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Learning Approaches for Flexible and Resilient
Multi-robot Cooperative Transport∗

Kazuki Shibata

Abstract

Multi-robot transportation has attracted attention in robotics and can be ap-
plied in fields such as delivery, logistics, and search and rescue. While previous
studies have successfully derived control strategies for various tasks, they still have
strong assumptions. Consequently, the robots cannot transport unknown objects
or manage unexpected scenarios, where the number of robots differs from the
training environment owing to batteries’ discharges or actuators’ failure. There-
fore, this thesis proposes learning approaches for achieving flexible and resilient
multi-robot transportation. Firstly, a learning framework is proposed to design
communication and control strategies for various numbers of robots. The pro-
posed method exploits a distributed policy to reconstruct global information using
local information while determining the timing for communication. Therefore, it
can balance communication savings and control performance for various numbers
of robots. Secondly, we propose a learning framework of multi-robot task allo-
cation for various numbers of robots and objects with unknown weights. The
proposed method exploits a distributed policy that determines the timing for co-
operative and independent actions. Therefore, it can reduce the transport time
while transporting all the objects for various numbers of robots and objects with
unknown weights. Lastly, an approach for object shape estimation is proposed
to transport unknown-shaped objects. The proposed method adopts touch-based
contact detection using accelerometers to supplement vision sensors. However,
this method involves false-positive contact data because it reacts not only to ac-
tual contacts but also to the unstable behavior of the robot. Therefore, a robust
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shape estimation method is proposed to handle such false-positive contact data. I
hope this thesis plays an essential role in achieving a flexible and resilient system
that can deal with various transportation scenarios in real applications.

Keywords:

Cooperative transport, Task allocation, Shape estimation, Multi-agent reinforce-
ment learning, Consensus algorithm, Gaussian process
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柔軟かつレジリエントな協調輸送のための学習法∗

柴田一騎

内容梗概

マルチロボットによる協調輸送は配送、物流、捜索救助などの応用が期待

されており、ロボティクス分野で注目を集めている。協調輸送の従来研究

は、さまざまなタスクで制御戦略を導出できているが、依然としていくつか

の強い仮定がある。その結果、ロボットは未知の荷物を輸送できないこと

や、電池切れやアクチュエータの故障などの予期せぬ状況に対応できないこ

とがある。本論文は、様々な輸送シナリオに対応できる柔軟かつレジリエン

トな協調輸送のための学習法を提案する。初めに、様々な台数のロボットに

対する通信と制御の設計のための学習法を提案する。提案法は、通信のタイ

ミングを決定しつつ、局所情報から大域情報を復元する分散方策モデルを用

いる。これによって、提案法は、様々なロボットの台数に対して、制御性能

と通信節約を両立できる。次に、荷物の輸送に必要なロボットの台数が未

知、かつ様々な数の荷物とロボットに対するマルチロボットの役割分担に取

り組む。提案法は、協調と分業のタイミングを決定する分散方策モデルを採

用する。これによって、提案法は、荷物の輸送に必要なロボットの台数が未

知でも、様々な数の荷物とロボットに対して、与えられた全ての荷物を目的

地へ移動しつつ、輸送時間を短縮できる。最後に、未知形状の荷物を輸送す

るための形状推定に取り組む。提案法は、カメラを補完するため、加速度セ

ンサを用いた接触検出法を用いる。しかしながら、この検出法は、実際の衝

突だけでなくロボットの不安定な挙動にも反応するため、接触の誤検出デー

タを含む。そのため、誤検出データにも対応可能な形状推定方法を提案す

る。本論文は、実応用での様々な輸送シナリオに対応できる柔軟かつレジリ

エントなシステムの実現に重要な役割を果たすことが期待できる。
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1. Introduction

1.1. Background

In recent years, multi-robot transportation has attracted attention in robotics
and can be applied in fields such as delivery services, warehouse logistics [1, 2],
and search and rescue missions [3]. Multi-robot systems have several advantages
over single-robot systems regarding load capacity, time efficiency, and robustness
to individual robot failures. These systems can handle heavy objects that cannot
be transport by a single robot. Moreover, to transport multiple objects over large
areas, multi-robot task allocation improves the overall time efficiency.

A key property required for the multi-robot transportation is resilience, that is,
flexibility for various transportation scenarios. Firstly, the robots should manage
unexpected scenarios, where the robots may suffer from the discharging of the
batteries, the failure of the robots’ actuators, or the disconnection of communi-
cation among robots. Secondly, the robots should transport the object whose
parameters, including mass, moment of inertia, or center of gravity is unknown
because it is difficult to know these parameters by using cameras. Lastly, the
robots should transport unknown-shaped objects considering that it is often dif-
ficult for the robots to know the accurate shapes by cameras because they may
suffer from noises and occlusions.

The aim of this thesis is to construct a resilient multi-robot transportation
system that can deal with various unexpected transportation scenarios, as shown
in Fig. 1.1.

1
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Figure 1.1. Resilient system for multi-robot transportation

1.2. Motivation

Previous studies on multi-robot transportation have successfully derived control
strategies for various tasks, including cooperative pushing [4,5], cooperative ma-
nipulation using multiple arm robots [6–8], human and robots [9, 10], and aerial
manipulation by multiple quadcopters [11–15]. While these approaches have suc-
ceeded in real robot experiments, they still have strong assumptions as follows:

• the number of the robots is the same as that in the training environment
to design communication and control strategies.

• the number of robots to execute each task is available.

• the accurate shape of the object is available.

Consequently, the robots cannot transport unknown objects or manage unex-
pected scenarios, where the number of robots differ from the training environment
owing to batteries’ discharges or actuators’ failure. Therefore, this thesis proposes
learning approaches for achieving resilient multi-robot systems. Figure 1.2 shows
the basic concept of the proposed approach. The first idea is to adopt a neu-
ral network-based policy model that can handle objects with unknown weights.
The second idea is to adopt a distributed policy model that can be applied to
various numbers of objects and robots. The third idea is to adopt a consensus
to reconstruct global information from local information to improve the learning
performance. These ideas allows robots to flexibly transport objects even if the

2
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Figure 1.2. Basic concept of the approach

weights of the objects are unknown and the number of objects and robots varies.
We confirm the resilience of our approach through through three problems. We
first confirm the scalability of the number of robots through multi-robot coopera-
tive transport with various number of robots. Secondly, we confirm the scalability
of the number of objects and robots through multi-robot task allocation for multi-
ple objects with unknown and different weights. Finally, we confirm the flexibility
for unknown-shaped objects through shape estimation.

We first address a design problem of communication and control strategies for
multi-robot cooperative transport with various number of robots. In this prob-
lem, we focused on verifying the scalability of the robot with the assumption that
the shape of the object is known. Most multi-robot transportation studies have
relied on wireless communication to share observations among robots. However,
the communication bandwidth can be compressed if multiple robots transmit in-
formation at high fixed rates in the same network system. This will increase the
probability of message loss and cause long transmission delays [16]. Therefore,
it is crucial to minimize communication. Previous studies [17–20] have employed
distributed adaptive/robust control to deal with the unknown object dynamics
in the multi-robot cooperative transport. However, these studies have strong as-
sumptions and can only work with simple tasks where robots are rigidly attached
to the payload. Therefore, it is crucial to consider a data-driven framework with-
out these assumptions. In this study, we explored a multi-agent reinforcement
learning (MARL) approach [21, 22] to simultaneously solve the design problems

3



of communication and control strategies for multi-robot cooperative transport.
Several studies have proposed communication strategies to reduce the communi-
cation frequency [23,24] and the number of communicating robots and data [25].
These studies assume that the number of robots is equivalent to that in the
training environment. However, the number of robots can differ owing to the
discharging of the robots’ batteries, or additional robots may be introduced to
complete tasks quickly. Therefore, the learned strategy must also be applica-
ble to scenarios wherein the number of robots differs from that in the training
environment.

Next, we address a task allocation problem for multi-object transport using a
multi-robot system. In this thesis, a task corresponds to an object. The existing
studies on multi-robot task allocation have adopted deterministic optimization
methods [26–29] or auction methods [30–32] under the assumption that the num-
ber of robots to execute each task is available. However, these assumptions are
sometimes unrealistic. For instance, by using a camera, it may be possible to
obtain information on the shape of an object; however, it is challenging to ob-
tain the number of robots required to transport it. In this case, the assumption
does not hold. We explore a MARL framework for multi-object transport using
a multi-robot system. Each robot selects one object among multiple objects with
different and unknown weights. The objective is to transport all the objects to the
desired positions as quickly as possible. The existing centralized methods [33,34]
assume the number of robots and tasks to be fixed, which is inapplicable to
the scenarios in which the number of robots and tasks differs from the learning
environment. Meanwhile, the existing distributed methods limit the minimum
number of robots and tasks to a constant value, making them applicable to vari-
ous numbers of robots and tasks [35]. However, they cannot transport an object
whose weight exceeds the load capacity of robots observing the object. Therefore,
it is crucial to consider a learning framework that can handle scenarios for various
numbers of robots and objects with different and unknown weights.

Finally, we addressed shape estimation to extend the control framework of co-
operative transport to an unknown-shaped object. While most previous studies
on shape estimation have relied on vision sensors, they are noisy and suffer from
occlusion. To supplement the vision-based sensing, tactile sensing was used to
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improve shape estimation [36–38]. Most touch-to-sense approaches, including
grasping [39–41] and manipulation [42–44], have explicitly assumed that a tactile
sensor correctly detects the contact occurrence. However, such an assumption
may not always be realistic. Given that it is difficult to determine, in advance,
which parts of the robot will touch the construction, a number of sensors should
be mounted on the robot in an omnidirectional configuration. However, this
may be unfeasible regarding the robot’s payload, cost, or power consumption.
Therefore, We explored an alternative approach to the estimation of the shape
of an object by touch without the need for tactile sensors. That is, we consid-
ered omnidirectional contact detection using an accelerometer incorporated into
a robot. This approach would avoid the issues associated with payload, cost, and
power consumption. However, the accelerometer may react not only to actual
contact with the object but also to unstable behavior induced by gusts of wind,
collisions with other robots, etc. As a result, false-positive contact data could
be combined with normal contact data. Therefore, when using this approach, it
is crucial to incorporate a robust shape estimation method capable of handling
such false-positive contact data.

1.3. Contribution

We first propose a novel MARL framework of event-triggered communication and
consensus-based control for distributed cooperative transport. The objective of
this study was to control the payload to the desired state for scenarios wherein
the number of robots differs from that in the training environment, as shown in
Fig. 1.3 while minimizing communication among robots. For the settings in this
research, the numbers of communication and environmental robots were main-
tained constant during training but variable during execution. The proposed
policy model exploits consensus with local communication robots to reconstruct
global information, such as resultant force and torque. Limiting the minimum
number of environmental robots to a fixed number of communication robots en-
ables the proposed method to be applicable to a varying number of robots. In
particular, our policy model estimates the resultant force and torque applied to
an object in a consensus manner [45,46] using the estimates of the resultant force
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Five robots (training)
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Desired state

robot

Three robots (execution)

Four robots (execution) Six robots (execution)

Figure 1.3. Cooperative rotation task using multiple robots. The proposed framework can
control the payload to the desired state for scenarios wherein the number of robots differs from
that in the training environment.

and torque of the communication robots. Moreover, under local observations and
estimates of the resultant force and torque, the proposed framework can compute
the control and communication inputs to determine when to communicate with
the neighboring robots. Therefore, the control performance and communication
savings can be balanced, despite the number of robots being different from that
in the training environment. To the authors’ knowledge, no similar studies on
learning event-triggered control of multi-robot systems have been reported so far.

Next, we propose a learning framework that can handle scenarios for various
numbers of robots and objects with different and unknown weights. The proposed
framework exploits a structured policy model consisting of 1) the consensus of task
priorities with global communication and 2) a neural network-based distributed
policy model that determines the timing for consensus. If robots cannot transport
the object, they select cooperative actions by reaching a consensus regarding high-
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(a) Cooperative action (b) Independent action

Figure 1.4. Multi-object transportation using a multi-robot system. (a) Robots perform coop-
erative actions by building a consensus on the high-priority object when they cannot move the
object. (b) Robots perform independent actions when they can move the selected objects.

priority object. The distributed policy model determines the timing for consensus,
thus balancing the cooperative and independent actions, as illustrated in Fig. 1.4.
The policy is optimized by the MARL through trial and error. This structured
policy of local learning and global communication makes our framework suitable
for scenarios where the numbers of robots and objects vary, and the number of
robots required to transport an object is unknown.

Finally, we propose a robust shape estimation method that can handle false-
positive contact data, as shown in Fig. 1.5. Our approach involves a robust shape
estimation algorithm based on Gaussian process implicit surfaces (GPIS) [47–51],
that is, robust GPIS. Because the GPIS assumes that the observations of contact
data follow a normal distribution with a constant variance, it estimates incorrect
surfaces around the false-positive contact data. In contrast, our GPIS introduces
heteroscedasticity into each item of contact data, thus preventing incorrect shape
estimates produced by false-positive contact data.

