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Semantic Operations on an Embedding Space∗

Yoichi Ishibashi

Abstract

This thesis addresses the formulation of semantic representation and operations
in an embedding space. Word embeddings can mathematically represent ambigu-
ous and diverse information in language. In a pre-trained embedding space, it
is known that the semantic operation such as

−−→
king − −−→man + −−−−→woman = −−−→queen,

also called additive compositionality, can be computed. Semantic operations have
various practical advantages such as generality and are worth studying for our
understanding of the nature of the embedding space. However, no semantic oper-
ations other than additive compositionality have been discovered. In this thesis,
we formulated two types of semantic operations to tackle this limitation.

First, we propose a binary attribute transfer that inverts the binary attributes
of words. An analogy of word vectors can transfer word attributes, but it requires
explicit knowledge of whether the input word has the attribute or not (e.g., the
gender attribute of “king” is male). However, this knowledge cannot be developed
for various words and attributes in practice. We define an ideal transfer function
without using the knowledge and propose reflection-based word attribute transfer.
We demonstrate that this method achieves high accuracy in transferring words
with the binary attribute to be transferred and high stability in not transferring
other words.

Next, we formulate word sets and set operations in the pre-trained embedding
space. Set operations are critical because they can be general-purpose tools in
natural language processing. We propose subspace-based formulations inspired
by quantum logic. We quantitatively and qualitatively demonstrate that the
proposed method is valid as a semantic operation using a word set dataset and
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that our proposed set operation improves performance on downstream tasks such
as sentence similarity.
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natural language processing, representation learning, embedding, reflection, sub-
space, pre-trained model
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1 Introduction

1.1 Representation of Meaning in Language
The meaning of natural language is complex and ambiguous information. We
humans realize sophisticated information exchange by understanding this infor-
mation. For example, we can communicate with each other by speaking and
writing language. The meaning of language can be represented by symbols, such
as letters, words, and sentences. We perform sophisticated information process-
ing by representing the meaning of language in such a way. Natural language
processing (NLP) aims to process such natural language information processing
by computer.

Recent breakthroughs in deep learning have led to tremendous progress in NLP,
computer vision, and speech processing [18, 23, 98]. It has achieved phenomenal
performance on a variety of NLP tasks. For example, a recent large pre-trained
language model can generate very natural, human-like sentences [18]. More re-
cently, approaches have been studied that use a single model to learn many tasks.
Such a model, called a foundation model [15], can be used generically for a variety
of tasks, and has been reported to exceed average human performance on more
than 150 tasks [23]. The key to these great successes in NLP lies in an approach
that automatically learns features of data. Feature representation of language
meaning has become an integral part of modern NLP.

However, it is not easy to represent the meaning. For example, the following
two sentences are not at all similar on the surface of the sentence because they
have no words in common, but their meanings are very similar.

Those dogs are cute.
That puppy is adorable!

(1.1)
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The following two sentences are superficially similar because they share many
common words, but their meanings differ.

He is a boy.
She is not a boy.

(1.2)

As in these examples, it is not easy for a machine to determine the similarity of
meaning from only the surface information of a sentence. On the other hand, we
humans can easily recognize these differences in meaning. In NLP, such human
intuition needs to be represented mathematically. In other words, the goal of
representation learning in a language is to create a computational model that
reflects such human intuition.

1.2 Symbolic Representation
Semantic representation methodologies can be classified into two categories: (1)
symbolic representation and (2) vector representation. Let us review here the
history of semantic representation to highlight the importance of vector repre-
sentation. NLP has been studied for more than 70 years. It began in 1949
with Weaver’s Memorandum [106]. This memorandum, which is entitled simply
Translation, formulated the methodology and goals of machine translation. Later,
a project known as The Georgetown Experiment successfully translated over 60
sentences from Russian into English [46]. These studies triggered a worldwide
interest in machine translation research. However, the performance was limited.
Because their machine translation system was based on a dictionary and word
order. Such a simple method could not adequately represent the ambiguous and
diverse information in natural language. Researchers have been working on this
problem for a long time. The representation of meaning remains the most impor-
tant research problem in NLP.

In 1957, Chomsky’s publication of generative grammar [22] led to the incor-
poration of linguistics into machine translation. Since then, many researchers
began to study methods of representing meaning. By the early 1970s, many se-
mantic representations were proposed, including case grammar [32] and semantic
networks [26].
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In the 1980s, the symbolic approach became mainstream and achieved remark-
able results. For example, methods for representing or reasoning knowledge using
symbolic logic were proposed [105]. Symbolic approaches were employed in ex-
pert systems [105], tokenization, parsing, etc., and solved many problems in NLP.
At that time, semantic representation was used in a straightforward way, dealing
with tokens, words, phrases, and sentences as they are. Such symbolic representa-
tions have the advantage of being easily implemented as well as easily understood.
On the other hand, symbolic representation does not consider the ambiguity of
meaning inherent in natural language.

1.3 Vector Representation
In this context, distributed representation, in which information is not held locally
but distributed, was proposed by Hinton et al [44]. Distributed representations
can mathematically represent ambiguous and diverse information in language.
While symbolic representations are difficult to represent or cannot cover many
cases, distributed representations have solved them. With recent improvements
in computational performance, there has been an increase in research into dis-
tributed representation. Bengio et al. [11] proposed a neural probabilistic lan-
guage model for learning word distributed representations. Mikolov et al. [74]
made it possible to learn from a large corpus of texts by improving computa-
tional efficiency.

Currently, vector representation is the mainstream distributed representation
because it is compatible with deep learning algorithms. In NLP, vector represen-
tations are used to represent words [74], sentences [90], etc.

Vector representation has various advantages. By representing linguistic fea-
tures as vectors, we can easily compute the similarity of words and sentences [90].
One of the other advantages of using vector representations is that we can define
a mapping between vectors. For example, a translation from German to English
can be defined as a mapping from German tokens to English tokens [98]. The
approach of using neural networks to learn this mapping has led to significant
developments in NLP. It has been applied with great success to various tasks
such as machine translation [98] dialogue systems [102], text classification [30],
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and semantic textual similarity [4].

1.4 Semantic Operations in Vector
Representation

In a pre-trained word vector space, it is known that the following semantic oper-
ation can be performed [63].

−−→
king −−−→man +−−−−→woman = −−−→queen (1.3)

Interestingly, this operation is very close to human intuition, i.e., the analogy
can be computed that results in “man is to woman as king is to queen”, by adding
and subtracting vectors. Such a property is called additive compositionality. This
kind of semantic operation has two major unique properties.

• First, the semantic operation is highly versatile. The most typical appli-
cation of additive composition is the computation of sentence vectors; in
NLP, it is a frequent practice to compute sentence vectors by averaging
word vectors [75, 90]. The additive construction is a simple but good way
to obtain representative vectors. For example, attention mechanism [10,98],
which is a weighted average of a set of feature vectors, has become a major
technique in recent language models.

The semantic operation has been widely used in various applications. Bor-
des et al. [16] proposed the loss function based on additive compositionality
for learning entity and relation embeddings of a knowledge graph. Reed et
al. [89] use an analogy for changing the attributes of an image.

Besides, for semantic operations that work in a pre-trained embedding
space, semantic operations can be used without additional task-specific
training. This is because they are operations that are valid in a pre-trained
embedding space. Based on this property, we can use an analogy to evaluate
an embedding space [63,76]. Mikolov et al. [76] proposed an analogy-based
evaluation benchmark for word embeddings. This is based on the idea that
the more analogies an embedding space consist of, the better the embedding
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space is at reproducing human intuition, including semantic and syntactic
analogies, as shown in Figure 1.1.

• Finally, semantic operations can help us understand embedding spaces. Op-
erations such as Equation 1.3 can be intuitively interpreted as the addition
and subtraction of concepts. Recent theoretical studies reveal that additive
compositionality is closely related to probability theory and information
theory [7, 31,38,64].

Figure 1.1: Example of analogy in word embedding space. The figure is taken from
[76]
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1.5 Scope of This Thesis
As mentioned above, semantic operation has various practical advantages and is
worth studying for our understanding of the nature of embedding spaces. How-
ever, no semantic operations other than additive compositionality have been stud-
ied.

In this thesis, we formulate novel semantic operations. We formulate two new
types of semantic operations, (1) word attribute transfer :

−−→
king = fgender(−−−→queen),
−−−→queen = fgender(

−−→
king),

−−−→
apple = fgender(

−−−→
apple),

(1.4)

and (2) set operations such as intersection (∩), and set membership (∈):

Color = {
−→
red,
−−→
blue,−−−→green,−−−−→orange, . . . },

Fruit = {
−−−→
apple,−−−−→orange,

−−−→
peach, . . . },

−−−−→orange ∈ Color ∩ Fruit,

(1.5)

and set similarity:

A = {
−−−→
Those,

−−→
dogs,−→are,

−−→
cute},

B = {
−−−→
That,−−−→puppy,

−→
is ,
−−−−−→
adorable},

SentenceSimilarity = SetSimilarity(A, B),

(1.6)

and demonstrate that our semantic operations work well in embedding space and
have high performance in applications.

1.6 Outline
The rest of this thesis is organized as follows:

Embedding (Chapter 2) We review current word embedding methodologies
in two major categories.
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Word Attribute Transfer (Chapter 3) We propose a semantic operation
called reflection-based word attribute transfer. Word attribute transfer is a map-
ping that inverts attributes such as gender and can be used to expand sentence
data. For example, we obtain a new sentence She is a girl. by transferring
the gender attribute of each word in He is a boy. We formulate word attribute
transfer on the embedding space. A straightforward method of word attribute
transfer is to use analogies by word vectors such as Equation 1.3. For example,
to invert gender,

−−→
king − −−→man + −−−−→woman can be converted to −−−→queen. However,

the analogy-based method assumes that the gender attribute of the input word
is known in advance since whether the vector is added or subtracted depends on
whether the input word is male or female. Such knowledge is innumerable and
cannot be manually assigned to every word. In this chapter, (1) we formulate a
function that does not use knowledge of attributes, and (2) we propose a word
attribute transfer based on reflection, which is one such ideal mapping. Experi-
mental results show that our reflection-based method is more stable than other
semantic operations for word attribute transfer.

Subspace-based Set Operations (Chapter 4) Word embedding is often ex-
ploited for tasks using sets of words, although standard methods for representing
word sets and set operations remain limited. If we can leverage the advantage
of word embedding for such set operations, we can calculate sentence similarity
and find words that effectively share a concept with a given word set straight-
forwardly. In this study, we formulate representations of sets and set operations
in a pre-trained word embedding space. Inspired by quantum logic, we propose
a novel formulation of set operations using subspaces in a pre-trained word em-
bedding space. Based on our definitions, we propose two metrics based on the
degree to which a word belongs to a set and the similarity between embedding two
sets. Our experiments with Text Concept Set Retrieval and Semantic Textual
Similarity tasks demonstrated the effectiveness of our proposed method.

Conclusion and Future Directions (Chapter 5) This chapter summarizes
the contribution of the thesis work and discusses future directions.
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2 Word Embedding

2.1 Vector Representation

2.1.1 One-hot Representation

One-hot representation is the most intuitive and easiest way to represent a word
as a vector. It represents a word by a one-hot vector in which only one element has
a value of one and the other elements are zero. In the case of word representation,
the number of dimensions of a one-hot vector is equal to the number of words in a
vocabulary in order to make each element correspond to one word. For example,
each word in the vocabulary V = {king, man, queen, woman} can be represented
as a one-hot vector as follows:

−−→
king = (1, 0, 0, 0), (2.1)
−−→man = (0, 1, 0, 0), (2.2)
−−−→queen = (0, 0, 1, 0), (2.3)
−−−−→woman = (0, 0, 0, 1). (2.4)

There are two main problems with one-hot representation. One is the inabil-
ity to represent semantic similarity. This is due to the fact that one-hot vectors
are sparse (discrete) representations. All one-hot vectors are orthogonal, so the
similarity of each word is not represented. Another problem is memory ineffi-
ciency. When the vocabulary is large, the dimensions of the one-hot vectors also
increase. This results in processing a huge matrix. For example, if the size of the
vocabulary is 100000, the matrix has 10 billion elements. We need huge memory
usage and computation time.
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2.1.2 Distributed Representation

There have been many studies on low-dimensional vector representations that
capture the similarity between words to solve this. Distributed representation [44]
is one of these methods. The word vectors based on the distributed representation
have been successfully reduced to several hundred dimensions, independent of
the vocabulary size. In the next section, we discuss word embedding, the most
popular method of word distributed representation, and in sections section 2.3
and section 2.4, we describe several word embeddings in detail.

2.2 Word Embedding and Semantic Operation
Word embedding is a method of computing a distributed representation of a word.
In NLP, embedding is mapping from linguistic features to a vector space. Word
embedding maps a word to a vector space, and sentence embedding maps a
sentence to a vector space. If similar words are located closely in the vector
space, such an embedding can capture the word similarity.

The way to obtain good word embeddings is to learn a word vector from the
context based on the distributional hypothesis. The Distributional Hypothesis is
that words having similar meanings appear in similar contexts. In other words,
the meaning of a word can be determined from its surrounding words. The Distri-
butional Hypothesis is very simple, but word embedding based on the hypothesis
can represent the meaning of a word quite well.

Typical word embedding methods include word2vec∗ [75], Global Vectors (GloVe)
[84], and fastText [14]. They represent words as vectors in a Euclidean space.
This has the advantage that the degree of similarity between words can be intu-
itively defined as the angle between their word vectors as follows:

cos_similarity(va, vb) = cos θ,

= |va · vb|
‖va‖‖vb‖

,
(2.5)

∗This term is often used as a generic term for two algorithms (skip-gram and continuous bag-of-
words).

9



where a and b are words, and va and vb are their word vectors, and θ is the angle
between va and vb.

The word embeddings are not only used to calculate the similarity between
words, but they also enable semantic operations such as

−−→
king−−−→man +−−−−→woman ≈

−−−→queen (Figure 2.1). Besides such analogy, additive construction also allows for
the operation of the degree of the meaning of a word. For example, Kim et
al. [56] reported a word vector that is most similar to the center between

−−→
good

and
−−→
best is

−−−→
better (Figure 2.2). Moreover, a recent study has revealed that additive

composition corresponds to word sense operations, i.e., AND (e.g. king = man ∧
royal), OR (e.g. case = box ∨ instance), and NOT (e.g. hate = ¬love).

For the vector space, Euclidean space is often used for practical convenience
[14, 75, 84]. Sometimes a vector space other than Euclidean space is used to
take into account the nature of the language. For example, Nickel et al. [80]
and subsequent work [34, 95] employ a hyperbolic space to embed a hierarchical
structure of linguistic concepts.

king

queen

man

woman

king − man

king − man + woman

Figure 2.1: PMI-based word embeddings capture analogic relations such as
−−→
king −

−−→man +−−−−−→woman ≈ −−−→queen.
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better
good

best

Figure 2.2:
−−−→
better is embedded in the center between

−−→
good and

−−→
best
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2.3 Static Embeddings
In this section, we describe static embedding, which gives just one representation
for a word.

2.3.1 word2vec

Word2vec is the most popular word embedding that successfully learns word
vectors from large text corpus by improving computational efficiency. To obtain
word embeddings, two-layer neural networks are trained on a large corpus to
predict the linguistic contexts of words.

Word2vec includes two models: continuous bag-of-words (CBOW) or skip-gram
(SG). These models are based on the Distributional Hypothesis [33,43]. In other
words, these learning algorithms are designed to learn a word vector from the
context of the word. The goal of CBOW is to predict the center word given
the surrounding words. In contrast, SG predicts the surrounding words from the
center word.

