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Deep learning-based cyberattacks behaviour
analysis for IoT ecosystem∗

Enkhtur Tsogbaatar

Abstract

The proliferation of the Internet of Things (IoT) and the evolution of technolo-
gies enable us to create multitudes of personal applications and services to make
our daily life more comfortable and easier by adopting automation in daily oper-
ations. This growth boosts explosively for vulnerabilities and emerging attacks in
parallel, which are for both IoT devices and applications. Most IoT devices are
inherently vulnerable due to insecure design, implementation, and configuration.
On the other hand, IoT applications are more vulnerable than devices during
service time because attackers can exploit those vulnerabilities to compromise a
secure system in milliseconds. One of such attacks is a low-rate and economic Dis-
tributed Denial of Service (DDoS) attack that targets to deteriorate users Quality
of Service (QoS). Deep learning (DL) has a notable capability to assist, analyze
user behaviours in complicated IoT ecosystems. DL can learn complex behav-
ioral patterns of IoT devices and applications more effectively than conventional
learning techniques, and it can detect attacks in IoT with maximum accuracy.
Additionally, Software-Defined Networking (SDN) has appealing features such as
flexibility, dynamicity in network operations, and resource management to sup-
port detection systems.
This thesis aims to design, develop, and implement comprehensive approaches

to detect and predict cyberattacks in IoT devices and applications by integrating
DL with SDN infrastructures. The major contributions of this thesis are in two
folds. Firstly, we focus on IoT devices to address problems such as class im-
balance, dynamic attack detection, and data heterogeneity. We propose a deep
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ensemble learning framework known as DeL-IoT to uncover and predict anomalies
in IoT devices by integrating SDN. The DeL-IoT employs deep and stacked au-
toencoders to extract handy features for stacking into an ensemble learning model.
Moreover, this framework yields efficient detection of anomalies, manages traffic
flows dynamically, and forecasts both short and long-term device status for early
action(s). Our experimental analysis proved that DeL-IoT performs well even in
an 1% imbalanced dataset and outperforms 2%-3% when comparing F1 and MCC
scores with single models. Secondly, several IoT applications are latency-sensitive
and mission-critical when providing services over edge-clouds. However, attack-
ers attempt to interrupt services deployed in edge-clouds by imitating legitimate
behaviour of users, one such attack is Very Short Intermittent DDoS (VSI-DDoS)
attack that targets services to degrade users QoS. These attacks send intermit-
tent bursts (in tens of milliseconds) of legitimate HTTP requests to the target
services for degrading users QoS. Because of the stealthy nature of VSI-DDoS, it
is challenging to pinpoint the root-cause when the system resource usage remains
at a moderate level. Therefore, we propose a 1D-CNN-based (Convolution Neu-
ral Network) DL method for detecting VSI-DDoS attacks in IoT applications.
The experimental results on both testbed and benchmark datasets proved that
our proposed method achieves maximum detection accuracy of 99.3% and 100%
which gives improvement by 33.15%-0.01% detection in comparison to baseline
approaches, respectively.

Keywords:

Internet of Things (IoT), anomaly detection, Software-Defined Networking (SDN),
deep ensemble learning, autoencoders, Probabilistic Neural Networks (PNNs),
VSI-DDoS, QoS, Convolution Neural Network (CNN)
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1 Introduction

1.1 Motivation
The Internet of Things (IoT) comprises billions of connected devices that can
share and collect data over the Internet. Business Insider’s 2020 IoT report
projects that the number of IoT devices is expected to reach 41 billion by 2027 [1].
In addition, IoT has now a wide range of live applications such as transportation,
smart home, healthcare, industry, smart environment, smart city as well as social
gaming robots and personal. Simultaneously, the Industrial Internet of Things
(IIoT) is empowered by more momentum as businesses integration between Ar-
tificial Intelligence (AI), Big-data and IoT technologies [2]. Based on Business
insights’s report, the global IoT market is projected to grow from $381.30 billion
in 2021 to $1,854.76 billion in 2028 [3]. Healthcare constitutes the majority of
this IoT market or 41%, followed by industry with 33% and energy with 7%.
Other sectors, such as transportation, agriculture, urban infrastructure, security,
and retail have about 15% of the IoT market totally [4]. Such rapid growth of
IoT allows billions of IoT devices to be connected and exchange data for vari-
ous applications and it has brought significant benefits to our lives, society, and
industries.
The technology used has still not matured enough to provide security for IoT

devices, communications, and applications in parallel. Frequently, IoT devices are
vulnerable due to limited resources, which makes them expose to cyberattacks [5].
Thus, an increase in connected IoT devices offers larger platforms for adversaries
to gain faster access to IoT devices and applications and utilize them to launch
large-scale attacks. For instance, Mirai Botnet caused massive Distributed Denial
of Service (DDoS) attacks to a DNS server of Dyn DNS provider [6] and brought
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down several sites, including GitHub∗, Reddit†, Netflix‡, and Airbnb§ for several
hours. Additionally, multiple zero-day attacks have been observed in IoT [7].
The applications of IoT are growing rapidly and penetrating most of the existing
industries. Thus, securing IoT devices and applications, which have already been
deployed or are in the process of deployment, is an increasing challenge for man-
ufacturers, users, and service providers. Consequently, it is imperative to devise
efficient and comprehensive methods for detecting cyberattacks in IoT devices
and applications from small-scale to large-scale systems.

Sensing
Layer

Network
Layer

Middleware
Layer

Application
layer

Smart Home Smart City Smart Healthcare

Figure 1.1: Layers in IoT ecosystem.

Figure 1.1 illustrates IoT ecosystem or environment that comprises four pri-
mary layers in it. The first layer includes the use of various sensors and actuators
to perceive the data or information to accomplish various tasks. The acquired
data is then transmitted via a communication network in the second layer. Most
of the evolving IoT applications deploy in the third layer, called a middleware
layer, to act as a bridge between the network and application layer. Finally,
on the fourth layer, there are various IoT based end-to-end applications such as

∗https://github.com/
†https://www.reddit.com/
‡https://www.netflix.com/
§https://www.airbnb.com/
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smart home, smart city, smart transport, smart healthcare, etc. All of these four
layers have security issues specific to them [8].

1.2 Problem Formulation and Assumptions
The IoT ecosystem is unique, challenging, and demands different security re-
quirements that may not be found or solved with existing security solutions. For
instance, since IoT devices are lightweight, they don’t have enough computational
resources such as disk space, memory, and battery by characteristics [9]. Hence,
attackers employ the vulnerabilities, weaknesses, and constraints to make suc-
cessful attacks within a short period of time. The following characteristics make
it challenging to secure IoT devices and applications.

• Resource constraints: IoT devices have resource limitations that prevent
having sophisticated security features and tools installed.

• Low cost: The worldwide IoT market is increasing exponentially with the
competition. However, adding comprehensive cybersecurity features is ex-
pensive at both the software and hardware level in IoT. Thus, IoT devices
are produced by manufacturers without comprehensive cybersecurity fea-
tures [10].

• Insecure devices: IoT devices have limited resources, thus, every extra se-
curity layer requires more processing capabilities, battery power, and con-
sumes additional energy. Hence, manufacturers do not consider an extra
security layer as one of the significant factors for producing IoT devices [11].

• Heterogeneous/diverse: IoT ecosystems are highly heterogeneous with re-
gard to communication medium and protocols, platforms, and devices [12].
Thus, it is challenging to devise an efficient generalized intrusion detection
and prevention system (IDS/IPS) for heterogeneous IoT ecosystems [13].

• Intrusive: Since, some IoT devices collect highly sensitive personal informa-
tion, it increases privacy concerns. For instance, in a smart home, motion
sensors or security cameras also gather sensitive personal information as
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well as a medical wearable device collect information of a patient’s heart
rate, blood pressure, location, and daily physical activity. Mainly, the data
gathered by these devices is made available to the user through a smart-
phone application. Thus, the sensitive personal data can be leaked if the
device, the application or the communication channel between the device
and the application are not adequately secured [14].

• Critical: Mission-critical IoT applications are highly imperative such as
healthcare, power systems industries and autonomous vehicles. In addition,
new types of mission-critical IoT applications are also emerging in areas
such as wearables, smart cities, and smart homes. Since any compromise
of the IoT device or applications can lead to severe physical and human
damages, all of these are always required to work as expected without any
glitches [15]. For instance, the probability for attackers to take control of
autonomous self-driving cars to cause intentional accidents will be a severe
security issue in the near future [16].

• Ubiquitous: It explains the point that IoT devices have penetrated every
aspect of our daily lives. In the near future, IoT devices will be everywhere
around us. They will become imperative to our daily life and we will depend
more and more on them. Devices will no longer need human intervention to
function properly, such as a bulb connected to a motion sensor that turns on
or off automatically. Most people will not even realize how to rely on IoT
until a cyberattack happens. Despite its ubiquitous nature, most people
regularly ignore the security implications of the IoT [13].

• Insecure interface: For accessing IoT services, the interfaces utilized through
web, mobile, and cloud are vulnerable to different cyberattacks such as SQL
injection or Cross-site Scripting (XSS) which may severely affect the data
privacy [9]. Symantec reports that 10 security issues in 15 web portals
are utilized to manage IoT devices, including serious issues that can lead
to unauthorized access to the backend systems. Occasionally, the inter-
face may not allow the possibility to alter the default password. A strong
password recovery mechanism can also be absent. Interfaces might not im-
plement an account lockout mechanism causing them vulnerable to brute-
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force attacks. They might also be susceptible to account enumeration at-
tacks [14].

• Abundant: The data generated by IoT devices are abundant. As IoT devices
are increasing rapidly, they will soon generate huge amounts of data. IDC
expected that there will be 55.7 billion connected IoT devices, generating
73.1 zettabytes (ZB) of data by 2025 [17].

Moreover, based on the characteristics mentioned above and the lack of gen-
eral awareness of the cybersecurity of manufacturers, users, and service providers
bring additional challenges and vulnerabilities when developing solutions for se-
curing IoT devices and applications. If efficient and comprehensive cybersecurity
measures were not developed and implemented in IoT devices and applications,
then it is hard to expect on demand services or benefits either from each device
or deployed applications. Attackers can connect easily with large bot networks.
Further, a single infected IoT device can connect to a particular network that
generates risk to all other vulnerable IoT devices in that network as well. The
aforementioned process can cause thousands of IoT devices and applications to be
compromised without anyone aware of them, and it offers power to adversaries
for employing a command and control server (C&C) and launching large-scale
attacks on critical systems. Although the utilization of smart IoT applications
is aimed to improve the overall quality of life of the citizens, it comes with a
threat to the privacy of the citizens. For instance, there are IoT applications uti-
lizing which parents can keep track of their child. However, if such applications
are compromised by attacker, then the safety of the child can come to risk [8].
Hence, it is crucial to propose comprehensive security solutions for detecting and
predicting cyberattacks in the IoT ecosystem by considering the limitations of
IoT devices and applications.
Artificial Intelligence (AI) is continually changing our lives and being applied

in wide areas such as autonomous vehicles, IoT systems, smart home, city, etc.
When developed AI algorithms play a key role to bring too much convenience
to our society, they are also vulnerable to attacks at the same time. AI systems
hacked by attackers may lead to leakage of user information, incorrect result
of classification, property loss, wrong decision making, etc. However, machine
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learning (ML) and Deep Learning (DL) methods have been applied to detect, au-
tomate, predict, and root-cause analysis of critical systems [18]. DL is extensively
used in computer vision, speech recognition, robotics, natural language process-
ing, and numerous other applications but still less in the cybersecurity domain.
Compared to traditional ML techniques, DL methods have a number of advan-
tages that are required when developing cybersecurity solutions. First, the uti-
lization of multiple hidden layers within a neural network structure indicates that
DL can identify complex nonlinear relationships among features. Second, popular
DL architectures, such as convolutional neural network (CNN) long short-term
memory (LSTM), autoencoders, and transformer networks have ability to extract
and determine useful features directly from raw data instead of relying on hand-
crafted statistical features as performed in the traditional ML [4]. Third, DL is
especially well suited for dealing with ‘big data’ challenges [4]. With billions of
IoT devices interconnected together to sense and share information worldwide,
IoT systems typically generate an enormous amount of data, typically composed
of devices and applications deployed in the edge. DL has a notable capability to
assist in analyzing users behaviour in complicated IoT systems. Moreover, DL
could allow IoT devices to learn complex behavioural patterns more effectively
than traditional learning techniques.

1.3 Research Objectives and Contributions

1.3.1 Research objectives
The objective of this research is to devise, develop efficient and comprehensive
anomaly detection methods to detect and predict cyberattacks against IoT de-
vices and applications using DL approaches when deploying services on the edge.

1. RO1.1: To devise and develop an efficient and comprehensive cyberattack
detection and prediction approach for IoT devices that employ SDN and
deep learning (DL) to address multiple problems such as data heterogeneity,
data imbalance, dynamic flow management, and prediction of the future
status of IoT devices.

• To develop a dataset with diverse and emerging cyberattacks that
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carries all characteristics such as data heterogeneity, data imbalance,
dynamic network flow management, and predicting future status of
IoT devices.

• To address those challenges, how deep learning approaches help to
adapt dynamic patterns of attackers, specifically in heterogeneous sce-
narios, data imbalance, dynamic flow management using SDN con-
troller and DL.

