
Doctoral Dissertation

Parallel Processing Techniques
for Parameter Estimation in Bayesian methods

Hiroki Nishimoto

March 17, 2023

Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Hiroki Nishimoto

Thesis Committee:
Professor Yasuhiko Nakashima (Supervisor)
Professor Kazushi Ikeda (Co-supervisor)
Associate Professor Renyuan Zhang (Co-supervisor)
Assistant Professor Kan Yirong (Co-supervisor)
Assistant Professor Pham Hoai Luan (Co-supervisor)

Parallel Processing Techniques
for Parameter Estimation in Bayesian methods∗

Hiroki Nishimoto

Abstract

In recent years, the increase in computer data processing speeds and Internet com-
munication speeds has made it possible to store a vast amount of data on a wide variety
of events that occur in the world. This massive amount of data is called "big data,"
and the trend is to analyze it and use it for business and research. In addition to neural
networks, which have been attracting attention recently, there is another method of data
analysis that defines data as a mathematical model, sets the probability distribution
that generates the data, and infers the parameters of the probability distribution from
the data using an algorithm based on Bayesian inference. This method using Bayesian
inference is more explanatory than the one using neural networks and is still used as
the center of data analysis even now that neural networks are widely used.

The first part of this study consists of two parts. The first part is a study on speeding
up a method called clustering, which is one of the typical big data analysis methods that
classify data into groups by similarity and analyze their attributes from among various
properties and characteristics that exist in a mixture. Clustering is a method that attracts
attention as a means of analyzing user segments and recognizing brand positions, etc.
There are various methods to realize clustering, but the method using a mixed Gaussian
distribution that classifies data according to several Gaussian distributions is highly
accurate, and furthermore, the method that uses the concept of Bayesian inference for
the mixed Gaussian distribution has high accuracy. Clustering by Gaussian distribution
obtained by parameter estimation using the variational inference method, which uses the
concept of Bayesian inference and the parameters of the Gaussian distribution as random

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, March 17, 2023.

i

variables generated from the cointegration probability distribution, is characterized by
its difficulty in overlearning and its ability to automatically determine the number of
clusters. However, the variational inference method for mixed Gaussian distributions
is known to take a long time to converge, and the computation time is enormous in
proportion to the number of data. Therefore, as a first step in applying variational
mixed Gaussian distributions to large-scale data, the variational inference method for
Gaussian distributions in parallel using GPUs is implemented and evaluated, which is a
parallel computing architecture. The proposed method was about 192 times faster when
the number of data was about 1 million and about 107 times faster when the number of
clusters was 256 while maintaining the same accuracy as the CPU implementation of
the same algorithm. Compared to the method using the EM algorithm, it was also able
to prevent excessive shrinkage in the number of clusters while maintaining the same
speed and clustering score.

The second part is concerned with the design and evaluation of hardware to speed
up parameter estimation in sequential Monte Carlo methods. The variational inference
method described above is a powerful parameter estimation technique. However, it has
a narrow range of applicability depending on the model and probability distribution
used. There are only a few models, such as variational mixed Gaussian distributions, for
which calculation algorithms have been established. Furthermore, complex models are
difficult to implement. Instead, parameter estimation methods that use random number
generators, such as Markov chain Monte Carlo methods, are used. The sequential
Monte Carlo method generates many groups of probability distributions called particles.
Then, random numbers are generated from each group, the likelihood of the data is
calculated, and those with high likelihood are copied, and those with low likelihood
are rejected, which is suitable for parallelization at the hardware level. This research
is concerned with the hardware implementation of the process Resampling step, which
is the bottleneck for speeding up parameter estimation using sequential Monte Carlo
methods. In order to improve the efficiency of hardware dedicated to metropolis
resampling, metropolis resampling is optimized for integer execution and evaluated
the algorithm and hardware for 32, 16, and 8-bit data widths. The proposed method
maintains the same resampling performance as the common 32-bit single-precision
floating-point method in 8-bit execution. In the hardware evaluation, it reduces resource
usage in any data width implementation. In the main modules such as the coefficient

ii

generator and the execution of the Metropolis test, the LUT In the main modules,
such as the coefficient generator and the Metropolis test, the system achieved a 31%
reduction in 32-bit, 57% in 16-bit, and 64% in 8-bit, as well as up to 3.0x improvement
in throughput and up to 75% reduction in memory usage at other bottlenecks.

Keywords:

Parallel Computing, Architecture, Approximate, Gaussian Mixture Models, Sequential
Monte Carlo

iii

Contents

List of Figures vii

List of Tables ix

I. GPGPU-oriented Optimization
of Variational Gaussian Mixture Models 1

1. Introduction 2
1.1. Motivation . 2
1.2. Challenges and Contribution . 3
1.3. Composition of Part I . 3

2. Background Theory and Related Works 4
2.1. Structural Analysis of GPGPU . 4
2.2. Fundamentals of Gaussian Mixture Models 5
2.3. Variational Inference for GMM . 7
2.4. Related Works of Gaussian Mixture Models on GPUs and FPGAs . . 11

3. Proposed GPU Implementation of Variational Gaussian Mixture Models 12
3.1. Optimizing Memory Allocation . 13
3.2. Optimizing Number of Threads . 13
3.3. Changing Execution Order . 14
3.4. Details of each kernel . 14
3.5. Optimizing Data Transfer and CPU-GPGPU Co-operationscheme . . 21

iv

4. Evaluations and Results 23
4.1. Evaluation with Artificial Data . 24

4.1.1. Kernel processing time compared to CPU 24
4.1.2. Kernel processing time compared to OpenCL 24
4.1.3. Comparative experiments with varying parameters of the dataset 25

Varying number of data . 25
Varying number of cluster 28
Varying number of dimensions 28

4.1.4. Comparison with FPGA implementation 29
4.2. Evaluation with Practical Data . 32

5. Discussion 35

II. Resampling High Efficient Hardware
for Sequential Monte Carlo 38

6. Introduction 39
6.1. Motivation . 39
6.2. Challenges and Contribution . 40
6.3. Composition of Part II . 41

7. Background Theory and Related Works 42
7.1. Overview of Sequential Monte Carlo: SMC 42
7.2. Application of Sequential Monte Carlo 44
7.3. Problems of Sequential Monte Carlo 46
7.4. Related Works on Resamping and Its Speeding Up 46

8. Proposed Integer-Optimized Metropolis Resampling 50

9. Evaluations and Results 53
9.1. Evaluation Items . 53

9.1.1. Root Mean Square Error : 𝑅𝑀𝑆𝐸 53
9.1.2. Effective Sample Size : 𝐸𝑆𝑆 54

v

9.2. Evaluation as the Resampling Algorithm 54
9.2.1. Evaluation Overview . 55
9.2.2. Result . 56

9.3. Evaluation of Resampling Quality by Randomness 56
9.3.1. Evalution Overview . 57
9.3.2. Result . 58

9.4. Evaluation as a part of Sequential Monte Carlo Sampler 62
9.4.1. Evaluation Overview . 62
9.4.2. Result . 63

9.5. Evaluation of Hardware Efficiency 71
9.5.1. Implementation Details of each IP 72
9.5.2. Result . 76

10. Discussion 80

III. Conclusion 83

References 87

Publication List 99

vi

List of Figures

2.1. Architecture of GPUs. 5
2.2. Constitution of CUDA Kernel. 6
2.3. Example of a GMM. 7
2.4. Graphical models of Two types of GMMs. 8
2.5. (a) The clustering result of GMM using EM algorithm

(b) The clustering result of GMM using variational inference 11

3.1. Contiguous memory placement for data. 13
3.2. Overview of the GAUSS kernel . 17
3.3. Overview of the WLP and LR kernels. 18
3.4. Overview of the SR kernel . 20

4.1. Execution time and DB Score depend on the number of data. 27
4.2. Execution time and DB Score depending on the number of clusters. . 29
4.3. Execution time and DB Score depending on the number of dimensions. 30

7.1. The conceptual diagram of the SMC. 43
7.2. Breakdown of time in SMC in GPU implementation. 47
7.3. An example of the operation of the Simplified Random permutation

Generator. 49

9.1. Distributions of each input weight. 55
9.2. Comparison result of RMSE

when varying the number of particles from 210 to 220. 57
9.3. Comparison result of RMSE

when varying the number of Metropolis tests from 20 to 210. 58
9.4. Comparison result of RMSE when varying the number of particles

from 210 to 220 and using three types of RNGs 60

vii

9.5. Comparison result of RMSE when varying the number of Metropolis
tests from 20 to 210 and using three types of RNGs 61

9.6. Comparison result of RMSE when varying the number of particles
from 210 to 220 on SMC sampler . 64

9.7. Comparison result of RMSE when varying the number of particles
from 210 to 220 on SMC sampler (first ten trials) 65

9.8. Comparison result of ESS when varying the number of particles
from 210 to 220 on SMC sampler (first ten trials) 66

9.9. Comparison result of RMSE when varying the number of Metropolis
tests from 210 to 220 on SMC sampler 67

9.10. Comparison result of RMSE when varying the number of Metropolis
tests from 210 to 220 on SMC sampler (first ten trials) 68

9.11. Comparison result of ESS when varying the number of Metropolis tests
from 210 to 220 on SMC sampler (first ten trials) 69

9.12. Test design of integer-optimized Metropolis resampling architecture . 71
9.13. Detail of the Parallelized Metropolis Block: PMB. 74
9.14. Detail of the Random Permutation Generator: RPG. 76
9.15. Detail of the coefficients generator: U-Gen. 79

viii

List of Tables

3.1. Correspondence between the implemented kernel and the equations in
the variational-EM algorithm . 15

4.1. Evaluation environment . 23
4.2. Comparison of CUDA and CPU for the breakdown of execution time

for each kernel in one iteration . 25
4.3. Comparison of CUDA and OpenCL for the breakdown of execution

time for each kernel in one iteration 26
4.4. Evaluation items and their summary 26
4.5. Result of evaluation with varying the number of data 27
4.6. Result of evaluation with varying the number of clusters 28
4.7. Result of evaluation with varying the number of dimensions 29
4.8. Comparison results with FPGA implementation of GMM by EM algo-

rithm . 31
4.9. Outline of Practical Data . 32
4.10. Evaluation result with practical data sets 33

9.1. The evaluation parameters and its overview 56
9.2. Comparison result of the number of resampling run

when varying the number of particles 𝑃 from 210 to 220 66
9.3. Comparison result of the number of resampling run

when varying the number of Metropolis tests from 20 to 210 70
9.4. Variables are used in Metropolis Resampling Circuit 72
9.5. Bus Overview of Metropolis Resampling Circuit 73
9.6. The input/output ports of the PMB 75
9.7. The input/output ports of the RPG 77
9.8. The input/output ports of the U-Gen 77

ix

9.9. Comparison of resource usage for each data type and data width when
parallelism 𝑀 set to 16 and number of particles set to 220 78

x

Part I.

GPGPU-oriented Optimization of
Variational Gaussian Mixture Models

1

1. Introduction

1.1. Motivation

Machine learning technologies have been developed along with the performance im-
provement of CPUs and general-purpose graphic processing units (GPGPUs). Various
real-world applications, such as the analysis of big data, are well performed by using
advanced machine learning technologies, where clustering is one of the significant
tasks [1, 2].

Among all clustering algorithms, the Gaussian mixture model (GMM) is known as
a representative methodology for the wide use of data mining and computer vision. By
probability density modeling, GMMs perform near-nature applications well due to the
soft clustering mechanism. Patel et al. [3] have presented a more sensitive clustering
than K-means, also a clustering algorithm, in analyzing big data. For example, Reynold
et al. [4] have constructed a speaker verification system using GMM to model the
speaker’s voice from speech data and have succeeded in the NIST speaker recognition
evaluation. Also, Stauffer et al. [5] designed a system that uses probabilistic analyses
to determine whether each pixel belongs to a background, instead of belonging and not
belonging binary values in order to extract the background from a video stream using
GMM.

However, the parameters of a GMM are always estimated from the datum by a combi-
nation of many methods. As typical fashions of parameter estimation, the expectation-
maximization(EM) algorithm, Markov Chain Monte Carlo, and variational Bayesian
method are applied.

Parameter estimation is one of the critical issues to clustering quality. The variational
Bayesian Gaussian mixture model (VB-GMM), in which the parameters are estimated
through variational Bayesian theory [6], is widely considered a high-performance
candidate since it eliminates the over-fitting problem, and the appropriate number

2

of clusters can be determined in a single training run without cross-validation [5]
Unfortunately, VB-GMM leads to the computation explosion. Much more iterations are
necessary for convergence in contrast to most other parameter estimation fashions [7].
Thus, CPU-oriented implementations of VB-GMM are impractical in some application
fields due to poor speed. For conventional GMM schemes such as those by expectation-
maximization, the GPGPU implementations have been well investigated and proven
helpful to speed up [8].

1.2. Challenges and Contribution

In this work, the GPGPU implementations of VB-GMM are developed by structure-
oriented optimizations. Fitting the parallelism specification and memory structure of
GPGPU, the CPU-GPGPU co-operation, execution re-order, and memory optimization
propose the VB-GMM optimization strategy. An implementation flow with thirteen
stages is presented in detail. Following this implementation flow, the VB-GMM, which
is usually executed on the CPU, is migrated onto the GPGPU platform. Five types
of real-world clustering tasks are verified by the proposed GPGPU implementation
of VB-GMM, including MNIST, CIFAR10, PAMAP2, and Gas sensors for home
activity monitoring Data Set [9–12], The experimental results show that the VB-
GMM is successfully executed on GPGPU platforms and achieves 192 times speed-up
compared to CPU. Moreover, It succeeded in finding the correct number of clusters,
which is challenging to do with the EM algorithm.

1.3. Composition of Part I

The rest of this part is organized as follows. Section 2 provides an introduction to GMMs
and the variational Bayesian method for GMM, an introduction to GPU architecture, and
introduces previous work. The implementation of VB-GMM on GPGPU is explained
in Section 3. Section 4 presents some evaluation of our implementation and the
comparison of results with other implementations. The extended discussion is shown
in Section 5. The conclusion is presented in Part III, along with those from Part II.

3

2. Background Theory and Related Works

2.1. Structural Analysis of GPGPU

Graphics processing units (GPUs) were initially developed as computing processors
for generating and displaying 3D graphics. GPUs have massive homogeneous cores
and achieve high speed by distributing the operations to those cores. Due to the high
parallelism and processing capacity, the general-purpose utilization of GPUs leads
the trend in many fields of high-performance computing [13, 14]. In general, GPUs
perform well for executing single instruction multiple data (SIMD), in which a single
instruction is applied to multiple data simultaneously, and all operations are processed
in parallel, The key to speeding up processing lies in parallelizing the instructions.

The architecture of GPUs supporting NVIDIA’s CUDA [15] is briefly shown in Fig.
2.1. This GPU consists of a streaming multiprocessor (SM) lined up on a block, a
thread execution manager that controls the SM, and a video memory that stores the
data. This video memory is called device memory, as opposed to host memory, which
is managed by the CPU. The number of streaming multiprocessors (SMs) varies in the
model. The GPU used in this study, the NVIDIA GTX RTX3090, has 82 SMs [16]. As
mentioned earlier, each SM contains cores, shared memory, and registers, which are
small in capacity but fast in access. Parallel operations are performed using these many
cores and high-speed memory. The device memory is implemented with DRAM, which
is slower in access speed than the shared memory but has a large capacity. In parallel
operations using the GPU, data is moved among the host memory, device memory, and
processing cores. After the calculation, the data is stored in the device memory; and
then moved from the device memory to the main memory of the host device.

As shown in Fig. 2.2, the kernel of CUDA consists of Threads, which is the
smallest unit of instructions; Thread Block, which summarizes Thread; and Grid,
which summarizes Thread Blocks hierarchically. The user can arbitrarily change the

4

Figure 2.1.: Architecture of GPUs. The red arrows show the flow of data, and the black
arrows show the flow of instructions.

number of dimensions of the Thread Block, as shown in BlockDim.x and y in the
figure, as long as the limit is not exceeded. Within a thread block, 32 threads are
divided into a group called a warp; and in the SM, memory readings and operations are
performed in parallel in this warp. Since threads in the same warp are always executed
simultaneously, if even one thread is delayed by a conditional branch etc., the efficiency
of all threads in the warp is reduced. In addition, by accessing consecutive global
memory addresses within the same warp, a high-speed memory access called coalesce
access becomes feasible. Therefore, the efficiency of memory access and operations in
each warp is important for GPU acceleration [17].

2.2. Fundamentals of Gaussian Mixture Models

Gaussian Mixture Models: GMM is a probabilistic model for clustering as represented
by Eq. 2.1.

𝑝(𝑥 |𝜋, 𝜇, Σ) =
𝐾∑
𝑘=1

𝜋𝑘N(𝑥 |𝜇𝑘 , Σ𝑘). (2.1)

5

Figure 2.2.: Constitution of CUDA Kernel. The kernel of a GPU consists of threads,
blocks, which are collections of threads, and grids, which are collections
of blocks. The actual number of threads running on the SM is 32, which is
called the warp.

It is expressed by the sum of the number of clusters𝐾 Gaussian distributionN(𝑥 |𝜇𝑘 , Σ𝑘)
multiplied by each mixture weight 𝜋𝑘 . Figure 2.3 shows an example of GMM, where
the number of clusters and the dimension is 3 and 1, respectively.

In addition to clustering for data analysis, GMMs have been used in a variety of
applications. Reynold et al. [4] used GMMs to model the speaker’s voice from speech
data to construct a speaker-matching system, which was successfully evaluated in the
NIST speaker recognition evaluation. Toda et al. [18] have constructed a voice quality
transformation framework using GMMs. Stauffer et al. [5] designed a probabilistic
system for extracting background from video streams using GMMs, where each pixel
is assigned to a background rather than a binary value of belonging or not belonging.
Fujita et al. [19] used GMMs to model wireless location information for location
estimation using wireless LANs, reducing the amount of data to about 5 percent of that
of conventional methods and making the database lighter.

In recent years, more and more research has been combining GMM with Deep Neural
Networks (DNN). Shahin et al. [20] combined GMM and DNN to design an emotion
recognition model that is more robust to noise than existing methods. Koguchi et al. [21]
overcame the problem of GMM-based speech synthesis, where GMM performs well
in speech classification but poorly in speech synthesis, with a GMM-DNN composite
model in which the synthesis part is replaced by a DNN, achieving better-synthesized

6

Figure 2.3.: Example of a GMM. This GMM consists of 3 weights(𝜋) and 3 Gaussian
distributions, and it is the sum of the 3 Gaussian distributions multiplied
by 𝜋={0.2,0.5,0.3}.

speech than GMM alone and better initialization than DNN alone.

2.3. Variational Inference for GMM

For adapting the GMM to the dataset, three parameters 𝜋, 𝜇, and Σ must be optimized
for all 𝐾 clusters.