Although we have not achieved cooperative transport of unknown-shaped ob-
ject, we discuss the future direction to integrate the shape estimation into the
learning framework of cooperative transport in Chapter 7.
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(b) Observed data and flight trajectory

Figure 1.5. (a) 3D construction. (b) Observed contact data and flight trajectory of quadcopter.
The circles, black dots, gray dots, and gray lines represent internal points, contact points,
external points, and the flight trajectory of the quadcopter, respectively.

1.4. Structure of thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces related
work. Chapter 3 describes the preliminaries. Chapters 4, 5, and 6 propose
the learning framework of distributed cooperative transport, multi-robot task
allocation, and shape estimation for unknown objects, respectively. Chapter 7
describes the open issues and scope of future work. Finally, Chapter 8 presents
the conclusions of this thesis.
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2. Related work

2.1. Distributed cooperative transport

In this section, we introduce model-based approaches that derive the control
policy using distributed control, based on the dynamics model of cooperative
transport. Furthermore, model-free approaches are introduced, which derive the
control policy using data-driven approaches without the dynamics model.

2.1.1. Model-based approaches

Previous studies on cooperative transport have derived control strategies based
on the dynamics model. A key issue of cooperative transport lies in control-
ling the payload without prior knowledge of the payload and robots. Franchi et
al. [17, 18] proposed a decentralized parameter estimation of an unknown load
using observations of the neighboring robots. Based on this algorithm, Petitti et
al. [19] proposed a robust control strategy to stabilize the payload in the pres-
ence of estimation uncertainties. Marino et al. [52] proposed a distributed control
strategy with the estimation of an unknown object without explicit communica-
tion and prior knowledge of the number of robots. Culbertson et al. [20] proposed
a distributed adaptive control strategy for cooperative transport of an unknown
object without parameter estimation. Their control strategy required no commu-
nication between robots and made the payload state asymptotically converge to
the desired state with a theoretical proof using the Lyapunov function.

Other studies employed variable-rate communication to reduce the communica-
tion frequency. Dimarogonas et al. [53] introduced event-triggered control [54,55]
into multi-agent communication to determine the timing of the communication
with neighboring agents. Trimpe et al. [56] proposed a distributed control strategy
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with event-triggered communication to determine both the timing and transmit-
ted data based on the error between the actual measurements and the estimates.
Furthermore, they demonstrated the effectiveness by conducting balancing cube
experiments using six modules, each having sensors, actuation, and computational
units. Dohmann et al. [57] were the first to propose a distributed control strategy
with event-triggered communication for cooperative manipulation. Their meth-
ods minimized the frequency of receiving positions and velocities of end effectors
from neighboring agents while accomplishing several manipulation tasks.

However, these approaches require a dynamics model and cannot be applied
to tasks wherein dynamics models are difficult to formulate. In contrast, the
proposed method is model-free and can be applied to more cooperative transport
tasks compared to these approaches.

2.1.2. Model-free approaches

Several recent studies [34,58,59] have adopted MARL approaches for multi-robot
cooperative transport without requiring a dynamics model. However, one of the
main problems in MARL is that the variance of the estimated policy becomes
large owing to the changing policies of other agents [60]. To address this issue,
several authors [21, 22] proposed a learning framework of centralized training
and decentralized execution, which learns critics for multi-agents and derives a
decentralized policy using observations from each agent; however, these methods
cannot determine the timing of communication and can only function with fixed-
rate communication.

To learn control strategies while saving communication costs, several authors
[23,24] proposed a policy model using event-triggered control to minimize the con-
trol signals from a single learning agent to its actuator while achieving the control
objective. Demirel et al. [61] proposed DEEPCAS, a reinforcement learning-based
control-aware scheduling algorithm in multi-agent setups. In this method, a cen-
tralized scheduler called DEEPCAS allocates M communication channels to N

agents (M ≪ N) while designing the agents’ controllers beforehand. Our pre-
liminary study [25] extended the policy model [23, 24] in multi-agent setups to
reduce the frequency, number of communicating agents, and transmitted data.
Although these methods could save communication costs, they adopted a policy
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model with inputs dependent on the number of agents and were inapplicable to
problems wherein the number of agents was different from that in the learning
environment.

The proposed framework combines the estimation of the resultant force and
torque in a consensus manner and an event-triggered communication to determine
the timing of communication into a policy model. Considering that our policy
model computes the control and communication inputs under local observations
and the estimates of the resultant force and torque of the neighborhood agents,
it can be applied to scenarios wherein the number of agents differs from that in
the training environment.

While the present study adopts a policy model using event-triggered control,
it differs from the methodology proposed in [23–25] as it involves an estimation
mechanism and a distributed policy model under local observation. Moreover, the
proposed framework can transport the payload to the desired state for varying
number of agents.

2.2. Multi-robot task allocation

In this section, we introduce deterministic optimization, metaheuristic and auc-
tion methods for multi-robot task allocation. Furthermore, we introduce MARL
methods that do not require the number of robots to execute each task.

2.2.1. Deterministic optimization methods

Deterministic optimization formulates the task allocation problem as an optimiza-
tion problem aimed at minimizing the total travel distance under constraints for
the number of robots required for each task. These approaches have adopted var-
ious optimization techniques, such as the Hungarian algorithm [26, 27], integer
linear programming [28], and mixed integer linear programming [29]. Although
these studies can guarantee optimality in terms of the total travel distance, most
methods require prior information regarding the number of robots required for
each task.
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2.2.2. Metaheuristic methods

Metaheuristic methods are inspired by the division of labor exhibited by social
insects. A common approach has adopted threshold models [62,63], in which each
robot selects a task under local observations using an activation threshold and a
stimulus associated with each task. Although these methods can handle varying
numbers of robots and tasks, they may allocate unnecessary tasks to robots, thus
reducing the time efficiency.

2.2.3. Auction methods

Auction algorithms [64, 65] are common methods for multi-robot task allocation
and have been studied via centralized and decentralized approaches. The central-
ized method [66] adopts the auctioneer, which collects the bids from the bidders,
and allocates the highest bidder to the task. In contrast, Choi et al. [67] propose
a decentralized auction-based algorithm without the auctioneer. This method
adopts a consensus algorithm to estimate the bids of other robots. Then, the
robots allocate the task to the highest bidder using the estimated bids. There-
fore, each robot can assign a task even if it can locally communicate with other
robots. However, their method focuses on the problem where a single robot can
execute each task.

Braquet and Bakolas [32] addressed the closest problem to our study, where
each task requires multiple robots. Their method adopts the consensus algorithm
similar to [67], which estimates the list of selected tasks, the list of winning bids,
and the list of completed allocations. Robots assign a task to the robot with
the highest bid among the unassigned robots based on the list of completed
allocations. Therefore, their method can be applicable to the problem where
each task requires multiple robots. However, their methods require a probability
of completing each task, which is difficult to compute for objects with unknown
weights.

2.2.4. MARL methods

Recent studies [33,34] have addressed task allocation problems using the MARL.
These approaches formulate a task allocation problem using the Markov decision
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process and learn the optimal policies using a multi-agent deep deterministic pol-
icy gradient (MADDPG) [21]. However, these methods adopt centralized training
assuming that the number of robots and tasks is constant, failing in scenarios with
different numbers of robots and tasks. To address this problem, Hsu et al. [35]
proposed a distributed policy model, which limits the minimum number of robots
and tasks to be constant. The trained policies are applicable to up to 1000 robots
and 1000 tasks through multi-target tracking simulations. Although their meth-
ods can be applied to various numbers of robots and tasks, they cannot handle
a situation where the number of robots required to execute a task exceeds the
number of robots observing it.

Although the proposed framework uses distributed policies under local obser-
vations, it differs from the method [35] in that our method employs a structured
policy model consisting of predesigned dynamic task priorities with global commu-
nication and a neural network-based distributed policy model. Therefore, robots
can perform all the tasks efficiently even when the number of robots required to
complete each task is different and unknown.

2.3. Shape estimation

In this section, we introduce shape estimation approaches using deep learning
and GP methods.

2.3.1. Deep learning methods

Several recent studies have addressed shape estimation using deep learning. Wu et
al. [68] and Dai et al. [69] proposed the use of 3D-CNN for shape estimation, and
Varley et al. [70] proposed a novel grasping framework based on the architecture
in [69]. Watkins-Valls et al. [71] proposed an architecture that incorporates depth
images and tactile information to improve shape estimation in occluded regions.
Through experiments using different types of 3D object shapes, they confirmed
improvements in shape estimation errors and in the success rate of grasping com-
pared with the GPIS. While these studies obtained impressive performance in
shape estimation, all except for Lundell et al. [72] are based on the deterministic
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model. Therefore, it is not straightforward to apply this architecture to a model
where there is estimation uncertainty and different kinds of noise.

2.3.2. GP methods

Other studies have focused on the use of GPIS by representing object shapes in
a GP model. Caccamo et al. [48] and Mahler et al. [49] combined visual data
with haptic measurements using GPIS. In addition, using the basic framework
of GPIS, Dragiev et al. [50] employed a combination of laser and tactile sensing
while Gerardo-Castro [51] used a combination of lasers and radar.

Basically, most of the GPIS methods are based on a homoscedastic GP, in which
the distribution of observations is assumed to follow a normal distribution with
a constant variance. However, this assumption may be unsuitable for application
to cases involving some outliers because both normal and outlier data are handled
equally.

To overcome this issue, several authors proposed heteroscedastic GPs (HGPs),
for which the variation in the input or output noise is considered to be non-
uniform. Kuss et al. [73] and Jylanki et al. [74] proposed a robust GP, which
is a HGP that assumes that the noise variance is data-dependent. McHutchon
et al. [75] proposed a GP with input noise (NIGP). This is a HGP that assumes
that the noise variance differs for each input dimension. Lazaro-Gredilla et al. [76]
proposed a variational heteroscedastic GP (VHGP), which is a HGP that assumes
that the noise variance is input-dependent. Among the available HGPs, we found
that the robust GP is particularly suitable for our purpose given that it provides
us with the uncertainty of data.

Among practical research using a robust GP as a mathematical model, Martinez-
Cantin et al. [77] proposed robust Bayesian optimization for active exploration of
optimal policy parameters in a humanoid robot walking under the condition that
there exist outliers of rewards caused by perturbations. While our methodology
used a common robust GP as a mathematical model, it differs from the method-
ology in [77] in terms of shape reconstruction and false-positive contact detection
when considering the uncertainty for each item of contact data.
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3. Preliminaries

3.1. Distributed cooperative transport

3.1.1. Notation

Let the position, yaw angle, velocity, angular velocity, desired position, and the
desired yaw angle of the payload in world coordinates be denoted by x ∈ R2,
θ ∈ R, v ∈ R2, ω ∈ R, x∗ ∈ R2, and θ∗ ∈ R, respectively.

The position, yaw angle, and control input of the robot i (i = 1, · · · , N) are
represented by xi ∈ R2, θi ∈ R, and ui ∈ R2, respectively. Robot i applies a force
fi ∈ R2 and torque τi ∈ R on the payload.

3.1.2. Problem formulation

We consider a team of N robots pushing a rigid payload with an unknown mass
and moment of inertia. In our setting, N is constant during the training phase
but variable during the execution phase. The objective of this problem is to
control the payload to its desired state while reducing communication with other
robots for varying numbers of robots during the execution phase.

According to [20], we assumed the following:

• all robots know x∗ and θ∗;

• robot i can observe x, θ, v, ω, xi, θi, fi, and τi.

Moreover, we assumed the following:

• all robots know the object shape.

• all robots know N .
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Figure 3.1. Distributed cooperative transport.

• the robot can communicate the estimates of the resultant force and torque
with the K nearest robots, as shown in Fig. 3.1, where K is constant.

3.1.3. MARL settings

We introduce the MARL setting for distributed cooperative transport according
to a Markov decision process.

Let us denote the state, observation, and action of robot i as si, oi and ai,
respectively. Robot i selects action ai under its local observation oi depending
on a policy πi. After N robots select the current actions [a1, · · · ,aN ], the current
states [s1, · · · , sN ] transition to the next states [s′

1, · · · , s′
N ]. At current step t,

robot i receives a reward rt ∈ R, which is defined by the error between the current
and desired state of the payload and the communication costs. Robot i updates
its policy by maximizing the expected reward E[Rt] = E

[∑T −1
k=0 γ

krt+k

]
, where

γ ∈ [0, 1] is a discount factor, and T is the total number of control steps per
episode.

3.1.4. Communication topology

Let a binary variable be defined by γij; using this, robot i receives data from
robot j. Specifically, γij = 1 if robot i receives data from robot j; otherwise,
γij = 0.
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The entries of the adjacency matrix A ∈ RN×N , i.e., Aij (i, j ∈ {1, · · · , N}),
are given by

Aij ←

1, if γij = 1
0, otherwise

.

The degree matrix D ∈ RN×N is a diagonal matrix whose entries Dij (i, j ∈
{1, · · · , N}) are given by

Dij ←

di, if i = j

0, otherwise
,

where di represents the total number of robots that communicate with robot i.
Herein, we define several terms related to the communication topology based

on graph theory. The communication topology is undirected if the communi-
cation between robots is bi-directional; otherwise, the communication topology
is directed. Moreover, the communication topology is connected if communica-
tion is possible for any robot when starting from any robot at adjacent robots;
otherwise, the communication is disconnected.

