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A Hawkes Model Approach to Modeling Price
Spikes in the Japanese Electricity Market∗

Bikeri Adline Kerubo
Abstract

The Japanese Electric Power eXchange (JEPX) provides a platform for trading
of electric energy in a manner similar to more traditional financial markets. As
the number of market agents increase, there is an increasing need for effective
price forecasting models. Electricity price data is observed to exhibit periods of
relatively stable i.e., low-magnitude, low-variance prices interspersed by periods
of higher prices accompanied by larger uncertainty. The price data time series
therefore exhibits a temporal non-stationarity characteristic that is difficult to
capture with typical time-series modeling frameworks. This thesis focuses on
models for the occurrence of price spikes where we define spikes as observing
prices above a pre-defined threshold. For the purpose of modelling and analysis,
the price spikes threshold in the JEPX is set at 25 Yen/kWh. The price spikes
time series is observed to be a set of rare events that occur in clusters.

This work proposes to model the data as a Hawkes process whereby the oc-
currence of a spike event increases the probability of observing more spikes in
the period immediately following a price spike event. Apart from the classical
Hawke’s model formulation, this work proposes two variations for modelling the
price spikes time series in the JEPX. The first variation models the change in
the magnitude of the underlying intensity as a function of the magnitude of the
price spike while the second variation models the change in the decay rate of the
underlying intensity as a function of the magnitude of the price spike. An anal-
ysis on the forecasting performance of the original Hawkes model, the proposed
variations compared to a baseline persistence model shows that the variable mag-
nitude variation of the Hawkes model best captures the underlying characteristics
of the process generating the price spike events. The model also performs best in
forecasting the occurrence of price spike events.

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, March 17, 2023.
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1 Introduction

1.1 Background

Over the past three decades, the electric energy sub-sector in many countries has
undergone several significant changes that have considerably changed the way in
which power is delivered to consumers [1, 2]. Of these changes, market liberal-
ization in many countries has probably been the most significant. Liberalization
of electricity markets refers to the splitting up of vertically integrated electric-
ity utilities into smaller units, each responsible for a section of the electricity
system [3, 4]. Liberalization has completely changed the dynamics of the entire
system with a big impact on electricity prices consequently having a major im-
pact on all market players from electricity generators to consumers. Electricity
prices in liberalized markets are largely dictated by the natural forces of supply
and demand meaning that they have become much more complex.

Fundamentally, electricity supply has characteristics that are quite different
from most traded commodities. For example, there is a need for a constant real-
time balance between production and consumption to keep steady supply [5].
This operational detail becomes more complex when there are several generators
and retailers in the market. While the function of guarantee of grid stability is
still left to a single market operator, they have to work together with other market
players whose objective is profit maximization, unlike traditional power utilities
whose objective was cost minimization while guaranteeing supply reliability [6].
Operational difficulty is increased by the dependence of electricity consumption
on factors such as time of day or day of week. Furthermore, not only demand, but
generation too are influenced by factors such as weather conditions, neighboring
markets etc. [7].

The factors stated above means that electricity prices are highly volatile with
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sudden and unexpected price spikes [8]. Market players are continuously exposed
to a highly uncertain environment where profits can be easily wiped out in a few
days of extreme prices. In many countries, the uncertain nature of electricity
prices is intensified by increased penetration of variable renewable energy sources
such as solar and wind power in the grid [9]. While these sources provide much
needed clean energy, the original energy source i.e. solar radiation or blowing
wind is highly variable resulting in a significant effect on the balance of supply
and demand and consequently on the final hourly or half-hourly prices [10].

In Japan, the Japanese Electric Power eXchange (JEPX) offers a day-ahead
market for power trading [11]. The JEPX was founded in 2003 and begun trading
in wholesale electric power in 2005 with the aim of processing electricity trans-
actions on the exchange. A day-ahead electricity market such as JPEX provides
electricity suppliers and retailers with a mechanism to trade electricity in an en-
vironment where the price is driven by market forces of supply and demand. The
primary goal for JEPX was for market participants to operate efficiently and
economically on the electricity market, ensure fair competition and revitalize the
business of transmission and distribution of electrical energy across the country.

Given the background of uncertainty and accompanying risks, it is impor-
tant for the market participants to continuously define the market characteristics
through comprehensive analysis and accurate analytics. The need for mathemat-
ical models describing the characteristics of the system and accompanying tools
for risk assessment and risk management are greatly increased. There is an in-
creased need for development of mathematical models that can define, describe
and detect extreme market conditions. In addition, there is increased need for
models that can be used to generate good price forecasts capturing the highly
uncertain nature of the markets.

This thesis works specifically on modelling extreme prices in electricity markets
focusing specifically on the JEPX. Electricity price data in the JEPX is observed
to exhibit periods of relatively stable prices interspersed by periods of higher
prices that last for a period of time. These “high price periods” are defined as
spikes and have a significant effect on the bottom lines of market participants.
The occurrence of a price spike is defined as the observation of a price above
a certain pre-defined threshold where the threshold is a risk value that would

2



mean significant losses for the market player. Price spike events are modelled
using the Hawkes model [12] which is typically used to model non-stationary
point processes [13]. The Hawke’s model has been used extensively to model
high frequency financial time series data with time varying intensities and self-
exciting features for intra-day trading [14]. Apart from an analysis of the classical
Hawke’s model approach, two modifications of the model are proposed and the
effectiveness of the models are tested and detailed. The approaches proposed in
this thesis can form a basis for market participants to deal with the high price
uncertainty which has a big impact on their financial success in the markets.

1.2 Problem Statement

While a lot of attention has been put on the modeling of prices in electricity
markets, there are very few studies focusing specifically on modelling price spikes.
Most market crises in the industry are caused by periods of extremely high prices
even when those periods last for just a short period of time. Price spikes can
cause losses to the tunes of millions of dollars even for relatively small market
players and it is therefore important to add to the body of knowledge in this area.

In addition to focusing on spot price modelling, most literature model market
indices such as the average daily price or number of extreme price events in a
day. While such indices are important in defining the overall underlying state of
the market, they run the risk of oversimplifying the problem. Electricity price
characteristics exhibit more complex characteristics. For example, the probability
distributions of prices are very dependent on the time of day and disproportion-
ately affect periods of high demand. There is therefore need for more detailed
modeling approaches.

A review of existing literature shows that very few studies have been carried out
on the Japanese electricity market. The Japanese market is particularly unique
given existence of different frequency zones in the grid and a lack of an external
connection. There are also 9 areas operated by the spot market with differing
inherent characteristics as well.

3



1.3 Justification

Deregulated electricity markets are a relatively new concept when compared to
traditional vertically integrated markets that have existed for over a century.
Consequently, there remains several gaps to be filled by research and develop-
ment. The Japanese electricity market is especially relatively young having only
achieved full liberalization in 2016.

The work presented in this study targets filling the gap on the understanding
and modelling of price spike events in the JEPX which is very important for par-
ticipants in the market. It adds to the body of knowledge by proposing different
variants of classical Hawkes models for modeling price spike occurrence probabil-
ities and testing the effectiveness of the models in short-term forecasting of the
occurrence of electricity price spike events in the Japanese market.

1.4 Research Objectives

The following were the main objectives of the research:

1. Developing models for forecasting electricity price spikes with higher accu-
racy than existing approaches. Such models would be very useful for market
agents especially in developing bidding strategies and making hedging de-
cisions.

2. Modelling the underlying dynamics of price spike events. This would be
useful for detecting periods of market shocks and consequently in developing
plans for protecting end users from extreme prices.

4



1.5 Thesis Contributions

This thesis focuses on modeling processes that captures underlying dynamics of
deregulated electricity markets. Such models could be used by market agents for
forecasting purposes and hence developing bidding strategies or may be used by
market operators and regulators to detect extreme circumstances. While there
is lots of literature on the modelling and forecasting of electricity prices time
series, research dealing specifically on the extreme price events are significantly
fewer. However, recent events have shown that these extreme prices have the
biggest impacts on market players and there have been several cases of electricity
retailers going bankrupt after a short run of price spikes. Unlike most literature
on the modelling of prices in electricity markets, this study focuses specifically on
modelling price spikes by dis-integrating spikes from "normal" periods rather than
modelling the electricity market prices in their entirety. Available studies take an
aggregate approach when modelling price spikes – modelling the number of events
in a day – thereby losing information on the time period in which the spike would
occur. Given that extreme prices seem to coincide with high demand periods, it
is important to provide models that specifically isolates the event occurrence time
periods. In addition, while existing literature typically generate one-step ahead
forecasts, a method for generating forecasts for a few-days ahead is provided in
this study.

The price spikes time series are modeled using the Hawkes model which is
typically used to model non-stationary point processes. Results are presented
that demonstrate the effectiveness of a modified form of the Hawkes model in the
short-term forecasting of the occurrence of price spike events. Modelling is done
at half-hourly time resolutions as opposed to average day-ahead prices since prices
vary throughout the day depending on the time of day. No assumptions or sim-
plification are made on electricity prices either, so weekend prices are not ignored.
Modifications on the classical Hawke’s model are presented showing the effect of
including spike magnitudes information on the spike event occurrence forecasting
performance. Finally, simulations on the Japanese electric power exchange, on
which there are very few studies, are presented.
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1.6 Thesis Organization

This thesis is organized as follows:

Chapter 1

This chapter presents an introduction to the thesis, stating the problem state-
ment, justification and research objectives.

Chapter 2

This chapter gives a background of the research with reviews of various literature
and discussions related to the research concepts including:

• A review of price forecasting in electricity spot markets.
• Components of the electric power system, deregulated electricity markets

and the Japanese electricity market.

Chapter 3

In this chapter, a fundamental analysis of price data and price spikes data in the
Japan electric power exchange (JEPX) is presented highlighting the JEPX Data
structure and modelling of the price spikes time series.

Chapter 4

The models implemented in this research are explained in this chapter. These
are:

• The classical Hawke’s model
• Hawke’s model with a variable intensity jump
• Hawke’s model with a variable effect decay speed

The application of the models on the JEPX price spikes data is illustrated showing
the effectiveness of the proposed approach.
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2 Background

2.1 A Review of Price Forecasting in Electricity
Spot Markets

Electricity Price Forecasting (EPF) is becoming an increasingly important topic
in the modern deregulated electricity market. This is due to the high volatility
characteristics that is observed in most markets. Over the past decade, a variety
of methods for electricity price forecasting have been proposed based on different
modelling approaches [1–3]. This sections gives an overview of recent work on
EPF including the few proposals targeted specifically on modelling price spikes.

2.1.1 Electricity Prices Modelling

Proposed methodologies for electricity price forecasting (EPF) range from those
based on classical statistical models to newer machine learning models. A variety
of model hybrids combining various models have also been proposed. Some of the
complexities of available solutions, their strengths and weaknesses are detailed in
this section.

Classical Models

Regression models, Auto-Regressive models (AR), Auto-Regression with Exoge-
nous inputs (ARX) and Generalized AutoRegressive Conditional Heteroskedas-
ticity (GARCH) are considered under the category of classical statistical models

Regression analysis is a set of statistical methods used to estimate relationships
between a dependent variable and one or more independent variables [4]. It is
used to assess the strength of the relationship between variables and to model
relationships between them. Reference [5] focused on modelling the impact of
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various explanatory variables on the electricity price through a multiple linear
regression analysis for long-term electricity price forecasting in the Iberian elec-
tricity market. The quality of the estimated models obtained validated the use
of statistical or causal methods, such as the Multiple Linear Regression (MLR)
Model, as a plausible strategy to achieve causal forecasts of electricity prices in
medium and long-term electricity price forecasting. From the evaluation of the
electricity price forecasting for Portugal and Spain, in the year of 2017, the mean
absolute percentage errors (MAPE) were 9.02% and 12.02%, respectively. In
2018, the MAPE, evaluated for 9 months, for Portugal and Spain equaled 7.12%
and 6.45%, respectively.

Autoregressive (AR) models predict future behavior of a time series based on
past behavior. They are used for forecasting when there is some correlation be-
tween values in a time series and the values that precede and succeed them [6].
In [7] they provided a method to predict next-day electricity prices based on the
Auto-Regressive Integrated Moving Average (ARIMA) methodology. A detailed
explanation of the ARIMA models and results from mainland Spain and Califor-
nian markets are presented. Average errors in the Spanish market of around 10%
with and without explanatory variables, and around 5% in the stable period of
the Californian market are reported. In Spain, explanatory variables were only
needed in months with high correlation between available hydro production and
price. In any other months, the effects cancelled out. For both markets, these
were considered reasonable errors, taking into account the complex nature of price
time series.

Auto-Regressive Integrated Moving Average with exogenous inputs (ARIMAX)
models extend ARIMA models through the inclusion of exogenous variables. An
ARIMAX (p, d, q) model is defined for some time series data yt and exogenous
data Xt, where p is the number of autoregressive lags, d is the degree of differ-
encing and q is the number of moving average lags [8]. Authors in [9] argue that
since electricity prices have seasonal variation and vary depending on multiple
external factors, then the Seasonal Auto-Regressive Integrated Moving Average
model with eXogenous variables (SARIMAX) is a plausible approach. Electricity
prices follow a seasonal pattern controlled by various external factors thus SARI-
MAX models would be preferable for short-term forecasting including forecasting
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of day-ahead prices. By applying algorithm rules for differencing to remove con-
tinuing trends, the data becomes stationary and parameters, 14 external factors,
were chosen to predict day ahead electricity prices. The presented experimental
results show reasonable low Root Mean Square Error (RMSE) values for predicted
day-ahead electricity prices.

Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH) models
aim to model the conditional volatility of a time series [10]. In [11] electric-
ity price behavior in the Nordic electric power market is forecasted with both
the Markov-Switching Generalized Auto-Regressive Conditional Heteroscedastic-
ity (MS-GARCH) model and a set of different volatility models. The MS-GARCH
model is estimated with two regimes, representing periods of low and high volatil-
ity. This study demonstrated that electricity price volatility is not only highly
volatile but also strongly regime-dependent. The empirical results show that the
MS-GARCH model enabled more accurate forecasting than the standard GARCH
models, according to tail loss and reality check tests for one- and multi-step ahead
forecasts. The results suggested better price forecasts using the proposed MS-
GARCH model would achieve benefits for both electricity generation companies
and consumers.

Machine Learning Models

Artificial Intelligence (AI) techniques such as expert systems, neural networks,
and fuzzy logic and other Machine Learning (ML) techniques have also been
proposed for solving various technical challenges in the new electricity mar-
kets [12–14]. Several authors have shown that machine learning models can
achieve better performance than traditional classical statistical models which are
mostly employed in forecasting of electricity prices. ML approaches such as Deep
Neural Networks (DNNs) may be capable of adequately representing nonlinear
relationships that are clearly inherent in electricity price time series and there is
an increasing number of research papers have addressed the use of these models
for electricity price forecasting.

Reference [15] employed an Artificial Neural Networks (ANN) model on elec-
tricity price data. The forecast model depends on appropriate input parameter
sets and the research focus was set on the selection and preparation of fundamen-
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tal data that had noticeable impact on electricity prices. The aim of the paper
was to develop a model based on artificial neural networks (ANN) to forecast
hourly electricity prices at the European Power Exchange (EPEX) day-ahead
market. The major contributions of this work included the appropriate selection
and preparation of input data applying clustering algorithms and, finally, the
determination of the best fitting ANN configuration including the appropriate
activation function, training algorithm, the ANN learning rate and momentum.
The proposed model is shown to achieve better results than baseline models such
as seasonal ARIMA models and other ANN-type models.

A Recurrent Neural Network (RNN) based model is proposed in [16] where the
authors use multi-layer Gated Recurrent Units (GRUs) as a new technique for
electricity price forecasting. A variety of algorithms are trained with a three-year
rolling window and simulation results are compared to classical RNNs. In their
experiments, three-layered GRUs outperformed other neural network structures
and state-of-the-art statistical techniques in a statistically significant manner us-
ing data from the Turkish day-ahead market.

A modeling framework for forecasting electricity prices using four different
deep learning models – DNN, LSTM, GRU, CNN to forecast electricity prices
is proposed in [17]. The authors compared the forecasting accuracy of the deep
learning models to 27 common electricity price forecasting approaches. Their
benchmark results showed that the proposed deep learning models outperform
the state-of-the-art methods and obtained statistically significant results. Con-
clusions from their studies included: machine learning methods generally provide
better accuracy than statistical models and moving average terms do not improve
prediction accuracy. Finally, interestingly, they observed that hybrid models do
not outperform their simpler counterparts.

A dynamic trees model for predicting electricity prices using data from the
Iberian market is proposed in [18]. Dynamic trees are a tree-based method based
on Bayesian inference, where the trees can remain unchanged, be pruned or grow
according to the new values arriving in the online process. The leaves that the
data is associated with can provide predictions based on the two types of rules,
either in data mean or in a linear model. Optionally, data can be retired from the
tree, either the oldest data or data discarded through active learning techniques,
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and a choice can also be made to rejuvenate the tree after data retirement. The
authors compared the results to another tree-based technique, random forest - a
widely used method that has proven its good results in many areas. Simulations
included several versions of the dynamic trees approach for both very short-term
EPF approach (one hour ahead) and short-term approach (one day ahead) and
the results showed that dynamic trees can improve the performance of traditional
random forest models for both very short-term EPF and short-term EPF.

According to [19], electricity prices depend heavily on the seasonality of dif-
ferent time scales; therefore, any forecast of electricity prices must take this into
account. Neural networks have proven successful in short-term price forecast-
ing, but complicated architectures like LSTM can be used to integrate seasonal
behavior. Their paper showed that simple neural network architectures such as
DNNs with an embedding layer for seasonal information can produce competitive
forecasting. The embedding-based processing of calendar information also opens
up new applications for neural networks in electricity trading, such as generating
price-forward curves. In addition to the theoretical foundation, they also pro-
vided an empirical multi-year study on the German electricity market for both
applications and derived business insights from the embedding layer. The study
showed that in the short-term price prediction, the mean absolute error of the
proposed neural networks with an embedding layer is better than the LSTM and
time-series benchmark models, and even slightly better than their best bench-
mark model with a sophisticated hyper parameter optimization. The results
were supported by statistical analysis using Friedman and Holms tests.

Authors in [20] have explored a feed forward neural network model known as
the Extreme Learning Machine (ELM). ELM is a single hidden layer feed-forward
neural network (SLFN) whose input weights and biases randomly generated and
its output weights analytically calculated. The critical idea behind ELM is to
transform difficult issues arising from nonlinear optimization, like the optimal
determination for input weights, hidden layer biases, output weights, to a simple
least square problem of deciding the optimal output weights. The proposed ap-
proach showed improved price intervals forecast accuracy by incorporating boot-
strapping method for uncertainty estimations. Case studies based on chaos time
series and Australian National Electricity Market (NEM) price series showed that
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the proposed method can effectively capture the non-linearity from the highly
volatile price data series with less computation time compared to other methods.
The results highlight the potential of this approach for online spot market price
forecasting.

Hybrid Models

Hybrid models in time series forecasting combine statistical models and machine
learning models with the idea that the combination compensates for the lim-
itations of one approach with the strengths of the other [21]. Reference [22]
proposes a hybrid model that exploits the features and strength of the Auto-
Regressive Fractionally Integrated Moving Average (ARFIMA) model as well as
the feed-forward neural networks model and examine the effectiveness of the pro-
posed model using data from the Nordpool electricity market. Similarly, in [23]
a long- short-term memory (LSTM) deep neural network combined with feature
selection algorithms for electricity price prediction under the consideration of
market coupling is proposed. LSTM models improve the model’s performance in
handling nonlinear and complex problems and processing time series data. The
effectiveness of the proposed approach is illustrated using data from the Nordic
market. The authors specifically highlight that feature selection is essential to
achieving accurate predictions.

In [24] an outlier-robust hybrid model for electricity price forecasting that com-
bined a basic forecasting engine called the outlier-robust extreme learning ma-
chine model and three new algorithms is developed. In particular, a new optimizer
called chaotic sine-cosine algorithm was developed to obtain the ideal parame-
ters for phase space reconstruction, and then a novel feature selection method
was implemented to construct the optimal features in electricity price modeling.
In addition, an effective data pre-processing method for effective forecasting by
capturing electricity price characteristics has been proposed. Subsequently, ex-
periments based on electricity price data from the electricity markets of Australia
and Singapore showed that the proposed model is superior to other benchmark
models. In addition, the model can be a reliable forecasting method not only in
electricity market management, but also when modeling time series with complex
non-linear properties and outliers.
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A comprehensive empirical study on the optimal way of implementing the least
absolute shrinkage and selection operator (LASSO) for electricity price forecast-
ing models is carried out in [25]. The authors addressed the three issues: i)
optimal structure of the baseline model; ii) the choice of the LASSO tuning (or
regularization) parameter; and iii) the use of variance stabilizing transformations
(VSTs). On variable (or feature) selection, i.e., the optimal structure of the base-
line model, they identified the most important variables which provided guidelines
to structure better performing expert models. In particular, they found that large
sets of potential regressors are not a problem for the LASSO procedure. Although
the LASSO typically uses only a small fraction of the initial set of explanatory
variables, providing additional information in the underlying model significantly
improves the accuracy of the obtained forecasts. Secondly, regarding the choice
of the LASSO tuning parameter, they found one λ for all days and hours in
the test period to be an acceptable option but this is recommended only if the
computational time needs to be significantly reduced. To increase the forecast
accuracy, it was found that it is better to reselect the tuning parameter on a
daily basis. Lastly, the concept of VSTs, was confirmed to not only increase the
forecasting accuracy of LASSO-estimated models but also the gains from using
an appropriate VST increase with the complexity of the model.

A price forecasting algorithm based on the wavelet transform combined with
ARIMA and GARCH models is proposed in [26]. Through the wavelet trans-
form, the historical price time series is decomposed and reconstructed into an
approximation series and some detail series. Each sub-series is then separately
predicted by a suitable time series model and the final forecast is obtained by
composing the forecasted results of each subseries. The method was examined
for market clearing price (MCP) prediction in the Spanish market and locational
marginal price (LMP) prediction in the PJM market and compared with existing
price forecast techniques.

2.1.2 Electricity Price Spikes Modelling

An economic analysis of price spikes is presented in [27] where the authors in-
vestigate the factors and mechanisms determining spikes in the Italian electricity
market. Based on the market data, they performed a specific analysis of the
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auctions mechanisms and of the hourly bid and offer of electricity characteristics
to determine how and why price spikes occur. Their results showed that rigid-
ity, which characterizes both the demand curve and part of the supply curve, is
the fundamental determinant of prices pikes. More precisely, when the demand
values are high, both curves are characterized by a high rigidity and even small
fluctuations in the demand quantities or generation have a large impact on the
resulting clearing price. The fluctuations in renewable energy sources (RES) pro-
duction also proved to be fundamental. Even if the amount of production from
RES does not seem to have any effect at first glance, since they are usually offered
at zero price, they shift the entire supply curve and the resulting effects are very
powerful.

In [28], a stochastic regime-switching model with time-varying parameters is
shown to capture the type of volatile price behavior observed in many deregu-
lated spot markets for electricity. The mean prices in two price regimes and the
transition probabilities were specified as functions of the offered reserve margin
and the system load. The high-price regime corresponded to the observed price
spikes that typically occur during the summer months. In addition, the structure
of the model was consistent with the actual hockey stick shape of the offers sub-
mitted by suppliers into the PJM market. Most capacity is offered at relatively
low prices, and a few units are offered at much higher prices up to the price
cap ($1000/MWh in PJM). Specifying Markov-switching in the models allow the
high-price regime to be more persistent than is the case with a simple binomial
jump process. Using on-peak daily data for PJM, the analysis showed that the
model replicated the observed price volatility. Consequently, this type of model
is potentially useful for evaluating forward contracts and investment decisions
in electricity markets since standard financial models of prices do not allow for
the unusual asymmetric type of volatility (i.e., infrequent price spikes) found in
deregulated electricity markets.

Dramatic rises in electricity prices can be observed during periods of market
stress as highlighted in [29]. The authors treat abnormal episodes or price spikes
as count events and propose to build a model of the spiking process. In contrast to
prior literature which either ignored temporal dependence in the spiking process
or attempted to model the dependence solely in terms of deterministic variables,
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like seasonal and day of the week effects, the authors argue that persistence in the
spiking process is an important factor in building an effective model. They adapt
a Poisson autoregressive framework for integer-valued time series that accounts
for the number of simultaneous stresses remaining latent and provided a model
that could be estimated by maximum likelihood. The arrival and survival rates
of price spikes were found to be dependent upon extreme temperature events and
peak load. However, the model’s ability to capture the intrinsic persistence in
price spikes was cited as more significant. The proposed model’s effectiveness in
generating simulated price spikes time series that were characteristically similar
to those observed in practice was illustrated. In addition, the model produced
forecasts of the probability of price spike events with higher accuracy than simpler
benchmark models.

The forecasting of extreme price events, the occurrence of which is treated as
a realization of a discrete time point process, is the focus of [30]. An Autoregres-
sive Conditional Hazard (ACH) framework was used to analyze the drivers of the
process and to forecast the probability of extreme price events occurring in real
time. Abnormal loads were found to have a significant impact on the probability
of a price spike and on the severity of the spike. Importantly, stochastic factors
capturing the history of the process were found to be significant in explaining
the occurrence of extreme price events. Specifically, the durations between price
spikes were found to depend nonlinearly on previous expected and observed dura-
tions. The ACH model was shown to provide rolling half-hour ahead forecasts of
price spikes that are superior to the forecasts made by a memoryless model using
the same set of exogenous information. In addition, the returns generated from
a simple synthetic futures trading scheme based on the one-step-ahead forecast
probabilities of the ACH model provide further evidence of the strength of the
model in forecasting electricity price spikes.

An argument that there is increasing empirical evidence of increased price
volatility and spikes in electricity markets as a result of fluctuating renewable
energy production, extreme weather events and other factors is presented in [31].
While price spikes are necessary to cover the fixed costs of power plants, they can
also indicate market imperfections and anti-competitive behavior. Regulators
have set market price caps to protect consumers and prevent abusive behavior
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by vendors. Additionally, some regulators have imposed temporary price caps
during or after major events. In weak institutional frameworks, however, these
ceilings may be driven by political motives rather than economic logic. This
paper assessed the welfare effect of the temporary price cap introduced in 2017
on the Turkish electricity market. Using matching and panel data methods, they
show that the temporary price cap reduced overall welfare but did not impact
the market clearing price and projected supply. Their analysis further showed
that this decision was driven by non-economic motives and identified a number
of fundamental issues in the Turkish market that limit the effective functioning
of the market.