However, the optimal GMM parameters are difficult to compute directly from the
data. It is common to compute them using algorithms that maximize the likelihood by
iterative computation or It is common to compute them using an iterative algorithm to
maximize the likelihood of a sampling algorithm.

The variational Bayesian method is a general strategy for parameter estimation,
which is widely applied to various problems of function optimization. In this work,
this method is employed for the parameter estimation of GMM. Three distributions,
Dirichlet, Gaussian, and Wishart are introduced as prior distributions for 𝜋, 𝜇, and Λ,
respectively as shown in Eq.s (2.2, 2.3 ,2.4).

𝜋 ∼ 𝐷𝑖𝑟 (𝛼). (2.2)

𝜇 ∼ N(𝑚, (𝛽Λ)−1). (2.3)

7

Figure 2.4.: Graphical models of Two types of GMMs. The left one shows GMM with
the EM algorithm. The right one shows GMM with variational Inference.

Λ ∼ W(𝑊, 𝜈). (2.4)

where 𝛼 is a parameter of Dirichlet distribution that is a prior distribution of 𝜋; m and 𝛽
are parameters of a Gaussian distribution that is a prior distribution of 𝜇; and W and 𝜈
are parameters of a Wishart distribution that is a prior distribution of an inverse matrix
Λ of a covariance matrix Σ. Figure 2.4 shows graphical models of two types of GMMs
with EM algorithms and variational inference, respectively. Thus, VB-GMM is seen as
an extension of the parameters of EM-GMM as a probability distribution. Introducing
these prior distributions makes it possible to obtain the parameters of GMM by an
algorithm, which is called the variational-EM algorithm.

This algorithm consists of four steps, as shown below.

1. Initialization

In this step, mean 𝜇 and precision Λ by are initialized by data 𝑋 , and also
initialize mixture weight 𝜋 is initialized by the number of cluster 𝐾 , which are as
hyper-parameter Also, 𝛼, 𝛽,𝑊, 𝜈, 𝑚 are initialized by each hyper-parameter.

2. Variational E Step

In this step, 𝜋,Λ are estimated.

ln �̃� ≡ E[ln 𝜋𝑘] = 𝜓(𝛼𝑘) − 𝜓
(
𝐾∑
𝑖=1

(𝛼𝑖)
)
. (2.5)

8

ln Λ̃𝑘 ≡ E[ln |Λ𝑘 |]

=
𝐷∑
𝑑=1

𝜓

(
𝜈𝑘 + 1 − 𝑑

2

)
+ 𝐷 ln 2 + ln |𝑊𝑘 |.

(2.6)

Also, estimate correlation coefficient 𝜌 by current parameters.

𝜌𝑛𝑘 = 𝜋𝑘 |Λ𝑘 |1/2

× exp
{
− 𝐷

2𝛽𝑘
− 𝜈𝑘

2
(𝑥𝑛 − 𝜇𝑘)𝑇𝑊𝑘 (𝑥𝑘 − 𝜇𝑘)

}
.

(2.7)

At the end of the E step, normalize p to obtain the responsibility 𝑟 by Eq. 2.8.

𝑟𝑛𝑘 =
𝜌𝑛𝑘∑𝐾
𝑗=1 𝜌𝑛 𝑗

. (2.8)

3. Variational M Step

In this step, some parameters are computed by updated parameters in step 2.

𝑁𝑘 =
𝑁∑
𝑛=1

𝑟𝑛𝑘 . (2.9)

𝑥𝑘 =
1
𝑁𝑘

𝑁∑
𝑛=1

𝑟𝑛𝑘𝑥𝑛. (2.10)

𝑆𝑘 =
1
𝑁𝑘
𝑟𝑛𝑘 (𝑥𝑛 − 𝑥𝑘)(𝑥𝑛 − 𝑥𝑘)𝑇 . (2.11)

𝛼𝑘 = 𝛼0 + 𝑁𝑘 . (2.12)

𝛽𝑘 = 𝛽0 + 𝑁𝑘 . (2.13)

9

𝜈𝑘 = 𝜈0 + 𝑁𝑘 . (2.14)

𝑚𝑘 =
1
𝛽𝑘

(𝛽0𝑚0 + 𝑁𝑘𝑥𝑘). (2.15)

𝑊−1
𝑘 = 𝑊−1

0 + 𝑁𝑘𝑆𝑘 +
𝛽0𝑁𝑘
𝛽0 + 𝑁𝑘

(𝑥𝑘 − 𝑚0) (𝑥𝑘 − 𝑚0)𝑇 . (2.16)

4. Convergence check

Lower bound L𝑛𝑒𝑤 is computed by Eq. 2.17. Comparing L𝑛𝑒𝑤 with L𝑜𝑙𝑑 , if the
difference between them falls below a pre-defined value, the process terminates.
Otherwise, L𝑛𝑒𝑤 is substituted into L𝑜𝑙𝑑 and the process is returned to step 2.

L = −
𝑁∑
𝑛=1

𝐾∑
𝑘=1

(𝑒𝑟𝑛𝑘 × 𝑟𝑛𝑘)

−
𝐾∑
𝑘=1

(
𝜈𝑘 |𝑊𝑘 | +

𝜈𝑘𝐷 ln 2
2

−
𝐾∑
𝑘=1

ln Γ (𝜈𝑘)
)

−
(
ln Γ

(
𝐾∑
𝑘=1

𝛼𝑘

)
−

𝐾∑
𝑘=1

ln Γ (𝛼𝑘)
)

−
𝐷

∑𝐾
𝑘=1 ln 𝛽𝑘
2

. (2.17)

The above process can obtain parameters that fit the data of interest. The GMM
obtained by this algorithm optimizes the number of clusters 𝐾 , which indicates how
many Gaussian distributions the GMM is composed of. Unlike GMMs obtained by
maximum likelihood estimation with the EM algorithm, they are fitted without excessive
data decomposition.

Figure 2.5(a) shows data sampled from a GMM with 𝐾 clusters and two dimensions.
The hyperparameter, the number of clusters 𝐾 , is given as 5. The clustering result is
the GMM fitted by the maximum likelihood estimation using the EM algorithm. Figure
2.5(b) shows the result of clustering the same data with the same hyperparameter of
five for the number of clusters 𝐾 , fitted with the variational EM algorithm. The GMM
clustering obtained by parameter estimation with the EM algorithm in Figure2.5(a) over-
decomposes the data, whereas the clustering with the GMM fitted with the variational

10

(a) (b)

Figure 2.5.: (a) The clustering result of GMM using EM algorithm
(b) The clustering result of GMM using variational inference

EM algorithm in Figure2.5(a) over-decomposes the data. The clustering of GMMs
obtained by parameter estimation with the variational EM algorithm in Figure2.5(b)
shows that the data is divided into three clusters, which is the true number of clusters.

2.4. Related Works of Gaussian Mixture Models on
GPUs and FPGAs

For related research on speeding up GMM, Guo et al. [22] made the EM algorithm for
Gaussian mixture models suitable for pipeline processing in order to speed up execution
on CPU and FPGA. In addition, He et al. [23] implemented FPGA processing by
making the pipeline processing of [22] more efficient. Kumar et al. [8] proposed an
EM algorithm model for GMM using a GPGPU. However, both are implementations
of maximum likelihood estimation using the EM algorithm, and the speeding up of
VB-GMM has not been realized.

11

3. Proposed GPU Implementation of
Variational Gaussian Mixture Models

This implementation handles only diagonal components, that is, variances, instead of
covariances, in order to reduce the amount of computation of matrix calculations in the
same way as [23] and [8]. The main kernel implementation is described below. Let
𝑁, 𝐾, 𝐷 be the number of data, the number of clusters, and the number of dimensions,
respectively. In this section, the 𝑂 (𝑥) means the order of computational complexity is
𝑥.

In VB-GMM, the variational-EM algorithm described in section is iterated, so once
data is transferred to the GPU, there is no need to communicate with the host memory.
Therefore, communication with the host is not the most worrisome aspect. This problem
can be rephrased as “how to reduce the number of accesses using shared memory” and
“how to achieve the coalesce-access for the minimum required access”. The shared
memory is a memory structure that threads can share in a block, and its access latency
is smaller than that of global memory. Therefore, if a specific value is to be used
repeatedly in a single kernel, it is faster to copy it from the global memory to the shared
memory.

Also, in programming for CUDA-enabled GPU architectures, a critical performance
consideration is coalescing accesses to global memory. The loading and storing of
global memory by the warp threads are combined into as few transactions as possible
by the device. Processing that can be SIMD parallelized according to the number of
cores can ideally be parallelized to increase speed. However, processing that competes
for access, such as computing the sum of arrays, i.e., Eq. (2.9) and (2.17) cannot be
SIMD parallelized in VB-GMM.

12

Figure 3.1.: (a) Contiguous with respect to the number of data 𝑁 matrix. (b) Not
contiguous with respect to the number of data 𝑁 matrix. (c) The difference
in physical memory layout between (a) and (b)

3.1. Optimizing Memory Allocation

In CUDA programming, paying attention to the memory layout and making it easy for
coalescing access is essential. Variational inference in VB-GMM uses many arrays to
perform calculations, but care must be taken with arrays related to the number of data:
𝑁 .

In this case, care must be taken in calculating Eq.s (2.7, 2.9), etc. Particular attention
should be paid to Eq.s (2.9) and (2.17) since they are processes of sums of elements
with 𝑁 of data. Therefore, in this implementation, the data is arranged so that the data
size 𝑁 is contiguous with the rows of the array. Figure 3.1 shows the difference in
physical memory layout between contiguous arrays concerning the number of data 𝑁
and those that are not, using an array size of 𝑁 × 𝐾 .

3.2. Optimizing Number of Threads

In CUDA programming, the key to determining the number of threads per block is
to maximize the coalescing to access the global memory and the memory allocation
described above and select the number of threads that can effectively use the shared

13

memory in each block.
In this study, the optimal number of threads per block (𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚𝑥 , 𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚𝑦)

and blocks (𝐺𝑟𝑖𝑑𝐷𝑖𝑚𝑥 , 𝐺𝑟𝑖𝑑𝐷𝑖𝑚𝑦) are set for each kernel. To enable coalescing,
𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚𝑥 is set so that the data to be accessed is accessed at warp size in the
continuous address direction, and 𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚𝑦, 𝐺𝑟𝑖𝑑𝐷𝑖𝑚𝑥 , and 𝐺𝑟𝑖𝑑𝐷𝑖𝑚𝑦 are set
according to various parameters such as the number of data and the number of clusters.
𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚𝑦 is set to a value close to even, which does not exceed the maximum
number of threads inherent to each GPU and makes little difference in the processing
time of each block, and 𝐺𝑟𝑖𝑑𝐷𝑖𝑚𝑥 and 𝐺𝑟𝑖𝑑𝐷𝑖𝑚𝑦 are set accordingly to the data to be
calculated.

3.3. Changing Execution Order

In this implementation, E step shown in section 2 is calculated in logarithm to prevent
overflow, etc. Therefore, when moving from the E step to the M step, processes such
as summation are difficult in logarithms and must be exponentiated. When moving
from the E step to the M step, all the values needed for the calculation are already in
place. L = −∑𝑁

𝑛=1
∑𝐾
𝑘=1 (𝑒𝑟𝑛𝑘 × 𝑟𝑛𝑘) in Eq. (2.17) of Convergence Check shown in

section 2. Therefore, the calculation of this value and the exponentiation process can
be combined to improve efficiency.

3.4. Details of each kernel

The above decomposes and implements the parameter estimation of VB-GMM into 13
kernels. Tab. 3.1 shows the correspondence between the implemented kernel and the
equations in the variational-EM algorithm.

1. Estimation of WEIGHT

This kernel calculates the value of the array WEIGHT of size K according to Eq.
(2.5). Since the computational cost of this kernel is not high, it is computed on
the CPU.

2. Estimation of LAMBDA

14

Table 3.1.: Correspondence between the implemented kernel and the equations in the
variational-EM algorithm

Kernel Corresponding equation
WEIGHT Eq. (2.5)
LAMBDA Eq. (2.6)
GAUSS 𝐷

2𝛽𝑘 −
𝜈𝑘
2 (𝑥𝑛 − 𝜇𝑘)𝑇𝑊𝑘 (𝑥𝑘 − 𝜇𝑘). in Eq. (2.7)

WLP Eq. (2.7)
LR Eq. (2.8)
SR

∑𝑁
𝑛=1

∑𝐾
𝑘=1 (𝑒𝑟𝑛𝑘 × 𝑟𝑛𝑘) . in Eq. (2.17)

NEC Eq. (2.9)
MEC Eq. (2.10)
CEC Eq. (2.11)
PRI Eq.s (2.12, 2.13, 2.14)

MEAN Eq. (2.15)
PC Eq. (2.16)
LB Eq. (2.17)

Estimation of the array LAMBDA is shown in Eq. (2.6). This kernel’s order of
computation is also relatively small; it is straightforwardly computed in parallel
since each element is independent.

3. Estimation of log Gaussian probability: GAUSS

The purpose of the GAUSS kernel is to compute the 𝑁 × 𝐾 array GAUSS
computed in 𝐷

2𝛽𝑘 −
𝜈𝑘
2 (𝑥𝑛−𝜇𝑘)𝑇𝑊𝑘 (𝑥𝑘−𝜇𝑘). This equation can be computationally

transformed as shown in Eq. (3.1).

𝐷

2𝛽𝑘
− 𝜈𝑘

2
(𝑥𝑛 − 𝜇𝑘)𝑇𝑊𝑘 (𝑥𝑘 − 𝜇𝑘)

= − 𝐷

2𝛽𝑘
− 𝜈𝑘

2

(
𝐷∑
𝑑=1

(𝜇 ◦ 𝜇 ◦𝑊) (𝑘,𝑑)

−2𝑥(𝜇 ◦𝑊)𝑇 + 𝑥 ◦ 𝑥𝑊𝑇

)
. (3.1)

15

In this kernel, 𝑀1 =
∑𝐷
𝑑=1 (𝜇 ◦ 𝜇 ◦𝑊) (𝑘,𝑑) , 𝑀2 = 𝑥(𝜇 ◦𝑊)𝑇 , and 𝑀3 = 𝑥 ◦ 𝑥𝑊𝑇

are calculated in parallel, and after each calculation, − 𝐷
2𝛽𝑘 −

𝜈𝑘
2 (𝑀1 − 𝑀2 + 𝑀3) is

calculated. The 𝑎 ◦𝑏 is used in the computation of M1, M2, and M3 representing
the Hadamard product, which is the computation of multiplying the elements of
each matrix by each other and can be processed in SIMD. Therefore, the process
of multiplying the elements is performed for each thread to speed up the process.
For the matrix product, the cublasSgemm from cuBLAS, a numerical computing
library of CUDA, is used. The 𝑥 ◦ 𝑥 used in the calculation of M3 is fixed when
the data is given and is stored so that it does not need to be recomputed once.
Finally, compute the Eq. (3.2) on the thread with row thread ID 𝑛 and column
thread ID 𝑘 tuned for coalesce accessibility.

G𝐴𝑈𝑆𝑆(𝑛,𝑘) = 𝑀1 (𝑘) − 2 × 𝑀2 (𝑛,𝑘) + 𝑀3 (𝑛,𝑘) . (3.2)

In this calculation, the computation shown in Eq. (3.2) is performed twice instead
of once per block, considering the trade-off between the function call and memory
access overhead. Figure 3.2 shows an overview of the calculation process for the
block with the id of 1. Since 𝑀1 uses the same value for each block, it is stored
in shared memory and then referenced.

4. Computation of weighted log probability: WLP

Using the GAUSS, LAMBDA is calculated on the GPGPU, and the WEIGHT is
calculated on the CPU and transferred to calculate the weighted log probability:
WLP. This kernel is computed together with the next kernel, LR, to reduce
overhead. The computation of array WLP is shown in Eq. (3.3).

W𝐿𝑃(𝑛,𝑘) = W𝐸𝐼𝐺𝐻𝑇 𝑘 +
L𝐴𝑀𝐵𝐷𝐴𝑘

2
+ G𝐴𝑈𝑆𝑆(𝑛,𝑘) . (3.3)

5. Estimation of log responsibility: LR

Normalize the WLP to get array responsibility: LR in Eq. (3.4) to update
parameters in the Variational M step.

L𝑅𝑘 = W𝐿𝑃𝑘 −
𝐾∑
𝑖=1

(W𝐿𝑃𝑖). (3.4)

16

Figure 3.2.: Overview of the GAUSS kernel for the block with the id of 1. M1, M2,
and M3 represent the data stored in the global memory. Block 𝑏1 fetches
the data and executes Eq. (3.2) with 𝐵𝑛 ×𝐾 threads according to the value
𝐵𝑛 set based on the coalescing. The part indicated by "shared memory"
indicates the data copied to the shared memory on the block.

Here, The method called 𝑙𝑜𝑔𝑠𝑢𝑚𝑒𝑥𝑝 is used, represented in Eq. (3.5) to prevent
overflow and underflow.

log

(
𝑁∑
𝑖=1

exp(𝑥𝑖)
)

= log

{
exp(𝑥𝑚𝑎𝑥)

𝑁∑
𝑖=1

exp(𝑥𝑖 − 𝑥𝑚𝑎𝑥)
}

= log

{
𝑁∑
𝑖=1

exp(𝑥𝑖 − 𝑥𝑚𝑎𝑥) + 𝑥𝑚𝑎𝑥

}
. (3.5)

In this algorithm, each thread cannot complete the process independently because∑𝑁
𝑖=1 exp(𝑥𝑖 − 𝑥𝑚𝑎𝑥) is obtained after finding the maximum value in the column

direction of WLP. Also, since this operation refers to the same value many times,
it can be processed faster by making effective use of shared memory.

a) Compute WLP in each thread using Eq. (3.3), and store it in shared memory.

17

Figure 3.3.: Overview of the WLP and LR kernels for the block whose id is 1. GAUSS,
WEIGHT, and LAMBDA represent the data stored in global memory.
Block 𝑏1 fetches the data according to the value 𝐵𝑛 set based on the
coalescing and executes Eq. (3.3,3.4) with 𝐵𝑛 × 𝐾 threads.

b) If the id of the threads in the column is 0, it will calculate
∑𝐾
𝑘=1 exp(W𝐿𝑃𝑘−

W𝐿𝑃𝑚𝑎𝑥) and store it in shared memory. Otherwise, it will wait for those
threads to finish their calculations.

c) Compute LR in each thread using Eq. (3.4), and store it in global memory.

In this kernel, the computation shown above is performed twice instead of once
per block, considering the trade-off between the function call and memory access
overhead the same as GAUSS. Figure 3.3 shows an overview of the calculation
process for the block with the id of 1.

6. Computation of Sum of Resp: SR

Calculate a value sum resp: SR, which is represented by Eq. (3.6), to calculate

18

the lower bound later.