According to [78], the communication topology is connected if the following
condition is satisfied.

rank(L) = N − 1, (3.1)

where L := D−A is the graph Laplacian.

3.1.5. Consensus algorithm

We consider N robots with a vector c := [c1, · · · , cN ]. The objective of this
problem is to converge N vectors to the same value. One common method is
Laplacian averaging [79], which is used to average the estimates of N robots.
This algorithm achieves a consensus given by

c[s+ 1] = c[s]− kLc[s], (3.2)
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where c[s] represents the vector at step s, and k is a positive constant. Using Eq.
(3.2), we can make c converge to the average value after m iterations, as follows:

lim
m→∞

c[s+m] = 11⊤

N
c[s] (3.3)

According to [80], the consensus in Eq. (3.3) can be guaranteed if the following
conditions are satisfied:

• The communication topology is undirected and connected.

• 0 < k < 2
N

3.2. Multi-robot task allocation

3.2.1. Notation

We denote the position of robot i (i = 1, · · · , N) by xi ∈ R2. The position,
velocity, and desired position of the object l (l = 1, · · · ,M) are represented by
zl ∈ R2, vl ∈ R2 and z∗

l ∈ R2, respectively. Robot i can observe robots j ∈
NRobot

i := {ji1, · · · , jiK} and objects l ∈ N Load
i := {li1, · · · , liK}, whose positions

are K nearest from xi.

3.2.2. Problem formulation

We consider a team of N robots. Each of these robots selects one object simulta-
neously among the M objects with different and unknown weights. Multi-object
transportation requires a huge amount of learning time compared to the single-
object transportation. Therefore, we learned the multi-robot policies that derive
multi-robot task allocation and communication strategies while the control strat-
egy is not considered. In this study, we simplify the problem such that the robots
can move the object if the total load capacity of the robot within a certain dis-
tance from the object exceeds the mass of the object.

The objective is to transport all the objects to the desired positions as quickly
as possible.

We made the following assumptions:
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• Robots know M and N

• Robots know the current and desired positions of M objects

• Robots can communicate with other robots if necessary

3.2.3. MARL settings

To address the multi-robot task allocation problem for multi-object transport, we
describe the MARL settings using a Markov decision process.

Let us denote the state, action, and observation of robot i (i = 1, · · · , N) as
si, ai, and oi, respectively. Robot i selects action ai under local observation oi

including robots j ∈ NRobot
i and objects l ∈ N Load

i . Action ai includes a variable
to compute the priority of objects l ∈ N Load

i and variables to determine com-
municating task priorities with other robots. Robot i updates the task priorities
by computing the current actions ai, then selects the object with the highest
priority among the M objects. After robot i moves to the selected object for a
certain control period, si transitions to the next state s′

i. Simultaneously, robot
i receives reward rt at every step t when moving the object or carrying it to the
desired position. Robot i updates its policy by maximizing the expected reward
E[Rt] = E

[∑T −1
k=0 γ

krt+k

]
, where γ ∈ [0, 1] is a discount factor and T is the total

number of steps per episode.

3.3. Touch-based object shape estimation using
accelerometers

3.3.1. Problem formulation

This section introduces the shape estimation problem considered in the present
study. The objective of this problem is to estimate the shape of an unknown
object placed in a given exploration region Q ∈ R3.

In [47], an implicit surface is used to describe the shape of an object by means
of a real-value shape potential function. Based on this shape potential function,
we can determine whether each point is located on the surface of, inside, or some
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distance from the object. As described in [50], we defined the observation of a
shape potential value yi (i = 1, · · · , n) at the observed point xi ∈ R3 as

yi =


0,xi on the surface
1,xi outside the surface
−1,xi inside the surface.

In this study, the shape of the object is computed offline. Moreover, we assumed
that the position of the quadcopter is accurate. This assumption holds true when
using high-precision positioning systems such as motion capture systems or RTK-
GPS.

3.3.2. Observation model

Observations were obtained by detecting events. An illustration of this event de-
tection when using an acceleration is shown in Fig. 3.2. In this example, an event
takes the form of the quadcopter colliding with the object or becoming unstable.
If an event occurs and the acceleration becomes larger than the threshold, yi is
labeled as being zero. When physical contact occurs, false-negative contact data
can occur when the quadcopter collides with the object at low speed. Moreover,
false-positive contact data are detected when the quadcopter becomes unstable.

As shown in Fig. 3.2, it is difficult to determine the threshold so that the
number of false-negative and false-positive contact data will be zero. Although the
number of items of false-positive contact data could be reduced by constructing
more sophisticated classifiers, it is unrealistic to classify false-positive contact
data with a 100 % accuracy rate for objects made of any material. Therefore, in
the present study, we explored another approach by assuming that the generation
of false-positive contact data is unavoidable.

3.3.3. Distribution of observations

With GPs, we are required to assume the distribution of observations. With
homoscedastic GPs, the distribution is assumed to follow a normal distribution,
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Figure 3.2. Event detection and contact detection based on acceleration. When physical con-
tact occurs, the acceleration becomes larger than a threshold (dashed line), such that the
measurement y will be zero. In this case, false-negative contact data can be detected when
the quadcopter collides with an object at low speed. Moreover, false-positive contact data are
detected when the quadcopter becomes unstable and the acceleration exceeds the threshold.

21



0 1

Student's t

Normal

physical

contact data

p(y)

false-positive

contact data

y

Figure 3.3. Comparison of Student’s t- and normal distribution.

as defined by

N (yi | fi, σ
2) = 1√

2πσ2
exp

[
−(yi − fi)2

2σ2

]
,

where fi and σ2 represent the shape potential function and the noise variance with
a constant value, respectively. This distribution may be unsuitable for application
to our problem; contact data with false-positive samples cannot be explained by
such a light-tailed distribution, owing to the nature of the false-positive contact
data and its representation with three natural numbers (-1/0/1). Thus, it may
be unsuitable for use with false-positive contact data.

Therefore, we introduce the Student’s t-distribution for the observations, given
by

T (yi | fi, λ, ν) =
Γ(ν+1

2 )
Γ(ν

2 )

(
λ

πν

) 1
2
[
1 + λ(yi − fi)2

ν

]− ν+1
2

,

where ν, λ and Γ represent the degree of freedom, a scale parameter and gamma
function, respectively. As shown in Fig. 3.3, false-positive contact data can be
explained with a greater degree of probability, owing to its heavy-tailed distribu-
tion.
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4. Deep reinforcement learning
of event-triggered
communication and
consensus-based control for
distributed cooperative
transport

In this chapter, we propose a multi-agent reinforcement learning framework of
event-triggered communication and consensus-based control for distributed co-
operative transport. The proposed policy model estimates the resultant force
and torque in a consensus manner using the estimates of the resultant force and
torque with the neighborhood robots. Moreover, it computes the control and
communication inputs to determine when to communicate with the neighboring
robots under local observations and estimates of the resultant force and torque.
Therefore, the proposed framework can balance the control performance and com-
munication savings in scenarios wherein the number of robots differs from that
in the training environment.

We demonstrate the effectiveness of the proposed algorithm through coopera-
tive transport and cooperative rotation tasks. We confirm the versatility of our
framework through cooperative transport task using two robots for randomly ar-
ranged initial and desired positions of the payload in the simulations. Moreover,
we confirm the scalability of our framework by using a maximum of eight and six
robots in the simulations and experiments, respectively.
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The remainder of this chapter is organized as follows. Section 4.1 introduces
the proposed framework of event-triggered communication and consensus-based
control. Section 4.2 demonstrates the effectiveness of our algorithm through nu-
merical simulations. Section 4.3 demonstrates the effectiveness of our method
through real robot experiments. Finally, Section 4.4 presents the conclusions of
this chapter.

4.1. Method

This section introduces a MARL framework that can be applied to cooperative
transport with varying numbers of robots.

4.1.1. Distributed policy model

Overview

Figure 4.1 presents the proposed policy model of event-triggered communication
and consensus-based control for distributed cooperative transport. Our method
exploits a distributed policy model that computes the communication and control
inputs using local observations and the resultant force and torque with consensus
estimation.

Robot i clusters N robots into K nearest robots in the group Ni. To ensure
that the policy is scalable to the number of robots, each robot estimates the
resultant force and torque using those of the neighborhood robots. Note that the
robot can control the payload using the velocity of the payload if the payload
moves. However, the robot cannot use the velocity because it will always be 0
if the load cannot be moved. Therefore, we considered the resultant force and
resultant torque, which are the internal information of the payload. Based on the
consensus algorithm, robot i estimates the resultant force Fi ∈ R2 and torque
Ti ∈ R using Fj and Tj obtained from robot j ∈ Ni via communication. Event-
triggered communication (ETC) determines when to communicate with robot
j ∈ Ni at every control step. Policy πi calculates the control input ui ∈ R2 and
communication input αi ∈ R using local observation oi = [e⊤, v⊤, ω,x⊤

i θi]⊤, Fi

and Ti, where e = [x⊤ − x∗⊤, θ − θ∗]⊤ is the error vector.
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Figure 4.1. The proposed policy model of event-triggered communication and consensus-based
control for distributed cooperative transport

Considering that our policy model computes the control and communication
inputs under local observations and the estimates of the resultant force and torque
of the neighborhood robots, it can be applied to scenarios wherein the number of
robots differs from that in the training environment.

Consensus estimation

This subsection details the estimation of the resultant force and torque in a
consensus manner. Let denote the estimates of robot i by ci = 1

N
[F⊤

i , Ti]⊤. By
communicating with nearest robots, ci can be estimated by

ci[t+ ∆t] = ci[t] + k
∑

j∈Ni

(cj[t]− ci[t]), (4.1)

where ∆t is the consensus period. At every control period ∆T (> ∆t), robot i
updates ci using ci ←

[
f⊤

i , τi

]⊤
. We adopted the average value to compute the

resultant force and torque by multiplying the average value by N . By estimating
the resultant force and torque, the robots can transport the object even if the
number of robots varies.
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In the present study, we cannot theoretically guarantee the convergence of the
consensus estimation. Instead, we verify the manner in which a communication
topology using our method may satisfy the first condition of the average consensus
through numerical simulations.

Considering ∆t in Eq. (4.1) is smaller than ∆T , the communication costs may
increase owing to the high-rate communication required for the estimation. To
address this issue, we introduce an event-triggered architecture that determines
the timing of communication with neighborhood robots while controlling the
payload to the desired state.

Event-triggered communication and consensus-based control

In this subsection, we introduce the ETC and consensus-based control that bal-
ances the transport performance and communication savings for varying number
of robots.

In ETC, robot i receives cj from robot j ∈ Ni by

cj =

cj, if γij = 1
0, if γij = 0

. (4.2)

According to [23,24], the timing of communication is decided based on a trigger
law given by

γij = 1⇐⇒ αi ≥ 0 (4.3)

where αi ∈ [−1, 1] is an output of the policy of robot i. Using Eq. (4.3), robot i
makes the communication decision with robot j ∈ Ni by

γij =

1, if αi ≥ 0 and j ∈ Ni

0, otherwise
, (4.4)

Moreover, to ensure that the communication topology is undirected, robot i
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updates γij, given as follows:

γij ←

1, if γji = 1
γij, otherwise

. (4.5)

Our ETC and consensus-based control involves a policy that calculates the
communication and control inputs using local observations, as well as the resul-
tant force and torque with consensus estimation, given as follows:

ai =
[
u⊤

i , αi

]⊤
= πi (oi, ci) , (4.6)

where πi is computed by a deep neural network. The communication input αi is
used to make the communication decision with other robots in the next control
step using Eq. (4.4).

The calculation steps used in the ETC and consensus-based control is shown
in Algorithm 1.

Algorithm 1: ETC and consensus-based control
Initialize x, θ, x∗, θ∗, xi, θi (i = 1, · · · , N)
for t = 1, ..., T do

for i = 1, ..., N do
/* procedure for grouping Ni

Calculate K nearest robots among N robots
/* procedure for ETC
Determine the robots to communicate using Eqs. (4.2) and (4.5)
/* procedure for consensus-based control
Update ci ← [f⊤

i , τi]⊤
for s = t, ..., t+ ∆T do

Estimate ci using Eq. (4.1)
Compute ui and αi using Eq. (4.6)
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4.1.2. Reward design

To balance the control performance and communication savings, we designed the
reward of robot i, given as follows:

ri = −∥e∥2 − λ1
∑

j∈Ni

γij − λ2pi (4.7)

pi =

1, if ∥xi − x∥2 > δ

0, otherwise
(4.8)

where δ and λi (i = 1, 2) are the positive constant and hyperparameters, re-
spectively. The second term in Eq. (4.7) minimizes the communication with
neighboring robots at every control step. Moreover, we added the third term
in Eq. (4.7) to improve the learning efficiency by making robots move within a
certain distance δ from the payload’s position.

4.1.3. Policy optimization

The weight parameters in the policy networks in the learning process are opti-
mized to maximize the expected reward. In this study, we optimized the multi-
agent policies using the multi-agent deep deterministic policy gradient (MAD-
DPG) [21], which is a multi-agent variant of the deep actor-critic algorithms.