• To predict the IoT devices’ future status by using DL before compro-
mising them.

• To validate the proposed methods using testbed and benchmark datasets.

R.O1.1: The objective is to devise and develop an effective comprehensive
approach to detect and predict the cyberattacks in IoT devices. First, due
to lack of datasets that carries the behaviour mentioned above, we investi-
gate to setup a testbed and prepare a dataset to meet these requirements
like data heterogeneity, data imbalance, dynamic flow management, and
prediction of the future status of the IoT devices. Second, we investigate
the proper solution for each challenge, and we find that deep ensemble
learning approach can address the data heterogeneity and data imbalance
problems. In addition, our experimental results show that deep ensemble
learning approaches give the highest detection accuracy for the imbalanced
dataset compared with the single DL approaches. Regarding dynamic flow
management of the IoT devices, we observe that SDN can (i) manage the
data flow of IoT devices well, (ii) isolate the infected IoT devices using the
network controller, and (iii) mitigate and managing future cyberattacks at
early. The details of this work is presented in Chapter 4.

2. RO1.2: To design and develop effective method to detect emerging cyber-
attacks in IoT application using DL.

• To generate emerging cyberattacks in IoT applications in a testbed
environment in order to develop emerging cyberattacks datasets.

• To develop an effective DL approach for detecting emerging cyberat-
tacks in IoT applications.
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• To evaluate the impact of emerging cyberattacks in IoT applications.

R.O1.2: The primary objective is to generate a dataset with the emerg-
ing attacks in IoT applications and to develop an effective approach for
detecting the emerging attacks in IoT applications. First, we investigate
the emerging cyberattacks and observe that there is a lack of solutions for
assessing and detecting IoT applications against Very Short Intermittent
Distributed Denial of Service (VSI-DDoS) attacks. Such attacks send in-
termittent bursts (in tens of milliseconds) of legitimate HTTP requests to
the target services for degrading providers Quality of Service (QoS). Thus,
first, we generate VSI-DDoS attacks data by deploying IoT application in a
testbed environment using Time Series Benchmark Suite (TSBS)∗ and cre-
ate IoT application dataset for VSI-DDoS attacks. Second, we evaluate the
impact of the VSI-DDoS attacks in IoT applications. From experimental
evaluation, we find that the VSI-DDoS attacks can easily bypass a state-
of-art intrusion detection system and it makes a significant impact on the
QoS of the legitimate users of target services in deployed IoT applications.
Finally, we devise and develop an 1D-CNN based DL approach for detect-
ing VSI-DDoS attacks in IoT applications to ensure secure services towards
users. The aforementioned proposal details are given in following Chapter
5.

1.4 Contributions
To address the issues mentioned in previous Section, this thesis contributes the
following as outcomes.

1.4.1 Research contributions
• We propose DeL-IoT, a deep ensemble learning approach to detect anoma-

lies in IoT devices employing SDN.

– It utilizes the principles of deep autoencoders and probabilistic neural
networks.

∗https://github.com/timescale/tsbs#appendix-i-query-types
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– It can detect dynamic attacks and handle the data imbalance problems.

• The deployment of a learned model within SDN controller makes the DeL-
IoT system effective and reliable for dynamic flow management.

• DeL-IoT introduces an IoT device status prediction mechanism for forecast-
ing anomalies and taking preventive measures before interrupting a device.

• We prepare a new VSI-DDoS IoT applications dataset with diverse attack
scenarios and make it available for public use to fill the research gap.

• We propose a 1D-CNN-based deep learning approach to detect VSI-DDoS
attacks early for IoT applications.

• Systematic and extensive experimental analysis using testbed and bench-
mark datasets, showing the proposed method is superior to competitors in
terms of accuracy, F1, Matthews Correlation Coefficient (MCC) measures,
and prediction scores.

1.5 Outline of the Thesis
The rest of the thesis is organized as follows. In Chapter 2, we present preliminar-
ies of cyberattacks in the IoT. In addition, we discuss how to manage IoT devices’
network traffic flow utilizing SDN, and how important the dataset is for devel-
oping solutions against cyberattacks. Finally, we describe common evaluation
criteria to measure the performance of the proposed methods. In Chapter 3, we
present the prior research on IoT cyberattacks detection and prediction methods
utilizing the SDN, machine learning, and deep learning approaches. In Chap-
ter 4, we explain our proposed deep ensemble learning approach that integrates
with SDN for detecting and predicting anomalies in IoT devices. The Chapter 5
presents our proposed 1D-CNN-based approach for detecting VSI-DDoS attacks
in IoT applications. The Chapter 6 concludes this thesis. Finally, in Chapter 7,
we enumerate a list of dimensions as future work.
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2 Background

The fundamentals of our research topic and methodologies including cyberattacks
in the IoT ecosystem, datasets, software defined network (SDN), and assessment
criteria, are presented in this chapter. First, we present an overview of the cy-
berattacks in IoT. Second, we discuss how to utilize SDN to manage the network
traffic flow of IoT devices, as well as roles of datasets for devising cyberattacks
detection systems. Finally, we describe how to evaluate the performance of de-
tection methods or systems using common evaluation criteria.

2.1 Cyberattacks in the IoT ecosystem

2.1.1 A taxonomy of IoT attacks
The IoT ecosystem has been subjected to a variety of cyberattacks. The compre-
hensive taxonomy of DL techniques utilized in IDSs for IoT is shown in Figure
2.1. The taxonomy includes the various areas that are crucial to understand IoT
security issues and their solutions. The taxonomy includes (1) IoT cyberattacks,
(2) IoT architecture layers [8], (3) IDSs for IoT [19], (3) DL techniques used in
the IoT IDSs [19], (4) common datasets used for evaluating DL systems, and (5)
classification strategies [19]. The different areas included in the taxonomy are in
various ways interconnected as root causes of IoT security vulnerabilities in IoT
and solutions to counter such causes.

2.1.2 Security issues at Sensing Layer
The sensing layer primarily deals with IoT sensors and actuators. Sensors sense
the physical phenomenon happening around them. On the other hand, actuators
perform a specific action on the physical environment based on the sensed data.
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Figure 2.1: Taxonomy of deep learning-based detection system against cyberat-
tacks for IoT.

There are various kinds of sensors for sensing different kinds of data, such as
ultrasonic sensors, camera sensors, smoke detection sensors, temperature, and
humidity sensors. Various sensing layer technologies are used in the different IoT
applications such as RFID, GPS, WSNs, and RSNs [8]. Main security threats
that can be encountered at the sensing layer are as follows.

• Node capturing: IoT applications comprise several low power nodes such
as sensors and actuators. These nodes are vulnerable to a variety of attacks
by adversaries. The attackers may try to capture or substitute the node
in the IoT system with a malicious node. The new node may appear to
be part of the system but is controlled by the attacker. This may lead to
compromising the security of the complete IoT application [20].

• Malicious code injection attack: The attack involves the attacker in-
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jecting some malicious code into the memory of the node. In general, the
firmware or software of IoT nodes are upgraded on the air, and this provides
a gateway to the attackers to inject malicious code. Utilizing such malicious
code, the attackers may force the nodes to perform some unintended func-
tions or may even try to access the complete IoT system. [21].

• False data injection attack: Once the node is captured, the attacker
may apply it to inject false data onto the IoT system. This may lead to
false results and may result in malfunctioning of the IoT application [22].

• Side-channel attacks (SCA): Besides direct attacks on the nodes, vari-
ous side-channel attacks may lead to leaking of sensitive data. The microar-
chitectures of processors, electromagnetic emanation, and their power con-
sumption reveal sensitive information to adversaries. Side-channel attacks
may be based on power consumption, laser-based attacks, timing attacks, or
electromagnetic attacks. Modern chips take care of various countermeasures
to prevent this side-channel attacks while implementing the cryptographic
modules. [8]

• Eavesdropping: IoT applications usually comprise various nodes deployed
in open environments [23]. Thus, such IoT applications are exposed to
eavesdroppers. The attackers may eavesdrop and capture the data during
different phases such as data transmission or authentication.

• Sleep deprivation attacks: During these types of attacks, the adversaries
attempt to deplete the battery of the low-powered IoT edge devices. This
problem leads to a denial of service from the nodes in the IoT application
due to a dead battery. This attack can be carried out by running infinite
loops in the edge devices applying malicious code or by artificially increasing
the power consumption of the edge devices [24].

2.1.3 Security issues at Network Layer
The network layer’s primary function is to send information from the sensing
layer to the computational unit for processing. The main security problems en-
countered at the network layer are as follows.
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• Phishing site attack: Phishing is one of the top threats that cause data
breaches and it is a technique in which the attacker tries to steal a user’s
credentials through fraudulent attempts, for instance, by sending emails
[25]. The attackers expect that at least a few of the devices will become a
victim of the attack. There is a probability of encountering phishing sites
in the course of users visiting web pages on the Internet. Once the user’s
account and password are compromised, the whole IoT ecosystem being
managed by the user becomes vulnerable to cyberattacks. The network
layer in IoT is highly vulnerable to phishing sites attacks [8].

• Access attack: The advanced persistent threat is another term for an ac-
cess attack. An unauthorized adversary gains access to the IoT network in
this form of attack. The intruder will remain undetected in the network for
an extended period. Rather than causing network harm, the ultimate goal
of such a type of attack is to steal valuable information. IoT applications
receive and transmit valuable data regularly, making them particularly vul-
nerable to such attacks [26].

• DDoS/DoS attack: The attacker floods the target servers with a large
number of unwanted requests. These requests hinder the target server,
thereby disrupting services to legitimate users. If there are many sources
utilized by the attacker to flood the target server, then such an attack
is termed a DDoS. Many IoT devices in IoT applications are not strongly
configured and thus easily compromised by attackers. The compromised IoT
devices, bots, or zombies, are controlled by a command and control (C&C)
server to perform various tasks. A bot-master, an attacker controls the
bots, can use thousands or possibly millions of infected bots in its botnet to
concurrently launch large-scale attacks like spam emails for monetary gains
or DDoS on critical infrastructure or websites to make it unresponsive.
For instance, one of the well-known large-scale IoT botnet attacks, Mirai,
happened in 2016, causing high-profile websites such as Twitter, New York
Times, GitHub, and Netflix to become inaccessible [27].

• Data transit attacks: IoT applications handle a lot of data storage and
exchange. Data is valuable, and thus it is always the target of hackers.
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Data that is stored in the local servers or the cloud has a security risk,
but the data that is in transit or is moving from one location to another
is even more vulnerable to cyber attacks. In IoT applications, there is
a lot of data movement between sensors, actuators, cloud, etc. Various
connection technologies are employed in such data movements, and hence
IoT applications are susceptible to data breaches [8].

• Routing attacks: During data transit, malicious nodes in an IoT appli-
cation may seek to redirect the routing. Sinkhole attacks are a particular
kind of a routing attack in which an intruder compromises a node inside
the network and launches an attack. Then the compromised node attempts
to attract all the traffic from neighbor nodes based on the routing metric
that is used in routing protocol into it [28]. A worm-hole attack is another
attack which can become a serious security threat if combined with other
attacks such as sinkhole attacks. A warm-hole is an out of band connection
between two nodes for fast packet transfer. An attacker can generate a
warm-hole between a compromised node and a device on the Internet and
attempt to bypass the basic security protocols in an IoT application [8].

2.1.4 Security issues at Middleware Layer
The purpose of the middleware layer in IoT is to generate an abstraction layer
between the network layer and the application layer. This layer comprises in-
formation processing systems that take automated actions based on the results
of processed data and links the system with the database which provides stor-
age capabilities to the collected data [21]. Even though the middleware layer is
beneficial to provide a reliable and robust IoT application, it is also vulnerable
to various attacks. These attacks can take control of the whole IoT application
by infecting the middleware. Moreover, database security and cloud security are
other main security challenges in the middleware layer. Several possible attacks
in the middleware layer are explained as follows [8].

• Man-in-the-middle attack: Using the MQTT broker, which basically
functions as a proxy, the MQTT protocol utilizes a publish-subscribe paradigm
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of communication between clients and subscribers. This helps in disconnect-
ing the publishing and the subscribing clients from each other and messages
can be sent without the knowledge of the destination. If the attacker can
control the broker and become a man-in-the-middle, then the attacker can
get complete control of all communication without any knowledge of the
clients [8].

• SQL injection attack: Middleware layer is vulnerable to SQL Injection
(SQLi) attacks, which allows attackers to bypass authentication, access pri-
vate information, modify data, or even destroy databases [29].

• Flooding attack in cloud: This attack operates almost the same as DoS
attack in the cloud and affects the QoS. For exhausting cloud resources, the
attackers continuously send multiple requests to a service. These attacks
can have a significant impact on cloud systems by increasing the load on
the cloud servers [8].

• Signature wrapping attack: In the web services used in the middleware,
XML signatures are used [30]. XML signature wrapping attack works by
intercepting and modifying XML message and re-transmitting it to a target
machine in order to run tainted code [31].

• Cross-site scripting (XSS): In such an attack, the adversary injects
malignant HTML/ JavaScript codes into the data content which may be
accessed and executed by a server leading to its compromise [31].

2.1.5 Security issues at Application Layer
The application layer is mainly responsible for providing services to the end-users
related to particular applications. There is a wide range of IoT applications such
as smart homes, smart agriculture, smart cities, and smart healthcare. Main
security issues encountered by the application layer are explained below.