S𝑅 = −
𝑁∑
𝑛=1

𝐾∑
𝑘=1

(𝑒𝐿𝑅𝑛𝑘 × 𝐿𝑅𝑛𝑘). (3.6)

In the Variational M step, exponentiated values of LR are needed. But the
calculation of lower bound needs, which is the next step of the Variational M
step, needs the current LR value. Thus, SR is calculated before the Variational M
step. As mentioned above, the process of finding the sum cannot be parallelized
straightforwardly. This kernel was implemented as shown below, referring to
Harris’s method for speeding up the calculation of the sum of sequences [24].

a) Reads the value of 𝐵𝑁 × 2, the number of coalescing accessible threads,
from global memory, calculates 𝑒𝐿𝑅𝑡𝑖𝑑 ,𝑛𝑘 , and stores it in global memory for
M step.

b) Calculate 𝑒𝐿𝑅(𝑡𝑖𝑑 ,𝑘) + 𝐿𝑅(𝑡𝑖𝑑 ,𝑘) and 𝑒𝐿𝑅(𝑡𝑖𝑑+𝐵𝑁 ,𝑘) + 𝐿𝑅(𝑡𝑖𝑑+𝐵𝑁 ,𝑘) and add them
together and store it in the shared memory in each thread.

c) Set 𝑆𝐼𝑍𝐸 = 𝐵𝑁 . A thread with id of 𝑆𝐼𝑍𝐸/2 or less reads the value of its
own 𝑡𝑖𝑑 and the value of 𝑡𝑖𝑑 + (𝑆𝐼𝑍𝐸/2) from shared memory, adds them
together and writes them to its own tid. Then, reduce 𝑆𝐼𝑍𝐸 by half. This
process is repeated until 𝑆𝐼𝑍𝐸 becomes 32.

d) To make the addition even faster, the shfl_down_sync, a function that can
refer to the same warp value without using shared memory, is used.

e) Once all the accumulated values in a block are obtained, they are stored in
a temporary array for addition in global memory.

f) Further, the sum of the values in the temporary array for addition is calcu-
lated in the same way to obtain the total value.

g) This process is done for all the rows to get the exponentiated LR and SR.

Figure 3.4 shows an overview of the calculation process for the block with the id
of 1.

7. Estimation of Num of Each Cluster: NEC

19

Figure 3.4.: Overview of the SR kernel for the block with the id of 1. LR and SUM
Array represent the data stored in the global memory. Block 𝑏1 fetches
the data and executes Eq. (3.6) with 𝐵𝑛 ×𝐾 threads according to the value
𝐵𝑛 set based on the coalescing. The part indicated by "shared memory"
indicates the data copied to the shared memory on the block.

This kernel computes values of array NEC according to Eq. (2.9). Since this
kernel is a summation process, as in SR, and cannot be parallelized in a straight-
forward way, The method employed to speed up the Harris array summation
calculation was also used in SR.

8. Estimation of Mean of each cluster: MEC

The computation of matrix MEC is represented by Eq. (2.10). This calculation
can be replaced by using data: X and LR and NEC in Eq. (3.7).

M𝐸𝐶 = L𝑅𝑇𝑋/(N𝐸𝐶). (3.7)

In this kernel, cublasSgemm is used the same as GAUSS.

20

9. Estimation of Covariance of Each Cluster: CEC

The computation of matrix CEC is represented by Eq. (2.11), and this calculation
can replace Eq. (3.8) if the GMM uses diagonal covariance.

𝑆 =
𝑟𝑥 ◦ 𝑥
𝑁𝑘

− 2
𝑥 ◦ 𝑟𝑥
𝑁𝑘

+ 𝑥 ◦ 𝑥. (3.8)

Therefore, L𝑅𝑇 (𝑋 ◦𝑋) and L𝑅𝑇𝑋 is able to be computed by using cublasSgemm
and compute them as Eq. (3.8).

10. Estimation of 𝛼, 𝛽, 𝜈: PRI

The calculation cost of these values is shown in Eq.s (2.12, 2.13, 2.14) are not
high. So, their calculations are conducted on the CPU.

11. Estimation of MEAN

The Computation of prior of mean: MEAN is represented in Eq. (2.15). MEAN
is also calculated on the CPU. Because the next calculation, which is for the
precision matrix, needs 𝑥𝑘 value.

12. Estimation of Precision Cholesky: PC

The computation of prior precisions is represented by Eq. (2.16). After com-
puting it, substitute its square root into the PC. It also computes the logarithmic
determinant of the PC for the computation of the lower bound and the next vari-
ational E-step. This kernel’s order of computation is also relatively small, and
since each element is independent, it is straightforwardly computed in parallel.

13. Computation of lower bound: LB

Lastly, the computation of lower bound functioned as the indicator computed
by Eq. (2.17). Sum resp and log determinant precision Cholesky have already
been calculated. The calculation cost of rest values is negligible. So, Their
combinations are conducted on the CPU.

3.5. Optimizing Data Transfer and CPU-GPGPU Co-operationscheme

Frequent communication between host memory and device memory is a big loss when
it comes to GPU acceleration. Therefore, in this implementation, communication

21

between host memory and device memory is basically performed only twice, before
the start of the variational-EM algorithm and after convergence. Exceptionally, data
necessary for WEIGHT, PRI, MEAN, and LB calculations are sent and received at
each step of the variational-EM algorithm. These are because the computation and
data transfer of the kernel is relatively very small when the amount of data is large, so
it can overlap with the computationally large kernel running on the GPU. Therefore,
this implementation cannot support the case where memory on the device cannot be
allocated.

22

4. Evaluations and Results

To demonstrate the superiority of the GPGPU implementation of VB-GMM, we con-
ducted an evaluation experiment comparing the CPU implementation of VB-GMM
with the GPGPU implementation of the EM algorithm. The experiment is divided into
two parts. One is an evaluation using artificial data, and the other is an experiment using
actual data. Here, to avoid confusion, our implementation is called VB-GPU; CPU
implementation of VB-GMM is VB-CPU; and GPU implementation of EM algorithm
GMM is EM-GPU. The evaluation environment is shown in Tab. 4.1.

Table 4.1.: Evaluation environment

VB-GPU EM-GPU VB-CPU
Algorithm Variational inference EM algorithm Variational inference

OS CentOS Linux release 7.9.2009 (Core)
CPU Intel(R) Core(TM) i9-10940X CPU @ 3.30GHz

GPGPU GeForce RTX3090 N/A
Memory 256GB
Compiler NVIDIA (R) Cuda compiler driver V11.2.142 gcc version 4.8.5

23

4.1. Evaluation with Artificial Data

4.1.1. Kernel processing time compared to CPU

For VB-GPU and VB-CPU, for each kernel shown in Section 3, the comparison of the
processing time, one time of the variational-EM algorithm to see which kernel is faster
and to confirm the validity of the experimental results, is conducted. In VB-GPU,
NVIDIA Visual Profiler, Chrono library [25], and CUDA Runtime API are used to get
percentages. In VB-CPU, C standard time function is used. For the kernels running in
parallel on the GPU and CPU in Section 3.5, the two are described together, and the
kernel running on the GPU is taken as its execution time.

In this evaluation, Artificially created data with 32, 16, and 1e+06 clusters, dimen-
sions, and data, respectively, were used, and ran the variational-EM algorithm ten times,
measured the execution time of each kernel, and divided by 10 to calculate the execution
time per run for each kernel. Table 4.2 shows a comparison of the breakdown of the
execution time of one variational-EM algorithm for the two implementations. From
Tab. 4.2, kernels account for most of the execution time in the CPU implementation
has been greatly accelerated, and speedup has been achieved.

4.1.2. Kernel processing time compared to OpenCL

CUDA is one of the most useful programming models for GPGPU. However, its porta-
bility is low. Therefore, in addition to comparing the kernels of each CPU, an additional
OpenCL implementation of the kernel that had a significant parallelization is created
for effect in the aforementioned experiment and compared to this implementation.

Data placement and kernel structure were basically the same as in the CUDA imple-
mentation. The data used for verification was the same as that used for comparing kernel
time with the CPU. In the OpenCL implementation, the matrix product is the matrix
product function of clBLAS [26], the arithmetic library for OpenCL, clblasSgemm.
Table 4.3 shows a comparison of CUDA and OpenCL for the breakdown of execution
time for each kernel in one iteration. From Tab. 4.3, the execution speed of CUDA is
fast for many major kernels is indicated. Also, all major kernels are significantly faster
than the CPU, even in implementations using OpenCL.

24

Table 4.2.: Comparison of CUDA and CPU for the breakdown of execution time for
each kernel in one iteration

CPU [ms] (t1) GPU [ms] (t2) Speed-Up t1/t2
WEIGHT 0.0059

2.1938 328.39
GAUSS 720.4222
LAMBDA 0.0381 0.0278 1.37
WLP+LR 982.9521 1.3113 749.60
SR 773.6876 7.8857 98.11
NEC 58.7554 7.4401 7.90
MEC 108.8799

0.4742 229.59
PRI 0.0016
CEC 128.9425

0.9323 138.31
MEAN 0.0055
PC 0.0151 0.0213 0.71
LB 0.1013 0.0931 1.09

4.1.3. Comparative experiments with varying parameters of the
dataset

These evaluations use data sampled by Gaussian mixture models whose parameters
were set intentionally. This experiment consists of three experiments, each of which
changes the number of data 𝑁 , the number of clusters to sample 𝐾 , and the number
of dimensions 𝐷. The main evaluation items are execution time to evaluate execution
speed and the Davis-Bouldin Score (DB Score) to evaluate the quality of clustering.
All evaluation items and their contents are shown in Tab. 4.4.

Varying number of data

The number of dimensions and the number of clusters is fixed at 16 and 32, respectively.
The number of data is varied from 1e+03 to 1e+07. The experimental results are shown
in Tab. 4.5, and the extracted time and DB score are shown in Fig. 4.1.

Figure 4.1 indicates that the execution time of the CPU implementation increases as
the number of data increases, while the execution speed of the two GPU implemen-

25

Table 4.3.: Comparison of CUDA and OpenCL for the breakdown of execution time
for each kernel in one iteration

OpenCL [ms] (t1) CUDA [ms] (t2) Speed-Up t1/t2
GAUSS 18.44 2.19 8.78
WLP+LR 0.54 1.31 0.41
SR 36.98 7.88 4.69
NEC 36.23 7.44 4.87
MEC 4.14 0.4742 8.73
CEC 5.79 0.9323 6.22

Table 4.4.: Evaluation items and their summary
Evaluation item Summary
Time The time it took for each implementation to converge. Unit: millisecond
DB score Davis-Bouldin Score: DB score [27] signifies the average similarity between clus-

ters, where the similarity is a measure that compares the distance between clusters
with the size of the clusters themselves. Zero is the lowest possible score. Values
closer to zero indicate a better partition. DB indicators for clustering results were
calculated using scikit-learn’s metrics library. [28].

Conv. Cluster. The number of clusters at the time of convergence; one cluster was counted when
the GMM weight exceeded the threshold.

Log Likelihood Goodness of fit to the data. If it is excessively high, there is a high possibility of
overtraining.

Conv. Iter. The number of iterations each algorithm took to converge.

tations, VB-GPU and EM-GPU, remains flat until the number of data exceeds 1e+06.
It can also be seen that VB-CPU and VB-GPU using variational inference have bet-
ter DB scores than implementations using the EM algorithm. Also, Table 4.5 shows
that compared to the implementation using EM-algorithm, both implementations using
variational inference are closer to the true number of clusters of 32 at convergence.
This means that the VB-GPU property of being able to find the number of clusters,
introduced in Section 1.1, is reflected. When the number of data was 1e+07, VB-GPU
successfully achieved 192 times speed-up compared to VB-CPU.

From Fig. 4.1 and Tab. 4.5, we can see that VB-GPU and VB-CPU use the same
computation algorithm, and the results are basically the same, but when the data size

26

Table 4.5.: Result of evaluation with varying the number of data

Number of Data
Time[ms] DB Score Conv. Cluster. Log Likelihood Conv. Iter.

VG VC EG VG VC EG VG VC EG VG VC EG VG VC EG
1e+03 545 31 534 0.39 0.39 0.77 30 30 63 6.9 6.9 57.3 8 6 17
1e+04 554 263 596 0.26 0.26 0.98 31 31 59 21.5 23.9 47.2 8 7 28
1e+05 597 3189 553 0.25 0.25 0.53 31 31 62 36.3 39.0 53.7 8 7 6
1e+06 885 40264 1244 0.56 0.56 1.19 31 31 64 41.7 46.8 55.3 9 8 29
1e+07 5037 970074 3436 0.90 1.33 3.08 30 31 61 42.3 42.3 49.9 32 31 6

Figure 4.1.: Execution time and DB Score depend on the number of data.
(The number of clusters=32, The number of dimensions=16)

is 1e+07, there is a big difference between the two implementations. This is due to
missing information when calculating the product of matrices in the GAUSS, MEC, and
CEC kernels and when calculating the sum in the SR and NEC kernels. In particular,
the SR and NEC kernels are prone to missing information because the GPU repeats the
process of adding two values, which tends to cause differences in the absolute values of
the values, while the CPU implements the process of adding the values in order from
the front.

27

Table 4.6.: Result of evaluation with varying the number of clusters

Number of Cluster
Time[ms] DB Score Conv. Cluster. Log Likelihood Conv. Iter.

VG VC EG VG VC EG VG VC EG VG VC EG VG VC EG
4 699 2383 725 0.82 0.82 0.82 8 8 8 4.7 12.9 34.6 3 2 4
8 795 16105 757 0.41 0.41 0.43 7 7 16 3.5 33.8 44.4 17 18 6

16 815 23817 799 0.45 0.45 0.45 15 19 29 43.8 34.1 51.8 13 10 8
32 865 40312 1192 0.56 0.56 1.05 31 31 63 41.7 46.8 55.2 9 8 26
64 1099 85645 983 0.40 0.40 0.69 58 58 115 40.6 40.6 52.8 10 9 8

128 1333 143286 1264 0.80 0.80 0.73 107 107 219 37.6 37.6 50.7 8 7 9

Varying number of cluster

The number of dimensions and the number of data was fixed at 16 and 1e+06, respec-
tively. The number of clusters varied from 4 to 128. The experimental results were
shown in Tab. 4.6, and the extracted time and DB score are shown in Fig. 4.2.

Figure 4.2 indicates that the execution time of the CPU implementation increases as
the number of clusters increases, while the execution speed of the two GPU implemen-
tations, VB-GPU and EM-GPU. It can also be seen that VB-CPU and VB-GPU using
variational inference have better DB scores than implementations using the EM algo-
rithm. Also, Table 4.6 shows that compared to the implementation using EM-algorithm,
both implementations using variational inference are closer to the true number of clus-
ters at convergence. This shows that the number of clusters, a property of variational
inference, can be obtained in the same way as in Section 4.1.3. When the cluster number
was 128, VB-GPU successfully executed and achieved 107 times speed-up compared
to VB-CPU.

Varying number of dimensions

The number of clusters and the number of data fixed to 32 and 1e+06. The number of
dimensions is varied from 4 to 128.

The experimental results are shown in Tab. 4.7, and the extracted time and DB
score are shown in Fig. 4.3. Figure 4.3 and Tab. 4.7 show that VB-GPU has the
same clustering capability as VB-CPU, regardless of the number of data, and can run
at the same speed as EM-GPU. It can also be seen that the Gaussian distributions
that make up the GMMs obtained by inference are close to the correct values when
implemented using variational inference. When the number of dimensions was 128,

28

Figure 4.2.: Execution time and DB Score depending on the number of clusters. (The
number of data=1e+06, The number of dimensions=32)

Table 4.7.: Result of evaluation with varying the number of dimensions

Number of dimensions
Time[ms] DB Score Conv. Cluster. Log Likelihood Conv. Iter.

VG VC EG VG VC EG VG VC EG VG VC EG VG VC EG
4 906 60639 823 0.36 0.36 0.25 29 29 45 8.1 8.1 10.2 19 19 15
8 860 44629 780 0.49 0.49 0.49 30 30 61 19.7 20.0 24.3 14 13 10

16 874 40190 1146 0.56 0.56 1.03 31 31 64 41.7 46.8 55.3 9 8 24
32 1070 57669 1062 0.46 0.46 0.77 29 29 56 83.9 87.2 105.0 7 6 8
64 1481 92933 1420 0.52 0.52 1.92 31 31 54 177.1 188.3 207.9 6 5 5

128 2333 163156 2822 0.95 0.95 3.18 23 23 56 260.4 260.3 355.1 5 4 31

VB-GPU successfully achieved 69 times speed-up compared to VB-CPU.

4.1.4. Comparison with FPGA implementation

This section shows the comparing evaluation with the FPGA model of EMGMM [23].
In this section, the FPGA implementation of expectation–maximization algorithm is
referred to as EM-FPGA, and the GPU implementation of the proposed implementation
of variational bayesian Gaussian mixture models is referred to as VB-GPU. Since the
number of Data that can be processed Per Second: 𝐷𝑃𝑆 is used as the evaluation value
in the previous EM-FPGA study, the number of data that can be processed per second is

29

Figure 4.3.: Execution time and DB Score depending on the number of dimensions.
(The number of data=1e+06, The number of clusters=32)

calculated and compared in this implementation as well. Equation 4.1 calculates 𝐷𝑃𝑆
values of VB-GPU. In Equ. 4.1, 𝑁 , 𝐿, 𝑇 represent the number of data, the number of
loops executed, and the execution time, respectively.

𝐷𝑃𝑆 =
𝑁 × 𝐿
𝑇

(4.1)

𝐷𝑃𝑆 values for EM-FPGA were those described in previous research paper [23]. The
evaluation data were sampled from GMMs following the number of dimensions 𝐷 and
the number of clusters 𝐾 described in the paper [23], and the number of data 𝑁 was
evaluated at 107 in addition to 106 described in the previous research paper.

Table 4.8 shows Comparison results with FPGA implementation of GMM by EM
algorithm. In Tab. 4.8, 𝑁, 𝐷, 𝐾 represents the number of data, the dimensions of data,
and the number of setting cluster size, respectively. 𝐷𝑃𝑆 and 𝑆𝑈 represent the number
of Data processed Per Second, Amount of performance improvement compared to
FPGA implementation, respectively.