One of the primary problems in MARL is that the variance of the policy gra-
dient can be large when the number of agents increases in partially observable
environments. To address this issue, the MADDPG algorithm adopts a learning
framework called "centralized training and decentralized execution." The critic
networks approximate the optimal Q-value functions using observations and ac-
tions of all agents. In contrast, the policy networks are optimized using a policy
gradient method, wherein each actor network can access its own observations
and actions. Once the policies are trained, each policy network can compute the
action under local observations. Details of the policy optimization steps can be
found in [21].
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x
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Goal

Figure 4.2. Cooperative transport task. The colored circles, gray triangle, and black dot
represent the robots, payload, and the position of the payload, respectively.

4.2. Simulation

We demonstrate the effectiveness of the proposed algorithm through cooperative
transport and cooperative rotation tasks in a simulation. We confirmed the ver-
sality of the framework through a cooperative transport task using two robots for
randomly arranged initial and the desired positions of the payload. Moreover, we
confirmed the scalability of our framework through a cooperative rotation task
using varying number of robots.

4.2.1. Cooperative transport task

Setup

We began with a 2D cooperative transport task to confirm that the proposed
algorithm could balance the control performance and communication saving for
randomly generated initial positions and the desired positions of the payload, as
shown in Fig. 4.2.

We used a triangular object with side lengths of 1.0, 1.0, and 0.4 m. The mass
and moment of inertia were set to 1.0×101 kg and 6.0× 10−2 kg·m2, respectively.
The shape of the robot was circular. The radius, mass, and moment of inertia
were set to 0.10 m, 1.1 kg and 5.3 kg·m2, respectively. The control input of robot
i was ui = [uv

i , u
ω
i ]⊤, where uv

i ∈ R and uω
i ∈ R are the linear and angular velocity

inputs, respectively. We also set | uv
i |≤ 0.4 and | uω

i |≤ 2.0.
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We set the number of robots and neighborhood robots to N = 2 and K =
1, respectively. The initial positions of the payload and robots were randomly
generated within region Q := {(x, y) | 2.0 ≤ x ≤ 3.0, 2.0 ≤ y ≤ 3.0}, whereas the
desired position of the payload was randomly generated within region Q.

Further, numerical simulations were carried out using the code in [81] and
the dynamics presented in [82]. Table 4.1 lists the simulation conditions. The
parameters used in the MARL method were set by trial and error.

To confirm the effectiveness of the proposed framework, we compared our al-
gorithm with two communication topologies, as follows:

• Full: each robot receives the resultant force and torque at every control
step.

• Nocom: each robot never receives force and torque from other robots.

We carried out three trainings for each communication topology under the same
conditions.

Moreover, to evaluate each communication topology quantitatively, we defined
the control error and communication cost as follows:

E = 1
M

M∑
m=1
∥em(T )∥2 (4.9)

C = 1
M

M∑
m=1

N∑
i=1

N∑
j=1

T∑
k=1

γm
ij (k)∆T

∆t (4.10)

where M is the number of trials. We set M = 1.0× 103 in the evaluations.

Training performance

Figure 4.3 shows the comparison of the cumulative reward of the first term in
(4.7) at each episode when applying each method to the cooperative transport
task. The results showed that the proposed method achieved a cumulative reward
as high as that of the Full method. Moreover, it was greater than that of the
Nocom method. These results indicate that the estimates of the resultant force
and torque could improve the cumulative reward.
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Table 4.1. Simulation conditions of the cooperative transport task

Variable Value
Control period [s] 0.1

Consensus period [s] 0.05
k in Eq. (4.1) 0.5

Number of steps per episode 1.5×102

Number of episode 8.0×105

Number of hidden layers (critic) 4
Number of hidden layers (actor) 4

Number of units per layer 64
Activation function of hidden layers ReLU

Activation function of output layers (critic) linear
Activation function of output layers (actor) tanh

Discount factor 0.99
Batch size 4096

Replay buffer 1.0×106

-200

-300
0 8

Episode (�105)

R
ew

ar
d

Figure 4.3. Comparison of the cumulative reward of the first term in Eq. (4.7) when applying
each method to the cooperative transport task.
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3

(a) Full

33

(b) Nocom

2

(c) Ours

Figure 4.4. Results of position control for randomly arranged initial positions of the payload
when applying each method to the cooperative transport task. The blue lines, black dots, red
dots, and dashed circles denote the trajectories of the payload, positions of the payload at the
initial and last steps, and the areas within 0.1 m from the desired position, respectively. The
number denotes the total number of trials where the payload fails to be controlled within 0.1
m from the desired position.

Table 4.2. Comparisons of the control error and communication cost when applying each
method to the cooperative transport task.

Full Nocom Ours
E 0.05 m 0.22 m 0.05 m
C 4.0×102 0.0 1.5×102

Transport performance and communication saving

Figure 4.4 shows the results of cooperative transport for randomly arranged initial
positions of the payload when each method is applied. We performed 100 trials for
each method. The results showed that the Full and Ours successfully controlled
the position of the payload within 0.1 m from the desired position for most trials,
whereas the Nocom method failed for 33 trials.

Table 4.2 shows the comparisons of the mean absolute error and communication
cost for each communication topology. The results showed that our method
achieved errors as small as that of the Full method. Moreover, compared to the
Full method, our method saved communication costs by 63%.

Overall, our method achieved transport performance as good as that of full
communication topology while reducing communication costs for randomly gen-
erated initial positions and desired positions of the payload.
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Communication and estimation

Herein, we verify that our method can determine communication timing while
estimating the resultant force and torque. Figure 4.5a shows the trajectories and
communication occurrence at each time. The results showed that communication
occurred while robots determined the edge that they should push. During this
period, robot 1 changed the pushing position on the same edge as robot 2 to
move the payload. Afterwards, the robots kept pushing the payload without
communication until the payload reached the desired position.

Figures 4.5b and 4.5c show the communication occurrences and the estimates
of the resultant force and torque by two robots. The results showed that the
communication rate was high a few seconds after the start of the control, whereas
it was low at the end of the control. Moreover, our method estimated the resultant
force and torque closer to the true values, compared to the method without
consensus when communication occurred in the red-colored regions.

Overall, our method could determine the timing of communication of neighbor-
hood robots while estimating the resultant force and torque using communication.

4.2.2. Cooperative rotation task

Setup

The second simulation is a cooperative rotation task to confirm that our algorithm
can balance control performance and communication savings for varying number
of robots, as shown in Fig. 4.6.

The mass and moment of inertia were set to 2.0×101 kg and 7.3 kg·m2, respec-
tively. The shape, radius, mass, and moment of inertia were set to the same value
as in the previous simulation. Furthermore, we set | uv

i |≤ 0.2 and | uω
i |≤ 2.0.

The yaw angle in the world coordinate is defined as shown in Fig. 4.6. The
center position of the payload is fixed to [2.0 m, 2.0 m]⊤. The initial yaw angle
of the payload was randomly generated within [0.4π, 0.6π]⊤, whereas the desired
yaw angle was set to 0 or π. The initial positions of the robots were randomly
set to [1.35 m, 1.0 m]⊤ or [1.35 m, 3.0 m]⊤ with a 50% probability.

The simulation conditions are listed in Table. 4.3. We set the number of robots
and neighborhood robots to N = 5 and K = 2, respectively, in the training
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(c) Robot 2

Figure 4.5. Trajectories, communication occurrence, and the estimation results when applying
the proposed method to the cooperative transport task. The red lines in Fig. 4.5a represent
the communication occurrence. In Figs. 4.5b and 4.5c, each robot receives the resultant force
and torque estimates from other robots in red-colored regions. In contrast, the robots do not
receive them in gray-colored regions.
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Figure 4.6. Cooperative rotation task. The colored circles, gray rectangular, and dashed rect-
angular denote the robots, payload, and the desired state of the payload, respectively.

phase. To confirm the scalability of our method, we executed the trained policies
for N ∈ {3, 4, 5, 6, 7, 8}. Moreover, we set the parameters in Eqs. (4.7) and (4.8)
to λ1 = 0.02, λ2 = 0.1 and δ = 1.2 by trial and error, respectively.

To confirm the effectiveness of our algorithm, we compared our algorithm with
three communication topologies as follows:

• Full: each robot receives the resultant force and torque at every control
step.

• ETC: each robot determines the timing for robots to receive the force and
torque using the event-triggered communication [25].

• Nocom: no robot receives force and torque from any other robots.

We carried out three trainings for each communication topology under the same
conditions.

Moreover, we evaluated the control error E, communication cost C, and trans-
port time P , which were defined by the average time to control the error of the
yaw angle within ±10 deg for 1.0× 103 trials.

Training performance

Figure 4.7 compares the cumulative reward of the first term in Eq. (4.7) when
applying each method to the cooperative rotation task. The results showed that
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Table 4.3. Simulation conditions of the cooperative rotation task

Variable Value
Control period [s] 0.1

Consensus period [s] 0.02
k used in the consensus 0.2

Number of steps per episode 2.0×102

Number of episode 6.0×105

Number of hidden layers (critic) 4
Number of hidden layers (actor) 4

Number of units per layer 64
Activation function of hidden layers ReLU

Activation function of output layers (critic) linear
Activation function of output layers (actor) tanh

Discount factor 0.99
Batch size 4096

Replay buffer 1.0×106

our method achieved cumulative rewards as high as that of the Full method.
Moreover, the rewards were greater than those of the ETC and Nocom methods.
These results show that the estimates of the resultant force and torque improved
the cumulative reward.

Scalability analysis

Figure 4.8a compares the control errors when applying each method for varying
number of robots. The results showed that the control errors of the Nocom and
ETC methods became considerably large when the number of robots was small.
This can be attributed to the fact that the yaw angle could not reach the desired
value in the given control steps, considering the resultant torque decreased as
the number of robots decreased. In contrast, the Full and our methods reduced
these errors compared to the Nocom and ETC methods. As the number of
robots increased, the differences among the Full, ETC, and proposed methods
decreased. Meanwhile, the Full and proposed methods achieved shorter transport
time compared to the ETC method, as shown in Fig. 4.8b.

Figure 4.8c compares the communication costs. The results showed that the
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Figure 4.7. Comparisons of the cumulative reward of the first term in Eq. (4.7) when applying
each method to the cooperative rotation task.

communication cost of the proposed method was higher than that of the ETC
method, considering that our method required high-rate communication to es-
timate the resultant force and torque. Meanwhile, our method decreased the
communication cost significantly compared to the Full communication, whose
control performance was almost as good as that of our method.

Overall, our method achieved transport performance as good as that of the
Full communication topology while saving the communication costs for varying
number of robots.

Communication and estimation

Herein, we verify that our method can determine the communication timing while
estimating the resultant torque. Figure 4.9a shows the trajectories and communi-
cation occurrence at each time. The results showed that communication occurred
while robots determine the direction in which they rotate the payload. During
this period, robot 4 changed the pushing position to rotate the payload in the
same direction as the other robots. Following this, robots kept pushing the pay-
load until the yaw angle of the payload reached the desired value.

Figure 4.9b depicts the communication occurrence and the estimates of the
resultant torque by all robots. The robots adopted high-rate communication to
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Figure 4.8. Comparison of the control error, transport time, and communication cost when
applying each method to the cooperative rotation using various number of robots.
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determine the direction in which they rotate the payload a few seconds after the
start of the control. Once the payload rotated clockwise, they adopted low-rate
communication, considering that they pushed the payload until the yaw angle
of the payload reached the desired value. Moreover, our method estimated the
resultant force and torque closer to the true values compared to those of the
method without consensus when communication occurred in red-colored regions.

Although the estimated values do not perfectly converge to the true values, the
robots could transport the object to the desired value. Because we considered
both object errors and communication costs in the reward design, the polices
were trained so that they could balance communication savings and transport
performance at the same time.

Overall, the proposed method could determine communication timing with the
neighboring robots while estimating the resultant torque using local observations.

Connectivity of communication topology

Next, we verify the manner in which a communication topology using our method
may satisfy the first condition of the average consensus by introducing a connec-
tivity metric Rc, as described Appendix B.

Table 4.4 shows a comparison of Rc for each method. We compared our method
with a Random method, where we randomly skipped communication among
robots with a probability of 50%. The proposed method improves the estima-
tion accuracy if the communication topology satisfies the connectivity condition.
Moreover, the estimation accuracy improves the transport performance. Conse-
quently, our method achieved a value of Rc = 0.7 although we did not promote the
connectivity in the reward. In contrast, the Nocom, ETC, and Random meth-
ods resulted in Rc values that were lower than the value of our method as they
did not require the connectivity condition. These results show that our method
could obtain the necessary condition to estimate the resultant force and torque
using the estimates of the resultant force and the torque of the neighborhood
robots.
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Figure 4.9. Trajectories, communication occurrence, and the estimation results when the pro-
posed method is applied to the cooperative rotation task. The red lines in Fig. 4.9a show that
mutual communications of the estimated resultant force and torque occur between robots. In
Fig. 4.9b, each robot receives the resultant force and torque estimates from other robots in
red-colored regions. In contrast, the robots do not receive them in gray-colored regions.
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Table 4.4. The ratio of the connectivity

Nocom ETC Random Ours
Rc 0.0 0.0 0.23 0.7

4.3. Real robot experiment

This section shows the effectiveness of our learning method through real robot
experiments using multiple ground robots to confirm that the settings in the
simulation are realistic and the scalability of our method holds true in real robot
environments.

