have gained high classification accuracy, they still have prob-
lems: (1) they can not learn the amount of garbage disposed of each time (2)
They can not understand households’ routine behaviour of garbage disposal; and
(3) they provide a small number of garbage categories, not enough for reasonable
practices of household garbage separation. Therefore, a new IoT-based garbage
management system and classification tool must improve existing systems. In
this dissertation, we present a new smart garbage bin system, SGBS in short,
embedded with multiple sensors to realize its benefits on three challenges: (1)
How to learn the amount of garbage disposed of each time and predict garbage
growth behaviour for a single house?; (2) How to understand household garbage
disposal behaviour and identify the type of garbage contents?; and (3) How to
substantially improve the automation of garbage classification? To tackle chal-
lenge (1), we chose distance and weight sensors to track the garbage disposed of
each time. For evaluation, we experimented with the SGBS in a student labora-
tory for over one month. An autoregressive integrated moving average (ARIMA)
model was applied, providing MAE of 5.17 cm and an SD of 0.33 cm, thus con-
sidered satisfactory accuracy on the garbage growth prediction. For challenge
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(2), we deployed distance and weight sensors to learn garbage growth during
disposal. Later we identified necessary garbage categories and contents in each
category through user voice, and designed and implemented a smartphone an-
notations application comprised of 8 garbage categories and 25 garbage content
identities to allow households user to annotate their daily garbage content. Af-
terwards, we conducted an initial experiment in three households to evaluate our
approach. Our findings show that households’ garbage disposal behaviour de-
pends on the amount and contents of garbage and the routine of disposing of
such garbage content. For challenge (3), we introduce a new garbage content
estimation method by training a machine learning model using daily collected
fuse sensor readings combined with detailed household garbage contents anno-
tations to perform garbage classification tasks. For evaluation, we deployed the
designed SGBS in five households over one month. We confirmed that the leave-
one-house cross-validation results showed an accuracy of 91% in 5 kitchen waste
contents, 89% in 5 paper/softbox contents, and 85% in 8 garbage categories for
the classification tasks.

Keywords:

Classification, disposal behaviour, garbage category, garbage content identity,
household, IoT, machine learning algorithms, SGBS.
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1 Introduction

1.1 Background and Motivation
Much garbage is produced daily in homes due to living activities, including cook-
ing and eating. Therefore, garbage must be adequately managed for human well-
being and environmental protection. In the standard municipal garbage man-
agement system, households are responsible for sorting and managing garbage
produced in their home. However, it is hard to depend solely on public aware-
ness to provide the correct garbage management at the source. Therefore, an
automation tool that can reflect the home’s daily life and understand households’
routine behaviour of garbage disposal would be necessary to influence behaviour
change on garbage disposal and increase home monitoring for the case of elderly
anomaly detection and healthy living.

Furthermore, it would improve garbage management services through proper
garbage separation practices for the well-being of people and the environment. It
is reported that the world generates 2.01 billion tonnes of municipal solid waste
annually, with at least 33% of that not managed environmentally safely [1]. In
fact, daily waste generated per person ranges widely, from 0.11 to 4.54 kilo-
grams [2]. Furthermore, only 17% of electronic garbage is collected and recy-
cled [3]. Moreover, 32% of plastic packages still need to be managed, which leads
to severe implications for ecological balance and human well-being. But, again,
garbage separation by the person who disposes of garbage has been widely ac-
cepted as ethical behaviour and best practice for reducing, reusing, and recycling
[4].

Several existing IoT-based smart garbage systems and the classification using
computer vision and artificial intelligence have been conducted to improve house-
hold garbage management [5–7] and [8]. However, the existing systems have the
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Figure 1.1: Garbage management systems general goals and challenges

following problems: first, they can not learn the amount of garbage disposed of
each time; second, they provide a small number of garbage categories, not enough
for reasonable practices of household garbage separation; and third, they can not
understand the routine behaviour of garbage disposal by households. Fig. 1.1
depicts the general goals of garbage management systems and the challenges to
be solved in this study.

To solve the three challenges, this study aims to develop a newly designed and
developed smart garbage bin system (SGBS) embedded with multiple sensors to
learn the amount of garbage disposed of each time, identify the garbage contents
disposed of by households and understand the routine behaviour of garbage dis-
posal by households. Before designing and developing the SGBS, challenges must
be conveyed, and solutions must be evaluated for effectiveness.

1.2 Problem statement
To implement the SGBS, we must first describe the requirements for designing the
SGBS architecture. Then, the proposed approach must be evaluated to prove its
effectiveness in learning the amount of garbage disposed of each time, identifying
the garbage contents disposed of by households and understanding the routine
behaviour of garbage disposal by households. We determine these challenges to
be solved in this dissertation, and we organize them as follows:

Challenge 1: How to learn the amount of garbage disposed of each
time and predict garbage growth behaviour for a single house?
To tackle this challenge, we designed and developed a smart garbage bin sys-

2



tem (SGBS) embedded with distance and weight sensors to track the amount of
garbage during disposal. For evaluation, we experimented with the SGBS in a
student laboratory for over one month. As a result, an autoregressive integrated
moving average (ARIMA) model was applied, providing MAE of 5.17 cm and
an SD of 0.33 cm, thus considered satisfactory accuracy on the garbage growth
prediction.
Challenge 2: How to understand household garbage disposal behaviour
and identify the type of garbage contents?
In order to learn behaviour on garbage disposal and influence behaviour change,
it is necessary to consider families of different living styles and sizes to track the
amount of garbage produced and garbage content disposal patterns. To solve
this challenge, first, we designed and developed SGBS embedded with distance
and weight sensors to detect the amount of garbage disposed of each time. Af-
terwards, we designed and developed a garbage annotations application to allow
households user to annotate their daily garbage content. The annotation ap-
plication comprised 4 garbage categories and 10 garbage content identities. Af-
terwards, we experimented with the SGBS in three households to evaluate our
approach. However, through the user’s voice as feedback from the three house-
holds, some important garbage content we missing in the garbage annotations
application. Therefore to improve the garbage annotation tasks, we redesigned
garbage annotation applications to have 8 garbage categories and 25 garbage
content identities, and conducted a new experiment with five houses to learn the
annotation frequency of deposing different garbage contents. Our findings show
that households’ garbage disposal behaviour depends on the amount and contents
of garbage and the routine of disposing of such garbage content.
Challenge 3: How to substantially improve the automation of garbage
classification?

To tackle the challenge, we designed and developed a smart garbage bin sys-
tem (SGBS) embedded with multiple sensors to identify the garbage contents
disposed of. We chose moisture and air quality sensors to identify and distin-
guish disposed garbage content. Afterwards, we introduce a new garbage content
estimation method by training a machine learning model using daily collected
fuse sensor readings combined with detailed household garbage contents anno-

3



tations to perform garbage classification tasks. For evaluation, we deployed the
designed SGBS in five households over one month. We confirmed that the leave-
one-house cross-validation results showed an accuracy of 91% in 5 kitchen waste
contents, 89% in 5 paper/softbox contents, and 85% in 8 garbage categories for
the classification tasks.

1.3 Dissertation Organization
This dissertation is organized as follows: we present a review of related literature
in Chapter 2. Then, in Chapter 3, we present the smart garbage bin system for
learning and predicting garbage growth behaviour for a single house. We then
describe the systems requirements, methods and tools needed. Then, we discuss
the implementation, the evaluation experiment and the results. In Chapter 4,
we extend our SGBS with garbage annotation to guide users during garbage dis-
posal. Then we describe the evaluation experiment and its results to show the
effectiveness in understanding household garbage disposal behaviour and identi-
fying the type of garbage contents. Chapter 5 presents a new garbage content
estimation method by training a machine learning model using daily collected
fuse sensor readings combined with detailed household garbage contents annota-
tions to perform the garbage classification task. Finally, in Chapter 6, we present
our conclusions and future work.
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2 Related work

In this chapter, we present a review of studies and discuss the concepts related
to our study.

2.1 Study 1: Garbage growth prediction
IoT based smart garbage solutions have been implemented at the heart of major
cities in the world such as Seoul-Republic of Korea, Varese- Italy, Hong Kong,
Barcelona- Spain, Singapore, and Stockholm- Sweden [9–11]. In these cities,
smart bins are equipped with sensors that provide users with ability to know the
fill-level (volume) of each waste container in real time. These bins are equipped
with a live monitoring platform which helps the waste collection staff to plan
ahead on how collections should be implemented, targeting only the locations of
full garbage bins [11].

Mostly, there are different technological approaches for implementing such ap-
plication solutions. For instance, studies by Thakker et al. [12] and Kumar et
al. [13] developed a smart and wireless waste management system using a load cell,
ultrasonic sensors, and GSM module, which used to notify either the bin is full
or emptied. Besides, the work by Talha et al. [14] developed a cloud-integrated
and wireless waste management system for smart cities involving a combination
of infrared (IR), ultrasonic sensor, temperature sensor, (MQ2) gas sensors and
load cell in monitoring and storing the information about waste status in a bin.

On the other hand, some approaches, including Chowdhury et al. [15], Kumar
et al. [16], and Papalambrou et al. [17] focused on RFID technology where the
smart bin embedded with RFID tags, and the collection vehicle is installed with
the RFID reader to detect smart bins during waste collection in the city. Like-
wise, Reis et al. [18] introduced iBags using RFID to implement waste reduction
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and recovery measures. Also, Hong et al. [11] used RFID technology to build a
smart garbage management system evaluated in Seoul, Korea. Similarly, the stud
by Lee et al. [10] applied RFID technology in producing an intelligent garbage
management system at the Hong Kong Polytechnic University, where users used
an NFC card to open the bin. In this system, a verification process is done by
pairing up with the user’s card, and the waste weight measured by Loadcell is
used as a factor for charging the user during waste disposal.

On the other hand, more efforts in improving garbage management with IoT
systems have been devoted at the municipal and city levels to predict garbage
generation for future planning. For instance, Kannangara et al. [19] presented
modelling and prediction of regional municipal solid waste generation and di-
version in Canada using machine learning approaches. Similarly, Ali et al. [20]
investigated waste generation in the metropolitan city using an artificial neural
network time series model, while Sun et al. [21] studied the development of an
appropriate model for forecasting municipal solid waste generation in Bangkok.
These approaches benefit the city authorities in estimating and allocating es-
sential resources needed in the future for garbage management and formulating
alternative strategies to influence the attainability of sustainable goals [22].

Existing approaches have been helping users to conduct real-time monitoring,
take data-driven action ahead of time, send a notification for full waste bins, and
predict and plan for the best garbage collection route. Yet, they are inefficient
in learning the amount of garbage disposed of each time. Therefore chapter 3 of
this dissertation proposes to develop a new smart garbage bin system to learn
the amount of garbage disposed of and predict growth behaviour.

2.2 Study 2: Understanding household garbage
disposal behaviour

Recently, several IoT-based smart garbage management systems have been devel-
oped. Most of the existing work invests effort in using the amount of garbage to
estimate its future growth and provide dynamic garbage collection. We discussed
our related work by considering both aspects found in the existing work.

6



Table 2.1: A summary of studies used different technologies in the development
of IoT-based smart garbage systems

Reference Wi-Fi GSM RFID ZigBee Ultrasonic sensor Infrared sensor Load cell DHT11/22 MQ2/135 Camera ToF
[23] O X X X X O O X X X X
[24] X O X X X X O X X O X
[16] X O O X O X X X X X X
[18] X X O O X X X X O O X
[25] X O X O O X O X X X X
[11] X X O X X X X X X X X
[12] X O X X O X O X X X X
[10] X X O X O X O X X X X
[14] X O X X O X X O O X X
[26] O X X X O X X X X X X
[17] X X O X O X X X X X X
[27] X O X X O X X O X X X
[13] X O X X O X O X X X X
[28] O X X X O X X X X X X

our system ∗ O X X X X X O O X X O

∗ O = YES, X = NO

Kristanto et al. [29] proposed a dynamic polling algorithm for low-energy
garbage level measurement to eliminate the high cost and inefficiency of the
existing static garbage collection systems. The designed smart trash bin pro-
totypes were embedded with an ultrasonic range finder to measure the garbage
level. Then a polling algorithm estimated the maximum height of garbage based
on historical information on garbage height gathered previously. Moreover, the
dynamic polling algorithm was used to reduce the device’s power consumption.

Furthermore, Faye et al. [30] suggested a novel smart waste management ap-
proach for business IoT “SWAM” the system was elaborated in the city of Lux-
embourg, targeting businesses and large entities. The system used ultrasonic
sensors to measure garbage levels in smart bins. Driver mobile data and cus-
tomer profile were combined, and advise the driver on the best times to visit a
customer and collect garbage. Also, the study proposed a multi-objective opti-
mization layer, which compiles the collection routes that minimize the impact on
the environment and maximize the service quality. Likewise, Hossain et al. [31]
demonstrated an optimal route planning model based on Dijkstra’s algorithm as
one of the city’s most important factors in the smart waste management system.
Both authors [30], [31] considered the status of the amount of garbage level in
a bin as one of the real-life parameters in calculating optimal distance link cost
and other parameters such as road congestion status and distance travelled by
the driver.