Table 4.8 shows that when the number of data is 106, the performance of the pro-
posed method, VB-GPU, is lower than the EM-FPGA implementation in the previous
study when the number of dimensions and clusters is small, but when the number of
dimensions and clusters is large, the performance is more than four times higher. The

30

Table 4.8.: Comparison results with FPGA implementation of GMM by EM algorithm

EM-FPGA [23] VB-GPU

𝑁 106 106 107

𝐷 𝐾 𝐷𝑃𝑆 𝐷𝑃𝑆 𝑆𝑈 𝐷𝑃𝑆 𝑆𝑈

6 2 2.48E+08 1.11E+08 0.45x 4.71E+08 1.90x
6 4 2.48E+08 7.92E+07 0.32x 3.81E+08 1.54x
6 6 2.48E+08 6.45E+07 0.26x 3.10E+08 1.25x
16 8 9.15E+07 5.22E+07 0.57x 2.57E+08 2.81x
16 16 4.57E+07 3.27E+07 0.72x 1.68E+08 3.67x
16 32 2.28E+07 1.84E+07 0.81x 9.24E+07 4.05x
96 64 1.90E+06 8.76E+06 4.61x 3.99E+07 21.02x
96 128 9.50E+05 4.52E+06 4.76x 2.01E+07 21.16x
96 256 4.74E+05 2.33E+06 4.91x 1.02E+07 21.53x

number of data that can be processed per second is 4.91 times higher when the number
of dimensions and the number of clusters are 96 and 256, respectively.

Also, in the case of the number of data is 106, the proposed method, VB-GPU,
achieves better DPS than the previous study, EM-FPGA, for all the number of dimen-
sions and clusters evaluated, and when the number of dimensions is 96 and clusters is
256, the number of data that can be processed per second is 21.53 times higher.

31

4.2. Evaluation with Practical Data

These evaluations use open data. Table 4.9 shows an outline of the data. Evaluation
items took time to converge, and DB Score was the same as Section 4.1.3. For all
datasets used in this evaluation, dimensionality reduction was performed by principal
component analysis with whitening applied using scikit-learn as a preprocessing step,
and dimensionality reduction was performed to the smallest number of dimensions with
an explanatory variance ratio greater than 0.8. Alignment-accuracy was calculated as
in the [29] experiment, using a majority vote of members to align each cluster to a
single label and using that class.

Table 4.9.: Outline of Practical Data
𝑁 : Number of data, 𝐾 : Number of classes, 𝐷 : Number of dimensions

Name 𝑁 𝐾 𝐷 Overview
Original→ After PCA

MNIST [9] 60000 10 64→ 39 28 x 28 Handwritten digits.
CIFAR10 [10] 60000 10 64→ 26 32 x 32 color images in 10

classes.
PAMAP2 [11] 376417 13 52→ 6 Physical Activity Monitoring

dataset.
Gas sensors for home activ-
ity monitoring Data Set: GDS
[12]

919438 3 11→ 2 Recordings of a gas sensor ar-
ray composed of 8 MOX gas
sensors and a temperature and
humidity sensor.

1. MNIST
The MNIST database of handwritten digits has a training set of 60,000 examples
and a test set of 10,000 examples. It is a subset of a larger set available from
NIST. The digits have been size-normalized and centered in a fixed-size image.
Table 4.10 shows that the proposed method, VB-GPU, achieves better DB Scores
than EM-GPU when the number of dimensions is 32 or more. Also, it can
be confirmed that the number of clusters at convergence is reduced when the
dimensionality is greater than the default number of clusters, which is 64 or
more. In addition, VB-GPU achieved good Alignment-accuracies for any initial
number of clusters.

32

Table 4.10.: Evaluation result with practical data sets
Time[sec] Time ratio DB Score Conv. Cluster Log Likelihood Alignment Accuracy

Data Set Init Cluster VG EG VG/EG VG EG VG EG VG EG VG EG
MNIST 16 0.81 0.66 1.22 3.62 3.25 16 16 54.23 111.98 0.48 0.14

32 1.25 0.83 1.50 3.39 6.75 32 32 56.66 121.00 0.63 0.22
64 2.24 0.91 2.45 3.10 6.64 52 64 58.08 120.00 0.70 0.18

128 2.88 1.71 1.68 2.94 6.35 63 128 59.07 127.26 0.72 0.20
CIFAR10 16 1.04 0.98 1.06 5.31 4.35 16 16 -36.07 -31.73 0.23 0.20

32 1.27 1.12 1.14 4.81 4.06 28 32 -35.81 -30.95 0.26 0.24
64 1.82 1.30 1.40 4.75 3.80 38 64 -35.60 -30.06 0.28 0.27

128 3.19 1.66 1.93 4.15 3.25 41 128 -35.55 -29.27 0.28 0.30
PAMAP2 64 2.14 1.83 1.17 1.70 1.56 63 64 -5.06 63.58 0.69 0.67

128 3.26 2.80 1.16 1.75 1.60 127 128 -4.22 -0.78 0.71 0.70
256 6.78 4.17 1.63 1.65 1.56 253 256 -3.36 0.50 0.76 0.73
512 10.09 8.11 1.25 1.57 1.56 466 512 -2.85 1.51 0.79 0.77

1024 10.87 15.49 0.70 1.56 1.58 769 1024 -2.64 2.60 0.81 0.80
GDS 64 2.44 2.44 1.00 1.99 1.12 64 64 -1.30 0.42 0.50 0.47

128 4.73 3.71 1.27 2.63 1.11 128 128 -1.18 0.52 0.52 0.48
256 3.53 8.43 0.41 2.79 1.23 256 256 -1.27 0.97 0.51 0.48
512 10.75 N/A N/A 1.93 N/A 512 N/A -1.22 N/A 0.49 N/A

1024 22.33 31.45 0.71 2.30 1.13 1019 1024 -1.22 1.53 0.50 0.53

2. CIFAR10
The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes.

Value-based clustering of the pixels is applied to confirm if the ten classes could
be clustered. As shown in Tab. 4.10, VB-GPU successfully reduced the number
of clusters at convergence when the initial number of clusters was 32 or more in
this experiment. However, in all cases, the DB Score was found to be below that
of EM-GPU. Alignment-accuracies of VB-GPU and EM-GPU were comparable
at any initial number of clusters.

3. PAMAP2
The PAMAP2 (Physical Activity Monitoring) dataset contains data on 18 differ-
ent physical activities (such as walking, cycling, playing soccer, etc.), performed
by nine subjects wearing three inertial measurement units and a heart rate mon-
itor. Table 4.10 shows that VB-GPU reduces the number of converging clusters
when the number of set clusters is greater than 512, and the number of con-
verging clusters is 769 when the initial number of clusters is 1024. When the
initial number of clusters was 512 and 1024, the DB Score was the same as that
of EM-GPU, despite the reduction in the number of clusters. Also, when the

33

initial number of clusters was 1024, the execution speed was 1.42 times faster.
Alignment-accuracies of VB-GPU and EM-GPU were comparable at any initial
number of clusters.

4. Gas sensor for home activity monitoring Data Set
This dataset has recordings of a gas sensor array composed of eight MOX gas

sensors and a temperature and humidity sensor. This sensor array was exposed
to background home activity while subject to two different stimuli: wine and
banana. The responses to banana and wine stimuli were recorded by placing the
stimulus close to the sensors. We tried value-based clustering of the sensors to
see if the three states banana, wine, and background could be clustered. Table 4.9
shows that in this experiment, VB-GPU did not achieve dimensionality reduction
at any initial number of clusters, and DB Score was also high. Alignment-
accuracies of VB-GPU and EM-GPU were comparable at any initial number of
clusters.

34

5. Discussion

Firstly, we discuss the difference between VB-GPU and VB-CPU. Section 4.1.1 shows
that using the GPU, we can see that the bottleneck in the CPU implementation has
been greatly improved. These CPU bottlenecks include 𝑁 in the computational order,
indicating that GPUs are able to handle large amounts of data. This can also be able
to confirm in evaluation with varying the number of data where we can see that the
calculation time for VB-CPU increases as the amount of data increases, while for VB-
GPU, it remains flat until the amount of data exceeds a certain level, and only when
the amount of data exceeds 1e+07 does the calculation time increase. In addition, in
evaluation with varying the number of clusters, we confirmed that VB-CPU increases
the computation time as the number of clusters increases, but VB-GPU can suppress
it. In the experiments with varying the number of dimensions, execution time did not
correlate well with increasing dimensionality, and there was no significant difference
between VB-GPU and VB-CPU. This may be due to the fact that some kernels other
than GAUSS, which is the bottleneck, are not correlated with D.

Secondly, we will discuss the comparison with OpenCL. We will show that our
CUDA implementation is faster than a similar implementation in OpenCL and more
effective than using OpenCL in environments where CUDA is available. Also, all major
kernels are significantly faster than the CPU, even in implementations using OpenCL.
This shows that our implementation is effective even in environments where CUDA is
not available.

Thirdly, the discussion of comparison with FPGA implementation is based on the
result of Section 4.1.4. In this experiment, the proposed method is inferior to the
FPGA implementation of the EM-algorithm, a previous study, in terms of the number
of data processed per second, when the same number of data as in the previous study
is used, when the number of dimensions and clusters is small. However, when the
number of dimensions and clusters is large, the performance is about 4.7 times higher

35

than that of the previous study. In the runs with ten times the number of data used
in the evaluation in the previous study, the proposed method was superior in all the
validations measured, regardless of the number of dimensions and clusters, and achieved
21.5 times the performance when the number of dimensions and clusters were 96 and
256, respectively. This is thought to be because GPUs have high parallelism compared
to FPGAs, and the larger the data to be processed at one time, the more advantageous
they are. This suggests that the proposed method has an advantage over previous work
using FPGAs in terms of processing large data.

Finally, we discuss the difference between VB-GPU and EM-GPU. We can see that
in all experiments using artificial data in Section 4.1.3. VB-GPU achieves the same
execution time as EM-GPU, and VB-GPU achieves a better DB Score than EM-GPU.
Notably, in all experiments with arbitrary artificial data, the number of clusters at
convergence is closer to the true number of clusters in the data than EM-GPU. This is
a very important property in data analysis because it gives us an idea of what kind of
clusters the data has. It also achieves a smaller Log likelihood than EM-GPU while
achieving a good DB Score, indicating that it is able to perform good clustering while
avoiding over-fitting the data.

Next, the discussion in the comparison of the proposed method, VB-GPU, and the
previous study, EM-GPU, using practical data is presented. In experiments with the
MNIST dataset of handwritten character images, the VB-GPU achieved better DB
Scores than the EM-GPU at the number of initial clusters is larger than 16. It also
confirmed that when the dimensionality is large, the number of clusters at convergence
is successfully reduced. This indicates that the number of clusters in the VB-GMM has
been optimized, as described in Section 2.3.

Despite the small number of clusters at convergence, the DB Score, which indicates
the similarity between clusters, achieved good values, meaning that good clustering
results were obtained. Alignment Accuracy is also higher than that of EM-GPU, indi-
cating that the clustering is better than that of EM-GPU in the context of classifications
that also follow the labels of the original data. In terms of execution speed, EM-GPU
was faster in all cases.

In the clustering of CIFAR10, which is image data, similarly, when the initial number
of clusters is large, VB-GPU shows that it is able to optimize the number of clusters.
However, the DB Score was greater than that of EM-GPU. This indicates a high

36

degree of similarity between the classes at convergence, indicating that the clustering
results overly grouped the classes together. Alignment Accuracy showed comparable
performance in all cases. In terms of execution speed, EM-GPU was faster in all cases.

No significant difference in DB Score was found between the two implementations
in the clustering of the dataset PAMAP2, which links the values of sensors attached to
the body with Physical Activity. However, in this experiment, there were several cases
where VB-GPU was able to optimize the number of converging clusters, converging
to 466 clusters when the initial number of clusters was 512 and to 769 clusters when
the initial number of clusters was 1024. The convergence to a smaller number of
clusters while maintaining a similar DB Score indicates that better clustering is achieved
compared to EM-GPU. In terms of execution time, it was faster than EM-GPU when
the initial number of clusters was 1024.

In the GDS, a dataset that ties periodic sensor values to nearby objects, VB-GPU
was unable to optimize the number of clusters at any initial number of clusters. The
DB Score was also lower than that of the EM-GPU. This data set has 3 original classes
and 2 dimensions after PCA, and the differences in information between classes are
very small. It is thought that the optimization of the number of converging clusters
did not occur as a result of attempting to separate the data by this small difference. In
terms of execution time, the cluster was faster than EM-GPU when the initial number
of clusters was 256 and 1024. The trend suggests that EM-GPU is also faster when
the number of clusters is 512, which EM-GPU did not converge. As a summary of the
comparison using practical data, VB-GPU has the advantage of optimizing the number
of converging clusters when the number of initial clusters is large, and converges faster
than EM-GPUs when the number of initial clusters is large in clustering with relatively
large data such as PAMAP2 and GDS. In some cases, the clustering converged faster
than EM-GPUs when the initial number of clusters was large. From this, VB-GPU is
more effective than EM-GPU in clustering data where the actual number of clusters is
unknown and the number of data is relatively large.

37

Part II.

Resampling High Efficient Hardware
for Sequential Monte Carlo

38

6. Introduction

6.1. Motivation

The Bayesian method is one of the most popular methods for data analysis because it can
express uncertainty in parameter estimates and analyze data with complex structures in
a flexible model [30, 31]. Bayesian theory is expressed by Equ. 6.1.

𝑝(𝜃 |𝑦) = 𝑝(𝑦 |𝜃)𝑝(𝜃)
𝑝(𝑦) (6.1)

Where 𝑦 represents the observed data, 𝜃 represents the unobserved parameters of the
model, 𝑝(𝜃) is the prior probability of the parameter 𝜃, and 𝑝(𝑦 |𝜃) is the likelihood,
or likelihood, of 𝑦 given 𝜃, and the 𝑝(𝑦) is called as normalized constant or marginal
likelihood. Unlike neural networks, the entire model can be explained by the data and
the prior probabilities behind it, as shown in Equ. 6.1, so it is also attracting attention
as a machine learning method with a high explanation.

However, the computation involved in general Bayesian tasks such as estimation, pre-
diction, and model comparison using Bayesian methods is concentrated on integration
to compute 𝑝(𝑦), and the dimensionality is too large for data analysis such as the huge
amount of data that has become available due to recent improvements in data storage
and communication technology. Therefore, most of the interest in Bayesian methods
has focused on better approximate methods of inference in the form of Monte Carlo
estimation and variational approximation.

Sampling methods using Markov Chain Monte Carlo (MCMC) are mainly used for
sampling Bayesian inference problems because they can sample from the posterior
distribution in Bayesian modeling, regardless of dimension or complexity. However,
MCMC is too computationally intensive for practical use [32], and various improve-
ments have been made for use on large data sets.

39

Sequential Monte Carlo (SMC) is an improved MCMC method characterized by the
process of resampling, in which weights are calculated for each sampled value, and the
next sampling is performed according to the weights [33].

SMC is suitable for parallelization due to its structure, and various parallelization
implementations using multi-core CPUs, GPUs, FPGAs, etc., are being attempted to
increase speed. Among them, resampling, which is a feature of SMC, is known to be
a bottleneck because it is computationally expensive. Therefore, most SMC speed-up
and efficiency improvement research focus on how to make resampling more efficient.

6.2. Challenges and Contribution

In this study, the Optimization of the dedicated hardware for the resampling step,
which is one of the three steps in the sequential Monte Carlo method: sampling step,
importance calculation step, and resampling step, and whose processing time increases
in proportion to the number of particles. The specific optimization method is to optimize
the metropolis resampling algorithm used in the resampling step, which is suitable for
parallelization, from the currently used floating-point method to the integer-optimized
method.

The proposed optimization of Metropolis Resampling to run on integers achieves
the elimination of conversion and multiplication to the floating point in the random
number generation part within Metropolis Resampling and also makes it hardware
efficient by eliminating calculations in the floating-point in the Metropolis test. In
the evaluation experiments, the proposed method was evaluated for 8-bit, 16-bit, and
32-bit integers, considering hardware efficiency. In the evaluation of several algorithms
on CPUs, the proposed integer-optimized Metropolis resampling achieved resampling
quality equivalent to that of single-precision floating-point methods for 8-bit integers,
16-bit integers, and 32-bit integers as resampling alone. In addition, the Sequential
Monte Carlo Sampler, an algorithm using SMC, achieved the same performance as the
floating-point method when the number of particles is large.

In the evaluation of the hardware implementation, the proposed integer-optimized
Metropolis resampling reduced resource usage for all data width implementations
compared to previous studies using the single-precision floating-point. It achieved up to
3.0 times LUT usage improvement in critical modules such as coefficient generation and

40

Metropolis test execution improvements in key modules such as coefficient generation
and Metropolis test execution. LUT utilization reductions of 31% at 32 bits, 57% at 16
bits, and 64% at 8 bits were achieved in key modules such as coefficient generation and
Metropolis test execution, while other bottlenecks achieved up to 3.0 times throughput
improvement and up to 75% memory utilization reduction.

6.3. Composition of Part II

The rest of this paper is organized as follows. Section 7 provides an introduction to
SMC and introduces previous work. Section 8 presents the proposed integer-optimized
Metropolis Resampling algorithm and its application to hardware. Section 9 presents
some evaluation of the proposed algorithm for conforming validation of this algorithm.
The extended discussion is shown in Section 10. The conclusion is presented in Part
III, along with those from Part I.

41

7. Background Theory and Related
Works

7.1. Overview of Sequential Monte Carlo: SMC

Sequential Monte Carlo: SMC [33–35], is a class of algorithms for estimating the
posterior distribution of a state in a dynamic Bayesian model. This algorithm is a
type of approximate Bayesian method whose basic concept was presented in 1996 as
a Monte Carlo filter [34] or bootstrap filter [33], an iterative method that approximates
the posterior distribution using a set of weighted samples called particles.

The algorithm uses these particles to estimate posterior distribution in the procedure
described below.

1. Sampling:
The algorithm generates a set of particles by sampling from the posterior distri-
bution at the previous time step. The particles represent different possible states
of the system at the current time step and are used to approximate the posterior
distribution.

2. Importance Computation:
The algorithm assigns a weight to each particle based on its likelihood, given the
current observations. The weight reflects the relative importance of the particle
in approximating the posterior distribution.

3. Resampling:
The algorithm selects a new set of particles from the current set of particles
based on their weights. The resampling step is used to ensure that the new set
of particles more accurately represents the posterior distribution. It also helps to

42

Figure 7.1.: The conceptual diagram of the SMC.
SMC converges to distribution in line with the data by repeating the three
steps of Sampling, Importance Computation, and Resampling.

prevent the loss of diversity in the particle set, which can occur if a small number
of particles dominate the distribution.

After the resampling step, the algorithm returns to the sampling step and begins the
next iteration. The process is repeated until the desired level of accuracy is achieved or
the predetermined number of iterations have been completed. The conceptual diagram
of the SMC is shown in Fig. 7.1.

One of the main advantages of SMC is that it can handle high-dimensional state
spaces and complex non-linear models [33, 34]. Therefore, as the next section will
show, SMC is used in a wide range of fields, including many-object tracking, physics,
financial economics, and statistics, where nonlinearities and non-Gaussianities need to
be modeled.