Let S = {w1, ..., wt, ..., wT} be a sentence, wt (1 ≤ t ≤ T ) be a word, and let
C = {wt−δ, ..., wt−1, wt+1, ..., wt+δ} be context words within a fixed-size window
determined by δ. SG predicts context words C from a target word wt. On
the other hand, CBOW predicts the target word wt from context words C. SG
maximizes the following log-likelihood of the conditional probability distribution
function:

1
T

T∑
t=1

∑
−δ≤j≤δ,j 6=0

log p(wt+j | wt), (2.6)

p(wt+j | wt) =
exp(w>

t+jwt)∑
v∈V exp(v>wt)

, (2.7)

where δ is a window size, and v is a word vector of the word v that is a element
of a vocabulary set V. Here, we designate a vector of v as a bold letter v.

As shown in Eq. 2.7, SG requires repeated calculations for the vocabulary size
|V| for each step of the prediction. Since |V| is generally 105 to 107, SG raises the
computational cost problem. We can reduce the computational cost by negative
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sampling to avoid it. Skip-gram with negative sampling (SGNS) works as well as
Skip-gram while reducing the computational cost by classifying the co-occurring
pair (w, w′) into one and non-co-occurring pair (w, w̃) into zero. In SGNS, the
objective is defined as follows:

− log σ(w′>wt)−
∑

w̃∈N
log σ(−w̃>wt) (2.8)

where N is a set of negative samples, and σ is a sigmoid function. Negative
samples are randomly sampled from V considering the frequency.

2.3.2 GloVe

Other word embedding methods include Global Vectors (GloVe) [84]. GloVe com-
bines the advantages of the matrix factorization method and the shallow window-
based method. GloVe differs from word2vec in that it uses global information.
Word2vec uses local co-occurrence information, i.e., the context of words in a
sentence. In contrast, GloVe uses information on co-occurrences between words
in the entire corpus. GloVe can perform analogy operations as well as word2vec.

The objective is defined as follows:

|V|∑
i,j=1

f(Xi,j)(w>
i wj + bi + bj − log Xi,j)2, (2.9)

where Xi,j is the number of co-occurrence of the words wi and wj, and bi and bj

are the bias terms for them. The weighting function f is defined as follows:

f(x) =

(x/xmax)α if x < xmax,

1 otherwise,
(2.10)

where the cut-off parameter xmax and α are hyperparameters.

2.4 Dynamic Embeddings
In this section, we describe dynamic embedding (contextualized embedding),
which gives contextual representation for a word.
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Words are often polysemous. Let us consider the following example to clar-
ify the importance of representing the polysemy of a word. The following two
sentences share the word bank but it has different meanings.

I made a deposit of $500 at the bank.
The river flowed over its bank.

(2.11)

In the first sentence, bank means a financial institution, while it means the slope
adjacent to a river in the second sentence. The word surfaces are the same,
but their semantic representations can be different. Polysemy is one of the key
issues in NLP. However, static embedding does not adequately represent this. For
example, in word2vec or GloVe, a word vector is unique for a given word. That
is, the word vector does not change depending on its context.

I made a deposit of $500 at the bank.

The river flowed over its bank.

Figure 2.3: Example of dynamic embeddings

Dynamic embedding (also called contextualized embedding) is an embedding
in which the word or subword vector changes dynamically depending on the con-
text. ELMo (Embeddings from Language Models) [85] and BERT (Bidirectional
Encoder Representations from Transformers) [30] are typical methods that can
obtain dynamic embeddings. ELMo consists of bi-directional two-layer LSTMs
(Long Short-Term Memory) [45], which look at the whole sentence and give con-
textualized word vectors. ELMo is trained as a language model. Training is done
through self-supervised learning. It does not require labeled training data and
can be trained on large amounts of unlabeled text data.
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2.4.1 BERT

BERT [30] is a language representation model for NLP. Similar to ELMo, BERT
can embed an input text into a contextual vector.

It differs from ELMo in that BERT’s model architecture is a Transformer en-
coder [98]. The self-attention mechanism allows it to obtain superior representa-
tions and improve computational efficiency through parallel computation.

The advantage of BERT is that it can achieve high performance on a variety
of tasks† through general-purpose representations. This is achieved through two
training phases as shown in Figure 2.4: (1) pre-training on general domain large-
scale training data and (2) tuning pre-trained BERT according to the task (called
fine-tuning). In (2), by using the pre-trained BERT as initial weights, it can
achieve high performance with a small amount of training data. We often have
difficulty preparing large training data sets for specific tasks, but BERT allows
us to solve this issue. Moreover, fine-tuning takes only a few epochs. It is no
longer necessary to train the model from scratch for a specific task. Such training
schemes have been employed in many studies and have become common [70,88].

BERT BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair 

SQuAD

Question Answer Pair

NERMNLI

Figure 2.4: Procedure of pre-training and fine-tuning for BERT. The figure is taken
from [30]

†In machine learning, a task is a type of prediction designed to solve a given problem. It can be
broadly classified into classification, regression, etc.
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3 Word Attribute Transfer

3.1 Background
The distributed representation is compatible with neural networks because the
representation can capture the features of language data and compress them into
low-dimensional vectors. Word embedding methods handle word semantics in
NLP [74,75,80,84,101]. Word embedding models such as SGNS [75] or GloVe [84]
capture analogic relations such as

−−→
king − −−→man + −−−−→woman ≈ −−−→queen. Previous

works [6, 7, 31, 38, 64] offer theoretical explanations based on pointwise mutual
information (PMI) [25] for maintaining analogic relations in word vectors.

These relations can be used to transfer a certain attribute of a word, such as
changing king into queen by transferring its gender. This transfer can be applied
to perform data augmentation; for example, rewriting He is a boy to She is a girl.
It can be used to generate negative examples for natural language inference [55].
For example, in the Natural Language Inference (NLI) [17, 108] corpus, negative
examples can be generated by transferring a hypothesis sentence from entailment
to contradiction. We tackled a novel task that changes a word by transferring
certain attributes associated with the word, which is called word attribute transfer.

A naive way for word attribute transfer is to use a difference vector based on
analogic relations, such as adding −−−−→woman−−−→man to

−−→
king to obtain −−−→queen. This

requires explicit knowledge whether an input word is male or female. We have
to add a difference vector to a male word and subtract it from a female word
for achieving gender transfer. We also have to avoid changing words that are
invariant with respect to gender attributes, such as is and a in the example above,
as they are gender-invariant words. Developing such knowledge is significantly
costly for words and attributes in practice. In this thesis, we propose a novel
framework for word attribute transfer based on reflection that does not require
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father　
mother

Invert gender

fathers
Invert singular/plural

z
x t

Figure 3.1: Examples of word attribute transfer

explicit knowledge of the given words in its prediction.
The contributions of this work are twofold: (1) We propose a word attribute

transfer method that obtains a vector with an inverted binary attribute with-
out explicit knowledge. (2) The proposed method demonstrates more accurate
word attribute transfer for words that have target attributes than other baseline
methods, while ensuring that the words that do not have target attributes are
unchanged.

3.2 Word Attribute Transfer Task
In this task, we focus on modeling the binary attributes (e.g., male and female∗).
Let x denote a word and let vx ∈ Rn denote its n-dimensional vector represen-
tation. We assume that vx is learned in advance using an embedding model,
such as a skip-gram. In this task, we have two inputs, a word x and vector
z ∈ Rn, which represents a certain target attribute, and an output word y. y

is the word obtained through the transfer of x according to the target attribute
specified by z. y should be the same as the reference word t. Note that t is
the same as x when x is invariant based on the target attribute. In this thesis,
z is an n-dimensional vector embedded from a target attribute ID by using an
embedding function of a deep learning framework. For example, given a set of
attributes Z = {gender, antonym}, we assign different random vectors zgender for
gender and zantonym for antonym. Let A denote a set of triplets (x, t, z), e.g.,

∗Gender-specific words are sometimes considered socially problematic. Here, we use this as an
example based on the man-woman relation.
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(man, woman, zgender) ∈ Agender, and N denote a set of invariant words for an
attribute z, e.g., (person, zgender) ∈ Ngender. This task transfers an input word
vector vx to an output word vector vy ∈ Rn by using a transfer function fzattr

that inverts the attribute zattr of vx. vy is expected to be the same as its reference
word vector vt ∈ Rn. This is denoted according to the following formula:

vt ≈ vy = fz(vx). (3.1)

The following properties must be satisfied: (1) attribute words {x | (x, t, z) ∈ A}
are transferred to their counterparts, and (2) invariant words {x | (x, z) ∈ N} are
not changed (are transferred back into themselves). For instance, with zgender,
for a given input word man, the gender attribute transfer fzgender(vman) should
result in a vector close to vwoman. When given another input word person as x,
the result should be vperson.

3.3 Analogy-based Word Attribute Transfer
Analogy is a general idea that can be used for word attribute transfer. PMI-based
word embedding methods, such as SGNS and GloVe, capture analogic relations,
as shown in Eq. 3.2 [63,68,76]. By rearranging Eq. 3.2, Eq. 3.3 is obtained:

vqueen ≈ vking − vman + vwoman, (3.2)
≈ vking − (vman − vwoman). (3.3)

The analogy-based transfer function is

fz(vx) =

vx − d if x ∈ M,

vx + d if x ∈ F,
(3.4)

where M is a set of words with a particular target attribute (e.g., male) and F is
a set of words with an inverse attribute (e.g., female). d is a difference vector,
such as vman − vwoman. Eq. 3.4 indicates that the operation changes depending
on whether the input word x belongs to M or F. However, to transfer the word
attribute based on analogy, we require explicit knowledge such as the attribute
value (M, F, or others) that is contained by the input word.
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3.4 Reflection-based Word Attribute Transfer

3.4.1 Ideal Transfer Mapping without Knowledge

What is an ideal transfer function fz for the word attribute transfer? The fol-
lowing are the ideal natures of a transfer function:

∀(m, w, z) ∈ A, vm = fz(vw), (3.5)
∀(m, w, z) ∈ A, vw = fz(vm), (3.6)
∀(u, z) ∈ N, vu = fz(vu). (3.7)

The function fz enables a word to be transferred without explicit knowledge
because the operation of fz does not change depending on whether the input
word belongs to M or F. By combining Eqs. 3.5, 3.6 and 3.7, we obtain the
following formulas:

∀(m, w, z) ∈ A, vm = fz(fz(vm)), (3.8)
∀(m, w, z) ∈ A, vw = fz(fz(vw)), (3.9)
∀(u, z) ∈ N, vu = fz(fz(vu)). (3.10)

Hence, the ideal transfer function is a mapping that becomes an identity mapping
when we apply it twice for any v. Such a mapping is called involution in geometry.
For example, f : v 7→ −v is an example of an involution.

3.4.2 Reflection

Reflection Refa,c is an ideal function because this mapping is an involution, as
shown below:

∀v ∈ Rn, v = Refa,c(Refa,c(v)). (3.11)

Reflection reverses the location between two vectors in a Euclidean space through
an affine hyperplane called a mirror. a and c are parameters that determine the
mirror. a ∈ Rn is a vector orthogonal to the mirror and c ∈ Rn is a point
through which the mirror passes. Reflection is different from inverse mapping.
When m and w are paired words, reflection can transfer vm and vw between each
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other with identical reflection mapping as shown in Eqs. 3.5 and 3.6; however, an
inverse mapping cannot perform this action. Given a vector v in the Euclidean
space Rn, the formula for the reflection in the mirror is given by

Refa,c(v) = v − 2(v − c) · a
a · a

a. (3.12)

3.4.3 Reflection-based Word Attribute Transfer

a
c

Mirror

Vector

Refa,c(v)

king

queen

man

woman

Figure 3.2: Reflection-based word attribute transfer with a single mirror

Reflection by a Single Mirror We apply reflection to the word attribute
transfer process. We learn a mirror (hyperplane) in a pretrained embedding
space using training word pairs with binary attribute z (Figure. 3.2). Because
the mirror is uniquely determined by two parameter vectors, a and c, we estimate
a and c from the target attribute z using fully connected multilayer perceptrons
(MLPs):

a = MLPθ1(z), (3.13)
c = MLPθ2(z), (3.14)

where θ is a set of trainable parameters of MLPθ. The transferred vector vy is
obtained by inverting the attribute z of vx by reflection:

vy = Refa,c(vx). (3.15)
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king

queen

man

woman

actor
hero

heroineactress

father

mothersister

brother Mirror
Reflection

person

Figure 3.3: Reflection using parameterized mirrors

Reflection by Parameterized Mirrors Reflection with a mirror according to
Eqs. 3.13 and 3.14 assumes a single mirror that only depends on z. The previous
discussion assumed pairs that share a stable pair, such as king and queen.

However, as gender-variant words often do not come in pairs, gender is not
sufficiently stable to be modeled by a single mirror. For example, although actress
is exclusively feminine, actor is clearly neutral in several cases. Thus, actor is
not a masculine counterpart such as king. In fact, bias exists in gender words in
the embedding space [54,114]. This phenomenon can occur not only with gender
attributes but also with other attributes. The assumption of a single mirror forces
the mirror to be a hyperplane that goes through the midpoints for all word vector
pairs. However, the vector pair actor-actress, shown on the right in Figure. 3.3,
cannot be transferred well as the single mirror (the green line) does not satisfy
this constraint owing to the bias of the embedding space. To solve this problem,
we propose parameterized mirrors based on the idea of using different mirrors for
different words. We define the mirror parameters a and c using the word vector
vx to be transferred in addition to the attribute vector z:

a = MLPθ1([z; vx]), (3.16)
c = MLPθ2([z; vx]), (3.17)

where [·; ·] indicates the vector concatenation in the column.
Parameterized mirrors are expected to work more flexibly on different words

than a single mirror because parameterized mirrors dynamically determine similar
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Algorithm 1 Parameterized mirrors at inference
Input: Input word x

Input: Transfer target attribute z

Output: Output word y

vx ← pre_trained_word_embedding(x) ▷ Get the word vector

// Generate a mirror parameters dynamically according to the input word vector vx

and an attribute z.
a← MLPθ1([z; vx]) ▷ Generate a mirror parameter (mirror direction vector)
c← MLPθ2([z; vx]) ▷ Generate a mirror parameter (mirror position vector)

// Generate a mirror based on a and c and changing the meaning of words using
reflection with a parameterized mirror.
vy ← Ref(a, c, vx)

mirrors for similar words. Note that the number of mirrors is not predetermined,
so the operation of selecting the best mirror from several mirrors is not performed.
Instead, the mirror is automatically generated from the input vector (Algorithm
1). The mirror is uniquely determined by two mirror parameter vectors. In the
parameterized mirror, these parameters are learned from the input word vector.
As a result, when a word vector for the test and an attribute vector is input
during the test, the MLPs can generate the mirror that transforms the attribute
of the word vector. For example, let’s assume that the reflection is learned to
convert hero to heroine as shown in Figure 3.3. Now the MLPs can generate
the mirror parameter vectors to convert hero to heroine. Suppose that a vector
similar to hero, such as actor, is input during the test. Here, hero and actor
are similar vectors (the neighbourhood in terms of Euclidean distance), so the
mirror parameter vectors generated by the MLPs for actor should be similar to
the one for hero. An important thing is that the mirror is generated dynamically
according to the input word vector, resulting in a mirror that optimally reflects
the features of the input word. Therefore, even for words that have not been
learned, the parameterized mirror can function well.