4.3.1. Setup

The real robot demonstration was performed using Turtlebot3 Burger robots, and
the experimental configuration is shown in Figs. 4.10a and 4.10b.

Our experimental system utilized an OptiTrack Prime 17 W motion capture
system (Natural Point, Inc., Corvallis, OR) to observe the positions and yaw
angles of the payload and robots at 10 Hz. The linear and angular velocities
of the payload and robots were calculated using the measured positions and yaw
angles. We trained the policies by setting the number of robots and neighborhood
robots to N = 5 and K = 2, respectively, in the simulation and executed the
trained policies for N ∈ {3, 4, 5, 6} in the real environment. The trained policies
calculated the control inputs in a PC with an 8-core Intel ® CoreTM i7 (2.80 GHz)
with 32 GB RAM. The control inputs were transmitted from the control PC to
each robot using Wi-Fi communication at 10 Hz.

4.3.2. Result

Figure 4.11 shows the mean absolute error of the yaw angle when applying our
method to various numbers of robots. The results show that our method can
control the yaw angle of the payload to the desired value for various numbers of
robots. Moreover, the time for controlling the yaw angle becomes shorter as the
number of robots increases.
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Figure 4.10. Robot and experimental configuration used in the experiment. The positions and
yaw angles of the payload and robots were observed using a motion capture system.

Figure 4.11. Mean absolute error of the yaw angle when applying our method to various number
of robots for 10 trials.
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Figure 4.12 depicts the trajectories of the payload and robots for various num-
ber of robots. After several robots came in contact with the payload, the payload
began to rotate clockwise. Once the payload rotated, several robots changed the
pushing positions to rotate the payload in the same direction as the other robots.
The robots kept rotating the payload collaboratively until the yaw angle of the
payload reached the desired value for various number of robots.

Overall, we verified that the settings in the simulation were realistic and the
scalability of our method holds true in real robot environments.

4.4. Summary of Chapter 4

In this chapter, we proposed a learning framework of ETC and consensus-based
control for distributed cooperative transport. The proposed method achieved
transport performance as good as that of full communication while saving the
communication costs through cooperative transport tasks using two robots for
randomly arranged initial and desired positions of the payload. Moreover, our
method achieved transport performance as good as that of full communication
while saving the communication costs through cooperative rotation tasks in sce-
narios wherein the number of robots differed from that in the training environ-
ment in the simulations and experiments.
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(a) Three robots

t = 10 s t = 20 s t = 30 s t = 50 s

(b) Four robots

t = 10 s t = 20 s t = 30 s t = 50 s

(c) Five robots

t = 10 s t = 20 s t = 30 s t = 50 s

(d) Six robots

Figure 4.12. Trajectories of the payload and robots when applying our method to various
number of robots. We also show the top view of the trajectories of the payload and robots.
The black line denotes the desired state of the payload.
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5. Deep reinforcement learning
of multi-robot task allocation
for cooperative transport

In this chapter, we propose a learning framework that can handle scenarios for
various numbers of robots and objects with different and unknown weights. First,
we introduce a structured policy model consisting of 1) predesigned dynamic task
priorities with global communication and 2) a neural network-based distributed
policy model that determines the timing for coordination. The distributed policy
builds consensus on the high-priority object under local observations and selects
cooperative or independent actions. Then, the policy is optimized by multi-agent
reinforcement learning through trial and error. This structured policy of local
learning and global communication makes our framework applicable to various
numbers of robots and objects with different and unknown weights.

We demonstrated the effectiveness of the proposed algorithm through multi-
object transport simulations using multiple robots. We confirm the scalability
of our framework using various numbers of robots and objects with different and
unknown weights. Moreover, we confirm the versatility of our framework by
varying the proportion of heavy and light objects.

The remainder of this chapter is organized as follows. Section 5.1 details MARL
and the proposed learning framework. Section 5.2 shows the effectiveness of our
framework through multi-robot transport simulations. Section 5.3 presents the
conclusions of this chapter.
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5.1. Method

In this section, we introduce the proposed MARL framework that can handle a
varying number of robots and objects with different and unknown weights.

5.1.1. Overview

Fig. 5.1 shows the overview of the learning framework. Each robot has a dis-
tributed policy, which differs from those of other robots. Robot i has task priority
ϕi :=

[
ϕ1

i , · · · , ϕM
i

]⊤
∈ RM , where ϕl

i ∈ [0, 1] is the priority of the lth object pos-
sessed by robot i. Robot i updates the priority of the neighboring object l ∈ N Load

i

under local observation oi = [xi, ϕ
li1
i , · · · , ϕ

liK
i ,xji1 , ϕ

li1
ji1 , · · · , ϕ

liK
ji1 , · · · ,xjiK

, ϕli1
jiK
,

· · · , ϕliK
jiK
, zli1 , vli1 , z∗

li1
, · · · , zliK

, vliK
, z∗

liK
] using ci =

[
c1

i , · · · , cK
i

]⊤
∈ RK , where

cl
i ∈ [0, 1] is the reference value of ϕl

i. The reference value ci is computed by pol-
icy πi. Limiting the minimum number of robots and objects to a constant value
makes the policy applicable to varying numbers of robots and objects. However,
this policy cannot transport an object whose weight exceeds the load capacity of
robots observing the object because it cannot update the priorities of the object
l /∈ N Load

i .
The proposed framework introduces dynamic task priorities with global com-

munication and a neural network-based distributed policy model. The distributed
policy computes communication inputs αi ∈ [0, 1] and βi ∈ [0, 1] under local ob-
servations, where αi is the parameter by which the robot i receives task priority
from other robots, and βi is the parameter by which the robot i sends ϕi to other
robots. Because the observations involve the velocity of the object, the robot
sends the priorities to the other robots if they cannot move the selected object.
Moreover, if the other robots receives the task priorities, the dynamic task prior-
ity makes the agents establish a consensus on the high-priority object and select
cooperative actions. Otherwise, robots select independent actions. Therefore,
robots can transport all objects efficiently without knowing the number of robots
required to transport objects. Robot i selects the object l∗i , which has the highest
priority among M objects. Then, the policy is optimized by MARL through trial
and error.

Note that we focus on the transport performance and the communication sav-
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Figure 5.1. Overview of learning framework. Robot i updates task priorities of the neighboring
objects using ci while building consensus on the high-priority object using αi and βi according
to the distributed policy πi under local observations oi. Robot i selects the object l∗

i which has
the highest priority among M objects.

ings are not considered in this study.

5.1.2. Dynamic task priority with global communication

This subsection introduces the dynamic task priority with global communication
to select an object among various candidates.

We design the dynamic task priority such that the robot i can update ϕl
i (l ∈

N Load
i ) according to its policy while updating ϕl

i (l /∈ N Load
i ) using the priorities of

theN robots. In this case, the robots should balance cooperative and independent
actions to transport all the objects efficiently.

To this end, we design the dynamic task priority of object l for robot i given
by

ϕ̇l
i =

kϕ(cl
i − ϕl

i) + σi
∑N

j=1 djkϕ(ϕl
j − ϕl

i), if l ∈ N Load
i

σi
∑N

j=1 djkϕ(ϕl
j − ϕl

i), otherwise
(5.1)
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where kϕ > 0, di and σi are equal to 0 or 1. We introduced the first-order linear
time-delay system to avoid the occurrences of chattering, where the robots travel
back and forth between different objects. kϕ(cl

i − ϕl
i) induces an independent

action while kϕ(ϕl
j − ϕl

i) induces a cooperative action. If σi = 1 and dj = 1,
kϕ(ϕl

j − ϕl
i) makes ϕl

i asymptotically converge to ϕl
j, establishing consensus on

the task priority. Otherwise, kϕ(cl
i − ϕl

i) makes ϕl
i asymptotically converge to cl

i

according to its own policy. The distributed policy calculates σi and di to reach
a consensus on the high-priority object as well as ci under local observations.

5.1.3. Distributed policy model

We introduce a distributed policy model under local observations oi given by

ai =
[
c⊤

i , αi, βi

]⊤
= πi(oi), (5.2)

where πi is computed by a deep neural network. Agent i determines the reference
values of ϕl

i using cl
i for K local objects while maintaining the priority of the M

objects.
Using αi and βi in Eq. (5.2), request signal di and response signal σi are

calculated by the event-triggered law in [23,25] given by

di(αi) =

1, if αi > 0.5 & ∥vl∗i
∥2 = 0

0, otherwise
, (5.3)

σi(βi) =

1, if βi > 0.5 & ∥vl∗i
∥2 = 0

0, otherwise
, (5.4)

where robot i can transmit and receive the priority when it cannot move the
selected object l∗i . Fig. 5.2 illustrates the communication of the task priority
using our distributed policy under local observation. Using the triggering law
in Eqs. (5.3) and (5.4), robot i can receive ϕj transmitted by robot j and then
reach consensus on the high-priority object using Eq. (5.1).
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Figure 5.2. Example of the communication of the task priority using the proposed distributed
policy under local observation. When dj(αj) = 1 and σi(βi) = 1, robot i receives ϕj transmitted
by robot j.

5.1.4. Task selection

This subsection introduces the procedure for the selection of an object based
on its priority. Robot i selects the object with the highest priority among M

objects using l∗i = arg max
l

ϕl
i. Moreover, we set the priority of the object that

has reached close to the desired position using ϕl
i ← 0, if ∥zl − z∗

l ∥2 < δ, where
δ > 0 represents a threshold to determine whether the object reaches the desired
position.

5.1.5. Reward Design

To transport all the objects to the desired positions as quickly as possible, we
designed a reward function given by

r =
M∑
l=1

Pl + λ
M∑
l=1
∥vl∥2, (5.5)

where λ is a positive constant. Pl = 1 if ∥zl − z∗
l ∥2 < δ; otherwise Pl = 0. The

first term in (5.5) aims to transport all the objects to the desired position, while
the second term aims to move as many objects as possible.
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5.1.6. Policy Optimization

In this study, we optimized the multi-agent policies using multi-agent deep de-
terministic policy gradient (MADDPG) [21], which is one of the deep actor-critic
algorithms for multi-agent systems.

A common issue of MARL is that the learning becomes unstable as the num-
ber of unobservable agents increases. The MADDPG algorithm addressed this
problem using a learning framework called "centralized training and decentral-
ized execution." During training, the weight parameters of the critic networks
are optimized through the Q-learning algorithm [83] using the observations and
actions of all the agents. At the same time, the weight parameters of the actor
networks are optimized through a policy gradient method using its observations
and actions. During execution, the actor networks compute actions under local
observations. See [21] for the details of the policy optimization steps.

5.2. Simulation

We conducted multi-object transport simulations using multiple robots to confirm
the scalability and versatility of the proposed framework for various numbers of
robots and objects and various proportions of heavy and light objects.

5.2.1. Simulation setup

We show the simulation scenario in Fig. 5.3. We randomly generated the initial
positions of the robots and objects in the region Q := {(x, y) | 2 ≤ x ≤ 8, 2 ≤ y ≤
8}. The desired positions of the objects were evenly arranged on a circumference
with a center and radius of [5.0, 5.0]⊤ and 4.0 m, respectively. We set the load
capacity of the robot to 1 kg.

During training, we set K = 2, N = 3, and M = 6, while setting the ob-
ject’s mass to 1 or 3 kg with 50 % probability. To confirm the scalability of the
algorithm, we evaluated N ∈ {3, 6} and M ∈ {4, 6, 8, 10}.

The multi-agent policies were optimized using MADDPG, a deep actor-critic
algorithm. We used the MADDPG code in [81] and set the simulation parameters
as listed in Table 5.1.
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Figure 5.3. Simulation scenario. The colored circles, dots, and numbers indicate the objects,
their desired positions, and the number of robots required to transport the object, respectively.
Robots should transport each object to the desired position with the same color.

We set kϕ in Eq. (5.1) to 0.2 such that the priority changed according to a first-
order delay with the time constant of 5 s, which was longer than the selection
period. The threshold δ was set to 0.05 for the positions of the objects to be
controlled within 0.05 m from the desired positions. We set the weight parameter
λ in Eq. (5.5) to 3.0×102 such that transporting a different object obtained
almost the same reward as locating an object to the desired position.

To confirm the effectiveness of our framework, we conducted comparisons through
the following methods:

• Nearest: Each robot selects the nearest object

• One: Each robot is randomly assigned an object from the M objects

• Local: Our method without dynamic task priority with global communi-
cation by setting σi = 0 in Eq. (5.1).

• Nearest-one: Each robot selects the object closest to its current position.
When the robot does not move the object for a specific time ts, the robot
picks the same object as the robot, unable to carry the load for the longest
time. We set ts = 1.0 s for all the robots.