43

7.2. Application of Sequential Monte Carlo

SMC is a beneficial technique in signal processing due to its robustness since there is
much noise in the input. Early studies have shown that Djuric et al. [36] took advantage
of SMC’s sequential importance-oriented nature in signal processing problems, which
are generally highly uncertain, and applied it to parameter estimation. For example,
there are many applications for time-period analysis as a fundamental task in signal
processing. [37–39]. In the equally essential task of radar analysis, Boers et al. [40]
showed that using SMC for the likelihood ratio, a signal detection method, is effective
for radar detection of stealth and dim objects. Decoding sparse signals is another
essential task. By using SMC-based models in the sparse signal decoding task, Yoo et
al. [41] achieved a lower error rate than existing methods. Take the audio signal, for
example; SMC has been used in many studies of speaker tracking [42–44] using speech
signals, which is one of the most typical signal-processing tasks. In a recent study, Liu
et al. [45] designed a two-layer particle filter to overcome the drawback of classical
particle filter-based methods: poor performance when measurements are disturbed by
noise. Also, Wang et al. [46] proposed a distributed review speaker estimation method
using an unscented particle filter [47], a type of Particle Filter, and data correlation in
noisy and reverberant environments, which has been difficult in the past, and showed
that multiple speakers could be distributed and tracked even in reverberant and noisy
environments.

In addition to basic signal processing, applied areas include motion tracking and
simultaneous localization and mapping (SLAM).

In motion-tracking, While MCMC was initially the mainstay of motion-tracking
applications, Blake et al. [48] introduced SMC, and various studies have since been
conducted on the use of SMC for motion tracking [49–53]. Recently, Zhang et al. [54]
combined existing convolution neural network: CNN-based models with SMC to make
them more robust than models using only CNNs [55].

SLAM is a technique used by robots and autonomous vehicles to build a map of an
unknown environment while simultaneously determining their own location within that
environment [56]. It involves the integration of sensory data, such as that obtained from
lasers, cameras, or inertial measurement units, with algorithms that estimate the robot’s
position and orientation relative to the environment. Many algorithms of mobile robot
SLAM (Simultaneous Localization and Mapping) have been researched at present,

44

however, the SLAM algorithm of mobile robots based on probability is often used in
the unknown environment [57].

The application of SMC to SLAM has been studied for a long time, and Fox et
al. [58] published their adaptation in 2001, surpassing the state-of-the-art method
at the time [59]. Subsequently, it was extended to the Rao-Blackwellised Particle
Filter [60,61], and it is still a typical application of SMC today. In SLAM, as in motion
tracking, methods combining deep neural networks have been attracting attention in
recent years. Karkus et al. [62] have achieved higher accuracy than existing methods
with a model combining SMC and DNN.

Many studies have been done as an alternative to Markov chain Monte Carlo, Chopin
[63] and Moral et al. [64] sampled the posterior distribution using SMC and showed
that it could be applied to a wide range of models. Moral [65] followed suit, presenting
a simple unifying framework that allows for extending both the SMC methodology
and its applicability to a wider range of models. The combined variational inference
method of Naesseth [66] et al. and Sequential Monte Carlo was used in the state-space
model. They demonstrated its usefulness in stochastic variation models of fusion data
and deep Markov models of cranial neural circuits. Hadian et al. [67] proposed a
hybrid model that combines a multi-objective particle swarm optimization algorithm
and sequential Monte Carlo simulations to find the optimal placement of electric vehicle
charging stations. Chen et al. [68] improved the particle filter algorithm and developed
a new particle swarm optimization particle filter algorithm with a mutation operator
that avoids local solutions. By applying this algorithm to noise reduction, they achieved
lower error rates and faster execution than previous studies.

Researchers have also been conducted in recent years to try to overcome the weak-
nesses of SMC. SMC had a problem with high-dimensional reasoning. However,
Naesseth et al. [69]used an improved version of Sequential Monte Carlo to achieve bet-
ter results than state-of-the-art methods for three tasks: Gaussian Model, Soil Carbon
Cycles, and Mixture Model, even for high-dimensional problems, which were origi-
nally considered weak. Dai et al. [70] discussed sequential Monte Carlo samplers and
their possible implementations, noting that despite their potential advantages, such as
the ability to perform sequential inference and take advantage of parallel processing
resources, their software is not as extensive as MCMC and is still underutilized in the
statistics field.

45

7.3. Problems of Sequential Monte Carlo

There are several potential limitations and challenges associated with using sequential
Monte Carlo (SMC) algorithms:

• Computational complexity:
SMC algorithms can be computationally intensive, particularly for high-dimensional
state spaces or complex models. The number of particles required to achieve a
desired level of accuracy increases with the dimensionality of the state space [71],
which can lead to longer run times and greater computational resources.

• Weight degeneracy:
The particles’ weight can degenerate, meaning that a small number of particles
dominate the distribution, while the rest have very low weights [72, 73]. This
can lead to a loss of diversity in the particle set and hinder the algorithm’s
performance.

• Model misspecification:
If the model used in the SMC algorithm is misspecified or lacks sufficient flexi-
bility, the algorithm may not be able to accurately estimate the posterior distri-
bution [74].

Overall, while SMC algorithms can be effective in many situations, it is important
to carefully consider their limitations and potential challenges when applying them to
real-world problems. These limitations frequently occur when the number of particles
is small, but increasing the number of particles increases the computational load, so
parallelization and other methods have been used to speed up the process.

Gustaf et al. [75] evaluated each step in the GPU implementation of SMC and found
that the resampling step accounts for most of it, as shown in Fig. 7.2. This means that
the bottleneck of SMC in parallel architectures is Resampling, and in order to make
SMC even faster, Resampling needs to be accelerated.

7.4. Related Works on Resamping and Its Speeding Up

As indicated in Section 7.4, the resampling step is a bottleneck in SMC, and many
studies have been on speeding up this step. Resampling is the process of generating

46

Figure 7.2.: Breakdown of time in SMC in GPU implementation [75].
The larger the number of particles, the greater the share of resampling in
the total processing time.

the next particle according to the importance of the particle, as shown in the bottom of
Fig. 7.1.

Various resampling algorithms have been developed, such as multinomial, residual,
stratified and systematic [76–80]. These resampling algorithms involve the normaliza-
tion of the weights, and the normalization requires the calculation of the cumulative
sum of the quantum weights.

For speeding up these algorithms, performance was improved by parallelizing the
cumulative sum of resampling and particle selection [81–83]. However, when particle
weights are expressed in the single-precision floating point, calculating cumulative
sums becomes difficult as the number of particles increases due to problems such as
overflow. Although double-precision floating-point can be used to handle an increase
in the number of particles, modern hardware is more specialized for single-precision
floating-point than double-precision floating-point, and single-precision is preferable
for production-scale algorithms.

Murray et al. [84] propose a GPU implementation of two new resampling algorithms
(Metropolis resampling and Rejection resampling) that can be easily parallelized in
hardware. The authors show that these alternative approaches are significantly faster
than the commonly used systematic resampling algorithms on GPUs. However, when
implemented on GPUs, these algorithms are prone to the warp divergence problem.

The algorithm of Metropolis resampling is shown in Alg. 1. As shown in Alg. 1, The
algorithm is based on the Metropolis method, which compares a randomly generated

47

Algorithm 1 Metropolis Resampling
1: for 𝑝𝑖 = 1 𝑡𝑜 𝑃 do
2: 𝑘 = 𝑝𝑖

3: for 𝑏𝑖 = 1 𝑡𝑜 𝐵 do
4: 𝑢 ∼ 𝑈 [0, 1]
5: 𝑗 ∼ 𝑈 [1, ..., 𝑁]
6: if 𝑢 < 𝑤 𝑗/𝑤𝑘 then
7: 𝑘 = 𝑗

8: end if
9: end for

10: 𝑎𝑝𝑖 = 𝑘

11: end for

value to a value calculated from the weights of the particle under verification and a
randomly selected particle to decide whether to adopt it or not. Hence, the weight
calculations are independent of each other, indicating that parallelization is ready.

Liu et al. implemented a highly efficient addressing model on FPGA [85] using
a Simplified Random Permutation Generator(SRPG) for Metropolis and Rejection
resampling and achieved higher execution speed than Murray et al. [84]. The SRPG,
had been developed by Liu et al., is a system in which indices from 0 to M-1 are
stored consecutively in 𝑙𝑜𝑔2𝑀-bit, and by shifting the number of values given by the
random number generator, M independent random indices can be obtained in one
random number generation. An example of the operation of the Simplified Random
permutation Generator when the number of parallel particles is M, and the number of
shifts obtained is two is shown in Fig. 7.3. However, this implementation requires
the use of off-chip memory when the number of particles grows to about 1 million, a
problem that severely limits FPGA performance.

Dülger et al. [86] developed Metropolis-C1 and Metropolis-C2, which are modified
versions of the Metropolis Resampling algorithm for GPUs, and proposed an algorithm
to prevent warp divergence in GPU implementations of Murray et al.’s algorithm, and
confirmed faster execution than the original Metropolis Resampling in GPU implemen-
tations. Chesser et al. [87] developed Megopolis resampling, a resampling algorithm

48

Figure 7.3.: An example of the operation of the Simplified Random permutation Gen-
erator. It receives M data, shifts it by the value obtained from the random
number generator multiplied by 𝑀𝑙𝑜𝑔2𝑃, and outputs it.

based on Metropolis resampling that prevents warp divergence and achieves faster ex-
ecution by using warp-forcing access. However, it is generally known that execution
on a GPU is less power efficient than execution on an FPGA, and many recent applica-
tions [88–91] have seen FPGAs achieve several times the power efficiency of GPUs. In
recent years, the increase in power consumption by computers and servers has become
an issue [92], and the ability to accurately execute large amounts of data on FPGAs is a
major advantage in light of the attention paid to high computational efficiency per unit
of power.

This research proposes solutions to the problems of low throughput and small mem-
ory faced by FPGAs in executing power-efficient metropolis resampling algorithms on
FPGAs: increasing throughput by using integers, increasing parallelism by reducing
resources, and reducing memory usage by reducing data width.

49

8. Proposed Integer-Optimized
Metropolis Resampling

In this section, the proposed method, optimization of metropolis resampling by inte-
gerization, is presented.

Hardware efficiency by quantization to integers is very effective for hardware and
power efficiency, and quantization to 8 bits is also used in the Tensor Processing
Units [93], a dedicated deep neural network inference chip used in Google’s data
centers. Hashemi et al. [94] evaluated various deep neural network inputs and network
parameters with varying bit precision of data width. The results showed that in most
cases, using low-precision data offers significant advantages in terms of power, energy
consumption, and design area at a slight reduction in network accuracy. Also, although
this is a deep neural network, Jacob et al. [95] trained a network using a quantization
scheme to integer data types and presented results that outperformed the floating-point
type in hardware efficiency and latency while maintaining accuracy comparable to
existing floating-point types.

It is common practice to improve power and area efficiency and latency by quantizing
floating-point data and reducing it to integer execution. Power, area efficiency, and
latency improvements can also be expected when applied to SMC.

Metropolis resampling is as shown in Alg.1. The integer optimization is performed
on the random number generation part in line four and the comparison part in line six.
First, about the processing in line six, division generally requires a large clock in CPUs
and is a cause of latency reduction even if the circuitry is used. Therefore, if conversion
to multiplication is possible, it is better to perform the conversion. In this case, the
processing in line six can be converted to the expression 8.1 by transition because 𝑤𝑘
and 𝑤 𝑗 are greater than or equal to 0 due to integer conversion.

50

Algorithm 2 The Generation Process of 0 to 1 floationg-point random value
1: 𝑢′ ∼ 𝑈 [0, ..., 2𝑁 − 1]
2: 𝑢 𝑓 = 𝑢′ // Conversion from integer to floating point representation
3: 𝑢 =

𝑢 𝑓

2𝑁−1

𝑢 <
𝑤 𝑗

𝑤𝑘

𝑢 × 𝑤𝑘 < 𝑤 𝑗 (8.1)

Next, the fourth line of processing is generated by the Alg.2 procedure when 𝑢 ∼
𝑈 [0, 1] in the case of 𝑁bit floating point.

Integers use the exponential part mantissa part, and unlike floating point, the value can
be doubled by shifting one bit to the left. In metropolis resampling with integerization,
the metropolis test for metropolis resampling can be transformed as Equ. 8.2.

𝑢′

2𝑁 − 1
× 𝑤𝑘 < 𝑤 𝑗

𝑢′ × 𝑤𝑘 < 𝑤 𝑗 × (2𝑁 − 1)
𝑢′ × 𝑤𝑘 < 𝑤 𝑗 × 2𝑁 − 𝑤 𝑗
𝑢′ × 𝑤𝑘 < (𝑤 𝑗 << 𝑁) − 𝑤 𝑗

𝑢′ × 𝑤𝑘 + 𝑤 𝑗 < (𝑤 𝑗 << 𝑁) (8.2)

Here, 2𝑁 bits value (𝑤 𝑗 << 𝑁), which is the value of 𝑁 bits integer 𝑤 𝑗 shifted left 𝑁
times, is equivalent to the concatenated value of 𝑁 bits 𝑤 𝑗 and 𝑁bit 0-filled value That
is, the 0 to 𝑁 − 1 bits of (𝑤 𝑗 << 𝑁) are zero, and given that Let [𝑛 : 𝑚] represent the
value cut out from the 𝑚-th bit to the 𝑁-th bit of the value, then (𝑤𝑘 ×𝑢′ +𝑤 𝑗) [2𝑁 − 1 :
𝑁] = (𝑤 𝑗 << 𝑁) [2𝑁 − 1 : 𝑁] and (𝑤𝑘 × 𝑢′ + 𝑤 𝑗) [𝑁 − 1 : 0] > 0, unless. The upper
𝑁 bits values of 2𝑁 bits, 𝑢′ × 𝑤𝑘 + 𝑤 𝑗 , and the 𝑁bit 𝑤 𝑗 values only need to compare as
Equ. 8.3.

(𝑢′ × 𝑤𝑘 + 𝑤 𝑗) [2𝑁 − 1 : 𝑁] < 𝑤 𝑗 (8.3)

51

Algorithm 3 Proposed integer-optimized metropolis resampling
1: for 𝑝𝑖 = 1 𝑡𝑜 𝑃 do
2: 𝑘 = 𝑝𝑖

3: for 𝑏𝑖 = 1 𝑡𝑜 𝐵 do
4: 𝑢′ ∼ 𝑈 [0, ..., 𝑁 − 1]
5: 𝑗 ∼ 𝑈 [1, ..., 𝑃]
6: if (𝑤𝑘 × 𝑢′ + 𝑤 𝑗) [2𝑁 − 1 : 𝑁] < 𝑤 𝑗 then
7: 𝑘 = 𝑗

8: end if
9: end for

10: 𝑎𝑖 = 𝑘

11: end for

The integer-optimized metropolis resampling described above is shown in Alg.3.
This optimization achieves the following two things.

• Elimination of input integer to floating point conversion costs

• Elimination of floating point operations to convert 0 to 1 in the random number
generator

52

9. Evaluations and Results

In this section, evaluations of the proposed method, which is the optimization of the
Metropolis resampling to integer, and their results and a brief explanation of items to
evaluate the performance of SMC are shown. Three evaluations were conducted: as a
resampling algorithm, a comparison of resampling quality using arbitrarily generated
weights with previous work is shown in Section 9.2; as an evaluation for use in
applications, a comparison of resampling performance in applications using the SMC
sampler with previous work is shown in Section 9.4; and as an evaluation of hardware
compatibility, a comparison of resource utilization when implemented in hardware with
previous work is shown in Section 9.5.

9.1. Evaluation Items

In this section, Two brief explanations of items to evaluate the performance of SMC
are shown.

9.1.1. Root Mean Square Error : 𝑅𝑀𝑆𝐸

Root Mean Square Error: 𝑅𝑀𝑆𝐸 , shown in Equ 9.1, was used as the resampling quality.
The 𝑅𝑀𝑆𝐸 is calculated by how many particles: 𝑝𝑖 with weight: 𝑤𝑖 are employed: 𝑜𝑖,
and its value takes a good value if more of the larger weights are adopted and fewer of
the smaller weights are adopted. The range of values is greater than or equal to 0, with
0 being the best value.

53

𝑅𝑀𝑆𝐸 =

√√√
1
𝑃

𝑃∑
𝑖=1

(
𝑜𝑖
𝑃

− 𝑤𝑖
𝑠𝑢𝑚(𝑤)

)2

𝑤𝑖 : The 𝑖−th weight

𝑜𝑖 : The number of adopted 𝑤𝑖
𝑃 : The number of particles (9.1)

9.1.2. Effective Sample Size : 𝐸𝑆𝑆

The effective sample size: 𝐸𝑆𝑆 is a measure of the number of effective samples in a
particle set used in the SMC method. It is a measure of the diversity of the particles and
indicates how well the particle set represents the distribution. The ESS is calculated as
follows:

1. Calculate the weights of the particles. The weights of the particles reflect the
importance of each particle in representing the distribution.

2. Normalize the weights so that they sum to 1. This step is necessary to ensure
that the weights can be interpreted as probabilities.

3. Calculate the 𝐸𝑆𝑆. 𝐸𝑆𝑆 is calculated by Equ. 9.2

𝐸𝑆𝑆 =
1∑𝑃

𝑖=1 𝑤
2
𝑖

(9.2)

The 𝐸𝑆𝑆 will be a value between 0 and 𝑃, where 𝑃 is the number of particles. A high
𝐸𝑆𝑆 indicates that the particle set is diverse and represents the distribution well, while
a low 𝐸𝑆𝑆 indicates that the particle set is not diverse and may not be representative of
the distribution.

9.2. Evaluation as the Resampling Algorithm

An evaluation of the resampling quality of the proposed method as a resampling
algorithm and its results are presented in this section.

54

Figure 9.1.: Distributions of each input weight.
(a) Input weights that follow a normal distribution
(b) Input weights that are biased toward lower weights
(c) Input weights that follow a uniform distribution

9.2.1. Evaluation Overview

Experiments were conducted by comparing the resampling quality of the proposed
and existing methods using three patterns of input weights: input weights that follow
a normal distribution, input weights that are biased toward lower weights, and input
weights that follow a uniform distribution.

The evaluation parameters were: the data type and data width were conventionally
used as single-precision floating-point; the data width of the proposed method was
32-bit, 16-bit, and 8-bit nonnegative integers; the number of particles : 𝑃 was 210 to
220 and the number of Metropolis tests within the Metropolis resampling algorithm :
𝐵 was 20 to 210. Table 9.1 summarizes the evaluation parameters.

The evaluation process is described below.