2.2 Components of the Electric Power System

Electricity is a form of energy that has a broad range of applications. It is easy
to control, non-polluting at the location of its usage and convenient, used in
the applications of heat, light and power. As a secondary energy source, it is
generated from the conversion of other energy sources, like coal, natural gas, oil,
nuclear power, hydro-power and other renewable sources [32].

The electric power grid, is an interconnected network of components used to
deliver electricity from generators to consumers usually over vast distances, it is a
highly complex and intricate system to balance as electricity is consumed at the
same time it is generated and generation must meet demand at all times. The
main function of the electric grid is to deliver electricity to the end users in the
most economical and reliable manner. The grid infrastructure consists of three
basic components: generation, transmission, and distribution as shown in Figure
2.1 [33].

2.2.1 Generation

Electricity generation process converts mechanical energy into electrical energy by
the use of a generator (with the exception of solar power, which uses photovoltaic
cells). Electricity is typically generated from three main categories of energy
sources i.e. fossil fuels, nuclear and renewable sources [34]
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Figure 2.1: Structure of the power grid. source: Adopted Jr Electric.

2.2.2 Transmission

After generation, the voltage is stepped up and transported over long distances
through the transmission lines at ultra high voltages. Stepping up voltage during
transmission reduces currents and consequently minimizes system losses. The
transmission network serves as a link between generation and distribution com-
ponents [35].

2.2.3 Distribution

Electricity from the transmission grid is fed to the distribution network via step-
down transformers. Here, the aggregated energy also includes power output of
other generators embedded to the distribution system. Distribution network com-
ponents include power transformers that step down voltages, service lines to de-
liver electricity to consumers, and energy meters to measure amount of electricity
being used. Distribution lines are categorized by voltage levels - high voltage lines
at 22kV, medium voltage at 6.6kV, and low-voltage network at 240V to 100V.
Electricity from the distribution substations is at medium voltage and is stepped
down to low voltages of 100V or 200V for domestic use [36].
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2.3 Electricity Markets

2.3.1 Evolution of Electricity Markets

Several transformations in the electric energy industry over the recent past have
encouraged a re-look into the operations of this very important sub-sector. For
decades, electric power systems were operated under the vertically integrated
models where all functions of the system (generation, transmission and distri-
bution) were under a single utility i.e. it was a monopolistic market. However,
over the last two-to-three decades, all over the world, the electric energy sub-
sector has been undergoing significant changes that have necessitated a re-look
into the various operation procedures [37]. The most significant change has been
deregulation of the industry in many countries.

Electric power system deregulation refers to the process of changing rules and
regulations that control the industry to allow for competition in supply of the
resource which allows customers to choose their electricity suppliers [38]. These
suppliers could be retailers, traders or offshoots of the original monopolies. Ver-
tically integrated utilities own generating plants as well as a transmission and
distribution network. In a traditional regulated environment, such a company
has a monopoly for the supply of electricity over a given geographical area. Fol-
lowing the liberalization of the electricity market, its generation and network
activities are likely to be separated.

In this new competitive framework, the vertically integrated systems are unbun-
dled into generation companies (GENCOs), transmission companies (TRANSCOs)
and distribution companies (DISCOs) as shown in Figure 2.2. Furthermore, as
illustrated in Figure 2.2, new market agents enter the market including consumer
companies, electricity resellers, the power exchange (PX) and the independent
system operator (ISO). The main objectives of deregulation are improved eco-
nomic efficiency of the production and use of electricity as well as increased system
reliability and security as agents compete for a share of the market. In addition,
it is aimed to provide better incentives for capital formation, better incentives
for consumers to reduce their electricity consumption when costs exceed their
benefits, and better incentives for research and development [39].

Deregulation of the electricity market has changed the dynamics of electric-
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Figure 2.2: Deregulated electricity market structure.

ity prices making it a complex phenomenon as prices fluctuate over short time
duration. Additionally, electricity trade has characteristics that are quite uncom-
mon: e.g. constant balance between production and consumption, dependence
of the consumption on the time, e.g. hour of the day and load and generation
that are influenced by weather conditions and neighboring markets [40]. These
characteristics mean that electricity prices are highly volatile with sudden and
unexpected price peaks. The increased penetration of variable renewable energy
sources (RES) in the system intensifies this behavior [41]. Therefore, for the
market players, improved accuracy in price forecasting is important for defining
bids for the spot market, setting up contract policies, and formulating expansion
plans.

2.3.2 Electricity Market Structure

Market Players

The restructuring of the electricity market required the disintegration of all three
components of the power systems. The market is thus organized in such a way
that each market sector represents a component of the power system leading to
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different market players as illustrated in Figure 2.2. Generating companies (GEN-
COs) participate on the generation level, transmission companies (TRANSCOs)
and distribution companies (DISCOs) on transmission and distribution levels re-
spectively. Other market agents include: the market operator(MO), independent
system operator (ISO), market regulator and retailers who resell electricity from
the wholesale market. The market structure generally describes the way in which
market participants interact with each other to generate electricity and deliver
to the consumer. These agents are briefly described below:

1. Generating Companies (GENCOs) - They produce and sell electrical
energy. They can also sell services such as regulation, voltage control and
reserve that the system operator needs to maintain the quality and security
of the electricity supply. A GENCO may own a single plant or a portfolio
of generators of different sources of generation. There are GENCOs that
coexist with vertically integrated utilities and are referred to as independent
power producers (IPP) [39].

2. Transmission Companies (TRANSCOs) – They own transmission as-
sets such as lines, cables, transformers and reactive compensation devices.
They operate this equipment according to the instructions of the inde-
pendent system operator. TRANSCOs transmits electricity using a high-
voltage, bulk transport system from GENCOs to DISCOs for delivery to
customers. It is composed of an integrated network that is shared by all
participants and radial connections that join generating units and large
customers to the network. TRANSCOs are sometimes subsidiaries of com-
panies that also own generating plants. An independent transmission com-
pany (ITC) is a transmission company that does not own generating plants
and also acts as an independent system operator [39].

3. Distribution Companies (DISCOs) – They own and operate distribu-
tion networks. In a traditional environment, they have a monopoly for the
sale of electrical energy to all consumers connected to their network. The
management of the distribution network is quite different to that of the
transmission network. The infrastructure is itself far more distributed and
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real time management of the systems are more ‘passive’ than for transmis-
sion. The increase of embedded generation, particularly of generation that
is intermittent, or causing the requirement of reactive power, can substan-
tially change the flow and the requirement to manage distribution networks
‘actively’ in real time [39]. Distribution network operators offer services
such as connections and have the highest interactions with customers par-
ticularly through metering activities. In a fully deregulated environment,
the sale of energy to consumers is decoupled from the operation, mainte-
nance and development of the distribution network. Retailers then compete
to perform this energy sale activity. One of these retailers may also be a
subsidiary of the local distribution company [42].

4. Retailers - They buy electrical energy on the wholesale market and re-
sell it to consumers who do not wish, or are not allowed, to participate in
this wholesale market. Retailers do not have to own any power generation,
transmission or distribution assets. Some retailers are subsidiaries of gener-
ation or distribution companies. All the customers of a retailer do not have
to be connected to the network of the same distribution company [39].

5. The Independent System Operator (ISO) - Has the primary respon-
sibility of maintaining the security of the power system. It has the au-
thority to commit and dispatch some or all system resources and to curtail
loads for maintaining the system security (i.e., remove transmission vio-
lations, balance supply and demand, and maintain the acceptable system
frequency). Also, the ISO ensures that proper economic signals are sent
to all market participants, which in turn, should encourage efficient use
and motivate investment in resources capable of alleviating constraints. It
is called independent because in a competitive environment, the system
must be operated in a manner that does not favor or penalize one market
participant over another. The ISO must have powerful computing tools
for market surveillance, ancillary auctions, and congestion management to
fulfil its responsibility [39]
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6. Market Operator (MO) - The function of the market operator is separate
to that of the system operator, although it can be performed by the same
entity [39]. The MO typically runs an algorithm that matches the bids and
offers that buyers and sellers of electrical energy have submitted. It also
takes care of the settlement of the accepted bids and offers. This means that
it forwards payments from buyers to sellers following delivery of the energy.
The independent system operator (ISO) is usually responsible for running
the market of last resort, that is, the market in which load and generation
are balanced in real time. Markets that close some time ahead of real time
are typically run by independent for-profit market operators [39].

7. Market Regulator - It is a government-independent entity whose func-
tion is to oversee the market and to ensure its competitive and adequate
functioning. Additionally, the regulator promotes and enforces orders and
regulations [39].

The overall structure of the deregulated electricity market is as shown in Figure
2.3. The system is an interaction of various participants with the exchange of
energy, ancillary services, money and information. After purchasing primary fuel

Figure 2.3: Structure of the deregulated electricity market illustrating the flow of
energy, money and bidding information.
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from fuel suppliers, the generation company will generate electricity and deliver
it to the end-user through the physical power system. The system, which is the
physical network of power transmission and distribution lines, is operated by a
system operator. Even though, technically, energy is delivered to the end user
directly by the system operator, most end-users will pay electricity bills to a
retailer. The retail company (RETAILCO) is an intermediary between the power
suppliers and the end user whose job is to handle the financial transactions. They
indirectly purchase power from the GENCOs and sell to the end user without
handling the technical aspect of power flow.

Deregulation also set up a market similar to traditional commodity markets
where electricity is traded between suppliers and consumers (usually resellers)
[40]. This market, referred to as a power exchange (PX), is operated by a market
operator. The retailer therefore has the option of purchasing power from the
PX instead of setting up a bilateral agreement directly with the GENCOs. The
advantage of the bilateral contract is predictability of prices which makes financial
planning easier. On the other hand, being a competitive market place, the PX
could provide lower prices and thus economic benefits. Just as the retailer has
the option to purchase power from the PX, the GENCO also has the option
to sell power at the PX. The Market Operator receives bids for energy supplies
from the suppliers and offers of energy purchases from the consumers. They then
carry out a market clearing operation that matches the bids and offers. Market
clearing is done through an exchange of information with the system operator who
confirms the feasibility of the physical system being able to supply the energy in
a secure manner. Once the market clearing process is concluded, the bidding
results are announced to the agents. In addition to delivering energy to the end
user, the system operator also carries out the traditional system operation tasks
that ensure system security and reliability such as supply of reserve and ensuring
the N-1 criterion is met. The market operator also carries out the service of
operating the market on behalf of the suppliers and consumers. The cost of these
services are finally passed to the end-user in their electricity bills.
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Electricity Markets Categories

Electricity markets can be broken down into the following categories [40]:

1. Forwards and futures market: A futures market is an auction market in
which participants buy and sell physical or financial products for delivery on
a specified future date. These products are called derivatives or derivative
products. The most salient feature of futures markets is that they allow
trading physical or financial products in the future at today prices. Thus,
futures markets are useful if the price of electricity is highly uncertain in
the spot market.

2. Day-ahead market: In the day-ahead market products which are traded
today are delivered on the next day. Day-ahead products are common spot
products and can be traded either on a power exchange or as bilateral
agreement.

3. Intra-day market: The intra-day market is for products with a delivery
on the same day. This market allows the producers a short-term load-
dependent optimisation of their generation and is typically not a market
for pure trading purposes. Intra-day products are traded either on a power
exchange or bilaterally [40].

4. Balancing and reserve market: There are different definitions of the
terms “balancing market” and “reserve market”, because these markets de-
pend on the regulator and are market specific. In this context, the reserve
market is the market allowing the ISO to purchase the products needed
for compensating imbalances between supply and demand in the electric-
ity system at short notice. The balancing market (also referred to as the
real-time market) denotes the market where a merchant purchases or sells
the additional energy for balancing his accounting grid. Since the balancing
service is provided by the ISO, the ISO usually charges or reimburses the
merchant for additional energy and only in some national markets does the
merchant have the possibility to buy or sell this balancing energy from or to
someone else. Therefore, the balancing market can be regarded as a market
only in a broad sense [40]
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2.3.3 The Day Ahead Market

The system operator receives energy supply bids from power generation compa-
nies detailing the amount of energy they are willing to supply at a a specified
trading period and at what price. These bids are usually delivered before a
preset deadline on the day before the actual delivery of energy (hence the term
day-ahead market). For example, in Japan the deadline is 10 AM on the day prior
to the delivery of energy. In a two-sided auction, such as the Japanese market,
consumers also submit demand offers detailing the amount of energy they would
like to purchase and at what price for a given trading period. The demand offers
are also submitted before the bidding deadline [43].

Figure 2.4: Illustration of market clearing at the Japan electric power exchange
(JEPX) [44]

The market operator then does a market clearing operation that matches the
supply bids and demand offers. A supply curve is constructed by arranging the
bids from the lowest to the highest in terms of price. Similarly, a demand curve is
constructed by arranging the offers from the highest to the lowest in terms of price.
The point where the supply and demand curves intersect is termed the market
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clearing point and the corresponding demand and price are the market clearing
quantity (MCQ) and market clearing price (MCP) respectively as illustrated in
Figure 2.4. In systems where power flow between various areas are limited by the
physical capacities of the connecting transmission lines, market clearing has to
be carried out considering the constraints of how much power can be transferred
between areas leading to the possibility of different MCPs for different areas.