• Data thefts: IoT applications deal with a lot of critical and private data.
The data in transit is even more vulnerable to attacks than data at rest,
and in IoT applications, there is a lot of data movement. The users will be

15



unwilling to register their private data on IoT applications if these appli-
cations are vulnerable to data theft attacks. Some of the techniques and
protocols such as data encryption, data isolation, user and network authen-
tication, privacy management are being utilized to secure IoT applications
against data thefts.

• Access control attacks: Access control is an authorization mechanism
that allows only legitimate users or processes to access the data or account.
Access control attack is a severe attack in IoT applications because once the
access is compromised, then the whole IoT application becomes vulnerable
to attacks.

• Service interruption attacks: These attacks are also referred to as DDoS
attacks in the existing literature. There have been various cases of such
attacks on IoT applications. Such attacks are to generate a large number of
requests to IoT applications by mimicking legitimate users to make target
IoT applications services unavailable for legitimate users.

• Sniffing attacks: The attackers may utilize the sniffer applications to
monitor the network traffic in IoT applications. Thus, If IoT applications
do not implement the data confidential security protocols to prevent it, this
may enable the attacker to obtain access to confidential user data [32].

• Reprogram attacks: If the programming process is not secured, then the
attackers can seek to reprogram the IoT objects remotely. This may lead
to the hijacking of the IoT network [33].

2.2 Managing networks - SDN
The utilization of SDN is getting high momentum also within the security re-
search communities. SDN departs the control plane of networking devices such
as router and switch from its data plane, making it possible to control, monitor,
and manage a network from a centralized controller [34]. By leveraging SDN, we
can provide several attractive benefits for IoT ecosystem security through control-
ling the flow dynamically and mitigating attacks at an early stage by rate-limiting
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the flow at the SDN switches. Several significant works [35] have been proposed
for anomaly detection in IoT applying SDN. Bhunia and Gurusamy [35] present
a machine learning-based attack detection and mitigation method in IoT traffic
using SDN. It uses the SVM algorithm at the SDN controller to monitor and
learn the behavior of IoT devices over time, and to detect attacks. However, they
evaluated only with a simulation environment known as Mininet, it remains to
be seen if the method works in real-time environments.

2.3 Data collection, testbed setup, and
benchmarking

In network intrusion detection, especially when using anomaly-based detection,
it is challenging to accurately evaluate, compare, and deploy a system that is
expected to detect new attacks due to the scarcity of adequate datasets. An
anomaly-based network intrusion detection system must be examined and eval-
uated utilising the real labelled network traffic traces with a comprehensive set
of cyberattacks before deploying it in any real-world environment [36]. Since not
many datasets are available in IoT, it is becoming a significant challenge for de-
veloping new cyberattacks detection methods especially emerging attacks in IoT
and evaluating them.

2.3.1 Existing datasets
As mentioned prior, datasets execute an essential role in the evaluation of IoT
cyberattacks detection approaches or systems. There are several datasets publicly
available for evaluation of IoT cyberattacks detection approaches and systems
including DS2OS traffic traces [37], BoT-IoT [38], N-BaIoT [39], IoT Network
Intrusion Dataset [40], ToN-IoT, NF-BoT-IoT, and NF-BoT-IoT. A taxonomy of
IoT cyberattacks datasets is illustrated in Figure 2.2. We briefly explain each of
them as follows.

17



Datasets

Synthetic Benchmark Real-time/ Testbed

DS2OS
traffic traces

N-BaIoT

IoT Network
Intrusion
Dataset

Aposemat
IoT-23

ToN-IoT

BoT-IoT

NF-BoT-IoT

NF-ToN-IoT

Figure 2.2: A taxonomy of IoT cyberattacks datasets

Synthetic datasets

Synthetic datasets are created to provide specific requirements or certain condi-
tions or tests that real data satisfy. Such datasets are beneficial when devising
any prototype system for theoretical analysis thus the design can be improved.
As affirmed before, a synthetic dataset can be utilized to test and generate nu-
merous different types of test scenarios. This allows researchers to create realistic
behavior profiles for legitimate users and attackers based on the dataset to evalu-
ate a proposed system. Additionally, these datasets give fundamental validation
of a specific method or a system; if the results confirm to be satisfactory, the re-
searchers then continue to evaluate a method or a system in a specific domain [41].
DS2OS traffic traces was presented in [37] and is publicly available on Kag-

gle [42]. It comprises synthetic data generated in a virtual IoT environment by
means of a Distributed Smart Space Orchestration System (DS2OS). The system
architecture of the IoT environment includes a set of microservices that commu-
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nicate with each other using the Message Queuing Telemetry Transport (MQTT)
protocol. The dataset comprises 13 different features gathered by monitoring con-
nections between 7 different Virtual State Layer (VSL) service types that connect
illumination controllers, movement sensors, thermostats, solar batteries, washing
machines, door locks, and smartphones. It involves information about the mi-
croservice source, destination, operation, and so forth, however, this dataset does
not include any NetFlow or packet data. It only comprises features that were
particularly designed for detecting anomalies in the IoT traffic frequencies and
the communication baseline models of the microservices [37].

Benchmark datasets

Benchmark datasets are crucial for method developers as well as for those who
want to obtain the best performing tools. There are seven IoT benchmark
datasets publicly available with different scenarios of attacks and legitimate in-
stances created utilizing IoT devices and network environments. Thus, we briefly
discuss each of them as follows.
BoT-IoT dataset was devised to enable botnet identification in IoT networks.

An IoT network was imitated utilizing virtual machines (both normal and attack-
ing). Kali VMs executed port scanning, DDoS, and other botnet attacks. On
Ubuntu VMs, the Node-red tool was utilized for mimicking various IoT sensors in-
cluding a weather station, a smart fridge, motion-activated lights, a garage door,
and a thermostat. A total of 46 network features were extracted applying the Ar-
gus tool. No sensor or log information was recorded. Since the Bot-IoT dataset
collects data using simulated IoT devices, no real IoT hardware is monitored,
making the dataset less representative of real IoT traffic [38].
IoT network intrusion dataset presented in 2019, was generated utilizing

two typical smart home devices, a SKT NUGU (NU 100) and EZVIZ Wi-Fi
Camera (C2C Mini O Plus 1080P), a few laptops and a few smartphones. These
devices were all connected to the same wireless network on which different attacks
were simulated using tools such as Nmap. The dataset comprises 42 raw network
packet files (pcap) collected at different points in time [40].
N-BaIoT dataset was prepared by using two attack generation tools, i.e.,

Mirai (scan, ACK flooding, SYN flooding, UDP flooding, UDPplain attacks) and
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Bashlite (scan, junk, UDP flooding, TCP flooding, COMBO attacks), with 9
commercial IoT devices. There are 5 Bashlite, 5 Mirai, and 1 legitimate datasets,
having 115 features in each of them [39].
Aposemat IoT-23 is a dataset of network traffic from IoT devices includ-

ing a Philips HUE smart LED lamp, an Amazon Echo home intelligent personal
assistant and a Somfy Smart Door Lock. Data was collected within the Strato-
sphere project and comprises 20 captures of malware executed in IoT devices,
and 3 captures of benign IoT devices traffic. The executed attacks involve differ-
ent botnets such as Mirai and Torii. Moreover, the original packet capture files,
netflows generated by Zeek/Bro IDS and their labels are also available [43].
ToN-IoT A recent heterogeneous dataset published in 2020 [44] that involves

telemetry data of IoT services, network traffic of IoT networks and operating
system logs. The dataset consists of a large number of attack scenarios conducted
in a realistic representation of a medium-scale network at the Cyber Range Lab
by ACCS. Additionally, Zeek was utilized to extract the dataset’s original 44
features.
NF-BoT-IoT is an IoT NetFlow-based dataset created employing the BoT-

IoT dataset, named NF-BoT-IoT. The features were extracted from the publicly
available pcap files and the flows were labelled with their respective attack cate-
gories. There are four attack categories in the dataset.
NF-TON-IoT was used publicly available pcaps of the TON-IoT [44] dataset

to generate NetFlow records, leading to a NetFlow-based IoT network dataset.
In addition, TON-IoT was presented in 2020 [44] that comprises telemetry data
of IoT services, network traffic of IoT networks, and operating system logs.

Real-time/Testbed datasets

The real-time/Testbed datasets are generated by deploying several IoT devices
and applications. It injects attacks and legitimate traffic and services, respec-
tively. Later, the monitoring agents will collect data for both system Key Perfor-
mance Indicators (KPIs) and traffic statistics for both IoT devices and deployed
applications. However, the community lacks real-time/testbed datasets by consid-
ering or creating real environments with hundreds of IoT devices and applications
with multiple services for validating developed solutions.
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2.4 Exploratory Data Analysis
Exploratory data analysis (EDA) is an imperative step in any research analysis.
The main aim with exploratory analysis is to analyze the data for distribution,
outliers and anomalies to direct specific testing of your hypothesis. It also gives
tools for hypothesis generation by visualizing and understanding the data usually
through graphical representation [45].

2.5 Evaluation criteria
In this section, we describe the performance measures commonly used to evaluate
network intrusion detection methods and systems. The evaluation of classifiers’
performances plays an important role in development and selection of the classi-
fication model. We explain the multiple measures to complement each other and
ensure efficacy measures of the proposed models. These measures include con-
fusion matrix, precision, recall, F1-measure, Matthews Correlation Coefficient
(MCC). Using these performance metrics, one can decide which model is per-
formed well and best suited for the proposed framework when addressing multiple
problems in IoT.
Confusion matrix (CM) is used to describe the performance of a classification
model on a set of test data. The diagonal represents the correct classification.
The confusion matrix for attack detection is defined as a 2-by-2 matrix, since
there are only two classes known as anomalous and legitimate. Thus, the TNs
(True Negative) and TPs (True Positive) that represent the correctly predicted
cases lie on the matrix diagonal while the FNs (False Negative) and FPs (False
Positive) are on the right and left sides, having wrong predictions [46]. We employ
accuracy, precision, recall and F1 measures as evaluation metrics in addition to
MCC.

• True Positive (TP): The number of an actual legitimate class is correctly
predicted as a legitimate class.

• False Negative (FN): The number of an actual anomaly class is incorrectly
predicted as a legitimate class.
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Table 2.1: Confusion matrix
Actual class

Legitimate Anomalous
Predicted
class

Legitimate TP FN
Anomalous FP TN

• False Positive (FP): The number of an actual legitimate class is incorrectly
predicted as an anomaly class.

• True Negative (TN): The number of an actual anomaly class is correctly
predicted as an anomaly class.

True Negative Rate (TNR) is the percentage of the anomaly traffic misclassified
as legitimate.

TNR = TN

FP + TN
(2.1)

False Negative Rate(FNR) is the percentage of legitimate traffic misclassified
as an anomaly.

FNR = FN

TP + FN
(2.2)

Accuracy is a metric that measures how correctly an attack detection system
works, measuring the percentage of detection and failure as well as the number
of false alarms that the system produces [46].

Accuracy = TP + TN

TP + TN + FP + FN

Precision means the positive predictive value. It is a measure of the number of
true positives the model claims compared to the number of positives it claims.

Precision = TP

TP + FP
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Recall is known as the actual positive rate which means the number of positives in
the model claims compared to the actual number of positives there are throughout
the data [47].

Recall = TP

TP + FN

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

Matthews Correlation Coefficient (MCC) measures the quality of the classifica-
tion, showing the correlation agreement between the observed values and the
predicted values [48]. MCC is a great metric, especially in case of imbalanced
datasets, it is given in Eq. 2.7.

N = TN + TP + FN + FP (2.3)

S = TP + FN

N
(2.4)

P = TP + FP

N
(2.5)

MCC =
T P
N
− S × P√

P × S(1− S)(1− P )
(2.6)

MCC = TP × TN − FP × FN√
(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)

(2.7)

2.6 Summary
This chapter gives the preliminaries of numerous kinds of critical cyberattacks in
IoT. This chapter also discusses how to manage IoT devices’ network traffic flow
utilizing the SDN, and how important the dataset is for devising and evaluating
the new cyberattacks detection and prevention approaches in IoT cyberattacks.
Lastly, we present common evaluation criteria to measure the performance of
network intrusion detection methods or systems.
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3 Related Work

This chapter presents related works on IoT cyberattacks detection and prediction
methods utilizing the machine and deep learning approaches.