It is also possible to learn reflection to not transform attributes-invariant words,
such as person in Fig 3.3). This can be done by training the reflection to output
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the same word vector when inputting such word vectors. The reflection works
as an identity mapping for a vector on the mirror.

It should be noted that Eq. 3.11 may not hold for parameterized mirrors. In the
reflection with a single mirror, it is true that v = Refa,c( Refa,c(v)). However,
this is not guaranteed with the v-parameterized reflection Refav ,cv(v). This is
because the mirror parameters av and cv depend on an input word vector, as
shown in Eqs. 3.16 and 3.17. Thus, we exclude this constraint and employ the
constraints given by Eqs. 3.5-3.7 for our loss function.

Weight Sharing In neural networks, weight sharing can reduce the number of
trainable weights and often improve performance [61,109]. The mirror parameters
a and c can be defined using a shared MLP as follows:

o = MLPθ([z; vx]), (3.18)
a = W ao, (3.19)
c = W co, (3.20)

where θ indicates the shared weights. o ∈ Rm is an output vector of MLPθ.
W a ∈ Rn×m and W c ∈ Rn×m are weight matrices corresponding to a and c,
respectively.

Loss The following properties must be satisfied in word attribute transfer: (1)
words with attribute z are transferred and (2) words without it are not trans-
ferred. Thus, loss L(Θ) is defined as:

L(Θ) = 1
|A|

∑
(x,t,z)∈A

(vy − vt)2 + 1
|N|

∑
(x,z)∈N

(vy − vx)2, , (3.21)

where Θ is a set of trainable parameters (Θ = {θ} for weight sharing and Θ =
{θ1, θ2} otherwise). The first term draws the target word vector vti

closer to the
corresponding transferred vector vyi

and the second term prevents words that
are invariant with respect to a target attribute from being moved by the transfer
function. vy is the output of a reflection (Eq. 3.15).
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3.5 Experiments
We evaluated the performance of word attribute transfer using data with four
different attributes. We used 300-dimensional word2vec † and GloVe ‡ models as
the pretrained word embedding. We used four different datasets of word pairs
with four binary attributes: Male-Female (MF), Singular-Plural (SP), Capital-
Country (CC), and Antonym (AN) (Table 3.1). These word pairs were collected
from analogy test sets [39,74] and the Internet. Antonyms were obtained from the
literature [79]. Their datasets were collected from WordNet [77] and Wordnik §.
The original data by Nguyen et al. [79] contains synonyms; however, we excluded
them and used only the antonyms. We compared the models that train with
attributes individually with the models that train with joint attributes. The
invariant word dataset N were constructed by random sampling from WordNet
by excluding the attribute-variant words in the corresponding set A. We sampled
the invariant words for the invariant portion of the training data by varying their
occupancy, i.e., 0, 5, 10, 25, and 50%, to investigate their effects on the tradeoffs
between variant and invariant words. We also chose 1,000 invariant words for the
test (|Ntest| =1,000).

Table 3.1: Statistics of binary-attribute word datasets

Dataset A #Train #Val #Test #Total

Male-Female (MF) 106 48 48 202
Singular-Plural (SP) 3624 776 776 5176
Capital-Country (CC) 118 50 50 218
Antonym (AN) 5002 642 642 6286

3.5.1 Evaluation Metrics

We measured the accuracy and stability performances of the word attribute trans-
fer. The accuracy measures the number of input words in Atest that were trans-

†https://code.google.com/archive/p/word2vec/
‡https://nlp.stanford.edu/projects/glove/
§https://www.wordnik.com/
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ferred correctly to the corresponding target words. The stability score measures
the number of words in Ntest that were not mapped to other words. For example,
in the MF transfer, given man, the transfer is regarded as correct if woman is the
closest word to the transferred vector; otherwise, it is incorrect. Given person,
the transfer is regarded as correct if person is the closest word to the transferred
vector; otherwise, it is incorrect. The accuracy and stability scores are calculated
using the following formula:

δ(vy, t) =


1 if arg max

k∈V
(cos(vy, vk)) = t

0 otherwise,

(3.22)

(3.23)

Accuracy = 1
|Atest|

∑
(x,t,z)∈Atest

δ(vy, t), (3.24)

Stability = 1
|Ntest|

∑
(x,z)∈Ntest

δ(vy, x), (3.25)

where V is the vocabulary of the word embedding model and cos(vy, vk) is the
cosine similarity measure, which is defined as cos(vy, vk) = vy ·vk

‖vy‖‖vk‖ .
For the accuracy evaluation in the AN transfer, we used a different definition,

as presented subsequently, to evaluate the accuracy because there are multiple
possible candidates for the transfer in the AN dataset.

δAN(vy, t) =


1 if arg max

k∈V
(cos(vy, vk)) ∈ T,

0 otherwise,

(3.26)

(3.27)

AccuracyAN = 1
|Atest|

∑
(x,T,z)∈Atest

δAN(vy, T), (3.28)

where T = {t1, t2, ..., t3} is a set of target words of the input antonym word x.
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3.5.2 Methods and Configurations

Because these datasets are significantly small, we added 300-dimensional Gaus-
sian noise to every input vector during training to avoid overfitting, i.e., vx + gσ,
where gσ is the Gaussian noise and σ is the standard deviation of the Gaussian
distribution. The reported results are presented for the best set of hyperparam-
eters evaluated on the validation set for each model after a grid search on the
following values: Adam [57] learning rate α ∈ {0.0001, 0.00015, 0.001, 0.0015}
(the other hyperparameters were the same as the original hyperparameters),
σ ∈ {0.0, 0.05, 0.1, 0.15, 0.2}, and MLP inner hidden size ∈ {300, 500, 1500, 3000}.
Table 3.2 lists the best hyperparameters of the proposed method. We did not use
regularization methods such as dropout [92] or batch normalization [47] because
they did not show any improvement in our pilot test.

In training, the attribute and invariant word data were combined into one
training dataset, where an invariant word (x, z) ∈ N was represented as (x, x, z) ∈
N, similar to an attribute word (x, t, z) ∈ A. Thus, we could simply implement
the loss function (Eq. 3.21) as follows: L(Θ) = 1

|A∩N|

∑
(x,t,z)∈A∩N(vy − vt)2,

where A ∩ N is a mini-batch of training data.
In our experiment, we compared our proposed method with the following base-

line methods:

Ref This is a reflection-based word attribute transfer with a single mirror. We
used a fully connected MLP with a rectified linear unit (ReLU) [40] to
estimate a and c.

Ref+PM This is a reflection-based word attribute transfer with parameterized
mirrors. We used the same architecture of MLP as Ref.

Ref+PM+Share This method consists of a reflection-based word attribute trans-
fer with parameterized mirrors. We used the MLP with shared weights to
estimate a and c (refer to Weight Sharing in Section 3.4.3).

MLP This is a fully connected MLP with ReLU: vy = MLP([vx; z]). The highest
accuracy models are a five-layer MLP with 1500 hidden units for SP, five-
layer MLP with 3000 hidden units for AN, and three-layer MLP with 300
hidden units for the other datasets. The optimal configurations were as
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follows: the learning rate for Adam α = 0.00015 for all datasets; moreover,
σ = 0.05 for AN and σ = 0.1 for the other datasets.

TransE The word attribute transfer task is similar to link prediction in which
(x, z, t) is replaced with (head, label, tail). In link prediction, given a set of
triplets (head, label, tail), the knowledge graph embedding model predicts
the tail from the head and label. We applied TransE [16], a baseline model
for knowledge graph embeddings, to word attribute transfer. We modified
the model to input the word vector into the knowledge graph embedding
model based on the following equations:

h = W headvx, (3.29)
t = W tailvt, (3.30)

where h ∈ Rk is a head vector and t ∈ Rk is a tail vector. W head∈Rk×n

and W tail∈Rk×n are weight matrices corresponding to the head and tail,
respectively. The label vector l was embedded in the same way as the
original TrasnE based on a set of relations {MF, SP, CC, AN}. The optimal
configurations were as follows: the latent dimension k = 200, learning rate
λ for stochastic gradient descent λ = 1.0, and margin γ = 5.0. TransE
was implemented using an open toolkit for knowledge embedding called
OpenKE [42]. In the evaluation, when calculating the accuracy and stability
in Eqs. 3.23 and 3.27, the score function of TransE was used instead of
cos(vy, vk).

Diff This method consists of analogy-based word attribute transfer with a dif-
ference vector, d = vm − vw, where m and w are in the training data of
A. We chose the d that achieved the best accuracy in the validation data
of A. We determined whether to add or subtract d to vx based on explicit
knowledge (Eq. 3.4). Here, Diff+ and Diff− transfer word attributes
using a difference vector regardless of the explicit knowledge. + and − add
or subtract the difference vector to any input word vector.

MeanDiff This method includes an analogy-based word attribute transfer with
a mean difference vector d̄, where
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d̄ = 1
|Atrain|

∑
(mi,wi,z)∈Atrain

(vmi
− vwi

). We determined whether to add or
subtract d̄ to vx based on the explicit knowledge (Eq. 3.4).

Table 3.2: Hyperparameters for reflection-based word attribute transfer
Embedding Hyperparameters MF SP CC AN

word2vec

Model Ref+PM Ref+PM+Share Ref+PM Ref+PM
Batch size 512 512 512 4096
Best Iterations 21000 14000 20000 20000
Noise σ 0.1 0.1 0.1 0.1
Adam α 0.0001 0.0001 0.0001 0.0001
Activation Function ReLU ReLU ReLU ReLU
Num of MLP layers 3 5 3 5
Inner hidden size of MLP 300 1500 300 3000
Size of |Ntrain| 5% 25% 5% 50%

GloVe

Model Ref+PM+Share Ref+PM+Share Ref+PM Ref+PM
. Batch size 512 512 512 4096

Best Iterations 48000 20000 24000 30000
Noise σ 0.1 0.1 0.1 0.1
Adam α 0.0001 0.0001 0.0001 0.0001
Activation Function ReLU ReLU ReLU ReLU
Num of MLP layers 3 5 3 5
Inner hidden size of MLP 300 1500 300 3000
Size of |Ntrain| 25% 10% 5% 10%

3.5.3 Evaluation of Accuracy and Stability

Table 3.3 lists the accuracy and stability results. Because AN has a many-to-many
relationship, a single difference vector cannot be obtained. Therefore, the anal-
ogy methods (Diff, Diff+−, MeanDiff, and MeanDiff+−) were not applied
to AN. Different pretrained word embeddings by GloVe and word2vec provided
similar results. Ref+PM and Ref+PM+Share achieved the best accuracy
among the methods that did not use explicit attribute knowledge. For exam-
ple, the accuracy of Ref+PM was 74% for CC; however, the accuracy of MLP
was 18%. For most attributes, our proposed methods outperformed the analogy-
based transfer. Weight sharing did not significantly improve the performance
of the proposed methods. The parameterized mirror improved the performance
of a reflection-based transfer, although the learning was unstable (Figure. 3.4).
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For stability, reflection-based transfers achieved superior stability scores, which
exceeded 93% in most cases. We mixed all the attribute datasets and trained
models. The best model was the proposed method trained with an individual
attribute dataset. In the joint condition, the MLP demonstrated better perfor-
mance than that in the individual attribute condition with the help of the larger
training data. The results show that our proposed methods transfer an input
word if it has a target attribute and does not transfer an input word with better
scores than the baseline methods, even though the proposed methods do not use
knowledge of the input words.
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Table 3.3: Results of accuracy and stability scores. MF, SP, CC, and AN are datasets.
Here, “joint” models are trained with joint attributes and “individual”
models are trained with an individual attribute.

Embedding Method Knowledge
Accuracy (%) Stability (%)

MF SP CC AN MF SP CC AN

word2vec

Ref (individual) 22.9 0.5 44.0 0.2 100.0 100.0 100.0 100.0
Ref+Share (individual) 22.9 0.5 42.0 0.2 100.0 100.0 100.0 100.0
Ref+PM (individual) 41.7 44.2 62.0 11.2 98.5 95.9 100.0 75.2
Ref+PM+Share (individual) 37.5 43.0 60.0 7.2 99.3 98.7 100.0 96.2
MLP (individual) 10.4 40.1 18.0 12.5 5.7 95.1 9.2 92.4
TransE (individual) 0.0 0.2 0.0 0.0 100.0 100.0 100.0 100.0

Ref (joint) 18.8 0.3 42.0 0.2 100.0 100.0 100.0 100.0
Ref+Share (joint) 18.8 0.3 44.0 0.2 100.0 100.0 100.0 100.0
Ref+PM (joint) 25.0 43.4 44.0 13.2 100.0 93.7 100.0 63.7
Ref+PM+Share (joint) 18.8 50.8 34.0 16.0 100.0 98.8 100.0 89.0
MLP (joint) 16.7 38.1 8.0 14.0 95.4 98.6 97.6 97.1
TransE (joint) 0.0 0.3 0.0 0.0 100.0 100.0 100.0 100.0

Diff + 22.9 3.2 32.0 - 97.1 93.1 89.5 -
Diff − 22.9 3.1 32.0 - 87.9 98.8 99.4 -
MeanDiff + 6.3 0.3 22.0 - 100.0 100.0 99.7 -
MeanDiff − 8.3 0.3 14.0 - 100.0 100.0 99.9 -

Diff ✓ 37.5 6.3 64.0 - - - - -
MeanDiff ✓ 14.6 0.5 36.0 - - - - -

GloVe

Ref (individual) 10.4 0.5 24.0 0.2 100.0 100.0 100.0 100.0
Ref+Share (individual) 10.4 0.4 24.0 0.0 100.0 100.0 100.0 100.0
Ref+PM (individual) 37.5 45.0 74.0 12.3 99.2 99.3 100.0 93.3
Ref+PM+Share (individual) 39.6 42.8 72.0 11.5 99.2 99.8 100.0 94.7
MLP (individual) 14.6 41.1 18.0 14.2 41.7 97.6 50.3 93.4
TransE (individual) 0.0 0.2 0.0 0.0 100.0 100.0 100.0 100.0

Ref (joint) 12.5 0.4 24.0 0.2 100.0 100.0 100.0 100.0
Ref+Share (joint) 2.1 0.4 20.0 0.0 100.0 100.0 100.0 100.0
Ref+PM (joint) 12.5 39.8 36.0 9.0 100.0 99.7 100.0 94.1
Ref+PM+Share (joint) 12.5 47.0 36.0 9.8 100.0 97.7 100.0 59.0
MLP (joint) 27.1 35.2 26.0 11.1 98.0 99.7 99.4 97.6
TransE (joint) 0.0 0.3 0.0 0.0 100.0 100.0 100.0 100.0

Diff + 14.6 4.5 22.0 - 100.0 100.0 100.0 -
Diff − 12.5 4.3 26.0 - 100.0 99.8 99.9 -
MeanDiff + 0.0 0.3 2.0 - 100.0 100.0 100.0 -
MeanDiff − 0.0 0.3 4.0 - 100.0 100.0 100.0 -

Diff ✓ 27.1 8.7 48.0 - - - - -
MeanDiff ✓ 0.0 0.5 6.0 - - - - -
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Table 3.4: Accuracy of the top three nearest neighbors of TransE. A “joint” model
is trained with joint attributes. An “individual” model is trained with an
individual attribute.