Suppliers are allocated portions of the MCQ dependent on whether their bids
were lower or higher than the MCP. For those suppliers who receive allocations,
they are paid the MCP irrespective of their original bid price. On the other side,
consumers whose offers were higher than the MCP receive energy from the market
operator while paying the MCP. The results of the market clearing process are
also communicated to the system operator who retains the traditional function
of scheduling the available generation while ensuring security and reliability of
the physical system.

2.3.4 Illustration of the Market Clearing Procedure

The potential for volatility of prices is illustrated in this subsection with a simple
simulation of clearing of a PX. Consider a market trading period with ten supply
bids and ten demand offers as shown in Table 2.1. The market operator would
order the bids based on the bid/offer price as shown in Table 2.2. Also shown in
Table 2.2 is a cumulative sum column for the bid quantities.

The supply curves and the demand curves are then constructed from the or-
dered bids and plotted as shown in Figure 2.5. Based on the obtained curve,
the MCP and MCQ would be 6.3 yen/kWh and 370 MWh as shown. Now con-
sider the same bids above but with the price of supply bid S7 changed from 4.00
yen/kWh to 7.00 yen/kWh. The effect of this change in bid price (i.e. the effect
of the alteration of S7’s bidding strategy) on the MCP and MCQ will be as il-
lustrated in Figure2.6. In this case, the MCP is raised to 6.5 yen/kWh and the
MCQ is reduced to 280 MWh. The power allocations will be different and the
revenues received and costs incurred by the various market agents will be dif-
ferent. Market agents are constantly engaged in forming strategies to maximize
their benefits which translate to shifts in the price and hence uncertainty in the
economic performance of the participants.
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Table 2.1: Illustrative supply bids and demand offers.
Supply Bid

no.
Bid price

[yen/kWh]
Bid quantity

[MWh]
Demand
offer no.

Offer price
[yen/kWh]

Offer
quantity
[MWh]

S1 5.10 100 D1 8.00 150
S2 6.10 30 D2 6.30 30
S3 7.10 20 D3 5.20 30
S4 4.50 50 D4 6.50 50
S5 5.00 40 D5 6.10 30
S6 5.50 40 D6 7.40 40
S7 4.00 90 D7 6.30 60
S8 8.00 20 D8 7.50 20
S9 4.50 20 D9 4.50 40
S10 7.50 10 D10 7.00 50

Table 2.2: Illustrative aggregated supply bids and demand offers.
Supply
Bid no.

Bid
Price

[Yen/kWh]

Bid
Quantity
[MWh]

Cuml.
Quantity
[MWh]

Demand
offer no.

Offer
Price

[Yen/kWh]

Offer
Quantity
[MWh]

Cuml.
Quantity
[MWh]

S4 4.50 50 50 D1 8.00 150 650
S9 4.50 20 70 D8 7.50 20 670
S5 5.00 40 110 D6 7.40 40 710
S1 5.10 100 210 D10 7.00 50 760
S6 5.50 40 250 D4 6.50 50 810
S2 6.10 30 280 D2 6.30 30 840
S7 7.00 90 370 D7 6.30 60 900
S3 7.10 20 390 D5 6.10 30 930
S10 7.50 10 400 D3 5.20 30 960
S8 8.00 20 420 D9 4.50 40 1000
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Figure 2.5: Illustration of electricity market clearing

Figure 2.6: Illustration of the effect of altering bids on the market clearing results
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2.4 Japanese Electricity Market

2.4.1 Background of the Japanese Electricity Industry

Japan’s electric power industry came into being in 1886 with the commencement
of operations by the Tokyo Electric Light Company which was formed using pri-
vate equity. Numerous electric utilities were subsequently established around
Japan to serve the growing demand for electricity driven by increasing industri-
alization [43]. By the early 1930s there were more than 800 utilities. However,
as Japan headed into World War II, the electric utilities came under the control
of the government. In 1939, the government established the Japan Electric Gen-
eration and Transmission Company and electricity generation and transmission
facilities came under centralized control. The government also consolidated the
electricity distribution business into nine separate regional blocks [43].

Following World War II, the Japan Electric Generation and Transmission Com-
pany was dissolved in May 1951, the company’s facilities and functions were
transferred to nine privately owned electricity distribution utilities. As a result,
a regime of regional monopolies was established based on integrated systems of
electricity generation and transmission in nine regions. The number of utilities
then increased to 10 with the establishment of Okinawa Electric Power Company
following the reversion of Okinawa to Japanese control in 1972. These electric
utilities made focused investments in power supply facilities to meet a growing
demand for electricity driven by Japan’s rapid economic growth [43]. Hence, they
sufficiently contributed to the Japanese rapid economic growth.

2.4.2 Liberalization of the Japanese Electricity Market

Following the trend toward deregulation in the electric power industry in West-
ern countries, the liberalization of entry into the electricity generation sector
started in 1995 in Japan, followed by retail supply liberalization for customers
receiving extra-high voltage (20kV or above) in 2000. The scope of deregulation
was expanded further in stages thereafter: to high voltage (6kV) customers with
contracted demand of 500 kW or above, in principle, in April 2004, and to all
customers in the high voltage category (those with a contracted demand of 50kW
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or above) in April 2005 [45].
However, power shortages and other issues caused by the 2011 Great East

Japan Earthquake prompted discussion of the ideal configuration of the nation’s
electric power system and its reform. Based on this discussion, full liberalization
the electricity market was pursued since 2015. The liberalization of the electric
power retailing and generation sectors was completed in April 2016. The legal
separation of transmission and distribution from vertically integrated businesses
was implemented in April 2020, resulting in the spin-off of new transmission and
distribution companies from the former general electricity utilities [43].

While these changes have several obvious and important benefits, they make
the system more complex than before. There is significantly more volatility and
uncertainty in the system especially in the balancing of supply and demand and
consequently in the clearing of the electricity market. This means that electric-
ity market prices are especially volatile even at the intra-hour timescale which
presents financial risks especially to small-scale electricity resellers as they try
to compete with the traditional large utilities. Today, Japan’s electrical power
industry comprises three major sectors: electricity generation, transmission and
distribution, and retailing. The number of operators in these sectors is 986, 49,
and 730 respectively [43].

2.4.3 The Japan Electric Power Exchange (JEPX)

The Japan Electric Power Exchange (JEPX) was established in November 2003
as a day ahead electricity market and commenced trading in April 2005. The
purpose of JEPX is to provide a mechanism for power suppliers and customers
to trade electricity in an environment where the price is dictated by the market
forces of supply and demand. This mode of operation has several advantages
including competitive prices for consumers and improved operational efficiency.
The primary goal for market participants is to operate efficiently and economically
in the electricity market.

The JEPX day-ahead market is a two-sided auction where power generation
companies (GENCOs) place supply bids while electricity retailers (RETAILCOs)
place demand offers two days before the trading day [43]. The market operator
(MO) then clears the market based on ranking of supply bids and demand offers
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taking into consideration constraints on power that can be transmitted between
areas. The market is run daily and the results which include the supply volume,
demand volume, system price and area specific prices are posted on the publicly
viewable JEPX website [44]

The Japanese power grid is divided into two frequency systems: a 60 Hz system
in eastern Japan and a 50 Hz system in western Japan with no international
connection [45]. There are ten service areas as shown in Figure 2.7. Also shown in
Figure 2.7 are the transmission capacity limits in the connections between areas.
These capacity limits, result in transmission congestion hence differences in MCPs
between areas. The principal market participants are the electricity generation
utilities and electricity retailers involved in wholesale power transactions.

Figure 2.7: Illustration of the 10 market areas in the Japanese electricity market.
source: Adopted from the Japan Electric Power Information Center
(JEPIC) [43]
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The JEPX currently provides a marketplace for the three main electricity trans-
actions:

1. Spot market: Trading in 30-minute increments of electricity for next-day
delivery. Accounts for approximately 99% of JEPX trading.

2. Forward market: Trading in electricity for delivery over the course of a
specified future period. Products are created by packaging together specific
periods and times, such as monthly 24-hour products or weekly daytime
products.

3. Intra-day market: A market for correcting unexpected misalignment be-
tween supply and demand occurring between a spot market transaction and
delivery (a minimum of one hour later).

2.5 Summary

This chapter presents the background of some of the main concepts related to
the research carried out in this thesis. A brief introduction to the structure of
electricity markets, their development, functioning and characteristics has been
given, along with an insight into the Japanese electricity market. The chapter also
reviews recent literature on approaches for modelling and forecasting electricity
market prices and price spikes with a realization that considerable effort has gone
into finding suitable models for forecasting electricity prices. However, there is
still need for models dealing specifically with the electricity spikes time series
data.
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3 Fundamental Analysis of Price
Spikes in the Japanese Electric
Power Exchange

3.1 Introduction

3.1.1 Background

Following a worldwide trend of electricity markets liberalization, the Japanese
Electric Power Exchange (JEPX) provides a platform for trading of electric en-
ergy in Japan [1]. However, such a market structure introduces new operational
dynamics that did not exist in the era of a centralized system. One major effect
is increased uncertainty in the price of electricity even though in the long run,
the average price of may be lowered. A related impact is a risk of reduced sys-
tem reliability as electric power generators are more concerned with maximizing
profits in contrast to the objectives of the original power utilities whose main aim
was to ensure availability of the resource.

As with any other commodity markets, electricity markets can experience mar-
ket shocks – a situation in which prices are driven much higher that normal due
to extreme market conditions. Such a scenario was observed in the JEPX around
late December 2020 / early January 2021 where prices hit a high of 220Yen/kWh
which is almost 30 times the average price of around 7 Yen/kWh.

Given this backdrop, there is need for mathematical models of the system that
may be used to understand the underlying dynamics that lead to such extreme
events. In this chapter we present a preliminary analysis of prices and extreme
prices (price spikes) in the JEPX. We also present result fitting a classical Hawkes
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model [2] to the price spikes time series data. Such models could be used by
market agents for forecasting purposes and hence developing bidding strategies or
may be used by market operators and regulators to detect extreme circumstances.

3.1.2 Literature Review

Several papers have studied the nature of prices in various deregulated electricity
markets. These studies have variously pointed out the "spiky" nature of the
electricity prices time series. The day ahead and real time market data for the
Turkish power market for the period 2012–2015 is analyzed in [3] to classify price
spikes and their causes. They further investigated the levels of deviation between
the day ahead market values and the real time market values. They defined
price deviation and load deviation ratios to measure the level of deviation both
in price and demand. The analysis for the load is based on load shedding and
cycling values. They analyzed the mean and standard deviation in market prices
and determined the price spike as a two-sigma deviation from the mean value. It
was shown that 60% of the price deviation ratios were in the range of (±20%),
while 44% were in the range of (±10%) and 35% are in the range of (±5%). They
also showed that 56.9% of the spikes are due to problems in the generation of
natural gas-based power plants which affect the day ahead and real time prices. A
total of 29.2% of the spikes are due to power plant and system failures that affect
only real time prices. They drew the conclusion that extreme differences between
the day ahead planning and real time market could be an indicator of system
management problems. They also found that the most drastic price differences
are due to natural gas shortage problems.

In [4] a study of the historical bidding behavior is carried out to see how power
suppliers and demand service providers were actually bidding in the California
day-ahead energy market. Based on their observations, they formulate a Pris-
oner’s dilemma matrix game and introduce the notion of "opportunistic tacit
collision" to explain strategic bidding behaviors in which suppliers withhold gen-
eration capacity from the market to drive up prices. This explanation is applicable
with or without market power, transmission constraints, and insufficient supply,
and is only enhanced by these factors. Their analysis of historical bid curves from
the California day-ahead energy market also suggested that withholding during
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the study period was not a routine practice. Withholding, however, was observed
during every price spike, and illustrated in the two examples studied in the paper.

A data mining-based approach for predicting the occurrence of the electricity
market price spikes together with the ability of predicting normal range prices is
presented in [5]. After applying feature selection techniques and statistical anal-
ysis of relevant factors, the authors proposed method showed a promising result
in price spike occurrence prediction. The case studies also showed that among
many existing classification algorithms, SVM can give a reliable spike occurrence
prediction. Moreover, the result of the probability classifier can be combined with
SVM to improve the prediction accuracy and provide more information. In their
case studies, they combined the spike forecast with the expected price forecast to
give a complete forecast of market prices.

A multi-feature based approach with the incorporation of variable thresholds is
developed in [6] to detect electricity price spikes in the national electricity market
of Australia. The variable thresholds, which were determined using a weighted
sliding window average and an adjusted standard deviation to help to segregate
spikes from normal price variations. Also, significant features were extracted from
the market after analyzing the underlying causes resulting into the price spikes.
These features are employed as inputs to a support vector machine to classify
electricity prices as spikes or non-spikes. A case study was conducted using a
dataset acquired from the state of New South Wales, Australia.

