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Broadening the Coverage of Scenes and Descriptions
towards Versatile Image Captioning Systems1

Ukyo Honda

Abstract

Image captioning plays a fundamental role in the vision-and-language research, which
lies in the intersection of computer vision and natural language processing, by con-
verting the information in images into natural language descriptions. To be versa-
tile pipelines for downstream vision-and-language tasks, captioning systems should be
able to describe various types of scenes with extensive information. However, current
captioning systems are limited in their coverage of scenes and descriptions: they can
handle limited types of scenes, and their output descriptions tend to be overly generic.

The goal of this dissertation is to broaden the limited coverage. The first half of this
dissertation is devoted to addressing the limitation of describable scenes by introducing
unsupervised image captioning methods. Captioning models require a large number of
image–sentence pairs to learn how to describe images, but the coverage of those pairs
is limited even in the recent large-scale datasets. Collecting the image–sentence pairs
for every type of scene incurs intensive costs and, thus, is not scalable. To broaden the
coverage of describable scenes without the heavy reliance on costly data collection,
unsupervised image captioning has been studied to train captioning systems without
any supervision of the image–sentence pairs. Previous work focused on aligning im-
ages with their pseudo-captions, i.e., sentences that contain object labels detected from

1Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science and
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input images. However, the sentence-level alignment forces word-level spurious align-
ments because the pseudo-captions have many words that are irrelevant to a given im-
age. We propose a gating mechanism and pseudo-labels on it to remove the word-level
spurious alignment and show that our method significantly enhances the captioning
performance, outperforming the previous sentence-level alignment methods.

In the second half of this dissertation, we address the limitation of obtainable de-
scriptions. Current image captioning systems tend to output overly generic captions
and ignore the characteristic details of each image. To investigate the cause of this lim-
itation, we first analyze the outputs of current captioning systems. Our analysis shows
that reinforcement learning (RL), the de-facto standard training for captioning mod-
els, shifts the probability mass from low-frequency words to high-frequency words,
decreasing the output vocabulary. Based on this analysis, we introduce lightweight
fine-tuning methods that are hinted by long-tail classification and debiasing methods
to alleviate the side effect of RL. Experimental results show that the methods signif-
icantly increase the output vocabulary and enable RL captioning models to describe
information distinctive from other images.

Finally, we discuss the remaining problems and future directions for image caption-
ing research.

Keywords:

image captioning, text generation, unsupervised learning, reinforcement learning, long-
tail classification, debiasing, vision and language, natural language processing, neural
networks
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Chapter 1

Introduction

1.1 Background

Natural language is a principal tool for humans to obtain and convey information.
This importance of language has led to extensive research in natural language process-
ing (NLP) so that computers can process information as we humans do. However,
language is not the only channel for humans to process information. For example,
human communication relies on non-verbal information in addition to verbal informa-
tion [126, 125]; common sense is implicitly shared and not always mentioned explicitly
(reporting bias) [171]; we do not verbalize all the information we obtain through the
five senses. Language use in the real world is supported by information that is not
expressed in the form of language. Thus, NLP systems have to utilize not only the ver-
balized information but also the information not verbalized yet to achieve human-like
information processing in the real world.

Vision and Language lies in the challenging research fields to achieve multimodal
information processing with a special focus on language and vision. The tasks include
image captioning [46], visual question answering [9], visual dialogue [35], vision-
and-language navigation [6], multimodal machine translation [44], text-to-image gen-
eration [149], and so on.

Among these tasks, image captioning plays a fundamental role in connecting multi-
modal information by converting visual information into natural language descriptions.
Generated captions can be used in various downstream tasks, such as image indexing
for detailed image searching [19, 179], aiding visually impaired users [60], visual ques-
tion answering on images and videos [49, 88, 71, 195, 17], visual dialogue [192], news

1
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Figure 1.1: Task structure of image captioning. Tasks in our focus are colored with the
blue background .

generation [206], image synthesis [51] or editing [139], and object interaction antici-
pation [140]. Video captioning is a more advanced extension of image captioning, as
videos are sequences of images [177, 176, 200].

1.2 Challenges in Image Captioning

Major components of image captioning can be categorized into models to generate
captions, evaluation metrics to evaluate the captions, and datasets to conduct the
training and evaluation. In this dissertation, we focus on the models. Based on our
priority, the following sections introduce challenges in developing the models. See
Sections 2.3 and 2.4 for the overview of the studies regarding evaluation metrics and
datasets, respectively.

The most popular challenge in model development is to improve the correctness and
fluency of captions for images in the general domain. A surge of studies have pursued
generating more correct and fluent captions for images of common objects [181, 198,
146, 151, 5, 105]. However, that is not the only challenge with the goal of versatile
image captioning systems. Based on the narrow scope of the most popular challenge,
we categorize the rest challenges as those done to improve the “coverage” of the mod-
els. In this section, we provide a brief overview of the rest challenges in two broad
categories, scenes and descriptions, which correspond to the inputs and outputs of cap-

2



tioning models.
See Figure 1.1 for the structure of tasks in image captioning. The tasks in our fo-

cus are on blue background . Although out of the focus of this dissertation, we also
overview the other tasks in the corresponding sections.

1.2.1 Coverage of Scenes

Scenes to be described significantly vary depending on the use. For example, unseen
objects are more likely to interest users than common objects. Photos taken by visually
impaired users tend to be low-quality and contain text [60]. The domain of images for
visual question answering ranges from clear images of common objects [9, 54] to low-
quality images with text [59, 199], clipart images [9], and medical images [98, 12, 64,
78]. However, current captioning systems can handle limited types of scenes [1, 60,
163]. In this dissertation, we refer to the challenge of increasing describable scenes as
broadening the coverage of scenes.

Domain-specific image captioning has been studied to handle the diverse domains of
scenes: photos taken by visually impaired people [60], images with text [163], mobile
user interfaces [106], medical images [79, 43, 142, 130], and so on [166].

Although effective, domain-specific approaches require the cost of collecting domain-
specific image–sentence1 pairs for training. Another line of approaches seeks domain-
general methods that do not require the intensive collection of training data. Semi-
supervised image captioning augments image–sentence pairs by automatically anno-
tating unlabeled images [112, 87]. Novel object captioning tries to describe unseen
objects by utilizing automatically detected object labels [66, 175, 1]. Unsupervised
image captioning learns to describe images without any pair of images and text [48].

1.2.2 Coverage of Descriptions

Images carry a large amount of information. Thus, it is not enough to correctly
and fluently describe general content from images; it is important to pick up and
describe information that users may be interested in. For example, the granularity
of the image search query and index varies from coarse to fine, depending on the

1Captions are sometimes annotated in the form of a noun phrase, not necessarily in a complete sen-
tence. In this dissertation, the term “sentence” includes those noun phrases.
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use [19]. Visual question answering, visual dialogue, and news generation need not
only salient information but also details users are interested in [49, 71, 195]. In addi-
tion, news generation requires proper names of entities beyond their abstract category
names [206]. Regardless of the demand for extensive descriptions, outputs of current
captioning systems tend to be overly generic, ignoring characteristic details of each
image [34, 33, 187, 190]. We refer to the challenge of increasing the variety of de-
scriptions as broadening the coverage of descriptions.

Previous studies have tried to enrich image descriptions to cover extensive informa-
tion about images. Discriminative image captioning, also called distinctive image cap-
tioning or descriptive image captioning, seeks to generate captions that are informative
enough to distinguish input images from other images [154, 117, 112]. Diverse image
captioning focuses on generating a set of unique captions for each input image [191].
Dense image captioning exhaustively describes all the object regions of images [80].
Controllable image captioning specifies object regions of images and then generates
captions that are faithful to the selected regions [31]. Change captioning takes pairs of
similar images as input and describes the difference within each pair [74, 138]. Person-
alized image captioning changes text style of captions depending on users [28, 162].
Aesthetic image captioning returns feedback to photos taken by users [16, 52]. Entity-
aware image captioning incorporates external knowledge to describe proper names of
entities [170, 113, 14].

Aside from enriching, reducing social biases from captions is also important for
suitable descriptions for users [207, 208, 65]. Cross-lingual image captioning transfers
captioning models trained in pivot language to other languages with no image–sentence
pairs [55, 165].

1.3 Research Objective and Contributions

The objective of this dissertation is to achieve more versatile image captioning systems
by broadening the coverage of both sides: scenes and descriptions. In particular, we
address the task of unsupervised image captioning and discriminative image caption-
ing.

We address unsupervised image captioning to handle edge cases in the scene cover-
age, where scenes have no corresponding image–sentence pairs during training. Cap-
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tioning models require a large number of image–sentence pairs to learn how to de-
scribe images, but the coverage of those pairs are limited even in the recent large-scale
datasets [1, 60, 170]. Collecting the image–sentence pairs for every types of scenes
incurs intensive costs and thus is not scalable. To broaden the coverage of scenes
without the heavy reliance on costly data collection, unsupervised image captioning
has been studied to train captioning systems without any supervision of the image–
sentence pairs. Previous work focused on aligning images with their pseudo-captions,
i.e., sentences that contain object labels detected from an input images [48, 97]. How-
ever, those pseudo-captions have many words that are irrelevant to a given image, thus,
the sentence-level alignment results in the word-level spurious alignment. We propose
methods to remove the word-level spurious alignment between the images and their
pseudo-captions. Our methods significantly enhance the captioning performance and
outperform the previous sentence-level alignment methods.

Regarding the description coverage, our priority is given to discriminative image
captioning, that is, describing the characteristic details that can distinguish input im-
ages from other images. This is because such details should generally be of interest to
users. As mentioned above, however, current captioning systems output overly generic
captions [34, 33, 187, 190]. We first investigate the cause of the overly-generic cap-
tions. Our analysis shows that reinforcement learning (RL), which is the de-facto stan-
dard training for captioning models, shifts the probability mass from low-frequency
words to high-frequency words and consequently decreases the output vocabulary. We
introduce lightweight fine-tuning methods hinted by long-tail classification and debi-
asing methods to alleviate the side effect of RL. Experimental results show that the
methods significantly increase the output vocabulary and enable the current captioning
models to describe the contents distinctive from other images. This is the contribution
to reveal that the limited coverage of descriptions has been caused by the side effect of
RL and to introduce the practical, lightweight fine-tuning to mitigate the side effect.

1.4 Structure of the Dissertation

The reminder of this dissertation is organized as follows.
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Chapter 2: Preliminaries provides the basic knowledge about image captioning:
task setting, models, datasets, and evaluation metrics in image captioning.

Chapter 3: Unsupervised Image Captioning is devoted to broadening the coverage
of scenes. We explain the task setting of unsupervised image captioning and its diffi-
culty: the spurious alignment between the words in pseudo-captions and their images.
Experimental results demonstrate that our proposed models outperform previous mod-
els by removing the spurious alignment, which is an important contribution towards
mitigating the limitation of describable scenes.

Chapter 4: Discriminative Image Captioning addresses the limited coverage of
descriptions. We first analyze the outputs of current captioning systems and show that
RL decreases the output vocabulary. Based on this finding, we propose lightweight
fine-tuning methods to increase the output vocabulary so that captions will subse-
quently include the information specific to each image. Experimental results confirm
that our methods successfully contribute to broadening the description coverage from
overly-generic information to distinctive details.

Chapter 5: Conclusion discusses the remaining problems and future directions to-
wards versatile image captioning systems.
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Chapter 2

Preliminaries

2.1 Task Setting

Image captioning is a task of describing images in the natural language. In the typical
supervised setting, captioning models are trained on the pairs of images I and captions
Y . Let D = {(I(i),y(i))} | i = 1, ..., N} be a training data, where I(i) ∈ I is an image
and y(i) = (y

(i)
1 , ..., y

(i)
T ) ∈ Y is its corresponding caption1. The last token y

(i)
T is a

special token ⟨eos⟩ that indicates the end of a sentence.
Given the training data D, the goal of training is generally to find the optimal pa-

rameters in the following objective function:

θ∗ = argmax
θ

N∑
i=1

log pθ(y
(i) | I(i)), (2.1)

where θ are parameters of captioning models. See Eq. (2.8) for the exception.

2.2 Models

This section provides a brief overview of model architectures in image captioning and
how to train the models.

1Typically, each image is paired with multiple captions. This notation assigns different values of i to
the same images with different captions.
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2.2.1 Models before Deep Learning

Early captioning studies decompose the probability pθ(y | I) as follows:

pθ(y | I) = pψ(y |m)pϕ(m | I), (2.2)

wherem is the intermediate text representation of image contents such as triplets con-
sist of objects, attributes, and relation, e.g., ⟨⟨brown, dog⟩, near, person⟩. In the train-
ing stage, models learn to find the optimal parameters for pϕ(m | I), separately from
pψ(y |m):

ϕ∗ = argmax
ϕ

N∑
i=1

log pϕ(m
(i) | I(i)). (2.3)

Then, the trained models do the prediction as follows:

y∗ = argmax
y

pψ(y |m∗), (2.4)

m∗ = argmax
m

pϕ∗(m | I). (2.5)

pψ(y | m∗) is modeled by tree or n-gram matching scores between m∗ and y to
retrieve the closest sentence y∗ [46], n-gram language model probability on modified
permutations ofm∗, or slot filling on templates with linguistic constraints [94].

2.2.2 Neural Captioning Models

Deep neural networks and large-scale captioning datasets have brought a remarkable
progress in image captioning [181, 166]. Neural captioning models have an advantage
of directly modeling the probability pθ(y | I) without the decomposition of Eq. (2.2).

Encoder–Decoder is a common architecture of neural captioning models [181, 41,
123, 91], which is inspired by neural machine translation models [26, 167]. The en-
coder maps input images into the feature space, and the decoder generates captions
given the encoded image features.

The encoder employs pre-trained image-processing models such as image classi-
fiers [181, 62], object detectors [5, 150], and image–text alignment models [158, 145].
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The encoded image features can be either a single feature vector or multiple fea-
ture vectors of grids or bounding boxes. In the latter case, the multiple feature vec-
tors are dynamically aggregated into a single feature vector using attention mecha-
nism [198, 10].

The decoder typically employs auto-regressive decoding models such as Long Short-
Time Memory (LSTM) [69] and Transformer [172]. During decoding, the probability
pθ(y | I) is auto-regressively factorized as:

pθ(y | I) =
T∏
t=1

pθ(yt | y<t, I). (2.6)

The encoder–decoder can directly model the probability pθ(y | I), allowing end-
to-end training: the entire parameters of the model can be updated jointly. In practice,
however, the encoder has often been fixed during training for computational efficiency.
Recent transformer-only models enable fully end-to-end training and have achieved
state-of-the-art performance [186, 135].

Maximum Likelihood Estimation (MLE) is the basic method to train neural cap-
tioning models. Given the factorization of Eq. (2.6) and one-hot encoding of target
words yt, the loss for each pair of (I(i),y(i)) is computed by the following cross-
entropy (CE) loss function2:

LCE(θ) = −
1

T

T∑
t=1

log pθ(yt | y<t, I). (2.7)

Captioning models learn to minimize the loss to achieve the optimal parameters θ∗ of
Eq. (2.1).

Reinforcement Learning (RL) is an alternative training method to the MLE. Al-
though the MLE can maximize the log-likelihood of ground-truth captions given their
paired images, that objective does not necessarily correspond to the test-time objective.
The goal of RL is to directly maximize the test-time evaluation scores by minimizing
the following negative expected reward:

LRL(θ) = −Eỹ∼pθ(ỹ|I)[r(ỹ)], (2.8)
2Hereafter, we sometimes omit the instance index (i) for brevity. Unless otherwise noted, loss func-

tions represent calculations for a single training instance.
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where ỹ = (ỹ1, ..., ỹT ) is a sequence sampled from a policy pθ and r : Y → R is a
reward function. Typically, the reward function r is an evaluation metric, CIDEr [174].
However, minimizing LRL(θ) has difficulty in that the reward is non-differentiable.

To compute the gradients with the non-differentiable reward, [146] proposed a method
to approximate the gradients using RL. They applied the REINFORCE algorithm [193]
to text generation. In practice, the gradients for updating parameters are approximated
by S samples per each image as follows.

∇θLRL(θ) ≈ −
1

S

S∑
s=1

(r(ỹs)− b)∇θ log pθ(ỹs | I). (2.9)

Here, b is a baseline reward that reduces the variance in the gradients. Self-Critical
Sequence Training (SCST) [151] is a variant of this RL method where the baseline
reward b is a reward for a sequence sampled with greedy decoding.

RL, especially SCST, is the de facto standard training method for state-of-the-art
captioning models because it significantly improves the performance in various evalu-
ation metrics [166].

2.3 Evaluation

Typically, captioning performance is evaluated by computing the similarity between
output captions and ground-truth captions. This section explains how the similarity is
measured by introducing evaluation metrics used in image captioning.

2.3.1 Exact-Matching Metrics

Conventionally, captioning experiments have employed exact, surface-form matching
scores between output captions and ground-truth captions. BLEU [137] counts the
precision in n-gram matching, ROUGE [107] counts the recall in n-gram matching,
METEOR [37] computes the F1 score in n-gram matching, CIDEr [174] computes
n-gram similarity weighted by TF-IDF, and SPICE [3] utilizes scene-graph parser to
compute the matching between the dependency graph of output captions and ground-
truth captions.

The problem of the exact-matching metrics is that they cannot evaluate the words
not included in reference captions. Although each image has around five reference cap-
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tions in MS COCO, those captions are not enough to cover all contents pictured in each
image. Actually, the correlation between human judgment and CIDEr scores continues
to improve as the number of reference captions increases to around fifty [174].

2.3.2 Soft-Matching Metrics

To compensate for the insufficient coverage of reference captions, more studies have
focused on soft-matching evaluation.