3.1 Introduction
IoT Intrusion is defined as an unauthorized action or activity that harms the
IoT ecosystem. In other words, an attack that results in any kind of dam-
age to the confidentiality, integrity, or availability of information is considered
an intrusion [49]. Limited computational and storage resources in IoT sys-
tems establish constraints on installing conventional security software. The two
main intrusion detection techniques utilized to detect cyberattacks in IoT sys-
tems are signature-based (a.k.a. misuse-based or knowledge-based) and anomaly-
based (a.k.a. behavior-based) approaches [1]. Occasionally they are combined to
generate a hybrid detection system, however, it is complex to implement [50].
Signature-based techniques rely on the existing threat knowledge to classify traf-
fic as legitimate or malicious, whereas anomaly-based systems depend on traf-
fic patterns to detect cyberattacks [51]. Signature-based systems work excel-
lent on existing and well-known cyberattacks. One of the challenges with the
signature-based system is that constantly updating the signature database is
time-consuming. As the size of the database increases, comparing the input
with a large database is computational costly. This method is based on previ-
ously known attack signatures thus it cannot detect zero-day or unknown at-
tacks [52]. Anomaly-based detection is preferred because it observes abnormal
traffic patterns, generates alarms, or blocks traffic when abnormal traffic pat-
terns are detected. One of the advantages of utilizing anomaly-based systems is
that they are good at detecting zero-day and unknown attacks, however, they
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may produce high false-positive results [53]. Thus, in recent years, researchers
have lately utilized machine and deep learning approaches to address the high
false-positive results of anomaly-based intrusion detection systems in the IoT
ecosystem. There have been broad research studies performed utilizing various
machine learning and deep learning models individually and as an ensemble of
classifiers to detect cyberattacks in IoT ecosystem. Machine learning (ML) is ap-
plied to uncover beneficial patterns in big data. ML employs statistical methods
and algorithms to learn complex and difficult patterns from the data. Over time
and continuous data analysis helps ML algorithms to give improved decisions or
predictive accuracy [53]. DL is an ML branch that has given promising results
to detect cyberattacks in the IoT ecosystem. DL models are devised to learn the
way the human brain learns. They utilize many hidden layers to form an artificial
neural network (ANN). One of the advantages of DL over ML is its capability to
process big data volume. Since the data size increases, the performance plateau
of the ML models reaches a certain data size threshold limit, while the DL mod-
els continue to perform better and better [18]. Since IoT devices generate huge
amounts of data, this makes DL approaches fit for IoT cyberattacks detection
systems.

3.2 Prior surveys on IoT attack detection and
prediction

Advances and growth in IoT have brought many researchers to make detailed sur-
veys on IoT security. Thus, many types of survey and review researches [54–58]
have been done in the field of intrusion detection in IoT. Mohamed et al. [54] give
a comprehensive study of DL, big data, and IoT security. The study’s main aim
is to provide DL capabilities and big data technologies that can be combined to
protect IoT devices from cyberattacks. Al-Garadi et al [55]. provide a compre-
hensive survey of ML and DL methods that can be used to improve security in
IoT ecosystems. A detailed survey of threats analysis, including confidentiality,
integrity, and availability (CIA) is presented. Authors give a survey on IoT IDS,
their detection strategy, placement strategy, security threats, and the validation
strategy. Each of these strategies is presented in detail [56]. Xiao et al [57] present
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a detailed survey on ML-based methods to protect IoT devices, data protection,
access control for privacy protection, malware detection, and ML implementa-
tion challenges. Somayye et al. [58] give a detailed survey on IDS to protect IoT
systems, their advantages, disadvantages, open issues, and future trends.

3.2.1 Classical machine learning approaches
In this subsection, we discuss the common ML models including decision trees
(DT), support vector machines (SVM), Bayesian algorithms, k-nearest neighbour
(KNN), random forest (RF), association rule (AR) algorithms, ensemble learn-
ing, k-means clustering and principal component analysis (PCA)for the intrusion
detection system in IoT ecosystem.

Decision Trees (DTs)

DT-based method utilizes a DT to create a model to learn from training samples
by representing them as branches and leaves. The pretrained model is then
utilized to predict the class of the new sample [59]. DT methods require large
storage because of the nature of construction. Alharbi et al. [60] propose the
utilization of a fog-based system to secure IoT devices. In this study, DT was
utilized to analyse network traffic to detect DDoS attacks.

Support Vector Machines (SVMs)

SVM is one of the powerful classification ML techniques that give good accuracy
with less computational power. SVM algorithm creates a hyperplane or decision
boundaries of the number of features and then applies classification techniques
to differentiate multiple classes [1]. Bhunia et al. [35] present a machine learning-
based attack detection and mitigation method in IoT traffic using SDN. It uses
the SVM algorithm at the SDN controller to monitor and learn the behavior of
IoT devices over time, and to detect attacks. However, they evaluated only with
a simulation environment known as Mininet, it remains to be seen if the method
works in real-time environments.
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Random Forest (RF)

RF is another popular ML algorithm based on ensemble methods, bootstrap-
ping, and bagging techniques. In this method, several individuals and unique
decision trees are trained in parallel, and their individual results are aggregated
(called bagging) to find the best results [1]. Researchers have employed RF in
multiple research fields, including finding anomalies and malicious network traf-
fic in IoT networks. Mahmudul et al. [47] propose an anomaly detection method
for IoT sensors in IoT sites using machine learning approaches. This method
is evaluated by using an open-source dataset [61] with seven classes of attacks.
They achieve 98.2%−99.4% accuracy for random forest and artificial neural net-
works. Chaudhary et al. [62] propose an approach to detect DDoS attacks on
IoT devices utilizing ML models including Random Forest (RF), SVM, Logistic
Regression (LR), and Decision Tree (DR). RF model achieves 99.17% in terms
of accuracy. However, this study was evaluated the proposed approach utilizing
the only testbed dataset. Chaudhary et al. [62] propose an approach to detect
DDoS attacks on IoT devices employing multiple ML algorithms including SVMs,
RF, DT, and logistic regression algorithms (LRA). In this study, RF outperforms
other ML methods with 99.17% accuracy to detect DDoS attacks.

3.2.2 Deep learning approaches
In recent years, the applications of DL to IoT systems have become an essential
research topic [63]. The most essential merit of DL over conventional ML is
its superior performance in large datasets. Several significant works [38, 38, 39,
48, 64–66] have been proposed for anomaly detection in IoT using deep learning
approaches.

Convolutional Neural Networks (CNN)

CNN inspired by the visual cortex of animals, is widely used for object recognition
tasks [65]. As a deep learning architecture, CNN is proposed to minimize the
data preprocessing requirements. The most powerful part of CNN is the learning
feature hierarchies from a large amount of unlabeled data. Hence, CNN are quite
promising for applications in network attack detection [67]. Jinyin et al. [65]

27



devise a multichannel CNN (MC-CNN) deep learning approach to detect DDoS
attacks and it was evaluated employing KDDCUP99 and CICIDS2017 datasets.
The experimental results illustrate that MC-CNN detects DDoS attacks with
99.18% accuracy. Recently, Imtiaz et al. [66] develop the intrusion detection
system for IoT networks based on CNN and transfer learning frameworks, and it
was evaluated by utilizing the BoT-IoT [38], IoT Network Intrusion, MQTT-IoT-
IDS2020 [68], and IoT-23 intrusion detection [43] datasets. The experiment result
demonstrates that it achieves 99.99% in terms of detection accuracy. Bambang
et al. [64] present an intrusion detection method for the IoT environment using
the machine and deep learning approaches with the BoT-IoT dataset [38]. Their
results demonstrate that Random forests (RF) and CNN give the best result in
terms of accuracy and the AUC for multiclass classification.

Recurrent neural network (RNN)

RNN is another powerful deep neural network (DNN) commonly utilized to pro-
cess and find patterns such as sequential data, time series, and natural lan-
guage [1]. IoT devices produce many sequential data from sources such as network
traffic flows [69]. Fangyu et al. [70] have analyzed system statistics by utilizing
time series methods and applied different ML models to detect anomalous behav-
ior. RNN performs better than an ML model linear regression as well as RNN
has the least mean absolute error (MAE). One of the limitations of RNN is the
issue of vanishing or exploding gradients [55]. Thus, RNN’s are unable to cap-
ture long-term dependencies. The timestamp’s computational dependency on the
previous timestamp limits parallelism abilities [71].

Long Short-Term Memory (LSTM):

One of the specialized RNN is called LSTM, which can remember information for
a long period of time [72]. LSTM evolved from RNN and can detect normal and
malicious traffic by learning patterns using long sequences [73]. As opposed to
RNN, LSTM is widely utilized, solves the vanishing gradient problem, and can
learn long-term dependencies [74]. The ability of LSTM to learn from tempo-
ral sequences and long-term dependencies gives us an effective IDS opportunity
than CNN and RNN. However, LSTM takes a significantly long training time be-
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cause feature computation at different timestamps cannot happen in parallel [75].
Hwang et al. [76] utilized LSTM to detect real-time malicious IoT network traffic
by simply analyzing the packet header information. This proposed approach was
evaluated by using the ISCX2012 [77], USTC-TFC2016 [78], and testbed datasets,
and it gives 99.36-99.98% in terms of accuracy. A limitation of this study, the
results of this study have not been compared with the results of other baseline
models and related works. Liang et al. [79] propose an LSTM-based approach to
analyze only the packet header information to detect large-scale attacks. Their
proposed method performs better than the conventional ML and simple ANN
model. [80] propose a hybrid CNN-LSTM model and evaluate it using the CI-
CIDS2017 dataset [81] for detecting DDoS attacks and, resulting in an accuracy
of 97.16%.

Autoencoders (AE)

AE is one of the powerful unsupervised neural network techniques [82]. AE is
composed of three layers including the input layer, the hidden encoding layer,
and the decoded output layer. Input and output layers are comprised of the
same dimension. The dimensionality and size of input data are reduced after
it is passed to an AE, encoding, and compressing the input. The output layer
takes the compressed data as input and converts it back into the same dimen-
sions as the original input data was. AE’s learn and classify output automatically
without the need for a labeled dataset [83]. AE’s have been utilized in IDS to
detect anomalies in network traffic. For instance, Yair et al. [39] come up with
a network-based anomaly detection method that uses deep autoencoders and to
detect compromised traffic of IoT devices. This method is validated by using nine
different commercial IoT devices in a laboratory environment with two famous
IoT-based botnets, i.e., Mirai and BASHLITE. This method lacks variation in
attack scenarios. In addition, researchers have been integrating AE’s with many
other ML and DL algorithms such as probabilistic neural network (PNN) and
RNN, LSTM, CNN to achieve better classification results. For instance, Debas-
trita et al. [84] report an ensemble learning method for outlier detection to han-
dle problems in imbalanced datasets. This method employs stacked autoencoder
(SAE) to extract deep features and input them to an ensemble of probabilistic
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neural network models for single and multiple outliers detection. The use of an
autoencoder makes the method’s performance better and more stable. Hwang et
al. [85] propose an unsupervised IDS based on CNN and AE to detect malicious
network traffic. Their approach utilizes CNN to auto-learn the traffic features by
looking at the first few raw traffic bytes. AE’s were employed to build the benign
traffic profile in an unsupervised manner. Their model detected malicious traf-
fic with nearly 100% accuracy and less than 1% FNR and FPR. Their solution
shows a gap in performing only stateful traffic inspection and misses stateless
traffic analysis.

Deep Ensemble Learning

Ensemble learning uses multiple algorithms to get better predictive performance
than any single one of its constituent algorithms could [80, 84, 86]. There are
several evidences that prove that ensemble learning model can handle data het-
erogeneity or class imbalance problems in anomaly detection [87]. Timcenko and
Gajin [88] present an anomaly detection method for the IoT environment us-
ing single and ensemble learning approaches and achieved 99% accuracy using
the UNSW-NB15 dataset. However, the method lacks testbed experiments and
dynamic attack scenarios. Shanzeb et al. [86] propose a deep ensemble CNN
framework to detect DDoS attacks in SDNs, and they evaluate it using the flow-
based CICIDS2017 dataset. The proposed approach achieves 99.45% in terms of
detection accuracy.

3.3 Observations and summary
Most studies do not focus on a comprehensive approach to detect and prevent
cyberattacks in the IoT ecosystem. The data imbalance problem can decrease the
ML and DL models performance. We observe in previous studies that DL models,
especially the DL method, perform better than ML methods in detecting cyber-
attacks in the IoT ecosystem by addressing data imbalance and heterogeneity
problems in the IoT ecosystem. However, there are very few studies that address
the issue of data imbalance for detecting cyberattacks in the IoT ecosystem. A
small number of prior studies have mentioned that how the proposed ML and DL
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methods deploy on IoT devices with the constraint resource. Thus, still, several
opportunities are left to address IoT security problems in small and large-scale
industries with a comprehensive approach in either centralized or distributed en-
vironments.
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4 Deep Ensemble
Learning-Based Approach for
Detecting Anomalies in IoT
Devices

This chapter presents a comprehensive approach to detect and predict cyberat-
tacks in IoT devices by leveraging DL and SDN.