In [7], the authors explain that price spike forecasting has two main aspects:
prediction of price spike occurrence and value. In their paper, a novel technique
for price spike occurrence prediction was presented composed of a new hybrid
data model, a novel feature selection technique and an efficient forecast engine.
The hybrid data model included both wavelet and time domain variables as well
as calendar indicators, comprising a large candidate input set. The set was refined
by the proposed feature selection technique evaluating both relevancy and redun-
dancy of the candidate inputs. The forecast engine was a probabilistic neural
network, which were fed by the selected candidate inputs of the feature selection
technique and predict price spike occurrence. The efficiency of the whole pro-
posed method for price spike occurrence forecasting was evaluated by means of
real data from the Queensland and PJM electricity markets.
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3.1.3 Chapter Organization

In this chapter a fundamental analysis of prices and price spikes in the JEPX is
carried out. In section 3.2, the prices time series is introduced including the de-
pendence on the supply-demand balance in the market. The spatial and temporal
dependence of prices is also illustrated. Finally, the definition of price spikes and
its justification is given. In section 3.3, the modelling of price spikes time series
using the classical Hawkes model is presented. Extracted model parameters are
shown and the evolution of the intensity function (spike occurrence probability)
is given. Finally, chapter conclusions are given in section 3.4.

3.2 JEPX Data

Electricity price and demand data for the JEPX is publicly available on the
exchange’s website [8]. The available data includes traded energy volumes and
area prices in thirty minute resolutions giving 48 commodities per area per day.
Figure 3.1 shows a snapshot of the raw data downloaded from the exchange’s
website. The trading volume in the spot market has been on the rise since 2016,
reaching approximately 312.8 TWh in fiscal 2020. This means that more than
30% of all electricity sold in Japan is sold through JEPX. New electricity retailers
procure more than 80% of their electricity from the spot market [1].

3.2.1 Evolution of System Prices and Clearing Volumes

The average system price has ranged between the 7–9 Yen/kWh mark since the
2016 fiscal year. Prices fell in April 2020 as demand dropped from the impact of
measures against COVID-19 [9]. In that month, trading occurred at the lowest
possible system price of 0.01 yen/kWh. Later, prices have skyrocketed from the
effects of a summer heat wave and cold winter months which have been further
exacerbated by the fuel supply crunch.

Figure 3.2 shows the average daily market clearing prices (in blue) and the
30-day moving average (in orange) between April 2016 and March 2022. The
plot exhibits trends of generally increasing and decreasing prices over the period.
There is also seasonality aspect where prices rise during the summer and winter
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Figure 3.1: Snapshot of JEPX data showing the 30-minutes resolution day ahead
market clearing results [8].

months. The corresponding average daily market clearing quantities and the 28-
day moving averages are shown in Figure 3.3. This plot shows a clear rising
trend in traded volumes over the period as more participants enter the market.
Similarly, seasonality is exhibited in the traded volumes with increases during the
summer and winter months.
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Figure 3.2: Average daily system market clearing price (MCP) and the corre-
sponding 30-day moving average.

Figure 3.3: Average daily system market clearing quantity (MCP) and the corre-
sponding 30-day moving average.
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3.2.2 Spatial and Temporal Dependence of Price Data

Price characteristics are dependent on the trading area. An analysis of the raw
data shows price differences between trading areas where differences are caused
by constraints on electricity transmission which may limit the transferability of
cheaper energy between areas. Figure 3.4 shows a heat map of the median prices
for the 48 time-codes in each of the 9 areas. The plot shows the differences in
price by area with Hokkaido being generally more expensive followed by the two
eastern regions of Tohoku and Tokyo. The median prices in the Western regions
are generally similar but the prices in the furthest west region of Kyushu are
slightly lower than the other regions due to high penetration of solar energy.

Figure 3.5 on the other hand shows a heat map of the median system prices
for the 48 time-codes for each type of day. The plot shows the differences in price
by day of week with weekdays being generally more expensive than weekends.
The median prices on holiday days are very similar in characteristics to price on
Saturdays.

Figure 3.4: Heat map of median area prices grouped by trading time-slot. Demon-
strates price dependence on area.
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Figure 3.5: Heat map of median system price grouped by trading time-slot.
Demonstrates price dependence on day of week.

3.2.3 Definition of Price Spike Events

The plots of electricity price data shown in Figure 3.2 show a trend of relatively
small fluctuations interspersed by periods of much larger fluctuations. These
characteristics are explained by the nature of the underlying processes generating
the data. MCP is largely the result of the balance between supply and demand
in the market. Typically, there will be small daily variations as power suppliers
and retailers tweak their supply and demand bids respectively in an effort to
maximize the gains from the market. These actions, in conjunction with day-
to-day variations in power demand and/or supply will result in the observed
relatively small day-to-day fluctuations.

However, from time to time, there will be significant imbalances between supply
and demand. The sudden loss of a large generating unit for example will have
the effect of a sudden significant reduction in cheaper supply since larger units
tends to be cheaper. The net effect is a sudden increase in the MCP which
will be recorded as a price spike. During the period immediately following such
an event, there will be lots of movements among both the supply and demand
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agents all trying to maximize their benefits while the situation lasts. Once the
underlying event passes and the market balance returns to normal, the prices will
tend to return to typical levels. Note that events could also affect demand, a good
example being the unexpected extreme weather conditions that was observed
during the winter of December 2020 – January 2021.

The dependence of price on trading area and time-codes is further evidenced
by the plots of Figure 3.6 which show the range of prices (10th percentile, 50th

percentile, and 90th percentile) for each of the 9 regions. These plots emphasize
the need for models that vary by trading area and trading time-code. From Figure
3.6, it can be observed that the peak of the 90th percentile curve in most areas
(other than Hokkaido) is about 25 Yen/kWh. We therefore pick this value as the
threshold above which we define spikes as having spiked.

Figure 3.6: Range of area prices (10th percentile, 50th percentile, and 90th per-
centile)
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3.3 Modelling of Price Spikes Time Series

3.3.1 Price Spikes Time Series Data

The preceding explanation motivates the choice of the mathematical model. We
characterize the data to comprise two sources of noise: 1) low variance IID noise
that explains small inter-day variations in the data and, 2) relatively larger mag-
nitude disturbances that explain periodic spikes in prices. We define a price spike
as a price above a specified threshold. This threshold will be representative of a
risk value above which the retailer would typically hedge their stakes.

The series of data points showing prices above the pre-defined threshold value

Figure 3.7: Bar plots of price spikes for different areas for the time-slot
16:30 17:00. Plots show the occurrence or non-occurrence of events
(spikes) and corresponding magnitudes
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is the price spikes time series. This time series will have a presence / absence
component and a magnitude component. The temporal evolution of price spikes
for different trading areas is illustrated in the bar plots of Figure 3.7 The barcode
plot (top plot) illustrates the presence or absence of spikes while the bottom plot
shows the magnitudes of the spikes.The plots of Figure 3.7 highlight the following
characteristics of the price spikes time series data:

1. There is a tendency for the spikes to appear in clusters

2. Spike occurrence is not dependent on climatic season

3. Spike occurrence is dependent on both area and time-code

The price spikes are modelled as inhomogeneous Poisson processes with varying
intensities. More specifically, the occurrence of a price spike increases the proba-
bility of more spikes occurring in the period immediately following the spike.

3.3.2 Price Spikes Modelling - Hawkes Process

Certain natural events e.g., earthquakes display the characteristics of clustering
in time i.e., the occurrence of an event increases the chance of recurrence in
the period immediately following the event resulting in a sequence of data with
temporally varying intensities. The Hawkes process [2] is suitable for modelling
such events and has been used in literature to model financial markets [10], disease
occurrences [11] and social media interactions [12].

The Hawkes model is typically used to model “self-exciting” point processes
i.e. a process in which an arrival increases the rate of future arrivals for some
period of time. The original Hawkes process describes a self-excitation process
using a conditional intensity function λa,t

d given by:

λa,t
d = µa,t +

d∑
di=0

ϕa,t(d − di) (3.1)

where µa,t ≥ 0 is the base intensity for area a and time-slot t while the second
term on the right-hand-side of (4.4) is the self-excitation component modeling
the influence of past events on the current value of the excitation function and
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therefore governing the clustering of the point process. As is typical in literature,
an exponential decay of the form:

ϕa,t(d − di) = ua,t
di

· γa,t · e−(d−di)/τa,t (3.2)

is used as the excitation function where γa,t and τa,t are model parameters. γa,t

governs the magnitude of the increase in the intensity function whenever there is
a spike i.e. ua,t

d = 1, while τa,t is the time constant for the decay of the effect of
the spike thereby giving information on the influence of the price spike on future
event occurrences. The value of the intensity function λa,t

d defines the probability
of occurrence of a spike in area a at time period t on day d. The price spikes
time series can therefore be thought of as stemming from a parameter varying
Poisson process, where ua,t

d is a Bernoulli’s random variable occurring with the
probability λa,t

d ≤ 1 (conversely, not occurring with the probability 1 − λa,t
d ).

3.3.3 Evaluation of Price Spike Occurrence Intensity

Extracted Parameters

Using a Bayesian approach, the Hawkes model parameters were extracted for
various areas and timecode combinations. Tables 3.1 to 3.4 shows some of the
values of the extracted parameters. The value µa,t represents the probability of
a spontaneous spike and it can be seen to be very low. The values can get as
low as 0.002 for Kyushu area at timecode 1. Even at the highest value, the value
of µa,t is only 0.0196 for Hokkaido at timecode 37. These results show that the
probability of a spike is very low and spike events are very rare. The parameter
τa,t is the time constant of the persistence of the effect of spike events in days.
These values range from 1.75 to 3.56 days showing that the spike events, even
when they occur, die out very quickly. Finally, the parameter γa,t represents
the jump in spike intensity function after the occurrence of a spike event. These
values are found to range from 0.22 to 0.37. This means that a two consecutive
spike events are required for the spike occurrence probability to increase above
0.5. In general, these parameters show that price spike events are very rare in
occurrence, occurrence of an event increases the value of the intensity function
only modestly, and the effect of the spike event occurrence dies out very quickly.
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Table 3.1: Extracted Hawkes model parameters for Hokkaido area.
timecode period µa,t τa,t γa,t

1 00:00 - 00:30 0.0060 2.86 0.256
9 04:00 - 04:30 0.0052 1.99 0.332
15 07:00 - 07:30 0.0060 2.86 0.266
25 12:00 - 12:30 0.0060 2.98 0.228
37 18:00 - 18:30 0.0196 3.4 0.231
41 20:00 - 20:30 0.0124 3.56 0.221

Table 3.2: Extracted Hawkes model parameters for Tokyo area.
timecode period µa,t τa,t γa,t

1 00:00 - 00:30 0.0044 2.36 0.301
9 04:00 - 04:30 0.0052 1.99 0.327
15 07:00 - 07:30 0.0028 3.25 0.254
25 12:00 - 12:30 0.0084 2.86 0.224
37 18:00 - 18:30 0.0100 2.86 0.283
41 20:00 - 20:30 0.0044 3.11 0.247

Table 3.3: Extracted Hawkes model parameters for Kansai area.
timecode period µa,t τa,t γa,t

1 00:00 - 00:30 0.0028 2.54 0.279
9 04:00 - 04:30 0.0044 3.25 0.232
15 07:00 - 07:30 0.0020 3.56 0.223
25 12:00 - 12:30 0.0044 2.54 0.225
37 18:00 - 18:30 0.0076 2.54 0.299
41 20:00 - 20:30 0.0036 3.11 0.251

Table 3.4: Extracted Hawkes model parameters for Kyushu area.
timecode period µa,t τa,t γa,t

1 00:00 - 00:30 0.0020 1.75 0.371
9 04:00 - 04:30 0.0036 1.87 0.325
15 07:00 - 07:30 0.0022 4.36 0.188
25 12:00 - 12:30 0.0044 2.64 0.225
37 18:00 - 18:30 0.0084 2.36 0.317
41 20:00 - 20:30 0.0028 2.45 0.304
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Evolution of intensity function

Using the parameters extracted as shown in Tables 1 to 4, the spike occurrence
intensity function was evaluated for various area and timecode combinations.
The results are shown in Figures 1 to 4. The figures show that for all cases, the
intensity function is nearly zero most of the time as spikes occur rarely. For the
morning peak timeslot of 7:00 - 7:30 am, spike occurrence is rarer than the evening
peak timeslot of 18:00 - 18:30. In all cases, the high intensity function that lasted
for about a month around January 2021 stands out. During this period, prices
consistently hit the 200 Yen/kWh price cap as a combination of severe weather
and fuel shortages put a strain on the market. It is also interesting to note that
the intensity function since October 2021 stayed consistently high. This coincided
with the increased demand for crude oil as most economies begun opening up after
ending COVID-19 related restrictions. The situation was exacerbated by the start
of the Russia – Ukraine war in February 2022. The plots of Figures 1 to 4 show
that the Hawkes model is able to capture the underlying dynamics generating the
price spikes time series data.
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Figure 3.8: Evolution of price spikes time series and extracted intensity function
for Hokkaido area and timeslot 07:00-07:30

Figure 3.9: Evolution of price spikes time series and extracted intensity function
for Hokkaido area and timeslot 18:00-18:30
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Figure 3.10: Evolution of price spikes time series and extracted intensity function
for Tokyo area and timeslot 07:00-07:30

Figure 3.11: Evolution of price spikes time series and extracted intensity function
for Tokyo area and timeslot 18:00-18:30
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Figure 3.12: Evolution of price spikes time series and extracted intensity function
for Kansai area and timeslot 07:00-07:30

Figure 3.13: Evolution of price spikes time series and extracted intensity function
for Kansai area and timeslot 18:00-18:30
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Figure 3.14: Evolution of price spikes time series and extracted intensity function
for Kyushu area and timeslot 07:00-07:30

Figure 3.15: Evolution of price spikes time series and extracted intensity function
for Kyushu area and timeslot 18:00-18:30
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4 A Hawkes Model Approach to
Modeling Price Spikes in the
Japanese Electricity Market

4.1 Introduction

4.1.1 Background

Liberalization of the electric energy sub-sector in many countries has allowed for
electricity to be traded in financial markets in a manner similar to other com-
modity markets such as company stocks [1–3]. The day-ahead electricity market
such as the Japanese Electric Power Exchange (JEPX) [4] provides a mechanism
for power suppliers and customers to trade electricity in an environment where
the price is dictated by the market forces of supply and demand. These markets
were mainly introduced with the goal of improving service quality and curtailing
monopolistic tendencies of the original regional or national utilities [4]. Trading
occurs under the supervision of an independent market operator (MO) who works
closely with the actual system operator (SO) who keeps the original role of ensur-
ing high levels of system reliability [5]. The primary goal for market participants
is to operate efficiently and economically in the electricity market which requires
the design of proper strategies and tools based on power system requirements [6].