Text-Based Soft-Matching Metrics consider the semantic similarity beyond the dif-
ference in the surface form by employing word embeddings. WMD [95, 86] computes
the distance between static word embeddings of target and reference captions. Al-
though beneficial, static word-embedding methods, e.g., CBOW, skip-gram [131, 132],
and GloVe [143], have a disadvantage in that they cannot embed contextual informa-
tion into each word embedding.

With the advent of large pre-trained language models such as ELMo [144] and
BERT [39], evaluation metrics have started to utilize contextual word embeddings.
BERTScore [204] calculates the distance between target and reference captions using
BERT-encoded contextual word embeddings. Improved BERTScore (BERTS++) [201]
considers variance of reference captions when penalizing mismatches between target
and reference captions.

Text-and-Image-Based Soft-Matching Metrics further compensate for missing ref-
erence captions by considering image features as additional references. TIGEr [76] and
REO [75] employ pre-trained image-text matching models to ground captions to im-
age regions and then use grounded image features to calculate the similarity between
target and reference captions. VIFIDEL [119] uses object detectors to extract addi-
tional reference from images; FAIEr [188] additionally employed scene graph genera-
tors to consider relation between objects. [32] trains evaluation models on captioning
data given outputs of text encoder and image classifier. Recently, end-to-end outputs
of large pre-trained cross-modal models are reliable enough to compute image-text
similarity without the tailored score computation or training above. UMIC [99] uses
UNITER [24], ViLBERTScore [100] uses VilBERT [114], and CLIPScore (CLIPS)
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and RefCLIPScore (RefCLIPS) [67] uses CLIP [145] to compute the image-text simi-
larity directly from image and text inputs.

Text-and-image-based soft-matching metrics are reported to correlate with human
judgments much better than exact-matching metrics and text-based soft-matching met-
rics [84]. The current best-performing metric is RefCLIPScore [67, 84].

2.4 Datasets

This section introduces widely-used data to train and evaluate captioning models.

2.4.1 Captioning Datasets

Captioning datasets consist of the pairs of images and corresponding captions, e.g.,
Pascal VOC 2008 [46], Frickr8k [147], Flickr30k [202], and MS COCO [109, 23].
Among them, MS COCO is the largest and most popular dataset for image caption-
ing. It consists of 123,287 images and around five captions to each image. Following
the previous work, we use this dataset for all of our experiments. In all experiments,
the images are split into the training/validation/test set of 113,287/5,000/5,000 im-
ages [83].

Google’s Conceptual Captions (GCC) [157] is much larger dataset of web-crawled
3.3M images and single caption to each image. LAION-5B [155], which followed
LAION-400M [156, 145], is the current largest image–text pair dataset of web-crawled
5B images and single caption to each image. Although the size is large, these datasets
are noisy and mostly used for pre-training before captioning training [105, 158].

Visual Genome [93] annotated short descriptions to each region of images, not to
the entire images. Similar to the noisy image–text pairs above, this dataset is often
utilized for the encoder pre-training rather than for captioning training.

2.4.2 Datasets for Image Backbones

Besides the captioning datasets, other image-processing datasets are utilized to pre-
train the image encoder as we described in Section 2.2.2. ImageNet [153] is the stan-
dard dataset to train image classifiers.
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Visual Genome [93] provides the information about image regions and correspond-
ing objects and attributes, in addition the the short description of the regions. This
annotation is utilized to pre-train object detectors to encode richer image features than
image classifiers [5].

Recently, large-scale image–text pairs were crawled from the web to pre-train image–
text alignment models [145, 156]. The pre-trained model is utilized as an alternative
image-feature extractor to image classifiers and object detectors [158].
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Chapter 3

Unsupervised Image Captioning with
Careful Word-Level Alignment to
Broaden the Scene Coverage

3.1 Introduction

Image captioning is the task of describing images in natural languages. This is a fun-
damental challenge with regard to automatically retrieving and summarizing the vi-
sual information in a human-readable form. Recently, considerable progress has been
made [181, 198, 146, 151, 5, 105] owing to the development of deep neural networks
and a large number of annotated image–sentence pairs [202, 109, 23, 93, 157].

However, those image–sentence pairs are limited in their coverage of scenes. For
example, the standard captioning dataset MS COCO [109, 23] covers only approxi-
mately 100 object categories out of 500 object categories defined in an object detec-
tion dataset [1]. In addition to objects, attributes and relations are also not covered
well owing to the small vocabulary size: 8791 words [83]. Although increasing the
image–sentence pairs is a straightforward way to address this problem, it is difficult
due to the cost of manual annotation. Crawling image–text pairs from the web can also
compensate for the lack of data [145, 156, 155, 157], but there are still missing scenes.
For example, even a 400M image–text pairs ignores the words that occur less than 100
times in English Wikipedia [145].

Unsupervised image captioning [48] aims to describe scenes that have no corre-
sponding image–sentence pairs, without requiring any annotation of the pairs. The
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a girl with a cat 
a girl is running with a cat 
a girl with a black cat 
... 

cat girl
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a
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Figure 3.1: Overview of our model. The input is listed on the left-hand side: an im-
age, its detected object labels, and its pseudo-captions. The model learns
to generate the pseudo-captions while considering the correspondence be-
tween the image and each word being generated. The detailed process is
shown in the blue box on the right-hand side. The base encoder–decoder
model output ht, a gate value gt, and a pseudo-label ft on the gate are de-
scribed in Sections 3.2.1, 3.2.2, and 3.2.3, respectively. The dashed arrows
indicate the processes conducted only during training.

only available resources are images and sentences drawn from different sources and
object labels detected from the images. Although it is highly challenging, unsuper-
vised image captioning has the potential to cover a broad range of scenes by exploiting
a large number of images and sentences that are not paired by expensive manual anno-
tation.

To train a captioning model in this setting, previous work [48, 97] employed sen-
tences that contained the object labels detected from given images. We refer to these
sentences as pseudo-captions. However, pseudo-captions are problematic in that they
are likely to contain words that are irrelevant to the given images. Assume that an
image contains two objects cat and girl (Figure 3.1). This situation could give rise to
various possible pseudo-captions, e.g., “a girl with a cat,” “a girl is running with a cat,”
“a girl with a black cat.” Although the first sentence is the correct caption of the image
in Figure 3.1, the words running and black of the other sentences are irrelevant to the
image. As the detected object labels provide insufficient information to judge which
sentence corresponds to the image, many pseudo-captions containing such mismatched
words can be produced.

Regardless of the problem in pseudo-captions, previous work [48, 97] did not ex-
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plicitly remove word-level mismatches. They tried aligning the features of images
and their pseudo-captions at the sentence level. Although this line of approach can
potentially align the images and sentences correctly if there are sentences that exactly
describe each image, it is not likely to hold for the images and sentences retrieved from
different sources.

To shed light on the problem of word-level spurious alignment in the previous work,
we focus on removing mismatched words from image–sentence alignment. To this end,
we introduce a simple gating mechanism that is trained to exclude image features when
generating words other than the most reliable words in pseudo-captions: the detected
objects. The experimental results show that the proposed method outperforms previous
methods without introducing complex sentence-level learning objectives. Combined
with the sentence-level alignment method of previous work, our method further im-
proves its performance. These results confirm the importance of careful alignment in
word-level details.

3.2 Method

Our model comprises a sequential encoder–decoder model, a gating mechanism on the
encoder–decoder model, a pseudo-label on the gating mechanism, and a decoding rule
to avoid the repetition of object labels, as presented in Figure 3.1.1

3.2.1 Base Encoder–Decoder Model

As seen in Eq. (2.1), supervised neural captioning models typically learn to maximize
the following objective function to achieve the alignment between images and captions:

θ∗ = argmax
θ

N∑
i=1

log pθ(y
(i) | I(i)),

where θ are the parameters of captioning models, I(i) is an input image, and y(i) =

(y
(i)
1 , . . . , y

(i)
T ) is its corresponding caption. The last token y

(i)
T is a special end-of-

sentence token ⟨eos⟩.

1The code is available at https://github.com/ukyh/RemovingSpuriousAlignment
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In unsupervised image captioning, however, the corresponding caption y is not
available. Instead, object labels in given images are provided by pre-trained object
detectors. Previous work utilized the detected object labels to assign a roughly corre-
sponding caption ŷ, i.e., a pseudo-caption, to the given image. Following the previous
work, we define pseudo-captions of an image as sentences containing the object la-
bels detected from the image. Given the pairs of images and theirs pseudo-caption,
D̂ = {(I(i), ŷ(i)) | i = 1, . . . , N}, our base encoder–decoder model maximizes the
following objective function:

θ∗ = argmax
θ

N∑
i=1

log pθ(ŷ
(i) | I(i)). (3.1)

Following Eq. (2.6), the probability pθ(ŷ | I) is auto-regressively factorized as:

pθ(ŷ | I) =
T∏
t=1

pθ(ŷt | ŷ<t, I). (3.2)

Let the softmax function π : R|W| → R be

πwi
(z) =

exp(zwi
)∑

wj∈W exp(zwj
)
, (3.3)

where zwi
indicates the element of any vector z ∈ R|W| at the index of a word wi ∈ W .

W is the entire vocabulary. Then, our base encoder–decoder model computes the
pθ(ŷt | ŷ<t, I) as follows:

pθ(ŷt | ŷ<t, I) = πyt(Wpht + b), (3.4)

ht =

Decψ

(
v

∥v∥2 ,h0

)
, if t = 1;

Decψ(xt,ht−1), otherwise,
(3.5)

v =WaEncϕ(I), (3.6)

xt = Embω(ŷt−1), (3.7)

where Wp ∈ R|W|×d is a vocabulary-size transformation matrix, b ∈ R|W| is a bias
term, Decψ : I ×Y → Rd is a decoder, h0 ∈ Rd is a zero vector, and Encϕ : I → Rd′

is a pre-trained image encoder with a transformation matrix Wa ∈ Rd×d′ on top of it.
Embω : W → Rd is an embedding function to convert input words into their word
embeddings. That is, Embω(ŷt−1) returns ωŷt−1 ∈ Rd, which is a transposed row
vector of ω ∈ R|W|×d at the index of a word ŷt−1. See Section 3.3.3 for the details of
the encoder and decoder.
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3.2.2 Gating Mechanism to Consider Word-Level Correspondence

As indicated in Eq. (3.1), our base encoder–decoder model learns to generate all of the
words in pseudo-captions from the images. However, pseudo-captions are highly likely
to contain words that are irrelevant to the given images. Forcing a model to generate
the pseudo-captions in their entirety from the images might be more disadvantageous
than beneficial due to the spurious alignments at the word level.

To enable our model to handle word-level mismatches, we introduce a simple gating
mechanism. Our model, which is equipped with this gating mechanism, takes an image
representation at each t-th time step. We design the gate to control the amount of image
representation used to generate the t-th word. In other words, we expect the gate to
determine the extent to which the given image corresponds to the t-th word. With a
slight modification to Eq. (3.4), we define our model with the gating mechanism as
follows:

pgθ(ŷt | ŷ<t, I) = πyt(Wprt + b), (3.8)

rt = gt
Wvv

∥Wvv∥2
+ (1− gt)ht, (3.9)

gt = sigmoid(tanh(Wkv)
⊤ht), (3.10)

where Wk,Wv ∈ Rd×d are the transformation matrices for computing the gate value
gt ∈ [0, 1] and the output of the gate rt ∈ Rd. When gt is close to one, it forces the
model to use more information from the image (v) to generate the t-th word; when gt

is close to zero, it forces the model to do the opposite.
We compute the gate value gt by the inner product of the context feature ht and the

image feature v transformed byWk. This computation encourages models to generate
words from image features only when the two features ht and v are similar, that is,
when the words predicted from each feature are similar. In pseudo-captions, the words
that can be predicted relatively easily from image features are object labels detected in
images. When contexts indicate that the next word is likely to be an object label, e.g.,
preceding articles, the words predicted from ht and v are expected to be similar. In this
case, gt is expected to be larger. Conversely, when contexts indicate that the next word
is not likely to be an object label, e.g., preceding object labels, the words predicted
from ht and v are expected not to be similar, and gt is expected to be smaller. This
design of the gating mechanism allows models to increase gt only for the words that
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correspond to images, giving room for preventing the word-level spurious alignment.
The fed image representation Wvv is kept constant at every time step t. Thus, even

when the t-th word is correctly pictured in the image I , Wvv itself cannot determine
which specific object in the image should be generated according to the current context
in the output caption. Therefore, we apply L2 normalization to the image representa-
tion in Eq. (3.9) to ensure that a relatively greater amount of the contextual information
(ht) is used.

To train our model with the gating mechanism, we minimize the following CE loss,
cf. Eq. (2.7), for each pair of images and their pseudo-captions:

Lg(θ) = −
1

T

T∑
t=1

log pgθ(ŷt | ŷ<t, I). (3.11)

Following the previous work [48, 97], the parameters ϕ of pre-trained image encoders
are fixed during training.

3.2.3 Pseudo-Labels on Gate to Remove Word-Level Spurious
Alignment

The above gating mechanism is expected to reflect the correspondence between im-
ages and words in pseudo-captions. However, learning to reflect the correspondence
correctly is difficult for the gate under the noisy and weak supervision of pseudo-
captions.

In this work, our focus is to remove the spurious alignment between images and
words in pseudo-captions. Consequently, we apply the following rule to the gate that
largely suppresses image representations to use: gt should be close to one if the t-th
word to generate is a detected object label; otherwise, it should be close to zero. This
is based on the assumption that, given an image and its pseudo-caption, the reliable
words in the pseudo-caption are only the detected object labels, and the others are
likely to be irrelevant to the image.

We assign a pseudo-label ft ∈ {0, 1} on the gate: ft = 1 if a word ŷt corresponds to
any of the object labels detected from a given image; otherwise, ft = 0. The gate then
learns the correspondence by minimizing the following loss function:

Lf (θ) = −
1

T

T∑
t=1

[
αft log gt + (1− ft) log(1− gt)

]
, (3.12)
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where α is the weight to emphasize the loss when ft = 1. A relatively large value
is recommended for α to prevent gt from always being zero because the number of
detected object labels (where ft = 1) in pseudo-captions is generally smaller than the
number of the other words (where ft = 0). See Section 3.3.3 for how to determine the
value of α.

Combined with the loss function of Eq. (3.11), the final loss function is defined as
follows:

L(θ) = Lg(θ) + Lf (θ). (3.13)

3.2.4 Unique-Object Decoding

Another problem of our gating mechanism is repetition. When gt = 1, Eq. (3.9) forces
models to predict the next word only by the image representation Wvv

∥Wvv∥2 , ignoring the
context representation ht. Thus, when the value of gt is quite high, the model always
outputs the most salient object label in the given image. This ignorance of contexts
causes the repetition of the most salient object label.

To avoid this repetition, we applied a simple decoding rule during the evaluation.
Given that the model generates a word yt at t-th time step, our decoding rule checks
whether yt is in predefined object categories, i.e., object categories defined for object
detectors. If yt is found in the object categories, the rule forces the probability of
generating yt to be zero in the subsequent time steps. See Algorithm 1 for details.

This decoding constraint is based on the strong assumption that the same object
name never appears more than once in a single caption. To test whether this assump-
tion generally holds for captions, we calculated the percentage of captions in which
the same object label appears twice or more among the ground-truth captions on the
development set of popular captioning datasets: MS COCO [109, 23], GCC [157], and
Flickr30k [202]. The results were 2.2% for MS COCO, 1.9% for GCC, and 3.9% for
Flickr30k, indicating that the percentage of the captions with the same object label
appearing multiple times is very low for all datasets. These results suggest that the
proposed decoding constraint is generally effective for caption datasets. The genera-
tion of captions in which the same object label appears multiple times is a subject for
future work.
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Algorithm 1: Unique-Object Decoding (Greedy)
Input: Captioning model parameters θ, an image I , a maximum decoding

length T , a set of object categories O, and the special token ⟨eos⟩
1 yprev ← empty list [] ▷ a list of output words
2 Oprev ← ∅ ▷ a set of output objects
3 for t = 1, . . . , T do
4 pt,· = pθ(· | yprev, I) ∈ R|W|

5 for w ∈ W do
6 if w ∈ Oprev then
7 pt,w ← 0

8 end
9 end

10 yt = argmaxw∈W pt,·

11 yprev ← yprev + [yt]

12 if yt == ⟨eos⟩ then
13 break
14 end
15 if yt ∈ O then
16 Oprev ← Oprev ∪ yt

17 end
18 end
19 return yprev
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Training Text Object Detector Image Encoder Text Decoder

[48] SS Faster-RCNN trained on OpneImages-v2 Inception-v4 1-layer LSTM of 512 dimensions
[97] GCC Faster-RCNN trained on OpneImages-v4 ResNet-101 1-layer GRU of 200 dimensions

Table 3.1: Summary of the difference in the experimental settings.

3.3 Experiments

We ran the experiments under two different settings, [48] and [97], for a fair compari-
son with each. The difference of the settings is summarized in Table 3.1.

3.3.1 Datasets

Evaluation Set. To evaluate our proposed method, we used the MS COCO dataset
[109, 23] with the validation and test split defined by [83]. Each split has 5,000 images
and five reference captions for each image.

Training Images. We used the remaining images of the MS COCO dataset for train-
ing (113,286 images). Note that the we did not use the captions of these training
images.