4.1 Introduction
The rapid evolution of the Internet of Things (IoT) has brought billions of
internet-enabled devices into our daily life to make it smarter by bridging the gap
between the physical and the virtual world. Frost and Sullivan [89] have predicted
that the number of connected devices will increase up to 45.41 billion by 2023.
Autonomous decision making, information to end-users, machine-to-machine and
machine-to-user interaction have boosted the acceptance of IoT as a critical asset
in the service chain. IoT systems open up several opportunities in areas of au-
tonomous transportation and industrial automation [90]. Manufacturers hastily
produce new IoT devices without basic security and privacy checks; thus, allowing
attackers to easily and swiftly identify vulnerabilities that allow them to evade,
manipulate, and take over IoT networks [91]. The failure to implement proper
security and privacy measures have already resulted in dire consequences for cer-
tain IoT manufacturers and service providers in terms of reputation and financial
penalties [92]. Hence, security is becoming crucial to protect IoT devices and
applications from cyberattacks in both small and large-scale networks comprised
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of physical and virtual infrastructures.
The rapid growth of IoT-related vulnerabilities, which is proportional to the ex-

ponential production of IoT devices and applications, has created new categories
of attacks and malware. For example, Mirai Botnet caused massive Distributed
Denial of Service (DDoS) attacks to a DNS server of Dyn DNS provider [6] and
brought down several sites including GitHub∗, Reddit†, Netflix‡, and Airbnb§.
Multiple zero-day attacks have been observed in complex networks [7]. It is im-
perative to devise efficient methods for detecting attacks in IoT networks. Tradi-
tionally, there are two primary categories of attack detection methods: signature-
based and anomaly-based. The signature-based method needs to frequently up-
date the attack signature for known attacks from released signatures of Intrusion
Detection System (IDS) vendors [6]. The anomaly-based detection method em-
ploys legitimate behavior patterns to detect unknown attacks based on deviation
from them [93]. These detection problems intensify in the context of IoT in
terms of the following points. First, IoT devices do not generate unusual traffic
due to limited communication, such as status update and sensor data reading.
Second, developing a dynamic model that considers device heterogeneity opens
up another challenge. Third, IoT devices have resource limitations that compli-
cate the deployment of a detection system at the device level. However, the class
imbalance problem is one of the main bottlenecks of attack detection algorithms
because attack classes are rarer than legitimate classes [94]. For instance, in most
of the cases, the number of samples from the anomaly (outlier) class is below 10%
of the total number of samples in the entire training set [84]. This data imbal-
ance problem introduces a bias in the machine learning models that degrades the
performance substantially.
SDN has appealing features such as flexibility, dynamicity in network oper-

ations and resource management; nevertheless, it has limited scalability [95].
By leveraging SDN, we can provide several attractive benefits for IoT security
through controlling the flow dynamically and mitigating attacks at an early stage
by rate-limiting the flow at the SDN switches. Hence, developing a deep ensem-

∗https://github.com/
†https://www.reddit.com/
‡https://www.netflix.com/
§https://www.airbnb.com/
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ble learning model as a detection module and deploying it in the SDN framework
provide: (i) an isolation of compromised devices, (ii) early detection and mitiga-
tion, (iii) a reduction of resource wastage, (iv) an improvement of the accuracy
by deploying sophisticated algorithms. Mostly, detection models suffer from class
imbalance problems that incur significant performance loss for detecting attacks
in IoT. This work takes the benefits of the SDN controller at switches by grabbing
the features of data back-and-forth into IoT devices.
Ensemble learning uses multiple algorithms to get better predictive perfor-

mance than any single one of its constituent algorithms could [96–98]. There are
several evidences that prove that ensemble learning model can handle data het-
erogeneity or class imbalance problems in anomaly detection [87]. Thus, we are
motivated to develop a deep ensemble learning model by utilizing deep feature
extraction with deep or stacked autoencoder, and feed them to ensemble of Prob-
abilistic Neural Networks (PNNs) for detecting anomalies in IoT. To address the
above challenges, we leverage our recent work [99] to present DeL-IoT, an SDN-
enabled deep ensemble learning framework for IoT anomaly detection, dynamic
flow management, and prediction that utilizes the appealing features of deep au-
toencoders, probabilistic neural networks and long short-term memory (LSTM).
Our proposal uses both device and network switching level features to build an
efficient detection and prediction system, which will ensure the increase of IoT
device uptime, performance, and forecast device status. We make the following
contributions.

4.2 Prior Research
Several significant works [35,39,47,88,100,101] have been proposed for anomaly
detection in IoT using machine learning approaches with and without SDN. How-
ever, most of them were focused to protect either device level or network level,
and they did not address the problems together with data imbalance problem,
flow management, data heterogeneity, and device status prediction. Bhunia and
Gurusamy [35] present a machine learning-based attack detection and mitigation
method in IoT traffic using SDN. It uses the SVM algorithm at the SDN con-
troller to monitor and learn the behavior of IoT devices over time, and to detect
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attacks. However, they evaluated only with a simulation environment known as
Mininet, it remains to be seen if the method works in real-time environments.

Table 4.1: Comparison of existing IoT anomaly detection methods
Author
and Year

Detection
method

Botnets Dyna-
mic
attack
detec-
tion

Deploy-
ment
level

Datasets Performan-
ce

Class
imbal-
ance
prob-
lem

Bhunia et
al. [35],
2017

SVM unknown Yes SDN con-
troller

Mininet
emulator

Precision-
98%
Recall-
94%

No

Timcenko
et al. [88],
2018

LADTree,
Random For-
est, REPTree,
MultiBoost,
SMO

unknown No Networks UNSW-
NB15

ROC-55%-
99%

No

Maede et
al. [48],
2018

ANN with
SMOTE

unknown No Networks Testbed
IIoT con-
trol system

MCC-19%-
99.86%

Yes but
par-
tially

Yair et al.
[39], 2018

Autoencoder
and other ma-
chine learning
algorithms

Mirai,
Bashlite

Yes Network N-BaIoT TPR-75%-
100%

No

Nickolas
et al. [38],
2019

LSTM, RNN,
SVM

unknown No Networks Bot-IoT Accuracy-
88%-99%

No

Thien et al.
[102], 2019

A federated
self-learning
Gated Re-
current Units
(GRUs)

Mirai No Networks Testbed
IoT devices
DÏoT

TPR-
95.6%

No

Mahmudul
et al. [47],
2019

machine learn-
ing algorithms

unknown No Networks DS2OS
traffic
traces

Accuracy-
98.2%-
99.4%

No

Hwang et
al. [85],
2020

CNN and au-
toencoder

Mirai No Networks USTC-
TFC2016,
Mirai-
RGU,
Mirai-CCU

Accuracy-
99.39%-
100%

No

Proposed
approach

deep ensemble
learning

Mirai,
Bashite,
Bonesi

Yes SDN con-
troller,
Networks

N-BaIoT,
Testbed
IoT devices
data

F1 Score
99.5-99.9%,
MCC
91.04%-
99.95%

Yes

The anomaly detection studies [84, 88, 96] show that ensemble learning mod-
els have been used to improve the performance of anomaly detection. Because
the ensemble learning uses multiple algorithms to get better predictive perfor-
mance than any single one of its constituent algorithms could [96]. Timcenko
and Gajin [88] present an anomaly detection method for the IoT environment
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using single and ensemble learning approaches and achieved 99% accuracy us-
ing the UNSW-NB15 dataset. However, the method lacks testbed experiments
and dynamic attack scenarios. Debastrita et al. [84] report an ensemble learning
method for outlier detection to handle problems in imbalanced datasets. This
method employs stacked autoencoder (SAE) to extract deep features and input
them to an ensemble of probabilistic neural network model for single and multiple
outliers detection. The use of an autoencoder makes the method’s performance
better and more stable.
Unfortunately, only few studies address the data imbalance problem in IoT

anomaly detection [48]. For instance, Zolanvari et al. [48] evaluate the efficiency
of Artificial Neural Network (ANN) for anomaly detection in an imbalanced In-
dustrial IoT (IIoT) testbed dataset. This method uses Synthetic Minority Over-
Sampling Technique (SMOTE) for improving the performance of ANN in imbal-
anced IIoT dataset. Also, they analyze the limitations of machine learning-based
intrusion detection solutions.
In recent years, advances in deep learning have transformed many areas of data-

driven modeling [38,39,47,85,102]. Yair et al. [39] come up with a network-based
anomaly detection method that uses deep autoencoders and to detect compro-
mised traffic of IoT devices. This method is validated by using nine different
commercial IoT devices in a laboratory environment with two famous IoT-based
botnets, i.e., Mirai and BASHLITE. This method lacks variation in attack sce-
narios. To combat this, Nickolas et al. [38] present a BoT-IoT dataset, comprising
legitimate and simulated IoT network traffic along with various types of attacks.
Each existing datasets assessed against diversity, complexity, and experimental
environments for evaluation of IoT attack detection algorithms. They validate
the reliability of the Bot-IoT dataset by using statistical and machine learn-
ing algorithms. Thien et al. [102] present DÏoT, an autonomous self-learning
distributed system for detecting compromised IoT devices using GRU (Gated
Recurrent Units). DÏoT system creates device specific profiles without human
intervention nor labeled data. The results enumerated that DÏoT detects IoT
attacks in 257 milliseconds on average with a 95.6% True Positive Rate (TPR).
Mahmudul et al. [47] propose an anomaly detection method for IoT sensors in IoT
sites using machine learning approaches. This method is evaluated by using an
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open-source dataset [61] with seven classes of attacks. They achieve 98.2%−99.4%
accuracy for random forest and artificial neural networks. In a more recent work,
Hwang et al. [85] present an unsupervised deep learning model for early network
traffic anomaly detection in IoT using Convolutional Neural Network (CNN) and
autoencoder known as D-PACK. D-PACK detects malicious traffic with nearly
100% accuracy with less than 1% false positive rate where it examines two pack-
ets per flow. Still, several opportunities are left to address IoT security problems
in small and large-scale industries with a comprehensive focus in either central-
ized or distributed environments. Some problems include the increased uptime of
devices that are deployed in the edge of the network, data or device heterogene-
ity, reliability, device status prediction, dynamic flow management, and dynamic
attack detection. A comparison of the existing IoT anomaly detection methods
is summarized in Table 4.1.

4.3 System Model
We present DeL-IoT, a deep ensemble learning framework to uncover IoT anoma-
lies using SDN, primarily to detect anomalies and dynamic attacks for increasing
device uptime, detection efficiency, switch-level dynamic flow management, and
device status prediction. This framework aims to provide security for IoT devices
by monitoring traffic and system metrics together in SDN switches. Also, it can
handle the data imbalance problem where attack classes are rarer than legitimate
classes. An architecture of the DeL-IoT system is given in Figure 4.1.
This framework has three primary components: including SDN controllers,

SDN switches, and IoT devices. Further, the proposed framework has data col-
lection and preprocessing, a learning module, a detection module, a flow man-
agement module, and the maintenance of a status table for forecasting device
status. The network operators employ the SDN-enabled framework to isolate
the services, increase reach-ability and improve service-oriented policies at the
switch-level. The SDN controller disintegrates policies into service-specific rules
and colonizes into flow tables of SDN-switches through the standard channel like
OpenFlow [103]. Each packet is forwarded based on the enabled rules in the flow
table. Each rule has three most common fields including matching field, actions,
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Figure 4.1: DeL-IoT system architecture.

and flow counters. If a packet header matches a rule, then the controller must
take actions (e.g., forwarding to a specific device) and update the counters im-
mediately. We assume that the controller has complete information of network
topology and can make a request for each counter rule from switches [104]. A
new rule is installed or updated reactively when new flows come to the network
without any matching rules. In the following subsections, we discuss the anomaly
detection, flow management and maintenance of the status table for forecasting
device status.

4.3.1 Anomaly detection
The DeL-IoT framework aims to uncover anomalies in IoT based on the dynamic
observation of both packet and flow level traffic instances that pass through SDN
switches as well as system metrics. We deploy the detection module that can
monitor traffic and system metrics of deployed devices as well as applications for
anomaly detection.

Learning module

Anomaly detection models have a vital requirement to have aggregated data ei-
ther at an endpoint or from multiple sources. The model adopts packet level, flow
level, and system metrics data to detect anomalies in IoT. Because the attackers
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primarily target different performance or system metrics. We validate this model
by using both testbed and benchmark datasets. For testbed data, we set up a
testbed comprising multilevel hierarchical architecture from physical infrastruc-
tures to IoT devices. The preprocessing function extracts significant features that
the attackers typically utilize and labels them based on the behavioral analysis.
In addition, the feature extraction procedure of testbed data is shown in Algo-
rithm 1. For the benchmark data, we use a recent dataset, called N-BaIoT [39]
for our experimentation. We provide extended explanations of each dataset in
Section 4.4.
To make an efficient and automated representation of features, we use autoen-

coder and deep feature representation by a non-linear transformation of features
set before feeding data into the learning model. This module employs both legit-
imate and anomalous features or system metrics to learn the model for anomaly
detection in IoT. Let’s assume that Xn = {x1, x2, · · · , xn} is the input data, n ∈,
X ′n = {x′1, x′2, · · · , x′n} is the encoded output, Fn = {f1, f2, · · · , fn} is the features
set, and hn is the set of hidden layers.
Autoencoder and deep feature representation are multilayer neural networks

having multiple hidden layers, h, to encode the input and to reconstruct the
output as similar as possible to the input.The network has two parts: an encoder
and a decoder. An encoder is defined as En = f(w1Xn + b1), where f is the
encoding function with w1 as weight vector, and b1 is the bias. A decoder is
defined asX ′n = g(w2hn+b2), where g is the decoding function with weight matrix
w2, and bias b2 [82]. Further, each parameter of the autoencoder is optimized to
minimize the reconstruction error. We employ two categories of autoencoders,
stacked autoencoder (SAE) and deep autoencoder (DAE) to extract and represent
the features set obtained from the preprocessing function. The primary advantage
of using deep autoencoder is having multiple hidden layers as shown in Figure 4.2.
More hidden layers incur better feature representation, which is advantageous for
an anomaly detection model [105].
Additionally, stacked autoencoder learns from the initial input data and ob-

tained features make input to the next layer for reduced and compact features
set (see Figure 4.3). The under-complete autoencoders have a lower number of
nodes in hidden layers.
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Algorithm 1 Flow Feature Extraction
Input: Raw flow parameters
Output: Extracted flow features
1: function main(path) . get raw flows
2: filter=[duration, protocol, srcIP, desIP, srcPort, desPort, packets, bytes,

tos, idle_age]
3: flowDic=Openfile(path, filter) . extract raw parameters and store in

csv format
4: end function
5: function Openfile(path, filter)
6: for line to file do
7: if line.startswith "NXST_FLOW" in line:
8: continue
9: dic = ParseF(line, filter)
10: flowDic.append(dic)
11: end for
12: return flowDic
13: end function
14: function ParseF(line, filter)
15: for F in lists do . feature F in the list
16: if (l > 1) then . if it’s not a protocol
17: estimate T = (t2 − t1) and Fn = {f1, f2, · · · fn} . estimate interflow

time, T, and extract all features, F
18: flowDic.append(T, F)
19: else
20: flowDic.append(P) . if it’s a protocol
21: endif
22: endfor
23: return dic
24: end function
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Figure 4.3: Stacked autoencoder

Detection module

This module employs the outcome of a learning module for detecting anomalies
in IoT within an SDN-enabled framework. We explain the components of the
detection module below.
Probabilistic Neural Networks (PNN) is a multilayered feedforward network

with four primary layers, including input, pattern, summation, and output layers,
as shown in Figure 4.4. The PNN is represented as a Kernel Discriminant Analy-
sis (KDA), which is the generalization of Linear Discriminant Analysis (LDA), to
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find the linear combination of features that separate classes. A PNN consists of
several sub-networks that estimate the Parzen window probability density func-
tion of each class using the samples of the training set. Each node of the network
calculates the probability density function for input x, training sample xi, and
class ck according to the Eq. (4.1).