Prices in deregulated electricity markets are highly variable due to the depen-
dence on several factors both on the energy supply and demand side [7]. Several
factors including weather conditions, fuel costs, power plant operating costs, and
regulations contribute to the increasing price uncertainty in the market [8]. On
the supply side, the cost of fuel to run thermal generators is typically dependent
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on oil prices which is quite variable in itself. Furthermore, increase in power sup-
plied by solar and wind based renewable energy generators escalates uncertainty
in the availability of power since these sources depend on relatively uncertain
primary sources of energy [9]. The management of these non-dispatchable energy
resources introduces new significant challenges in the context of a competitive
market environment [10]. However, the largest source of uncertainty is probably
the strategies adopted by various companies during the bidding process as they
jostle for a slice of the market share. On the consumer side, well documented
and relatively predictable variations in power demand has an effect on prices [11].
Furthermore, in a two-sided market such as the JEPX, large power consumers
or resellers participate in the bidding process with the objective of driving down
prices to reduce their electricity bills. Certain aspects of the physical system such
as limits in power that can be sent though certain power lines also has an effect
on prices. These uncertainties mean that electricity prices are characterized by
large spikes and dips which has an effect on the financial benefits that suppliers
and consumers can gain from the market. The first step in mitigating against the
volatility in the market is to set up an accurate price forecasting system. The
obtained forecasts form an important basis for decision making by investors in
the electricity market [12].

As with other commodity markets, electricity markets also experience periods
of market shocks – a situation in which prices are driven much higher that normal
due to extreme market conditions [13]. Price spikes can be the results of various
issues in the market including power plant and system failures or extreme weather
conditions that drive up demand [14]. Such a scenario was observed in the JEPX
around late December 2020 / early January 2021 where prices hit a high of 220
Yen/kWh which is 25-to-30 times the average price of around 7-to-8 Yen/kWh.
While the end consumers of may not have felt the effects of these spikes since
most are in fixed tariff plans, a similar occurrence in the Texas’ market ERCOT
in the United States left households whose typical bills are 100 to 200 dollars
with bills to the tune of tens of thousand of dollars. This further reinforces the
need for mathematical models of the system that may be used to understand the
underlying dynamics that lead to such extreme events.
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4.1.2 Literature Review

Modeling of Electricity Prices

An overview of existing literature shows that numerous approaches have been pro-
posed for the modelling and forecasting of short-term prices in electricity markets.
References [15] and [16] give very good reviews on the topic. Similarly, a review
specifically on probabilistic forecasting can be found in [17].

In [18], the authors provide a method for predicting next-day electricity prices
using the autoregressive integrated moving average (ARIMA) methodology. A
detailed analysis of the electricity prices time-series using the ARIMA models
precedes model fitting and analysis based on the mainland Spain and Californian
markets. Classical autoregressive integrated moving average (ARIMA) models
with various AR and MA orders are also tested in [19]. Simulation results using
data from the UK electricity market selects the ARIMA (4,1,2) model as the best
and is found to achieve better results than persistence or a typical artificial neu-
ral network (ANN) model. A seasonal auto-regressive integrated moving average
model with exogenous variables (SARIMAX) for modelling electricity prices is
proposed in [20]. The model is chosen so as to capture the seasonal variations of
electricity prices. In [21] electricity price behavior in the Nordic electric power
market is forecasted using both the Markov-switching generalized autoregressive
conditional heteroscedasticity (MS-GARCH) model and a set of different volatil-
ity models. The GARCH models aim to model the conditional volatility of the
price time series. The study demonstrated that electricity price volatility is not
only highly volatile but also strongly regime-dependent.

Given the highly non-linear nature of the electricity price time series data, sev-
eral authors have presented approaches based on newer machine learning mod-
els. An exhaustive analysis of existing forecasting models is carried out in [22]
where 27 common approaches are analyzed with a conclusion that generally, deep
learning models outperform statistical models. They also conclude that hybrid
models do not outperform simpler counterparts. A Recurrent Neural Network
(RNN) based Model is proposed in [23] where multi-layer Gated Recurrent Units
are proposed for electricity price forecasting. The use of Dynamic Trees for both
very short and short term electricity price forecasting and the improvement in
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forecasting performance when compared to a typical Random Forest approach
is illustrated in [24] with tests on the Iberian market. Reference [25] employed
an Artificial Neural Networks (ANN) model with a focus on the selection and
preparation of fundamental data that had noticeable impact on electricity prices.

In [26] a hybrid modelling approach that combines the features and strengths
of the auto-regressive fractionally integrated moving average (ARFIMA) model
and the least-squares support vector machine (SVM) model is proposed. Sim-
ilarly, a long short-term memory (LSTM) deep neural networks combined with
feature selection algorithms for electricity price prediction under the consideration
of market coupling is proposed in [27]. An outlier-robust hybrid model for fore-
casting electricity prices that combines a simple outlier-robust extreme learning
machine model and several other algorithms is developed in [28]. Their experi-
ments based on electricity price data from the Australia and Singapore markets
demonstrate the effectiveness of the model especially in dealing with the complex
nonlinear characteristics and numerous outliers present in the price data.

Electricity Price Spikes Modelling

While there has been a lot of focus on the modeling and forecasting of electricity
prices, there is less literature on modelling price spikes i.e. the occurrence of
extreme prices which has a significant effect on the operation of market agents.
An economic analysis of price spikes is presented in [13] where the authors in-
vestigate the factors and mechanisms determining spikes in the Italian electricity
market. Based on the market data, they performed a specific analysis of the
auctions mechanisms and of the hourly bid and offer of electricity characteristics
to determine how and why price spikes occur. Their results showed that rigid-
ity, which characterizes both the demand curve and part of the supply curve, is
the fundamental determinant of prices pikes. Fluctuations in renewable energy
sources (RES) production also proved to be fundamental.

In [29], a stochastic regime-switching model with time-varying parameters is
shown to capture the type of volatile price behavior observed in many deregu-
lated spot markets for electricity. The mean prices in two price regimes and the
transition probabilities were specified as functions of the offered reserve margin
and the system load. The high-price regime corresponded to the observed price
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spikes that typically occur during the summer months. In addition, the structure
of the model was consistent with the actual hockey stick shape of the offers sub-
mitted by suppliers into the PJM market. Most capacity is offered at relatively
low prices, and a few units are offered at much higher prices up to the price cap.

Dramatic rises in electricity prices can be observed during periods of market
stress as highlighted in [30]. The authors treat abnormal episodes or price spikes
as count events and propose to build a model of the spiking process. The im-
portance of persistence in the spiking process and its significance in building an
effective model is highlighted. They adapt a Poisson autoregressive framework for
integer-valued time series that accounts for the number of simultaneous stresses
remaining latent and provided a model that could be estimated by maximum like-
lihood. The arrival and survival rates of price spikes were found to be dependent
upon extreme temperature events and peak load. However, the model’s ability
to capture the intrinsic persistence in price spikes was cited as more significant.

The forecasting of extreme price events, the occurrence of which is treated as a
realization of a discrete time point process, is the focus of [31]. An Autoregressive
Conditional Hazard (ACH) framework was used to analyze the drivers of the
process and to forecast the probability of extreme price events occurring in real
time. Abnormal loads were found to have a significant impact on the probability
of a price spike and on the severity of the spike. Importantly, stochastic factors
capturing the history of the process were found to be significant in explaining the
occurrence of extreme price events.

An argument that there is increasing empirical evidence of increased price
volatility and spikes in electricity markets as a result of fluctuating renewable
energy production, extreme weather events and other factors is presented in [32].
While price spikes are necessary to cover the fixed costs of power plants, they can
also indicate market imperfections and anti-competitive behavior. Regulators
have set market price caps to protect consumers and prevent abusive behavior
by vendors. Additionally, some regulators have imposed temporary price caps
during or after major events. In weak institutional frameworks, however, these
ceilings may be driven by political motives rather than economic logic.
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4.1.3 Chapter Organization

The remainder of this chapter is organized as follows: Section 4.2 gives an in-
troduction to the Japanese Electricity market including the characteristics of the
electricity grid, a look at the prices datasets and the definition of price spikes.
Section 4.3 presents the modeling approach introducing the proposed models,
the parameter extraction approach and the generation of short term price spikes
forecasts. Simulation results based on data from the JEPX are presented and
discussed in section 4.4 and the study conclusions are drawn in section 4.5.

4.2 The Japanese Electricity Market

4.2.1 Introduction to the Spot Market and the Power
Grid

Following the trend toward deregulation in the electric power industry in Western
countries, the liberalization of the electricity generation sector started in 1995 in
Japan, followed by retail supply liberalization for customers receiving extra high-
voltage (20 kV or above) in 2000 [33]. The scope of deregulation was expanded
in different stages afterwards. However, power shortages and other issues caused
by the 2011 Great East Japan Earthquake prompted discussion about the ideal
structure of the country’s electric power system and its reform. Based on this, full
liberalization of the Japanese electricity market was achieved in 2016. The Japan
Electric Power Exchange (JEPX) was established in November 2003 and begun
trading in April 2005. The purpose of JEPX is to handle electricity transactions
on the exchange. This research focuses on forecasting prices spikes in the JEPX
day ahead market.

The general structure of the Japanese electricity market follows closely those
of more established markets such as the PJM (Pennsylvania, Jersey, and Mary-
land) Power Pool interconnection in the US [34] and the European Nord Pool
covering the Northern European countries, such as Norway, Sweden, Denmark,
and Germany [35]. While most of the energy is traded in the day-ahead market,
there is an intra-day market for settlement of hour-ahead forecasted load demand.
However, unlike the markets in the United States, a real-time market [36] is yet
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to be implemented. Market clearing is carried out on a 30-minute time resolution
unlike the Italian or Spanish markets where clearing is done on a 1-hour time
resolution. The Japanese market also uses a zonal marginal pricing policy with
nine trading areas in a structure similar to most European markets but unlike
the PJM which uses a Locational Marginal Pricing (LMP) policy [37]. Similar to
the Swedish, Spanish, Italian and most European markets, the market operator
(MO) in the Japanese market is separate from the system operator (SO) but
unlike the Australian, PJM and UK markets where market and system operation
functions are carried out by the same entity. Apart from the market structure,
the Japanese system is unique in having two system frequencies (50Hz in the east
and 60Hz in the west) [4] within the same market, sometimes leading to signifi-
cant differences in prices within the market. In addition, there is no international
connection unlike the highly connected European markets which means that lo-
calized mismatches in supply and demand cannot be offset by imports or exports
from or to nearby grids.

There are 10 operational areas (9 in the main island of Honshu and the Okinawa
area that covers the southern islands) as shown in Figure 4.1 [33]. These areas
correspond to the regions originally operated by the main power utilities before
system deregulation are currently operated by separate system operators. The
JEPX handles transactions for the 9 main areas on a thirty-minute time resolution
resulting in 48-trading periods per area per day on the day-ahead electricity
market.

The transmission capacity limits in the connections between areas. These limi-
tations result in transmission congestion hence differences in prices between areas.
Particularly the HVDC interconnection linking Tokyo and Chubu areas result in
differences between prices in the Eastern grid operated at 50Hz and Western
grid operated at 60 Hz. The overall structure of the electricity market is as
shown in Figure 4.2 and the main market participants are the electricity genera-
tion companies and electricity retailers involved in wholesale power transactions.
The number of participating generators in the market are 986 and a total of 730
retailers as of September 2022 [38].
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Figure 4.1: Illustration of the trading areas in the Japanese electricity market
and the physical interconnections. Source: The Japan Electric Power
Information Center (JEPIC) [33].