Method
word2vec GloVe

MF SP CC AN MF SP CC AN
@1 @3 @1 @3 @1 @3 @1 @3 @1 @3 @1 @3 @1 @3 @1 @3

TransE (individual) 0.0 75.0 0.2 76.3 0.0 80.0 0.0 20.2 0.0 66.7 0.2 80.0 0.0 76.0 0.0 42.2
TransE (joint) 0.0 72.9 0.3 70.7 0.0 64.0 0.0 20.0 0.0 64.6 0.3 75.6 0.0 72.0 0.0 36.4

In TransE, the accuracy was almost 0% for all the attributes¶. However, in
the MF, SP, and CC relations, several reference words were within the top three
nearest neighbors, as listed in Table 3.4. This result is similar not only in this task
but also when learning with WN18 [97]. This is owing to the nature of TransE.
While considering AN, the accuracy in the three nearest neighbors was still low.
This can be explained by the poor performance of TransE for one-to-many or
many-to-many relationships [16].

In the individual attribute condition, MLP worked poorly, especially in terms of
stability for MF and CC, while it showed better transfer accuracy for AN than the
proposed method. We reviewed the training curves resulting from the MLP, which
are shown in Figures 3.4 and 3.5; however, they showed reasonable convergence.
This would be due to the training data size in the individual attribute condition,
because MLP stability significantly improves in the joint condition.

¶We also experimented with ComplEx [97], which is a knowledge graph embedding model in a
complex space; however, it is not described in this thesis because it is not comparable because
of its low accuracy.

31



0 5000 10000
0.00

0.25

0.50

0.75

1.00

Va
lid

 a
cc

ur
ac

y Ref

0 10000 20000 30000
0.00

0.25

0.50

0.75

1.00
Ref+PM

MF
SP

CC
AN

MIX

0 10000 20000 30000
Iteration

0.00

0.25

0.50

0.75

1.00

Va
lid

 a
cc

ur
ac

y Ref+PM+Share

0 2000 4000
Iteration

0.00

0.25

0.50

0.75

1.00
MLP

(a) word2vec

0 5000 10000
0.00

0.25

0.50

0.75

1.00

Va
lid

 a
cc

ur
ac

y Ref

0 20000 40000 60000
0.00

0.25

0.50

0.75

1.00
Ref+PM

MF
SP

CC
AN

MIX

0 20000 40000 60000
Iteration

0.00

0.25

0.50

0.75

1.00

Va
lid

 a
cc

ur
ac

y Ref+PM+Share

0 2000 4000
Iteration

0.00

0.25

0.50

0.75

1.00
MLP

(b) GloVe

Figure 3.4: Visualization of validation accuracy
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Figure 3.5: Visualization of training loss

We also investigated the tradeoff between transfer accuracy and stability by
changing the size of the invariant words and the stability of the learning-based
methods by conducting an additional experiment that varied |Ntrain|. The large
size of Ntrain is expected to increase the stability; however, it may also decrease the
accuracy. The stability scores demonstrated by the MLP did not improve (Table
3.5) for MF and CC. Conversely, the proposed methods achieved high stability
scores with |Ntrain| = 5% and maintained the accuracy. We hypothesized that
the high stability was owing to the distance between the word and its mirror.
If invariant words are distributed on the mirror, they will not be transferred.
We investigated the distance between the input word vector vx and its mirror
(Figure. 3.6). The result showed that invariant words were close to the mirror
and attribute words were distributed away from it. If the distance between paired
words is significantly small, the distance between the word and its mirror is also
small. Figure. 3.7 shows the distribution of the distance between the input vx

and the target word vector vt. The distance between paired words for MF and
SP is considerably smaller than that for CC and AN.

Although analogy-based methods achieved high stability, their accuracy results
were low. In particular, the MeanDiff+ and MeanDiff− did not change the
original vector. We hypothesized that the result can be attributed to the sig-
nificantly small L2 norm of the mean difference vector d̄. Table 3.6 lists the
relationship between the MeanDiff performances and the L2 norm of the mean
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Table 3.5: Relation between the size of |Ntrain| and the stability of methods trained
with an individual attribute

Embedding Method
Accuracy (%) Stability (%)

|Ntrain| |Ntrain|
0% 5% 10% 25% 50% 0% 5% 10% 25% 50%

word2vec

MF

Ref 18.8 20.8 22.9 22.9 18.8 100.0 100.0 100.0 100.0 100.0
Ref+PM 35.4 41.7 37.5 35.4 25.0 86.5 98.5 99.6 99.7 91.8
Ref+PM+Share 37.5 31.2 35.4 37.5 29.2 78.6 99.4 99.5 99.3 99.8
MLP 4.2 6.2 8.3 8.3 10.4 0.0 0.0 0.0 0.8 5.7

SP

Ref 0.4 0.5 0.4 0.3 0.3 100.0 100.0 100.0 100.0 100.0
Ref+PM 43.3 46.3 44.2 42.4 40.3 53.4 82.4 95.9 99.1 99.5
Ref+PM+Share 44.7 43.6 43.7 43.0 38.7 42.3 93.5 94.5 98.7 98.4
MLP 42.0 41.0 40.1 36.7 36.0 66.8 86.0 95.1 98.1 99.6

CC

Ref 34.0 34.0 36.0 38.0 44.0 100.0 100.0 100.0 100.0 100.0
Ref+PM 62.0 62.0 54.0 54.0 50.0 90.0 100.0 100.0 100.0 99.8
Ref+PM+Share 56.0 58.0 58.0 60.0 56.0 86.4 100.0 100.0 100.0 100.0
MLP 10.0 12.0 10.0 18.0 18.0 0.0 0.0 0.0 0.6 9.2

AN

Ref 0.0 0.2 0.0 0.0 0.2 100.0 100.0 100.0 100.0 100.0
Ref+PM 12.5 12.9 12.3 11.8 11.2 26.8 26.0 34.3 65.7 75.2
Ref+PM+Share 13.9 12.8 12.1 12.0 7.2 7.7 20.8 49.7 71.4 96.2
MLP 17.0 15.4 15.1 12.5 14.2 1.2 6.2 36.6 92.4 67.2

GloVe

MF

Ref 10.4 4.2 6.2 4.2 2.1 100.0 100.0 100.0 100.0 100.0
Ref+PM 37.5 39.6 37.5 37.5 35.4 89.3 93.2 95.7 99.2 99.6
Ref+PM+Share 35.4 31.2 39.6 39.6 35.4 88.7 98.9 97.5 99.2 99.6
MLP 4.2 12.5 6.2 8.3 14.6 0.0 0.0 0.0 0.3 41.7

SP

Ref 0.5 0.4 0.5 0.4 0.4 100.0 100.0 100.0 100.0 100.0
Ref+PM 46.3 46.6 46.4 44.6 45.0 54.1 94.5 97.8 98.9 99.3
Ref+PM+Share 43.9 43.7 44.8 45.0 42.8 52.6 95.5 98.1 99.4 99.8
MLP 42.7 41.0 41.1 38.9 36.9 70.0 95.2 97.6 99.3 99.8

CC

Ref 22.0 24.0 24.0 22.0 20.0 100.0 100.0 100.0 100.0 100.0
Ref+PM 66.0 74.0 70.0 70.0 74.0 99.9 100.0 99.9 100.0 99.9
Ref+PM+Share 70.0 70.0 70.0 72.0 72.0 99.8 99.9 99.9 99.9 100.0
MLP 8.0 6.0 8.0 6.0 18.0 0.0 0.0 0.0 1.3 50.3

AN

Ref 0.2 0.2 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0
Ref+PM 12.1 13.2 12.3 10.9 10.6 16.0 78.0 93.3 96.1 97.1
Ref+PM+Share 11.7 12.5 10.7 11.5 8.4 14.0 42.4 73.9 94.7 96.8
MLP 16.6 14.5 16.0 14.2 11.7 2.1 53.1 70.5 93.4 97.9
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Figure 3.6: Distribution of distance between the input word vector and its mirror
|(vx−c)·a|

‖a‖ learned by Ref+PM. It can be observed that invariant words
are close to the mirror and attribute words are distributed away from it.

difference vector. The stability was high because the original vector was almost
unchanged even if d was added or subtracted. Conversely, when the L2 norm of
d̄ was large, the accuracy became high as the difference vectors were similar to
each other.

Diff, Diff+, and Diff− obtained high accuracy for CC and low accuracy for
SP. This is due to the use of a fixed difference vector d in Diff. We investigated
the mean cosine similarity between the difference vector d and other difference
vectors, i.e., 1

|A|

∑
(x,t,z)∈A cos_similarity(d(x,t), d), where d(x,t) is the difference

vector of a word pair (x, t) other than d. We found that the mean cosine similarity
between SP words was almost 0% in Diff−, as listed in Table 3.6. Thus, when we
use a single difference vector, several SP words are transferred into inappropriate
words.

We evaluated the stability of the results under different random seeds. First,
we calculated the validation set accuracy by changing the random seed of the
reflection with parameterized mirrors 10 times. In this experiment, the parame-
ters of the MLP were not shared, and each attribute transformation was learned
individually. Table 3.7 shows the standard deviation of the accuracy. The results
showed that reflection with parameterized mirrors is not very sensitive to random
seed changes. In the results for each attribute, We found that MF and CC are
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Figure 3.7: Distribution of distance between the input word vector and the target
word vector ‖vx − vt‖

more sensitive than the others. This is probably due to the size of the training
dataset (Table 3.1). Since the dataset size for MF and CC is significantly smaller
than the other attributes, it is likely that they became more sensitive to the seed.
This result suggests that increasing the number of training data leads to more
stable performance.

3.5.4 Visualization of Parameterized Mirrors

Figure. 3.8 shows the principal component analysis (PCA) results of the mirror
parameter a obtained for the test words. We normalized the L2 norm of a to 1
( a

‖a‖). We compared the PCA results with the results of the model trained with
the joint attributes and the model trained with an individual attribute. Similar
results were obtained for both conditions. Figure. 3.8 suggests that the mirror
parameters of the paired words are similar to each other and that those with
an attribute form a cluster; words with the same attribute have similar mirror
parameters, i.e., a.

3.5.5 Transfer Example

Table 3.8 lists the gender transfer results for a tiny example sentence. Here, the
attribute transfer was applied to every word in the sentence X = {x1, x2, ...}.

36



Table 3.6: Analysis of difference vectors. L2 is the L2 norm of the difference vector
that the model used during the inference time (d for Diff and d̄ for Mean-
Diff). cos is the distribution of cosine similarities between the difference
vector (d or d̄) and other difference vectors.

Embedding Attr
MeanDiff− Diff−

Acc Stb L2
cos

Acc Stb L2
cos

mean var mean var

word2vec
MF 8.3 100.0 1.17 0.39 0.05 22.9 97.1 2.91 0.28 0.05
SP 0.3 100.0 0.75 0.18 0.01 3.1 98.8 3.07 0.06 0.01
CC 14.0 99.9 1.82 0.61 0.02 32.0 99.4 2.76 0.49 0.02

GloVe
MF 0.0 100.0 2.29 0.38 0.03 14.6 100.0 4.61 0.29 0.04
SP 0.3 100.0 1.82 0.21 0.02 4.5 100.0 5.68 0.08 0.01
CC 4.0 100.0 3.56 0.61 0.02 22.0 100.0 6.05 0.44 0.01

Here, because words such as a and . are not in the vocabulary of word2vec, we
omitted them from the inputs. The MLP resulted in several incorrect transfers on
gender-invariant words, e.g., the became dear_madam, were became laundresses,
boyfriend became boyfriend, and boy became mother. Analogy-based transfers
can transfer only in one direction. Diff+ could transfer if x is female, e.g., it
transferred from woman to man, but it could not transfer boy. Similarly, Diff−

failed to transfer from female to male. Moreover, as the stability of these methods
was low, they resulted in erroneous transfers. For example, in Diff−, the became

Table 3.7: Standard deviation of validation accuracy when training for 10 times with
changing the random seed. The model is reflection with parameterized
mirrors (Ref+PM). We used word2vec for the pre-trained embedding

Attribute σ

MF 4.50
SP 1.85
CC 4.20
AN 1.57
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Figure 3.8: Two-dimensional principal component analysis projection of the 300-
dimensional mirror parameter a. The mirror parameters were estimated
by the proposed model (Ref+PM+Share) trained by each attribute.

Sir. Ref+PM could transfer only gender words without using explicit gender
information. Thus, woman was transferred to man without the knowledge that
woman is a female word. When the gender-invariant word married was input, it
was not changed by reflection, without the knowledge that married has no gender
attribute.

From Table 3.9, it can be noted that words with different target attributes were
transferred by each reflection-based transfer. Thus, when daughter was input for
a MF transfer, it was transferred to son and daughters for SP transfer. When
Tokyo was input for MF, SF, and AN tranfers, it was not transferred; however, it
was transferred to Japan in the CC transfer. When stereo was input for MF, SP,
and CC transfers, it was not transferred; however, it was transferred to monaural
in the AN transfer.
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Table 3.8: Comparison of gender transfers. Each method transfers words in a sentence
one by one.

Input words the woman got married when you were a boy.

M
et

ho
ds

Ref the man got married when you were a boy.

Ref+PM the man got married when you were a girl.

Ref+PM+Share the man got married when you were a girl.

Diff + Sir man got married when you were a boy.

Diff − chairwoman woman got married chairwoman you were a
girl.

MLP dear_madam man dear_madam boyfriend dear_madam
lazy_slob laundresses a mother.

3.5.6 Discussion

In our method, the performance of GloVe was better than that of word2vec.
Table 3.10 lists the scores of the Google analogy test set [74] for the different
embedding methods, i.e., word2vec and GloVe. From in Table 3.10, it can be
noted that the score of GloVe was higher than that of word2vec. This indicates
that the embedding space of GloVe worked better than that of word2vec in this
task. The performance of the word attribute transfer using reflection probably
depends on the analogic space, because transferring will be easy if the pair of
transferred words exists in a similar place in the analogic space.

3.5.7 Error Analysis

We analyzed the attribute words that could not be transferred accurately by
models trained with the individual attributes. We categorized the failed output
words into three error cases.

Case1 The output word was the same as the input word (y = x).

Case2 The attribute of the input word was transferred but was incorrect. For
example, in CC transfer, the transfer result was Beijing when Japan was
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given.

Case3 Other types of errors.

Table 3.11 lists the results of the error analysis in word2vec. The results show that
most of the failures in the reflection-based transfer was in Case1. We speculated
that such unchanged attribute word pairs tended to be close to each other. Figure.
3.9 shows the difference in the distance between the input word and the target
word ‖vx − vt‖ in the changed and unchanged attribute word pairs. Contrary to
this hypothesis, it was shown that there was no difference in the distance between
the changed and unchanged pairs. Table 3.12 lists examples of Case2 and Case3 in
the proposed method. For example, when given stepbrother as a gender word, the
proposed method (Ref+PM) did not output stepsister but provided the result
of stepmother. In MF and CC transfers, the maximum failures using MLP were
observed in Case2 and Case3 errors, while the proposed methods demonstrated
significant failure in the Case1 category. This shows that the reflection-based
transfer is more stable in MF and CC transfers than MLP.
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Figure 3.9: Distribution of the distance between the input word vector vx and the
target word vector vt (Comparisons between the changed and unchanged
attribute words)
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Table 3.9: Transfer of different attributes with the proposed method (Ref+PM)

Input words Mr. Smith and his daughter want to visit the science
museum in Tokyo to see the stereo microphone .

Ref+PM
(individual)

MF Ms. Smith and her son want to visit the science mu-
seum in Tokyo to see the stereo microphone.

SP Mr. Smith and his daughters want to visits the science
museums in Tokyo to see the stereo microphones.

CC Mr. Smith and his daughter want to visit the science
museum in Japan to see the stereo microphone.