Xn,Ck

C1

Ck Ck

X1

X2

Xn

...

Input	layer Pattern	layer Summation	layer Output	layer

C2...
...

...

C2

C1
Class C1

Class C2

Class Ck

p(x)
...

fc(x)

Xi,C2

Xi,C1

Xn,Ck

Xi,Cm

Xn,Ck

...

Figure 4.4: Architecture of Probabilistic Neural Networks (PNN)

p(x|xi, ck) = 1
σ
ω
(
x− xi

σ

)
(4.1)

where xi is the ith sample and x is the input instance (unknown), ω() is the
weighting function and σ is the smoothing parameter. The nodes are grouped
according to the classes of the training sample in the pattern layer, and each group
sums up for the next layer to get the class-wise probability. In the summation
layer, the cth

k nodes aggregate the values from the pattern layer of cth
k classes. This

summation is estimated based on a mixed Gaussian or Parzen window estimator
as defined in Eq. (4.2).

fck
(x|xi, ck) = 1

nσ

nck∑
i=1

ω
(
x− xi

σ

)
. (4.2)
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where nck
is the number of samples in cth

k classes. Hence, the summation layer
maps the cth

k nodes to the cth
k classes. For new samples, fck

(x) can be estimated
without retraining. The PNN needs more samples to achieve a high probability
of mapping score from input instances to underlying classes where fck

(x) has a
maximum posterior probability of a class.
The weight function ω() is chosen as a kernel function (e.g., Radial Basis Func-

tion (RBF)) to compute the distance between the known and unknown sample
points. If the distance is nearest, then it has more influence on the end class. The
use of PNN provides multiple benefits, including insensitiveness to an outlier in
the data, new input patterns stores in the network, and the smoothing parameter
σ. Additionally, it reduces the retraining of the network if the training samples
become large. Each sub-network of PNN implies a Parzen density estimator for
a particular class. These features boost the detection of exceptional events in
the data. However, it has been observed that PNN alone cannot provide better
results. Because PNN, as a system, has a large storage requirement. Hence, we
have used to handle such a high storage requirement by dimensional reduction
using deep and stacked autoencoders and integration with ensemble probabilistic
neural networks to detect anomalies in IoT.
Deep autoencoder and stacked autoencoder ensemble probabilistic neural net-

works (DAE-EPNN and SAE-EPNN) are autoencoders integrated with ensemble
probabilistic neural networks. They encode the input by using multilayer neu-
ral networks instead of stacked layers. In anomaly detection, anomalous classes
are rare, whereas legitimate classes are frequent. Hence, binary classifiers get
more biased performance [94]. Such classifiers can be used to refine the decision
boundary between the rare and frequent classes. In the proposed method, we have
used deep and stacked encoders PNN for encoding the input and feeding them
into PNN for classification. These inputs include samples from both rare and
frequent classes. In anomaly detection, we have to make the trade-off between
generalization and specialization to refine the decision boundary for achieving
high accuracy. Most anomaly detection models are not specialized except just
giving a bias to rare classes. The proposed model mitigates these drawbacks and
gains substantial performance improvement thanks to deep ensemble learning.
In PNN, the smoothing parameter σ determines the spread of RBF when it
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reaches a peak in the center of weighting. Selecting optimal values of σ implies a
better spread of RBF in PNN. A shallow value of σ causes the model to over-fit
whereas an extremely high value may cause the model to under-fit. However,
both factors are essential to address the data imbalance problem during anomaly
detection in IoT. These problems motivate us to develop a deep ensemble learning
model, which we explain below.
Deep Ensemble Learning employs multiple PNNs with multiple layers as weak

classifiers to address the biases by fine-tuning the smoothing parameter σ. This
model takes inputs from the encoded features of the deep autoencoder PNN to
construct inputs for the next layer. Let’s assume that A = {xa1, xa2, · · · , xan}
is the set of anomalous instances, L = {xl1, xl2, · · · , xln} is the set of legitimate
instances, D is the training dataset, Y is the test dataset, tr and te indicate
training and testing instances.
As the legitimate instances are more than attack instances, we divided the

legitimate instances into N subsets and we kept anomalous instances as one class
for training. We used N number of PNNs with multiple layers for deep ensemble
learning, where ith PNN is trained with ith subset of datasets. Hence, we chose ith

PNN for training with (i+ 1)th PNN for binary classification. However, we chose
N th PNNs for the majority of the classes and one more PNN for an anomalous
class, specifically for the multiclass problem. For this, we used deep encoder,
since we know that encoder provides the non-linear transformation of input data
to reduce features set. A pictorial representation of the proposed model is given
in Figure 4.5.
Let g be a non-linear activation function with weight w and bias b then the

deep encoder is formulated as in Eq. (4.3). The choice of parameters is explained
in Section 4.4.

ε =
(
g(wx+ b)

)

DAE(x) =
(
ε1(ε2(ε3(· · · εh(x))))

) (4.3)

where ε() is the encoding function whereas εi() is the ith deep encoder, h is the
number of hidden layers, each feature vector x is transformed to x̂ using DAE(x)
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Figure 4.5: The proposed method: an integration of deep encoder and deep en-
semble of PNNs

defined in Eq. (4.4). The encoded features set, x̂1, x̂2, · · · x̂F ′ is embedded to deep
ensemble learning model.

zn
ck

(x̂) = fn
ck

(
DAE(x)

)
(4.4)

Each input instance x̂ is assigned to ck classes based on intermediate RBF score
received from the nth PNNs, where f estimates intermediate RBF scores based
on encoded features set to decide belonginess of a class. However, if there are
N -PNNs for the ensemble, then each instance x̂ is assigned to ck classes based
on the Eq. (4.5). The classification score is computed using Eq. (4.6) for each
instance x̂ that belongs to a specific class and where n represents batch size.

zck
(x̂) =

N∑
n=1

(
zn

ck
(x̂)
)

(4.5)

sck
(x̂n

1 ) = zck
(x̂n

1 )−min(zck
(x̂n

1 ))
max(zck

(x̂n
1 ))−min(zck

(x̂n
1 )) (4.6)

Once we get the classification score for each instance, we label the unknown
instance x̂ as anomalous or legitimate based on the node’s maximum probability,
pck

(x̂) = max(sck
(x̂)). Each layer of deep ensemble learning employs majority

voting to classify anomalies in IoT. This process repeats for the next layers of the
deep PNNs to improve overall performance. The major steps in deep ensemble
learning to uncover anomalies are defined in Algorithm 2.
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Algorithm 2 DeL-IoT : a deep ensemble learning
Input: IoT dataset, D
Output: Uncover D as legitimate or anomalous
1: normalize original dataset D using MinMaxScalar, and to get D1

2: train SAE or DAE on D1 with hyper-parameters to obtain D2 . D2

represents deep and compact features set.
3: if (D2 := sa) then . sa indicates single attack
4: chose adam optimizer and binary_crossentropy as a loss function
5: else
6: chose adam optimizer and categorical_cross_entropy as a loss function
7: endif
8: construct feature set, D2, by relu activation values of hidden layers in SAE

or DAE using Eq. (4.3-4.4)
9: Split D2 for training dataset Dtr and for testing dataset Dts

10: for j = 1 to number of ensemble PNNs do
11: train PNN on Dtr using Eq. (4.1-4.2)
12: for i = 1 to number of Dts do
13: compute maximum class probability score using Eq. (4.6)
14: classify Dts[i] samples using Eq. (4.5)
15: end for
16: end for
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4.3.2 Flow management
This module is enabled to prepare appropriate rules for each attack and to dy-
namically update the rules in the SDN switch as a set of actions. IoT devices
are connected to the SDN switches. We employ the features of the POX frame-
work [34] with OpenFlow protocol [104] to enable flow control and management
at the SDN switch. In addition, SDN switches continuously monitor traffic flows
of IoT devices and provide statistical information to the SDN controller.
We consider three scenarios for dynamic flow management in the DeL-IoT

framework that leverage SDN-enabled the POX controller [34]. First, if the input
flow is legitimate then it passes through the switches immediately without any
interruptions. Further, if the flow is unknown then the SDN switch sends it to
the deployed detection module for further investigation and, for the time being,
applies rate-limiting to the traffic to control intended malicious flow within the
networks. For instance, this unknown flow may end-up with an intended attack
that trims the overall network performance. Second, if the input flow is detected
as anomalous then a set of rules are applied to control them. At the beginning,
the flow is dropped immediately and the deployed detection module investigates
the source of the attacks to blacklist them. Hence, the attackers cannot reach any
IoT devices to damage the entire network. Further, if a number of devices are
under attack, then network-wide rules will be updated and applied to maintain
network performance. Third, if the IoT devices are compromised then two actions
are usually taken. The flow of traffic will be immediately blocked and investigated
further for verifying the kind of malicious flows: malware or physical attacks.
The SDN enabled POX controller for managing dynamic traffic flow and gen-

erating a status table for IoT devices is shown in Figure 4.6. Based on the IoT
device profile, this module inserts an entry into the status table while considering
the status for a time period. It enters 0 for legitimate status and 1 for anomalous
status. This status information is further utilized to forecast the device status
for short and long-term using sequence modelling algorithm.
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Figure 4.6: Reactive flow management architecture

4.3.3 Forecasting IoT device status
This module takes input from the flow management module and generates pro-
files for each IoT device with the outcome of metrics such as packet, flow, and
system. This table is comprised of three columns, including time, device ID, and
status, as shown in Table 4.2. The status of each IoT device is marked either
as 0 (legitimate) or as 1 (anomalous) for each time point. Based on the status
table information, we will predict device future status using a sequence modelling
algorithm based on LSTM, steps are shown in Algorithm 3. The system man-
ager utilizes this feature to easily handle large-scale IoT devices as well as their
services to the end-users.

Table 4.2: The proposed IoT device status table
Device ID Time Status
dl_source system_time 1-Anomalous

0-Legitimate
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Algorithm 3 LSTM-based IoT device status forecasting
Input: IoT device status information
Output: Forecasting IoT device status
1: initialize time, t and next time step, t+ 1, loop_back=1, dataset D
2: Split D for training dataset Dtr and for testing dataset Dts

3: Dtr and Dts convert the status array into data matrix, Dxtr=t, Dytr=t+1,
Dxts=t and Dyts=t+1

4: Dxtr,Dytr=Create_dataset(Dtr,loop_back) and
Dxts,Dyts=Create_dataset(Dts,loop_back)

5: trainPredict = lstm.predict(Dxtr) and testPredict = lstm.predict(Dxts) .

device status prediction
6: function Create_dataset(dataset, loop_back=1)
7: dataX, dataY = [], []
8: for i in range(len(dataset)-look_back-1) do
9: a = dataset[i:(i+look_back), 0]
10: dataX.append(a)
11: dataY.append(dataset[i + look_back, 0])
12: end for
13: return dataX, dataY
14: end function

4.4 Performance Evaluation
This section reports and explains the intensive experimental results obtained from
a testbed and benchmark datasets. We begin with the dataset’s description and
proceed with experimental results.