7



Idwan et al. [32] also advance the use of IoT technology to determine the sched-
ule and pathways of waste collection trucks. First, the study simulated multi-
ple route trucks using a heuristic algorithm. Later, developed a smart dumpster
equipped with an ultrasonic sensor and GSM module to measure the level of waste
and send updates to the central management system using a wireless network.
The author asserted that data regarding the garbage status in the developed
dumpsters are used to determine the most effective route for the truck, reducing
the cost and time taken.

Additionally, Memonet al. [33] demonstrated the dynamic features of IoT on
human innovation with the remedy of an ever-increasing amount of garbage. In
this study, the developed smart garbage bin system was able to record the status
of the amount of garbage level periodically in a cloud server and send a report to
waste management authorities, thus automatic instruct drivers for the garbage
collection on full path bins only.

Ferreret al. [34] presented a software system for predicting fill-level containers,
namely BIN-CT (BIN for the city). The study pivoted on paper waste containers
due to their variability in collection frequency rather than organic waste. The
system combined two main algorithms first for next-day prediction of the con-
tainers’ fill level based on each container’s historical fill level data using machine
learning algorithms. Second, it computes the best routes to visit them; BIN-CT
prioritized containers with fill levels greater than 80 % for the collection sched-
ule. The predictive system was designed to improve municipal waste collection
planning. Similarly, Faye et al. [30] also realized the future strategy to include
the predictive models to estimate the fill level at least 48 hours in advance and
plan for collection.

Previous studies on IoT-based smart garbage management systems have evi-
dently used garbage amounts to predict garbage growth and provide a dynamic
and optimal route for garbage collection to reduce cost and improve garbage op-
erational services in a city. However, they can not understand household garbage
disposal behaviour and identify the type of garbage contents disposed of by house-
holds, as explored in chapter 4 of this dissertation, which has yet to be considered.

8



2.3 Study 3: Garbage content estimation model
This Section gives an overview of related work from two different perspectives.
First, we provide an overview of the separation and disposal of garbage with an
emphasis on municipals in Japan, where this study was conducted. Secondly, we
discuss recent work on garbage classification from images using machine learning
and deep learning to recall existing approaches to assess it.

2.3.1 Separation and disposal of garbage in Japan
Garbage separation has been a major challenge across developing countries than
in developed countries where there are various collection systems for house-
separated garbage, such as in Sweden and German [35], China [36], and Japan [37].
While in other developed countries, garbage separation is often classified into
three categories: recyclable, household and vegetation garbage. In Japan, the
garbage separation and disposal system is different and complex. The rules for
separating and disposing garbage depend on the particular local municipality,
whereby each city in Japan provides a well-documented pamphlet explaining the
garbage disposal rules. In general, garbage is divided into four categories: Burn-
able garbage (Kitchen waste, paper scraps, clothing, etc.), non-burnable garbage
(Metal, glass, ceramics and pottery, etc.), recyclable (Plastic bottles, container
jars, cans, newspapers, etc.), and oversized (Large furniture, etc.) [37]. Therefore,
each municipality uses such a general garbage division to classify garbage for their
residents. (see burbalegarbage) provides an overview of the division of burnable
garbage content in four cities in Japan; Kashihara [38], Ikoma [39], Nara [40] and
Kyoto [41]. Apart from garbage descriptions from the municipal pamphlets, resi-
dents use designated plastic garbage bags of up to 45 litres to dispose of garbage.
Moreover, garbage collection for each category of garbage is set by the municipal
for instance, Mondays and Thursdays in Ikoma city [39] are used for the collection
of burnable garbage only. The above facts show that families in Japan play a
hand role in their municipal rules for garbage separation and disposal systems.
However, The failure of households to sort the garbage renders the whole system
useless [7]. Therefore, automation tools are necessary to monitor daily family
garbage disposal and improve garbage separation.

9



Table 2.2: Overview of burnable garbage separation in Japan
City Name Burnable garbage separation
Kashihara city [38] 1:Kitchen scraps

2:Small plastic e.g DVDs/CDs,toys
3:Waste paper (tissue, mixed papers)
4:Weeds, twigs, and leave (30 cm)
5:Containers e.g for mayonnaise, oil
6:Polystyrene
7:Shoes,Bag, Cloth

Ikoma city [39] 1:Kitchen waste
2:Plastic/unclean products e.g storage containers
3:Paper/textile e.g Tissues,Milk box, cloth
4:Others

Nara city [40] 1:Kitchen garbage
2:Styrofoam e.g noodle cup
3:Cassette tape/videotape (less than five)
4:Waste Woodchips e.g chopsticks, pencils
5:Waste Paper

Kyoto city [41] 1:Raw garbage
2:Non-recyclable paper
3:Broken glasses
4:Small plastics

10



2.3.2 Garbage classification from images with deep
learning models

A possible solution to overcome the existing challenges in household garbage
separation and management is to adopt sustainable automation tools to improve
garbage separation. Presently, several works have been devoted to the automation
and detection of garbage from images, which has now become a popular choice to
replace manual garbage separation while taking advantage of the rapid advances
in computer vision and artificial intelligence. Various standard CNN architec-
tures have been recently proposed to perform image classification tasks with high
accuracies, such as VGGNet [42], AlexNet [43], ResNet [44] and DenseNet [45].

Nnamokoet al. [5] investigated the problem of manual household garbage sepa-
ration into two categories, namely, organic and recyclable. Experiments presented
in this paper were conducted with Sekar’s waste classification image dataset avail-
able in the Kaggle library [46]. Later, a bespoke 5-layer CNN architecture was
used to perform image classification tasks. In this work, the training was con-
ducted on two datasets, smaller model (80x45 pixels) and a larger model (225x264
pixels), for performance comparison, thus obtaining similar cross-validation ac-
curacy of 79%. Likewise, Mookkaiahet al. [47] proposed a model to identify and
classify two types of garbage, biodegradable and non-biodegradable. First, the
images were collected in the respective garbage bin by Raspberry Pi Camera Mod-
ule v2. Then garbage classification task was done by CNN architecture. However,
separating garbage into two categories is insufficient for logical household garbage
separation. Besides, there is still a shortage of publicly available garbage image
datasets and an information gap in their experimental procedures.

Furthermore, Wanget al. [7] revealed garbage sorting and classification at the
source, the beginning of garbage collection while utilizing the combined method
of IoT and CNN. The study used experimental data available in the Trashnet [48]
dataset, merged with other datasets thus, resulted in nine categories of garbage
(Kitchen waste, other waste, hazardous waste, plastic, glass, paper or cardboard,
metal, fabric and other recyclable waste). In addition, the study developed an
intelligent bin embedded with ultrasonic sensors, MQ9, and MQ135 gas sensors
to monitor the garbage’s running state in the bin. Finally, the CNN model was
deployed in mobile phones and cloud computing servers for garbage classifica-
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tion. The system required citizens to take pictures of garbage using their mobile
phones and send them to a cloud server to run the deep-learning algorithm to
recognize categories. Despite the high-performance accuracies of 92.44% and
92.00% achieved by Xception and MobileNetV3 models on classifying nine types
of garbages, the author presented more generalizable garbage categories that need
to be improved for proper household garbage separation.

Besides, a distributed architecture for smart recycling using machine learn-
ing was realized by Ziouzioset al. [6] as a solution for garbage classification in
collection facilities to solve the problem of non-segregated garbage, which exists
more in developing and developed countries. The Trashnet [48] dataset was used
for training the models by utilizing computation offloading to the cloud. The
CNN architecture classified the garbage materials into five categories: Paper,
glass, plastic, metal, carton, and trash. Similarly, Samiet al. [49] used the Trash-
net [48] dataset to automate the garbage classification problem into six classes:
glass, paper, metal, cardboard, and trash using a Support Vector Machine, Ran-
dom Forest, Decision tree, and CNN to find the optimal algorithm that best
fits garbage classification solution. However, the available public garbage image
datasets need more classes of garbage categories for proper garbage classification.
Therefore, the garbage categories presented in both studies [6,49] are not practi-
cal for household garbage separation and for improving the garbage management
systems.

Despite the high accuracies achieved by the existing solutions on garbage clas-
sification through the automation and detection of garbage from images by the
deep learning models. Yet, they provide a small number of garbage categories, not
enough for reasonable practices of household garbage separation. Therefore, to
our knowledge, an automation tool that can learn and identify the daily garbage
content disposed of in homes and perform classification tasks, as investigated
throughout this work, has yet to be considered.
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2.3.3 Key issues addressed in existing IoT garbage
management system

This sub-section summarises the issues addressed in the existing IoT garbage
management system as described in the literature and specific questions in each
study challenge to investigate in this dissertation.

Study 1

• In the first study of garbage growth predictions, the existing IoT In the first
study of garbage growth predictions, the existing IoT garbage management
systems have been exclusively helping users conduct real-time monitoring,
taking data-driven action ahead of time. Also, send a notification for full
garbage bins, and predict and plan the best garbage collection route. How-
ever, such existing systems are city-based and unfriendly in learning garbage
growth behaviour for a single house at different times of the day, a week,
or a month.

Study Challenge 1: How to learn the amount of garbage disposed of each
time and predict garbage growth behaviour for a single house?
Specific questions

1. How to learn the amount of garbage disposed of each time?

2. How to predict garbage growth behaviour?

Study 2

• In the second study of understanding household garbage disposal behaviour.
Literature has proven that IoT garbage management systems can use garbage
amounts to predict garbage growth and provide dynamic and optimal routes
for garbage collection to reduce costs and improve garbage operational ser-
vices. However, IoT garbage management systems are inefficient in iden-
tifying the type of garbage contents disposed of daily by households and
learning disposal patterns.

Study Challenge 2: How to understand household garbage disposal be-
haviour and identify the type of garbage contents?
Specific questions
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1. How to understand household garbage disposal behaviour?

2. How to identify the type of garbage contents?

3. What are the methods to save energy on IoT systems?

Study 3

• In the third study of the garbage content estimation model. Studies have
been dedicated to the automation and classification of garbage from im-
ages by utilizing computer vision and artificial intelligence. However, they
provide a small number of garbage categories, not enough for reasonable
practices of household garbage.

Study Challenge 3: How to substantially improve the automation of
garbage classification?
Specific questions

1. What sensor values are relevant to the identification of garbage con-
tent?

2. How to perform garbage content estimation from daily disposed of
garbage content?
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3 Smart garbage bin: Garbage
growth prediction

This chapter lays the groundwork for the first challenge of garbage growth predic-
tions for a single house. First, we describe the requirements needed to answer the
main study questions. Then we design the proposed smart garbage bin architec-
ture and discuss the tools and methods required to develop a smart garbage bin
prototype based on the requirements. Afterwards, we build a model for garbage
growth prediction and evaluate its effectiveness.

3.1 Methods and tools

3.1.1 System requirements
This section describes the system requirements for the proposed customized smart
garbage bin system. Based on the discussions in Chapters 1 and 2, there are the
following two main requirements for a smart bin system:

Req 1: It should be able to detect specific garbage values.
Req 2: It should upload the detected garbage value into the specified cloud
storage at a defined programming time interval via a wireless gateway and
ensure real-time data visualization.
Req 3: It should be able to analyze data and predict future garbage growth.

To achieve Req 1 and Req 2, we designed and developed a smart garbage bin
system (SGBS) embedded with sensors for distance, weight, temperature and
humidity sensors to monitor garbage growth. Also, we selected the Wi-Fi network
as a gateway to the cloud server for real-time data visualization. To address Req 3,
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Figure 3.1: Smart garbage system architecture design

we apply a time-series machine learning algorithm for continuous data to predict
future garbage growth.

3.2 Proposed smart garbage system
Fig. 3.1 shows the proposed SGBS architecture design comprises three layers:
Hardware, Cloud service, and Processing and control. First, the SGBS collects
its status data and sends it to the cloud platform via a gateway. Later, machine
learning methods are applied for data analysis and prediction. Fig. 3.2 shows an
overview of the proposed smart garbage bin system. The following subsections
details each part of the proposed SGBS.