Object Labels. Following the previous work [48, 97], we used pre-traind object de-
tectors [72] to retrieve the object labels found in the images2. The training data of
the object detectors differs depending on the previous work: OpenImages-v2 [92] in
[48] and OpenImages-v4 [96] in [97]. Thus, we used the Faster-RCNN object de-
tector [150] trained on OpenImages-v23 to compare with [48] and that trained on
OpenImages-v44 to compare with [97]. Note that these object detectors were not

2Although these pre-trained object detectors require bounding box and semantic label annotations,
they can be replaced with any multi-label image classifiers, which can be trained on image-tag pairs
that are largely and freely available on the web. To ensure this compatibility, bounding box features
are not used in unsupervised image captioning.

3http://download.tensorflow.org/models/object detection/faster rcnn i

nception resnet v2 atrous oid 2018 01 28.tar.gz
4http://download.tensorflow.org/models/object detection/faster rcnn i

nception resnet v2 atrous oid v4 2018 12 12.tar.gz
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trained on MS COCO images. Also note that we refrained from using the detected
bounding boxes and their features for a fair comparison with the previous work.

Training Text. Following the previous work, we used the Shutterstock image de-
scription corpus (SS) [48] to compare with [48] and the training split captions of
GCC [157] to compare with [97]. SS consists of 2.3M image descriptions crawled
from Shutterstock, an online stock photography website; GCC consists of 3.3M image
descriptions crawled from the web. Note that these sentences are not the descriptions
of the images in MS COCO and we did not use the images associated with these sen-
tences.

3.3.2 Evaluation

In the evaluation, we set the maximum decoding length to 20. Our model decoded cap-
tions by using greedy search and unique-object decoding, described in Section 3.2.4.
Following the previous work, we employed the evaluation metrics as follows: BLEU
[137], ROUGE [107], METEOR [37], CIDEr [174] and SPICE [3].

3.3.3 Implementation Details

Image Encoder. For a fair comparison with the previous work, we employed dif-
ferent image encoders depending on the compared method: Inception-v4 [168] in the
settings of [48] and ResNet-101 [62, 63] in the settings of [97]. Both image encoders
were pre-trained on ImageNet [153] and are publicly available5. The parameters of the
image encoder were fixed during training and prediction.

Text Decoder. We used different recurrent neural networks (RNN) decoders for a fair
comparison: LSTM [69] in the settings of [48] and gated recurrent units (GRU) [26]
in the settings of [97]. Following the previous work, the number of hidden layers’
dimensions was set to 512 for LSTM and 200 for GRU. The number of the RNN
layer was set to one. Word embeddings were randomly initialized and had the same
dimensions as the RNN hidden layer.

5https://github.com/tensorflow/models/tree/master/research/slim;
specifically, inception v4 2016 09 09 and resnet v2 101 2017 04 14 models.
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Pseudo-Captions. Captions tend to describe salient objects, not all detected objects.
For example, the frequent object person often co-occurs with face and clothing in
images, but these three are not always the salient objects to be described in a caption.
To avoid collecting the pseudo-captions that only contain these frequent objects, we
retrieved pseudo-captions that contain single detected object or pair of them, rather
than those contain all detected objects. In this retrieval, we converted object labels to
their plural forms using a dictionary used in [48] so that the pseudo-captions could also
cover the plural forms of the objects.

For each pair of objects, we selected sentences where 1 < n ≤ 4 words existed
between the objects (n is the number of words). n > 1 is to collect neither the objects’
compound words nor the sentences omitted articles, e.g., “plant on table”; n ≤ 4 is
to pick up the sentences likely to describe the relations of the target objects. For each
object, we selected sentences wherein n ≤ 2 words were in between the object and its
dependent adjective to pick up the sentences likely to describe the object in detail. We
used spaCy6 en core web lg model for parsing.

Value of α. As described above, each pseudo-caption contains only one or two de-
tected objects, which is very few compared with the average sentence lengths of the
text corpora: 12.0 in SS and 10.7 in GCC. To balance the label imbalance of ft, we
searched the value for α of Eq. (3.12) at a power of 2 and found that α = 16, which
roughly equals the quotient of Sentence Length

Detected Objects =1 or 2 , worked well across the settings.

Training Iteration. Algorithm 2 shows the detail of training iteration. After collect-
ing the pseudo-captions, we created a set of the pairs of object labels that were used
to collect the pseudo-captions. The training is iterated over the pairs in this set, rather
than over each image, to avoid overfitting for the most frequent object labels. On each
iteration of the pairs of objects, we randomly sampled the image and pseudo-caption,
wherein both of the objects were contained. Likewise, we did the same sampling on
each object in the pairs.

The number of the object pairs was 11,607 and 10,612 in the settings of [48] and
[97], respectively. We set the batch size to eight and terminated the training when the
best validation score (specifically, the CIDEr score) did not exceed for 20 epochs. For

6https://spacy.io
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the optimizer, we used Adam with the recommended hyperparameters [89].
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Algorithm 2: Training Iteration
Input: Captioning model parameters θ, a set of object categories O, a set of

pseudo-captions Ŷ , and D′ = {(I(i),O(i)) | i = 1, . . . , N}, a set of
pairs of an image I(i) and its detected objects O(i)

/* M denotes a collection of key-value pairs */

1 Mimage ← {w : ∅}w∈O

2 Mcaption ← {w : ∅}w∈O

3 for w ∈ O do
4 for (I(i),O(i)) ∈ D′ do
5 if w ∈ O(i) then
6 Mimage[w]←Mimage[w] ∪ I(i)

7 Mcaption[w]←Mcaption[w] ∪ {ŷ(i) | w ∈ ŷ(i), ŷ(i) ∈ Ŷ}
8 end
9 end

10 end
11 C ← {(wi, wj) | (wi, wj) ∈ Combination(O, 2)}
12 for epoch = 1, . . . ,M do
13 Depoch ← ∅
14 for (wi, wj) ∈ C do
15 Depoch ← Depoch ∪ (Sample(Mimage[wi]),Sample(Mcaption[wi]))

16 Depoch ← Depoch ∪ (Sample(Mimage[wj]),Sample(Mcaption[wj]))

17 Depoch ← Depoch ∪ (Sample(Mimage[wi] ∩
Mimage[wj]),Sample(Mcaption[wi] ∩Mcaption[wj]))

18 end
19 Train θ on Depoch

20 end
21 return θ
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

[48] 41.0 22.5 11.2 5.6 12.4 28.7 28.6 8.1
Ours 49.5 ± 0.7 27.3 ± 1.2 13.1 ± 0.8 6.3 ± 0.5 14.0 ± 0.1 34.5 ± 0.3 31.9 ± 1.0 8.6 ± 0.2

[97] 6.5 12.9 35.1 22.7
Ours 50.4 ± 1.5 29.5 ± 0.8 14.4 ± 0.5 7.6 ± 0.4 13.5 ± 0.3 37.3 ± 0.2 31.8 ± 0.7 8.4 ± 0.1

Table 3.2: Comparison with the previous models. The experimental settings are dif-
ferent above [48] and below [97] the double line. See Table 3.1 for details.
The scores of our model are the mean± standard deviation of five runs. The
scores obtained for BLEU-1 to 3 and SPICE are not provided in the original
paper of [97].

3.3.4 Comparison with the Previous Models

Table 3.2 lists the results of our model compared with the previous models. We com-
puted the mean and standard deviation of five results obtained with different seeds.
Clearly, our method outperformed the previous approaches in all the evaluation met-
rics. These results confirm the effectiveness of our simple method.

3.3.5 Ablation Study

Table 3.3 lists the results of our model obtained in the ablation studies. We tested the
ablation of the gating mechanism (gate; Section 3.2.2), pseudo-labels on the gating
mechanism (pseudoL; Section 3.2.3), unique-object decoding (unique; Section 3.2.4),
and image features (image). The pseudo-labels cannot be implemented without the
base gating mechanism. Thus, the model “w/o gate w/ pseudoL” is not applicable.
The model w/o image is the same as Ours (full) except that it only uses the word
embeddings of detected object labels, rather than image features. It encodes detected
object labels into word embeddings and then takes their mean7 and replaces the image
feature v with it. All models here were trained in the same manner as described in
Section 3.3.3.

The results show that the pseudo-labels on the gating mechanism significantly con-

7The number of detected objects was 3.0 in the setting of [48] and 4.0 in the setting of [97] on average.
Thus, taking the mean does not break the detected information significantly.
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gate pseudoL unique image BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

[48] Setup
Ours (full) ✓ ✓ ✓ ✓ 49.5 27.3 13.1 6.3 14.0 34.5 31.9 8.6

w/o pseudoL ✓ ✓ ✓ 0.0 0.0 0.0 0.0 0.0 0.5 0.9 0.3
w/o gate ✓ ✓ 40.9 21.5 10.1 4.8 12.7 32.1 17.6 6.0
w/o unique ✓ ✓ ✓ 47.2 26.2 13.0 6.4 14.1 34.9 28.3 8.5
w/o image ✓ ✓ ✓ 43.3 23.3 10.8 5.1 13.1 31.7 25.5 7.8

[97] Setup
Ours (full) ✓ ✓ ✓ ✓ 50.4 29.5 14.4 7.6 13.5 37.3 31.8 8.4

w/o pseudoL ✓ ✓ ✓ 44.5 25.4 12.2 6.2 12.4 36.7 29.2 7.5
w/o gate ✓ ✓ 44.5 24.2 12.0 6.2 11.6 34.2 19.4 5.8
w/o unique ✓ ✓ ✓ 47.9 27.1 13.0 6.4 12.6 36.3 26.9 7.4
w/o image ✓ ✓ ✓ 47.1 26.0 12.8 6.6 13.1 34.7 29.7 8.0

Table 3.3: Ablation studies. The experimental settings are different above [48] and
below [97] the double line. See Table 3.1 for details. The scores of Ours
(full) are the mean of five runs; those of the other ablated models are the
results of a single run.

tribute to the performance; the scores degraded significantly from Ours (full) to w/o
pseudoL in all the metrics. In contrast, the base gating mechanism does not function
well by itself; not all scores of w/o gate were lower than those of w/o pseudoL. These
results demonstrate that explicitly removing the word-level spurious alignment con-
tributes the most to the relatively high performance of our model. Although it is a
relatively low contribution compared with the pseudo-labels, unique-object decoding
also enhanced performance.

We found that the scores of w/o pseudoL in the setting of [48] were quite low because
most of the outputs of the model were empty: the model output ⟨eos⟩ at the first time
step of decoding. Further analysis revealed that the model used image features only
and predicted high-frequency words. That is, the gate value at the first time step was
almost always g1 = 1 and top-predicted y1 were high-frequency words such as ⟨eos⟩,
“,” (comma), “in”, “a”, and “the”. This is because the text used in [48] is complex8.

8GCC used in [97] collected the text from the web and filtered by removing sentences containing
low-frequency words and converting proper nouns to superlatives. The vocabulary size of GCC
after our preprocessing was 15,412 words, and the percentage of ⟨unk⟩ (a special token representing
unknown words) in the text was about 0.3%. SS used in [48] also collected the text from the web.
However, it did not apply the filtering described above. As a result, the vocabulary size of SS was
18,670 words, and the percentage of ⟨unk⟩ in the text was 0.9%, both of them were larger than those
of GCC. Moreover, the average sentence length of GCC was 10.7 words, while that of SS was 12.0
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

[48] 41.0 22.5 11.2 5.6 12.4 28.7 28.6 8.1
Ours 49.5 ± 0.7 27.3 ± 1.2 13.1 ± 0.8 6.3 ± 0.5 14.0 ± 0.1 34.5 ± 0.3 31.9 ± 1.0 8.6 ± 0.2
Ours + [48] 50.9 ± 0.1 28.0 ± 0.1 14.0 ± 0.1 7.1 ± 0.0 14.1 ± 0.0 35.2 ± 0.1 35.7 ± 0.1 9.2 ± 0.0

Table 3.4: Results of combining our method with previous methods [48]. The scores
of our model and the combined model are the mean± standard deviation of
five runs. We marked in bold the scores within the standard deviation of the
best scores.

High complexity of text makes it difficult for the gating mechanism to automatically
identify the words corresponding to the images. Due to the difficulty of automatic
word-level alignment, the model learned a simple but incorrect alignment that maps
image features to only the high-frequency words ⟨eos⟩, which appear in every pseudo-
caption.

The degraded performance of w/o image suggests that object labels themselves are
insufficient to describe images correctly. We observed that this model was vulnerable
to errors propagated through object detectors. See Section 3.3.9 for the examples.

3.3.6 Combining with Previous Methods

Our method focuses on removing word-level spurious alignment between images and
pseudo-captions, whereas the previous methods focus on aligning images and pseudo-
captions at the sentence level. To utilize the strength of each, we combined our method
with the previous method of [48].

We first trained our model on the setting of [48] and generated captions for the im-
ages in training data. We then paired the generated captions with the training images
to make the pairs of images and pseudo-captions9. With these pairs, the caption gener-
ator of the previous work initialized its parameters by learning to generate the pseudo-
captions from the images. After the initialization, we fine-tuned the caption generator

words.
9To avoid assigning obviously incorrect pseudo-captions, we omitted the pseudo-captions that con-

tained fewer than one detected object for the images with more than two detected objects. For
the images with fewer than one detected object, we omitted the pseudo-captions that contained no
detected objects.
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using the publicly available code of the previous work10. We used the same hyperpa-
rameters as the previous work except for the learning rate: 1e-5 for the generator and
1e-8 for the discriminator.

Table 3.4 shows that the combined model further improves the performance from
our model and [48]. In particular, the improvement from [48] was much larger than
that from our model. These results suggest that removing the word-level spurious
alignment is critical for the subsequent sentence-level alignment.

3.3.7 Effects of Removing Spurious Alignment

To further investigate the effects of removing the spurious alignment, we evaluated
our model on the performance in predicting noisier words: the words other than the
detected object labels. Our method suppresses the alignment of those noisier words
with images because they are likely to be irrelevant to the given images, while previ-
ous methods force the alignment. Consequently, the largest performance gap should
occur in the prediction of those noisier words. To test the difference, we evaluated the
following set-of-words matching on the MS COCO test set.

Let S be a set of words of a caption generated from an image I and Tk be a set of
words taken from k-th reference caption of I . Given a set of detected object labels O
of I , we took the intersections Sdet = S ∩ O and Sother = S ∩ O for S . Similarly,
we took the intersections Tk,det = Tk ∩ O and Tk,other = Tk ∩ O for Tk. We define the
precision (P ), recall (R) and F1 score (F ) of S against Tk as follows:

P =
|S ∩ Tk|
|S|

, (3.14)

R =
|S ∩ Tk|
|Tk|

, (3.15)

F = 2
PR

P +R
. (3.16)

We then define the precision, recall, and F1 score of Sdet against Tk,det by replacing
S with Sdet and Tk with Tk,det, and likewise for those of Sother against Tk,other. We
calculated the above scores for each pair of a generated captions and their reference
captions, and then subsequently averaged the scores across the pairs. We excluded the

10https://github.com/fengyang0317/unsupervised captioning
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Precision Recall F1

Objects
[48] 56.6 57.4 55.4
Ours 51.0 56.7 51.6
Ours + [48] 54.0 61.8 55.4

Others
[48] 22.3 17.0 18.8
Ours 27.8 21.9 23.4
Ours + [48] 29.9 21.9 24.2

Table 3.5: Set-of-words matching scores with respect to detected object labels and the
other words.

pairs with empty Tk,det or Tk,other as the score of those pairs is always zero or none for
any model.

Table 3.5 shows the results. Overall, the scores on detected object labels (Objects)
were about two times higher than those on the other words (Others), indicating the
difficulty of learning the alignment of the noisier words. Our model performed better
in predicting the noisier words, outperforming [48] in all the metrics. These results
indicate that refraining from the alignment works better than forcing it for the noisier
words.

In contrast, our model performed worse in predicting detected object labels. This
is because our method trusts all detected object labels and aligns them with images
without any constraints used in previous work. Combined with the previous method
(Ours + [48]), our model improved the performance on Objects.

Another possible solution to the lower performance on Objects is to raise the thresh-
old applied to the object detector’s confidence. Object detectors output object labels
if their confidence is higher than the threshold. Table 3.6 shows the percentage of de-
tected object labels that were contained in ground-truth captions (Precision) and the
number of images in which one or more objects were detected (Valid Images). We
tested the object detector used in [48]. The table shows that Precision increases as
the threshold value increases. Thus, raising the threshold will prevent our model from
aligning incorrectly detected object labels with images. The threshold was set at 0.3
in both the previous work and this study11, so this solution is feasible. However, rais-

11[97] did not provide details on the threshold value, so we used the default threshold value of 0.3 in
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Threshold Precision Valid Images

0.3 24.7 4,953
0.5 29.5 4,837
0.7 35.4 4,088
0.9 47.2 1,960

Table 3.6: The percentage of detected object labels that were contained in ground-
truth captions (Precision) and the number of images in which one or more
objects were detected (Valid Images) when we varied the threshold applied
to the object detector. We used the MS COCO validation set. The maximum
number of Valid Images is 5,000.

ing the threshold reduces the number of valid images that can be used for training.
If additional images are collected on the web and added to the training, it is possible
to raise the threshold without reducing the number of images used for training. To
keep the number of images consistent with the previous studies, we did not conduct
experiments using additional images in this study.

3.3.8 Properties of Output Words

In this section, we examine the properties of the output words. By assigning the
pseudo-label ft, our method encourages models to align detected object labels with
the image representation v and the other words with the contextual representation ht.
Thus, our model is likely to predict the other words mostly based on the previous out-
put sequences, as language models do. Language models are known to predict words
that occur frequently in text data [36, 70]. If this is the case, then the other words
predicted by our model tend to be the frequent words in the training text corpus.