AN Mr. Smith and his daughter eliminate to visit the sci-
ence museum in Tokyo to back the monaural micro-
phone.

Ref+PM
(joint)

MF Ms. Smith and her son want to visit the science mu-
seum in Tokyo to see the stereo microphone.

SP Mr. Smith and his daughters dos to visits the science
museums in Tokyo to watches the cassette_decks
microphones.

CC Mr. Smith and his daughter want to visit the science
museum in Japan to see the stereo microphone.

AN Mr. Smith and his daughter want to visit the zoology
museum in Tokyo to see the monaural microphone.

Table 3.10: Comparison of analogy scores

Embedding method Analogy score (%)

word2vec 74.01
GloVe 75.13
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Table 3.11: Error analysis results

Cases where transfer failed (%)
Case1 Case2 Case3

MF

Ref 100.0 0.0 0.0
Ref+PM 86.0 12.0 2.0
Ref+PM+Share 88.0 8.0 4.0
MLP 6.0 70.0 24.0

SP

Ref 100.0 0.0 0.0
Ref+PM 64.0 36.0 0.0
Ref+PM+Share 62.0 38.0 0.0
MLP 64.0 34.0 2.0

CC

Ref 100.0 0.0 0.0
Ref+PM 37.5 62.5 0.0
Ref+PM+Share 55.8 44.2 0.0
MLP 2.0 98.0 0.0

AN

Ref 100.0 0.0 0.0
Ref+PM 42.0 10.0 48.0
Ref+PM+Share 94.0 2.0 4.0
MLP 66.0 10.0 24.0
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Table 3.12: Examples of Case2 and Case3 errors in the proposed method

Attribute Error type Input (x) Target (t) Output (y)

MF

Case2 hens roosters oxen
Case2 stepbrother stepsister stepmother
Case2 emperor empress goddess

Case3 mare stallion gelding

SP

Case2 killers killer murderer
Case2 atoll atolls islands
Case2 gulls gull heron
Case2 windmill windmills paddlewheels
Case2 saxophone saxophones trombones
Case2 trails trail trailhead
Case2 spectaculars spectacular extravaganza
Case2 visa visas passports
Case2 neckties necktie jacket
Case2 wagons wagon tractor
Case2 outlook outlooks forecasts

CC

Case2 Australia Canberra Sydney
Case2 Canada Ottawa Montreal
Case2 Jamaica Kingston Belmopan
Case2 London England Britain
Case2 Hungary Budapest Bucharest

AN

Case2 underbid overbid overcharged
Case2 perfection imperfection imperfect
Case2 rely suspect, distrust independent
Case2 penalty advantage, reward acquittal
Case2 sane insane, crazy irrational

Case3 disinherit leave, will, bequeath disinheriting
Case3 elder junior niece
Case3 unimpressive impressive solid
Case3 unhelpful helpful sensible
Case3 starve give, feed encourage
Case3 extraneous intrinsic necessary
Case3 harmless harmful important43



3.6 Related Work
The embedded vectors obtained by SGNS [74, 75] and GloVe [84] have analogic
relations. The theory of analogic relations in word embeddings has been widely
discussed [6,7,31,38,64,68]. Levy et al. [64] explain that SGNS factorizes a shifted
PMI matrix. Allen et al. [6] and Ethayarajh et al. [31] argued that they proved
the existence of such analogic relations without strong assumptions. In our work,
we focused on the analogic relations in a word embedding space and propose a
novel framework to obtain a transferred word vector with the target attribute.

Link prediction in knowledge graph embeddings can also be applied to word
transfer tasks. In knowledge graph embeddings [16,81,97], given a set of triplets
(head, tail, label), tail is predicted from head and label TransE [16] is a knowledge
graph embedding model. TransE embeds entity and relation into an embedding
space using a score function. The score function models the analogy-like opera-
tion translating from the head entity to the tail entity according to the relation.
Trouillon et al. [97] proposed the knowledge graph embedding model based on
complex values for link prediction. Their knowledge graph embedding model
is better suited for modeling a variety of binary relations, including symmetric
and asymmetric relations. Our task differs from link prediction in that when an
invariant word for attribute z is entered, the model returns the input x.

The style transfer task presented in previous studies [49,71] resembles ours. In
style transfer, the text style of the input sentences is changed. For instance, Jain
et al. [49] transferred the style from formal to informal sentences. Logeswaran et
al. [71] transferred sentences by controlling attributes such as mood and tense.
These style transfer tasks use sentence pairs. Our word attribute transfer task
uses word pairs. Style transfer changes sentence styles; however, our task changes
the word attributes.

Soricut et al. [91] studied morphological transformation based on character in-
formation. Our work aims for a more general attribute transfer, such as gender
transfer and obtaining the antonym, and is not limited to morphological trans-
formation.
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3.7 Conclusion
This work aimed to transfer word binary attributes (e.g., gender) for applications
such as data augmentation of a sentence‖. We can transfer word attributes using
the analogy of word vectors; however, this process requires explicit knowledge
on whether the input word has the attribute or not. However, this knowledge
cannot be developed for various words and attributes in practice. The proposed
method uses reflection-based mappings to transfer attribute-variant words into
their counterparts while ensuring that attribute-invariant words are unchanged,
without using attribute knowledge in the inference time. The experimental results
showed that the proposed method outperformed baseline methods in terms of
transfer accuracy for attribute-variant words and stability for attribute-invariant
words. We speculated that the reason why the proposed method achieved signif-
icantly high stability was that invariant words were distributed in the mirrors.
We examined the distance between the input word vector and its mirror. The
result showed that invariant words were distributed near the mirror and attribute
words were distributed away from the mirror.

‖Our code and datasets are available at: https://github.com/ahclab/reflection
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4 Subspace-based Set Operations

4.1 Background
Word embedding is an essential technology that supports recent NLP. Such static
word representations as word2vec [75] and such dynamic word representations as
BERT [30] have greatly boosted the performance of various NLP tasks [27, 103,
104].

Word embedding provides a vector representation for a word or a token. Here
we must also emphasize the importance of representing a set of words, not just
a single word. In NLP, the object of representation for meaning is often a set
of words, so the representation of a word set has many potential applications.
For example, the words in set {red, blue, green, . . . } share the concept of color
[77]. Computation on such a word set is considered necessary in NLP [111].
Furthermore, the typical use of such word sets is the representation of text chunks,
including phrases, sentences, and documents. This strategy looks very simple
and usually works effectively in practice. For example, a standard principle for
computing sentence similarity [4] is to calculate the degree of overlap among word
sets [94].

The most classical way of dealing with a word set is by treating words as discrete
symbols. We can exploit attractive set operations, such as union (∪), intersection
(∩), set membership (∈), and set similarity, including Jaccard index [48]. A
critical limitation of this symbolic set representation is that it cannot handle the
semantic similarity of such words as man and king. Furthermore, a symbolic word
set ignores word order information, which must be preserved when using word
sets. As a result, different expressions are treated completely independently from
each other regardless of their semantic similarity.

In contrast, word embeddings can capture such semantic similarity as closeness
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in their vector space. Furthermore, this resolves the problem of ignoring word
order. By using contextualized embeddings, we are able to utilize information
about word order. However, their extensions to the representation of a set of
words are not trivial. Previous studies used approximations to represent a word
set. Additive composition [75] is a widely used method that takes the sum of word
vectors as the representation of a phrase and a sentence [90]. Although it is very
simple and effective, it is unclear how additive composition holds properties as a
word set. The degree of overlap among word sets has been measured by average
cosine similarity [112] and optimal transportation cost [60,110]. These measures,
which are based on element-level approximations, ignore the property of whole
sets and such set operations as union and intersection. However, set operations
are critical because they can be general-purpose tools in NLP. For example, a
word set expansion task called Text Concept Set Retrieval [111] and a sentence
similarity task called Semantic Textual Similarity (STS) [4] respectively require
the calculation of the degrees of membership and set similarity.

In this thesis, we propose a novel formulation of set operations in the frame-
work of modern word embeddings. In a pre-trained word embedding space, our
proposed method uses linear subspaces to represent sets and set operations, in-
cluding union, (∪), intersection (∩), complement (A), set membership (∈), and
set similarity (Similarity(A, B)). The proposed method has the following advan-
tage: word order can be taken into account by a set of dynamic embeddings such
as BERT. It also has an advantage in downstream tasks; it can be applied to var-
ious tasks simply using the set operations defined on the pre-trained embedding
space without additional fine-tuning.

The contribution of this work is two-fold: (1) Based on the idea of representing
a word set as a subspace, we define general set operations in a pre-trained embed-
ding space and demonstrate that they work as linguistic set operations. (2) Based
on the definition of set operations, we propose a soft membership function and
set similarity. Experiments on both sentence similarity and concept set retrieval
tasks showed that these proposed methods outperformed other methods without
additional fine-tuning.
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4.2 Required Set Operations
We formulate various set operations in a pre-trained word embedding space in
an unsupervised manner. Among many kinds of required operations for practical
NLP applications, this work focuses on set membership:

Color = {red, blue, green, orange, . . . },
Fruit = {apple, orange, peach, . . . },
orange ∈ Color ∩ Fruit,

(4.1)

and set similarity:

A = {A, boy, walks, in, this, park},
B = {The, kid, runs, in, the, square},
Similarity(A, B).

(4.2)

For this purpose, we require representations of the following given a word em-
bedding space∗:

An element and a set of elements The representations of an element
and a set of elements are the most basic ones. To exploit word embeddings,
we represent a word (e.g., orange) as an element and a group of words (e.g.,
{red, blue, green, orange, . . . }) as a word set.

Basic operations on sets We need three basic set operations: intersection
(A ∩ B), union (A ∪ B), and complement ( A ). They allow us to represent
various sets using such different combinations as Color ∩ Fruit (Eq. 4.1).

Quantification of set membership Set membership denotes a relation in
which word w is an element of set A, i.e., w ∈ A. We quantify it based on vector
representations. Although the membership is typically a binary decision identical
to that in a symbolic space, it can also be measured by the degree of closeness in
a continuous vector space.

∗These operations do not include some set operations such as cardinality, but are sufficient for
expressing the practical forms of sets such as Equation 4.2.
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Set similarity The similarity between two sentences Similarity(A, B) can be
calculated by set similarity [52] as follows:

Johnson(A, B) = |A ∩ B|
|A|

+ |A ∩ B|
|B|

. (4.3)

Here each sentence is treated as a set of its words. We quantify it using the
degree of overlap between the two sets using the number of shared elements. The
overlap should be considered in a continuous vector space, in contrast to the exact
matching of elements in a symbolic space. In the next section, we give a detailed
formulation to achieve these set operations in a word embedding space.
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Symbolic Set Representation Subspace-based Set Representation

Element
king

Vector
vking

Set
Male = {king, man, . . . }

Subspace
SMale = span{vking, vman , . . . }

Complement
Male

Orthogonal complement
(SMale)⊥

Union
Male ∪ Female

Sum space
SMale + SFemale

Intersection
Color ∩ Fruit

Intersection
SColor ∩ SFruit

Set membership
boy ∈ Male

boy

Hard membership function
1hard(vboy, SMale)

Soft membership function
1soft(vboy, SMale)

Word set similarity
Johnson(A, B)

+ Word vector set similarity
SubspaceJohnson(A, B)

θθ
+

Table 4.1: Correspondence between symbolic set representations and subspace-based
set representations: We demonstrate that union, intersection, and comple-
ment, which are formulated in quantum logic, and our new formulations of
set membership and word set similarity hold in pre-trained word embed-
ding space.
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4.3 Subspace-based Set Representations
We propose the representations of a word set and set operations based on quantum
logic [12]. They hold advantages of geometric properties in an embedding space,
and the set operations are guaranteed to hold for the laws of a set defined in
quantum logic.

4.3.1 Quantum logic

While word embedding represents a word’s meaning as a vector in linear space,
quantum mechanics similarly represents a quantum state as a vector in linear
space. These two intuitively different fields are very close to each other in terms
of the representation and the operation of information.

Quantum logic [12] theory describes quantum mechanical phenomena. Intu-
itively, it is a framework for set operations in a vector space. In quantum logic,
a set of vectors is represented as a linear subspace in a Hilbert space, and such
set operations as union, intersection, and complement are defined as operations
on subspaces. The set operations defined in quantum logic are guaranteed to
hold for such laws as De Morgan’s laws: (A ∩ B) = A ∪ B and (A ∪ B) = A ∩ B,
idempotent law: A ∩ A = A, and double complement: A = A.

4.3.2 Set Operations in an Embedding Space

The representations of an element, a set, and such set operations as union, inter-
section, and complement in quantum logic can be applied directly in a word em-
bedding space because it is a Euclidean space and therefore also a Hilbert space.
However, since set similarity and set membership for a word embedding space
are still missing in quantum logic, we propose a novel formulation of those op-
erations using subspace-based representations, which is consistent with quantum
logic. The correspondence between symbolic and subspace-based set operations
is shown in Table 4.1.

An element and a set of elements Let Rn be a n-dimensional word embed-
ding space (Euclidean space), let A = {w1, w2, . . . } be a set of words, and let
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vw ∈ Rn be a word vector corresponding to w. As discussed in Section 4.2, we
first formulate the representation of a word and a word set. In quantum logic, an
element is represented by a vector, and a set is represented by a subspace spanned
by the vectors corresponding to its elements. Here we assume an element, i.e.,
word w, is represented by word vector vw, and a word set is represented by linear
subspace SA ⊂ Rn spanned by word vectors:

SA = S{w1,w2,... } := span{vw1 , vw2 , . . . }. (4.4)

Hereinafter we simply refer to linear subspace as subspace. The pseudocode for
computing the basis of a subspace is shown in Algorithm 2.

Basic operations on sets The complement of set A, denoted by A, is repre-
sented by the orthogonal complement of subspace SA:

SA := (SA)⊥ = {u | ∃v ∈ SA, u · v = 0}. (4.5)

The union of two sets, A and B, denoted by A ∪ B, is represented by the sum
space of two subspaces, SA and SB:

SA∪B := SA + SB = {u + v | u ∈ SA, v ∈ SB}. (4.6)

The intersection of two sets, A and B, denoted by A∩B, is represented by the
intersection of two subspaces, SA and SB:

SA∩B := SA ∩ SB = {v | v ∈ SA, v ∈ SB}. (4.7)

The basis of the intersection can be computed based on singular value decom-
position (SVD). The bases are the vectors shared by the two input subspaces.
The pseudocodes for computing the basis of the complement, the union, and the
intersection are shown in Algorithms 3, 5, and 4.