• No-com: Local method under local observations without the task priori-
ties.
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Table 5.1. Simulation parameters

Parameter Value
Selection period [s] 1.0

Number of steps per episode 150
Number of episodes 2.0e5

Number of hidden layers (critic) 4
Number of hidden layers (actor) 4

Number of units per layer 64
Activation function of hidden layers ReLU

Activation function of output layers (critic) linear
Activation function of output layers (actor) tanh

Discount factor 0.99
Batch size 1024

• No-dynamics: No-com method without the dynamics of the task priority
by setting ϕl

i = cl
i (l ∈ N Load

i ).

To evaluate our approach quantitatively, we used the following measures:

• Success rate (SR): The ratio of trials to 100 trials, in which robots can
transport all the objects to the desired positions within 10 min. We con-
sidered 10 min for method One to achieve a 100 % success rate for various
numbers of robots and objects.

• Transport time (TT) [s]: Average time required to move all the objects to
the desired positions within 10 min.

5.2.2. Comparisons of training performance

We evaluated the effects of dynamic task priority and communication on the
training performance by comparing our framework with methods Local, No-
com, and No-dynamics. For each method, we repeated the training three
times.

Fig. 5.5 shows the cumulative rewards of the first and second terms in Eq.
(5.5), which are denoted as R1 and R2, respectively. When applying method No-
dynamics, we confirmed the occurrences of chattering where the robots travel
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(a) First term (b) Second term

Figure 5.4. Cumulative rewards of various evaluated methods.

back and forth between different objects. As a result, this method made R1

achieve smaller values compared to those in other methods.
Method Local achieves slightly higher R1 and R2 values than method No-com.

Therefore, training the policy with the priority of neighboring robots improves the
training performance. Moreover, the proposed framework achieves higher values
than the other methods. These results indicate that the dynamic task priority
with global communication in Eq. (5.1) has a greater impact on the training
performance of our framework than the local communication of task priorities.

5.2.3. Emergence of cooperative and independent actions

We confirmed the emergence of cooperative and independent actions when ap-
plying the proposed framework. We show trajectories and communication occur-
rences when applying the framework in Fig. 5.5.

At the initial stage, robots 1 and 3 transport different objects, while robot 2
cannot move the object, which requires three robots to transport, as shown in
Fig. 5.5a. To prevent this situation, robot 2 transmits its priority to other robots,
as shown in Fig. 5.5b. While robots 1 and 3 receive the priority of robot 2, their
priorities gradually approach that of robot 2, as shown in Figs. (5.5a–5.5c). Once
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(a) 0 - 20 s (b) 20 - 40 s (c) 40 - 60 s

(d) 60 - 80 s (e) 80 - 100 s (f) 100 - 120 s

Figure 5.5. Trajectories and communication occurrences. We offset the overlapping robot tra-
jectories for clarity. The black and red lines show the trajectories of the robots and occurrences
of priority communication.

the priority of the green object is the highest for the three robots, the object is
transported to the desired position, as shown in Fig. 5.5c. Fig. 5.6d shows that
the priority of the red object is the highest in the corresponding period for all the
robots, which transport the object to the desired position, as shown in Fig. 5.5d.

Finally, two objects remain to be transported by three robots, as shown in Fig.
5.5e. While three robots transport the light-blue object according to the priority
in Fig. 5.6e, the priority of the blue object is the highest for robot 3, as shown
in Fig. 5.6f. Hence, robot 3 moves the blue object, and the two objects can be
transported to the desired positions, as shown in Fig. 5.5f.

Overall, our framework can balance cooperative and independent actions by
determining the timing of priority communication.
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Figure 5.6. Task priorities per robot. The colors correspond to those of objects shown in Fig.
5.5.

5.2.4. Scalability analysis

We evaluated the success rate and transport time when using our framework and
other methods for various numbers of robots and objects.

Table 5.2 shows the quantitative results for various numbers of robots and
objects when applying each method. Methods Nearest and Local cannot achieve
a 100 % success rate for various numbers of robots and objects. In contrast, One,
Nearest-one, and Ours can achieve a 100 % success rate for various numbers
of robots and objects. When applying Method One, the transport time is the
longest because all the robots select the same object. To confirm the effectiveness
of our method, we evaluated the average time ta for carrying two or more objects
simultaneously when applying each method to (N,M) = (6, 10) for 100 trials.
The large ta value indicates that the robots select more independent actions. Our
method achieves ta = 6.0×101 while Method Nearest-one achieves ta = 4.9×101.
The results indicate that our method can promote more independent actions
compared to Method Nearest-one.

Overall, compared to other methods, our framework can reduce the transport
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Table 5.2. Quantitative results for various numbers of robots and objects

(N, M) Metrics Nearest One Local Nearest-one Ours

(3,4) SR 0.59 1.0 0.93 1.0 1.0
TT (×102) 1.1 1.4 1.3 1.2 1.2

(3,6) SR 0.34 1.0 0.85 1.0 1.0
TT (×102) 1.7 2.0 2.2 1.9 1.8

(3,8) SR 0.17 1.0 0.67 1.0 1.0
TT (×102) 2.2 2.7 2.8 2.5 2.4

(3,10) SR 0.07 1.0 0.54 1.0 1.0
TT (×102) 2.5 3.4 3.5 3.1 3.0

(6,4) SR 0.97 1.0 1.0 1.0 1.0
TT (×102) 0.99 1.3 0.91 0.88 0.86

(6,6) SR 0.88 1.0 0.98 1.0 1.0
TT (×102) 1.5 2.0 1.4 1.4 1.4

(6,8) SR 0.82 1.0 0.88 1.0 1.0
TT (×102) 1.9 2.7 1.9 1.9 1.8

(6,10) SR 0.74 1.0 0.72 1.0 1.0
TT (×102) 2.6 3.6 2.5 2.4 2.2

time while transporting all the objects to the desired positions for various numbers
of robots and objects.

5.2.5. Versatility analysis by varying proportion of heavy
and light objects

Additionally, we verified the versatility of our framework by varying the propor-
tion of heavy and light objects. We set N = 6 and M = 10 while setting the
mass of the objects to 1 or 3 kg. We evaluated each method by generating 3 kg
objects with probabilities of 0 %, 25 %, 50 %, 75 %, and 100 %.

Table 5.3 shows the quantitative results for various proportions of heavy and
light objects. When applying methods Nearest and Local, the success rate be-
comes lower with the increasing proportion of heavy objects. In contrast, One,
Nearest-one, and Ours can achieve a 100 % success rate for various propor-
tions of heavy objects. Method One increases the transport time compared with
Nearest-one and our methods because all the robots select a common object re-
gardless of its weight. Moreover, our method achieves a lower transportation time
than method Nearest-one for various proportions of heavy objects because our
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Table 5.3. Quantitative results for various proportions of heavy and light objects. P represents
the proportion of heavy objects.

P Metrics Nearest One Local Nearest-one Ours

0.0 SR 1.0 1.0 1.0 1.0 1.0
TT (×102) 1.2 3.3 1.1 1.2 1.0

0.25 SR 0.94 1.0 0.98 1.0 1.0
TT (×102) 1.9 3.5 1.7 1.8 1.6

0.5 SR 0.7 1.0 0.76 1.0 1.0
TT (×102) 2.5 3.5 2.4 2.4 2.2

0.75 SR 0.6 1.0 0.36 1.0 1.0
TT (×102) 3.1 3.7 3.2 2.9 2.8

1.0 SR 0.29 1.0 0.14 1.0 1.0
TT (×102) 3.5 3.8 3.7 3.4 3.3

framework can promote more independent actions than Method Nearest-one.
Overall, compared to other methods, our framework can reduce the transport

time while transporting all the objects to their desired positions when handling
objects with various weights.

5.3. Summary of Chapter 5

In this chapter, we propose a learning framework that can handle scenarios for
various numbers of robots and objects with different and unknown weights. The
distributed policy model builds consensus on the high-priority object under local
observations, thus balancing the cooperative and independent actions. Therefore,
compared to other methods, our framework can reduce the transport time while
transporting all the objects to their desired positions for various numbers of robots
and objects with different and unknown weights.
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6. Robust shape estimation with
false-positive contact detection

In this chapter, we propose a means of omni-directional contact detection using
accelerometers instead of tactile sensors for object shape estimation using touch.
Unlike tactile sensors, our contact-based detection method tends to induce a
degree of uncertainty with false-positive contact data because the sensors may
react not only to actual contact but also to the unstable behavior of the robot.
Therefore, it is crucial to consider a robust shape estimation method capable
of handling such false-positive contact data. To realize this, we introduce the
concept of heteroscedasticity into the contact data and propose a robust shape
estimation algorithm based on GPIS. While the GPIS assumes that the observa-
tions of contact data follow a normal distribution with a constant variance, our
GPIS introduces heteroscedacity into each item of contact data. Thus, we can
prevent incorrect shape estimates produced by false-positive contact data.

To demonstrate the effectiveness of our approach, we constructed an experi-
mental system using a quadcopter, using its built-in accelerometer for contact
detection. We confirmed that our approach is better than GPIS for a 3D con-
struction when using a quadcopter.

The remainder of this chapter is organized as follows: Section 6.1 introduces
the mathematical formula for the GPIS and robust GPIS method, then Section
6.2 shows the effectiveness of our algorithm as demonstrated by numerous sim-
ulations. Section 6.3 introduces the constructed experimental system and shows
a few of the results of the experiments performed with the quadcopter. Finally,
Section 6.4 summarizes this chapter.
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6.1. Method

In this section, we describe our robust shape estimation with false-positive contact
data. We start with a brief introduction of GPIS, and then discuss the issues
associated with the method. Moreover, we propose a robust GPIS method by
modifying the distributions of the observations made with the GPIS method.

6.1.1. GPIS

In a GPIS framework, the shape potential function f is modeled by GP regression
for a given data set D = {xi, yi} (i = 1, · · · , n). In the GPIS, a prior of the
shape potential functions f := [f(x1), · · · , f(xn)]⊤ is assumed to follow a normal
distribution: p(f | x) = N (f | 0,K), where x := [x1, · · · ,xn]⊤, and K ∈ Rn×n

is the training data covariance matrix. Moreover, the probability of observations
y := [y1, · · · , yn]⊤ is given by the normal distribution with constant variance: that
is, p(y | f) = N (y | f, σ2I). Upon combining these probabilities, the posterior of
the shape potential function is given by

p(f | D) = N (y | f, σ2I)N (f | 0,K)
p(y | x) , (6.1)

for which the marginal likelihood
∫
N (y | f, σ2I)N (f | 0,K)df in Eq. (6.1) can

be computed analytically as described in [84,85]. Moreover, the predictive mean
and variance can be computed as

µ(x∗) = k⊤(x∗)(K + σ2I)−1y, (6.2)
σ2(x∗) = k(x∗)− k⊤(x∗)(K + σ2I)−1k(x∗), (6.3)

where k(xi,xj) is the covariance between the observed points xi and xj, i, j ∈
{1, · · · , n}, k(x∗) is the covariance vector between all the observed points xi (i =
1, · · · , n) and the test point x∗, K has entries Kij = k(xi,xj), i, j ∈ {1, · · · , n}.
An estimate of the object’s shape is obtained by finding those points x∗ where
µ(x∗) ≈ 0 in Eq. (6.2).

Because all the diagonal terms of σ2I in Eqs. (6.2) and (6.3) have the same
value, false-positive contact data have the same influence on the predictive dis-
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tribution as normal data. An issue, however, is whether the distribution of the
observations is assumed to conform to a normal distribution with constant vari-
ance.

6.1.2. Proposed method

In this subsection, we propose a robust GPIS with false-positive contact data
based on the GPIS method.

To realize this, we used the Student’s t-distribution as the distribution of the
observations, given by

p(y | f) = T (y | f, λ, ν). (6.4)

Given the prior of the shape potential functions with a normal distribution,
p(f | x) = N (f | 0,K), the posterior of the shape potential function is given by

p(f | D,ψ, λ, ν) = T (y | f, λ, ν)N (f | 0,K)
p(y | x,ψ, λ, ν) , (6.5)

where ψ represents the hyperparameters in the covariance matrix K.
In the same way as in the GPIS method, an estimate of the object’s shape

can be obtained from the posterior mean. However, the marginal likelihood∫
T (y | f, λ, ν)N (f | 0,K)df in Eq. (6.5) cannot be computed analytically. Thus,

we conform to the variational approximation for GP regression with the Student’s
t-distribution, as described in [73].

The Student’s t-distribution in Eq. (6.4) is a scale-mixture of an infinite number
of normal distributions, given by

T (y | f, λ, ν) =
∫ ∞

0
N (y | f, σ2)InvΓ(σ2 | α, β)dσ2, (6.6)

where α = ν/2 and β = ν/2λ represent the shape and inverse scale parameter,
respectively. The Student’s t-distribution becomes heavy-tailed when α becomes
small or β becomes large, as described in Appendix A. Since outliers are more
likely to occur from a heavy-tailed distribution, it is suitable to explain false-
positive contact data. As described later, these parameters are optimized such
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that the estimated shape best fits the observed data. Moreover, as α becomes
small or β becomes large, the noise variance, σ2, becomes large with high proba-
bility, as described in Appendix A.