1. Generation of weights
Generate 𝑃 weights according to each distribution.

2. Resampling
Perform resampling on each implementation and verify how many 𝑝𝑖 have been
adopted 𝑜𝑖.

3. Calculate 𝑅𝑀𝑆𝐸
Calculate RMSE from 𝑜𝑖 obtained by resampling and 𝑤𝑖 based on equ. 9.1.

55

Table 9.1.: The evaluation parameters and its overview

Parameter Summary Range
Data Type Type and width of data used Floating point : 32bit

to evaluate the algorithm. Unsigned integer : {32, 16, 8} bit

𝑃

Total number of particles to be
resampled 𝑃 = 2𝑝𝑃 , 𝑝𝑃 = {10, ..., 20}

𝐵

The number of Metropolis
tests within the Metropolis re-
sampling algorithm: 𝑃 = 2𝑝𝐵 , 𝑝𝐵 = {0, ..., 10}

9.2.2. Result

Figure 9.2 shows results of varying the number of particles. The proposed integer-
optimized Metropolis resampling algorithm was archived to obtain equivalent 𝑅𝑀𝑆𝐸
to the single-precision floating-point on all setting numbers of particle size. This result
indicates that integer-optimized metropolis resampling can achieve the same quality as
single-precision floating-point runs, regardless of the quantum number and quantum
weight bias, for the 32-, 16-, and 8-bit runs that were verified.

Figure 9.3 shows results of varying the number of Metropolis tests within the
Metropolis resampling algorithm. The proposed integer-optimized Metropolis resam-
pling algorithm was archived to obtain equivalent 𝐸𝑆𝑆 to a single-precision floating-
point on all setting numbers of Metropolis test within the Metropolis resampling algo-
rithm. This result indicates that integer-optimized metropolis resampling can achieve
the same quality as single-precision floating-point runs, regardless of the bias in the
number and quantum weights of the metropolis test for the 32-, 16-, and 8-bit runs that
were verified.

9.3. Evaluation of Resampling Quality by Randomness

This section describes the evaluation and results of resampling quality by randomness.
In general, obtaining true random numbers in numerical calculations is complex,

and pseudo-random numbers generated from a random number generator: RNG, are
often used. The difference between pseudo-random and true random numbers is that

56

Figure 9.2.: Comparison of RMSE, a measure of resampling quality for each data
width and implementation, in experiments with three types of input data
shown in Fig. 9.1, varying particle count from 210 to 220.

true random numbers do not have a cycle, whereas pseudo-random numbers generate
identical permutations with a constant cycle. The larger the period, the more random
the random number, but the larger the period, the more complex the calculations to
generate the random number and the greater the hardware implementation cost. This
study aimed to improve the efficiency of the Metropolis resampling hardware and
reduce the cost required for RNGs. Therefore, comparing the resampling results of
each RNG is conducted and looking for the RNG with a small implementation cost
while maintaining the resampling quality.

9.3.1. Evalution Overview

There are several methods for generating pseudo-random numbers, such as methods
based on linear congruence and M-sequences. However, the M-sequence with Linear
Feedback Shift Register: LFSR is the most common and efficient hardware imple-
mentation. Therefore, evaluation is conducted using three random number generators,
Galois LFSR: GLFSR as pure LFSR, XorShift: XoS and Mersenne Twister: MT as
LFSR-based random number generation methods.

The linear feedback shift register: LFSR is a type of shift register that has feedback
connections that allow it to generate a sequence of pseudo-random bits. The key
characteristic of an LFSR is that its output is a linear function of its previous state. An
LFSR’s sequence of bits generated can be used as a pseudorandom number generator,

57

Figure 9.3.: Comparison of RMSE, a measure of resampling quality for each data width
and implementation, for experiments varying the number of Metropolis
tests from 20 to 210 using three types of input data in Fig. 9.1.

stream cipher, or spreading code. LFSRs are often used in digital communications and
digital signal processing because they are relatively simple to implement and have good
statistical properties.

Galois FLSR has the same output as the Fibonacci LFSR to which the term LFSR
usually refers, but with an optimized number of clocks for random number generation.
It has a period corresponding to the number of bits, and when the number of bits is 𝐵, the
period is 2𝐵−1. XorShift [96,97] is a class of pseudorandom number generators that use
a linear feedback shift register to generate a sequence of bits, which are then converted
to random numbers. The name "XorShift" comes from the generator using bitwise
exclusive or and bit shifts to generate new random numbers. Mersenne Twister [98]:
MT is an algorithm that yields good quality random numbers with a considerable period
of 219937 − 1. MT has a considerable period and provides better random numbers than
the GLFSR and XoS of good quality, but the hardware efficiency is low [99].

The experiment was conducted using the same evaluation axes as shown in Table 9.1
in Section 9.2 using the three types of random numbers used in Section 9.2.

9.3.2. Result

Figure 9.4 shows the comparison of RMSE quality results for each implementation
when varying the number of particles from 210 to 220 using three different RPGs and
three different input data. It indicates that the value of RMSE, the resampling quality,

58

is the same for any random number generator. The comparison of the RMSE quality
results for each implementation when varying the number of Metropolis tests from 20

to 210 using three different RPGs and three different input data types are shown in
Fig. 9.4. In the experiment, the results were almost the same for all random number
generators and for the experiments with different numbers of particles.

From this, the XorShift is the most hardware-efficient random number generator
among those shown in [99], which is optimal for integer-optimized metropolis resam-
pling.

59

Figure 9.4.: Comparison of RMSE quality results for each implementation when vary-
ing the number of particles from 210 to 220 using three different RPGs and
three different input data shown in Fig 9.1.
This graph indicates that the value of RMSE, the resampling quality, is the
same for any random number generator.

60

Figure 9.5.: Comparison of RMSE quality results for each implementation when vary-
ing the number of Metropolis tests from 20 to 210 using three different
RPGs and three different input data shown in Fig 9.1.
This graph indicates that the value of RMSE, the resampling quality, is the
same for any random number generator.

61

9.4. Evaluation as a part of Sequential Monte Carlo
Sampler

This section shows evaluations of the resampling quality of the proposed integer-
optimized Metropolis resampling as a part of a sequential Monte Carlo sampler(SMC
sampler) [65] and its results.

9.4.1. Evaluation Overview

The SMC sampler is an application of the sequential Monte Carlo method, an algorithm
that estimates the parameters of a probability distribution by sampling.

This evaluation was conducted with data sampled from a normal distribution with
mean set to 100 and variance set to 1: N (100, 1) are estimated. Particles have a
Gaussian distribution as a prior for the mean and a gamma distribution as a prior for
the variance. Particles are initialized N (0, 10) and G (1, 1).

The evaluation items consisted of 𝑅𝑀𝑆𝐸 , which is used in sec 9.2 and 𝐸𝑆𝑆, the
Number of times resampling was performed. In this experiment, the SMC sampler
performs resampling when the ESS is calculated with the current particle parameters
and the 𝑡-th target data is half the number of particles. Hence, the number of times
resampling was performed indicates how many times the ESS was below the reference
value, and if this value is large, it indicates that the particles obtained by resampling
are often not in line with the data. The evaluation parameters were the same as sec 9.2
and summarized in tab. 9.1.

The flow of the experiment is shown below.

1. Sample data from a normal distribution with mean set to 100 and variance set to
1: N (100, 1) as evaluation input data.

2. Initialize particle are initialized N (0, 10) and G (1, 1).

3. Calculate the 𝐸𝑆𝑆 for the 𝑡-th data of the current particle.

4. If the ESS value is more than half of the number of particles, return to 3; if less
than half, proceed to 5.

5. Perform resampling and update particle weights.

62

This processing flow is performed using 100 pieces of input data.

9.4.2. Result

Figure 9.6 is a graph of the RMSE in the experiment in which the number of Metropolis
tests was fixed at 32, and the number of particles was changed from 1010 to 1020. In
this figure, the position at which resampling occurs is indicated.

Figure 9.6 shows that the change in RMSE is close to that of single-precision floating-
point, except for 32-bit integers when the particle size is 1010.

Figures 9.7 and 9.8 show the changes in RESE and ESS for the first ten trials of
the same experiment, respectively. Figures 9.7 and 9.8 indicate that the RMSE/ESS
transition for the integer-optimized Metropolis test approaches that of a single-precision
floating-point run as the number of particles increases and is comparable to that of
a single-precision floating-point run for any data width as the number of particles
increases above 1018. This may be because the larger the number of particles, the
smaller the weight per particle, and the less significant the difference in weights between
particles. Therefore, the larger the particles, the more influential the optimization to
reduce the data width.

Table 9.4.2 shows the number of resampling runs of the SMC Sampler when the
number of Metropolis tests is fixed at 32 and the number of particles is changed. Table
9.4.2 indicates that when the number of data is 1024, the SMC Sampler using the
proposed integer-optimized metropolis resampler performs on average 2.7 times more
resamplings than the SMC Sampler using single-precision floating-point sampling.
However, when the number of particles is set to 4096 or more, the number of resamplings
is almost the same.

Figure 9.9 shows the RMSE graph of an experiment in which the number of particles
was fixed at 1020, and the number of Metropolis test runs was changed from 1 to 1024.
In this figure, the position at which resampling occurs is indicated.

The changes in RESE and ESS for the first thirty trials of the same experiment are
shown in Figures 9.7 and 9.8, respectively.

From Figures 9.10 and 9.11, it can be seen that for all implementations, resampling
occurs when the number of Metropolis test runs is small, that is, when the ESS is below
the standard value many times, and resampling occurs every time when the number of
Metropolis test runs is one. Also, up to 22 Metropolis test runs, the RMSE is large for

63

Figure 9.6.: Comparison of RMSE, a measure of resampling quality for each data width
and implementation, for experiments varying the number of particles from
210 to 220 in parameter inference with the SMC sampler for the evaluated
data.

integers 8, 16, 32, and single-precision floating-point, in that order, indicating that the
quality of resampling is relatively poor. However, this property also does not change
when the number of Metropolis test runs is 24 times. In other words, the single-precision
floating-point case, more than 16 times This property is confirmed when the number
of Metropolis test runs reaches 24, or more than 16 times, as in the single-precision
floating-point case. This indicates that with integer-optimized Metropolis resampling,
the resampling quality is equivalent to the single-precision floating-point when the
Metropolis test is performed 16 times or more.

Table 9.4.2 shows the number of resamplings performed by the SMC sampler for
each metropolis run and each data width when the number of data is fixed at 1020,

64

Figure 9.7.: Comparison of RMSE of first ten times, a measure of resampling quality for
each data width and implementation, for experiments varying the number
of particles from 210 to 220 in parameter inference with the SMC sampler
for the evaluated data.

and the number of metropolis test runs is varied. It can be seen that the differences in
the number of resampling times when the number of Metropolis tests is varied are not
significantly different from those of single-precision floating-point, unlike when the
number of particles is varied, as shown in Tab. 9.4.2.

65

Figure 9.8.: Comparison of ESS of first ten times, a measure of performance of re-
sampling in SMC sampler for each data width and implementation, for
experiments varying the number of particles from 20 to 210 in parameter
inference with the SMC sampler for the evaluated data.

Table 9.2.: Comparison result of the number of resampling run
when varying the number of particles 𝑃 from 210 to 220

𝑃 uint8 uint16 uint32 fp32
210 23 (+15) 21 (+13) 21 (+13) 8
212 7 (−05) 10 (−02) 10 (−02) 12
214 11 (+01) 10 (+00) 18 (+08) 10
216 14 (+00) 15 (+01) 14 (+00) 14
218 16 (−02) 17 (−01) 14 (−04) 18
220 18 (−02) 17 (−03) 17 (−03) 20

66

Figure 9.9.: Comparison of RMSE, a measure of resampling quality for each data width
and implementation, for experiments varying the number of metropolis
tests from 210 to 220 in parameter inference with the SMC sampler for the
evaluated data.

67

Figure 9.10.: Comparison of RMSE of first ten times, a measure of resampling quality
for each data width and implementation, for experiments varying the
number of metropolis tests from 210 to 220 in parameter inference with
the SMC sampler for the evaluated data.

68

Figure 9.11.: Comparison of ESS of first ten times, a measure of performance of
resampling in SMC sampler for each data width and implementation, for
experiments varying the number of metropolis tests 20 to 210 in parameter
inference with the SMC sampler for the evaluated data.

69

Table 9.3.: Comparison result of the number of resampling run
when varying the number of Metropolis tests from 20 to 210

𝐵 uint8 uint16 uint32 fp32
20 44 (+09) 39 (+04) 38 (+03) 35
21 23 (+02) 24 (+03) 23 (+02) 21
22 22 (+02) 23 (+03) 20 (+00) 20
23 18 (+00) 17 (−01) 16 (−02) 18
24 16 (+01) 15 (+00) 15 (+00) 15
25 18 (−02) 17 (−03) 17 (−03) 20
26 7 (+00) 7 (+00) 7 (+00) 7
27 14 (−03) 12 (−05) 14 (−03) 17
28 10 (+03) 10 (+03) 10 (+03) 7
29 12 (−01) 11 (−02) 11 (−02) 13
210 11 (+07) 12 (−06) 12 (−06) 18

70

Figure 9.12.: Test design of integer-optimized Metropolis resampling architecture
The squares indicate IP cores with their respective functions, and the
arrows indicate busses.

9.5. Evaluation of Hardware Efficiency

For evaluating the performance of the proposed integer-optimized Metropolis resam-
pling in hardware, a hardware implementation was performed, and the circuit area was
assessed.

The metropolis resampling circuit designed in this study is shown in Figure9.12. This
design is based on the implementation of Liu et al. [85] with each part corresponding to
metropolis resampling in integers. The squares indicate IP cores with their respective
functions, and the arrows indicate buses. The contents of the variables in the figure are
shown in Tab. 9.5, and the summary of the buses indicated by each arrow is shown
in Tab. 9.5. The implementation for hardware evaluation was done using AMD’s
Vivado [100] and Vitis HLS [101]

71

Table 9.4.: Variables are used in Metropolis Resampling Circuit
Variable Content Value
𝑀 Parallelism of the circuit. An arbitrarily determined

value of 2 squared.
𝐿𝐷 Length of data. As an example, 32 for single-

precision floating-point data and 16 for 16-bit
integers.

An arbitrarily determined
value of 2 squared.

𝐿 𝐼 Length of the index. 𝑙𝑜𝑔2𝑃

9.5.1. Implementation Details of each IP

• Parallelized Metropolis Block: PMB
In Parallelism Metropolis Block(PMB), the Metropolis test is performed in 𝑀
parallel. This block has three input ports, the weights𝑊𝑘 = {𝑤𝑘1 , ..., 𝑤𝑘𝑀 } of the
particles to be verified, the weights𝑊 𝑗 ,𝑠ℎ𝑖 𝑓 𝑡𝑒𝑑 = {𝑤 𝑗1,𝑠ℎ𝑖 𝑓 𝑡𝑒𝑑 , ..., 𝑤 𝑗𝑀,𝑠ℎ𝑖 𝑓 𝑡𝑒𝑑 } of the
particles to be compared, which is shifted by RPG, These inputs are distributed
to 𝑀 metropolis blocks, each of which receives 𝐵 metropolis test runs.

The port of input𝑊𝑘 is connected to the weight memory: WM, and the weight of
particles is read from WM in order according to the counter that PMB has inside,
and sent to each Metropolis block.

Input 𝑊 𝑗 port is connected to Random Permutation Generator: RPG. The 𝑊 𝑗

port receives the shifted weights and the indexes of those weights sent by RPG.

Input U port is connected to Coefficient Generator: U-Gen. 𝑀 coefficients
generated by U-Gen are inputted.

The Metropolis test is performed with Equ. 9.3 when the data type is a float and
with Equ. 8.3 when the data type is an integer.

𝑢 × 𝑤𝑘 < 𝑤 𝑗 (9.3)

The particles that result from the Metropolis test are weighted together and sent
to the memory, where the results are stored.

This block is implemented using RTL for random number generation, and high-
level synthesis for shifting and supporting AXI4-Stream, and parallelized to 𝑀

72

Table 9.5.: Bus Overview of Metropolis Resampling Circuit

Bus Name Content Width
𝑟𝑎𝑑𝑑𝑟 Random address generated from random num-

bers to obtain𝑊 𝑗 . It is a multiple of 𝐿𝐷/8×𝑀 .
32

𝑊𝑘𝑡 The group of 𝑤𝑘 , the comparative impor-
tance of the 𝑡-th input in the 𝑀-parallel
metropolis resampling circuit. 𝑊𝑘𝑡 =

{𝑤𝑘𝑡×𝑀 , 𝑤𝑘𝑡×𝑀+1 , ..., 𝑤𝑘𝑡×𝑀+𝑀−1}

𝐿𝐷 × 𝑀

𝑊 𝑗 ,𝑢𝑛𝑠ℎ𝑖 𝑓 𝑡𝑒𝑑 Unshifted weights read from the weight mem-
ory. when 𝑖 = 𝑟𝑎𝑑𝑑𝑟/((𝐿𝐷/8) × 𝑀), 𝑊 𝑗𝑖 =

{𝑤 𝑗𝑖×𝑀 , 𝑤 𝑗𝑖×𝑀+1 , ..., 𝑤 𝑗𝑖×𝑀+𝑀−1}

𝐿𝐷 × 𝑀

𝑊 𝑗 ,𝑠ℎ𝑖 𝑓 𝑡𝑒𝑑 Shifted weights read from the weight memory. 𝐿𝐷 × 𝑀
𝑈 Random numbers for Metropolis resampling.

𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑀−1}
𝐿𝐷 × 𝑀

𝐴𝑡 Result of 𝑡-th run. 𝐿 𝐼 × 𝑀

by #pragma HLS unroll.

The input/output ports of the PMB and their roles are shown in Tab. 9.5.1.

The processing of sending and receiving data in the AXI4-Stream protocol and
the computation of the Metropolis test in this block is implemented with high-
level synthesis using Vitis HLS [101], and 𝑀 parallelism is achieved by #pragma
HLS unroll.

The hardware resources evaluated in this IP are Look Up Table (LUT) and Digital
Signal Processing (DSP). IPs other than this IP are capable of outputting data
every clock cycle and supplying data every clock cycle. This means that the
throughput of this block is directly related to performance. Therefore, Latecy,
the number of clocks until this block receives input and outputs, is added as a
performance evaluation item.

• Random Permutation Generator: RPG
This block is used to shift a random number of randomly read weights and send
them to the PMB. The process flow is shown below.

73

Figure 9.13.: Detail of the Parallelized Metropolis Block: PMB.
This block receives inputs from three ports, 𝑊𝑘 , 𝑊 𝑗 , and 𝑈, distributes
the inputs to 𝑀 metropolis blocks, and aggregates the results and outputs
them as 𝐴.