4.3.3 Quantification of Set Membership

The set membership of a word in a word embedding space (e.g., boy ∈ Male) can
be represented by the inclusion of a word vector into a subspace (e.g., vboy ∈ SMale)
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Algorithm 2 Subspace
Input: Word embeddings to span subspace SA: v(1), v(2), . . . , v(k) ∈ R1×d

Output: SA: A matrix with bases on subspace SA

A ∈ Rk×d ← stack_rows(v(1), v(2), . . . , v(k))
SA ∈ Rr×d ← ortho_normalization(A) ▷ r is the rank of A

Algorithm 3 Complement
Input: SA ∈ Rk×d: A matrix with bases on subspace SA

Output: SA : A matrix with bases on orthogonal complement SA
U ∈ Rd×d, Σ ∈ Rd×k, V ∈ Rk×k ← SVD(SA

>)
SA ← ∅
for i = {1, ..., d} do ▷ Stack the bases of the orthogonal complement to SA

if i > k then
SA ← concatenate_rows(SA, u(i)) ▷ u(i) is i-th row of U>.

end if
end for

and given by the following indicator function:

1hard(vw, SA) :=

1 (vw ∈ SA),

0 (vw /∈ SA).
(4.8)

However, this binary decision fails to exploit the geometric properties of the word
embedding space regarding semantic similarity. Suppose we quantify the degree
of membership of word boy for word set Male consisting of many masculine nouns
other than boy. Even if vboy is located very close to SMale due to its semantic
similarity to masculine nouns, 1hard(vboy, SMale) must return 0 because vboy must
not be located exactly on subspace SMale defined by Male. It must return 1 based
on the masculine property of word boy. Such hard membership defined by Eq. 4.8
is incompatible with an embedding space. Instead, we define another membership
function called soft membership 1soft that returns continuous values from 0 to 1
depending on the following minimum angle between vector vw and subspace SA:

1soft(vw, SA) := max
{
|u · vw|
‖u‖‖vw‖

∣∣∣∣∣ u ∈ SA

}
. (4.9)
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Algorithm 4 Intersection
Input: SA ∈ Rk×d: A matrix with bases on subspace SA

Input: SB ∈ Rl×d: A matrix with bases on subspace SB (l ≥ k)
Input: α: Threshold below which the cosine of canonical angles is considered zero.
Output: SA∩B: A matrix with bases on intersection SA ∩ SB

M ∈ Rk×l ← SASB
>

U ∈ Rk×k, Σ ∈ Rk×l, V ∈ Rl×l ← SVD(M)
▷ Cosine of the canonical angle of the intersection is singular value σi of SASB

>

W← ∅
for σi ∈ {σ1, ..., σk} do

if |σi − 1| < α then ▷ Extract the bases for which cosine is almost 1.0
W← concatenate_rows(W, u(i)) ▷ u(i) is i-th row of U>

end if
end for
SA∩B ∈ Rm×d ← (SA

>W>)> ▷ m is number of rows in W ∈ Rm×d

Algorithm 5 Union
Input: SA ∈ Rk×d: A matrix with bases on subspace SA

Input: SB ∈ Rl×d: A matrix with bases on subspace SB

Output: SA∪B: A matrix with bases on union SA ∪ SB

M ∈ R(k+l)×d ← concatenate_rows(SA, SB)
SA∪B ∈ Rr×d ← ortho_normalization(M) ▷ r is rank of M

This captures the degree of membership between a word and a word set, rep-
resented by the angle between a word vector and a subspace. It is a natural
extension of hard membership 1hard, i.e., 1soft returns 1 when vw ∈ SA and 0
when vw is orthogonal to SA.

Soft membership uses rich information from pre-trained word embedding space.
Note that soft membership does not compute cosine similarity with each word in
a given word set but rather is a similarity based on the angle with all the vectors
in the subspace spanned by the given word vectors.

Soft membership, i.e., the cosine of the first canonical angle can be computed by
SVD [59]. The pseudocode for computing soft membership is shown in Algorithm
6.
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4.3.4 Set Similarity

Suppose we quantify the set similarity between A = {A, boy, walks, in, this, park}
and B = {The, kid, runs, in, the, square}, which represent semantically similar
sentences. Although we can use such symbolic set similarities as Johnson(A, B)
(Eq. 4.3), unfortunately, such symbolic set operations do not work for this exam-
ple. These semantically similar sentences share only one word {in} between A
and B: |A∩B| = 1. To address this problem, we propose a new soft set similarity
measure, named SubspaceJohnson, as a natural extension of Johnson similarity
by utilizing our proposed subspace-based methods.

Make membership functions soft First, note that each term of the John-
son similarity (Eq. 4.3) can be rewritten using the hard membership function
(Eq. 4.8):

|A ∩ B|
|A|

=
∑

a∈A 1hard(va, SB)
|A|

(4.10)

This transformation is from the definition of intersection: A ∩ B := {a ∈ A |
a ∈ B}. Here the soft membership function introduced in the previous section
(Eq. 4.9) can be used to naturally replace the hard membership function. That
is, the Johnson similarity can be softened:∑

a∈A 1soft(va, SB)
|A|

+
∑

b∈B 1soft(vb, SA)
|B|

. (4.11)

The numerator of the Johnson similarity is the cardinality of symbolic intersection
|A ∩ B|.In quantum logic, cardinality is the dimension of a subspace, and so the
direct way is to use the dimension of intersection dim(SA ∩ SB) = rank(SA∩B) as
the numerator. We tried to use the dimension of the intersection as the numerator,
but since the dimension takes discrete values, the range of the set similarity is
quite limited. We tackled this problem using the sum of soft membership 1soft

which derives continuous values instead of ranks.

Consider word weights Each term of the Johnson similarity (Eq. 4.3) can be
extended by introducing the following weights:

|A ∩ B|
|A|

=
∑

a∈A weight(a)1hard(va, SB)∑
a∈A weight(a)

, (4.12)
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Algorithm 6 Soft membership function 1soft

Input: SA ∈ Rk×d: A matrix with bases on subspace SA

Input: Word embedding vw ∈ R1×d

Output: Degree of membership m

vw ∈ R1×d ← vw
||vw ||

U ∈ Rk×k, Σk×1 ∈ R, V ∈ R← SVD(SAvw
>)

m← max(Σ)

where weight(a) ≡ 1. This means that each word a ∈ A is implicitly assigned
an equal weight of 1. Instead, we can use the L2 norm for this weight, i.e.,
weight(a) ≡ ||va||2, inspired by the findings that the norm of a word vector
implicitly encodes the word importance [110]. By using norms as word weights,
we can exploit the geometric properties of word vectors without omission. That is,
the orientation of the word vector was used for subspace configuration (Eq. 4.4)
and membership calculation (Eq. 4.9), and its length was used for the word
weights.

Summary The following is our proposed measure, named SubspaceJohn-
son†:

SubspaceJohnson(A, B) :=
∑

a∈A ||va||2 1soft(va, SB)∑
a∈A ||va||2

+
∑

b∈B ||vb||2 1soft(vb, SA)∑
b∈B ||vb||2

.
(4.13)

The pseudocode for computing SubspaceJohnson is shown in Algorithm 7.

†In addition to Johnson similarity, there are other measures of set similarities such as Jaccard,
Dice, and Simpson’s Coefficient. We extended these to set similarity using subspaces, similar
to Johnson similarity, and experimented with them on the STS task, but they did not perform
as well as Johnson in terms of performance.
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Algorithm 7 SubspaceJohnson
Input: Word embeddings for first sentence a(1), a(2), . . . , a(k) ∈ R1×d

Input: Word embeddings for second sentence b(1), b(2), . . . , b(l) ∈ R1×d

Output: Similarity score s

SA ← subspace(a(1), a(2), . . . , a(k))
SB ← subspace(b(1), b(2), . . . , b(l))
x←

∑k
i=1(||a(i)||21soft(SA, a(i))) /

∑k
i=1 ||a(i)||2

y ←
∑l

j=1(||b(j)||21soft(SB, b(j))) /
∑l

j=1 ||b(j)||2
s← x + y

57



4.4 Experiments
We conducted the following experiments to evaluate our proposed method from
the following three perspectives: (1) whether the subspace-based formulation of
sets and set operations behaves appropriately as a tool for computing the meaning
of the language (Section 4.4.1); (2) whether our soft membership function is
empirically helpful (Section 4.4.2); and (3) whether our soft set similarity function
is empirically helpful (Section 4.4.3).

Word embeddings We used the most standard pre-trained word embeddings
in all of our experiments: 300-dimensional GloVe‡ [84], which was pre-trained
with Common Crawl (840B tokens), and 300-dimensional word2vec§ [75], which
was pre-trained with Google News.

In Semantic Textual Similarity tasks, we also used 768-dimensional BERTbase
¶

[30], which was pre-trained with BookCorpus and Wikipedia, and SimCSE [35].
SimCSE is a very powerful contrastive learning framework in recent studies. It
applies contrastive learning to a pre-trained language model as its fine-tuning
to obtain sentence embeddings. It has an unsupervised model using Wikipedia
as unlabeled text and a supervised variant using MNLI and SNLI as labeled
datasets. We used SimCSE-BERTbase

‖, which was fine-tuned using [CLS] rep-
resentation as sentence embedding. In both BERTbase and SimCSE-BERTbase,
we used embeddings in the last layer.

4.4.1 Qualitative Demonstration of Subspace-based Set
Operations

Next, we describe the appropriateness of our proposed subspace-based set repre-
sentation from the viewpoint of NLP. For example, does subset SMale formed by
word set Male = {king, man, . . . } well represent the abstract notion of masculine?
If the proposed method works properly, word vector vboy that shares the concept

‡https://nlp.stanford.edu/projects/glove/
§https://code.google.com/archive/p/word2vec/
¶https://huggingface.co/bert-base-uncased
‖https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased
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of masculine should be located around SMale even if word boy is not in the given
set Male. In this section, we qualitatively tested whether the proposed method
adequately represents the linguistic characteristics of a word set.

Experimental procedure The experiment was conducted as follows, explained
by an example from set Male.

1. Assume the following given word set:
Male = {king, boy, man, son . . . }

2. Randomly divides it into two subsets: an input subset for generating a
subspace and a test subset for validation.
Maleinput = {king, man, . . . }
Maletest = {boy, son, . . . }

3. Span subspace (e.g., SMale) with the input subset (e.g., Maleinput).

4. Find word vectors close to the subspace. That is, find vw such that 1soft(vw, SMale)
is large. To this end, we employed a sampling-based procedure. (1) Ran-
domly sample a vector∗∗ v from SMale. (2) Find word w corresponding to
word vector vw that gives largest cosine similarity cos(v, vw) for v ∈ SMale.
(3) Repeat (1) and (2) 100 times.

5. Check whether searched w shares the concept of the set (e.g., Male).

Baseline One might think that just the nearest neighbor search is the best
strategy to find a word vector that is close to a given word vector set. As a
baseline for the experiment, we used the distance to the closest word vector in
a given set of word vectors (vector-based). For the complement A, we chose
bottom-ranked word vectors instead.

As a metric of nearest neighbor search, we used the cosine distance. Cosine
is empirically better than Euclidean for computing lexical similarity [110]. Fur-
thermore, the setting of the baseline method became consistent with that of the
proposed method, thus maintaining the fairness of the validation.

∗∗A random vector is given by the linear combination of basis {v1, v2, v3 . . . } of the subspace using
random coefficients {c1, c2, c3 . . . }, which were generated from the standard normal distribution.
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Table 4.2: Statistics of word sets used in the experiment in Section 4.4.1 of the number
of words: A word set was divided into two subsets: words to generate
subspace (Input) and the rest for testing (Test).

Concept Label
#Words

Input Test Total

Male 49 49 98
Female 44 44 88
Fruit 10 11 21
Color 10 10 20

Dataset As datasets, four sets of words were first prepared using synset in
WordNet [77]: Male = {king, man, . . . }, Female = {queen, woman, . . . }, Color =
{red, blue, . . . }, and Fruit = {apple, peach, . . . }. See Table 4.2 for the statistics.
To create a set that contains as many words as possible with a certain shared con-
cept, some were added manually so that the number of words in a set was at least
20. Next, we created the following four comprehensive sets for the experiment:
Male, Male, Male ∪ Female, and Color ∩ Fruit.

Results Table 4.3 shows the top-ranked words found by the proposed and base-
line methods. Words labeled with ✓are positive results, and those labeled with ×
are negative results. This result shows that our proposed method effectively
represents the linguistic characteristics of each given word set. For ex-
ample, with the subspace-based method, only nouns with masculine meanings
were appropriately found near SMale. In contrast, with the vector-based method,
nouns without masculine meanings (e.g., fiancee and aunts) were found. As an-
other example, the word vector for orange was very close to subspace SColor∩SFruit;
orange obviously has a property of both color and fruit. Note that Color and Fruit
were used to span the subspace and do not include orange (see Experimental pro-
cedure).

The result also suggests that our method is helpful for expanding a word set
(e.g., synset) by retrieving words that share its concept. Indeed, the found words
brother-in-law and step-father shared the concept of Male and were close to sub-
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Table 4.3: Three nearest neighbors for different word sets: Note that the table only
lists words that were not used to span subspaces. ✓✓: words for test set;
✓: words not included in test set but natural; ×: unnatural words; no
mark: word that cannot be determined.

Set Male Male Male ∪ Female Color ∩ Fruit

Subspace SMale (SMale)⊥ SMale + SFemale SColor ∩ SFruit

Su
bs

pa
ce

-b
as

ed GloVe
brother-in-law✓ drunken✓ moms✓✓ orange✓✓

nephews✓✓ erect✓ uncle✓✓ peach✓

step-father✓ nominal✓ granddads✓ kumquat

word2vec
father✓✓ Ahnlund✓ siblings✓ pear_apple×

grandkids Confirm✓ bachelors✓✓ pear✓

son✓✓ Sakowicz✓ giantess✓ orange✓✓

V
ec

to
r-

ba
se

d GloVe
fiancé✓ DTDigitized✓ nephews✓✓ magenta×

fiancee× d/web6✓ males✓✓ black×

aunts× CamelKarma✓ grandchildren✓ colors×

word2vec
father✓✓ GENERAL_RULES✓ grandmother✓✓ black×

females× M.Martin_###-###✓ male✓✓ surged×

wife× THE_MORNING_MEMO✓ stallion✓✓ climbed×

space SMale, even though they were not included in the input or the test subsets.
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4.4.2 Text Concept Set Retrieval Task

Second, we conducted a quantitative evaluation of the ability of the proposed
method to capture the linguistic features of word sets. We employed an existing
set expansion task, the Concept Set Retrieval task [111], to determine whether
the soft membership function can retrieve words that should be included in a
given word set. In this task, a set of words is given, and the model retrieves
words that belong to the set from the vocabulary.

Evaluation procedure Taking a set of masculine nouns as an example, we
describe the evaluation procedure by following [111].

1. Assume two sets of words (input and test), which share a certain topic:
Setinput = {king, man, . . . }
Settest = {boy, son, . . . }

2. Generate a subspace representation with the input word set: S := S{king,man,... }

.

3. Rank all in-vocabulary words {w} by their soft membership scores 1soft(vw, S).

4. Report several evaluation scores that indicate whether the words in the
test set can be ranked higher. We used Recall@K, Mean Reciprocal Rank
(MRR), and Median for the metrics.

Baselines We compared several baselines, including methods that require/don’
t require training on word sets, to the proposed method.

Random just selects words randomly from the dataset’s vocabulary.
The following methods do not require training on word sets. Note that our

subspace-based representation is also such a method. First, Bayesian Sets
(Bayes Set) [37] is a symbol-based unsupervised method that computes a prob-
abilistic score based on the pointwise mutual information between w ∈ V and
set A. Second, a simple unsupervised baseline with word embeddings uses the
nearest neighbors in the embedding space (w2v Near). Third, we also compare
a method based on fuzzy sets (Fuzzy Set by [115]) with the proposed method.
Similar to our method, their method is designed to exploit both the flexibility of
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Table 4.4: Examples from original dataset (denoted as DSet) and additional DUnion

and DIntersection sets

DSet DUnion DIntersection

Set3 Set12 Set51 Set12 ∪ Set51 Set9 Set72 Set9 ∩ Set72

daily motorcycle island races tour poker money
newspaper bike islands mainland open casino won

paper bicycle mainland nearby golf gambling players
news rider coast area championship lottery tournament
press riders sea cycling player bet professional
. . . . . . . . . . . . . . . . . . . . .