Based on the above hypothesis, we counted how many times an output {object label
(Objects), the other word (Others)}12 occurs in the training text corpus, SS. Table 3.7
presents the results. Although there are no significant differences in Objects, we ob-
serve substantial difference in Others. Our outputs’ vocabulary in Others is about five

the setting of [97], too.
12We analyzed each unique word across all the output captions in the MS COCO test set, so we roughly

divided the words into object labels and the others, not into detected object labels and the others.
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Word Type Frequency

Objects
[48] 205 20,013
Ours 306 15,052
Ours + [48] 239 18,226

Others
[48] 827 24,865
Ours 169 83,693
Ours + [48] 121 110,358

Table 3.7: Analysis of generated captions with respect to object labels (Object) and
the other words (Others). Word Type is the number of unique words, and
Frequency is the mean of the frequency of the words in the training text
corpus.

times smaller than that of [48], and the words are highly frequent in the training text
corpus.

The results also show that a model performs better if it has the smaller and more
frequent vocabulary of the words other than object labels (cf. Table 3.4). This correla-
tion is convincing considering the coverage of frequent words. For example, a general
caption such as “a man with a bike” can correctly describe various scenes in which a
man is {riding, sitting on, leaning on, standing near, etc.} a bike. This positive effect
of frequency suggests that firstly aligning the frequent words and gradually extending
them can be a promising approach.

3.3.9 Qualitative Analysis of Outputs

Figure 3.2 shows the captions generated by our model, its ablated models, [48], and
the combined model. All of the models were trained on the setting of [48]. Our model
generated correct captions for images (a) and (b). It successfully generated object
labels that were not even detected by the object detector: bat in (a) and mirror in (b).
In contrast, errors of the object detector directly propagated to the output captions of
w/o image model: the model generated an incorrect object a bottle of wine, owing to
the missing object bat in (a).

Captions of the other images are negative results of our model. We observe that our
model tends to repeat similar objects: cat and dog in (c), and elephant and elephants
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in (f). Without unique-object decoding, this tendency got worse: w/o unique model
repeated cat in (c) and (e), and elephant in (f). Ours + [48] model did not change much
of the prediction of our model, as we set the learning rate low (see Section 3.3.6).
However, it allowed the partial correction seen in (c): the combined model modified
dog to suitcase.

In our outputs, words other than object labels tended to be frequent words and com-
posed short phrases. On the contrary, [48] tended to generate less frequent words
(savuti and kenya in (f)) and longer phrases (portrait of a happy young in (a) and
young couple in love in (d)), which were incorrect predictions in these examples.

Figure 3.3 shows output captions of our model and the gate values for each word.
Overall, the gate values were high for object labels and low for the other words. Al-
though our model was correct on the words other than object labels in these examples,
these words were generated mostly by contextual features, thus heavily relied on con-
textual frequency. This heavy reliance on contexts resulted in generating the same
word after an object label without considering images: is sitting on followed cat in
both (c) and (e), but it is not correct in the image of (e).
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 Objects  man, footware, uniform
 Gold  a person on a field with a baseball bat
 [48]  portrait of a happy young man in uniform
 Ours  young man in a white uniform holds a baseball bat
   w/o filter  N/A
   w/o gate  cook with serious face in burgundy uniform holds vegetables in wicker basket

   w/o unique  young man in a white uniform and hat with a backpack and a backpack 
 on the background of a mountain

   w/o image  young man in a white uniform is holding a bottle of wine
  + [48]  young man in a white uniform holds a baseball bat

(b)

(c)

(a)

 Objects  bathtub, curtain, sink
 Gold  a bath tub sitting next to a sink in a bathroom
 [48]  interior of a modern bathroom with bathtub and toilet
 Ours  white bathtub with white sink and a mirror
   w/o filter  N/A
   w/o gate  white bathtub with tile trim and black trim
   w/o unique  a white bathtub with a white bathtub
   w/o image  bathroom interior with white bathtub and shower
  + [48]  a white bathtub with a sink and a mirror

 Objects  person, man, clothing, furniture
 Gold  a man standing on top of a wooden skateboard ramp
 [48]  young couple in love sitting on a bench in the park
 Ours  young man in a white bench with a skateboard
   w/o filter  N/A
   w/o gate  a young man in a black jacket and a black helmet is sitting on a bench in a park
   w/o unique  a young man in a white shirt and a hat with a bench in the park
   w/o image  young man in a white shirt and black tie standing with a confident smile and smiling
  + [48]  young man in a jeans jacket and a skateboard in the park

 Objects  elephant
 Gold  two elephants at a zoo with their trunks touching
 [48]  elephant walking through the river in the savuti , kenya
 Ours  a elephant in a elephants
   w/o filter  N/A
   w/o gate  a young african elephant in a safari park
   w/o unique  a young elephant in a elephant in the zoo
   w/o image  a lone elephant in the nature habitat , europe
  + [48]  a elephant in a elephants

 Objects  cat
 Gold  a cat sitting inside a small, packed suitcase
 [48]  a cat in a hat and a cat
 Ours  a cat is sitting on a white dog
   w/o filter  N/A
   w/o gate  a cat in a white helmet and a blue jacket is sitting on a wooden floor
   w/o unique  a cat is sitting on a cat
   w/o image  a cute cat is sleeping on a wooden floor
  + [48]  a cat is sitting on a suitcase

 Objects  cat
 Gold  a cat standing on a toilet with an open lid
 [48]  the cat sits on the toilet
 Ours  a cat is sitting on a toilet
   w/o filter  N/A
   w/o gate  a cat is sitting on a wooden bench in the park
   w/o unique  a cat is sitting on a cat
   w/o image  a cute cat is sleeping on a wooden floor
  + [48]  a cat is sitting on a toilet in the bathroom

(d)

(f)

(e)

Figure 3.2: Sample captions of six input images taken from the MS COCO val-
idation set. Our model generated correct captions for the images
in the blue background and wrong captions for the images in the

red background .
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(b)

(c)

(a)

(d)

(f)

(e)

Figure 3.3: Sample captions with gate values. The plot represents the values of gt

for each predicted word. The value of gt becomes high when the word is
predicted using mainly image representation. Our model generated correct
captions for the images in the blue background and wrong captions for

the images in the red background .
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3.4 Related Work

There has been considerable research with different settings and approaches to de-
scribe scenes that have no image–sentence pairs. Novel object captioning [66, 175, 1]
attempted describing unseen objects in captions. They incorporated an image classifier
or object detector trained on objects not included in image–sentence pairs. Other vari-
ants of novel object captioning use object labels extracted from reference captions [4]
or a small number of image–text pairs containing unseen object labels [122]. [116]
tested captioning models on the generation of unseen combinations of objects, and
[136] extended this to the unseen combinations of objects, attributes, and relations. In
both settings, only the combinations were unseen, but each word in the combinations
appeared in the training data. Semi-supervised approaches utilized caption retrieval
models to automatically collect the corresponding captions for unannotated images to
augment image–sentence pairs [112, 87].

The above work was evaluated on the scenes where correct descriptions partially
overlapped with those in the training image–sentence pairs. However, there can be
scenes with no such overlap due to the limited coverage of the currently available
image–sentence pairs. Taking a step further, unsupervised image captioning [48] aims
to describe scenes that have no overlap with the image–sentence pairs, without the
annotation of the pairs. To test in that situation, the task does not allow to use any
image–sentence pairs. The only available resources are images and sentences drawn
from different sources and object labels detected from the images.

[48] first trained an encoder–decoder model that takes object labels in a sentence
as its input and outputs the original sentence. After training, this model took the ob-
ject labels detected from each image and outputted a sentence to pair with the image
as its pseudo-caption. These pairs were then used to initialize a caption generator
for the subsequent image–sentence alignment: bi-directional (image-to-sentence and
sentence-to-image) feature reconstruction and GAN training [53] to ensure fluency in
generated captions. In the work of [97], pseudo-captions were sentences that contained
object labels detected from a given image. They employed metric learning and GAN
training to minimize the difference between images and pseudo-captions in their latent
space, as well as to maximize the difference between images and sentences wherein
no detected object label was included. [15] introduced an additional attention net-
work into the model of [48]. They pre-trained the attention network on extra image
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resources annotated with objects and relations of the objects so that it could consider
the interactions between the objects.

Our approach is different from them in that it focuses on removing the mismatched
words of pseudo-captions to take reliable supervision only, rather than forcing the use
of the entire pseudo-captions for image–sentence alignment. Although the previous
work additionally ensured to align detected object labels to images, they did not pre-
vent the spurious alignment between images and words.

[58] is a contemporaneous work that proposed a memory network to generate natural
sentences from detected object labels. They focused on filling the gap between a set
of discrete words and natural sentences. Our work and theirs are the same in that
the focus is not on image–sentence alignment at the sentence level; the difference is
that we focus on investigating the effect of removing word-level spurious alignment.
We designed our method simply and explicitly for the objective and provided in-depth
analyses on the effect.

As an eased setting of unsupervised image captioning, unpaired image captioning
has also been explored [48, 97, 56, 110]. The major difference from unsupervised
image captioning is that images and sentences are drawn from image–sentence pairs,
rather than from different sources. That is, every image has completely matched cap-
tions in pseudo-captions, which is not the case in unsupervised image captioning. As
correct captions exist for each image, previous approaches focused on matching im-
ages and sentences at the sentence level. Contrary to these approaches, we focus on
employing unsupervised image captioning and devising a method to remove word-
level spurious alignment in the much noisier pseudo-captions.

Another variation of unpaired image captioning is the generation of captions in one
language that has no image–sentence pairs, using paired images and captions in another
language [55, 165]. However, this line of research is beyond the scope of our work, as
it requires image–sentence pairs to be at least in one language.

Our gating mechanism borrowed the idea of adaptive attention [115, 116]. Adap-
tive attention serves to control when generating words from image representations.
Although these methods assume that the control is automatically learned from image–
sentence pairs, this is not the case in an unsupervised setting. Our method is different
from theirs in that we add heuristic pseudo-labels to train the gate when using image
representations.
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3.5 Limitations

Our experiments are limited in domains. The domain of images is limited to images of
common objects; the text domain is restricted to crawled captions of images. Experi-
mentation with images from other domains and text from the general domain will be
the subject of future work. Although the language is also limited to English, a subse-
quent study has shown that our methods work robustly in Chinese and French [128].

Our method improves caption correctness at the expense of a diversity of words
other than object labels (Section 3.3.8). While this is an effective method in the current
situation where scores are low, enrichment in the vocabulary is needed to increase
scores further. As discussed in Section 3.3.8, an effective approach will be progressing
gradually from high-frequency word alignment to low-frequency word alignment.

Although related to object labels, it is difficult for unsupervised image captioning
to describe higher-level objects composed of multiple object labels: e.g., people (a
number of persons) and party (persons, drink, food, etc.). Given the component ob-
jects are described correctly, paraphrasing output captions with pre-trained text para-
phrasing models will be one future approach to address this problem without using
image–sentence pairs.

We have shown that sentence-level alignment on top of careful word-level alignment
will be a promising direction to improve the performance, including words other than
object labels (Sections 3.3.6 and 3.3.7). However, the upper bound of the performance
on words other than objects is not clear yet. Examining the performance of unsuper-
vised image captioning methods using ground-truth object labels is an important future
work to assess the limitations of this task.

3.6 Conclusion

We investigated the importance of removing word-level spurious alignment between
images and pseudo-captions in the task of unsupervised image captioning. For this
purpose, we introduced a simple gating mechanism trained to align image features with
only the most reliable words in pseudo-captions. The experimental results showed that
our proposed method outperformed the previous methods without the sentence-level
learning objectives used in the previous methods. Moreover, our method improved the
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performance further by combining with the previous methods. These results confirm
the importance of careful alignment in word-level details.
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Chapter 4

Discriminative Image Captioning by
Relieving a Bottleneck of RL to
Broaden the Description Coverage

4.1 Introduction

Image captioning plays a fundamental role at the intersection of computer vision and
natural language processing by converting the information in images into natural lan-
guage descriptions. Generated captions can be used in various downstream tasks: aid-
ing visually impaired users [60], visual question answering on images and videos [49,
88, 71, 195, 17], visual dialogue [192], news generation [206], and so on.

For those downstream tasks, captions should be discriminative: captions should
describe the characteristic and important details of the input images [154]. However,
current captioning models tend to generate overly generic captions [34, 33, 187, 190].
In particular, models trained with the standard RL [151], which is the de facto standard
training method in current image captioning [166], unexpectedly perform poorly in dis-
criminativeness despite the significant advantages in various other criteria [111, 182].
For example, a high-performing Transformer [172] captioning model trained with RL
generates exactly the same caption for the four different images shown in Figure 4.1,
ignoring the other salient details of each image.

To address the problem of overly generic captions, studies have been intensely con-
ducted on discriminative image captioning, which is also called distinctive image
captioning or descriptive image captioning. Previous research has created new RL
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Transformer RL:  
a group of boats
sitting in the water 
 
+wFT: a body of
water with boats on
it

Transformer RL:  
a group of boats
sitting in the water 
 
+wFT: a black and
white photo of boats
docked at a pier

Transformer RL:  
a group of boats
sitting in the water 
 
+wFT: many small
boats tied together
at night

Transformer RL:  
a group of boats
sitting in the water 
 
+wFT: a row of
small boats tied to a
dock

Figure 4.1: Caption examples in the MS COCO validation set. Transformer RL is a
Transformer captioning model trained with RL and wFT is our fine-tuning
method. Transformer RL generates exactly the same caption for the four
images. The underlined words indicate the characteristic information that
are not mentioned by Transformer RL, and the blue words are those that
have never appeared in the outputs of the model. See Appendix B.1 for
more examples.

rewards regarding discriminativeness or new model architectures to enhance discrimi-
nativeness. These approaches improved the discriminativeness; however, their models
come with additional computations, require retraining from scratch, and do not shed
light on the cause of existing models’ low discriminativeness.

Instead of creating or paying those computational costs, we first analyze the cause
of the unexpectedly low discriminativeness of off-the-shelf RL models, i.e., pre-trained,
existing RL models, to explore ways to improve their discriminativeness. Our first
contribution is the identification of a deeply rooted side effect in RL that limits out-
put words to high-frequency words. The limited vocabulary is a severe bottleneck for
discriminativeness as it is difficult for a model to describe the details beyond its vocab-
ulary.

Given this identification of the bottleneck, now we can directly address the bottle-

42



neck by simply encouraging the generation of low-frequency words. This task relax-
ation allows us to introduce long-tail classification and debiasing methods to discrimi-
native image captioning for the first time. Our second contribution is our effective and
efficient methods that switch any off-the-shelf RL models to discriminativeness-aware
models with only a single-epoch fine-tuning on the part of the parameters. Unlike pre-
vious approaches, our methods do not require any discriminativeness rewards, new
model architectures, or retraining from scratch.

Extensive experiments demonstrate that increasing low-frequency words in outputs
significantly boosts discriminativeness from off-the-shelf RL models and even out-
performs previous discriminativeness-aware models with much smaller computational
costs. These results verify that the limited vocabulary of RL models has been the ma-
jor cause of their low discriminativeness. Detailed analysis and human evaluation also
show that our methods enhance the discriminativeness without sacrificing the overall
quality. We believe that our novel findings on the cause of low discriminativeness and
the practical solutions to it will significantly impact future research on discriminative
image captioning.

4.2 Discriminativeness and a Bottleneck of RL

Currently, RL is the de facto standard training method for models used in image cap-
tioning because it significantly improves the performance in various evaluation met-
rics [166]. However, it does not improve discriminativeness and may even decrease
it [111, 182]. In this section, we examine the cause of the unexpectedly low discrimi-
nativeness.

4.2.1 RL in Image Captioning

In this section, we briefly review RL described in Section 2.2.2. The goal of RL is
to directly optimize non-differentiable test-time metrics by minimizing the negative
expected reward:

LRL(θ) = −Eỹ∼pθ(ỹ|I)[r(ỹ)],

where ỹ = (ỹ1, ..., ỹT ) is a sequence sampled from a policy pθ, I is an input image,
and r is a reward function. To compute the gradients of L(θ), [146] applied the RE-
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INFORCE algorithm [193] to text generation. In practice, the algorithm approximates
the gradients for updating parameters by S samples per image as follows.

∇θLRL(θ) ≈ −
1

S

S∑
s=1

(r(ỹs)− b)∇θ log pθ(ỹs | I).

Here, b is a baseline reward that reduces the variance in the gradients. Typically, the
reward function r is CIDEr [174], and the baseline reward b is a reward for a sequence
sampled with greedy decoding [151].

4.2.2 RL Limits Vocabulary

Despite its effectiveness, RL has been found not to improve discriminativeness and
somehow decrease the number of unique n-grams in output captions [111, 182]. As
the relation between RL and these two negative effects is not obvious, it has been just
considered a curious case.

We elucidate for the first time the relation between RL and limited vocabulary by
combining two recent findings.

• RL has been shown to make the output distribution peaky [27, 85]. RL samples
sequences from policy pθ as described in Section 4.2.1. Typically, pθ is initial-
ized with a text-generation model pre-trained with the CE loss on ground-truth
text. In text generation, however, the initialized pθ outputs peaky distributions.
Consequently, RL samples and rewards the words at the peak only, shaping more
peaky distributions [27]. Then, where does pθ tend to be peaky?

• Text-generation models have been theoretically and empirically shown to output
distributions peaky at high-frequency words in the training corpus [134, 148, 36,
70]. That is, the initialized pθ is peaky at high-frequency words.

These two findings conclude that RL shifts the probability mass from low-frequency
words to high-frequency words by only sampling and rewarding the latter.