Using Eq. (6.6), we approximate the posterior in the factorized form given by
p(f,σ2 | D,ψ,θ) ≈ q(f)q(σ2), where θ := [α, β]⊤ and σ2 = [σ2

1, · · · , σ2
n]⊤. The

approximate posterior of f and σ2 is given by

q(f) = N (f |m,A), (6.7)

q(σ2) =
n∏

i=1
InvΓ(σ2

i | α̃i, β̃i), (6.8)

where m and A represent the mean and covariance of q(f), and α̃i and β̃i represent
the shape and inverse scale for each item of data i (i = 1, · · · , n), respectively. If
we could approximate the posterior in an analytically tractable form, we could
estimate an object’s shape from its posterior mean.

To realize this, we introduce the KL divergence between the approximation
and the posterior distribution, given by

KL(q∥p) =
∫
q(f)q(σ2)lnp(f,σ

2 | D,ψ,θ)
q(f)q(σ2) dfdσ2.

The KL divergence is minimized using an expectation maximization (EM) algo-
rithm [86]. In the EM algorithm, the approximate posterior and parameter values
are updated by repeating the two steps. In the expectation step (E-step), m, A
in Eq. (6.7), α̃i and β̃i in Eq. (6.8) are iteratively updated to minimize the KL
divergence for given parameters θ and ψ. In the maximization step (M-step),
performed after each E-step, θ and ψ are iteratively updated to minimize the
KL divergence for fixed q(f) and q(σ2). The EM algorithm iterates the E- and
M-steps until the KL divergence converges. Details of the method used to derive
the update laws can be found in [73].

After the variational approximation, the mean and variance of the approximate
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posterior are computed as

µ(x∗) = k⊤(x∗)(K + Σ)−1y, (6.9)
σ2(x∗) = k(x∗)− k⊤(x∗)(K + Σ)−1k(x∗), (6.10)

where Σ represents a diagonal matrix with entries Σii = β̃i/α̃i (i = 1, · · · , n).
Since the diagonal terms of Σ in Eqs. (6.9) and (6.10) differ from each other, we
can introduce heteroscedacity into each item of contact data.

The object shape is reconstructed by finding those points x∗ that satisfy µ(x∗) ≈
0 in Eq. (6.9). As β̃i/α̃i becomes large, the contact data i has little influence on
µ(x∗). Therefore, such contact data has little influence on the shape estimates.

Finally, we present the false-positive contact detection. After the variational
approximation, we can obtain the uncertainty of data i, given by

ui = β̃i/α̃i. (6.11)

The noise variance, σ2, in Eq. (6.6) becomes large with high probability as ui

becomes large. Therefore, we can judge the uncertainty for each item of contact
data using Eq. (6.11).

The main steps used in the shape estimation and false-positive contact detec-
tion are shown in Algorithm 2.

6.2. Simulation

We conducted numerous simulations with 2D objects to confirm the reduction in
the shape estimation errors and the false-positive contact detection when applying
our algorithm.

6.2.1. Experimental setup

We prepared three different object shapes, as shown in Fig. 6.1. The contact
points were set on the edges at intervals of 0.01 [m], as shown in Figs. 6.2a and
6.2c, while they were set on the circumference at an interval of 3[deg] in Fig.
6.2b. The internal and external points were randomly set in the given region
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Algorithm 2: Robust GPIS
Inputs: xi, yi (i = 1, · · · , n), θ, ψ, x∗

Outputs: x∗ s.t. µ(x∗) ≈ 0, ui (i = 1, · · · , n)
Initialisation: set α̃i ← 1, β̃i ← 1, θ and ψ to random positive values.
/* procedure for robust GP
Compute K from x and ψ
E-step:
repeat

m, A, α̃i and β̃i are iteratively updated for fixed parameters θ and ψ
using Eqs. (5.34)-(5.36) in [73].

until KL(q∥p) converges
M-step:
repeat
θ and ψ are iteratively updated for fixed parameters m, A, α̃i and β̃i

using Eqs. (5.39)-(5.43) in [73].
until KL(q∥p) converges
Compute µ(x∗) and σ2(x∗) using Eqs. (6.9) and (6.10).
/* procedure for 3D shape reconstuction
Estimate object shape by finding those points x∗ that satisfy µ(x∗) ≈ 0.
/* procedure for false-positive contact detection
Estimate the uncertainty of data i from Eq. (6.11)

Q := {(x1, x2) | (−3 ≤ x1 ≤ 3,−3 ≤ x2 ≤ 3)}. To consider the false-positive
contact data, we replaced the external points with a pair of outliers of contact and
internal points with a 2% chance. The outlier of the internal point was randomly
set within a certain distance 0.1 [m] from the outlier of the contact point.

We performed 50 simulations for each object shape. The parameters used in
the simulations are listed in Table 6.1. The parameters used in the GPIS methods
were set by trial and error. The test data were set on a grid with an interval of
0.02 [m].

6.2.2. Shape estimation error

One of the 50 simulations is shown in Fig. 6.3. As shown in the figure, the
object shapes could be roughly captured using the GPIS. At the same time,
however, surfaces were incorrectly estimated around a few of the outliers, located
sufficiently far from the object. The predicted shape potential values (colored
contours) show that the mean values became negative around the outliers, which
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Figure 6.1. 2D object models used in simulation experiments. All figures are in units of m.

Table 6.1. Simulation conditions

Variable Symbol Value
Number of observed points n 5.9×102

Number of test points nt 9.1×104

Initial value of variance of Gaussian kernel - 0.252

Initial value of shape parameter α 2.0
Initial value of inverse scale β 4.0

indicates that the predictive distributions were greatly influenced by the outliers.
In contrast, a surface was not incorrectly estimated around the outliers when

using the robust GPIS, as shown in Fig. 6.3. Considering the uncertainty values,
those values around the outliers became remarkably large compared with those
around the normal data. As a result, the predicted shape potential values around
the outliers were sufficiently greater than zero, indicating that the outliers had
little influence on the predicted mean values.

To evaluate the accuracy of shape estimation using the GPIS methods, we
introduce metrics for determining the shape estimation error (i.e., the difference
between the estimated shape and the true shape). Using Eqs. (6.2) and (6.9), we
selected the test point i = {1, · · · , ns} whose mean value µ(xi) is almost equal to
zero (−0.01 < µ(xi) < 0.01), where xi is the position of the test point i. After
computing the minimum distance di between the test point i and the surface of
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Figure 6.2. Data acquired in one of the simulations. The circles, black dots, and gray dots
represent internal points, contact points, and external points, respectively.

the true shape, we computed the mean error of the distance di, defined by

e = 1
ns

ns∑
i=1

di. (6.12)

The results obtained with the t-test for the 50 simulations used to compare
the robust GPIS with the GPIS are listed in Table 6.2. These results reveal
significant differences between the robust GPIS and the GPIS in terms of the
shape estimation errors, since the p-values are all less than 0.01. Therefore, for
all the prepared objects, our algorithm produced smaller shape errors than the
GPIS.
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Table 6.2. Results of t-tests comparing the GPIS and the robust GPIS with respect to shape
estimation error. The degree of freedom is 98 in all cases. (∗∗: p<0.01)

Object shape p-value
Square 7.7E-11∗∗

Circle 7.7E-9∗∗

Cross 1.2E-9∗∗

6.2.3. False-positive contact detection

This subsection shows the clear detection of false-positive contact data when
applying our algorithm. With the robust GPIS, the uncertainty of the data
around the outliers became remarkably large compared with those around the
normal data, as shown in Fig. 6.3.

Here we introduce metrics for evaluating the false-positive contact detection.
While the robust GPIS can estimate the uncertainty of data, the GPIS cannot
directly do so. Therefore, we regard the predicted variance at each observed data
as the uncertainty of the data. To define the clarity of the false-positive contact
detection for each outlier o, we define the metrics given by

Qo = 1
no

∑
j∈Ro

uj

uo

, (6.13)

where uo, Ro and no represent the uncertainty of the data o, the neighborhood
region within certain distance do from the outlier o, and the number of the normal
data within the region Ro, respectively. In the simulations, we set do = 0.50 [m],
which is equal to the length and width of the quadcopter used in the experiment.

Similar to the evaluation of the shape estimation error, we performed a t-test
for the 50 simulations by comparing the robust GPIS with the GPIS. The results
listed in Table 6.3 reveal significant differences between the robust GPIS and the
GPIS in terms of false-positive contact detection, since the p-values are all less
than 0.01.

Therefore, for all the prepared objects, our algorithm could detect false-positive
contacts more clearly than the GPIS.
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Figure 6.3. Estimated shapes of 2D objects (left), predicted mean (center), and uncertainty
of data (right) when applying the GPIS methods. The dashed lines, black dots, and circles
represent the real object shapes, outliers of contact points, and outliers of internal points,
respectively.
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Table 6.3. Results of t-tests comparing the GPIS and the robust GPIS with respect to false-
positive contact detection. (∗∗: p<0.01)

Object shape p-value
Square 1.4E-104∗∗

Circle 2.5E-111∗∗

Cross 8.3E-121∗∗

6.3. Experiment

In this section, we will demonstrate the use of the algorithm through experi-
ments using a quadcopter, specifically, a Parrot AR.Drone 2.0. We introduce the
experimental configuration and conditions, as well as the omni-directional con-
tact detection using the accelerometers implemented in the experiment. We then
present the experimental results.

6.3.1. Experimental configuration and conditions

The position of the quadcopter was observed using an OptiTrack Prime 17W
motion-capture system (Natural Point, Inc., Corvallis, OR) operating at 200 Hz.
In the experiment, the ground-truth shape of the 3D object is obtained by plac-
ing markers at the vertexes of the polygons that compose the object surfaces.
Moreover, the object shape is considered in the ground-fixed coordinate system.
Therefore, translation and rotation were not considered when comparing the es-
timated shape with the true object shape.

The acceleration and attitude were measured using mounted sensors operating
at 200 Hz. The quadcopter was controlled using a personal computer (PC) with
an 8-core Intel Core i7 (2.80 GHz) processor, 32 GB of RAM, and a joystick
(Extreme 3D Pro, Logitech, Inc., Lausanne, Switzerland). The measurement
data and control signals were exchanged between the PC and the quadcopter via
WiFi communication.

The exploration region Q is given by

x ∈ Q := {x | −4 ≤ x1 ≤ 4,−2 ≤ x2 ≤ 2, 0 ≤ x3 ≤ 2},
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Table 6.4. Experimental conditions

Variable Symbol Value
Threshold of contact detection [G] - 0.6

Thickness parameter [m] din 0.1
Number of observed points n 2.7×103

Number of test points nt 5.4×105

Initial value of variance of Gaussian kernel - 0.252

Initial value of shape parameter α 2.0
Initial value of inverse scale β 4.0

where x1, x2, and x3 represent the longitudinal, transverse, and vertical axes,
respectively.

We controlled the quadcopter using the joystick, which allowed us to collect as
much contact data as possible in Q at 25 Hz while collecting non-contact data as
uniformly as possible at 0.5 Hz. The limitations imposed by the battery capacity
forced us, for each experiment, to perform five flights of 8 min each.

To validate the effectiveness of our algorithm, we generated some ground truth
outliers by applying a gust of wind in some regions. We conducted two flights
with artificial pertubations and prepared two observed data sets combined with
the other four flights without artificial pertubations. The initial values for the
hyperparameters used with the GPIS methods are listed in Table 6.4.

6.3.2. Omni-directional contact detection using
accelerometers

This subsection introduces omni-directional contact detection based on the ac-
celeration of the quadcopter. Based on the measured acceleration, the shape
potential value is obtained using

yi =


0, if ∥Bâi∥ > a0

1, otherwise

,
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where Bâi and a0 represent the acceleration of the robot in the body-fixed coor-
dinate system B and the positive threshold to detect the transition state from
non-contact to contact, respectively.

The flowchart of the contact detection is shown in Fig. 6.4. If yi is equal to
zero and its true value y∗

i is equal to one, the data i is the false-positive contact
data. If yi is equal to one and y∗

i is equal to zero, the data i is the false-negative
contact data. The occurrence of these data depend on the the threshold a0. If
a0 is set too low, false-positive contact detection can occur easily since sudden
acceleration and deceleration can be detected as false-positive contacts. In the
opposite case, false-negative contact detection can occur. In this study, we focus
on the false-positive contacts since the false-negative contacts have much less
influence on the false-positive contacts. We searched for the minimum value of
a0 by trial and error, considering that the number of false-positive contacts is as
small as possible.

Furthermore, the outward normal vector on the surface is estimated by

n̂i =


Eâi

∥Eâi∥ , if yi = 0

0, otherwise

, (6.14)

where Eâi represents the acceleration of the robot in the ground fixed coordi-
nate system E. Acceleration with mounted sensors is observed in the body-
fixed coordinate system B, such that Eâ in Eq. (6.14) is converted from Eâi =
R(ϕ̂)R(θ̂)R(ψ̂)Bâi, where R, ϕ̂, θ̂, and ψ̂ represent the rotation matrix, and the
measured values of the roll, pitch, and yaw angle, respectively.