Table 4.5: Number of word sets treated in the experiment DSet is the original dataset.
DUnion and DIntersection dataset are newly created.

Set type
(for models that require training on word sets)

Test Train Dev

DSet 100 800 100
DUnion 100 - -
DIntersection 100 - -

word vectors and rich set operations. Fuzzy Set represents word set A by max-
pooled word vectors s = maxw∈A vw. Although the Text Concept Set Retrieval
task requires computing the degree of a word’s membership for a word set, their
method does not provide it. We instead used cosine similarity cos(vw, s) between
word vector vw of word w ∈ V and s as the degree of membership to apply fuzzy
sets to the task.

Other baselines that use the vector representations of word sets are trained
using the following word set dataset. DeepSets [111] is a popular model for
the representation of a set. The recently proposed LAF [83] is based on more
complex mappings than such aggregation functions as sum and average, which
DeepSets used. We also included LSTM [45] and models with architectures
similar to DeepSets (NN-max, NN-sum-con, and NN-man-con) [111].
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Dataset We used a previously created dataset [111], which was denoted by
“LDA-1k, Vocab = 17k.”. This dataset (DSet) contains 100 word sets, each of
which consists of 50 words sampled from a common topic††. Five pre-determined
words from each set were used as an input set Sinput. An additional 800 word
sets were used to train the models that require training on word sets. Table 4.4
shows an example of the data, and Table 4.5 shows the statistics of the datasets.

To evaluate the union and intersection sets, we prepared additional data through
the union and intersection operations on two randomly-selected word sets from
the original word sets (DSet). The number of words in each set in DUnion was
limited to 50 to match the original dataset (DSet). The number of words in each
set in DIntersection was set to a minimum of 10. In experiments on union and inter-
section, we compared the proposed method only with Fuzzy Set. The proposed
method and Fuzzy Set can induce representations for the union and intersection
using set operations defined in the word embedding space; the others cannot do
so directly. See Tables 4.4 and 4.5 for examples and statistics of the datasets.

††This work used Latent Dirichlet Allocation [13] (LDA) as a topic model.
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Results Table 4.6 shows the experimental results on original dataset (DSet).
Here our subspace-based method (SoftMember) was the best among
the methods that did not require training on word sets. Moreover,
surprisingly, SoftMember equaled or outperformed the state-of-the-art
methods that were trained using the word set dataset, such as DeepSets
and LAF. The results suggest that combining off-the-shelf pre-trained word vec-
tors with appropriate set-oriented operations makes linguistic computation on
word sets feasible without additional costly training.

Table 4.7 gives the results of the DUnion and DIntersection datasets. The pro-
posed method outperformed Fuzzy Set in most metrics. As methods for
achieving set operations in vector spaces, the proposed subspace-based method
is empirically more promising than the existing fuzzy set-based method.
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Table 4.6: Results of text concept set retrieval task: All baseline results were taken
from [111] (♠) and [83] (♦).

DSet

Recall MRR Med.
Train with
word sets

@100 @1k

Random♠ 0.6 5.9 0.001 8520

NN-max♠ ✓ 22.5 53.1 0.023 779
NN-sum-con♠ ✓ 19.8 48.5 0.021 1110
NN-max-con♠ ✓ 16.9 46.6 0.018 1250

DeepSets♠ ✓ 24.2 54.3 0.025 696
LSTM♦ ✓ 21.5 52.6 0.022 690
LAF♦ ✓ 26.6 54.5 0.030 650

Symbol × Set Representation

Bayes Set♠ 11.9 37.2 0.007 2848

Embedding (word2vec)

w2v Near♠ 28.1 54.7 0.021 641

Embedding × Set Representation

word2vec
Fuzzy Set 19.9 47.2 0.017 1240
SoftMember 29.7 58.9 0.017 478

GloVe
Fuzzy Set 30.9 69.0 0.023 320
SoftMember 35.7 72.7 0.020 246
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Table 4.7: Results of concept set retrieval task on union and intersection

DUnion DIntersection

Recall MRR Med. Recall MRR Med.
@100 @1k @100 @1k

Random 0.6 6.0 0.001 8422 0.2 6.6 0.000 7929
w2v Near 17.5 34.3 0.015 3270 23.5 40.8 0.018 3304

Embedding × Set Representation

word2vec
Fuzzy Set 2.8 17.1 0.003 4426 4.7 20.9 0.002 3420
SoftMember 18.4 46.9 0.004 1202 25.7 45.7 0.017 1445

GloVe
Fuzzy Set 5.4 32.0 0.005 2347 32.5 75.0 0.023 255
SoftMember 24.4 68.3 0.005 407 44.2 83.7 0.028 149
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4.4.3 Semantic Textual Similarity Task

Can our proposed method capture the similarity between two word sets? In this
section, we examine the effectiveness of the proposed set similarity (Section 4.3.4)
through a Semantic Textual Similarity (STS) task.

Experimental procedure An STS task calculates the similarity between two
sentences. Its evaluation is based on the correlation between the similarity calcu-
lated by the model and corresponding human judgments. We used datasets from
the SemEval shared task 2012-2016 [1–5], STS benchmark (STS-B) [21], and
SICK-Relatedness (SICK-R) [73]. The correlation was measured by Pearson’s r

and Spearman’s ρ coefficients‡‡.

Baselines We compared our method SubspaceJohnson (Subspace) (Eq.
4.13) with the baselines, which included unsupervised and supervised methods.
The unsupervised baselines included Avg-cos [8], the cosine similarity between
the averaged vectors, CLS-cos [35], the cosine similarity between the [CLS] rep-
resentations of the pre-trained language model, DynaMax [115], a set similarity
based on fuzzy sets, Word Mover’s Distance (WMD) [60], an alignment-
based similarity based on optimal transport cost, and Word Rotator’s Dis-
tance (WRD) [110], an alignment-based similarity that improves WMD. The
following are similarity measures using pre-trained word embeddings.

Johnson similarity [52] and Jaccard index [48] are also set similarities that
regard words as symbols.

IS-BERT [113] is another unsupervised baseline. InferSent [28], Univer-
sal Sentence Encoder (USE) [20], and Sentence-BERT (SBERT) [90] are
supervised baselines. Contrastive Tension (CT) [19] and SimCSE are very
recently proposed powerful methods that are included in both unsupervised and
supervised baselines.

‡‡Pearson’s r tends to be used for methods using static embeddings, and ρ tends to be used for
recent methods using dynamic embeddings. In this work, we used both r and ρ to compare
previous studies using static and dynamic embeddings.
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Main results The results are shown in Table 4.8. The proposed method
worked the best among the similarity metrics and demonstrated higher
overall correlations than a simple baseline of Avg-cos. It also outperformed the
strong baseline of DynaMax with GloVe, word2vec, BERT, and SimCSE-BERT.
This result suggests that the proposed subspace-based approach represents a set
and set operations better than the fuzzy set-based approach in embedding space.
The advantage of the proposed method over symbolic set similarity (Johnson
similarity) shows that subspace-based set operations in an embedding space ef-
fectively extend the set representation.

The proposed method (SubspaceJohnson) achieved high performance
without additional fine-tuning.

In particular, the SubspaceJohnson and SimCSE-BERT combination was very
powerful and outperformed such supervised methods as InferSent, Universal Sen-
tence Encoder, and SentenceBERT.

Sentence vector vs. Word vectors Even though recent trends in sentence
similarity have focused on creating sentence vectors, our results suggest that
dealing directly with vector sets is superior to creating sentence vectors. For
example, focusing on the use of SimCSE-BERT embeddings, the method that
calculated set similarity using token embeddings (as in SubspaceJohnson and
DynaMaxJaccard) outperformed the cosine similarity between sentence vectors
(CLS-cos) used in [35].

Symbolic set similarity vs. Embedding-based set similarity Next, we
address the performance effectiveness of symbolic set similarity without embed-
dings. Both the Jaccard coefficient and Johnson similarity scores are less than 55,
where the latter score is slightly better. Our proposed method, SubspaceJohn-
son, which extends Johnson similarity using embeddings, achieved a maximum
score of 76.61. This result depends on pre-trained embedding, and with good
embedding such as SimCSE-BERT, the proposed method is very effective. Using
other good embeddings will likely increase the score further.

Ablation studies We also investigated the extent to which each different com-
ponent of the proposed method affected performance. Table 4.9 shows ablation
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studies for SubspaceJohnson. The results identify a strong weight contribution
(Eq. (4.12)) to the performance of SubspaceJohnson.
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Table 4.8: Correlation coefficient for STS task: Pearson’s r and Spearman’s ρ are
listed as r×100/ρ×100. Unreported values were marked with “-”. Models
with identical pre-trained embedding with the highest values are shown in
bold. Baseline scores were taken from [115] (♠), [110] (‡), [35] (♦), [90]
(♣), [113] (♥). All other experimental results are our results using codes
from [35,110,115]. For the STS evaluation protocol, we basically follow [35],
except we follow [115] for the GloVe and word2vec results.

Vectors Sentence Similarity STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Embedding (unsupervised) × Similarity

G
lo

V
e

Sent vec. Avg-cos♠ 52.1 / - 49.6 / - 54.6 / - 56.1 / - 51.4 / - - / - - / - 52.76 / -
Word vecs. DynaMax♠ 58.2 / - 53.9 / - 65.1 / - 70.9 / - 71.1 / - - / - - / - 63.83 / -
Word vecs. WMD‡ 55.74 / - 44.18 / - 60.24 / - 67.11 / - - / - 52.19 / - 61.91 / - - / -
Word vecs. WRD‡ 58.28 / - 48.79 / - 62.31 / - 68.80 / - - / - 54.03 / - 63.84 / - - / -
Word vecs. Subspace 58.42 / 57.67 58.30 / 58.96 65.55 / 64.44 70.90 / 70.78 68.14 / 68.95 - / - - / - 64.26 / 64.16

w
or

d2
ve

c Sent vec. Avg-cos♠ 51.6 / - 58.2 / - 65.6 / - 67.5 / - 64.7 / - - / - - / - 61.52 / -
Word vecs. DynaMax♠ 53.7 / - 59.5 / - 68.0 / - 74.2 / - 71.3 / - - / - - / - 65.35 / -
Word vecs. WMD‡ 55.89 / - 44.52 / - 60.24 / - 66.46 / - - / - 56.10 / - 64.05 / - - / -
Word vecs. WRD‡ 59.14 / - 51.41 / - 65.36 / - 72.39 / - - / - 72.39 / - 66.31 / - - / -
Word vecs. Subspace 54.13 / 56.50 61.73 / 61.61 68.61 / 66.68 73.25 / 72.94 69.34 / 70.31 - / - - / - 65.41 / 65.61

B
E

R
T

Setn vec. CLS-cos 13.73 / 21.54 31.75 / 32.11 21.56 / 21.28 34.84 / 37.89 40.15 / 44.24 17.18 / 20.29 38.34 / 42.42 28.22 / 31.40
Setn vec. Avg-cos 27.09 / 30.87 58.88 / 59.89 50.71 / 47.73 59.39 / 60.29 62.52 / 63.73 47.91 / 47.29 61.21 / 58.22 52.53 / 52.57
Word vecs. DynaMax 27.97 / 32.25 50.83 / 51.84 44.85 / 43.26 61.41 / 61.60 64.32 / 63.91 46.30 / 45.24 57.02 / 56.00 50.39 / 50.59
Word vecs. WMD 23.38 / 23.79 43.61 / 44.34 39.88 / 38.91 52.07 / 53.08 53.82 / 53.17 38.41 / 38.41 49.58 / 50.91 42.96 / 43.23
Word vecs. WRD 20.57 / 24.13 49.34 / 50.19 42.57 / 40.96 57.00 / 57.33 57.67 / 57.25 42.70 / 42.11 53.09 / 52.74 46.13 / 46.39
Word vecs. Subspace 31.61 / 34.19 56.98 / 56.88 50.68 / 48.08 61.75 / 62.19 65.39 / 65.42 49.71 / 48.60 58.17 / 56.80 53.47 / 53.17

Si
m

C
SE

-B
E

R
T Sent vec. CLS-cos♦ 75.69 / 68.40 82.10 / 82.41 78.10 / 74.38 80.22 / 80.91 77.57 / 78.56 77.88 / 76.85 79.86 / 72.23 78.77 / 76.25

Sent vec. Avg-cos 75.90 / 67.49 82.06 / 82.50 78.43 / 74.09 81.49 / 82.29 76.33 / 77.68 79.30 / 78.63 79.12 / 70.38 78.95 / 76.15
Word vecs. DynaMax 75.02 / 66.74 81.63 / 82.07 78.67 / 74.59 81.83 / 82.36 77.58 / 78.46 80.65 / 79.54 79.35 / 70.86 79.25 / 76.37
Word vecs. WMD 70.01 / 65.59 79.27 / 80.18 75.25 / 73.12 78.90 / 79.57 75.96 / 76.25 78.71 / 77.86 74.88 / 70.04 76.14 / 74.66
Word vecs. WRD 72.41 / 64.76 80.74 / 80.99 77.43 / 73.42 80.67 / 80.95 76.24 / 76.60 79.70 / 78.34 78.23 / 70.22 77.92 / 75.04
Word vecs. Subspace 75.35 / 66.07 82.49 / 82.96 79.17 / 74.90 81.61 / 82.31 77.64 / 78.54 81.25 / 80.13 79.78 / 71.38 79.61 / 76.61

Symbol × Set similarity

Johnson 40.78 / 43.06 50.14 / 49.84 52.43 / 52.97 68.07 / 67.84 57.95 / 57.59 52.33 / 52.55 57.58 / 54.26 54.18 / 54.02
Jaccard 40.87 / 43.02 49.71 / 48.89 50.37 / 51.18 67.00 / 67.47 58.51 / 57.48 53.10 / 52.60 55.11 / 54.09 53.52 / 53.53

Other sentence vectors (unsupervised)

IS-BERT♥
base - / 56.77 - / 69.24 - / 61.21 - / 75.23 - / 70.16 - / 69.21 - / 64.25 - / 66.58

CT-BERT♦
base - / 61.63 - / 76.80 - / 68.47 - / 77.50 - / 76.48 - / 74.31 - / 69.19 - / 72.05

Supervised models

InferSent-GloVe♣ - /52.86 - /66.75 - /62.15 - /72.77 - /66.87 - /68.03 - /65.65 - /65.01
USE♣ - /64.49 - /67.80 - /64.61 - /76.83 - /73.18 - /74.92 - /76.69 - /71.22
SBERT♣

base - /70.97 - /76.53 - /73.19 - /79.09 - /74.30 - /77.03 - /72.91 - /74.89
SBERTbase-flow♦ - /69.78 - /77.27 - /74.35 - /82.01 - /77.46 - /79.12 - /76.21 - /76.60
SBERTbase-whitening♦ - /69.65 - /77.57 - /74.66 - /82.27 - /78.39 - /79.52 - /76.91 - /77.00
CT-SBERT♦

base - /74.84 - /83.20 - /78.07 - /83.84 - /77.93 - /81.46 - /76.42 - /79.39
SimCSE-BERT♦

base - /75.30 - /84.67 - /80.19 - /85.40 - /80.82 - /84.25 - /80.39 - /81.57
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Table 4.9: Ablation studies on the presence or absence of weights for SubspaceJohn-
son: Values are Spearman’s ρ × 100. Embeddings in this experiment
were pre-trained BERT-base and unsupervised SimCSE-BERT. ♦: results
from [35].

Vectors Similarity STS-B dev.