1. Generate random numbers for read addresses 𝑟𝑎𝑑𝑑𝑟 adn random number for
shift value 𝑟𝑠ℎ𝑖 𝑓 𝑡 .

2. Read 𝑟𝑎𝑑𝑑𝑟 value𝑊 𝑗 ,𝑢𝑛𝑠ℎ𝑖 𝑓 𝑡𝑒𝑑 from WM.

3. Shift the read data𝑊 𝑗 ,𝑢𝑛𝑠ℎ𝑖 𝑓 𝑡𝑒𝑑 according to 𝑟𝑠ℎ𝑖 𝑓 𝑡 .

4. Transmit shifted weight𝑊 𝑗 ,𝑠ℎ𝑖 𝑓 𝑡𝑒𝑑 to PMB.

This block is implemented using RTL for random number generation, and high-
level synthesis for shifting and supporting AXI4-Stream using Vitis HLS [101],
and is pipelined internally by Vitis HLS optimization directive #pragma HLS
pipeline, and parallelized to 𝑀 by #pragma HLS unroll. Thus, pipelining and
parallelization allow this block to read out the weights of 𝑀 comparison particles
every clock.

XorShift [96] is used as a random number generator which is hardware-efficient.
Since the only computation performed in this IP is the shift operation, no DSP is
used. Therefore, only the LUT was used as the evaluation item.

74

Table 9.6.: The input/output ports of the PMB

Port Name In/Out Width(bit) Overview
𝑊𝑘 port In 𝐿𝐷 × 𝑀 Input port of particles to be verified
𝑊 𝑗 port In 𝐿𝐷 × 𝑀 Input port of particles to be compared

+𝐿 𝐼 × 𝑀
𝑈 port In 𝐿𝐷 × 𝑀 Input port of coefficients
𝐴 port Out 𝐿 𝐼 × 𝑀 Output port of result indexes

• Coefficients Generator: U-Gen
This block generates 𝑀 coefficients U for the Metropolis test. The random num-
ber generator employs Xorshift as in RPG. For integer implementations, random
numbers are output as they are. In the case of a floating-point implementation,
the random number generated by Xorshift is converted to floating-point format
and multiplied by the inverse of the maximum value that can be obtained in the
bit width.

This block is implemented using RTL for random number generation, and high-
level synthesis for multiplication and supporting AXI4-Stream using Vitis HLS
[101], and is pipelined internally by Vitis HLS optimization directive #pragma
HLS pipeline, and parallelized to 𝑀 by #pragma HLS unroll. Thus, pipelining
and parallelization allow this block to read out the weights of 𝑀 comparison
particles every clock.

As with the PMB, the evaluation items for this IP were the number of LUTs and
DSPs used.

• Weight Memory: WM
This block is the memory that stores weights. It consists of Block RAM and has
ports to read𝑊𝑘 and𝑊 𝑗 , respectively. This IP evaluates BRAM usage to assess
memory resource usage.

• Index Memory: IM
This block is the memory that stores results. It consists of Block RAM and has
ports to read𝑊𝑘 and𝑊 𝑗 , respectively. Since this IP has the same implementation
in integer as in the previous studies and the hardware used is the same for all data

75

Figure 9.14.: Detail of the Random Permutation Generator: RPG.
This block reads out M randomly weights of particles with random ad-
dresses and shifts by randomly generated values and sent to the PMB
along with their indices.

types and widths to be evaluated, the evaluated values are omitted.

9.5.2. Result

Table9.9 shows a table comparing the per-resource utilization of IP when the degree of
parallelism 𝑀 is set to 16. From Tab. 9.9, it can be seen that the resampling module
based on the proposed integer-optimized Metropolis resampling algorithm saves a
significant amount of resources, except for IM, the memory that stores the resampling
results.

Adopting the proposed integer optimization achieved to reduce LUT usage for in-
teger implementations of all data widths compared to single precision floating point

76

Table 9.7.: The input/output ports of the RPG

Port Name In/Out Width(bit) Overview
𝑊 𝑗 ,𝑢𝑛𝑠ℎ𝑖 𝑓 𝑡𝑒𝑑 port In 𝐷𝑊 × 𝑀 Input port of

particles to
be compared
from WM

𝑊 𝑗 ,𝑠ℎ𝑖 𝑓 𝑡𝑒𝑑 port Out 𝐷𝑊 × 𝑀 + 𝑃 log2(𝑃) × 𝑀 Output port of
particles are
sorted in this
block

𝑟𝑎𝑑𝑑𝑟 port Out 𝐴𝑊 Output port
of address for
reading ran-
dom particles

Table 9.8.: The input/output ports of the U-Gen

Port Name In/Out Width(bit) Overview
U port Out 𝐷𝑊 × 𝑀 Output port of coefficients for Metropolis test.

implementations, reducing it to 25% for 32-bit integers, 60% for 16-bit integers, and
69% for 8-bit integers on PMB. DSP usages were also improved, reduced to 25% for
16-bit integer and 8-bit integer implementations. Latency per Metropolis test runs as 3,
4, and 2 for 32-, 16-, and 8-bit integers, respectively, compared to 6 for single-precision
floating-point.

Since the module that reads the random weights for the Metropolis test: RPG,
does not use floating-point operations, there is no difference in resources used between
single-precision floating-point and 32-bit integers, which are also 32 bits. Implementing
16-bit and 8-bit integers achieved resource savings of 40% and 51%, respectively.

The circuit that generates the random numbers that serve as the coefficients for the
Metropolis test has achieved significant resource savings, reducing the LUT by an
average of 27%. In addition, the number of DSPs used uniquely by data type in this
IP was 0 for all data width implementations with integers, while 48 were used for

77

Table 9.9.: Comparison of resource usage for each data type and data width when
parallelism 𝑀 set to 16 and number of particles set to 220

Data Type Floating-Point Integer

Width (Bits) 32 32 16 8
IP Item

PMB
LUT 6415 4832 (75%) 2561 (40%) 2051 (32%)
DSP 64 64 16 16

Latency 6 3 4 2
RPG LUT 6128 6128 (100%) 3707 (60%) 3057 (50%)

U-Gen
LUT 5561 1542 (28%) 1686 (30%) 1430 (17%)
DSP 48 0 0 0

WM BRAMB36 Tiles 512 512 256 128

single-precision floating-point.
In WM, its resource usage was reduced according to the data width. The 32-bit

integer is the same as the single-precision floating-point one, but the implementation
with 16-bit integers reduces the BRAM usage, which is resource usage, to 50% and
25% for 8-bit integers.

78

(a) Implementation of U-Gen by integer

(b) Implementation of U-Gen by floating-point

Figure 9.15.: Detail of the coefficients generator: U-Gen.
This block generates the attendants for the Metropolis test and generates
random numbers for each clock data width, and the implementation is
different for integer and floating-point.

79

10. Discussion

Firstly, based on the results of Section 9.2, the Discussion of the integer-optimized re-
sampling performance of the proposed method, the Metropolis resampling algorithm, is
shown. While Section 9.2 was performed on three patterns of datasets: input data with
weights following a normal distribution, input data with a majority of small weights,
and data with weights following a uniform distribution, the proposed metropolis re-
sampling algorithm, optimized to run on integers, achieved For all data widths, the
resampling quality was equivalent to that of single-precision floating-point, regardless
of the number of particles and the number of Metropolis tests. This shows that although
quantization generally causes data bias and loss of difference after one resampling, the
proposed method of resampling with integer quantization can guarantee resampling
quality without problems in the three cases tested in this study.

Secondly, the discussion of the results from the experiments with random number
quality is conducted in Section 9.3. In this experiment, the same experiments as in
Section 9.2 were conducted using three random number generators. The results show
that, as in Experiment Section 9.2, the proposed method, integer-optimized metropolis
resampling, achieved RMSEs comparable to single-precision floating-point results on
all data sets. This indicates that it is better to use XorShift-based hardware, which
has the best hardware efficiency among those verified when implementing hardware
since it can achieve the same resampling quality as floating-point ones regardless of
the random number quality.

Thirdly, the discussion of the proposed method in the SMC sampler is shown based
on the experiments and results presented in Section 9.4. In this experiment, unlike
the two experiments described, there was a large difference between floating point and
integer runs. Both single-precision floating-point and integer implementations showed
a tendency to lower the RMSE over the number of trials and stabilize at some lower
level. When the number of particles was 210, more resampling was performed in the

80

integer run than in the single-precision floating-point result. This is likely due to the
fact that when the data is small, the per-particle weights tend to be larger, and finer
differences become more important, but these differences are lost due to quantization.
As the number of data increases to 216, the difference in weights for each particle data
becomes smaller, even for single-precision floating point, indicating that the trends in
RMSE and ESS are almost the same as for integer data. In particular, for particle
counts of 218 and 220, the proposed method shows almost the same trend as the single-
precision floating-point method for both ESS and RMSE at all data widths. This is
a very convenient result for the reduction of data width, which is being verified as a
countermeasure to the increased hardware usage due to the larger number of particles.

The comparison by changing the number of Metropolis test runs also shows that
the number of trials required for the RMSE to reach some stable value for all im-
plementations differs depending on the number of Metropolis test runs. The overall
trend is that the greater the number of Metropolis tests, the fewer the number of trials
required before stabilization. This may be due to the nature of metropolis resampling:
the fewer the number of trials, the lower the probability that particle replacement will
occur, resulting in poor-quality resampling. Among the implementations, we found
that running the Metropolis test with 8-bit integers required more trials to stabilize than
the other implementations when the number of Metropolis test runs was small. This
phenomenon is thought to be caused by a combination of the following two factors. (i)
the number of quantization bits makes it relatively easy for weights with small differ-
ences to be quantized to the same weight, and (ii) the small number of trials reduces
the probability of comparison with particles with large differences. This is thought
to be the reason for the low RMSE in integer 8-bit execution, as even comparisons
that would be exchanged in the original floating-point execution remain low-weighted
particles because quantization eliminates the difference, and the comparison does not
occur. This problem was also observed not to occur when the number of Metropolis
tests is four or more, and the RMSE transition of four or more times is equivalent to
that of the single-precision floating-point for all data widths.

Thus, the proposed metropolis resampling with quantization to integer can perform
as well as the single-precision floating-point one when the number of particles is larger
than 216, and the number of metropolis tests is more significant than 4.

Finally, the discussion about hardware efficiency from the results in Section 9.5 is

81

given.
The parallel execution IP (PMB) of the Metropolis test confirmed that the integer

implementation could reduce the LUT by 25%, even when implemented at 32 bits, the
same width as the single-precision floating-point implementation, and that the 16-bit
and 8-bit implementations can significantly reduce usage by more than 60%. Latency
was also confirmed to be improved in all implementations. This is thought to be because
the number of clocks and amount of resources required for single-precision floating-
point operations are more significant than those for integer operations. In the Metropolis
resampling circuit, the Metropolis test performed in this PMB is the bottleneck, and
processing the Metropolis test for P particles requires the number of clocks obtained by
multiplying the latency of this circuit by the number of Metropolis tests and the number
of particles and dividing by the parallelism degree M. The proposed method’s ability
to reduce latency by integerization is a major advantage.

For RPG, the IP that reads the comparison weights for the Metropolis test, the 16-
and 8-bit implementations with reduced data widths showed better hardware efficiency
than the single-precision floating-point ones. 32-bit implementations are the same as
the single-precision floating-point ones because the only processing performed within
this circuit is shifting, which is not dependent on the data type. The reason is that the
processing performed in this circuit is shift-only and does not depend on the data type.

In U-Gen, the circuit that creates the coefficients for the Metropolis test, the integer
implementation produced higher hardware efficiency than the single-precision floating-
point one. This can be attributed first of all to the fact that the integer implementation
omits the process of conversion and multiplication of random numbers to floating point,
as also mentioned in Section 8.

It can be seen that WM, the memory that stores the weights, reduces its resource
usage according to the data width. In the case of the integer 8-bit implementation, it
is possible to store four times the number of particles with the same resource usage
compared to the implementation in the previous study by Liu et al. [85]

With this, the three goals described in Section 7.4 and the proposed integerization,
increased throughput, increased parallelism due to resource reduction, and reduced
memory usage due to reduced data width was achieved.

82

Part III.

Conclusion

83

This study shows the optimization of parallel implementations of parameter estima-
tion tasks in two types of Bayesian inference.

The first part is GPU acceleration of parameter estimation by the variational inference
method of GMM used for clustering. The Gaussian mixture model based on variational
Bayesian estimation is implemented on GPU for high-speed clustering applications.
Employing the proposed strategies, including CPU-GPU co-optimization, execution re-
order, and memory management, the VB-GMM is efficiently conducted by GPU with
high parallelism. Various data sets for real-world clustering applications are introduced
for validations. The experimental results show that convergence is generally faster than
the same algorithm implemented on the CPU, and comparable convergence scores are
achieved. As a typical example, the proposed VB-GMM on GPU is 192 times faster than
the CPU when the number of data is 1E+07 and 107 times faster when the number of
clusters is 128. Compared with the state-of-art GPU implementations conducted by the
EM algorithm, the proposed VB-GMM on GPU can suppress degeneracy even on data
sets where the EM algorithm would have degenerated; fair performances over speed,
clustering scores, and clustering distributions are achieved. Experiments on practical
data showed that VB-GMM on GPUs is more effective than the GPU implementation
of the EM algorithm for clustering data with a relatively large number of data, where
the actual number of clusters is unknown.

In the second part, the Optimization of the dedicated hardware for the resampling
step, which is one of the three steps in the sequential Monte Carlo method: sampling
step, importance calculation step, and resampling step, and whose processing time
increases in proportion to the number of particles. The specific optimization method
is to optimize the metropolis resampling algorithm used in the resampling step, which
is suitable for parallelization, from the currently used floating-point method to the
integer-optimized method.

The proposed optimization of Metropolis Resampling to run on integers achieves the
elimination of conversion and multiplication to the floating point in the random number
generation part within Metropolis Resampling. Also, it makes it hardware efficient by
eliminating calculations in the floating-point in the Metropolis test.

In the evaluation experiments, the proposed method was evaluated for 8-bit, 16-bit,
and 32-bit integers, considering hardware efficiency. In evaluating several algorithms
on CPUs, the proposed integer-optimized Metropolis resampling achieved resampling

84

quality equivalent to that of single-precision floating-point methods for 8-bit integers,
16-bit integers, and 32-bit integers as resampling alone. In addition, the Sequential
Monte Carlo Sampler, an SMC application, achieved the same performance as the
floating-point method when the number of particles was large.

In the evaluation of the hardware implementation, the proposed integer-optimized
Metropolis resampling reduced resource usage for all data width implementations
compared to previous studies using the single-precision floating-point. It achieved up to
3.0 times LUT usage improvement in critical modules such as coefficient generation and
Metropolis test execution improvements in key modules such as coefficient generation
and Metropolis test execution. LUT utilization reductions of 31% at 32 bits, 57% at 16
bits, and 64% at 8 bits were achieved in key modules such as coefficient generation and
Metropolis test execution, while other bottlenecks achieved up to 3.0 times throughput
improvement and up to 75% memory utilization reduction.

85

Acknowledgements

I would like to start by thanking my advisor, Professor Yasuhiko Nakashima, for their
guidance, support, and encouragement throughout the entire process of researching and
writing this dissertation. Their expertise in the field and willingness to help at all times
were invaluable to me.

I would also like to express my gratitude to the members of my dissertation commit-
tee, Professor Kazushi Ikeda, Associate Professor Renyuan Zhang, Assistant professor
Kan Yirong, Assistant professor Pham Hoai Luan, , for their constructive feedback and
valuable insights. I appreciate the time and effort they took to review my work and
provide me with the guidance I needed to improve it.

I would like to thank all lab members. I gave much advice from them.
I would also like to thank Mr. Nishida and Mr. Kaji, supervisors of my internship

company. They were given the opportunity to learn the general hardware implementa-
tion flow.

I would like to thank my wife and friends for their unwavering support and encour-
agement. Their belief in me helped me to persevere through the challenges of this
process.

I would also like to extend my thanks to the Nara Institute of Science and Technology
for providing me with the resources and opportunities to pursue this degree. I am
grateful for the support of the faculty and staff who have helped me along the way.

86

References

[1] Jiawei Han, Jian Pei, and Hanghang Tong. Data mining: concepts and tech-
niques. Morgan kaufmann, 2022.

[2] Krzysztof J Cios, Witold Pedrycz, and Roman W Swiniarski. Data mining
methods for knowledge discovery, volume 458. Springer Science & Business
Media, 2012.

[3] Eva Patel and Dharmender Singh Kushwaha. Clustering cloud workloads: K-
means vs gaussian mixture model. Procedia Computer Science, 171:158–167,
2020.

[4] Douglas A Reynolds, Thomas F Quatieri, and Robert B Dunn. Speaker ver-
ification using adapted gaussian mixture models. Digital signal processing,
10(1-3):19–41, 2000.

[5] Chris Stauffer and W Eric L Grimson. Adaptive background mixture models for
real-time tracking. In Proceedings. 1999 IEEE computer society conference on
computer vision and pattern recognition (Cat. No PR00149), volume 2, pages
246–252. IEEE, 1999.

[6] Adrian Corduneanu and Christopher M Bishop. Variational bayesian model se-
lection for mixture distributions. In Artificial intelligence and Statistics, volume
2001, pages 27–34. Morgan Kaufmann Waltham, MA, 2001.

[7] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006.

[8] NSL Phani Kumar, Sanjiv Satoor, and Ian Buck. Fast parallel expectation max-
imization for gaussian mixture models on gpus using cuda. In 2009 11th IEEE

87

International Conference on High Performance Computing and Communica-
tions, pages 103–109. IEEE, 2009.

[9] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[11] Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for ac-
tivity monitoring. In 2012 16th international symposium on wearable computers,
pages 108–109. IEEE, 2012.

[12] Ramon Huerta, Thiago Mosqueiro, Jordi Fonollosa, Nikolai F Rulkov, and Irene
Rodriguez-Lujan. Online decorrelation of humidity and temperature in chemical
sensors for continuous monitoring. Chemometrics and Intelligent Laboratory
Systems, 157:169–176, 2016.

[13] John Nickolls and William J Dally. The gpu computing era. IEEE micro,
30(2):56–69, 2010.

[14] Tosiyuki Nakaegawa. High-performance computing in meteorology under a
context of an era of graphical processing units. Computers, 11(7):114, 2022.

[15] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 10.2.89.
https://developer.nvidia.com/cuda-toolkit, 2020. Accessed: 2023-01-31.

[16] NVIDIA. Nvidia ampere ga102 gpu archi-
tecture. https://www.nvidia.com/content/dam/en-
zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-
Whitepaper-V1.pdf. Accessed: 2023-01-31.

[17] Paulius Micikevicius. Gpu performance analysis and optimization. 2012.

[18] Tomoki Toda, Alan W Black, and Keiichi Tokuda. Voice conversion based on
maximum-likelihood estimation of spectral parameter trajectory. IEEE Trans-
actions on Audio, Speech, and Language Processing, 15(8):2222–2235, 2007.