Hardware layer

The Hardware layer comprises the hardware used in developing the proposed
SGBS Fig. 3.1. An Adafruit feather m0 Wi-Fi atsamd21 + atwinc1500 Micro-
controller is placed in the heart of the system connected to the sensors. The
Adafruit feather m0 has a built-in Wi-Fi module, hence providing the system’s
ubiquity and ease of setup. We considered exploring other related studies that
used different technologies in developing IoT-based smart garbage systems, as
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Figure 3.2: Smart garbage bin overview

shown in the Table 2.1. Communication technologies such as RFID, GSM, Wi-
Fi, and ZigBee enabled garbage data transfer for real-time monitoring. Besides,
sensor technologies such as ultrasonic, infrared, load cell, and DHT22, provided
the measurements of the garbage status. The review from other related studies
found that the ToF sensor has not yet been commonly considered in developing
an IoT-based smart garbage system. In contrast, ultrasonic and infrared sensors
are found to be popular. Thus, we ultimately chose the time of flight (ToF)
sensor in this study. The ToF sensor is not affected by the colour of the target
object compared to the infrared sensor. Also, compared to the ultrasonic sen-
sor, the ToF sensor does not critically depend on the angle of incidence and is
not disturbed by environmental noise; thus, it has greater readings and accuracy.
Therefore, the smart bin cover in the proposed system is embedded with the ToF,
DHT22 (temperature, and humidity) sensors (Fig. 3.2. The ToF sensors measure
the increase of garbage fill levels in a smart garbage bin in the centimetre unit
of measurements plus DHT22, which measures the inside temperature and hu-
midity condition of garbage in the bin. The temperature and humidity need to
be monitored because the garbage may decompose and produce a pungent smell.
Further, the bottom part of the smart garbage bin Fig. 3.1 comprises the load cell
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to detect the increase of the garbage weight in the bin. Power Core 26800mAh
Anker external battery supplies sufficient power to the system. Arduino IDE
software was used as the programming environment for the sensors. Table 5.1
shows the type of sensor used and its purpose.

Table 3.1: Sensor used in the developemnt of smart garbage bin
Sensor Purpose

1. AE-VL53L0X(ToF) Measure fill level of garbage in a bin
2. DHT22 Measure temperature and humidity in a bin
3. Load cell Measure increase of weight of garbage in a bin

Cloud service layer

To achieve the real-time monitoring and data visualization as defined in Req2 of
the proposed SGBS, we utilized a ThingSpeak cloud platform. ThingSpeak is an
open-source cloud platform that provides cloud space for IoT projects. Therefore,
using the Wi-Fi gateway, the detected garbage data sensor data found in the
smart garbage bin were continually uploaded, stored, and visualized into the
Thingspeak cloud space with the Write-Application Programming Interface (W-
API). In addition, a ThingView mobile application linked to Thingspeak via (W-
API) allowed easy data visualization through a smartphone in real-time garbage
monitoring.

Processing and control layer

The processing and control layer supports the achievement of the second require-
ment of the smart garbage bin system, where a time-series machine learning
algorithm for continuous data named an autoregressive integrated moving aver-
age (ARIMA) was applied. Fig. 3.3 is a flow chart of the predictive model for
a single house’s future garbage growth behaviour. The flow chart includes data
preparation, machine learning model building, performance measurement, and
the model’s deployment.

18



Figure 3.3: The flow chart of modelling steps used in this study

3.2.1 Deployment and data collection experiment one
In evaluating the performance of the developed smart garbage bin see Fig. 3.2,
we explored a way of successfully utilizing the SGBS in terms of the number of
days (times), type of user, and garbage growth. Therefore for SGBS validation
and feasibility, key questions were studied (1) How is a big data collection of
garbage growth of a single house being conducted? (2) How to learn the patterns
of garbage growth? (3) How to predict garbage growth for the following schedule
and changing garbage bags? To respond to the questions above, we conducted
experiments number 1 as a preliminary deployment of the smart garbage bin
system, (SGBS) in a university laboratory consisting of 42 research students
who use the laboratory daily. As a routine, students visit the laboratory from
Mondays to Fridays, on or after morning to night hours, while few visit the lab
on Saturdays and Sundays. At these times, they do different activities, including
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eating, drinking, and cleaning, thus producing garbage. The lab is placed with
three types of garbage bins: burnable, cans, and plastics. However, for this study,
the focus stood on burnable garbage only. Burnable garbage includes food waste,
paper waste, fruit, vegetable peel, eggshells, old clothes, and other food items
that may leave an unpleasant odour if left in the bin for too long.

3.3 Model building
To model continuous time series data using an autoregressive integrated moving
average (ARIMA), first, we need to check the stationarity of the observation,
which can be used in the feature selection process on the time series problem.
Therefore, we applied an augmented statistical dickey-fuller (ADF) test to test
the stationarity on our dataset with a 2-day rolling window. Then, using the p-
value of the ADF as shown in Fig. 3.4, we interpreted the results. The time series
dataset is considered stationary if the p-value is p≤0.05, and the critical values at
1%, 5% and 10% confidence intervals are as close as possible to the ADF statistics.
In our test, the ADF test gave the p-value of 0.006, and the test statistic was less
than the 1% critical value. Thus, it suggests we can reject the null hypothesis
with a significance level of less than 1%; therefore, the dataset is stationary.
Therefore, we used the ARIMA model to predict future garbage growth using a
fixed-sized slide forecast window on the train and test the model. ARIMA is a
popular algorithm widely used in the statistical method for continuous-time series
forecasting [50]. The ARIMA model consists of three components: autoregression
(AR), integrated (I), and moving average (MA), which is explicitly specified in the
model as a parameter like ARIMA(p, d, q). An autocorrelation function (ACF)
provides the MA value, and a partial auto-correlation function (PACF) provides
the AR. The Akaike information criterion (AIC) value allows us to compare how
well the model fits the data. The lower the value, the better the model. Therefore,
we built our model with the ARIMA (2, 1, 0) with the AIC value of 205.
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Figure 3.4: Dickey-Fuller test statistic results

3.4 Results and discussion

3.4.1 Cloud data visualization
In our preliminary deployment of a smart garbage bin in a university laboratory,
data from three sensors, ToF, DTH22, and load cell, were continuously collected
and stored in the ThingSpeak cloud over 30 days at a 1-minute interval. For
smooth live streaming and garbage data monitoring, a ThingView mobile ap-
plication shown in Fig. 3.5 linked to the ThingSpeak cloud storage via W-API
provided good data visualization.

3.4.2 Daily garbage growth
During the deployment, we studied the garbage’s growth using the fill-level values
sensed by the ToF sensor from the top level of the smart garbage bin in a time
series interval of each day. As a reference, Fig. 3.6 reveals both slow and high
variations of the garbage growth behavior, which depended on the use of smart
garbage bin on a particular day by the students in the laboratory. Further, we
determined the trended frequency of changing the garbage bags on different peak
values as Fig. 3.6 illustrates, whereas, the small green boxes indicate the lowest
peak value (5.6 cm) from the bottom when the smart bin was empty. The dark
red small boxes indicate the highest peak values of garbage where the change of
garbage bag occurred, such trend frequency of changing the garbage bag learned
as irregular behavior in the smart bin system. The change of the garbage bag
can also be due to bad smell resulting from decomposed garbage in the smart
garbage bin.
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Figure 3.5: Daily garbage growth data visualization using ThingView app

3.4.3 Garbage growth prediction
To predict the future garbage growth for the following collection schedule and the
change of garbage bags. We applied the ARIMA model using a sliding window
forecast method to train the model on the fill-level dataset, consisting of 30
days of observations as provided by the ToF-level sensor. Initially, we started
by splitting the whole number of observations into different training sizes. Each
train size takes a given forecast window size as an input for testing and predicting
(Forecast) future garbage growth behaviour. As shown in Table 5.4, the number
of observations (N) was split into ten, fifteen, and twenty days as training size.
Therefore, a fixed forecast slide window size of 2, 4 or 7 days was applied to
each N-number of observations to forecast the garbage growth. Fig. 3.7 illustrate
the prediction of garbage growth on training the ARIMA model with the ten,
fifteen, and twenty N-number of observations. The result shows that the predicted
garbage values follow the actual values of the initial observations. Additionally,
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Figure 3.6: Garbage growth and frequency of change of a bag in the smart bin

Fig. 3.8 demonstrates prediction outcomes of garbage growth on each training
size; N=10, N=15, N=20 with the given forecast window size. We have observed
that the ARIMA model is suitable for predicting future garbage growth behaviour
in the single house because the prediction follows the actual observations and
can provide predictions with few amounts of data; also, the prediction model was
capable of gathering the fluctuations on observed data, and the averaged accuracy
error decreases with respect to the simultaneous increasing forecast window size
and training size. Moreover, the ARIMA model is a flexible method which uses
past data to predict the future where its application does not require much data.
Thus, in this study, the ARIMA model using the slide forecast window provided
flexibility and functional result.

3.4.4 Performance measurements
Given the slide forecast window, we calculated the model’s error on each train-
ing size (N-number of observations). There are different ways to evaluate the
performance accuracy of the ARIMA model. In that regard, we conducted a
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performance measurement of our model using mean absolute error (MAE) and
standard deviation (SD) in the centimetre unit of measurement (cm). As shown
in Table 5.4, the forecast window started with a two-days size, then slid to four-
day and, finally, seven-day window sizes on the same training size; N=10, N=15,
N=20. Therefore, the performance was observed and compared from a few to
higher numbers of observations (N). We obtained the model performance accuracy
using three training iterations; thus, MAE was recorded and averaged. Fig. 3.9 is
an error bar graph achieved during model performance measurements. Training
the model with ten observations (N=10) using the two-days window size indicates
satisfactory performance, but the number of observations was low. Thus, training
the model with twenty observations (N=20) given with the four-days window size,
as shown in Table 5.4, provided the best accuracy on the garbage growth pre-
diction, i.e. N=20, Average MAE=5.17 cm, SD=0.33 cm. The results show that
the simultaneous increase of both the training and forecast window sizes provides
fewer errors. The fewer prediction errors during the ARIMA model’s performance
measurement indicates the predicted values are closer to the actual observation,
which offers high efficiency in predicting the future amount of garbage growth
behaviour on daily practical use. In contrast, the higher error value above 10%
of the smart bin’s maximum fill level, which the model best achieved, can impact
the timing of garbage bag change during garbage disposal and garbage collection
schedule.

3.5 Chapter summary
In this chapter, we have presented the smart garbage bin system (SBGS) to
learn garbage growth behaviour in a single house and predict its growth. First,
the SGBS embedded with distance, loadcell, temperature and humidity sensors
via Wi-Fi gateway were collected and stored in the cloud platform. Then we
conducted a preliminary deployment of the SGBS in a student laboratory over
one month. Later, we applied an ARIMA model with a fixed slide forecast window
size on each N-number of observations to predict the garbage growth behaviour
for the collection schedule and change the garbage bag during the day of garbage
disposal. The result found that the ARIMA model was suitable for predicting
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Table 3.2: ARIMA model performance measurement

Training size (N) Forecast window size Average MAE SD

(day) (day) (cm) (cm)

10 2 3.67 0.75

10 4 4.63 0.76

10 7 5.34 0.62

15 2 7.54 0.18

15 4 6.11 1.42

15 7 5.56 1.19

20 2 5.08 3.24

20∗ 4 5.17 0.33

20 7 5.34 0.55
∗ is considered as the best performance accuracy

garbage growth behaviour in a single house. Moreover, the model was capable of
gathering the fluctuations in observed data, and its application did not require
much data. However, to build a generalizable (versatile) model first we need
to investigate if the ARIMA can be used as the versatile model. Nonetheless,
in this Chapter we have confirmed that the ARIMA model can be used for the
garbage growth behaviour prediction in a single house. In the next chapter of
this dissertation, we will investigate the routine of garbage disposal behaviour in
houses and identify the disposed of garbage contents.
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(a)

(b)

(c)

Figure 3.7: Garbage growth prediction with ARIMA model using:(a) 10 days
training (a) 15 days training (a) 20 days training
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Figure 3.8: Prediction outcomes of garbage growth on different N-number of ob-
servation
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Figure 3.9: An error bar graph during model performance measurement
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4 Smart garbage bin:
Understanding household
garbage disposal behaviour and
content identification

In this following chapter of the study, we respond to the second challenge of
household behaviour on garbage disposal and identification of important garbage
content disposed of daily in households. Therefore, we begin by describing the
requirements needed for designing and developing a smart garbage bin system
prototype and constructing an architectural design for the systems while consid-
ering methods and tools that will save the purpose of low power and wide range
data transfer of the developed system. Eventually, we realize garbage disposal
behaviour and identification of garbage contents daily disposed of in families.

4.1 Methods and tools

4.1.1 System requirements
In this section, we identified and described the requirements for the proposed
Smart garbage bin system "SGBS" as follows;

1. It should detect the amount of garbage, moisture condition and air quality
in the smart bin.

2. It should be able to provide desirable low energy usage on devices
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3. It should be capable of transfer the detected data into a cloud server at a
long-range.