Using the center of gravity of the robot and the estimated normal vector, we
approximated a contact position xc, as shown in Fig. 6.5. Consider a circum-
scribed cylinder to the quadcopter with the radius r and the height h. If one of
the planar components of the estimated vector n̂i is largest, the contact position
is calculated by xci

= xi − rn̂i. Otherwise, the contact position is calculated by
xci

= xi − hn̂i.
Because the internal points of the object cannot be obtained directly from
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Figure 6.4. Flowchart of omni-directional contact detection. n+ and n− represent the number
of contact and external points and the number of internal points, respectively.
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Figure 6.5. Estimation of contact and internal points. When the robot collides with the object, a
contact point (colored dot) is estimated using the center of gravity (cross), the estimated vector
(arrow) and the circumscribed cylinder to the robot. The internal point (circle) is estimated
on the extension line through the center of gravity of the robot and the contact point.
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the contact, we estimate the position of the internal point xin, as shown in Fig.
6.5. Only if y(x) = 0, the position of the internal point and its potential value
are calculated as xin = xc − dinn̂(x) and y(xin) = −1, where din represents the
thickness parameter determined by the minimum thickness of the object. The
training data was produced by merging the contact, external, and internal points
while the test data was set on a grid with an interval of 0.05 [m].

6.3.3. Shape estimation error

The results of shape estimation when applying the GPIS methods are shown in
Fig. 6.6.

As shown in Fig. 6.6a, the shape of the 3D construction could be roughly cap-
tured when applying GPIS. However, surfaces were generated at points sufficiently
far from the construction. The predicted mean values of the shape potential func-
tion were all zero around the outliers. In contrast, the robust GPIS was able to
avoid the incorrect generation of surfaces around the outliers, as shown in Fig.
6.6b. This result indicates that the predicted mean values of the shape potential
function were sufficiently greater than zero around the outliers.

Furthermore, the shape estimation errors computed by Eq. (6.12) when apply-
ing the GPIS methods are listed in Table 6.5. The results indicate that the use
of the robust GPIS incurred smaller errors than the GPIS.

6.3.4. False-positive contact detection

This subsection focuses on the results of false-positive contact detection when
applying the GPIS methods.

The distribution of the uncertainty of data, shown in Fig. 6.6a, indicates that
the uncertainty around the outliers was as small as that around the normal data
with the application of GPIS. In contrast, we can confirm that the uncertainty
around the outliers in Fig. 6.6b could be distinguished very clearly when our
algorithm was applied.

To evaluate the false-positive contact detection of the GPIS methods, we eval-
uated false-positive contact detection for each outlier using Eq. (6.13). In the
experiment, we regarded any detected contact points which were 0.5 meters or
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Table 6.5. Mean error of the estimated shapes

Algorithm GPIS Robust GPIS
Experiment#1 0.10 m 0.07 m
Experiment#2 0.12 m 0.07 m

Table 6.6. False-positive contact detection

Algorithm GPIS Robust GPIS
Mean values 0.96 0.045

more from the object as being outliers. This value was equivalent to the length
and width of the quadcopter.

The mean values for eight outliers in the two experiments are listed in Table
6.6. The results show that the mean value obtained when applying the GPIS were
almost equal to one, which indicates that the GPIS could not distinguish between
the outliers and the normal data. In contrast, the mean values were much smaller
than one, which indicates that our algorithm could very clearly distinguish the
outliers from the normal data.

6.4. Summary of Chapter 6

In this chapter, we have proposed an approach for object shape estimation based
on touch with omni-directional contact detection using accelerometers. Because
our contact detection method tends to induce a degree of uncertainty due to the
presence of false-positive contact data, we proposed a robust shape estimation
method capable of handling such false-positive contact data. We confirmed that
our algorithm could reduce shape estimation errors caused by false-positive con-
tact data through simulations and actual experiments using a quadcopter. More-
over, our algorithm could distinguish false-positive contact data more clearly than
the GPIS, suggesting that false-positive contact detection which is possible with
our proposed algorithm can be useful for other applications, such as active object
exploration.
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(a) GPIS (b) robustGPIS

Figure 6.6. Estimated shapes (top), predicted mean (middle), and uncertainty of data (bottom)
when applying the GPIS methods to a 3D construction. The circles and bold lines represent
the false-positive contact data and the true object shape, respectively. The cross-sections are
placed in order to visualize the distribution of each value.
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7. Discussions

7.1. Open issues and future scope for
distributed cooperative transport

In this section, we describe the open issues and scope of future work for distributed
cooperative transport.

Through simulations, it has been confirmed that the proposed method can tol-
erate a certain degree of fluctuations in the number of agents. However, there
is room for improvement when increasing the number of agents. Because our
method cannot theoretically guarantee the connectivity of communication topol-
ogy, the connectivity may decrease when the number of agents increases. To
address this issue, we will combine the proposed method with a learning method
to maximize the connectivity achieved in a previous study [87]. Furthermore, the
convergence speed decreases as the number of agents increases [88], which can
degrade control performance. Therefore, it is crucial to consider a framework
that guarantees a certain level of convergence speed.

In the present study, the trained multi-agent policies performed worse in real
experiments because the physical parameters of the simulations are different from
those of the experiments. Moreover, we should consider the uncertainties of the
observations, including the position and yaw angle of the payload and robots,
which were not considered in this study. To address these problems, we should
make multi-agent policies more robust to these uncertainties using domain ran-
domization [89]. Further, the trained multi-agent policies performed worse in
real experiments as the number of robots increased, considering that our model
neglected the collision avoidance between different robots. To address this is-
sue, we plan on combining our algorithm with decentralized multi-robot collision
avoidance presented in [90].

75



Reducing the sample complexity in the current system would be an important
line of research. While we could optimize the multi-agent policies for a small
number of robots, the computational costs could significantly increase as the
number of robots increases. To address this issue, we will combine our algorithm
with a more sample efficient algorithm such as a multi-agent model-based RL
algorithm [91]

In the present study, the proposed framework requires to determine what to
establish consensus for each task, it cannot be applied to various cooperative
transport tasks. Therefore, it is crucial to propose a learning framework that can
determine what to establish consensus in general setups.

It would be interesting to apply the proposed method to a three-dimensional
cooperative transport task using multiple quadcopters. To achieve such a system,
we need to consider two issues. The first issue is to estimate the torque applied
to the object. To calculate the three-dimensional resultant torque, it is necessary
to know the object’s moment of inertia. To address this issue, we will combine
the proposed method with the moment of inertia estimation technique proposed
in [18]. The second issue is to consider the convergence speed required for esti-
mation. Because the convergence speed is determined by the eigenvalues of the
graph Laplacian defined by the robot’s communication topology [92], it does not
depend on the dimension. However, the convergence speed may decrease as the
number of robots increases. Therefore, it is crucial to consider a learning frame-
work that guarantees convergence speed in order to extend to 3D cooperative
transport tasks using large-scale multi-robot systems.

7.2. Open issues and future scope for
multi-robot task allocation

In this section, we describe the open issues and scope of future work for multi-
robot task allocation.

Because our learning framework requires global communication between robots,
the communication bandwidth can be compressed as the number of robots in-
creases. To address this issue, we should decentralize the communication struc-
ture using techniques such as an attentional communication channel [90].

76



In the present study, we assume that each robot knows the positions of all the
objects. If there exist some objects which are not observed by robots, the robots
cannot update the dynamic task priorities of those objects, which can degrade the
transport performance. To address this issue, we may combine the consensus of
objects’ positions with our framework and confirm its effectiveness under partial
observations with several unknown object positions.

Herein, we discuss the effectiveness of our policy model compared to other pol-
icy models. We can apply the centralized policy model which selects an object
for all the robots. However, because the centralized policy model depends on
the number of objects and robots, it requires to learn the policy from scratch
when varying the number of objects and robots. We can employ the same dis-
tributed policy model for all robots, using a broadcast signal including all robots’
observations. However, this policy model also depends on the number of objects
and robots. In contrast, our policy model adopts the distributed policy model
that limits the minimum number of environmental objects and robots to a fixed
number of objects and robots. Therefore, it can be applied to a varying number
of objects and robots.

It would be interesting to apply our algorithm to task allocation of hetero-
geneous robots. While our framework can be applied to the task allocation for
given robots, it cannot determine the configuration and number of heterogeneous
robots. Therefore, it is crucial to consider a framework that can derive teaming
and individual policies at the same time.

7.3. Open issues and future scope for object
shape estimation

In this section, we describe the open issues and scope of future work for object
shape estimation.

The current experimental system has room for improvement when estimating
more complex object shapes. In a more complex scenario such as some concave
formations, multiple contacts might occur at different locations on the robot.
In such a situation, contacts are detected around the inside part of the corners
because the current system estimates only one contact position at any one time
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using the resultant force of multiple contacts. As a result, the estimated shape
around the corner tends to be rounded. To overcome this issue, more precise
contact localization should be implemented using the methods described in [93,
94]. In addition, we should extend our contact detection to handle multiple
contacts, as proposed by Sommer et al. [95].

In the present study, we assumed that the position of the robot is accurate.
However, in real robot environments, it is necessary to consider the uncertainty
of localization in the shape estimation. To address this issue, we aim to eliminate
the assumption by combining the GP model with the input noise proposed by
Girard et al. [96].

Finally, we discuss the usefulness of the false-positive contact detection. Let
us consider active object exploration [97–100] with false-positive contact data. In
this problem, the outliers might degrade any prediction, resulting in inefficient
exploration since robots might excessively explore some areas around the incorrect
surfaces. Moreover, false-negative contacts could degrade the efficiency of the
object exploration although they were not considered in the present study. If
contacts were not detected at the surface, the GPIS methods could predict that
no surface exists around the false-negative contacts. As a result, those locations
were difficult to sample when applying Bayesian optimization [101]. To deal
with this issue, we can remove the outliers based on our false-positive contact
detection. To apply our algorithm to active object exploration, we should reduce
the amount of observed data using a sparse Gaussian process regression methods
as described in [102,103].

7.4. Open issues and future scope for
cooperative transport of unknown-shaped
object

Our current system requires few modifications to transport unknown shaped ob-
jects. Firstly, we should incorporate shape estimation into the control loop of
multi-robot cooperative transport. In the current system, the robot computes
the force and torque using a normal vector to the object surface according to the
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Figure 7.1. Control loop for cooperative transport of unknown-shaped object

object shape model. Therefore, we are required to replace the shape model with
the shape estimation, as shown in Fig. 7.1. Moreover, we should combine our
method with a method of estimating the normal vector from the predicted shape
potential function [50].
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8. Conclusion

In this thesis, we proposed learning approaches for flexible and resilient multi-
robot cooperative transport.

First, we proposed a MARL framework for multi-robot cooperative transport
with various numbers of robots. The proposed method exploits a distributed pol-
icy to reconstruct global information using consensus with the local communica-
tion robots while determining the timing for communication. Thus, the proposed
method could balance communication savings and control performance in scenar-
ios wherein the number of robots differed from that in the training environment
through simulations and experiments.

Secondly, we proposed a MARL framework that can handle scenarios for various
numbers of robots and objects with different and unknown weights. The proposed
method exploits a distributed policy that determines the timing for cooperative
and independent actions. Therefore, our framework can reduce the transport time
while transporting all the objects to their desired positions for various numbers
of robots and objects with different and unknown weights through simulations.

Finally, we proposed an approach for shape estimation to transport unknown-
shaped objects. The proposed method adopts touch-based contact detection using
accelerometers to supplement vision sensors. However, this method involves false-
positive contact data because it reacts not only to actual contacts but also to the
unstable behavior of the robot. Therefore, we proposed a robust shape estima-
tion method capable of handling such false-positive contact data. We confirmed
that our algorithm could reduce shape estimation errors caused by false-positive
contact data through simulations and actual experiments using a quadcopter.

In summary, this thesis is expected to play an essential role in achieving a
flexible and resilient system that can deal with various transportation scenarios
in real applications.
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A. Appendix: Student’s t- and
inverse gamma distribution

This appendix introduces how the parameters α and β affect the Student’s t-
and inverse gamma distributions in Eq. (6.6). The Student’s t-distribution for
different combinations of α and β is shown in Fig. A.1. Based on the results, the
Student’s t-distribution gets heavy-tailed when α becomes small or β becomes
large.

The inverse gamma distribution is given by

InvΓ(σ2 | α, β) = βα

Γ(α)(σ2)−(1+α) exp
(
− β

σ2

)
.

The inverse gamma distribution for different combinations of α and β values is
shown in Fig. A.2. From the result, the noise variance, σ2, becomes large with
high probability as α becomes small or as β becomes large.
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Figure A.1. Student’s t-distribution
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B. Appendix: Connectivity
metrics

This appendix introduces the connectivity metrics of communication topology.
At every control step k, we check the satisfaction of the connectivity given by

β(k) =

1, if Eq. (3.1) is satisfied
0, otherwise

.

Moreover, we evaluate the ratio of the connectivity given by

Rc = 1
N

N∑
i=1

∑T
k=1 β(k)∑T
k=1 bi(k)

,

where bi(k) = 1 if agent i communicates with other agents at control step k;
otherwise bi(k) = 0.
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