Figure 4.2 confirms the above by plotting the relative frequency of the words sam-
pled for the training images. The words are sorted by their frequency in ground-truth
captions and divided into 200 bins. Compared to the ground-truth captions and the
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Figure 4.2: Relative frequency of the words in the sequences sampled for the images in
MS COCO training set. Five sequences were sampled for each image. The
words (9,486 unique words excluding an out-of-vocabulary token ⟨unk⟩)
are sorted by their frequency in ground-truth captions and divided into 200
bins. We show the first 10 bins and the sum of the rest. GT is the ground-
truth caption of the training images, CE is the output of a captioning model
trained with the CE loss, and RL is the output of a captioning model trained
with RL. Here, we used the Transformer model.

sequences sampled with a CE model, the sequences sampled with an RL model are
clearly limited to the high-frequency words, forming a peaky distribution1.

4.2.3 Vocabulary Limits Discriminativeness

Neural captioning models typically generate captions using sequential vocabulary-size
classification [181]. However, the actual vocabulary a model can generate is much
smaller than the entire vocabulary as the output distribution is highly skewed towards

1Although Figure 4.2 shows only the results obtained with the Transformer captioning model, we also
confirmed that other models output peaky distributions [151, 5]. See Appendix B.2 for the details.
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high-frequency words. If the actual vocabulary cannot cover the details of an image,
the model is forced to avoid those details and output only the information that high-
frequency words can describe. For example, the blue words in Figure 4.1 are not in
the actual vocabulary of the RL model; these words have never been generated during
evaluation. As a result, the RL model had to ignore the characteristic relations tied and
docked and ended up describing exactly the same for all four images.

Based on the observations, now we can hypothesize that the unexpectedly low dis-
criminativeness of RL models has been rooted in the limited vocabulary. This iden-
tification of the bottleneck is a key contribution as it allows us to address the low
discriminativeness directly at the root.

4.3 Methods to Relieve the Bottleneck

We have shown that RL results in the limited vocabulary as it steals the probabil-
ity mass from low-frequency words. Thus, increasing those low-frequency words is
the easy yet critical solution to the bottleneck. One way to achieve this is to jointly
optimize both the RL loss and the CE loss on ground-truth captions so that the low-
frequency words in ground-truth captions would be more likely to be sampled during
RL training [187]. However, this approach still relies on the sampling from a skewed
policy and requires retraining from scratch.

To increase the actual vocabulary more effectively and efficiently, we refine the map-
ping from encoded features to low-frequency words. This refinement can be applied to
any RL models and can be achieved by modifying only the mapping function parame-
ters with a single-epoch fine-tuning.2

4.3.1 Simple Fine-Tuning (sFT)

The first method is a simple fine-tuning (sFT). It is based on a decoupled two-stage
training [81], which is a current strong baseline model for long-tail classification [169,
129, 189]. [81] decoupled the learning procedure into representation learning and clas-
sification, and then found that classification, i.e., the mapping from representations to
label distributions, is critical for long-tail classification. They decoupled the classifi-

2The code is available at https://github.com/ukyh/switch disc caption
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cation model fθ : X → Rc into an encoder gψ : X → Rd and a classifier consisting
of weight and bias parameters, W ∈ Rd×c and b ∈ Rc. Given an input x ∈ X ,
fθ(x) = W⊤gψ(x) + b. Here, c is the number of classes and d is the dimension of
encoder outputs.

Representation learning is the first stage of training, where they trained the entire
classification model fθ on a full training dataset. The second stage is classification,
where they fixed the encoder parametersψ and adjusted only the classifier parameters.
For the second-stage adjustment, they applied class-balanced sampling to encourage
learning on low-frequency labels.

Following [81], we decouple a captioning model into an encoder and a classifier. In
image captioning, the first-stage training of [81] corresponds to RL training on the full
training dataset. The second-stage training corresponds to adjusting the classifier pa-
rameters on the vocabulary-balanced sequences. However, sampling from the skewed
policy of text-generation models cannot provide sequences containing low-frequency
words (Section 4.2.2). Thus, we use ground-truth captions as relatively vocabulary-
balanced samples. sFT simply fine-tunes the classifier parameters of a pre-trained RL
captioning model by minimizing the CE loss on ground-truth captions. The loss for
each pair of images and ground-truth captions is as follows:

LCE(θ̂) = −
1

T

T∑
t=1

log pθ̂(yt | y<t, I), (4.1)

where y = (y1, ..., yT ) is a ground-truth caption of image I and θ̂ denotes the model
parameters θ that are initialized with RL training. During this fine-tuning, only the
classifier parameters {W , b} ∈ θ̂ are updated with the gradients ∇WLCE(θ̂) and
∇bLCE(θ̂), respectively.

Let the softmax function π : R|W| → R be

πwi,β(z) =
exp(βzwi

)∑
wj∈W exp(βzwj

)
, (4.2)

where zwi
indicates the element of a vector z ∈ R|W| at the index of a word wi ∈ W .W

is the entire vocabulary. β is an inverse-temperature hyperparameter that controls the
steepness of the softmax distribution. Then, the conditional probability pθ(yt | y<t, I)
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is computed as follows:

pθ(yt | y<t, I) = πyt,β(s
t
θ(y<t, I)), (4.3)

stθ(y<t, I) =W
⊤gψ(y<t, I) + b, (4.4)

where W ∈ Rd×|W| and b ∈ R|W|. Again, d is the output dimension of the encoder
gψ. We use LSTM [69] or Transformer [172] for gψ.

4.3.2 Weighted Fine-Tuning (wFT)

Ground-truth captions contain more low-frequency words than sampled sequences, but
some low-frequency words are still difficult to learn because of their low frequency.
Our second method is weighted fine-tuning (wFT), which further pursues vocabulary
balance by rebalancing the loss of high-frequency words and low-frequency words in
ground-truth captions.

To rebalance the loss, we exploit the frequency bias of RL models: RL models
overly assign the probability to high-frequency words but not to low-frequency words.
Given the properties of the frequency bias, fine-tuning for discriminativeness should
focus more on the words that an RL model is not confident of but should be avoided
on the words that an RL model is confident of. wFT incorporates these heuristics by
modifying the probability pθ of LCE to the bias product (BP) [29, 61, 68] probability,
pθ,θ′ :

pθ,θ′(yt | y<t, I) = πyt,1

[
log

pθ(· | y<t, I)

π·,β(s
t
θ(y<t, I)) + log

pθ′(· | y<t, I)

π·,β′(stθ′(y<t, I))
]
, (4.5)

where π·,β(z) ∈ R|W|. By inserting pθ,θ′ into LCE, we define the objective function of
wFT as follows:

LBP(θ̂) = −
1

T

T∑
t=1

log pθ̂,θ̂′(yt | y<t, I). (4.6)

Similar to sFT, the parameters θ and θ′ are initialized with the same RL model to be
θ̂ and θ̂′. The difference is that, although the classifier parameters of θ̂ are updated ,

all the parameters of θ̂′ are fixed during fine-tuning3. Figure 4.3 shows the change in
the BP loss compared to the CE loss. The BP severely suppresses the loss when the

3[22] also utilized fixed pre-trained models to reweight their loss for stylized image captioning. How-
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Figure 4.3: Visualization of the CE loss − log pθ(wi) and BP loss − log pθ,θ′(wi). To
compute the BP loss, we need the entire distribution of {pθ(wi)}wi∈W and
{pθ′(wi)}wi∈W . Here, we set the index i to 1 and assigned 1

5
(1 − pθ(w1))

to the words of the next five indices, w2, ..., w6. This is because we ob-
served that the five most probable words occupied 99% of the probability
in the output distribution of the RL models. We assumed that the five most
probable words were the same between pθ and pθ′ as the parameters were
initialized with the same RL model. Thus, we assigned 1

5
(1 − pθ′(w1)) to

the words of the next five indices, w2, ..., w6, likewise pθ. Here, β and β′

were set to 1.

frequency-biased policy pθ′ is confident, and largely increases the loss when pθ′ is not
confident. In this way, the BP allows models to unlearn the frequency bias learned
with RL. As with sFT, only the classifier parameters {W , b} ∈ θ̂ are updated with the
gradients ∇WLBP(θ̂) and ∇bLBP(θ̂), respectively.

The previous BP methods used the probability pθ during evaluation to avoid incor-

ever, their method is designed to train new models from scratch and is not applicable to refining
pre-trained models; their loss function (Eq. (6) in [22]) is stuck at zero when we initialize the param-
eters with the same pre-trained model. This requirement for retraining from scratch is a fundamental
deviation from our goal of improving the discriminativeness of off-the-shelf RL models.
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porating the bias of pθ′ into the predictions [29, 61]. Although it worked well in their
classification tasks, we found this train–test gap makes the decoding unstable in text
generation. To mitigate the train–test gap, we use two variants of decoding: (1) de-
code with pθ but use a small β′ for pθ′ during training to ease the gap between pθ and
pθ,θ′ , or (2) use pθ,θ′ during both training and decoding (BP decoding) as pθ,θ′ itself is
already less biased than pθ′ .

4.4 Experiments

4.4.1 Setup

Dataset and Metrics. We used the MS COCO captioning dataset4 [109, 23] with
Karpathy splitting [83]. After preprocessing, the entire vocabulary size |W|was 9,4875.
In the evaluation, the captions were decoded using a beam search of size 5 and evalu-
ated using various evaluation metrics. Specifically, we used CIDEr [174] SPICE [3],
BERTS++ [201], TIGEr [76], CLIPS, and RefCLIPS [67]. Note that the correlation
with human judgments increases in the above order, with RefCLIPS indicating the
state-of-the-art correlation [67, 84]. Following the previous studies [111, 182, 161],
we evaluated discriminativeness with R@K scores: the percentage of captions with
which a pre-trained image–text retrieval model [45] could correctly retrieve the orig-
inal images from the entire validation/test images within the rank of K ∈ {1, 5, 10}.
A higher R@K indicates that the model generates more discriminative captions with
characteristic information of images. Evaluation was conducted in a single run for each
model. See Appendix B.3 for the libraries and settings we used for these evaluations.

Comparison Models. Following [182], we used Att2in [151], UpDown [5], and
Transformer [172] as the baseline models. The models were pre-trained with the
standard RL [151] and are publicly available6. In addition to the baseline models,
we compared our models with discriminativeness-aware models, which were state-

4Each split of training/validation/test contained 113,287/5,000/5,000 images, and each image had
around five ground-truth captions.

5The words that occur less than five times in the training captions were converted to ⟨unk⟩ token.
6https://github.com/ruotianluo/self-critical.pytorch: {Att2in,
UpDown, Transformer}+self critical
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of-the-art at the time of the submission of the work on which this chapter is based:
CIDErBtw [182], NLI [161], DiscCap [117], and Visual Paraphrase [111]. The first
three created new discriminativeness rewards to be optimized with RL. Visual Para-
phrase introduced a new model architecture to paraphrase simpler captions to more
complex captions. See Section 4.5 for more details of these models. As we mentioned
in the beginning of Section 4.3, the CE loss on ground-truth captions can be utilized in a
different way from our methods. We report the results of jointly optimizing the RL loss
and CE loss (Joint CE [187, 42]). It optimizes LJoint(θ) = λLRL(θ)+(1−λ)LCE(θ)

during RL training. We also tested Only CE, which sets λ = 0 to solely optimize the
CE loss, as the baseline without RL. See Appendices B.10 and B.11 for the compar-
isons with more recent models [203, 105, 25].

Hyperparameters. Our models used the same hyperparameters as the baseline mod-
els, except for the epoch size, learning rate, and β′ in Eq. (4.5). We set the epoch size
for fine-tuning to 1 and searched for the best learning rate from {1e-3, 1e-4, 1e-5, 1e-
6}. For BP in Eq. (4.5), we set β = 1 and searched for the best β′ from {0.1, 1}.
As with our models, we set all hyperparameters of the CE-based models to the same
as the baseline models except for the λ ∈ {0, 0.2, 0.5, 0.8}. We disabled scheduled
sampling [13] for our fine-tuning and the CE loss to separate them from the RL loss
strictly. We took the best hyperparameters according to the R@1 scores in the val-
idation set. Note that we used different hyperparameters for the wFT with different
decoding methods (See Section 4.3.2). Appendix B.4 shows the best hyperparameters.
We followed the previous work for the hyperparameters of the other models.

All the models except Visual Paraphrase had the same size of trainable parameters
as their baselines. See Appendix B.5 for the exact number of parameters. Our fine-
tuning was completed in around 10 minutes using a single GPU of 16 GB memory.
See Appendix B.6 for the exact time for training and comparison with other methods.
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Vocabulary Standard Evaluation Discriminativeness

Unique-1 Unique-S Length CIDEr SPICE BERTS++ TIGEr CLIPS RefCLIPS R@1 R@5 R@10

A
t
t
2
i
n

Att2in RL 445 2,524 9.3 117.4 20.5 43.6 73.9 73.0 79.7 16.3 41.9 57.2
+ sFT 880 3,156 9.0 115.4 20.4 43.9 74.3 73.7 80.3 20.1 48.0 62.8
+ wFT 1,197 3,732 8.9 104.3 19.5 43.1 74.2 73.9 80.2 20.6 49.7 64.5
+ wFT (BP decoding) 1,102 3,615 9.4 109.3 20.1 43.7 74.4 74.0 80.2 21.1 50.5 64.8

CIDErBtw 470 2,630 9.3 119.0 20.7 43.8 74.1 73.1 79.8 17.2 44.1 58.7
NLI 465 2,626 9.2 118.9 20.6 43.8 74.1 73.2 79.9 17.6 44.4 59.8
DiscCap† 3,093 9.3 114.2 21.0 21.6 50.3 65.4
Joint CE 700 2,907 9.1 111.7 19.9 43.5 74.0 73.3 80.0 19.1 46.7 61.5
Only CE 689 2,845 9.2 110.7 20.1 43.5 74.0 73.3 79.9 19.0 46.6 61.1
Visual Paraphrase† 4,576 12.9 86.9 21.1 26.3 57.2 70.8

U
p
D
o
w
n

UpDown RL 577 3,103 9.5 122.7 21.5 44.2 74.6 74.0 80.5 21.1 49.9 64.6
+ sFT 1,190 3,788 9.2 115.9 21.0 44.2 74.9 74.8 80.9 25.0 56.8 71.2
+ wFT 1,479 4,268 9.1 101.8 19.5 43.1 74.6 74.9 80.7 26.0 57.6 72.2
+ wFT (BP decoding) 1,275 4,177 9.6 110.0 20.6 44.1 74.9 75.0 80.8 26.7 58.7 72.4

CIDErBtw 582 3,108 9.4 123.0 21.5 44.4 74.6 74.2 80.7 21.9 50.9 65.9
NLI 575 3,144 9.4 122.4 21.4 44.4 74.6 74.1 80.6 21.5 50.7 65.6
Joint CE 857 3,120 9.4 111.8 20.5 43.7 74.3 73.8 80.2 21.8 51.2 65.2
Only CE 878 3,126 9.4 109.2 20.1 43.4 74.2 73.6 80.0 21.8 49.9 64.5

T
r
a
n
s
f
o
r
m
e
r

Transformer RL 753 3,433 9.2 127.7 22.5 45.1 75.0 75.0 81.3 26.6 56.2 70.5
+ sFT 1,458 3,959 9.1 118.7 21.7 44.8 75.2 75.6 81.5 30.6 62.3 75.7
+ wFT 1,776 4,274 9.1 103.1 20.0 43.3 74.8 75.8 81.2 32.5 64.5 77.1
+ wFT (BP decoding) 1,964 4,373 9.4 107.3 21.1 44.2 75.2 76.1 81.5 33.5 65.9 78.2

CIDErBtw 837 3,609 9.5 128.2 22.6 45.1 75.2 75.0 81.2 27.7 57.6 71.6
NLI 876 3,744 9.5 129.1 23.0 45.4 75.3 75.5 81.5 29.8 59.9 73.4
Joint CE 1,083 3,491 9.3 123.8 21.9 45.0 74.8 75.0 81.2 27.3 57.2 70.8
Only CE 935 3,599 9.4 112.2 20.8 44.0 74.5 74.8 80.9 26.5 55.8 69.7

Table 4.1: Comparison of baseline models, our models , and discriminativeness-
aware models. Automatic evaluation results on the MS COCO test set.
Unique-1 and Unique-S indicate the number of unique unigrams and sen-
tences, respectively. Length is the average length of the output captions.
Scores with † were reported in [111]. Other scores were reproduced by us.

4.4.2 Comparison with Baseline Models and
Discriminativeness-Aware Models

Table 4.1 shows the results compared to those obtained with the baseline models and
discriminativeness-aware models.

Vocabulary. First, we observe that our methods (sFT and wFT) successfully increase
the actual vocabulary size: both of them considerably increased Unique-1 compared to
all the baseline models. wFT increased the vocabulary more than sFT, indicating that
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rebalancing the loss further encouraged low-frequency word generation. The increased
vocabulary resulted in more specific captions to each image: Unique-S also increased
significantly. Consistent with previous studies [187, 111, 182], the models trained with
the CE loss (Joint CE and Only CE) achieved the larger vocabulary than the baseline
RL models. However, the improvement of our methods was even larger than these CE-
based models. Despite the significant increase in the vocabulary size, our method kept
the captions concise: the average sentence length was close to those of the baseline
models.

Discriminativeness. Our goal is to enhance the discriminativeness of RL models by
addressing their limited vocabulary. As expected, our methods successfully improved
the discriminativeness: the R@K scores of our models were considerably higher than
those of the baselines. Corresponding to the better improvement in vocabulary size,
wFT increased discriminativeness more than sFT. These results confirm our hypothesis
that the limited vocabulary of RL models has been a major bottleneck for discrimina-
tiveness.