4.4.1 Datasets
The DeL-IoT framework is evaluated using two datasets: (i) testbed data, and
(ii) benchmark data. The testbed data is generated with a significant amount of
attacks on IoT devices including applications in the physical infrastructures.
Testbed data: The experiment is performed in a virtualized environment with a

hierarchical deployment of IoT devices to physical servers in the testbed. Figure
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Figure 4.7: Testbed setup

4.7 illustrates the architecture of the testbed setup. The testbed is comprised of
multiple servers and applications at a physical level, virtualized level, and IoT
devices. We consider multiple VMs, one of the VMs is a target of attackers. We
generate both Denial of Service (DoS) and Distributed Denial of Service (DDoS)
attacks using the Targa2¶ attack generator, the D-ITG internet traffic gener-
ator [106], the BoNeSi botnet simulator‖, and the stress-ng∗∗ system resources
load generator tools. We generate multiscale attacks [107] to the IoT devices
including applications in the physical infrastructures when they are deployed
in the virtualized environment. We collect multiple metrics (e.g., packet, flow,
system metrics (Key Performance Indicators), device status, etc.) from devices
to physical infrastructures for learning and deploying the proposed model. The
number of instances of the testbed dataset is given in Figures 4.8-4.9 where we
consider 1% to 9% attack instances for data imbalance scenarios in our experi-

¶http://packetstormsecurity.com/
‖https://github.com/Markus-Go/bonesi

∗∗https://kernel.ubuntu.com/∼cking/stress-ng/
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Figure 4.8: Single attack imbalanced datasets
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Figure 4.9: Multiple attack imbalanced testbed datasets

ments. POX†† is an OpenFlow controller used to deploy the learning algorithm
to detect anomalies in IoT devices based on dynamic policy updating within the
SDN framework and also for short and long term forecasting of IoT device status.
Benchmark data: Due to the non-availability of benchmark datasets, we used

the N-BaIoT [39] dataset for our experiments. This dataset was prepared using
two attack generation tools, i.e., Mirai (scan, ACK flooding, SYN flooding, UDP
flooding, UDPplain attacks) and Bashlite (scan, junk, UDP flooding, TCP flood-
ing, COMBO attacks), with 9 commercial IoT devices. There are 5 Bashlite, 5
Mirai, and 1 legitimate datasets, having 115 features in each of them. We cre-
ated an imbalanced dataset by separating 98514 legitimate and 9850 anomalous

††https://github.com/noxrepo/pox
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instances with a combination of 10 different kinds of Mirai and Bashlite attacks.
In addition to dynamic attack detection in IoT, we also address the data imbal-
ance problems. Hence, we have created imbalanced datasets with variation of
dynamic attacks from N-BaIoT dataset. Figures 4.8-4.9 illustrate the multiple
scenarios of imbalanced datasets, where we consider 1% to 9% attack instances.

4.4.2 Results
The proposed framework is evaluated using both testbed and benchmark datasets.
We present the results based on testbed datasets that consider multilevel met-
rics such as packet, flow, and system metrics in synchronization for validation.
In the single attack experiment, we used deep and stacked autoencoders with
an ensemble of PNNs with the ‘adam’ optimizer and ‘binary-crossentropy’ as a
loss function. Likewise, in the multiple attacks, we used deep and stacked au-
toencoders with an ensemble of PNNs with the ‘adam’ optimizer and ‘categorical
cross-entropy’as a loss function. First of all, we do some experiments as to how
our proposed model results vary with values of σ and the depth of the DAE
or SAE network used. Second, based on the experimental results, the hyper-
parameters were chosen by optimizing the validation set. Finally, the model was
pre-trained with 100 epoch, 100 batch size, and the ‘relu’ activation function by
considering four hidden layers with the compositions 17-16-16-15 for testbed data
and 115-100-50-25 for benchmark data. Regarding the testbed and benchmark
datasets, we have used non-overlapping datasets: 70% for training and 30% for
testing, so that the class imbalance problem remains the same in both the train-
ing and the test set. However, full data was considered for training of the deep
or stacked autoencoders and then we fed them to the deep ensemble of PNNs.

Characterization of data

To observe the behaviour of both testbed and benchmark datasets, we estimate
the cumulative distribution function and kernel density for legitimate and attack
instances shown in Figures 4.10 and 4.11, respectively. From the Figures 4.10 and
4.11, it is clear that the distribution of legitimate instances differs from attack
instances.
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(a) Testbed data (b) Benchmark data

Figure 4.10: Characterization of data: cumulative distribution function for legit-
imate vs. attack instances over feature set
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Figure 4.11: Characterization of data: Kernel density estimation of legitimate vs.
attack instances with testbed (a,b) and benchmark (c,d) datasets
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Table 4.3: An example of status table
Device ID Time Status
10:0e:7e:c9:cb:f0 13:49 0
10:0e:7e:c9:cb:f0 13:50 0
10:0e:7e:c9:cb:f0 13:51 0
10:0e:7e:c9:cb:f0 13:52 0
98:f2:b3:f3:2a:38 13:52 1
98:f2:b3:f3:2a:38 13:53 1
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Figure 4.12: Performance variation of F1 score with respect to the number of deep
layers

Dependency analysis on deep layers

This section investigates the performance of the proposed framework based on the
number of deep layers. We have used stacked and deep autoencoders to extract
features from both testbed and benchmark datasets. Truly, it is noted that an
increasing number of hidden layers in the autoencoder excels the performance
of the framework. However, finding the optimal depth of hidden layers for a
specific domain and addressing the data imbalance problem in parallel is still
tricky. Figure 4.12 provides the empirical investigation on the number of deep
layers (3 for the testbed and 4 for the benchmark datasets) to acquire the best
performance of the model. Our model recommends that deep neural networks
improve the model performance significantly, but the extremely deeper number
of layers may overfit the model.
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Figure 4.13: Performance variation of F1 score σ of PNN

Dependency analysis on σ

The importance of dependency analysis on σ lies on smoothing the parameter
of PNN. The σ is the spread of the Gaussian function or the width parameter
which can take σ value between 0 and 1 [108]. The proposed method is evaluated
on the dependency of σ for achieving a high detection rate. Notably, the lower
values of σ provide a lower false-negative rate and higher values of σ yield a lower
false-positive rate. However, we heuristically identify the values of σ as 0.7− 0.8
for testbed data and 0.1−0.2 for benchmark data, respectively, when considering
imbalanced datasets. Figure 4.13 illustrates the performance in the testbed and
benchmark datasets, respectively. As shown in Figure 4.13, in the benchmark
dataset our proposed method’s detection rate is above 99%, but single PNN’s
detection rate decreases from 99% to 94%. Hence, we observe that our proposed
method’s detection rate is more stable than a single PNN model and a single
PNN detection rate decreases when the sigma value increases.

Performance on single attacks

To validate the efficiency of the proposed method on the single attack scenarios,
we have used balanced and imbalanced N-BaIoT datasets. First of all, Table
4.5 shows the accuracy of the proposed method in the balanced N-BaIoT [39]
datasets. Second, these sets of experiments address the data imbalance problem
by considering a single attack and legitimate datasets. Hence, we created from
the N-BaIoT [39] dataset’s Provision-PT-838 Security Camera 5 kinds of imbal-
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Table 4.4: The detection accuracy for single attack scenarios when running with
the imbalanced N-BaIoT dataset

No IoT devices Benign Attacks PNN DAE-
EPNN

SAE-
EPNN

1 SimpleHome-XCS7-1003-WHT
Security Camera

19528 1950 0.9933 0.9959 0.9944

2 Ecobee-Thermostat 13113 1310 0.9953 0.9979 0.9967
3 Ennio-Doorbell 39100 3910 0.9899 0.9960 0.9958
4 Provision-PT-838 Security Cam-

era
98514 9850 0.9901 0.9987 0.9983

5 Danmini Doorbell 49548 4950 0.9962 0.9970 0.9971
6 Samsung-SNH-1011-N Webcam 52150 5215 0.9976 0.9988 0.9985
7 SimpleHome-XCS7-1002-WHT

Security Camera
46585 4650 0.9918 0.9951 0.9944

8 Provision-PT-737E Security
Camera

62154 6210 0.9864 0.9973 0.9966

9 Philips-B120N10 Baby Monitor 175240 17520 0.9925 0.9960 0.9988

anced datasets shown in Figure 4.8. From Tables 4.5-4.4 and Figures 4.14-4.16,
we observe that the integration of deep and stacked autoencoders with the deep
ensemble of PNNs allowed the improved performance of the model while address-
ing the data imbalance issues and detecting attacks in IoT. As shown in Figure
4.14, there are slight differences in accuracy performance. However, it is not true.
In anomaly detection scenarios with the imbalanced dataset, accuracy is not the
representative best metric to evaluate the performance. Since a large portion of
training data is legitimate traffic, the algorithms are biased toward estimating all
the data as legitimate and ignoring the small portion of the attack instances [48].
Hence, MCC and F1 score measures can evaluate the performance better in spite
of having imbalanced datasets. In addition, the class imbalance problem intro-
duces a bias in the machine learning models that degrades performance. For
instance, from Figures 4.15-4.16, we observe that the machine learning models’
MCC and F1 score decrease when the dataset’s imbalanced ratio decrease.
As shown in Figures 4.15-4.16, we can also observe that in the 1%, 2%, and

5% imbalanced datasets, our proposed method’s MCC and F1 performances are
1%-3% better than a single model.
Finally, since 1% is our experiment’s lowest imbalanced dataset, ten-fold cross-

validation was performed on the 1% imbalanced testbed and benchmark datasets
using a single model and the proposed methods. Figure 4.17 shows the improved
performance results of our proposed framework after ten-fold cross-validation.
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Figure 4.14: Accuracy variation for single attacks imbalanced datasets
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Figure 4.15: F1 score comparison for single attacks imbalanced datasets
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Figure 4.16: MCC score variations for single attacks imbalanced datasets
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Table 4.5: The detection accuracy for single attack scenarios when running with
the balanced N-BaIoT dataset

No IoT de-
vices

Bashlite PNN DAE-
EPNN

SAE-
EPNN

Mirai PNN DAE-
EPNN

SAE-
EPNN

1 SimpleHome-
XCS7-1003-
WHT
Security
Camera

Scan
TCP
Junk
UDP
Combo

0.9943
0.9985
0.9990
0.9984
0.9979

0.9993
0.9986
0.9997
0.9986
0.9998

0.9994
0.9986
0.9998
0.9985
0.9998

Scan
Syn
UDP-
plain
Ack
UDP

0.9976
0.9999
0.9996
0.9997
0.9992

0.9997
0.9999
0.9998
0.9999
0.9999

0.9996
0.9999
1.0000
0.9999
1.0000

2 Ecobee-
Thermostat

Scan
TCP
Junk
UDP
Combo

0.9947
0.9992
0.9987
0.9990
0.9984

0.9988
0.9992
0.9996
0.9991
0.9996

0.9933
0.9988
0.9975
0.9986
0.9823

Scan
Syn
UDP-
plain
Ack
UDP

0.9989
0.9999
0.9970
0.9992
0.9983

0.9993
1.0000
1.0000
0.9999
0.9999

0.9950
0.9998
0.9967
1.0000
0.8034

3 Ennio-
Doorbell

Scan
TCP
Junk
UDP
Combo

0.9880
0.9986
0.9992
0.9985
0.9967

0.9974
0.9986
0.9999
0.9986
0.9998

0.9998
0.9996
0.9998
0.9993
1.0000

No Mi-
rai At-
tacks

- - -

4 Provision-
PT-838
Security
Camera

Scan
TCP
Junk
UDP
Combo

0.9973
0.9987
0.9996
0.9988
0.9988

0.9974
0.9988
0.9999
0.9990
0.9999

0.9998
0.9990
0.9999
0.9991
0.9999

Scan
Syn
UDP-
plain
Ack
UDP

0.9988
0.9969
0.9999
0.9997
0.9999

0.9998
0.9993
1.0000
0.9997
0.9999

1.0000
1.0000
1.0000
0.9999
0.9999

5 Danmini
Doorbell

Scan
TCP
Junk
UDP
Combo

0.9937
0.9987
0.9960
0.9987
0.9948

0.9994
0.9992
0.9993
0.9990
0.9998

0.9995
0.9996
0.9997
0.9993
0.9999

Scan
Syn
UDP-
plain
Ack
UDP

0.9993
0.9998
0.9999
1.0000
1.0000

0.9999
1.0000
0.9999
0.9999
1.0000

0.9992
0.9425
0.9999
0.9803
0.9996

6 Samsung-
SNH-1011-
N Webcam

Scan
TCP
Junk
UDP
Combo

0.9969
0.9987
0.9994
0.9986
0.9992

0.9989
0.9992
0.9998
0.9989
0.9999

0.9995
0.9993
0.9998
0.9994
0.9999

No Mi-
rai At-
tacks

- - -

7 SimpleHome-
XCS7-1002-
WHT
Security
Camera

Scan
TCP
Junk
UDP
Combo

0.9986
0.9959
0.9999
0.9986
0.9990

0.9974
0.9987
0.9996
0.9988
0.9998

0.9994
0.9986
0.9998
0.9985
0.9998

Scan
Syn
UDP-
plain
Ack
UDP

0.9986
0.9959
0.9999
0.9999
0.9999

0.9995
0.9999
1.0000
1.0000
0.9999

0.9997
0.9999
1.0000
0.9999
1.0000

8 Provision-
PT-737E
Security
Camera

Scan
TCP
Junk
UDP
Combo

0.9965
0.9978
0.9967
0.9977
0.9987

0.9993
0.9989
0.9998
0.9988
0.9999

0.9991
0.9990
0.9998
0.9988
1.0000

Scan
Syn
UDP-
plain
Ack
UDP

0.9968
0.9850
0.9999
0.9999
1.0000

1.0000
0.9994
0.9999
0.9999
0.9999

1.0000
0.9999
0.9999
0.9999
1.0000

9 Philips-
B120N10
Baby Moni-
tor

Scan
TCP
Junk
UDP
Combo

0.9971
0.9993
0.9995
0.9993
0.9985

0.9992
0.9995
0.9999
0.9994
0.9999

1.0000
0.9994
0.9999
0.9995
0.9999

Scan
Syn
UDP-
plain
Ack
UDP

0.9995
0.9999
0.9998
0.9999
0.9995

1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000

The k-fold cross validation is sensitive to poor partition of data. As a result, the
accuracy of the baseline model varies due to poor partition of highly imbalanced
data.