Figure 4.2: General organization of the Japanese electricity market. Source: The
Japan Electric Power Information Center (JEPIC) [38].
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4.2.2 JEPX Dataset

The JEPX electricity price and traded energy volumes data are publicly avail-
able on the exchange’s website [39]. The available data includes traded volumes
and corresponding system and area market clearing prices (MCPs) in 30-minute
resolutions giving 48 commodities per area, per day. Table 4.1 shows the sum-
mary statistics of the MCP data for each of the nine areas in the JEPX for the
period spanning April 1, 2016 to March 31, 2022. The values clearly indicate
differences in the grid with prices in the eastern areas of Hokkaido, Tohoku,
and Tokyo being generally higher than prices in the Western grid. In addition,
prices in the Northern island of Hokkaido are generally highest while prices in the
south western region of Kyushu being the lowest. Prices in the western regions
of Chubu, Hokuriku, Kansai, Chugoku, and Shikoku are very similar indicating
adequate transmission capacity between these areas leading to almost always a
single MCP between them. Table 4.1 also shows the 95th percentile value of
the prices time series. These values give a sense of what would be considered as
extreme prices in the market.

Table 4.1: Summary statistics of area prices (Yen/kWh) in the JEPX for the
period April 1, 2016 to March 31, 2022.

Area mean median std. dev skewness 95th per-
centile

Hokkaido 12.72 10.54 12.01 8.90 25.67
Tohoku 10.82 8.67 11.75 9.83 23.00
Tokyo 10.93 8.71 11.85 9.67 23.37
Chubu 9.91 7.66 10.96 9.48 21.87

Hokuriku 9.89 7.66 10.94 9.53 21.54
Kansai 9.88 7.66 10.93 9.57 21.24

Chugoku 9.87 7.65 10.93 9.57 21.24
Shikoku 9.86 7.65 10.95 9.61 21.22
Kyushu 9.16 7.36 10.69 10.21 19.45
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A fundamental analysis of the JEPX spot-market time series data shows that
prices have a clear spatial and temporal dependence. This dependence is il-
lustrated in Figure 4.3 which shows the average area MCPs (calculated on a
thirty-minute resolution) for the period spanning April 1, 2016 to March 31, 2022
covering the first six years since the start of full market liberalization that allowed
for competitive retail of electricity to individual consumers. The data is grouped
to show the average prices for both workdays and non-workdays (weekends and
holidays).

Figure 4.3: Average area prices for the JEPX for the period spanning April 1,
2016 to March 31, 2022.

On the spatial axis, prices are seen to be different for different areas. Generally,
prices are observed to be higher in the eastern regions of Hokkaido, Tohoku and
Tokyo and lower on the western side. The south-western region of Kyushu exhibits
especially relatively lower prices. This dependence is explained by constraints on
the amount of power transferable through the interconnections between regions.
Capacity limits of the HVDC interconnection linking the Tokyo and Chubu ar-
eas especially results in significant differences between prices in the eastern grid
operated at a frequency of 50-Hz and the western grid operated at 60-Hz.

Temporally, MCPs are dependent on the type of day i.e. workday or non-work
day; and the time-of-day i.e. there are clear peak and off-peak periods within
a day. This temporal dependence is explained by the socio-economic behavior
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of electricity users with morning and evening peaks. Reduced energy intensive
activities on weekends and holidays results in generally reduced demand and
consequently, lower prices during these days as compared to typical work days.

Considering the above characteristics of JEPX price data, the use of individ-
ual models for each area and each trading time period is proposed to handle
the spatial dependence and time-of use dependence respectively. In addition,
a transformation approach is proposed to handle the type of day dependence.
The difference in prices due to type of day is handled by transforming the week-
end/holiday prices ya,t

d

′ to equivalent weekday prices ya,t
d using scaling factors ka,t

d

as:

ya,t
d = ka,t

d × ya,t
d

′ (4.1)

where ka,t
d is the ratio of the average workday price to the average non-workday

price up to day d for area a and trading period t.
Figure 4.4 shows the effect of the price transformation technique on the em-

pirical cumulative distribution curves (cdfs) of the MCPs for Tokyo area. In the
original form of Figure 4.4(a), the MCPs for workdays and non-workdays can be
thought of as belonging to different probability distributions which would require

Figure 4.4: Empirical cumulative distribution curves (cdfs) for the Tokyo area
MCPs (trading period 33: 16:00-16:30 ) (a) without the application
of transformation of equation (1) and (b) with the application of the
transformation of equation (4.1).
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a regime switching type model to properly handle this characteristic. However,
as seen from Figure 4.4(b), the transformation of equation (4.1) “shifts” the dis-
tribution of the non-workday prices to be similar to that of the workday prices
allowing for the fitting of a single model and avoiding the breaking of the time
series to workday and non-workday portions. The models are then fit on the
transformed time series and carry out the inverse of the above transformation
when determining the magnitude of the forecasted price spikes.

4.2.3 Definition of Price Spikes

Extreme prices in electricity markets can have devastating impacts on market
participants even if they last for just a short period of time. Cases of electricity
resellers that have been driven to bankruptcy due to these "price spikes" have
been observed in the last few years even in more established markets in the US,
UK and Europe. In an environment of tight margins, even with a conservative
hedging strategy, one can be left exposed to extreme price risks especially since
spikes tend to occur during peak demand periods where retailers will be typically
under-hedged.

A price spike on day d and in area a and trading period t, ua,t
d , is defined as an

observed price value ya,t
d above a pre-defined threshold yδ. Mathematically, this

is represented as:

ua,t
d =

0, if ya,t
d ≤ yδ

1, otherwise
. (4.2)

For the electricity retailer procuring energy from the spot market, this price
threshold would define a risk value above which the potential of loss becomes
significant.

Figure 4.5 shows the price ranges (10th to 90th percentile) of area spot prices
in the JEPX for the data spanning April 1, 2016 to March 31, 2022. Here, only
four representative areas are shown since the price characteristics in several areas
are quite similar as seen from the data in Table 4.1 and Figure 4.3. Apart from
Hokkaido area in which prices were a little higher, the peak of the 90th percentile
curve is about 25 Yen/kWh and prices above this value can be considered extreme.
In fact, in the entire dataset, only 3.7% of the area prices are greater than this
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Figure 4.5: The 10th percentile (dot-dashed line), median (full line) and the 90th
percentile (dashed line) for the JEPX area prices time series.

threshold. A value of 25 Yen/kWh is therefore adopted as a consistent price spike
threshold throughout this study, though the analysis and results would be similar
with any other reasonable threshold value.

The series of data points showing prices above the threshold value is the price
spikes time series. This time series has two components: (1) the occurrence or
non-occurrence of a spike and (2) the magnitude of a spike should it occur. The
temporal evolution of price spikes for different trading areas and selected trading
periods is illustrated in the plots of Figure 4.6. Each price spikes time series is
presented as two plots: the barcode plot (top plot) illustrates the occurrence or
non-occurrence of spikes while the bottom plot shows the corresponding spike
magnitudes. From the plots of Figure 4.6, it can be observed that there is a
tendency for spikes to occur in clusters i.e. there are specific periods within
the time series where the probability of spike occurrence is clearly higher than
others. This characteristic can be explained by the underlying process driving
market prices i.e. the balance between supply and demand. Periods of high prices
i.e. continuously occurring spikes, are usually the result of a short term imbalance
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Figure 4.6: Temporal evolution of price spikes time series for selected areas and
trading time periods. The vertical axis of the magnitude plots is
truncated at 40 Yen/kWh though much higher spike magnitudes have
also been observed. The axis truncation achieves better clarity of the
plots.

between supply and demand e.g. due to fuel shortages or unforeseen shutdowns
of large generators.

74



4.3 Methodology

4.3.1 Notation

Indexes a, t, and d are used to denote the area, trading time period and day
respectively so that ya,t

d denotes the day-ahead MCP for area a time period t and
day d. The price spike threshold is defined as yδ so that a spike occurs in area a,
trading period t and day d if ya,t

d > yδ and vice-versa. The occurrence (presence
or absence) of a spike is then given by a binary variable ua,t

d as shown in equation
(4.2). Similarly, the magnitude of a spike xa,t

d is given by:

xa,t
d =

0, if ua,t
d = 0

ya,t
d − yδ, if ua,t

d = 1
(4.3)

4.3.2 Hawkes Model

The Hawkes model is typically used to model “self exciting” point processes i.e. a
process in which an arrival of an event increases the rate of future arrivals for some
period of time [40, 41]. In the case of the electricity price data, sudden “jumps”
(spikes) in prices are modeled as excitation signals that increase (or reduce) the
price for some period of time after occurrence.

Fundamentally, the use of equations proposed by Hawkes is proposed to model
the price spikes time series data [42]. The Hawkes model defines the occurrence
of an event in terms of an intensity function given by:

λa,t
d = µa,t +

d∑
di=0

ϕa,t(d − di) (4.4)

where µa,t ≥ 0 is the base intensity for area a and time-slot t while the second
term on the right-hand-side of (4.4) is the self-excitation component modeling
the influence of past events on the current value of the excitation function and
therefore governing the clustering of the point process. As is typical in literature,
an exponential decay of the form:

ϕa,t(d − di) = ua,t
di

· γa,t · e−(d−di)/τa,t (4.5)

is used as the excitation function where γa,t and τa,t are model parameters. γa,t

governs the magnitude of the increase in the intensity function whenever there is
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a spike i.e. ua,t
d = 1, while τa,t is the time constant for the decay of the effect of

the spike thereby giving information on the influence of the price spike on future
event occurrences. The value of the intensity function λa,t

d defines the probability
of occurrence of a spike in area a at time period t on day d. The price spikes
time series can therefore be thought of as stemming from a parameter varying
Poisson process, where ua,t

d is a Bernoulli’s random variable occurring with the
probability λa,t

d ≤ 1 (conversely, not occurring with the probability 1 − λa,t
d ).

Replacing (4.5) in (4.4), the Hawkes model can be re-written as:

λa,t
d = µa,t +

d∑
di=0

ua,t
di

· γa,t · e−(d−di)/τa,t (4.6)

= µa,t +
d−1∑
di=0

ua,t
di

· γa,t · e−(d−di)/τa,t + γa,tua,t
d (4.7)

= µa,t + e−1/τa,t
d−1∑
di=0

ua,t
di

· γa,t · e−(d−di−1)/τa,t + γa,tua,t
d (4.8)

= µa,t + αa,t
(
λa,t

d−1 − µa,t
)

+ γa,tua,t
d (4.9)

= αa,tλa,t
d−1 + βa,t + γa,tua,t

d (4.10)

where αa,t = e−1/τa,t and βa,t = (1 − αa,t)µa,t.
The above form of the Hawkes model reveals a structure similar to a typical

auto-regressive model with βa,t as the constant term, αa,t as the auto-regressive
coefficient and γa,tua,t

d as the noise term. Re-writing the Hawkes model in this
form reveals a more intuitive understanding of the model. In the absence of a
spike, the intensity function drops back towards its natural value µa,t at a speed
dictated by the coefficient αa,t while when a spike event occurs, the intensity
function experiences a jump governed by the value of γa,t

4.3.3 Modified Hawkes Model

In the original Hawke’s equation (4.10) the parameter γa,t that defines the increase
in intensity after the occurrence of a spike is taken as a constant value implying
that any observed price spike will lead to an increase in the spike’s occurrence
probability by the same magnitude. The price spikes time series however exhibits
a correlation between the magnitude of the spikes and the number of subsequent
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spikes suggesting a dependence of the underlying intensity function on the the
magnitude of observed spike events. Therefore, while testing the suitability of the
original Hawke’s model (4.10), denoted as Hawkes-I, on fitting the price spikes
time series, the implementation of two variants of the basic model is also proposed.

The first of these, denoted as Hawkes-II, is a variable intensity jump model
where the parameter γa,t in (4.10) – which defines the increase in the magnitude
of the intensity function given a spike – is dependent on the magnitude of the
price spike i.e.:

γa,t
d = γa,t,0

(
1 − e−xa,t

d
/xa,t

0
)

(4.11)

where xa,t
0 is the expected value of xa,t given as the average magnitude of price

spikes observed up to day d. With this formulation, a large magnitude spike –
which typically indicates significant stress on the supply-demand balance in the
market – will result in a relatively larger jump in the magnitude of the intensity
function when compared to a spike of lower magnitude.

The second variation, denoted as Hawkes-III, is a variable effect decay speed
model where the parameter τa,t - which defines the rate of decay of the intensity
function given a spike - is dependent on the magnitude of the price spike i.e.:

τa,t
d = τa,t,0

(
1 − e−xa,t

d
/xa,t

0
)

(4.12)

This formulation suggests that the effect of a large magnitude spike will last
longer than that of a relatively smaller spike event.

4.3.4 Parameter Extraction

A Bayesian approach to estimating the Hawkes model parameters is taken in this
study. The model parameters are treated as random variables for which posterior
distributions are estimated based on the observations up to a given day. The
joint posterior distribution of the model parameters for area a, and time slot t,
given a set of observations up to day d, p(Θa,t

d ) is given by:

p(Θa,t
d |Xa,t

d ) = p(Θa,t
d−1|X

a,t
d−1) · p(xa,t

d |Θa,t
d−1)

∆ (4.13)
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where the prior p(Θa,t
d−1|X

a,t
d−1) is the posterior distribution on day d − 1 and

p(xa,t
d |Θa,t

d−1) is the likelihood of the observation xa,t
d given the parameters on day

d − 1. Intuitively, the likelihood function is obtained from the Hawkes model as:

p(xa,t
d |Θa,t

d−1) =


0, xa,t

d < 0
1 − λa,t

d , xa,t
d = 0

λa,t
d , xa,t

d > 0

(4.14)

Starting from a uniform prior distribution on day 0, iterations through equations
(4.13) and (4.14) are carried out to obtain the posterior distribution on day d.