Among the Att2in-based models, Visual Paraphrase achieved the highest discrim-
inativeness. However, this model is not directly comparable to the others because it
increases the trainable parameters for its specialized model architecture. Moreover, its
improvement in discriminativeness was achieved at the expense of conciseness, which
is another desirable property for discriminative image captions [154]: its sentence
length was substantially longer than the other models. DiscCap performed compara-
bly with our models, but its reward requires high computational costs. CIDErBtw and
NLI proposed more lightweight rewards to be applicable to larger models, but they still
need retraining from scratch. Among the larger models (UpDown and Transformer),
our models achieved the highest discriminativeness despite the small computational
cost.

Standard Evaluation. As our methods increase low-frequency words in outputs,
the outputs are likely to include the words that are out-of-references (OOR). That is,
low-frequency words may not be covered by reference captions regardless of their cor-
rectness due to the low frequency. These low-frequency OOR words unfairly decrease
scores in conventional evaluation metrics because those metrics count exact matches
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in the surface form of text7.
To fairly evaluate the OOR words, recent metric research has focused on soft match-

ing metrics [77, 67]. Soft-matching metrics can evaluate the semantic similarity be-
tween target captions and reference captions beyond the surface form of text by utiliz-
ing pre-trained language models (PLMs) [201, 204] or pre-trained cross-modal models
(PCMs) [76, 100, 67]. Their correlation with human judgments is significantly higher
than that of exact-matching metrics in both precision and recall [84]. In particular,
PCM-based metrics, which can utilize image features in addition to reference cap-
tions, have substantially enhanced the evaluation performance and have achieved the
state-of-the-art correlation with human judgments [67, 84].

Given the above advantages, we employed soft-matching metrics in addition to con-
ventional exact-matching metrics. Not surprisingly, our models decreased the scores in
the exact-matching metrics (CIDEr and SPICE). However, our models scored compa-
rably with the baselines in the PLM-based metric (BERTS++) and rather outperformed
them in the state-of-the-art PCM-based metrics (TIGEr, CLIPS, and RefCLIPS). The
higher performance in the superior soft-matching metrics indicates that our methods
do not degrade the overall quality of captions. To further validate the overall quality of
our output captions, the following Section 4.4.3 analyzes the cause of this performance
gap in more detail.

4.4.3 Analysis of the Performance Gap

Properties of OOR Words. The critical difference between the conventional exact-
matching metrics and the recent soft-matching metrics is the (in)ability to evaluate
OOR words8. Based on the difference, we hypothesize that the performance gap is
caused by a difference in the properties of OOR words. We analyzed the OOR words
of our models, comparing with those of RL baselines and Only CE, which scores
similarly to our models in exact-matching metrics but decreases soft-matching scores

7Some metrics use stemming, lemmatization, and/or WordNet synsets to evaluate synonyms but their
coverage is limited.

8Note that this difference does not mean that exact-matching metrics represent precision, and soft-
matching metrics represent recall. Exact-matching metrics cannot represent precision because the
reference captions do not cover all correct descriptions. That is, exact-matching metrics can only
represent the flawed precision with false negatives. Actually, exact-matching metrics correlate with
human judgments worse than soft-matching metrics not only in recall but also in precision [84].
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Text-Based Text-and-Image-Based

Repetition OOR Exact-Matching Soft-Matching

Rep (%) ↓ Number ↓ Rank ↑ CIDEr SPICE BERTS++ TIGEr CLIPS RefCLIPS

Att2in RL 4.1 8,665 79.4 117.4 20.5 43.6 73.9 73.0 79.7
+ sFT 3.8 8,813 164.0 115.4 20.4 43.9 74.3 73.7 80.3
+ wFT 3.2 10.454 237.9 104.3 19.5 43.1 74.2 73.9 80.2
+ wFT (BP decoding) 3.6 10,386 204.7 109.3 20.1 43.7 74.4 74.0 80.2

Only CE 3.9 9,913 133.1 110.7 20.1 43.5 74.0 73.3 79.9

UpDown RL 3.9 8,463 100.1 122.7 21.5 44.2 74.6 74.0 80.5
+ sFT 3.6 9,252 225.8 115.9 21.0 44.2 74.9 74.8 80.9
+ wFT 3.0 11,478 301.0 101.8 19.5 43.1 74.6 74.9 80.7
+ wFT (BP decoding) 3.4 11,065 236.9 110.0 20.6 44.1 74.9 75.0 80.8

Only CE 3.7 10,874 152.9 109.2 20.1 43.4 74.2 73.6 80.0

Transformer RL 3.6 7,824 129.8 127.7 22.5 45.1 75.0 75.0 81.3
+ sFT 3.2 9,397 296.0 118.7 21.7 44.8 75.2 75.6 81.5
+ wFT 2.6 11,930 379.7 103.1 20.0 43.3 74.8 75.8 81.2
+ wFT (BP decoding) 2.9 11,673 461.0 107.3 21.1 44.2 75.2 76.1 81.5

Only CE 3.3 10,661 165.6 112.2 20.8 44.0 74.5 74.8 80.9

Human 2.4 17,963 815.6 88.4 21.2 42.9 73.3 77.7 82.0

Table 4.2: Comparison of OOR words and the resulting difference in exact-matching
and soft-matching metrics. We report the results on the MS COCO test set.
A higher value in Rank indicates a lower frequency rank of the OOR words.
We also report the rate of repetition.

in contrast to our models. Table 4.2 shows the number of OOR words and their average
frequency rank. The frequency rank refers to the order of words when sorted by their
frequency in training captions; the most frequent word ranks 1st, and the value of
rank increases as the frequency decreases. Although our models and Only CE output
the similar number of OOR words, the significant difference in the frequency rank
indicates that the properties of our OOR words are different from those of Only CE;
that is, the OOR words of our models consist of much more low-frequency words than
those of Only CE. Low-frequency words are likely to be OOR by the nature of their
frequency, regardless of their correctness.

The soft-matching metrics could tell this difference and scored our models higher
than Only CE models and even higher than baseline RL models. Especially, this ten-
dency was more clear in the state-of-the-art PCM-based metrics (TIGEr, CLIPS, and
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RefCLIPS). On the contrary, the exact-matching metrics (CIDEr and SPICE) could not
tell the difference by definition and decreased the scores roughly in proportion to the
number of OOR words. Appendix B.7 shows the qualitative analysis of the underrated
captions.

Comparison with Human-Annotated Captions. Manually annotated captions are
known to show low exact-matching scores although they achieve substantially higher
scores in manual evaluation [84, 33]. In Table 4.2, we observe that human-annotated
captions (Human)9 have similar properties to ours: a large number of low-frequency
OOR words, low exact-matching scores, but high scores in the state-of-the-art metrics
(CLIPS and RefCLIPS).

Repetition. We also confirmed that the decrease in exact-matching scores was not
caused by repetition, which is a typical side effect of heavily maximizing discrimina-
tiveness rewards [187, 178]. Table 4.2 shows that our models’ repetition rates10 were
rather lower than those of baselines.

Conclusion. From the above results, we conclude that the lower exact-matching
scores of our models are caused by the nature of low-frequency words and the defi-
ciency of exact-matching metrics, not by the degeneration of our models. The results
of the human evaluation in the following Section 4.4.4 further support this conclusion.

4.4.4 Human Evaluation

As discussed in Sections 4.4.2 and 4.4.3, automatic evaluation of our models has diffi-
culty due to the OOR words caused by the low frequency. To further validate the per-
formance of our models, we conducted human evaluations using Amazon Mechanical
Turk (AMT) on three criteria: discriminativeness, correctness, and fluency. Correct-
ness and fluency are absolute scores: we instructed workers to give a maximum score 5

9Following [111, 33], we randomly sampled one reference caption for each image and evaluated the
similarity against the rest of the references.

10Let C be a set of captions; fn(·) and un(·) be the functions to return n-grams and unique n-grams,
respectively. We computed the repetition rate (Rep) by 1

|C|N
∑|C|

i=1

∑N
n=1 1−

|un(Ci)|
|fn(Ci)| , where we set

N = 4.
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Discriminativeness Correctness Fluency

Transformer RL 3.00 4.42 4.83
+ wFT 3.34∗∗ 4.45 4.84

NLI 3.18∗∗ 4.54 4.76

Table 4.3: Human evaluation results on the subset of the MS COCO test set. The dis-
criminativeness score of Transformer RL was fixed at 3.00 because we set it
as the baseline. ∗/∗∗ indicates that a score is statistically significantly differ-
ent from that of the baseline model (t-test with p < 0.05/0.01); one-sample
t-test for discriminativeness and independent two-sample t-test for the other
criteria.

to the captions that did not contain incorrect information (ungrammatical or unnatural
expressions) in terms of correctness (fluency). In contrast, discriminativeness is de-
signed as a relative score because it is difficult to set an absolute standard for discrimi-
nativeness; unlike correctness or fluency, we cannot define the perfectly discriminative
captions. Following [182], we instructed the workers to determine the discriminative-
ness of a caption by comparing the caption with that of a baseline model11.

We evaluated the Transformer-based models, which performed the best in the auto-
matic evaluation. Although wFT with BP decoding performed better, here we picked
up wFT with pθ decoding to set the total number of parameters for decoding strictly
the same across the models. Following [182], we randomly selected 50 images from
the MS COCO test set and assigned five workers to each image. See Appendix B.8 for
more details on the AMT instruction. Table 4.3 shows the results. wFT, which had the
highest R@K scores, also achieved the highest discriminativeness here. wFT achieved
the same or higher correctness and fluency than the baseline model, in contrast to the
exact-matching scores in Table 4.2. These results are consistent with the results of
the state-of-the-art soft-matching metrics, confirming again that our methods do not
degrade the quality of captions.

11If a target caption describes the same information as a baseline caption, the workers give the target
caption a score of 3; if the target caption describes more (less) characteristic information than the
baseline caption, the workers give the target caption a score of 4 or 5 (1 or 2).
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4.5 Related Work

Image Captioning is the task of describing images in natural languages. The quality
of captions has been remarkably improved by recent advances such as the encoder–
decoder captioning model [181], attention mechanism [198], RL training [146, 151],
attention over bounding box features [5], large-scale pre-training [105], and large-
scale captioning datasets [202, 109, 23, 93, 157]. Despite these advancements, current
captioning models generate overly generic captions [34, 33, 187, 190].

Discriminative Image Captioning has been explored to generate more informative
captions. [154] was the first to study this task. They defined the more informative cap-
tions as the captions that concisely describe the information discriminative from dis-
tractor images, i.e., images similar to an input image. [7] proposed neural listener and
speaker models that cooperate to generate discriminative captions for abstract scenes.
[133] adapted the models to single-colored images. [173] and [30] extended the do-
main to real images and improved inference efficiency. [183] proposed a memory at-
tention network to describe unique objects among distractor images. [124] introduced
a dataset with harder distractor images.

These approaches require selecting distractor images for inference. [117] and [112]
proposed the methods that do not require this step. Their models learn to generate
discriminative captions by maximizing the R@K scores for sampled captions using
RL [151]. The R@K scores are computed with a pre-trained image–text retrieval
model [45] over images in a mini-batch. [178] proposed a method to jointly train the
image–text retrieval model and captioning model. Despite their effectiveness, R@K
scores are associated with high computational costs and require a large batch size.
CIDErBtw [182] and NLI [161] achieved state-of-the-art discriminativeness at this
work’s submission time with more lightweight rewards. They weighted the contribu-
tion of ground-truth captions for the CIDEr reward according to their differences from
similar but different captions [182] or their entailment scores against other ground-truth
captions [161]. Another approach exploited unrelated captions as negative examples
and trained caption generators with contrastive learning [34] or GAN [34, 53].

Visual Paraphrase [111] and [194] are related to our work in that they exploited low-
frequency n-grams to enhance discriminativeness. [111] divided ground-truth captions
into two subsets according to n-gram TF-IDF scores and proposed a new model to
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paraphrase low TF-IDF captions into high TF-IDF ones. [194] proposed the use of
n-gram TF-IDF scores as an additional reward to a variant of R@K reward.

Different from above approaches, our objective is set to remedy the low discrimina-
tiveness of existing RL models. Our models can be achieved with single-epoch fine-
tuning of pre-trained RL models, without requiring either drastic changes in the model
architecture [111], additional computational costs of rewards [194], or retraining from
scratch.

Diverse Image Captioning is the task of generating a set of diverse captions for a
given image [191]. Diverse image captioning is aimed at enumerating various pieces
of information with a set of captions, whereas discriminative image captioning aims
to concisely describe the most characteristic information with a single caption. Sim-
ilar to this study, some studies utilized captions that contained more low-frequency
words, such as ground-truth captions [187, 118] or captions sampled from CE mod-
els [160]. Their models learn to generate these captions in addition to the captions
sampled from RL models. However, these approaches still rely on sampling from
skewed policies and require retraining of a model from scratch. Other approaches have
adapted GAN [159], conditional VAE [184, 8, 18, 121, 164, 90, 152], flow-based gen-
erative models [120, 40], RL [21], POS tag sequences [38], and beam search [180, 73]
to enhance the diversity within a set of captions.

Long-Tail Classification has been studied extensively in various tasks as label im-
balance is prevalent across datasets [205, 104]. In text-generation tasks, label im-
balance exists in the frequency of words. Previous approaches have addressed the
imbalance by normalizing classifier weights [134, 148] or using variants of Focal
loss [148, 57, 77, 197, 108]. In contrast to these approaches, we adapted long-tail
classification to mitigate the side effects of RL in the context of discriminative image
captioning. Appendix B.9 shows that our methods outperformed these approaches.
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Transformer RL: 
a man sitting at a desk with a computer 
 
+wFT: 
a person sitting at a desk with multiple
computers

Transformer RL: 
a sheep laying on the grass in a field 
 
+wFT: 
an animal that is laying down on some
grass

Transformer RL: 
a living room with a couch and a table 
 
+wFT: 
a living room filled with white furniture
and red walls

Figure 4.4: Examples of the limitation of our methods. All the examples are from
the MS COCO validation set. The underlined words are relatively low-
frequency hypernyms.

4.6 Limitations

Our experiments were limited to the MS COCO dataset, although it is the standard
dataset for image captioning. The images belong to the general domain (images of
common objects), and the captions are in English only. To compensate for the limita-
tion, we have demonstrated the effectiveness of our methods with the multiple baseline
models.

Our current methods have a limitation in that they cannot select discriminative
ones among low-frequency words. Although discriminative in general, low-frequency
words do not always describe more specific information than others. Figure 4.4 shows
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the examples. Our model output relatively low-frequency hypernyms such as person,
animal, and furniture instead of the more frequent but more specific hyponyms: man,
sheep, and couch. Utilizing thesauruses like WordNet [47] will be a promising ap-
proach to reduce those relatively low-frequency hypernyms from outputs.

The MS COCO dataset contains social biases, and captioning models have the risk
of amplifying those biases [207, 208, 65]. Our methods are also not free from the risk,
as they are not designed to reduce those social biases from existing models.

4.7 Conclusion

We have investigated the cause of overly generic captions of RL models and found
out that RL decreases the discriminativeness by limiting the output words to high-
frequency words. We propose the lightweight fine-tuning methods to address the
bottleneck directly and achieve significantly higher discriminativeness with only the
slight modification on off-the-shelf RL models. Our identification of the bottleneck
and practical solutions will significantly impact future research on discriminative im-
age captioning.

As an additional practical advantage, our models can control the granularity of de-
scriptions from coarse to fine by just switching the off-the-shelf/fine-tuned classifier
parameters. In terms of broader impact, our methods can be easily applied to the RL
models in other text generation tasks, such as machine translation [196], summariza-
tion [141], and dialogue generation [103] to enrich the output vocabulary. In terms of
broader impact, our methods can be easily applied to the RL models in other text gen-
eration tasks, such as machine translation [196], summarization [141], and dialogue
generation [103] to enrich the output vocabulary.
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Chapter 5

Conclusion

5.1 Summary

This dissertation aims to improve image captioning systems with the goal of making
them more versatile. Towards this goal, we have proposed novel methods to broaden
the coverage of image captioning systems on both sides of scenes and descriptions.

Chapter 3 has addressed unsupervised image captioning. In this chapter, we have
broadened the scene coverage by handling edge cases in the scene coverage, where
scenes have no corresponding image–sentence pairs during training. Based on the
observation that pseudo-captions often contain words that are irrelevant to images, we
have proposed the gating mechanism and pseudo-labels to remove word-level spurious
alignment between images and pseudo-captions. Experimental results have shown that
our models significantly outperform previous models.

Chapter 4 has addressed discriminative image captioning. In this chapter, we have
broadened the description coverage by enriching the output vocabulary of off-the-shelf
RL models. First, we have investigated the outputs of current captioning systems and
show that RL decreases the output vocabulary. Then, based on this finding, we have
proposed lightweight fine-tuning methods to increase the output vocabulary so that
captions will subsequently include the information specific to each image. Extensive
experiments have demonstrated that our methods substantially enhance the vocabulary
size and discriminativeness of output captions.

These results indicate our sound contribution towards versatile image captioning
systems on both sides of coverage.
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5.2 Limitations and Future Directions

Aside from the limitations specific to each study (Sections 3.5 and 4.6), we discuss
overall limitations of this dissertation.

Combination of Methods

Our studies have found that the small vocabulary is a crucial issue to be addressed
in the future, both in supervised and unsupervised image captioning. Thus, the next
important goal is to make our discriminative image captioning methods applicable to
various task settings.

The first limitation is, however, the difficulty of combining our methods. Although
our work covers both sides of coverage, the proposed methods are difficult to combine
due to the difference in task settings. Our discriminativeness-aware methods require
ground-truth captions, but they are unavailable in unsupervised image captioning. A
future direction of our work is to combine and apply our methods to semi-supervised
image captioning tasks where at least a few ground-truth captions are available [87].