4. It should identify the type of garbage contents and guide users on how to
dispose of garbage.

5. It should allow safe installation and replacement of smartphone.

6. It should allow household users to clean their smart bins for healthier living.

Table 4.1: Sensor properties and purposes
Sensor device Max current Voltage Purpose

(mA) (V)
1. DHT22 2.5 3 ∼ 5 Temperature

and humidity
2. ToF 10 2.8 ∼ 5 Filling level
3. Load cell 1.6 2.6 ∼ 5.5 Weight

and HX711
4. CCS811 Air 26 3 ∼ 5 TVOC and

quality sensor CO2

In order to achieve requirements 1, 2, and 3 for the SGBS we selected hard-
ware devices, where in the heart of the proposed SGBS, an ATmega328-Arduino
Pro Mini microcontroller was used. The ATmega328 uses a 3.3V, 8 MHz and
consumes 16mA before the sleep mode state; this is suitable for implementing
a low-energy smart garbage bin. Also, we selected the Low Power Wide Area
Network sigfox antenna module programmed with the ATmega328 to transfer
small chunks of measured garbage data into a specified cloud data service. In ad-
dition, we selected small, low power and lightweight sensors for determining the
state of garbage amount (fill level and weight), moisture and air quality (Total
Volatile Organic Compounds (TVOCs) and Equivalent CO2 (eCO2) ). Further,
to achieve requirements 4 and 5, we designed and developed a garbage annotation
application to guide users during garbage disposal. The annotation application
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was installed in Google Pixel 3a 64 GB simple smartphone with Wi-Fi capability;
thus, the annotations of daily garbage contents were stored in a cloud server. Fi-
nally, for requirement 6, we designed our system to be easily installed in houses,
allowing household users to clean their smart garbage bins healthily. Table 5.1
provides the purpose and power consumption properties of the chosen sensors
used in developing the smart garbage bin.

4.1.2 Architecture design
Fig. 4.1 demonstrates the high-level architecture of the SGBS consists of three
primary services. First is the smart garbage bin operation service, embedded
with ToF (time of flight), DHT22 (temperature and humidity), HX711-load cell,
CCS811 air quality sensor and a solar panel battery. We Used a sigfox antenna
module as a gateway to send garbage data to the cloud server through API
calls. In addition, the smart garbage bin operation service consists of the garbage
annotation application installed on smartphones that appropriately guides users
in disposing of their garbage in the smart garbage bin. Secondly, the Cloud data
service collects, stores and processes all sensor data from the smart garbage bin.
Thirdly, the garbage log service “GLS” comprises the garbage amount information
and disposed contents from households to learn the garbage disposal behaviour
of households which is the focus of this study.

4.1.3 System design
This subsection describes the design of the SGBS. Fig. 4.2 illustrates the design
of the Smart garbage bin system. The SGBS design consists of four components:

• Smart garbage bin: Where sensors, solar panel battery, sigfox antenna,
and smartphones are attached for garbage data collection.

• Sigfox antenna module: That uses low-power ultra narrowband and
sends data to the backend of the sigfox cloud.

• Sigfox cloud: That uses a custom callback service type to integrate with
google cloud API through the created google sheet URL to receive the bytes
of data via the sigfox antenna module.
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Figure 4.1: High level architecture of smart garbage bin system

• Google sheet cloud service: That receives data from the sigfox cloud
using the doGet parameter function, storing and processing all sensor data
from the smart garbage bin that are sent in a defined system time interval.

4.1.4 Sigfox as the enabling data communication
infrastructure for SGBS

Sigfox network is part of the Low Power Wide Area Network( LPWAN) with
an ultra-narrowband technology that uses a standard radio transmission method
called binary phase-shift keying (BPSK). Sigfox operates in unlicensed bands
worldwide, with radio frequencies of 868 to 869 MHz and 902 to 928 MHz using a
data rate of 100bps to 600 bps [51] depending on the region. Sigfox network is em-
ployed mainly for developing IoT more reliable than Wi-Fi because it can handle
a data transmission without object obstruction to 6km/h from the installed lo-
cation. Conversely, Wi-Fi technology standards 802.11abgn involve short-range,
high cost and high power consumption. As mentioned in subsection 4.1.1 of the
requirements, we wanted to achieve low energy usage on the proposed SGBS.
Therefore, we installed a Kit breakout board sigfox BRKWS01 (RC3+915Mhz)
antenna in this study. The registered antenna contains a low-cost one-year con-
tract for the network provision and subscription. With the sigfox module, the
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Figure 4.2: Smart garbage bin system design

devices can send a maximum of 6 messages per hour (36/6) in a 10-minute duty
cycle, which means 144 messages per day. So we used this scenario to define the
SGBS time interval for sleep and active mode. This way, the SGBS sends new
garbage data into the cloud service using the designated 10-minute break con-
tinuously in a day. To receive data, we used the custom call back service at the
back end of sigfox cloud to integrate with the google sheet cloud server through
google API, whereas data are received with the help of the doGet function query.

4.2 Energy saving algorithm
Herein, an energy-saving algorithm is proposed and described to reduce power
consumption on the smart garbage bin. We assume the contents of the garbage
differ from one household to another in a day. Thus, the proposed SGBS has
to record such patterns without missing the user’s important garbage disposal
behaviour in specified time intervals. Therefore, as detailed below, the energy-
saving algorithm operates in active and sleep modes to collect information about
garbage contents.

Active mode

During the active mode, garbage contents are measured using the embedded
sensors. First, the smart garbage bin starts by waking up for two seconds, and
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all the sensors measure the available garbage values. Because the frequency of
measurement directly affects power consumption, it is important to reduce the
system’s active time as much as possible. Next, the measured garbage values
are uploaded as bytes of a message into the cloud server via the sigfox antenna
module. This process requires a delay time of about 1.5 seconds before the system
enters sleep mode.

Sleep mode

In sleep mode, we achieved a low energy usage of the smart garbage bin. During
this state, the ATmega328-Arduino Pro Mini microcontroller enters sleep for 8
minutes. We used a Low Power Mode (LPM) from Arduino’s lower power library
to set inactive all functions that consume power to run in a microcontroller, in-
cluding; Timer 0, 1, 2, SPI and UART Communication, and External Oscillator.
This method results in low usage of power in smart bin devices. To avoid con-
fusion on the solar battery and consistently power the system devices using this
algorithm, we introduced a 1-minute wake delay in the energy-saving duty cycle.
Thus, the energy-saving algorithm efficiently reduces power consumption on the
proposed SGBS.

4.2.1 Evaluation of power consumption
In this subsection, we introduce a method for measuring the smart garbage bin’s
power consumption to confirm its low energy attributes, as discussed in the pre-
vious section. The proposed SGBS aims to track garbage amounts, including;
garbage level, weight, moisture, and air quality. Thus, the energy-saving algo-
rithm was used to increase the lifetime of sensor devices. Using Cen-Tech digital
multimeters, we measured the total current consumption by the smart garbage
bin during the active mode, when it performs measurements and communicates
the data to the cloud server. Also, we measured the power when the smart
garbage bin was in sleep mode.
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Table 4.2: Power consumption characteristics

Mode Current consuption

Active Wakeup current 50.1 mA

mode Wakeup time 3.5 sec

Sleep Sleep current 38 mA

mode Sleep time 9 min

Power Measurement method

To calculate the power measurement by the SGB, we measured the total current
consumption by the devices over time (3,600 seconds in one hour). As discussed
above, we divided the measurement into two ways; during measurements (Active
mode) and in sleep mode. Table 4.2 recorded the power consumption character-
istics of the SGBS during active mode and sleep mode.

Results of power consumption

By referring to Table 4.2 in active mode, the SGB consumes 50.1 mA as a wakeup
current in a total of 3.5 seconds, six times every hour. If it is expressed into
milliamp-hours (mAh) units, the power consumption of the smart garbage bin
can be calculated as follows;

50.1 mA × (3.5 sec ×6 /3600 sec) = 2.9 × 10−1 mAh (4.1)

Again from Table 4.2 during the system sleep mode, the SGB consumes 38 mA
as a sleep current in a total of 9 minutes, equal to 540 seconds. If it is expressed
into milliamp-hours (mAh) units, the power consumption of the SGB can be
calculated as follows;

38 mA × (540 sec ×6 /3600 sec) = 34.2 mAh (4.2)
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Estimate Battery life

To confirm the lifetime of smart bin devices using our energy-saving algorithm,
we estimated the battery life of the solar panel battery powering the SGB. We
used a 26,800 mAh solar panel battery to power the SGB. Therefore, we used
power consumption characteristics as demonstrated in Table 4.2 and assumed the
percentage wasted capacity of the solar battery is less than 5%. Thus, the battery
life of the SGB was calculated as follows;

Average current = (38 mA × 540 sec) + (50.1 mA × 3 sec)
(540 sec +3.5 sec)

= 38.0779 mA

Battery life time = 26, 800 mAh × 0.95
38.0779 mA (4.3)

= 668.63 h
24 h

≈ 29 days

4.3 Deployment and data collection experiment
two

We conducted experiment number 2 to verify the feasibility of the SGBS for 11-21
days in three households to understand households’ behaviours on the garbage
disposal and identify the type of garbage contents disposed of. We used age group,
family size, family type and cooking and eating habits as criteria to select the
participants for the experiment. Table 4.3 outlines the information of the study
participants. We ensured safe data collection and storage for users by protecting
users’ anonymity and confidentiality, and the collected data was used only for
the intended purposes of this study. Therefore, we did not sample for specific
experience with smart home technology. However, we assumed all participants
have smartphone experience and general knowledge of sensors Fig. 4.3 shows the
deployed SGBS in the household. The following section illustrates how households
use a mobile application that guides them during garbage disposal.
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Table 4.3: Information of the participants
Household one Particulars

- Age group:(23)
- Type of family: Single
- Size of family: 1
- Life style: 1 absence on day on weekdays
- Cooking & Eating habits: often evening

Household two Particulars
- Age group:(29)
- Type of family: Young married couple
- Size of family: 2 adults, 1 child
- Life style: 1 absence on day on weekdays
- Cooking & Eating habits: often all the days

Household three Particulars
- Age group:(55-50)
- Type of family: Married Couple
- Size of family: 2 adults
- Life style: 1 absence on day on weekdays
- Cooking & Eating habits: often all the days
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Figure 4.3: Smart garbage bin system deployed in a household

4.3.1 Garbage annotation mobile application
Fig. 5.2 depicts the designed and developed garbage annotation mobile applica-
tion to guide households during garbage disposal and collect information about
the type of garbage contents disposed of by households. The annotation appli-
cation consists of four categories with ten different types of burnable garbage
contents; kitchen garbage; (all food garbage), plastic/unclean products; (storage
containers, toys, unclean packages, unclean containers), paper/textile; (tissues,
mixed papers, milk/juice box, unclean cloth) and other related types of garbage
contents. The classification of burnable garbage is based on the catalogue as
instructed by Ikoma city in Japan. The garbage annotation application allows
individual households to select the type of garbage content each time they dispose
of garbage in the SGB from a handy smartphone fixed outside on top of the SGB
cover. Then data about the garbage content are sent to the cloud data server
using a Wi-Fi network.

4.3.2 Result and discussion
The discussion below is on the general aspects of understanding the behaviour
of household users on garbage disposal from the established garbage log service
“GLS” of each family. First, we discuss tracking garbage growth amounts from
the users of the three households. Afterwards, we discuss the identified important
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Figure 4.4: Garbage annotation mobile application

types of garbage content for each household, and lastly, we describe the routine
behaviour of disposing of such garbage content. This discussion is more on general
households’ adoption, experience and limitation in using the SGBS.

Tracking garbage growth amount

The objective of this initial experiment was to verify the feasibility of the SGBS
in understanding the behaviour of households on garbage disposal. Fig. 4.5(a)
to Fig. 4.5(i) depicts the results of tracking the garbage amount for all three
household users when using the SGBS. The size of the smart garbage bin used in
the experiment was Width 31 × Depth 39 × Height 57.5 cm and 45 L capacity.
From Fig. 4.5(a) to Fig. 4.5(i), the Y-axis of the garbage level shows the fill level
in cm unit, and the Y-axis of garbage weight graphs shows the weight of the
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(a):Garbage level house one

(b):Garbage weight house
one

(c):Moisture house one

(d):Garbage level house two

(e):Garbage weight house
two

(f):Moisture house two

(g):Garbage level house three

(h):Garbage weight house
three

(i):Moisture house three

Figure 4.5: Garbage filling level, weight and moisture condition for household
one, two and three

garbage in gram units respectively. The X-axis of both shows the date of the
collected garbage data. The actual fill level was measured between the lid of
the smart garbage bin and the garbage disposal bag inside the smart garbage
bin. So a narrow distance shows that the garbage is reaching the maximum fill
level, and a long-distance shows that the smart garbage bin is almost empty.
The actual behaviour of the garbage fill level amount is directly proportional
to the growing weight of the garbage; however, the fill level was much affected
by compression behaviour causing huge fluctuations of the fill level from the
steady state. Therefore, the behaviour of changing garbage disposal bags inside
the smart garbage bin differs from household to household. As proposed in our
previous work [52], the garbage growth amount from the households helps predict
growth behaviour. Furthermore, predicting future garbage growth behaviour can
be scaled from the households to a larger scale of the city in a different season of
operation, thus providing more efficient garbage management. The subsequent
section provides a brief understanding of household behaviour on garbage disposal
using the tracked amount of garbage.
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• Household one: It was a single-family occupied by one individual. During
the first seven days (27-May to 2-June) of the experiment in this household,
the garbage amount, as illustrated in Fig. 4.5(a) and Fig. 4.5(c), remained
at the lowest steady-state with slight sensor fluctuations. This behaviour
validated the assumption that either the participant was absent from home
or the participant did cook or eat at home at all. Thus, there was no
garbage disposal behaviour observed. However, in the following days of
the experiment, the garbage growth started to be observed using the col-
lected sensor data and annotation app. Surprisingly, the garbage amount
grew faster than expected and remained at high peaks for four days before
changing the garbage disposal bag in the smart garbage bin, whereas the
sensor values began from their initial value on around 4-June. Further on
the experiment, we also observed that the garbage amount continued to
grow for six days, around 6-June to 11-June, with some fluctuation due
to garbage compression behaviour, thus verifying that the household did
not change the garbage disposal bag for all six days. This was revealed
as the sensor values did not begin from their initial values but continued.
Such behaviour was found strange and interesting compared to the observed
behaviours of households two and three, as described below.