4.3.5 Short-term Forecasting

Given the magnitude of the intensity function λa,t
d on day d, and the model

parameters αa,t, βa,t and γa,t, it’s n-days ahead forecast λ̂a,t
d+n is obtained by the

iterating through the equation:

λ̂a,t
d+k = αa,tλ̂a,t

d+k−1 + βa,t + γa,tûa,t
d+k (4.15)

for k = 1, 2, 3, . . . , n where ûa,t
d+k = λ̂a,t

d+k−1 and ûa,t
d+1 = λa,t

d . Since the spike
occurrence forecasting is essentially a binary classification problem, the binary
forecast for the occurrence of a spike ūa,t

d+n is arrived at by comparing the forecast
value ûa,t

d+k to a pre-defined threshold δ so that:

ūa,t
d+k =

0, if ûa,t
d+k ≤ δ

1, otherwise
(4.16)

The decision threshold δ adjusts the conservativeness of the forecasting model. As
δ tends to zero, the model will forecast more 1’s which will reduce false negative
errors and vice versa.
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4.4 Results

4.4.1 Data

The JEPX electricity market price data used in this study is publicly available
on the exchange’s website [39]. The value of 25 Yen/kWh is used as the price
spike threshold though the results are similar for any other reasonable threshold
values. The modelling and analysis is carried out using data for the 6-year period
spanning the start of the fully deregulated market on April 1, 2016 to March 31,
2022 – the end of the 2021 Japanese financial year.

Figure 4.7 shows the spike occurrence probability for two selected study areas
(Tokyo and Kansai) over the study period. The spike occurrence probability is
calculated simply as the ratio of number of price spike events in the time series to
the total number of events. Figure 4.7 shows that the spike occurrence probability
is generally lower than 3% apart from during the evening peak periods where it
rises to a maximum of around 6%. The probability is however clearly higher in
the Tokyo region (in the 50-Hz eastern grid) than in Kansai (part of the 60-Hz
western grid).

Figure 4.7: The variation of spike occurrence probability by trading time period
for the two selected study areas (Tokyo and Kansai).

Generating individual models for each trading time period for each of the 9
areas results in 432 different models. Since it is impractical to display the results
for all models here, four representative models are selected for detailed discus-
sions. The selected models correspond to two representative areas – Tokyo for
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the Eastern grid and Kansai for the Western grid – and two trading time periods
– 08:00-08:30 (timecode 15) representing the morning peak time period and –
18:00-18:30 (timecode 37) representing the evening peak time period. These se-
lections give four area-timecode combinations referenced as Tokyo-15, Tokyo-37,
Kansai-15 and Kansai-37 in the following discussions.

4.4.2 Baseline Model - Persistence Model

A persistence model is used to get baseline results for forecasting accuracy from
which the performance of the proposed models are compared. The persistence
model uses the prices on a given day d to forecast prices over the next N days
under the assumption that the present day conditions persist over the forecasting
horizon. For the price spikes time series, the algorithm states that if a spike
occurs in area a, timecode t on day d, the spike is forecasted to persist over the
next N days. Mathematically, this is written as:

x̂a,t
d+i = xa,t

d where i = 1, 2, . . . , N (4.17)

The persistence model estimates the intensity function as the conditional proba-
bility of observing a price spike given the last observation. This is calculated as
the ratio of the number of spike events that follow the last made observation ua,t

d

for the spikes data observed up to day d. While quite simple in formulation, the
persistence model can achieve very good performance for such data where cor-
relations between consecutive observations are high and can set relatively high
benchmarks for other more complex models under consideration.

4.4.3 Model Performance: Goodness of Fit

Following the Bayesian approach, parameters for the three versions of the Hawke’s
model were extracted. The model parameters are re-estimated daily for the entire
dataset with the first two years of data used to generate the first set of param-
eter values. The daily updated model parameters are used to generate 14-days
ahead forecasts for price spike events as described by (4.16) with a classification
threshold of δ = 0.5.
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Using the extracted parameters, the intensity function evolution was evaluated
for the dataset. Figure 4.8 shows the evolution of the Hawke’s model intensity λa,t

d

for the four selected area time-code combinations. These plots show near zero-
values during no-spikes periods highlighting rare nature of price spikes during
"normal" market conditions. The plots also clearly highlight periods of increased
stress in the system with high spike occurrence probabilities. An interesting
observation is the prolonged high intensity period that lasts from October 2021
to March 2022.

Figure 4.8: Evolution of the Hawke’s model intensity λa,t
d for the four selected

area time-code combinations.

The goodness of fit of the models on the training data is assessed by evaluating
the respective values of the log-likelihood functions. Given the values of the
intensity function λa,t

d and the observations ua,t
d , the log likelihood function for
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the process that generates the observations is given by:

log L =
d∑

di=0
ua,t

di
log λa,t

di
+ (1 − ua,t

di
) log(1 − λa,t

di
) (4.18)

The values of log L were evaluated for the persistence model and the three pro-
posed Hawkes modelling approaches and the results are shown in Table 4.2. From

Table 4.2: Values of the log-likelihoods log L corresponding to the four investi-
gated models.

log L Tokyo-15 Kansai-15 Tokyo-37 Kansai-37
Persistence -207.7 -204.5 -333.9 -271.3
Hawkes I -141.9 -147.8 -256.4 -209.9
Hawkes II -133.0 -135.4 -248.2 -199.6
Hawkes III -200.9 -198.6 -317.1 -263.4

Table 4.2, it can be clearly deduced that the Hawkes modelling approaches out-
perform the persistence model in capturing the underlying characteristic of the
spike occurrence intensity. Amongst the Hawkes models, the Hawkes II model
consistently outperforms the other versions for all area-timecodes. This result
suggests that the magnitude of price spikes has a stronger effect on the change in
magnitude of the intensity function γa,t as captured by the Hawkes II model than
on the autocorrelation effect captured by the decay parameter τa,t in the Hawkes
III model. In fact, the Hawkes III model performs worse than the original Hawkes
I model and quite similar to the baseline persistence model.

4.4.4 Model Performance: Spike Event Occurrence
Forecasting

While the log-likelihood values of Table 4.2 give an indication of the closeness of
the generated intensity function to the day ahead price spike occurrence, they do
not give an insight on the ability of the models to generate good short-term price
spike forecasts. The forecasting performance of the models is assessed based on
the ability to forecast the occurrence of spike events for a number of days ahead.
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The first metric reported on the forecasting performance of the studied models
is the Mean Absolute Error (MAE) of the intensity function (spike occurrence
probability) time series. The MAE is given by:

MAE =
∑Nd

d=1
∑Nk

k=1 |ûa,t
d+k − ua,t

d+k|
Nk · Nd

(4.19)

where ûa,t
d+k is the forecasted value of the intensity function, ua,t

d+k is the spike
occurrence variable (1 for a spike event and 0 for no spike event), Nd is the
number of days in the dataset and Nk is the length of the forecasting horizon in
days. The MAE values are tabulated in Table 4.3 for the four candidate models.
This metric gives the average deviation of the magnitude of the intensity function
from the actual observations. Similar to the results of the log-likelihood values
shown in Table 4.2, the Hawkes II model is found to outperform the other models
in generating spike occurrence probability values close to the observations.

Table 4.3: Mean Absolute Error values of the intensity functions for the four
investigated models.

MAE Tokyo-15 Kansai-15 Tokyo-37 Kansai-37
Persistence 0.0730 0.0738 0.1331 0.1112
Hawkes I 0.0733 0.0771 0.1343 0.1168
Hawkes II 0.0676 0.0702 0.1251 0.1045
Hawkes III 0.0741 0.0806 0.1301 0.1201

The k-days ahead spike occurrence forecasting results are categorized as true
negatives (TN) i.e. ūa,t

d+k = 0 and ua,t
d+k = 0, true positives (TP) i.e. ūa,t

d+k = 1 and
ua,t

d+k = 1, false negatives (FN) i.e. ūa,t
d+k = 0 and ua,t

d+k = 1, and false positives
(FP) i.e. ūa,t

d+k = 1 and ua,t
d+k = 0. The typical performance index is the accuracy

which measures the number of true forecasts in the dataset given by:

ACC = TN + TP

TN + FN + FP + TP
= 1 − FN + FP

TN + FN + FP + TP
(4.20)

The accuracy index for a time series of binary variables is equivalent to 1 minus the
mean absolute percentage error (MAPE) for a time series of continuous variables.
It is however noted that false negatives results would typically have a bigger
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impact on the bottom lines of market participants than false positives. To capture
this characteristic, a slightly different metric, the weighted accuracy (WACC), is
adopted. The WACC is given by

WACC = 1 − a × FN + (2 − a) × FP

TN + FN + FP + TP
(4.21)

where 1 ≤ a ≤ 2 is the weight placed on the false negative observations. The
larger the value of a, the greater the weight placed on false negative errors and
vice versa. In the analysis, a value of a = 1.6 is used weighting the false negatives
four times more than false positives in (4.21).

The WACC for the forecasting performance of the four models in generating
14-days ahead forecasts were calculated and the results are given in Table 4.4.
The results show that the Hawkes II model outperforms the other models in all
cases. However, the performance of the Hawkes I and Hawkes III models are
very comparable to the persistence model. Its important to note the high values
of WACC (> 0.89) due to the large number of true negatives in the forecasts.
This however means that even the seemingly slight improvements shown in Table
4.4 correspond to significant reductions in the number of false negatives in the
generated forecasts.

Table 4.4: Values of weighted accuracy corresponding to the four investigated
models.

WACC Tokyo-15 Kansai-15 Tokyo-37 Kansai-37
Persistence 0.9419 0.9384 0.8929 0.9120
Hawkes I 0.9441 0.9435 0.8923 0.9164
Hawkes II 0.9466 0.9468 0.8980 0.9211
Hawkes III 0.9422 0.9401 0.8947 0.9128

The results shown in Table 4.4 are calculated for the 14-day forecasting hori-
zon. Figure 4.9 shows the variation in forecasting performance as the forecasting
horizon increases. As expected, the weighted accuracy drops as the forecasting
horizon increases. However, in all four cases, the Hawkes-II model is generally
better than the other three models. It is also noticeable that the forecasting per-
formance is almost the same for the 1-day ahead forecasts. The Hawkes-II model
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Figure 4.9: Variation of weighted accuracy WACC with forecasting horizon for
the selected areas and trading time periods.

is generally better for longer forecasting horizons confirming that it performs
better at capturing short-term variations in the intensity function characteristics.

The model’s forecasting performance is also assessed using the Matthews corre-
lation coefficient (MCC) which is typically used to measure the quality of binary
classifications [43]. The MCC is similar to the typical Pearson correlation coeffi-
cient for continuous variables and is given by:

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(4.22)

The MCC gives the correlation between observed and predicted variables and
takes values between -1 and +1. As a performance metric, it is generally regarded
as a balanced measure which can be used even with unbalanced classes as is the
case with the price spikes dataset [44]. Table 4.5 shows the values of the MCC for
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the forecasts generated by the test models. As seen from the table, and confirmed
by the previous performance metrics, the Hawkes II model generally outperforms
the other models in this metric as well.

Table 4.5: Values of Matthews correlation coefficients corresponding to the four
investigated models.

MCC Tokyo-15 Kansai-15 Tokyo-37 Kansai-37
Persistence 0.5937 0.5845 0.5917 0.6576
Hawkes I 0.6043 0.6065 0.592 0.6676
Hawkes II 0.6317 0.6339 0.6167 0.6915
Hawkes III 0.5995 0.5903 0.6034 0.6569

Similar to Figure 4.9 showing the weighted accuracy metric against the length of

Figure 4.10: Variation of Matthews correlation coefficients with forecasting hori-
zon for the selected areas and trading time periods.
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the forecasting horizon, the MCC for the 14-days ahead forecasts are also plotted
in Figure 4.10. These plots mirror the results shown in Figure 4.9 indicating
that the Hawkes II model outperforms the other models especially for longer
forecasting horizons. The MCC falls from between 0.7 to 0.8 for 1-day ahead
forecasts to between 0.5 and 0.6 for 14-day ahead forecasts with the averages of
between 0.6 and 0.7 shown in Table 4.5.

4.5 Conclusions

Two variations of the classical Hawkes model for modelling the price spikes time
series in the Japanese electric power exchange (JEPX) are proposed in this study.
The first variation models the change in the magnitude of the underlying inten-
sity as a function of the magnitude of the price spike while the second variation
models the change in the decay rate of the underlying intensity as a function
of the magnitude of the price spike. An analysis on the goodness of fit to the
training data of the original Hawkes model, the proposed variations compared to
a baseline persistence model shows that the variable magnitude variation of the
Hawkes model best captures the underlying characteristics of the process gener-
ating the price spike events. This is illustrated by achieving lower log-likelihood
values compared to the other three models. The modified Hawkes model also
performs best in generating short-term (a few days ahead) forecasts of the oc-
currence of price spike events. The improved performance is demonstrated using
three metrics: (1) the MAE of the spike occurrence probability, (2) a modified
accuracy index that weighs false negative forecasts more than false positives, and
(3) the Mathews correlation coefficient (MCC) that tests the correlation between
predictions and observations. The modified Hawkes model especially outperforms
the other candidate models as the length of the forecasting horizon increases.
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