Extrinsic Evaluation

The second limitation is the lack of extrinsic evaluation in downstream tasks such as
image searching, visual question answering, and visual dialogue generation. Evaluat-
ing captioning systems on performance in downstream tasks will give a more thorough
comparison in terms of versatility.

Coverage of Tasks

The third limitation is the small coverage of tasks on each side: scenes and descrip-
tions. As shown in Section 1.2, other important challenges remain besides unsuper-
vised image captioning and discriminative image captioning. A unified sequence-to-
sequence learning framework [186] will be a promising research direction to address
all these challenges at once.

[186] trained a single model on a variety of tasks with prompts designed for each
task. This framework can be applied to handle various image captioning tasks with a
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single model. For example, one can train a model on each task with the concatena-
tion of scene-aware prompts (e.g., images of common objects, images with text, etc.)
and description-aware prompts (e.g., general descriptions, discriminative descriptions,
etc.), then change the combination of the prompts at the inference stage according to
the use.

Major Components other than Models

The last limitation is that our work does not address challenges in evaluation metrics
and datasets, which are the rest of the major components in image captioning other
than model development (Section 1.2). While the focus of this dissertation is not on
these components, we provide future directions in them as follows.

Evaluation Metrics. As seen in Section 4.4.3, exact-matching evaluation metrics un-
fairly penalize captions with correct-but-OOR words. Recent studies have also shown
that exact-matching metrics do not correlate well with human evaluation compared
with soft-matching metrics [84, 67]. However, exact-matching metrics are still the
most widely-used metrics, even in recent studies [105, 203, 186, 135]. This ignorant
of soft-matching metrics is problematic as it might encourage the creation of systems
that generate less informative captions.

To facilitate the use of soft-matching metrics, future work should re-evaluate the
evaluation metrics to identify their strengths and weaknesses. Extending our analysis
of Section 4.4.3 by manually evaluating correct-but-OOR words will be a promising
direction to validate the superior performance of soft-matching metrics further1.

Datasets. Increasing data is a simple yet highly effective way to broaden the cov-
erage of scenes and descriptions. Although web-crawled image–sentence pairs have
not been used for training captioning models due to their noise, filtering the pairs will
enable their direct use for training. Recent studies apply cross-modal matching mod-
els to compute image–sentence similarity and filter out noisy pairs [102, 82]. An-
other line of recent approaches utilizes noisy image–sentence pairs to train adapters to

1Low reference coverage has also been reported as a problem in machine translation evaluations [50].
Therefore, our analysis might be extended to other text-generation evaluations, including machine
translation.
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fuse pre-trained unimodal models, thereby leveraging the knowledge of each modal-
ity [20, 2, 101].

Challenges in General Image Captioning

Recent advances in image captioning have achieved human-level performance in the
task of general image captioning: the task of outputting correct and fluent descrip-
tions given images of common objects. Recent captioning models considerably out-
performed humans in the standard automatic evaluation metrics [111] and performed
close to humans even in manual evaluation [84]. Thus, the remaining challenges have
been shifted to broadening the coverage of scenes [1, 163] and descriptions [187, 84],
which we have focused on in this dissertation.

However, there is still a performance gap from humans in terms of correctness (not
fluency), and even the state-of-the-art models output incorrect descriptions in rare
cases [84]. While improving the correctness is a straightforward contribution, it is
also practically helpful to notify users of the images that models cannot handle. To this
end, calibrating the captioning model’s certainty is a promising direction for future re-
search. In terms of application, improving the efficiency of captioning models is also
important for future work [185].

We hope this dissertation serves as a milestone for these future studies.

65



References

[1] H. Agrawal, K. Desai, Y. Wang, X. Chen, R. Jain, M. Johnson, D. Batra,
D. Parikh, S. Lee, and P. Anderson. nocaps: novel object captioning at scale.
In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 8947–8956, 2019.

[2] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc,
A. Mensch, K. Millican, M. Reynolds, et al. Flamingo: a visual language model
for few-shot learning. arXiv preprint arXiv:2204.14198, 2022.

[3] P. Anderson, B. Fernando, M. Johnson, and S. Gould. SPICE: Semantic propo-
sitional image caption evaluation. In Proceedings of the European Conference
on Computer Vision, pages 382–398, 2016.

[4] P. Anderson, S. Gould, and M. Johnson. Partially-supervised image captioning.
In Advances in Neural Information Processing Systems, 2018.

[5] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang.
Bottom-up and top-down attention for image captioning and visual question
answering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6077–6086, 2018.

[6] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid,
S. Gould, and A. van den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3674–3683, 2018.

[7] J. Andreas and D. Klein. Reasoning about pragmatics with neural listeners and
speakers. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 1173–1182, 2016.

66



[8] J. Aneja, H. Agrawal, D. Batra, and A. Schwing. Sequential latent spaces for
modeling the intention during diverse image captioning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4261–4270,
2019.

[9] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh.
VQA: Visual question answering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2425–2433, 2015.

[10] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. In Proceedings of the International Conference
on Learning Representations, 2015.

[11] S. Basu, G. S. Ramachandran, N. S. Keskar, and L. R. Varshney. Mirostat: A
neural text decoding algorithm that directly controls perplexity. In Proceedings
of the International Conference on Learning Representations, 2021.

[12] A. Ben Abacha, S. A. Hasan, V. V. Datla, J. Liu, D. Demner-Fushman, and
H. Müller. VQA-Med: Overview of the medical visual question answering task
at imageclef 2019. In CLEF2019 Working Notes, 2019.

[13] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for se-
quence prediction with recurrent neural networks. In Advances in Neural Infor-
mation Processing Systems, 2015.

[14] A. F. Biten, L. Gomez, M. Rusinol, and D. Karatzas. Good news, everyone!
context driven entity-aware captioning for news images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12466–12475, 2019.

[15] S. Cao, G. An, Z. Zheng, and Q. Ruan. Interactions guided generative adversar-
ial network for unsupervised image captioning. Neurocomputing, 417:419–431,
2020.

[16] K.-Y. Chang, K.-H. Lu, and C.-S. Chen. Aesthetic critiques generation for pho-
tos. In Proceedings of the IEEE International Conference on Computer Vision,
pages 3534–3543, 2017.

67



[17] S. Changpinyo, D. Kukliansy, I. Szpektor, X. Chen, N. Ding, and R. Soricut. All
you may need for VQA are image captions. In Proceedings of the Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1947–1963, 2022.

[18] F. Chen, R. Ji, J. Ji, X. Sun, B. Zhang, X. Ge, Y. Wu, F. Huang, and Y. Wang.
Variational structured semantic inference for diverse image captioning. In Ad-
vances in Neural Information Processing Systems, 2019.

[19] H. Chen, A. Trouve, K. J. Murakami, and A. Fukuda. An intelligent annotation-
based image retrieval system based on rdf descriptions. Computers and Electri-
cal Engineering, 58:537–550, 2017.

[20] J. Chen, H. Guo, K. Yi, B. Li, and M. Elhoseiny. VisualGPT: Data-efficient
adaptation of pretrained language models for image captioning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 18030–18040, 2022.

[21] J. Chen and Q. Jin. Better captioning with sequence-level exploration. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 10890–10899, 2020.

[22] T. Chen, Z. Zhang, Q. You, C. Fang, Z. Wang, H. Jin, and J. Luo. “Factual” or
“Emotional”: Stylized image captioning with adaptive learning and attention. In
Proceedings of the European Conference on Computer Vision, pages 519–535,
2018.

[23] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zit-
nick. Microsoft COCO Captions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325, 2015.

[24] Y.-C. Chen, L. Li, L. Yu, A. E. Kholy, F. Ahmed, Z. Gan, Y. Cheng, and J. Liu.
UNITER: Universal image-text representation learning. In Proceedings of the
European Conference on Computer Vision, pages 104–120, 2020.

[25] J. Cho, S. Yoon, A. Kale, F. Dernoncourt, T. Bui, and M. Bansal. Fine-grained
image captioning with CLIP reward. In Findings of the Association for Compu-
tational Linguistics: NAACL 2022, pages 517–527, 2022.

68
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Appendix A

Unsupervised Image Captioning with
Careful Word-Level Alignment to
Broaden the Scene Coverage
– Supplementary Material

A.1 Evaluation using Soft-Matching Metrics

We have observed that our unsupervised image captioning methods enhance the perfor-
mance in exact-matching metrics by increasing high-frequency words and decreasing
low-frequency words (Section 3.3.8). On the other hand, however, we also have ob-
served that exact-matching metrics wrongly penalize correct but low-frequency words
(Section 4.4.3). Therefore, it is possible that the exact-matching metrics unfairly fa-
vored our proposed models.

To provide more thorough experimental results, we evaluated unsupervised image
captioning models using soft-matching metrics. Table A.1 shows the results. The
results are consistent with the exact-matching evaluation we reported in Table 3.4.
Our model outperformed the previous model in both exact- and soft-matching scores;
the combined model achieved the highest scores across all the metrics. These results
further confirm the superiority of our methods.

Unlike supervised image captioning, there is no score gap between exact- and soft-
matching metrics in unsupervised image captioning. This is because the scores are
drastically lower than those of supervised image captioning models. The score gap
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Text-Based Text-and-Image-Based

Exact-Matching Soft-Matching

CIDEr SPICE BERTS++ TIGEr CLIPS RefCLIPS

[48] 28.6 8.1 30.9 63.2 59.2 64.9
Ours 32.4 8.4 32.0 63.5 61.8 65.9
Ours + [48] 35.7 9.2 32.4 63.7 62.9 68.0

Table A.1: Evaluation across exact- and soft-matching metrics. We show the results of
single run. The highest scores are marked in bold.

arises when there are correct-but-OOR words (Section 4.4.3), but OOR words are
likely to be incorrect in the low score range of unsupervised image captioning models.
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Appendix B

Discriminative Image Captioning by
Relieving a Bottleneck of RL to
Broaden the Description Coverage
– Supplementary Material

B.1 Further Output Examples

Figure B.1 shows caption examples in the MS COCO validation set. The blue words
are those that have never appeared in the output captions of the baseline model. We
observe that these blue words express various types of characteristic information of the
images. Here, weather vane and flamingos are characteristic objects of the images (a)
and (b); shallow, funny, and staring straight ahead are characteristic attributes of the
images (b) and (c); and racing and sniffing are characteristic relations in the images (d)
and (e). These examples further support our hypothesis that the limited vocabulary of
RL models hinders discriminativeness.
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Transformer RL: a group of birds standing
in the water 
+wFT: a large group of flamingos stand in
shallow water 
NLI: a group of pink umbrellas are standing
in the water 
Human: a flock of pink flamingos standing
in shallow water

Transformer RL: a tower with a clock on
top of it 
+wFT: a clock tower with a weather vane
on top 
NLI: a tower with a clock on the top of it 
Human: a weather vane atop a cathedral
clock tower

Transformer RL: a black cat wearing a hat
on top of a table 
+wFT: a cat wears a funny hat while
staring straight ahead 
NLI: a black cat wearing a hat sitting on a
table 
Human: the cute black cat is wearing a
bee's hat

Transformer RL: a group of people riding
motorcycles on a road 
+wFT: a group of people racing
motorcycles on a race track 
NLI: a group of people riding motorcycles
on a race track 
Human: people are racing motorcycles on
a race track

Transformer RL: a dog next to a cup of
coffee 
+wFT: a dog is sniffing a cup of coffee 
NLI: a dog standing next to a coffee cup on
a table 
Human: a squinting dog on a brick patio
sniffs a cup of coffee

(a)

(b)

(c)

(d)

(e)

Figure B.1: Caption examples in the MS COCO validation set. The blue words are
those that have never appeared in the output captions of the baseline model
(Transformer RL). Human shows a ground-truth caption of each image.
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Figure B.2: Relative frequency of the words in the sequences sampled for the training
images. Five sequences were sampled for each image. The words (9,486
unique words excluding an out-of-vocabulary token ⟨unk⟩) are sorted by
their frequency in ground-truth captions and divided into 200 bins. We
show the first 10 bins and the sum of the rest. GT is the ground-truth
caption of the training images, CE is the output of a captioning model
trained with the CE loss, and RL is the output of a captioning model trained
with RL.
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B.2 Peaky Distributions in Other Models

Figure B.2 shows the results of the relative frequency of the words sampled for the
training images by the LSTM-based models: Att2in [151] and UpDown [5]. Similar to
the Transformer model, the sequences sampled with the LSTM-based RL models are
clearly limited to high-frequency words, forming the peaky distributions.

B.3 Libraries for Evaluation

We used the following libraries for evaluation with all the hyperparameters set to the
default values.

• CIDEr, SPICE, CLIPS, and RefCLIPS
https://github.com/jmhessel/pycocoevalcap

• BERTS++
https://github.com/ck0123/improved-bertscore-for-ima

ge-captioning-evaluation

• TIGEr
https://github.com/SeleenaJM/CapEval

• R@K
https://github.com/fartashf/vsepp

Following [111], we used a publicly available model,
coco vse++ resnet restval finetune.

B.4 Best Hyperparameters

We searched for the best hyperparameters for the learning rate from {1e-3, 1e-4, 1e-
5, 1e-6}, and the inverse-temperature hyperparameter β′ of Eq. (4.5) from {0.1, 1}.
The best learning rate was 1e-5 for Transformer models and 1e-4 for the other models
(Att2in and UpDown). The best β′ was 0.1 for wFT with pθ decoding and 1 for wFT
with BP decoding. Note that sFT does not use β′.
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The best learning rate was the same in CE-based models (Joint CE and Only CE):
1e-5 for Transformer and 1e-4 for the others. The best λ ∈ {0.2, 0.5, 0.8} for Joint CE
was 0.8 for Transformer and 0.2 for the others.

B.5 The Number of Parameters

The exact number of parameters was 14,451,985 for Att2in, 52,125,025 for UpDown,
and 57,474,832 for Transformer. Note that the parameters θ′ are not included be-
cause they are not trainable and fixed through the entire training and evaluation; rather,
the actual trainable parameters are decreased to the classifier parameters in our mod-
els. Visual Paraphrase has double decoders of Att2in; thus, it increases the number of
trainable parameters and requires training of the specialized model from scratch.

96



Epoch Batch Hour/Epoch Total Hour

Att2in RL 20 10 0.68 13.54
+ sFT 1 10 0.08 0.08
+ wFT 1 10 0.12 0.12

CIDErBtw 50 10 0.70 35.11
NLI 50 16 0.87 43.55
Joint CE 20 10 1.15 22.97

UpDown RL 20 10 0.71 14.16
+ sFT 1 10 0.09 0.09
+ wFT 1 10 0.14 0.14

CIDErBtw 50 10 0.76 38.09
NLI 50 16 0.87 43.74
Joint CE 20 10 1.08 21.67

Transformer RL 25 10 3.23 80.66
+ sFT 1 10 0.11 0.11
+ wFT 1 10 0.18 0.18

CIDErBtw 25 10 3.27 81.76
NLI 25 16 2.74 68.54
Joint CE 25 10 4.06 101.43

Table B.1: Time to train discriminativeness-aware captioning models. Note that we
excluded the time for initialization before RL because there is not much
difference among the methods. Results for the baseline RL models are
shown in gray text because we did not train these models but used publicly-
available pre-trained models.

B.6 Comparison of Computational Cost

Table B.1 shows the time to train discriminativeness-aware captioning models. We
used a single GPU of 16 GB memory for all training. Clearly, our methods require
far less time for training. This is because our methods do not require retraining from
scratch but only require a single-epoch fine-tuning to publicly-available pre-trained RL
models.
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B.7 Qualitative Analysis of Underrated Captions

Figure B.3 shows caption examples, automatic evaluation scores, and reference cap-
tions. Clearly, our wFT model correctly described all five images with diverse vocab-
ulary. However, the CIDEr scores for our captions were considerably lower than those
for the baseline model captions. The cause of this underrating is the small coverage of
the reference captions: the reference captions rarely include the low-frequency words
colored in blue due to their low frequency. Conventional exact-matching metrics such
as CIDEr cannot evaluate those correct-but-OOR words by the definition of exact-
matching. In contrast, RefCLIPS, the current best-performing metric, can consider
the information not covered by reference captions by incorporating image features and
soft-matching. Figure B.3 shows that RefCLIPS evaluated the correct-but-OOR words
more correctly and gave more plausible scores to our captions. These examples further
support our conclusion that the lower exact-matching scores of our models are caused
by the nature of low-frequency words and the deficiency of exact-matching metrics,
not by the degeneration of our models.
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Transformer RL: 
a person flying a kite in the ocean 
        [CIDEr: 60.2, RefCLIPS: 79.8] 
+wFT: 
a man kiteboarding on top of a body of water 
        [CIDEr: 3.5, RefCLIPS: 79.2] 
Reference Coverage: 0/5 
N/A 

Transformer RL:  
a dog laying on top of a couch 
        [CIDEr: 133.3, RefCLIPS: 77.7] 

+wFT: 
a dog curled up asleep on a cushion 
        [CIDEr: 38.7, RefCLIPS: 79.2] 
Reference Coverage: 0/5 
N/A

Transformer RL: 
a vase filled with yellow flowers on a table 
        [CIDEr: 216.7, RefCLIPS: 78.5] 
+wFT: 
a clear vase filled with multi colored flowers 
        [CIDEr: 94.0, RefCLIPS: 82.0] 
Reference Coverage: 1/5 
an arrangement of flowers in a clear glass
canning jar haging on a wall

Transformer RL: 
a yellow and blue airplane sitting on a runway 
        [CIDEr: 104.1, RefCLIPS: 78.2] 
+wFT: 
a yellow and blue jet airliner on a runway 
        [CIDEr: 58.8, RefCLIPS: 78.3] 
Reference Coverage: 1/5 
a brown lot airliner sitting on the tarmac

Transformer RL: 
a herd of cows grazing in a field of grass 
        [CIDEr: 172.2, RefCLIPS: 81.6] 
+wFT: 
a herd of cattle grazing on a dry grass field 
        [CIDEr: 74.0, RefCLIPS: 84.4] 
Reference Coverage: 2/5 
a bunch of cows grazing in a dry field together 
cows wandering in a dry grass filled meadow

Figure B.3: Underrated captions in the MS COCO validation set. The blue words
are those that have never appeared in the output captions of the baseline
model (Transformer RL). Reference Coverage shows the number of refer-
ence captions (out of five) that cover at least one of the blue words.
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B.8 Details of Human Evaluation

We show our AMT interface in Figure B.4. Each image was evaluated with the five
questions in the discrete 5-point scale. We required workers to satisfy the following
qualifications: being an AMT Master and living in the U.S. Workers were notified that
this experiment was intended to evaluate caption quality. We paid $0.1 for each image,
and the median of the actual working time was 41 seconds per image. The hourly
reward was estimated as $8.78, which is higher than the minimum wage in the U.S.,
$7.25 per hour.
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Figure B.4: A screenshot of our AMT interface.
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B.9 Comparison with Other Long-Tail Classification
Methods

We adapted the long-tail classification method of [81] to relieve the bottleneck of RL
and proposed sFT and wFT. Both methods were carefully designed for RL models, but
these were not the only way to employ long-tail classification methods. In this section,
we discuss the other possible adaptations based on [148].