• Household two: While household one had an unpredictable garbage growth
behaviour, household two consisted of a family size of two adults with one
child who had constant behaviour on the garbage disposal. As shown in
Fig. 4.5(d) and Fig. 4.5(f), the participants used the smart garbage bin ev-
ery day and changed the garbage disposal bag mostly after every two days.
This occurrence was also realized by using the collected sensor values as
they changed and began from their initial values every time the disposal
bag was changed. However, the garbage compression behaviour was also
highly perceived, which explains that probably participants always wanted
to keep the garbage bin from reaching its maximum thresholds or heavier
garbage came after lighter garbage.

• Household three: The household consisted of two married couples. The
behaviour of garbage growth, as shown in Fig. 4.5(g) and Fig. 4.5(i), looked
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Figure 4.6: Identified garbage contents in household one

similar to household two, although the peak, trends and patterns of garbage
growth were different. In this household, the behaviour of changing garbage
disposal bags varied from one day ( 31-May to 1-June) to a maximum of four
days (4-June to 9-June) as depicted in both Fig. 4.5(g) and Fig. 4.5(i). This
trend was also realized using the collected sensor values as they changed
and began from their initial values.

Identification of garbage content

Furthermore, we identified the type of garbage contents disposed of by the house-
holds. The households used the garbage annotation app see ( Fig. 5.2) to input
data about their daily garbage disposal. The garbage annotation app had four
categories of burnable garbage with ten different types of garbage contents, as
described in subsection 4.3.1. Therefore, households used the garbage annotation
app to select and input the type of garbage contents each time they disposed of
garbage in the smart garbage bin. First, we identified the type of garbage content
through users’ input data from the garbage annotation app. Later, the garbage
contents were realized through the moisture conditions and the air quality found
in the smart garbage bin since the type of garbage contents affects the mois-
ture and air quality in the smart garbage bin. Therefore, using data from the
garbage annotation application and moisture inside the smart garbage bin, we
identified and ranked the type of garbage contents that were more important to
the households (highly produced and disposed of) than the others (low produced
and disposed of).

• Household one: As shown in Fig. 4.6 we found that food garbage contents
ranked as the most important garbage produced and disposed of by the
participants. In this household, the participant often disposed of the food
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Figure 4.7: Identified garbage contents in household two

Figure 4.8: Identified garbage contents in household three

garbage content causing the moisture to rise in the smart garbage bin.
Therefore, as depicted in Fig. 4.5(c), the moisture condition was consistently
high. Furthermore, Tissue contents were second in rank, followed by other
types of burnable garbage content. The unclean package was the fourth
in high ranking. The mixed paper was the lowest in the rank of garbage
content produced and disposed of only three times by the household. The
result has shown that mixed paper was only disposed of three times between
3-June and 5-June and once on 13-June. An unclean container was disposed
of six times, whereas storage containers appeared seven times during the
experiment.

• Household two: Like in household one ( Fig. 4.6), it also observed that
tissue garbage content ranked second in household two as illustrated in
Fig. 4.7. The unclean package garbage content ranked first, followed by the
unclean container. Lastly, the food garbage content ranked fourth among
the important garbage produced and disposed of by the participant. In
comparison, only five times the storage containers were disposed of, making
it the lowest in rank. Although toy garbage seemed unimportant in other
households, it was exciting to find it a few times in household two. More-
over, in this household, the moisture inside the garbage bin was observed
with a shifting tendency, as shown in Fig. 4.5(f), because the participant
used to collect and park garbage in a small disposal bag before disposing of
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it in the smart garbage bin. Therefore, it justifies the observation that the
unclean package was identified as the first garbage content produced.

• Household three: Contrary to the observation in households one and
two, where tissue garbage content was the second in rank, in household
three, as shown in Fig. 4.8, tissue was ranked first as the most important
garbage content, followed by other types of burnable garbage content. Food
garbage contents ranked third, whereas unclean packages ranked fourth.
The unclean cloth was the lowest in rank as it was observed only once
on 9-June throughout the experiment. Even though tissue contents are
frequently disposed of, the moisture inside the smart garbage bin was high,
as observed in Fig. 4.5(i); this proves the assumption that the tissues were
slightly wet and also the food contents contributed to the rise of the moisture
in a smart garbage bin.

Routine behaviour of garbage disposal

In addition, we have also learned the routine of garbage disposal by the house-
holds. In general, the study found that households can dispose of different types
of garbage simultaneously and annotate all types of garbage content at the exact
incidence. The study further observed that certain types of garbage content were
frequently disposed of and annotated daily by households. For instance, food
garbage contents in household one, Unclean packages garbage content in house-
hold two and tissues garbage content in household three see (Fig. 4.6 to Fig. 4.8)
thus, were identified as the most important type of garbage contents disposed of
by the household every day in the experiment.

4.4 Chapter summary
In this dissertation chapter, we focus on understanding households’ garbage dis-
posal behaviour and identification of the type of garbage contents disposed of.
First, we designed and developed a smart garbage bin system, “SGBS”, fastened
with distance and weight sensors to detect the amount of garbage disposed each
time. Then, we designed and developed a garbage annotations application to
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allow households user to annotate their daily garbage content. The annotation
application comprised 4 garbage categories and 10 garbage content identities. To
evaluate our approach, we conducted an initial experiment on the smart garbage
bin system in three households. Later we identified necessary garbage categories
and contents in each category through the user’s voice and redesigned the anno-
tations application to have 8 garbage categories and 25 garbage content identities
to allow households user to annotate their daily garbage content. Therefore we
conducted another experiment on the smart garbage bin system in five house-
holds. Our findings show that households’ garbage disposal behaviour depends
on the amount and contents of garbage and the routine of disposing of such
garbage content. Finally, we discuss the potential of our system to be scaled in
a smart city to influence behaviour change, provide healthier life, and improve
garbage management operational efficiency. The next chapter introduces a new
garbage content estimation model and improves the garbage classification task
using machine learning algorithms.
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5 Smart garbage bin: Garbage
content estimation model

Throughout this chapter, we respond to the third challenge of improving the
accuracy of garbage classification by training a machine learning model using daily
collected fuse sensor readings combined with detailed household garbage contents
annotations. First, we describe the requirements for designing and developing
smart garbage bin as the primary tool for data collection experiments. Next, we
discuss rules for garbage separation from municipals in Japan, where we lay our
ground for identifying garbage content for households. Afterwards, we build a
garbage content estimation model. Eventually, we realize the identification and
classification of garbage using the built content estimation model.

5.1 Methods and tools
This section presents the details of the system requirements necessary for design-
ing and developing a smart garbage bin system (SGBS), tools and the procedure
for selecting important garbage categories for developing garbage annotation ap-
plication design.

5.1.1 System requirements
In this subsection, we describe the system requirements for the proposed system.
Based on the discussions in Chapter 1 and Chapter 2, we find the following four
requirements for a smart garbage bin system:

1. The smart garbage bin system should automatically collect sensor data
without any additional activities by users.
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2. The smart garbage bin system should estimate detailed garbage categories
and garbage content identities corresponding to each disposal behaviour.

To address requirement (1), we designed and developed a smart garbage bin
system which is always connected to the internet, uploads all sensor data to the
cloud to store them. To address requirement (2), we built a new machine learning
model for estimating garbage categories and garbage content identities with high
accuracy.

5.1.2 Architecture design
Fig. 5.1 demonstrates a designed and developed SGBS architecture to revolution-
ize the existing household garbage management system by tracking daily house-
hold garbage disposal information and identifying the type of garbage contents
disposed of at the source. The smart garbage bin system architecture consists
of two subsystems: the smart garbage bin (SGB), embedded with distance and
weight sensors to detect the timestamp of newly disposed of garbage content
during garbage disposal. On the other hand, the smart garbage bin (SGB) is em-
bedded with temperature, humidity, and gas sensors to identify and distinguish
disposed of garbage contents. Secondly, SGBS architecture comprises the garbage
annotation mobile application (GAA) with a smooth interface that allows users
to annotate their daily disposal of garbage content during garbage disposal. The
two subsystems (SGB and GAA) later create a daily garbage log data for each
house. Moreover, the designed architecture comprises the analysis part that uses
machine learning algorithms to classify garbage contents found in the house logs.
The outcome of the analysis produces a garbage content estimator for each home
which helps identify and classify garbage content at the source.

5.1.3 Smart garbage bin
Fig. 5.3 shows the overview of a designed and developed smart garbage bin system
(SGBS). Considering the significant roles of the proposed SGBS architecture de-
scribed in Section 5.1.2, a set of lightweight, low-cost, high-precision IoT sensors
were chosen and embedded in the smart garbage bin (SGB). The selected devices
have different hardware configurations and purposes. In our SGB prototype, we
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Figure 5.1: Smart garbage bin system architecture design

used a DHT22 (temperature and humidity) and MQ135 gas sensors to monitor
the moisture and air quality of the disposed garbage content in the smart garbage
bin. Furthermore, we used a ToF (time of flight) and HX711-load cell to track the
garbage filling level and weight at each time of disposal. Using a Wi-Fi gateway,
the smart garbage bin system is always connected to the internet, uploads all
sensor data to the cloud, and stores them. In addition, the Secure Digital non-
volatile flash memory card format (SD), connected to an I2C real-time clock with
32.768 kHz frequency (DS3231 RTC) module data are also collected and stored
in the SD-created file in one-minute intervals daily. On the other hand, the SGB
comprises the 2×16 character LCD Module with a blue backlight, which uses an
I2C interface to communicate with the host Arduino Mega 2560 microcontroller
Rev3. Therefore, the LCD module displays the garbage’s current filling level and
temperature data of the smart bin. The proposed smart garbage bin prototype
allows easy tracking of garbage amount information at the source.(see Table 5.1)
provides the purpose of the chosen sensors used to develop the smart garbage bin.
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Table 5.1: Sensor used in development of smart garbage bin
Sensor Purpose

1. AE-VL53L0X(ToF) Measure fill level of garbage in a bin
2. DHT22 Measure temperature and humidity in a bin
3. HX711-load cell Measure increase of weight of garbage in a bin
4. MQ135 gas sensor Measure CO2,NH3,Smoke in a bin

5.1.4 User feedback from deployment and data collection
experiment two

From Chapter 4 of the dissertation. Apart from the achieved garbage content
identification results through household users annotation. Yet, as feedback from
users in experiment number 2, some important garbage contents were missing in
the initial design of the garbage annotation application. Through the user’s voice,
a short survey and studying rules for garbage disposal from municipal pamphlets,
important categories were identified in the study. Therefore, we redesigned the
garbage annotation application to have 8 garbage categories and 25 garbage con-
tent identities. The subsequent section details the design and development of a
garbage annotation application interface for the deployment and data collection
experiment number 3 of the SGBS.

5.1.5 Garbage annotation application
To provide a smooth and easy way for households to annotate garbage content
they dispose of daily. We further present a garbage annotation mobile appli-
cation (GAA). The GAA designed and installed in a handy smartphone made
a significant value consideration to household users by allowing annotation in a
more efficient and tailored way through a smooth interface. The selection of the
garbage categories in our proposed study is based on the rules for separating and
disposing of burnable garbage as provided in four random selected municipal’s
pamphlets in Japan that explain the garbage disposal rules described in Section
2.3.1, including the city of Kashihara [38], Ikoma [39], Nara [40], Kyoto [41].
Additionally, we conducted a short survey with fifteen (15) students living in
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the city of Ikoma and Nara for one week. The survey participants were asked
to annotate their daily burnable garbage disposal on paper. The annotation in-
cluded the name of the garbage contents and the frequency of disposing of such
garbage. Thus, by analyzing the survey results and the rules for disposing of
the garbage from municipal pamphlets, we established important categories of
burnable garbage with specific content identities for the mobile annotations ap-
plication. The garbage annotations application interface comprises the garbage
categories and a menu with two languages, English and Japanese, giving users
flexibility to switch between the languages. Also, the interface consists of house
numbers as an identification for the experimental data collection.