88

[19] 藤田迪,梶克彦,河口信夫, et al. Gaussian mixture modelを用いた無線 lan位
置推定手法. 情報処理学会論文誌, 52(3):1069–1081, 2011.

[20] Ismail Shahin, Ali Bou Nassif, and Shibani Hamsa. Emotion recognition using
hybrid gaussian mixture model and deep neural network. IEEE access, 7:26777–
26787, 2019.

[21] Junya Koguchi, Shinnosuke Takamichi, Masanori Morise, Hiroshi Saruwatari,
and Shigeki Sagayama. Dnn-based full-band speech synthesis using gmm ap-
proximation of spectral envelope. IEICE TRANSACTIONS on Information and
Systems, 103(12):2673–2681, 2020.

[22] Ce Guo, Haohuan Fu, and Wayne Luk. A fully-pipelined expectation-
maximization engine for gaussian mixture models. In 2012 International Con-
ference on Field-Programmable Technology, pages 182–189. IEEE, 2012.

[23] Conghui He, Haohuan Fu, Ce Guo, Wayne Luk, and Guangwen Yang. A fully-
pipelined hardware design for gaussian mixture models. IEEE Transactions on
Computers, 66(11):1837–1850, 2017.

[24] M. Harris. Optimizing parallel reduction in cuda.
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf. Ac-
cessed: 2023-01-31.

[25] Alessandro Tasora, Radu Serban, Hammad Mazhar, Arman Pazouki, Daniel
Melanz, Jonathan Fleischmann, Michael Taylor, Hiroyuki Sugiyama, and Dan
Negrut. Chrono: An open source multi-physics dynamics engine. In High
Performance Computing in Science and Engineering: Second International
Conference, HPCSE 2015, Soláň, Czech Republic, May 25-28, 2015, Revised
Selected Papers 2, pages 19–49. Springer, 2016.

[26] clblas. https://github.com/clMathLibraries/clBLAS. Accessed: 2023-01-31.

[27] David L Davies and Donald W Bouldin. A cluster separation measure. IEEE
transactions on pattern analysis and machine intelligence, (2):224–227, 1979.

[28] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

89

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the
Journal of machine Learning research, 12:2825–2830, 2011.

[29] Michael C Hughes and Erik Sudderth. Memoized online variational inference
for dirichlet process mixture models. Advances in neural information processing
systems, 26, 2013.

[30] Elaine Angelino, Matthew James Johnson, Ryan P Adams, et al. Patterns of
scalable bayesian inference. Foundations and Trends® in Machine Learning,
9(2-3):119–247, 2016.

[31] Elaine Angelino, Eddie Kohler, Amos Waterland, Margo Seltzer, and Ryan P
Adams. Accelerating mcmc via parallel predictive prefetching. arXiv preprint
arXiv:1403.7265, 2014.

[32] Iain Murray. Advances in Markov chain Monte Carlo methods. University of
London, University College London (United Kingdom), 2007.

[33] Arnaud Doucet, Nando de Freitas, and Neil Gordon. An introduction to sequen-
tial monte carlo methods. In Sequential Monte Carlo methods in practice, pages
3–14. Springer, 2001.

[34] Genshiro Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear
state space models. Journal of computational and graphical statistics, 5(1):1–25,
1996.

[35] Jun S Liu and Rong Chen. Sequential monte carlo methods for dynamic systems.
Journal of the American statistical association, 93(443):1032–1044, 1998.

[36] Petar M Djuric. Sequential estimation of random parameters under model uncer-
tainty. In 2000 IEEE International Conference on Acoustics, Speech, and Signal
Processing. Proceedings (Cat. No. 00CH37100), volume 1, pages 297–300.
IEEE, 2000.

[37] Corentin Dubois, Manuel Davy, and Jérôme Idier. Tracking of time-frequency
components using particle filtering. In Proceedings.(ICASSP’05). IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 2005., volume 4,
pages iv–9. IEEE, 2005.

90

[38] Nattapol Aunsri and Kosin Chamnongthai. Stochastic description and evaluation
of ocean acoustics time-series for frequency and dispersion estimation using
particle filtering approach. Applied Acoustics, 178:108010, 2021.

[39] Yi Zhang, Yong Lv, and Mao Ge. Time–frequency analysis via complementary
ensemble adaptive local iterative filtering and enhanced maximum correlation
kurtosis deconvolution for wind turbine fault diagnosis. Energy Reports, 7:2418–
2435, 2021.

[40] Yvo Boers and Pranab K Mandal. Optimal particle-filter-based detector. IEEE
signal processing letters, 26(3):435–439, 2019.

[41] Jin Hyeok Yoo, Sun Hong Lim, Byonghyo Shim, and Jun Won Choi. Estimation
of dynamically varying support of sparse signals via sequential monte-carlo
method. IEEE Transactions on Signal Processing, 68:4135–4147, 2020.

[42] Yunqiang Chen and Yong Rui. Real-time speaker tracking using particle filter
sensor fusion. Proceedings of the IEEE, 92(3):485–494, 2004.

[43] Darren B Ward, Eric A Lehmann, and Robert C Williamson. Particle filtering
algorithms for tracking an acoustic source in a reverberant environment. IEEE
Transactions on speech and audio processing, 11(6):826–836, 2003.

[44] Kai Nickel, Tobias Gehrig, Rainer Stiefelhagen, and John McDonough. A
joint particle filter for audio-visual speaker tracking. In Proceedings of the 7th
international conference on multimodal interfaces, pages 61–68, 2005.

[45] Hong Liu, Yidi Li, and Bing Yang. 3d audio-visual speaker tracking with a two-
layer particle filter. In 2019 IEEE International Conference on Image Processing
(ICIP), pages 1955–1959. IEEE, 2019.

[46] Rong Wang, Zhe Chen, and Fuliang Yin. Distributed multiple speaker tracking
based on unscented particle filter and data association in microphone array
networks. Circuits, Systems, and Signal Processing, pages 1–23, 2022.

[47] Rudolph Van Der Merwe, Arnaud Doucet, Nando De Freitas, and Eric Wan. The
unscented particle filter. Advances in neural information processing systems, 13,
2000.

91

[48] Andrew Blake, B Bascle, M Isard, and J MacCormick. Statistical models
of visual shape and motion. Philosophical Transactions of the Royal Soci-
ety of London. Series A: Mathematical, Physical and Engineering Sciences,
356(1740):1283–1302, 1998.

[49] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A
tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking.
IEEE Transactions on signal processing, 50(2):174–188, 2002.

[50] Juan José Pantrigo, Angel Sánchez, Kostas Gianikellis, and Antonio S Mon-
temayor. Combining particle filter and population-based metaheuristics for vi-
sual articulated motion tracking. ELCVIA Electronic Letters on Computer Vision
and Image Analysis, 5(3):68–83, 2005.

[51] Jayant R Mahajan, Neetu Agarwal, and Chandansingh Rawat. Motion object
tracking for thermal imaging using particle filter. In Applied Computer Vision
and Image Processing: Proceedings of ICCET 2020, Volume 1, pages 161–168.
Springer, 2020.

[52] Asfak Ali, Avra Ghosh, and Sheli Sinha Chaudhuri. Determination of optimum
dynamic threshold for visual object tracker. In 2021 International Conference
on Automation, Control and Mechatronics for Industry 4.0 (ACMI), pages 1–5.
IEEE, 2021.

[53] Pei-Hsuan Chiu, Po-Hsuan Tseng, and Kai-Ten Feng. Interactive mobile aug-
mented reality system for image and hand motion tracking. IEEE Transactions
on Vehicular Technology, 67(10):9995–10009, 2018.

[54] Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang. Multi-task correlation
particle filter for robust object tracking. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4335–4343, 2017.

[55] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang. Hierarchical
convolutional features for visual tracking. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 3074–3082, 2015.

[56] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
part i. IEEE robotics & automation magazine, 13(2):99–110, 2006.

92

[57] Feng Zhang, Siqi Li, Shuai Yuan, Enze Sun, and Languang Zhao. Algorithms
analysis of mobile robot slam based on kalman and particle filter. In 2017 9th
International Conference on Modelling, Identification and Control (ICMIC),
pages 1050–1055. IEEE, 2017.

[58] Dieter Fox, Sebastian Thrun, Wolfram Burgard, and Frank Dellaert. Particle
filters for mobile robot localization. In Sequential Monte Carlo methods in
practice, pages 401–428. Springer, 2001.

[59] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov localization for mo-
bile robots in dynamic environments. Journal of artificial intelligence research,
11:391–427, 1999.

[60] Robert Sim, Pantelis Elinas, Matt Griffin, James J Little, et al. Vision-based slam
using the rao-blackwellised particle filter. In ĲCAI Workshop on Reasoning with
Uncertainty in Robotics, volume 14, pages 9–16, 2005.

[61] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and selec-
tive resampling. In Proceedings of the 2005 IEEE international conference on
robotics and automation, pages 2432–2437. IEEE, 2005.

[62] Peter Karkus, Shaojun Cai, and David Hsu. Differentiable slam-net: Learning
particle slam for visual navigation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2815–2825, 2021.

[63] Nicolas Chopin. A sequential particle filter method for static models. Biometrika,
89(3):539–552, 2002.

[64] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo for
bayesian computation. Bayesian statistics, 8(1):34, 2007.

[65] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo sam-
plers. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(3):411–436, 2006.

93

[66] Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Vari-
ational sequential monte carlo. In International conference on artificial intelli-
gence and statistics, pages 968–977. PMLR, 2018.

[67] Emad Hadian, Hamidreza Akbari, Mehdi Farzinfar, and Seyedamin Saeed. Op-
timal allocation of electric vehicle charging stations with adopted smart charg-
ing/discharging schedule. IEEE Access, 8:196908–196919, 2020.

[68] Hanxin Chen, Dong Liang Fan, Lu Fang, Wenjian Huang, Jinmin Huang, Cheng-
hao Cao, Liu Yang, Yibin He, and Li Zeng. Particle swarm optimization algo-
rithm with mutation operator for particle filter noise reduction in mechanical
fault diagnosis. International journal of pattern recognition and artificial intel-
ligence, 34(10):2058012, 2020.

[69] Christian A Naesseth, Fredrik Lindsten, and Thomas B Schön. High-dimensional
filtering using nested sequential monte carlo. IEEE Transactions on Signal
Processing, 67(16):4177–4188, 2019.

[70] Chenguang Dai, Jeremy Heng, Pierre E Jacob, and Nick Whiteley. An invi-
tation to sequential monte carlo samplers. Journal of the American Statistical
Association, 117(539):1587–1600, 2022.

[71] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. In IEE proceedings F (radar
and signal processing), volume 140, pages 107–113. IET, 1993.

[72] 上野玄太. 粒子フィルタとデータ同化. 統計数理, 67(2):241–253, 2019.

[73] Fred Daum and Jim Huang. Particle degeneracy: root cause and solution. In
Signal Processing, Sensor Fusion, and Target Recognition XX, volume 8050,
pages 367–377. SPIE, 2011.

[74] Liang Meng, Mark A Kramer, and Uri T Eden. A sequential monte carlo
approach to estimate biophysical neural models from spikes. Journal of neural
engineering, 8(6):065006, 2011.

94

[75] Gustaf Hendeby, Rickard Karlsson, and Fredrik Gustafsson. Particle filtering:
the need for speed. EURASIP Journal on Advances in Signal processing, 2010:1–
9, 2010.

[76] Miodrag Bolic, Petar M Djuric, and Sangjin Hong. Resampling algorithms
and architectures for distributed particle filters. IEEE Transactions on Signal
Processing, 53(7):2442–2450, 2005.

[77] Randal Douc and Olivier Cappé. Comparison of resampling schemes for particle
filtering. In Ispa 2005. proceedings of the 4th international symposium on image
and signal processing and analysis, 2005., pages 64–69. IEEE, 2005.

[78] Jeroen D Hol, Thomas B Schon, and Fredrik Gustafsson. On resampling algo-
rithms for particle filters. In 2006 IEEE nonlinear statistical signal processing
workshop, pages 79–82. IEEE, 2006.

[79] Tiancheng Li, Miodrag Bolic, and Petar M Djuric. Resampling methods for
particle filtering: classification, implementation, and strategies. IEEE Signal
processing magazine, 32(3):70–86, 2015.

[80] BG Sileshi, Carles Ferrer, and Joan Oliver. Particle filters and resampling tech-
niques: Importance in computational complexity analysis. In 2013 Conference
on Design and Architectures for Signal and Image Processing, pages 319–325.
IEEE, 2013.

[81] Peng Gong, Yuksel Ozan Basciftci, and Fusun Ozguner. A parallel resampling
algorithm for particle filtering on shared-memory architectures. In 2012 IEEE
26th International Parallel and Distributed Processing Symposium Workshops
& PhD Forum, pages 1477–1483. IEEE, 2012.

[82] Mark Harris et al. Optimizing parallel reduction in cuda. Nvidia developer
technology, 2(4):70, 2007.

[83] Gustaf Hendeby, Jeroen D Hol, Rickard Karlsson, and Fredrik Gustafsson. A
graphics processing unit implementation of the particle filter. In 2007 15th
European Signal Processing Conference, pages 1639–1643. IEEE, 2007.

95

[84] Lawrence M Murray, Anthony Lee, and Pierre E Jacob. Parallel resampling in
the particle filter. Journal of Computational and Graphical Statistics, 25(3):789–
805, 2016.

[85] Shuanglong Liu, Grigorios Mingas, and Christos-Savvas Bouganis. Parallel
resampling for particle filters on fpgas. In 2014 International Conference on
Field-Programmable Technology (FPT), pages 191–198. IEEE, 2014.

[86] Özcan Dülger, Halit Oğuztüzün, and Mübeccel Demirekler. Memory coalescing
implementation of metropolis resampling on graphics processing unit. Journal
of Signal Processing Systems, 90(3):433–447, 2018.

[87] Joshua A Chesser, Hoa Van Nguyen, and Damith C Ranasinghe. The megopolis
resampler: Memory coalesced resampling on gpus. Digital Signal Processing,
120:103261, 2022.

[88] Tan Nguyen, Colin MacLean, Marco Siracusa, Douglas Doerfler, Nicholas J
Wright, and Samuel Williams. Fpga-based hpc accelerators: An evaluation on
performance and energy efficiency. Concurrency and Computation: Practice
and Experience, 34(20):e6570, 2022.

[89] Murad Qasaimeh, Joseph Zambreno, Phillip H Jones, Kristof Denolf, Jack Lo,
and Kees Vissers. Analyzing the energy-efficiency of vision kernels on embedded
cpu, gpu and fpga platforms. In 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 336–336.
IEEE Computer Society, 2019.

[90] Mark Klaisoongnoen, Nick Brown, and Oliver Brown. Fast and energy-efficient
derivatives risk analysis: Streaming option greeks on xilinx and intel fpgas.
arXiv preprint arXiv:2212.13977, 2022.

[91] Hao Sun, Qi Deng, Xinzhe Liu, Yuhao Shu, and Yajun Ha. An energy-efficient
stream-based fpga implementation of feature extraction algorithm for lidar point
clouds with effective local-search. IEEE Transactions on Circuits and Systems
I: Regular Papers, 2022.

96

[92] Japan Science Center for Low Carbon Society Strategy and Technology Agency.
Impact of progress of information society on energy consumption (vol. 4): Fea-
sibility study of technologies for decreasing energy consumption of data centers.
4, 2022.

[93] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor processing unit. In Proceedings
of the 44th annual international symposium on computer architecture, pages
1–12, 2017.

[94] Soheil Hashemi, Nicholas Anthony, Hokchhay Tann, R Iris Bahar, and Sherief
Reda. Understanding the impact of precision quantization on the accuracy and
energy of neural networks. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017, pages 1474–1479. IEEE, 2017.

[95] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2704–2713, 2018.

[96] George Marsaglia. Xorshift rngs. Journal of Statistical Software, 8:1–6, 2003.

[97] Richard Brent et al. Note on marsaglia’s xorshift random number generators.
American Statistical Association, 2004.

[98] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator. ACM
Transactions on Modeling and Computer Simulation (TOMACS), 8(1):3–30,
1998.

[99] Mohammed Bakiri, Jean-François Couchot, and Christophe Guyeux. Fpga im-
plementation of F2 -linear pseudorandom number generators based on zynq
mpsoc: a chaotic iterations post processing case study. arXiv preprint
arXiv:1611.08410, 2016.

97

[100] Xilinx. Vivado design suite user guide: Design flows overview (ug892).
https://docs.xilinx.com/r/en-US/ug892-vivado-design-flows-overview/RTL-
Design, 2022. Accessed: 2023-01-31.

[101] Xilinx. Introduction to fpga design with vivado high-level synthesis
(ug998). https://docs.xilinx.com/v/u/en-US/ug998-vivado-intro-fpga-design-
hls, 2019. Accessed: 2023-01-31.

98

Publication List

Peer Review Journal Paper

1. Hiroki NISHIMOTO, Renyuan ZHANG, Yasuhiko NAKASHIMA, GPGPU Im-
plementation of Variational Bayesian Gaussian Mixture Models, IEICE Transac-
tions on Information and Systems, 2022, Volume E105.D, Issue 3, Pages 611-622,
Released on J-STAGE, Mar. (2022)

Peer Review Conference Paper

1. H. Nishimoto, T. Nakada and Y. Nakashima, "GPGPU Implementation of Varia-
tional Bayesian Gaussian Mixture Models," 2019 Seventh International Sympo-
sium on Computing and Networking (CANDAR’19), Nov. (2019)

2. H. Nishimoto, R. Zhang and Y. Nakashima, "Application and Evaluation of
Quantization for Narrow Bit-width Resampling of Sequential Monte Carlo," 2022
IEEE 35th International System-on-Chip Conference (SOCC’22), Sep. (2022)

3. Honda, Taku, Hiroki Nishimoto, and Yasuhiko Nakashima. "Speeding Up
VBGMM By Using Logsumexp With the Approximate Exp-function." 2020
Eighth International Symposium on Computing and Networking Workshops
(CANDARW). IEEE, 2020.

Misc

1. 西本宏樹,中田尚,中島康彦. "変分混合ガウスモデルアクセラレータ設計の
ための変分推論アルゴリズムの解析."研究報告システムと LSIの設計技術
(SLDM) 2018.29 (2018): 1-6.

2. 西本宏樹,中田尚,中島康彦. "GPGPUを用いた変分混合ガウスモデルのパラ
メータ推定高速化."研究報告システム・アーキテクチャ (ARC) 2019.1 (2019):
1-5.

3. 上垣柊季,芦原佑樹,阪口喜晃,西本宏樹. "ロケットGNSS-TECによる電離
圏電子密度構造観測",第 4回観測ロケットシンポジウム, Apr. (2022)

4. 西本宏樹,木村睦. "AIによる画像認識のしくみ / AISの講演の紹介" IDW’20
チュートリアル Dec. (2020)

99