[148] explored ways to employ long-tail classification methods for machine trans-
lation. Their first method was τ -normalization (τ -norm), which directly adopted the
method of [81]. Based on an observation that the norm of classifier parameters cor-
relates with the frequency of the classes, they normalized the classifier weight W as
follows:

W̃wi
=

Wwi

∥Wwi
∥τ

, (B.1)

where Wwi
∈ Rd indicates a vector at the index of a word wi and τ is a temperature

hyperparameter that controls the degree of the normalization.
The other methods of [148] were Focal loss (FL) and Anti-Focal loss (AFL). AFL

is a variant of FL [108], which was aimed at reweighting the loss according to the
confidence of the model predictions. Let ptθ = pθ(yt | y<t, I). FL and AFL for each
training data are then written as follows:

LFL(θ) = −
1

T

T∑
t=1

(1− ptθ)
γ log ptθ, (B.2)

LAFL(θ) = −
1

T

T∑
t=1

(1 + αptθ)
γ log ptθ, (B.3)

where γ and α are hyperparamters that control the degree of the reweighting. Other
work also explored ways to employ long-tail classification methods for text generation,
but those approaches are categorized as either τ -norm [134] or variants of FL [57, 77,
197], which we already explored above.

We compared our methods (sFT and wFT) with τ -norm, FL, and AFL. In our exper-
iments, we normalized the bias term b1 in addition to the weight term W as we found

1b̃ = b
∥b∥τ , where the value of the hyperparameter τ was set to the same as that of W̃ .
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it performed better than normalizing the weight term only. We applied FL and AFL as
the alternative weighting to BP for a fair comparison with our methods. That is, we
fine-tuned the classifier parameters by optimizing LFL(θ̂) or LAFL(θ̂), where θ̂ were
initialized with the pre-trained RL models. We used the best hyperparameters reported
in [148]: τ = 0.2, γ = 1, and α = 1. Similar to our models, other hyperparameters
were set to the same values as the baseline models, except for the epoch size and learn-
ing rate. We explored the same values for these hyperparameters as our models: we set
the epoch size for fine-tuning to 1 and searched for the best learning rates from {1e-3,
1e-4, 1e-5, 1e-6}. We selected the best learning rate according to the R@1 scores in
the validation set. The best learning rate was 1e-4 for Att2in RL + FL/AFL, 1e-4 for
UpDown RL + FL/AFL, and 1e-5 for Transformer RL + FL/AFL. Note that we did not
explore the learning rate for τ -norm because it does not require training.

In open-ended text generation tasks, e.g., story generation and text generation after
prompts, stochastic sampling methods are used instead of beam search to increase the
diversity in output text [70, 11, 127]. Although image captioning does not fall in the
category of open-ended text generation as input images tightly scope the correctness
of captions, we additionally test whether the randomness in stochastic sampling can
increase the output vocabulary. We used Nucleus sampling [70] with a hyperparameter
p = 0.95, which is the best hyperparameter reported [70, 127].
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Vocabulary Standard Evaluation Discriminativeness

Unique-1 Unique-S Length CIDEr SPICE BERTS++ TIGEr CLIPS RefCLIPS R@1 R@5 R@10

Att2in RL 445 2,524 9.3 117.4 20.5 43.6 73.9 73.0 79.7 16.3 41.9 57.2
+ sFT 880 3,156 9.0 115.4 20.4 43.9 74.3 73.7 80.3 20.1 48.0 62.8
+ wFT 1,197 3,732 8.9 104.3 19.5 43.1 74.2 73.9 80.2 20.6 49.7 64.5
+ wFT (BP decoding) 1,102 3,615 9.4 109.3 20.1 43.7 74.4 74.0 80.2 21.1 50.5 64.8
+ τ -norm 437 2,414 9.1 117.3 20.4 43.5 73.8 72.9 79.7 15.4 40.7 55.8
+ FL 903 3,217 9.0 114.8 20.4 43.8 74.3 73.7 80.3 20.1 48.1 63.2
+ AFL 886 3,116 9.0 115.3 20.4 43.8 74.3 73.7 80.3 19.7 47.6 62.7
+ Nucleus sampling 475 2,726 9.3 116.5 20.3 43.5 73.9 72.9 79.7 16.5 41.9 57.1

UpDown RL 577 3,103 9.5 122.7 21.5 44.2 74.6 74.0 80.5 21.1 49.9 64.6
+ sFT 1,190 3,788 9.2 115.9 21.0 44.2 74.9 74.8 80.9 25.0 56.8 71.2
+ wFT 1,479 4,268 9.1 101.8 19.5 43.1 74.6 74.9 80.7 26.0 57.6 72.2
+ wFT (BP decoding) 1,275 4,177 9.6 110.0 20.6 44.1 74.9 75.0 80.8 26.7 58.7 72.4
+ τ -norm 576 2,967 9.3 122.6 21.3 44.2 74.4 73.8 80.5 19.6 48.1 63.4
+ FL 1,201 3,830 9.2 114.9 20.9 44.1 74.9 74.7 80.9 25.2 57.0 70.9
+ AFL 1,171 3,760 9.2 116.4 20.9 44.2 74.9 74.7 80.9 24.9 56.6 70.7
+ Nucleus sampling 592 3,339 9.5 120.7 21.3 44.2 74.6 73.9 80.4 20.9 49.7 64.4

Transformer RL 753 3,433 9.2 127.7 22.5 45.1 75.0 75.0 81.3 26.6 56.2 70.5
+ sFT 1,458 3,959 9.1 118.7 21.7 44.8 75.2 75.6 81.5 30.6 62.3 75.7
+ wFT 1,776 4,274 9.1 103.1 20.0 43.3 74.8 75.8 81.2 32.5 64.5 77.1
+ wFT (BP decoding) 1,964 4,373 9.4 107.3 21.1 44.2 75.2 76.1 81.5 33.5 65.9 78.2
+ τ -norm 1,027 3,483 9.2 124.4 22.1 44.9 74.8 74.9 81.2 26.1 55.8 69.7
+ FL 1,523 4,018 9.1 116.5 21.4 44.6 75.2 75.7 81.5 31.2 63.1 76.3
+ AFL 1,402 3,908 9.1 120.5 21.9 44.8 75.2 75.6 81.6 30.0 62.1 75.9
+ Nucleus sampling 1,053 3,751 9.3 123.7 22.0 44.8 74.9 75.0 81.2 26.9 55.8 70.4

Table B.2: Comparison with the other long-tail classification methods. Automatic
evaluation results on the MS COCO test set. Unique-1 and Unique-S in-
dicate the number of unique unigrams and sentences, respectively. Length
is the average length of output captions.

Table B.2 shows the results. τ -norm and Nucleus sampling showed the similar re-
sults. Both methods slightly increased the output vocabulary but the performance gen-
erally remained the same as the baseline models. These results indicate that the output
vocabulary cannot be significantly increased while maintaining the relative probability
of words: Nucleus sampling samples according to the original output distributions and
τ -norm changes the distribution only by the difference in the norm, basically flattening
the distribution. In contrast, FL and AFL drastically change the relative probability of
words by refining the mapping from encoded features to low-frequency words, as with
sFT and wFT. They successfully increased the vocabulary size and discriminativeness.
However, the gains were smaller than those of wFT.

To analyze the cause of the difference between FL, AFL, and the BP loss (wFT), we
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Figure B.5: Visualization of the losses: CE − log pθ(wi), BP − log pθ,θ′(wi), FL (1−
pθ(wi))

γ log pθ(wi), and AFL (1+αpθ(wi))
γ log pθ(wi). We set β = β′ =

1, γ = 1, and α = 1.

visualized the losses in Figure B.5. FL suppresses the loss when a model is confident,
whereas AFL increases the loss when a model is moderately confident. Compared with
these losses, BP changes the loss more drastically. When the frequency-biased policy
pθ′ is highly confident, BP strictly suppresses the loss to prevent further learning on
that word; when pθ′ is not confident, BP highly increases the loss to encourage the
learning on that word. This drastic rebalancing of the loss resulted in wFT’s larger
vocabulary size and higher discriminativeness.

B.10 Effectiveness on More Recent Models

To further demonstrate the effectiveness of our methods, we tested our fine-tuning
methods on a more recent captioning model, VinVL [203, 105]. VinVL boosts its per-
formance through large-scale cross-modal pre-training. The significant performance
improvements have made VinVL a popular captioning model and one of the most ad-
vanced captioning models available today [166, 186, 135].
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Vocabulary Standard Evaluation Discriminativeness

Unique-1 Unique-S Length CIDEr SPICE BERTS++ TIGEr CLIPS RefCLIPS R@1 R@5 R@10

VinVL RL 1,126 4,298 10.0 140.9 25.2 46.1 75.7 77.6 83.3 36.1 68.5 80.2
+ sFT 1,834 4,649 10.0 126.0 23.8 45.5 75.6 78.2 83.3 39.2 72.1 83.8
+ wFT 1,852 4,652 10.0 124.9 23.7 45.5 75.6 78.2 83.3 39.2 72.0 83.9
+ wFT (BP decoding) 1,734 4,717 9.8 122.4 23.5 45.2 75.7 78.2 83.3 39.6 72.1 84.6

Table B.3: Test on the more recent captioning model. Automatic evaluation results
on the MS COCO test set. Unique-1 and Unique-S indicate the number of
unique unigrams and sentences, respectively. Length is the average length
of output captions.

We used the best-performing pre-trained model as our baseline2. The model is pub-
licly available3. Note that this model was trained using the standard RL [151].

As in the previous experiments, we applied our fine-tuning methods for one epoch
only. We searched for the best learning rates for fine-tuning from {1e-5, 1e-6}, and
the inverse-temperature hyperparameter β′ of Eq. (4.5) from {0.01, 0.1, 1}. Other
hyperparameters were set to the same as the baseline model. The best learning rate
was 1e-5. The best β′ was 0.01 for wFT with pθ decoding and 1 for wFT with BP
decoding. Note that sFT does not use β′.

Table B.3 shows similar results as Table 4.1. Our methods significantly increased
the vocabulary size from the baseline and accordingly enhanced the discriminative-
ness. The standard evaluation metrics also showed the same tendency. Although
our models scored lower than the baseline in the conventional exact-matching met-
rics (CIDEr and SPICE), the gap became smaller in the more advanced soft-matching
metrics (BERTS++ and TIGEr). In the state-of-the-art soft-matching metrics (CLIPS
and RefCLIPS), our models achieved the same or even higher scores than the base-
line. These results show that our methods are also effective on the more recent model.
Moreover, these results further validate that our methods can switch any off-the-shelf
RL models to discriminativeness-aware models while maintaining the overall quality
of captions.

2coco captioning large scst
3https://github.com/microsoft/Oscar/blob/master/VinVL MODEL ZOO.md#I

mage-Captioning-on-COCO
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B.11 Comparison and Combination with More Recent
Discriminativeness-Aware Models

Contemporaneous to our work, [25] showed that maximizing reference-free CLIPS-
based reward enhanced discriminativeness significantly. In this section, we clarify the
advantages of our methods over the CLIPS-based RL by comparing and combining
our methods with it.

The pre-trained models of [25] are publicly available4. We used the transformer
model trained with the standard CIDEr reward, Transformer* RL (CIDEr)5, and the
one trained with the reward proposed by [25], Transformer* RL (CLIPS + Gram-
mar)6. The proposed reward is computed by the weighted sum of CLIPS and gram-
maticality scores. We also included Transformer* Only CE7 in the comparison as the
baseline without RL8.

As in the previous experiments, we applied our fine-tuning methods for one epoch
only. We searched for the best learning rates for fine-tuning from {1e-5, 1e-6, 1e-7},
and the inverse-temperature hyperparameter β′ of Eq. (4.5) from {0.01, 0.1, 1}. Other
hyperparameters were set to the same as the baseline model. The best learning rate for
Transformer* RL (CIDEr) was 1e-5; the best β′ was 0.1 for wFT with pθ decoding and
1 for wFT with BP decoding. The best learning rates for Transformer* RL (CLIPS +
Grammar) were 1e-6 for wFT with BP decoding and 1e-7 for the others; the best β′

was 1 for wFT with both decoding methods. Note that sFT does not use β′.
Table B.4 shows the results. Similar to the previous results, our methods signifi-

cantly enhanced the vocabulary size and discriminativeness from the RL models while
maintaining or even increasing the scores in the state-of-the-art soft-matching metrics.
The CLIPS + Grammar reward also achieved the high discriminativeness compared
with the standard CIDEr reward.

However, the improvement of the CLIPS-based RL came at the expense of the con-
ciseness and overall quality of captions in contrast to our methods: compared to Trans-

4https://github.com/j-min/CLIP-Caption-Reward
5clipRN50 cider
6clipRN50 clips grammar
7clipRN50 mle
8Note that clipRN50 does not mean that the model used the CLIPS-based reward. It denotes that the

model used CLIP [145] as the image encoder, unlike the other models tested in this paper.
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Vocabulary Standard Evaluation Discriminativeness

Unique-1 Unique-S Length CIDEr SPICE BERTS++ TIGEr CLIPS RefCLIPS R@1 R@5 R@10

Transformer* RL (CIDEr) 691 3,650 9.5 126.0 22.8 45.2 74.6 75.8 81.6 27.1 57.2 70.6
+ sFT 1,265 4,071 9.1 122.9 22.2 45.2 74.8 76.4 82.0 31.4 62.0 75.0
+ wFT 1,546 4,337 9.0 111.3 21.0 44.2 74.5 76.5 81.8 31.6 63.3 75.7
+ wFT (BP decoding) 1,543 4,471 9.5 112.3 21.7 44.9 74.8 76.9 81.9 34.0 65.4 78.4

Transformer* RL (CLIPS + Grammar) 952 4,847 13.0 74.1 19.8 43.6 75.0 79.2 81.2 44.2 77.0 86.9
+ sFT 969 4,848 12.8 76.4 20.1 43.8 75.0 79.2 81.2 44.6 77.3 87.0
+ wFT 969 4,847 12.9 76.4 20.1 43.8 75.0 79.2 81.2 44.8 77.2 87.1
+ wFT (BP decoding) 1,001 4,853 12.2 82.5 20.6 44.1 75.0 79.2 81.3 45.5 77.2 87.1

Transformer* Only CE 1,174 3,637 9.4 113.8 20.9 44.1 74.0 75.1 81.1 26.2 55.2 68.6

Table B.4: Test on the more recent discriminativeness-aware model. Transformer*
used a different image encoder than the other transformer models tested in
this paper. Automatic evaluation results on the MS COCO test set. Unique-
1 and Unique-S indicate the number of unique unigrams and sentences, re-
spectively. Length is the average length of output captions.

former* RL (CIDEr), Transformer* RL (CLIPS + Grammar) significantly increased
the sentence length and decreased scores in the standard evaluation metrics, includ-
ing the current best-performing metric, RefCLIPS. Although increasing the sentence
length is one way to describe images in detail, concise description is more desirable
to convey the most characteristic information clearly and efficiently [154]. Despite the
longer sentence length, the side effect was still observed: CLIPS-based RL decreased
the output vocabulary from the Only CE baseline.

These results indicate that our methods and the CLIPS-based RL increased discrim-
inativeness by different factors: more specific vocabulary and longer descriptions, re-
spectively. In other words, the contribution of our methods is orthogonal to that of the
CLIPS-based RL. To utilize the strength of each, we applied our methods to the CLIPS-
based RL model. Although the CLIPS-based RL achieved the high discriminativeness
and relatively large vocabulary size due to the longer sentences, our methods further
enhanced the discriminativeness and vocabulary size. Surprisingly, our methods also
improved the standard evaluation scores, including exact-matching scores. This result
suggests that our fine-tuning with ground-truth captions restored the overall quality of
captions, which was degraded by over-optimization for reference-free CLIPS.

Another critical advantage of our methods is computational efficiency. Training of
CLIPS-based RL took one day using eight GPUs [25], while ours only took 40 minutes
using a single GPU.
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The above results conclude that our methods are orthogonal to the more recent dis-
criminative image captioning method and have important advantages in conciseness
and efficiency.
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