Fig. 5.2 demonstrates the garbage annotation application interface whereby
vertically depicts 8 garbage categories (i.e., Kitchen waste, Meal garbage, Pa-
per/softbox, Fabric/textile, Plastic, Dust, Plant, and All others) and horizon-
tally depicts 25 garbage contents identities (i.e., Food garbage, Edible food, Sink
basin, Kitchen waste bag, Unclean cup, Unclean container, Unclean packages,
Waste wood, Tissues, Mixed Papers, Milk/Juice box, Masks, Clothes, Shoe,
bag, Rubber products, Disposable diapers, Plastic product, Toys, CD, Cigarette
ashes/stick, Vacuum cleaner, Plant and Others) belonging to each category. The
garbage annotation application provides a guide knowledge that allows individual
households to smoothly select the type of garbage content each time they dispose
of garbage in the SGB from a handy smartphone fixed outside on top of the SGB
cover. Then, data about the garbage category and its specific identity content
are sent to the cloud data server using a Wi-Fi network.

5.2 Deployment and data collection experiment
three

Herein we present the experimental setup and data collection, including datasets,
the data preprocessing steps undertaken to build the garbage contents estimation
model, and the methods adopted to address the study aims.
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Figure 5.2: Garbage annotation application interface

5.2.1 Experiment and Participant information
We conducted the evaluation experiment from June to August 2022 in five house-
holds of heterogeneous characteristics in the city of Nara, Ikoma, and Kyoto in
Japan for 3-5 weeks. We considered family size, type of family, age group, number
of children, and city as the criteria for selecting participants for the experiment.
Table 4.3 outlines the participant’s information. All participants were well in-
formed about the experiment and provided their own consent to participate in
the experiment. In addition, smart garbage bins were distributed and installed
in each house. Fig. 5.3 shows the overview of the deployed SGBS.
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Table 5.2: Information of participants
House ID Family size Family type Child/infant Age group City

1 2 Couple 0 50-55 Kyoto

2 4 Couple 2 7-50 Nara

3 2 Couple 0 28-29 Ikoma

4 2 Single-shared 0 22-23 Ikoma

5 3 Couple 1 27-29 Ikoma

5.2.2 Datasets
The experiment resulted in five garbage logs data from the five households. The
garbage log consists of data from the SGB (i.e., timestamp, filling level, weight,
temperature, humidity, and air quality), collected every one-minute interval.
Also, data from the GAA (i.e., timestamp, garbage categories, and content iden-
tities) collected only when a user disposes of and annotates the garbage in a smart
garbage bin. The frequency of garbage disposal and annotation of garbage con-
tents differ in each household due to household characteristics.Table 5.13 details
the full annotations of garbage contents found in houses 1 to 5 by the household
users during the experiment. Therefore, we define the following rules to merge
the multiple sensor data from the smart garbage bin (as features) and garbage
content annotations by the households (as labels) to create a single dataset of
each house. We considered a time stamp of 10-minute intervals from the disposal
time recorded by the annotation application to calculate features for the partic-
ular label. The features include maximum, minimum, and rate of change of the
garbage filling level, weight, temperature, humidity, and air quality. At the same
time, the label consists of 8 garbage categories and 25 garbage identities. Thus,
we obtained the total original datasets of each house for both garbage categories
and content identities. Below are the rules used to merge the collected data;

1. Every 10 minutes, if a new garbage label is input, and then calculate new
features for the label.

2. If at the same time or in less than 10 minutes, another new label is in-
put, then use the previously calculated features for the new label (Overlap
features).
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Figure 5.3: Smart garbage bin system overview

5.2.3 Class balance
A lower frequency of disposing of a particular type of garbage content than the
others experienced in all houses leads to a minority of such garbage content.
Therefore, the minority class labels affect the model-building process, i.e., a
model that always chooses the majority class regardless of the corresponding
feature. To solve this, we utilize the resampling technique to enhance the clas-
sifier model’s size and quality and avoid biases class during training. There are
two main approaches for random resampling: Oversampling, which duplicates
the minority class, and Undersampling, which deletes the majority class. In our
case, due to the low number of annotations in garbage category 4 (Fabric/textile),
garbage category 5 (Plastic), garbage category 6 (Dust), and garbage category 7
(Plant) experience in all five houses (see Table 5.13), we applied the Oversampling
technique to increase the minority class using the imbalanced-learn sci-kit-learn
library. Table 5.3 and Table 5.4 show the total number of datasets of garbage
categories and content identities before and after resampling.
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Table 5.3: Re-sampling and cross-validation split for the 8 garbage categories
Before re-sampling After re-sampling

House ID Original dataset 25% splits New dataset 25% splits

1 682 170-171 2618 654-655

2 360 90 1400 350

3 538 134-135 1281 320-321

4 121 30-31 305 76-77

5 449 112-113 1064 266

Table 5.4: Re-sampling and cross-validation split for the 25 garbage content iden-
tities

Before re-sampling After re-sampling

House ID Original dataset 25% splits New dataset 25% splits

1 687 170-172 1930 482-483

2 364 91 570 142-143

3 541 134-136 1295 323-324

4 121 30-31 360 90

5 450 112-113 1165 291-292

5.3 Garbage content estimation model
This study aims to identify garbage contents disposed of and perform the garbage
classification from garbage contents disposed of daily in the household by adopt-
ing IoT and data-efficient machine learning algorithms. Therefore we present a
garbage content estimation model to classify 8 categories of garbage and a total of
25 garbage contents identities relating to a particular category, as demonstrated
in Fig. 5.2 of the garbage annotation application. The subsequent section details
the process of building classification models.

5.3.1 Model building
Fig. 5.4 demonstrates model building steps and order of operations. We per-
formed the classification tasks from daily collected fuse sensor readings combined
with detailed household garbage contents annotations intending to find the class
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Figure 5.4: Model building steps and order of operations

(i.e., 8 garbage categories: Kitchen waste, Meal garbage, Paper/softbox, Fab-
ric/textile, Plastic, Dust, Plant, and All others) and (i.e., 25 garbage content
identities: Food garbage, Edible food, Sink basin, Kitchen waste bag, Unclean
cup, Unclean container, Unclean packages, Waste wood, Tissues, Mixed Papers,
Milk/Juice box, Masks, Clothes, Shoe, bag, Rubber products, Disposable diapers,
Plastic product, Toys, CD, Cigarette ashes/stick, Vacuum cleaner, Plant and Oth-
ers) to which a new unseen observation belongs. During the model-building steps
in Fig. 5.4, we only consider utilizing data-efficient methods, namely: Random
forest, Naive Bayes, Extreme Gradient Boosting (Xgboost), and Decision tree al-
gorithms to build the garbage content estimation model, for the reasons such as
the comparison of the machine learning classifiers, the small number of available
datasets, the popularity of the classifier and data preprocessing to avoid minority
class labels. We eventually defined the order of operations applied to the selected
classifiers during the model-building steps.

More precisely, we train and test by spliting the dataset of each house into four
(4) chucks of 25% equal size dataset as shown in the Table 5.3 and Table 5.4
for garbage categories and content identities. To avoid overfitting as much as
possible, first, we utilize repeated k-fold cross-validation to evaluate the machine
learning models in steps 1 and step 2 (see Fig. 5.4). Then, we averaged the
results with 4-fold cross-validations to compute the final validation score for each
investigated model configuration. Therefore, the model created in step 1 used the
original (unbalanced) datasets, i.e., before resampling (see Table 5.3). While the
model developed in step 2 used the balanced class dataset, i.e., after resampling
(see Table 5.4), as discussed in Section 5.2.3 Thus, for performance comparison
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of balanced and unbalanced datasets, our model-building process output two
models, an unbalanced model and a balanced model (see Fig. 5.4).

Afterwards, for better comparison reasons of the cross-validation methods ap-
plied to the classifiers, and, in order to increase the training set, in step 3 (see
Fig. 5.4), we changed the cross-validation method to leave one house out cross-
validation method where we repeatedly trained our models with total balanced
datasets from the four houses and testing the model with the remaining one house.
Thus, we obtained the Leave one house out model.

Furthermore, we built the overall result models in step 4 (see Fig. 5.4) of
the classification tasks for both class garbage categories and content identities
for each house to investigate the overall performance of the classifiers. We first
made the overall result model on all 8 garbage categories, i.e. Kitchen waste,
Meal garbage, Paper/softbox, Fabric/textile, Plastic, Dust, Plant, and All others
found in House 1, House 2, House 3, House 4 and House 5. Nonetheless, because
each garbage category comprises 5 to 2 specific garbage content identities (see
Fig. 5.2), in total, there are 25 different garbage content identities belonging to
the eight categories expected to be annotated by the users daily using the garbage
annotations application. Therefore because of the majority number of garbage
content identities and differences in frequency behaviour of garbage disposal and
annotation exhibited from each house (see Table 5.13). In this study, we first
selected the five garbage content identities from the Kitchen waste (category 1) as
it has had a higher frequency of annotation in house 3, house 4 and house 5. Also,
we chose the five garbage content identities from the paper/softbox (category 3)
as it has had a higher frequency of annotation in house 1 and house 2 to learn
the performance of the classifiers on garbage content identities. Therefore, to
this point of the study, we created three overall result models for garbage content
estimation, namely;

1. Overall result model for general garbage categories

2. Overall result model for kitchen waste contents identities

3. Overall result model for paper, softbox contents identities
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5.3.2 Performance evaluation
Our model evaluation performance is based on accuracy, which is the percentage
of correct comparison classifications. Moreover, we evaluate the performance of
our models using other metrics, such as confusion matrices, Precision, Recall and
F1-score. We will especially give the most informative metrics for the overall re-
sult models because they aggregated the garbage class label results from all houses
belonging to the same classification and averaged the result into a single metric
measurement. Furthermore, the model parameters tuning was applied on all
classifiers, Random forest, Naive Bayes, Extreme Gradient Boosting (Xgboost),
and Decision tree. As a result, the accuracy slightly increased by increasing the
number of parameters such as estimators, criterion, and random state for each
model separately. Therefore, we independently investigated the model perfor-
mance on all experimental datasets found in House 1, House 2, House 3, House
4, and House 5 on garbage categories and garbage content identities classification
tasks. The percentage performance accuracy results using 4-fold cross-validation
and leave-one-house-out cross-validation as applied to the four machine learning
classifiers for the 8 garbage categories and 25 garbage identities are summarized
in Table 5.5, Table 5.6, Table 5.7 and Table 5.8.

Table 5.5: 4-fold cross-validation performance accuracy for the 8 garbage cate-
gories

Accuracy (%) of unbalanced model Accuracy (%) of balanced model

House ID
Random

forest
Naive
bayes Xgboost

Decision
tree

Random
forest

Naive
bayes Xgboost

Decision
tree

1 90 89 85 67 65 71 68 67

2 85 85 74 71 73 72 73 63

3 86 72 85 82 86 79 79 72

4 80 79 73 77 75 76 78 63

5 87 86 83 81 80 78 62 69

5.3.3 Results
Throughout this subsection, we describe results obtained from the classification
tasks as detailed in Section 5.3.2. Specifically, we look into and compare the
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Table 5.6: Leave one house cross-validation performance accuracy for the 8
garbage categories

Accuracy (%) of Leave one house model

House ID Random forest Naive bayes Xgboost Decision tree

1 83 83 79 57

2 84 84 84 69

3 88 81 81 80

4 80 80 78 72

5 84 78 78 69

Table 5.7: 4-fold cross-validation performance accuracy for the 25 garbage content
identities

Accuracy (%) of unbalanced model Accuracy (%) of balanced model

House ID
Random

forest
Naive
bayes Xgboost

Decision
tree

Random
forest

Naive
bayes Xgboost

Decision
tree

1 93 89 86 86 88 79 63 72

2 89 87 84 85 88 81 68 76

3 87 87 87 82 83 85 68 76

4 83 84 80 80 79 73 71 72

5 86 85 82 83 75 78 65 62

performance accuracy from the unbalanced, balanced, leave one house, and overall
result models using the four machine learning classifiers..