BERT
Subspace

w/ weight (default) 57.0
w/o weight 56.2

SimCSE-BERT
Subspace

w/ weight (default) 84.5
w/o weight 83.8

72



4.5 Related Work
In this section, we review previous studies that represent a set and set operations
in an embedding space.

4.5.1 Set Representation

Approach using symbols Symbol-based similarity between word sets has
been used, such as Jaccard coefficient [48, 72, 96] and TF-IDF-based cosine simi-
larity [53]. Bayesian Sets [37] give a membership score as the probability of the
set membership of a word set using pointwise mutual information. Unfortunately,
symbol-based methods cannot capture the semantic similarity of similar sets or
words when the symbols are different.

Approach using embeddings without training on word sets Word vec-
tors allow for soft computation of semantic similarity in word sets. In this work,
we provide a formulation that allows the computation of these symbolic sets in
a pre-trained word embedding space. Many previous studies attempted to repre-
sent sets and set operations in a pre-trained embedding space. BERTScore [112]
approximatively models the similarity between sentences based on the cosine sim-
ilarity between their tokens by regarding a sentence as a set of context-dependent
token vectors. Another approach uses optimal transport to calculate the set
similarity along with the alignment between set elements, such as Word Mover’s
Distance [60] and Word Rotator’s Distance [110]. They calculate the set similarity
without formulating set operations.

Recently, another work proposed [115] the formulation of set operations in pre-
trained word embedding space based on fuzzy sets. It proposed Fuzzy Bag of
Words, which represents a set of words as a fuzzy set using max-pooled word
vectors. In this work, we represent a word set as a subspace and propose set
operations based on quantum logic by computing the degree of membership. Our
method is superior to fuzzy set-based methods in our experiments.

Approach using embeddings trained on word sets Many methods for
learning the representation of sets have been proposed because of the wide range
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of possible applications. DeepSets [111] is a typical model that has been extended
by an aggregation function [83] and an attention mechanism [62]. As discussed
in Section 4.4.2, our method outperformed DeepSets, which is a strong baseline.
Other methods for representing sets of words include representing words as Gaus-
sian distributions [9,101] and using boxes in the embedding space [29,100]. These
previous research studies have focused on learning methods for representing sets
of words, but we provide a formalization of set representation that functions as
a set of words on a pre-trained embedding space without requiring such learn-
ing. We can use our formalization to compute set representation using popular
general-purpose language models like BERT, which are trained on the general
domain.

4.5.2 Representation Learning of Concepts

Order embedding [99] and Box embedding [29, 66, 100] are methods that em-
bed hypernymy and hyponymy for concept representation in Euclidean space.
Embedding on hyperbolic space has also been proposed as a method for embed-
ding such relations by making good use of the geometric properties of vector
space [34, 80, 95]. In contrast to these concept representation learning methods,
our aim is not to learn concept representations. Rather our method provides
set operations and the representation of concept sets in a pre-trained embedding
space that is not specifically trained for concept representation.

4.5.3 Sentence Embeddings and Similarity

Many methods have been proposed for embedding sentences. In recent years,
methods have been proposed for acquiring superior sentence representations by
fine-tuning language models [19, 35, 50, 90, 113]. Although these methods are for
learning sentence vectors, we proposed a novel similarity between two embedding
sets. When computing the similarity of pre-trained embeddings, while cosine
similarity is still used, we compute the similarity by representing a sentence as
a subspace. As shown in the experiments, our proposed method outperforms
cosine similarity. Although the method for representing a sentence by a subspace
was proposed previously [78], our approach differs in that we calculate sentence
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similarity based on set similarity using quantum logic.

4.5.4 Quantum Logic

Using quantum logic was proposed to disambiguate word meanings in search
engines [107]. Other works [36, 93] used quantum logic as a constraint to learn
the logical structures of a knowledge graph. We formulated the representation
and operations of sets in a pre-trained embedding space based on quantum logic
with an extension on set membership and set similarity.

4.6 Discussion
What are the conditions for a word set to be represented as a subspace? We
believe that it is important for the embedding space to have linguistic linearity.
It is known from previous research that the linguistic linearity of the embedding
space is strongly related to PMI in the training corpus of the word embedding [64].
Both word2vec and GloVe are based on PMI to model the co-occurrence of words,
therefore, these embedding spaces have similar linguistic properties. In fact, both
of them are known to be able to calculate word analogies with word vectors. The
main difference is that word2vec models co-occurrences of words within sentences,
whereas GloVe also takes into account co-occurrences across the entire corpus.
For the subspace to be a linguistic subspace and not just a simple subspace, it
should have linguistic linearity, such as vking + vqueen ∼ vroyal . If the embedding
space has such linguistic linearity, vroyal would be contained in the subspace SRoyal

spanned by vking and vqueen. The conditions for the embedding space to acquire
linguistic linearity are also understood [6,7,31,38]. For example, [31] proved that
the embedding space (SGNS and GloVe without reconstruction error) acquires
linearity, based on the statistical properties of the training corpus characterized
by co-occurrence-shifted pointwise mutual information. The above discussion
is about the conditions that must be met for the subspace to represent the word
set. This condition suggests the possibility of fine-tuning the subspace where
the linearity of the meaning of the language holds. In other words, by learning
the embedding space so that the word set is embedded linearly in the subspace,
the subspace can be optimized. We mention ideas about this in Chapter 5. We
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have experimentally demonstrated this, and have shown through experiments
that subspaces in embedding spaces like word2vec do possess such linearity (e.g.
vboy ∈ SMale).

4.7 Conclusion
We formulated a set representation and set operations in a pre-trained word
embedding space using linear subspaces based on quantum logic to extend con-
ventional symbolic operations with vector-based representation. Our experiments
demonstrated that our proposed method represented a word set, the relation be-
tween elements and sets, and the relations between two sets.

Our proposed set operations are very versatile in embedding space and vector
set similarity using set operations. Our proposal can be used as a better simi-
larity to cosine similarity between averaged vectors, which has been widely and
frequently used, and may yield better results by directly optimizing a subspace
instead of an averaged vector when learning vector sets.
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5 Conclusion and Future
Directions

This thesis work addressed the formulation of semantic representation and its
operations in an embedding space, which is important as the foundation of
recent NLP. Previous studies have revealed that semantic operations such as
−−→
king − −−→man + −−−−→woman = −−−→queen can be realized by adding and subtracting word
vectors in the embedding space. Based on these properties of the pre-trained em-
bedding space, this thesis work attempts to formulate a new semantic operation.
Such semantic operations have the advantage of generality and are important for
understanding embedding spaces. In this chapter, we conclude the thesis work
and discuss future directions.

5.1 Summary
In Chapter 1, we explained the importance of the study of semantic operations.
First, we reviewed the historical transition from symbolic to vector representation
in the approach to semantic representation. Next, we described the approach to
learning vectors of words and tokens from large data sets, which is a fundamental
technology in current NLP. We then explained that semantic operations can be
performed with pre-trained word vectors and that such semantic operations have
two advantages.

In Chapter 2, we gave a literature review on word embedding. First of all,
we introduced an approach to the vector representation of language. Vector rep-
resentation can capture similarities in meaning and are more memory efficient
than one-hot representation, which is a local representation of meaning. Next,
we discussed the semantic computation of word vectors. We showed how the
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computation of analogy and semantic composition can be achieved by adding,
subtracting, and averaging word vectors. Finally, we describe a method for em-
bedding such vectors in a language. We divided them into two categories (static
and dynamic embedding). Static embedding, such as word2vec, can represent a
word as a vector of a fixed dimension. Dynamic embedding, such as BERT, has
succeeded in representing the polysemy of a word.

In Chapter 3, we tackled formulating a new semantic operation of inverting
binary attributes. An analogy-based transfer adds or subtracts a difference vector
from an input word vector to transfer it to a target word vector. Since this
operation depends on the attribute value of the input word, an analogy-based
transfer needs explicit knowledge. However, this knowledge cannot be developed
for various words and attributes in practice. We first defined an ideal transfer
function that does not use the knowledge and proposed a method that can perform
a transfer without relying on the knowledge by introducing the ideal mapping
called a reflection. A reflection is a mapping that inverts two vectors with a
hyperplane called mirror in a Euclidean space. Thus, a reflection can transfer
both the input word vector and the target word vector with the same mapping.
We proposed parameterized mirror method, which dynamically predicts mirrors
according to attributes and input words. In this chapter, we show that the
proposed method outperforms other methods such as analogy in accuracy of word
attribute transfer. Interestingly, we found that reflection-based methods are very
stable when inputting words that do not have the specified attribute values.

In Chapter 4, we formulated representations and operations of word sets in the
embedding space. Sets of vectors are frequently used in NLP. For example, it
is often done to consider a sentence as a set of words and compute the sentence
vector by averaging the word vectors. Although it is very simple and effective, it is
unclear how additive composition holds properties as a set of words. However, set
operations are important because they can be general-purpose tools in NLP. For
example, a sentence similarity task requires the calculation of set similarity. In
this chapter, we formulate a set representation and five set operations in the pre-
trained word embedding space. Inspired by quantum logic, one of the theories of
quantum mechanics, we give a formulation of set representation and set operation
based on linear subspaces. Our experiments demonstrated that our proposed
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method represented a word set, the relation between elements and sets, and the
relations between two sets. We also applied the proposed method to two tasks,
Text Concept Set Retrieval and Semantic Textual Similarity, and demonstrated
that our proposed method has a high performance.

5.2 Contributions
In this section, we review the contributions along with the major findings of this
thesis work. The main research questions and contributions are as follows.

• What is the significance of semantic operations in an embedding
space?
This is our main research question in this thesis. We answered this research
question through this thesis. There are two significant points in semantic
operations. The first significance is that semantic operations have a wide
range of applications, i.e., they are highly versatile. Semantic operations
can be used with a given pre-trained embedding without specific training.
For example, semantic operations can be used to calculate the similarity
of sentences. Conversely, semantic operations can be used to learn the
embedding space. For example, in previous research [16], an analogy was
introduced to the loss function to learn the embedding space. The sec-
ond significance is that it helps us understand the embedding space. The
discovery of a new semantic operation will reveal one of the fundamental
properties of embedding spaces. We formulated two novel semantic opera-
tions in this thesis.

• What is the condition for mapping to invert binary attributes
between words in a pre-trained word embedding space? Which
kind of mapping should be employed to satisfy such conditions?
We answered these research questions in Chapter 3. Considering the gender
attribute transfer as an example, the ideal binary word attribute transfer
fgender transforms

−−→
king into −−−→queen and −−−→queen into

−−→
king. However,

−−−→
apple

should not be transferred by fgender. In other words, the condition for f

is a mapping such that
−−−→
word = fgender(fgender(

−−−→
word)), which is an identity
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map when applied twice (subsection 3.4.1). We employed reflection, a kind
of such mapping, for binary word attribute transfer (subsection 3.4.2).

• What are the advantages of reflection-based word attribute trans-
fer? How has it been demonstrated?
We answered these research questions in Chapter 3. Reflection-based word
attribute transfer has two advantages. The first advantage is that reflection
does not require knowledge of the attributes of the input word. For exam-
ple, in gender transformation, reflection can invert the gender of an input
word regardless of whether it is male or female. Such a transformation is
not possible with the analogy. The second advantage is very high stability.
For example, when apple was input to reflection in the gender transforma-
tion, almost 100% of the words were not transformed. This is in contrast
to other methods (section 3.5). These advantages allow for automatic and
stable sentence creation without the use of human knowledge in sentence
data augmentation.

• How do we represent sets and formulate set operations in pre-
learned embedding spaces?
We answered this research question in Chapter 4. Inspired by quantum
logic, we proposed a formulation of sets and set operations based on linear
subspaces (section 4.3). Our experimental results show that subspaces can
represent linguistic set operations (e.g. orange ∈ Color ∩ Fruit) (subsec-
tion 4.4.1).

• What are the advantages of subspace-based set operations? and
how have they been demonstrated?
We answered this research question in Chapter 4. There are two advantages
of set operations. The first advantage is that a combination of set oper-
ations can be used to define various computations on sets. For example,
we defined the computation of sentence similarity as the similarity between
word sets. The second advantage is high performance in downstream tasks
(subsection 4.4.3). For example, our subspace-based sentence similarity
performs better than the cosine similarity between averaged vectors. This
is a highly influential result. Cosine similarity between averaged vectors
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has been widely employed, for example, in the evaluation and learning of
embedding spaces. This suggests that the proposed method may improve
the performance of various tasks.

5.3 Future Directions
In recent years, the use of pre-trained neural networks with fine-tuning [30] and
prompting [18] has become the dominant approach in the field of AI. It has
proven to be effective in many tasks, such as natural language processing, com-
puter vision, and speech recognition. The field of AI is evolving, and new methods
may emerge, but the vector-based design of deep learning is likely to remain un-
changed. Vector computations play a fundamental role in representing, handling,
and understanding complex information of natural language, images, and speech.
The idea of embedding — representing complex data in a lower-dimensional space
— is a key concept in deep learning and will remain very important in the future
of AI technologies.

This thesis work focused on the relationship between properties of embedding
spaces and the meaning in natural language and investigated how linearity, ge-
ometry, and other properties of embedding spaces can be used to represent and
compute the natural language meaning. It opens up new directions for future
research in the field of NLP. Such vector operations form the foundation of deep
learning and can be applied not only in NLP but in any field that uses deep learn-
ing. The semantic operations we have developed can contribute to the field of AI
as a new technique and technology that can be used to improve the performance
of deep learning models. They will be extended to improve the performance of
various NLP tasks and open new possibilities for understanding and manipulat-
ing meaning in natural language. The semantic operation will contribute to the
field of AI by providing new methods and techniques that can be used to improve
the performance of deep learning models. In the remainder of this section, we
explore future applications of this thesis work with some concrete ideas.

Binary Attribute Transfer Future work includes applications to other trans-
fer tasks: sentence by sentence transfer [49, 82, 86], and entity prediction on
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an analogic graph embedding space [69], in the field of computer vision, visual
analogy [89], or style transfer [67, 116] with Generative Adversarial Networks
(GANs) [41, 87] and Variational Auto-Encoder (VAE) [58] because their latent
space holds analogic relations [87]. Since the latent space of GAN, VAE, and
TransE is the space in which additive composition is valid, the proposed method
can be applied.

Subspace-based Set Operations Subspaces have been applied to various
technologies. For example, in the field of meta-learning, Jiang et al. [51] repre-
sented task model parameters in subspaces to efficiently represent meta-knowledge.
Li et al. [65] focused on the problem of huge parameter space of neural nets and
represented network parameters in low-dimensional subspaces. Subspaces are also
used in learning structured data such as knowledge graphs [36,93].

Future work includes applications to a variety of tasks. In particular, our
subspace-based set similarity is widely applicable. We expect that replacing the
cosine similarity between averaged vectors with our proposed set similarity will
improve performance. This is because our set similarity achieved better perfor-
mance than the cosine similarity between averaged vectors in our experiments. A
promising application would be contrastive learning [24,35]. Contrastive learning
is a method to compensate for embedding space. In contrastive learning, em-
beddings in pre-trained language models are fine-tuned to increase the similarity
between input sentences and positive examples and to decrease the similarity
between input sentences and negative examples that are not similar. In our
experiments, we used a language model fine-tuned by contrastive learning (Sim-
CSE [35]) to compute sentence similarity. Conversely, our set similarity can be
used for SimCSE. SimCSE uses [CLS] token as the sentence representation and
the cosine similarity between [CLS] tokens as the sentence similarity. A subspace
can be used for a sentence representation and our subspace-based set similarity
can be used for sentence similarity.
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