Unbalanced model

We see from the results of the unbalanced model (seeTable 5.5 and Table 5.7)
using the 4-fold cross-validations that Random forest performs slightly better than
other classifiers (Naive Bayes, Xgboost, and Decision tree), for classification tasks
of both garbage categories and garbage content identities. For garbage categories,
the highest accuracy was 90% obtained in house 1, and the 67% lowest accuracy
resulted from the Decision tree in the same house. Also, 93% for garbage content
identities was the highest accuracy found in house 1 by Random forest, and the
lowest accuracy was 80% by the Decision tree found in house 4
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Table 5.8: Leave one house cross-validation performance accuracy for the 25
garbage content identities

Accuracy (%) of Leave one house model

House ID Random forest Naive bayes Xgboost Decision tree

1 91 89 88 74

2 90 87 84 78

3 89 89 89 84

4 86 86 86 81

5 88 85 85 65

Balanced model

Afterwards, we compared the four classifiers with the same 4-fold cross-validations
method in all five houses on a balanced dataset with the approaches discussed in
Subsection 5.2.3 to deal with the unequal class balance. The results can be seen
in Table 5.5 and Table 5.7. We observed that the performance accuracy slightly
decreased compared with the unbalanced model performance. Yet, Random forest
manifested the highest accuracy and thus outperformed the rest of the classifiers.
For the garbage categories, the Random forest exhibited 86% in house 3, and
63% by the Decision tree in house 2 was the lowest accuracy. While for garbage
content identities, the accuracy was 88% by Random forest from house 1 and
house 2, and the most insufficient accuracy was 62% by a decision tree in house
5.

Leave one house model

In the next step, we compare the results of the repeated 4-fold cross-validation
in step 2 to the Leave one house out (LoH) cross-validation approaches in step
3 (see Fig. 5.4). In order to investigate the classification performance in all five
houses. Therefore, we applied the LoH on the balanced class datasets using the
four classifiers in step 3. However, we maintained the same order of operation
as in step 2. With this approach, the sum of four houses increases the size of
the training set during repeated testing with only one house dataset. The results
for Random forest, Naive Bayes, XGBoost, and Decision tree in the case of the
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garbage categories and garbage content identities for all four classifier sets are
shown in Table 5.6 and Table 5.8. We see an apparent accuracy increase in each
house compared to the balanced model of 4-fold cross-validation in Table 5.5 and
Table 5.7. For the garbage categories, the Random forest revealed the highest
accuracy of 88% in house 3, while the decision tree showed the lowest accuracy
of 57% in house 1. In addition, garbage content identities in the leave one house
model achieved the highest accuracy of 91% and 90% by random forest in house
1 and house 2, respectively. On the other hand, the decision tree exhibited
unsatisfactory performance, 65% in house 5. Moreover, Random forest again
steadily outperformed the rest of the classifiers.

Overall result model

To realize the performance of the three overall result models described in Section
5.3.1 above Overall result model of garbage categories, (2) Overall result model
of kitchen waste contents identities and (3) Overall result model of Paper/softbox
contents identities. The performance accuracy results for the three models are
shown in Table 5.9. Moreover, we compared the Recall, Precision, and F1-score
for the overall result models as they can better judge the performance by showing
the metric measurements of each class label.

For the garbage categories overall result model (see Table 5.9), Random for-
est achieved the highest accuracy of 85%, followed by Naive Bayes at 82% and
Xgboost at 80%, while the decision tree lags with the least accuracy of 64%.
Table 5.10 summarises the metric accuracies of the 8 garbage categories over-
all result model with Recall, Precision, and F1-score using the Random forest
classifier.

Further, for the overall result model of kitchen waste contents identities (see Ta-
ble 5.9) (i.e., food garbage, edible food, sink basin, kitchen waste bag, and others).
The random forest has steadily revealed the best classification accuracy of 91%,
while the accuracies of the rest of the models are; 88% Naive Bayes, 84% Xgboost
and 76% Decision tree. Likewise, the overall result model of the paper/softbox
contents identities (see Table 5.9) (i.e., tissues, mixed papers, milk/juice box,
masks, and others) are 85% Naive Bayes, 83% Xgboost and 71% Decision tree
were outperformed by the Random forest at 89%. The summary of the Recall,

59



Precision, and F1-score for the overall result models of the 5 kitchen waste and
the 5 paper/softbox content identities are shown in Table 5.11 and Table 5.12,
using the Random forest as it has been portrayed as the best classifier.

The aggregated confusion matrix plots using the Random forest of each overall
result model are shown in Fig. 5.5, where the columns represent the actual values
(Truth) of the target class label. The rows represent the predicted values (Pre-
dicted) of the target variable class label. The number of validation samples that
were correctly classified are demonstrated in the diagonal cells, and that were
incorrectly classified are demonstrated in the off-diagonal cells.

In addition, to investigate the impact of the collected multiple sensor readings
on the garbage content estimation model, we applied the features importance
method using a random forest classifier as our chosen classifier for the garbage
content estimation model. The results in Fig. 5.6 show that air quality, humid-
ity, temperature, and fill level values are more relevant features for identifying
garbage content in the smart bin. Therefore, the identified garbage content dis-
posed of daily and annotation procedures contributes to the garbage classification
tasks. Furthermore, the cross-validation approaches provided satisfactory results,
especially for the leave-one-house cross-validation, which performed better than
the 4-fold cross-validation.

Table 5.9: Accuracy performance of the three overall result models
Accuracy(%) of Overall result models

Overall result model of: Random forest Naive bayes Xgboost Decision tree

Kitchen waste 91 88 84 76

Paper/softbox 89 85 83 71

Garbage category 85 82 80 64

5.4 Discussion
Throughout this section, we discuss our findings and possible implications. Due
to the sufficient classification outcomes, we chose the Random forest algorithm
as the best classifier. We also decided on the overall result models as the final
model for our garbage content estimation tasks. Generally, the highest accuracy
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Table 5.10: Summary of 8 garbage categories overall result model
Name Precision Recall F1-Score

Kitchen waste 0.84 0.85 0.85

Meal garbage 0.79 0.81 0.80

Paper/softbox 0.69 0.89 0.78

Fabric/textile 0.96 0.88 0.92

Plastic 0.99 0.88 0.93

Dust 0.90 0.88 0.89

Plant 0.95 0.78 0.86

All other 0.87 0.84 0.86

Table 5.11: Summary of 5 Kitchen waste contents identities overall result model
Name Precision Recall F1-Score

Food garbage 0.82 0.90 0.86

Edible food 0.93 0.91 0.92

Sink basin 0.92 0.86 0.89

Kitchen bag 0.94 0.94 0.94

Others 0.97 0.96 0.96

Table 5.12: Summary of 5 Paper/softbox contents identities overall result model
Name Precision Recall F1-Score

Tissues 0.81 0.92 0.86

Mixed paper 0.91 0.91 0.91

Milk juice box 0.91 0.86 0.89

Masks 0.89 0.84 0.86

Others 0.95 0.92 0.93

is between 85% and 91%, and the lowest is 64%, which is satisfactory for garbage
content classification tasks. However, the lowest amount of annotation on cer-
tain class (imbalance) labels makes the classification task difficult. We start the
detailed discussion by comparing garbage annotations from each house and then
classification tasks by the machine learning algorithms, followed by the usefulness
of the garbage content estimation model. Finally, we look at the comparison of
our approach to the literature.
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(a) Garbage category (b) Kitchen waste contents (c) Paper/softbox content

Figure 5.5: Confusion matrices of the three overall result models

Figure 5.6: Features importance on sensor readings

5.4.1 Comparison of house garbage disposal annotation
and classification

In general, we observed different behaviour of garbage disposal in all five houses,
which is due to the heterogeneity behaviour in each family, such as living style,
size of the family, type of the family, number of children/infants, age group,
and city. In this case, the study observed differences in the routine frequency
of garbage disposal and the type of garbage content disposed among the houses.
Therefore, using the smooth garbage annotation interface (see Fig. 5.2) that al-
lowed household users to annotate garbage contents during disposal, the study
found that certain garbage contents were important in some houses, i.e., daily
disposed and annotated, compared to others. Table 5.13 shows the annotation
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frequency of garbage category disposal among houses, as briefly detailed below.

• House 1: as shown in Table 4.3, this house consists of a married couple in
Kyoto prefecture. In this house, garbage category 3 (Paper/softbox) was
the most important category compared to other categories annotated 374
times during the experiment (see Table 5.13). In comparison, garbage cate-
gory 5, which consisted of plastic contents, appeared as the least important
annotated only 5 times. In addition, other categories had almost a similar
frequency of annotation, such as Kitchen waste (78), Meal garbage (66),
All others (74), and Dust (50). On the other hand, fabric/textile had 21
annotations, while the plant had 19 annotations.

• House 2: consists of a married couple with two children living in Nara
city (see Table 4.3). Like in house 1 (see Table 5.13), garbage category 3
(Paper/softbox) was the most important category in this house, annotated
200 during the experiment, and Category 5 (Plastic) was the least anno-
tated, only 4 times. Compared with other categories, Kitchen waste had
37 annotations, Meal garbage 63, All others 24, Fabric/textile had 16, dust
11, and Plant 9. House 2 had fewer annotations than house 1

• House 3: as shown in Table 4.3, this house comprises a young married
couple in Ikoma city. Even though garbage category 3 (Paper/softbox) is
steady as the most important and Plastic as the minor category observed in
houses 1 and house 2, in this house, the study observed a slight difference
in annotation frequency exhibited among Kitchen waste, Meal garbage,
and Paper/softbox categories. The result in Table 5.13 shows that the
annotations frequency kept, such as Paper/softbox (183), was the most
important, followed by Meal garbage (125), and Kitchen waste (104) was
the third in the garbage category importance ranking.

• House 4: While Houses 1, 2, 3, and 5 comprise married couples, house
4 consists of two singles living in a shared house in Ikoma city (see Ta-
ble 4.3). The study observed less annotations frequency in this house than
in other houses. However, similar to houses 1, 2, and 3, garbage category
3 (Paper/softbox) had the highest annotation frequency and ranked as the
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most important, while the plastic was minor. Therefore, the annotation
frequency in Table 5.13 is as follows: Paper/softbox had 61 annotations,
followed by Kitchen waste (23) and Meal garbage (11), which similarly
ranks with house 3. In addition, not only Plastic was the minor but also
dust which was annotated only once each. Moreover, category 7 (Dust) was
not annotated in this house.

• House 5: This house comprises a young married couple with an infant in
Ikoma city (see Table 4.3). Contrary to all other houses, the study observed
a fewer annotation frequency of garbage category 3 (Paper/softbox), which
prevailed in houses 1, 2, 3, and 4 as the most important garbage category
(see Table 5.13). Instead, kitchen waste was the most important category
in this house, with 152 annotations, followed by Meal garbage (135) and
Fabric/textile (77) third in the ranks. The high annotation frequency of
category 4 (Fabric/textile) was due to the disposal frequency of disposable
diapers the fourth garbage content in the Fabric/textile category 4 (see
Fig. 5.2) thus increasing the number of fabric/textile. On the other hand,
Plant category 7 was annotated only once and therefore appeared as a
minor category, similar to house 3. Plastic had 9 annotations, and dust had
6 annotations.

Eventually, daily disposed garbage contents and detailed garbage annotation
frequency by households impacted the classification tasks in each house. For in-
stance, in Random forests, the chosen classifier for this study (see Table 5.5) and
(see Table 5.7), the accuracies for classification tasks of both garbage category
and content identities in house 1 were higher than in house 4, which had fewer
annotations frequencies. Moreover, the study found that the decision tree was the
insufficient classifier model compared to Random forest Naive Bayes, Xgboost ap-
plied on the datasets in all five houses. Over and above that, the leave-one-house
cross-validation method showed better performance compared to the 4-fold cross-
validation approach despite its computational cost (see Table 5.6 and Table 5.8).
Therefore, in the overall result models, we aggregated the classification result
of the same class label into one metric performance using the leave-one-house
approach, which has manifested better performance than 4-fold cross-validation
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on the balanced model. The following section compares our approaches with the
literature

Table 5.13: Garbage annotation frequency found in house 1 to 5
Category ID Category name House 1 House 2 House 3 House 4 House 5

1 Kitchen waste 78 37 104 23 152

2 Meal garbage 66 63 125 11 135

3 Paper/softbox 374 200 183 61 53

4 Fabric/textile 21 16 21 8 77

5 Plastic 5 4 14 1 9

6 Dust 50 11 3 1 6

7 Plant 19 9 13 0 1

8 All other 74 24 78 18 17

Total 687 364 541 121 449

5.4.2 Comparison with literature
As discussed in the Chapter 2, similar approaches in other domains/applications
were investigated, and we compare our strategies and experimental setups and
those more similar to ours, as detailed below.

• Suitable practice for house garbage separation
Our study has considered the identification of daily disposed of garbage
content and provided a satisfactory garbage category suitable for burnable
garbage separation practice for most families in Japan. However, Nnamoko
et al. [5] and Mookkaiah et al. [47] investigated only two kinds of garbage,
i.e., Organic and recyclable, which is not enough for rational garbage sep-
aration in houses. Likewise, apart from increasing the number of classes as
demonstrated by Ziouzios et al. [6] and Samiet al. [49], to find respective
garbage categories such as (kitchen waste, other waste, hazardous waste,
plastic, glass, paper or cardboard, metal, fabric, and other recyclable waste).
Yet these studies provided a small number and more generalizable garbage
categories, which is not the best practice for proper house garbage sep-
aration and can not fully solve the problem of profound implications for
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ecological balance and threat to global sustainability, development, and hu-
man well-being.

• Use of daily garbage contents and experiment transparency
Our study proposed to perform garbage content estimations from the daily
collected fuse sensor readings and household annotations with transparency
on experiments and thus can be reproducible in the field. On the contrary,
the studies by [6,47] and [49] used publicly available garbage image datasets
to improve classification tasks with less transparency information on their
experimental setup. However, the publicly available image datasets are
associated with problems such as resizing, resolutions, and inappropriate
colour presentation, thus lowering the quality of the classification task.

• Use of efficient data models
Our study applied more data-efficient methods, namely Random forest,
Naive Bayes, Xgboost, and Decision tree, for the classification tasks. On the
contrary, most of the previous works applied the existing standard models
for the classification tasks, such as VGGNet [42], AlexNet [43], ResNet [44],
and DenseNet [45]. A common issue associated with image classification
using the existing standard model is high computational cost which often
results in high development time and prediction model size because they are
often pre-trained for more than one purpose [5]. In addition, CNN-based
models are difficult to run on embedded systems suitable for garbage bins,
and their architecture requires large amounts of data for training which is
yet to be available.

5.5 Chapter summary
In this dissertation chapter, we presented a new smart garbage bin system (SGBS)
embedded with multiple sensors to identify the disposed garbage content cate-
gories by households. First, we designed and developed a smart garbage bin
system (SGBS) architecture comprised of the smart garbage bin (SGB) equipped
with temperature, humidity, gas, ToF, and load cell sensors and the garbage an-
notation mobile application (GAA) consisting of a smooth interface of 8 garbage
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categories and 25 content identities to allow users to annotate garbage contents
during garbage disposal. Finally, we introduce a new garbage content estima-
tion method by training a machine learning model using daily collected fuse
sensor readings combined with detailed household garbage contents annotations
to perform garbage classification tasks. We deployed the designed SGBS in five
households over one month and applied the leave-one-house-out cross-validation
to the model trained and tested with the collected data. As a result, our pro-
posed method achieved an accuracy of 91% in 5 kitchen waste contents, 89% in
5 paper/softbox contents, and 85% in 8 garbage categories for the classification
tasks. Moreover, our results show that air quality, humidity, temperature, and fill
level values are more relevant features in the garbage content estimation model.
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6 Conclusion

6.1 Summary
In this dissertation, we have presented a smart garbage bin system, SGBS, benefi-
cial for learning and predicting garbage growth for a single house, understanding
household garbage disposal behaviour and identifying the type of garbage con-
tent disposed of daily. Although the existing IoT-based smart garbage systems
and automation and detecting garbage from images by artificial intelligence have
high accuracies. Yet, most current systems still have three major issues: (1)
they can not learn the amount of garbage disposed of each time; (2) they pro-
vide a small number of garbage categories, not enough for reasonable practices of
household garbage separation. and (3) They can not understand households’ rou-
tine behaviour of garbage disposal. Therefore, we need a new IoT-based garbage
management system and a classification tool which improves existing systems.

To realize the benefits of SGBS, three challenges have been tackled in this
dissertation:

1. How to learn the amount of garbage disposed of each time and predict
garbage growth behaviour for a single house?

2. How to understand household garbage disposal behaviour and identify the
type of garbage contents?

3. How to substantially improve the automation of garbage classification?

Since, to our knowledge, there was no such system before, it is necessary to
investigate the impact and feasibility of learning the amount of garbage disposed
of each time, identifying the garbage contents disposed of by households and
understanding the routine behaviour of garbage disposal by households.
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For the first challenge, we presented a Smart garbage bin system for garbage
growth behaviour prediction in Chapter 3. We designed and developed the initial
smart garbage bin prototype embedded with ToF (time of flight) and load cell
sensors to track the amount of garbage during disposal. Using a Wi-Fi gateway,
data were sent to a cloud platform. For evaluation, we deployed the smart garbage
bin in a student laboratory over one month. An autoregressive integrated moving
average (ARIMA) model was applied, providing an average mean absolute error
(MAE) of 5.17 cm and a standard deviation (SD) of 0.33 cm, thus was considered
satisfactory accuracy for the garbage growth prediction. Therefore, our predic-
tion model was suitable for predicting future garbage growth behaviour, enhanc-
ing flexibility in the garbage collection schedule and the frequency of changing
garbage bags in the smart bin.

To examine the second challenge, in Chapter 4, we extended our designed and
developed a smart garbage bin system, “SGBS”, to track garbage amounts and
identify the disposed garbage contents. The smart garbage bin was fastened with
a ToF (time of flight) and weight sensors to detect the amount of garbage disposed
each time. Then, we designed and developed a garbage annotations application
to allow households user to annotate their daily garbage content. The annotation
application comprised 4 garbage categories and 10 garbage content identities. To
evaluate our approach, we conducted an initial experiment on the smart garbage
bin system in three households. Later we identified necessary garbage categories
and contents in each category through the user’s voice and redesigned the anno-
tations application to have 8 garbage categories and 25 garbage content identities
to allow households user to annotate their daily garbage content. Therefore we
conducted another experiment on the smart garbage bin system in three house-
holds. Our findings show that households’ garbage disposal behaviour depends
on the amount of garbage, type of garbage contents and the routine of disposing
of such garbage content. Finally, we discuss the potential of our system to be
scaled in a smart city to influence behaviour change, provide healthier life, and
improve garbage management operational efficiency.

For the third challenge, in Chapter 5, we presented a new smart garbage bin
system, SGBS, embedded with multiple sensors to solve the problem. We de-
ployed DHT22 (temperature and humidity) and MQ135 gas sensors to know the
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condition and identify the garbage content disposed of. Then, we introduce a new
garbage content estimation method by training a machine learning model using
daily collected fuse sensor readingsn combined with detailed household garbage
contents annotations to perform garbage classification tasks. For evaluation, we
deployed the designed SGBS in five households over one month. As a result, we
confirmed that the leave-one-house cross-validation results showed an accuracy of
91% in 5 kitchen waste contents, also, 89% in 5 paper/softbox contents, and 85%
in the 8 garbage categories for the classification tasks. Fig. 6.1 demonstrates the
big picture of the study by including the general goals of garbage management
systems, the identified challenges to be solved, the achieved goals in this study,
and what has remained for future work.

Finally, the contributions of this dissertation to academic knowledge are sum-
marized in the following three aspects:

1. As a scientific aspect, this is the first study that clarified the feasibility and
appropriate design and development of the SGBS prototype that can sup-
port an understanding of household garbage disposal behaviour and identifi-
cation of daily disposed contents, which help improve garbage classification
tasks.

2. This study provides a new automation tool for understanding the lifestyle
of families,influencing families’ behaviour change in the garbage disposal,
providing healthy living and increasing home monitoring.

3. The study offers a tool for policy and decision-making to guide municipal
governments and improve smart city services solving social problems such
as food security by learning the amount of edible food disposed of in house-
holds. Next, as a technical aspect, the three different SGBS prototypes
were implemented to build a system operated in practice by households.
Finally, as a practical aspect, we conducted 3-week and 5-week experiments
using the SGBS prototypes to investigate our hypothesis and demonstrate
the system’s effectiveness with 40 students in the laboratory and also with
3 and 5 families in Japan.
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Figure 6.1: Garbage management systems goals, challenges and achievements

6.1.1 Study limitations
Apart from the achievements made in tackling the three challenges of the study,
however, the study had some technical challenges and limitations in using the
SGBS for garbage content estimation as follows;

6.1.2 SGBS technical challenges
• Power problem: During the experiment as detailed in the Chapter 4,

we faced a power supply problem. The used solar panel battery could not
achieve the power supply for 29 days as it was approximated by our energy-
saving algorithm, unsteady it only supplied power to the smart garbage bin
for half of the expected 13 days. We also experienced some short circuits
caused by the design of the circuit on a breadboard.

• Network connectivity: Although the used sigfox antenna showed good
area coverage, we still experienced a message delay problem with our server,
which persisted for some hours and sometimes changed the transmission
interval from 10 minutes as pre-defined in the SGBS to 20 time interval
minutes. These technical challenges led to missing some household data
points and disturbed sensor readings.
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6.1.3 Limitations of using the SGBS for garbage content
estimation

• Generalizable garbage annotation interface:
The proposed garbage annotation application interface is designed for the
purpose of garbage classification. Therefore it can be used as a generalizable
interface by appropriately setting garbage categories, However, for other
purposes other than classification tasks remain as the study limitations.

• Personal identification and capture multiple garbage disposal:
The current SGBS captures single garbage disposal and deployed in single
and couple households without identifying who disposes of what garbage.
However, person identification and capturing of each event of garbage dis-
posal is necessary to separate who disposes of the garbage contents and
estimate an individual’s life pattern on the garbage disposal to provide
health care support or elder monitoring.

• Few numbers of annotation:
The study provided sufficient burnable garbage identification to guide house
users during garbage disposal through the mobile application interface. Yet,
few annotations were recorded on some garbage categories because of the
difference in disposal behaviour in each house. For instance, the low number
of plastic, dust and plant categories in houses 1, 2, 3 and 4 (see Table 5.13),
therefore, were removed during model building as they were affecting the
performance accuracy. For that reason, more garbage annotation is re-
quired for additional training data to ensure a robust garbage estimation
in application scenarios.

• Learn correct annotation:
Even though the study determined the frequency of annotations for each
category in every house, households need to learn and remember to correctly
annotate garbage content for each category which is important act in the
improvement of the garbage classification tasks.

• Garbage compression behaviour:
The garbage compression in the smart garbage bin by the participant’s hand
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during the disposal as one way of keeping the garbage bin from reaching its
maximum thresholds shifts the values from its steady state, thus disturbing
both fill level and weight sensor readings.

• Use several garbage bins:
Households often use several bins for different types of garbage; however,
this initial study was based on burnable garbage only.

6.2 Future work
For challenge 1 in chapter 3, the existing garbage management systems can not
learn the amount of garbage disposed of each time in a single house. There-
fore, this study designed and developed an SGBS to detect the garbage amount
disposed at each time and built an ARIMA model to predict garbage growth
behaviour for a single house. In the future, we will consider building the gen-
eralizable (versatile) model by investigating if the ARIMA can be used as the
versatile model or consider using other prediction model.

For challenge 2 in chapter 4, the existing garbage management systems are
inefficient in identifying disposed garbage contents and learning garbage disposal
behaviour. As a solution, this study designed and developed an SGBS capable of
identifying important garbage content in households, understanding the routine
behaviour of garbage disposal and the amount of disposed of garbage since the
current SGBS design can not identify who disposes of the garbage. The first step
in the future, we will consider introducing a name or identification tag embedded
on SGBS or engaging other motion identification methods such as the use of
pressure, accelerometer and gyroscope to learn the open and close behaviour of
smart bin lid to identify and distinguish who disposed of the garbage contents
for the estimation of individual’s life pattern on the garbage disposal to provide
health care support or elder monitoring.

In addition, for challenge 2 in chapter 4, since the current SGBS design captures
a single garbage disposal, therefore, to capture multiple garbage disposal in the
future system, one of the methods is to add tools such as depth cameras on the
current design of the SGBS. Afterwards, combine the detection of the garbage
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disposal from all devices, such as the sensor readings, smartphone annotations
and cameras at each time of garbage disposal.

For challenge 3 in chapter 5, The existing garbage management systems pro-
vide a small number of garbage categories, not enough for reasonable practices
of household garbage separation and classification tasks. Therefore, in this study
we introduced a new garbage content estimation method to solve this challenge
by training a machine learning model using daily collected fuse sensor readings
combined with detailed household garbage contents annotations to perform the
garbage classification task. In the future, we will consider investigating if the
machine learning performance can be improved for practical use when users as-
sume a more active role in garbage annotation tasks. However, for purposes like
knowing if the garbage content follows the guideline of the municipality, 85% to
91% accuracy, as achieved by the study in Chapter 5, might be satisfactory. Still,
an ideal near 100% is needed for the anomaly detection situation.

In addition, for challenge 3, in Chapter 5, we suggest that the system estimate
an individual’s life log pattern on the garbage disposal to provide health and
economic incentives to users for the continuous use of the SGBS.

In general, two ultimate goals can be drawn from this study, first, understand if
the garbage content follows the municipality’s guidelines and second, use garbage
disposed garbage content for health or elderly monitoring. In both goals, our
proposed interface design can be used for various groups and places by appro-
priately setting garbage categories. Therefore, the garbage categories data must
be prepared for various groups and places since they are differently defined in
different places.

Above all, we suggest a friendly industrial make-up of the SGBS for the ideal
deployment of the system to include a customized interface design based on the
group of users, installation of a waterproof case on the system, and a constant
power supply.
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