58



2 4 6 8 10
Number of fold

0.96

0.97

0.98

0.99

1.00

F 1
 S

co
re

PNN DAE-EPNN SAE-EPNN

(a) Testbed

2 4 6 8 10
Number of fold

0.90

0.92

0.94

0.96

0.98

F 1
 S

co
re

PNN DAE-EPNN SAE-EPNN

(b) Benchmark

Figure 4.17: F1 score of models after 10 fold cross validation for detecting single
attacks
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Figure 4.18: Multiple attacks performance variation of F1 score σ of PNN

Performance on multiple attacks

The proposed framework is evaluated further for multiple attacks using testbed
and benchmark datasets. In the testbed data, we consider multiscale attacks
(i.e., DoS, DDoS) with data imbalance scenarios. As shown in Figure ??, we
have found multiple attacks for our experiment from the benchmark datasets.
Figures 4.18-4.19 illustrate the improved performance of the proposed framework
while detecting multiple attacks in IoT .
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Figure 4.19: Multiple attacks F1 score for imbalanced datasets
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Figure 4.20: Throughput - (a) legitimate flows, and (b) attack flows

Performance on dynamic flow management

To observe the performance of dynamic flow management, we consider two dif-
ferent cases with and without attacks in the testbed setup environment. Figure
4.20 illustrates the flow management by examining the throughput in the absence
and presence of attacks (low-rate and high-rate), respectively. Figure 4.21 shows
the dynamic management of flows that pass through the software-enabled switch.
From the Figures 4.20-4.21, we observe that the traffic flows are managed well in
both periods with and without attacks.
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Figure 4.21: Throughput - managing flows dynamically

Performance on device status forecasting

The status table is obtained from the flow management module based on the
status of each IoT device in the testbed setup. Table 4.3 is an example status
table obtained by examining the time period 13:49 to 13:53 within the testbed
environment. DeL-IoT offers additional features that can predict both short and
long-term anomalies in IoT devices. We exploit the Long Short-Term Memory
(LSTM) model for the prediction of anomalies as shown in Figure 4.22. In addi-
tion, our proposed LSTM model achieved an accuracy of 81.48%. This prediction
increases the effectiveness to protect the IoT devices against emerging attacks.
In this experiment, we used 84 minutes of data for training and 36 minutes of
data for testing with an LSTM-based sequential model for predicting the status
of IoT devices. Based on empirical evaluation, we found that the model with 64
hidden neurons has lower mean square error (MSE) than the models with 4, 32,
128 hidden neurons. For this reason, we determine that the number of hidden
neurons of LSTM is 64. Hence, the network has a visible layer with 1 input (a
device status), a hidden layer with 64 LSTM blocks or neurons, and an output
layer that makes a single value prediction. The default sigmoid activation func-
tion is used for the LSTM blocks and the network is trained for 100 epochs with
batch size 1.
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Figure 4.22: Forecasting IoT device status to uncover anomalies
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Figure 4.23: Performance variation of detection rate with respect to the number
of PNNs in the 1% imbalanced dataset

4.5 Comparison with Competing Methods
To assess the efficiency of the proposed framework for detecting anomalies in IoT,
we compared it with existing methods including SoftThings [35], network-based
IoT anomaly detection [39], and DÏoT [102]. SoftThings [35] can detect and miti-
gate dynamic attacks in IoT using SDN with 98% precision. It employs linear and
non-linear Support Vector Machine (SVM) with default hyper-parameters when
detecting IoT attacks at the SDN controller in a Mininet simulation environment.
The network-based IoT anomaly detection [39] employs the deep autoencoders
with four hidden layers to detect anomalies in IoT. The system has optimized
hyperparameters such as learning rate, number of epochs, anomaly threshold,
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Figure 4.24: Comparison of detection rate and time with competing methods

and windows size of autoencoders for each IoT device. For instance, in their ex-
periment, the Danmini doorbell, that is one of the IoT devices, is used with the
optimized hyperparameters of the autoencoders such as learning rate 0.012, the
number of epochs 800, anomaly threshold 0.042, and window size 82. The system
is evaluated using testbed datasets which have nine commercial IoT devices and
it achieves a 100% detection rate. The DÏoT [102] reports an autonomous self-
learning anomaly detection system for IoT. A GRU network with three hidden
layers of size 128 neurons each was used in the system. The system provides
evidence to detect anomalies with 95.6% detection rate. Although the existing
methods have positive performance, the majority of existing methods or systems
were evaluated either as testbed data or in simulated environments. Additionally,
our framework shows its superiority in terms of the following points: (a) detects
anomalies with 99.8% detection rate for testbed and 99.9% detection rate for
benchmark datasets, (b) addresses the data imbalance problem by using a deep
ensemble learning, (c) demonstrates dynamic flow management in the presence
of attacks, (d) increases device uptime, and (e) forecasts IoT device status for
anomalies in short and long term. To observe the performance of deep ensemble
learning when chosing different number of PNNs in each layer, we found numer-
ous distinctions in detection rate using 1% imbalanced benchmark and testbed
datasets to uncover anomalies in IoT. The hyperparameters used in our experi-
ment the explained in Section 4.3. Figure 4.23 illustrates how the deep ensemble
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learning of PNNs improves the detection rate to uncover anomalies in IoT. Figure
4.24 shows the comparison of DeL-IoT with competing methods.

4.6 Summary and Limitations
In this chapter, we presented an efficient and comprehensive approach to detect
and predict cyberattacks in IoT devices by integrating DL with SDN. First, we
introduced deep ensemble DL approaches that addresses the data heterogeneity
and data imbalance problems. Second, we propose a novel mechanism for man-
aging dynamic network flow in presence of attacks utilizing SDN. Finally, our
proposed approach predicts IoT devices’ future status based on the status table
generated by individual devices using LSTM. The main limitations of the pro-
posed approach are the computational overhead while training a deep ensemble
learning approach. Our testbed was developed by considering a controlled envi-
ronment with limited resources. In addition, we carried out our experiments in
offline mode after labelling datasets, hence, we are concerned about the perfor-
mance of the proposed approach in online mode and also about the performance of
detecting zero-day attacks. Moreover, we primarily employ a pre-trained model,
thus, the testing time is very less with high detection accuracy. However, the
proposed model mayn’t perform as expected in new environments but can be
tuned to generalize the model. With consideration of control and availability of
resources for large-scale experiments, we employ a single server but deploy many
virtual machines. These experiments can be extended to verify scalability with
several servers.
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5 A 1D-CNN Based Approach to
Detect VSI-DDoS Attacks in
IoT Applications

This chapter discusses the impact of VSI-DDoS attacks in applications and presents
a 1D-CNN-based deep learning approach to detect VSI-DDoS attacks in IoT ap-
plications. The remainder of the chapter is organized as follows. Section 5.2
briefly reviews existing works. Section 5.3 describes our proposed deep learn-
ing approach. Section 5.4 presents the experimental results and the analysis of
our proposed deep and machine learning models on the testbed and benchmark
datasets. Finally, we summarize our findings and suggest possible directions for
future work in Section 5.5.

5.1 Introduction
The rise of the Internet of Things (IoT) increases the daily use of devices and
applications for making life more comfortable. IoT has already transformed sev-
eral domains by offering a wide range of services, e.g., creating an intelligent
smart grid, developing smart car parking, and personal health monitoring. IoT
devices and cloud-deployed applications are vital to achieving particular objec-
tives, such as healthcare monitoring. These broad-spectrum uses of IoT devices
and applications open up multiple security issues to hinder legitimate services to
the end-users. The existing IoT applications cannot reach on-demand services
with expected Quality of Service (QoS) due to the lack of secure IoT ecosystems.
One of the critical challenges facing IoT applications is the degrading of the
Quality of Service (QoS) due to multiscale distributed denial of service (DDoS)
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attacks. The DDoS attacks have been increasing despite numerous DDoS defense
mechanisms deployed at a different level in the IoT ecosystems. For instance,
Kaspersky Lab’s "DDoS attacks in Q1 2020" reports that the number of DDoS
attacks doubled against the previous reporting period, and by 80% against Q1
2019 [109]. One of the primary reasons for the growing number of DDoS attacks
is the ever-evolving new types of DDoS attacks that can bypass state-of-the-art
defense mechanisms. For instance, one of the most significant DDoS attack trends
Radware observed in 2017 was an increase in short-burst attacks, becoming more
complex, frequent, and persistent. In addition, 42% of organizations in Radware’s
investigation experienced this type of DDoS attack in 2017 [110].
Moreover, Huasong et al. [111] presented a new burst of low-rate DDoS attack

which is known as very short intermittent (VSI) DDoS attacks. This attack is dif-
ficult to detect by existing security defense systems since it mimics the legitimate
user’s behaviour; however, it significantly degrades the QoS for end-users. To
evaluate the impact of VSI-DDoS attacks on the QoS of end-users, they carry out
experiments using the RUBBoS benchmark web application. Furthermore, they
find that the proposed VSI-DDoS attacks can successfully cause the benchmark
website’s long-tail latency problem while bypassing the DDoS defense systems.
Hence, efficient early detection and prevention of VSI-DDoS attacks remain a
challenge to address. We are the first to come up with a deep learning-based
solution for detecting VSI-DDoS attacks in IoT applications, to the best of our
knowledge. However, there are deep learning methods to detect and prevent
classical DDoS attacks [38,39,64,80,112] for IoT ecosystems. Also, existing stud-
ies insufficiently evaluate VSI-DDoS attacks’ impact on QoS implications in IoT
applications. Hence, we propose a 1D-CNN deep learning approach to detect
VSI-DDoS attacks in IoT applications. The 1D-CNN combines feature extrac-
tion and learning models with a cheaper computational cost that results in high
detection accuracy. The main contributions of this paper are as follows:

• We prepared a new VSI-DDoS IoT applications dataset with diverse attack
scenarios and made it available for public use to fill the research gap.

• We propose a 1D-CNN deep learning approach to detect VSI-DDoS attacks
early for IoT applications.
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• The experimental evaluation illustrates the performance of the proposed
approach using testbed datasets. We carried out experiments on benchmark
datasets as well to compare with baseline models.

5.2 Existing Research
VSI-DDoS is an application-layer attack with lower traceability and higher stealth-
iness to make the attack smarter and easily bypass the security systems. VSI-
DDoS attacks use legitimate HTTP requests for service malfunctioning or QoS
degradation in the long run, which is quite challenging to investigate and advan-
tageous for attackers to evade security systems. Suppose such attacks are not
detected and resolved at an early stage. In that case, the system may experience
different complications, such as long response times that eventually damage the
target system’s long-term business goal for end-users. However, the system ap-
pears to be operating within normal conditions. A few works [111, 113] on the
impact of the VSI-DDoS attacks have been presented. Shan et al. [111] recently
present the VSI-DDoS attack, which is difficult to detect in existing intrusion
detection systems but can significantly degrade the QoS of the legitimate users.
Jeman et al. [113] develop an approach that influences synchronization in the
botnet used to launch the attacks. They illustrate that even with tiny synchro-
nization inaccuracy under about 90 ms, the attackers can still impact the target
system. A number of works [64, 65, 80, 86] have been proposed for DDoS attack
detection.
Deep learning approaches have been applied successfully for detecting DDoS

attacks and they became popular with significant results. Bambang et al. [64]
present an intrusion detection method for the IoT environment using the machine
and deep learning approaches with the BoT-IoT dataset [38]. Tarun et al. [80]
propose deep learning model and evaluate it using the CICIDS2017 dataset [81]
for detecting DDoS attack and, resulting in an accuracy of 97.16%. Shanzeb
et al. [86] present DDoS attack detection mechanism for the Software-Defined
Networks (SDN) using a deep CNN ensemble framework and achieved 99.45%
accuracy using the CICIDS2017 dataset. Recently, Jinyin et al. [65] present a
multi-channel CNN (MC-CNN) deep learning approach to detect DDoS attacks
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Figure 5.1: A system architecture for 1D CNN-based VSI-DDoS detection

using KDDCUP99 and CICIDS2017 datasets. The experimental results illustrate
that MC-CNN detects DDoS attacks with 99.18% accuracy.
Based on this limited literature review, we contend that there are no known

solutions to tackle VSI-DDoS attack’s problems in IoT applications. Specifically,
mission-critical IoT applications have the highest requirements of low latency
services with excellent QoS during end-users services.

5.3 System Model
In this section, we first introduce the problem we aim to study, then we elaborate
the proposed 1D-CNN-based deep learning for detecting VSI-DDoS attacks in
IoT applications to combat QoS degradation of services towards users. A system
architecture of 1D CNN-based VSI-DDoS detection is shown in Figure 5.1.

5.3.1 Problem statement
Given the data of n th different time-series with length T , i.e., x = (x1, x2, x3, · · · ,
xn)T , and collected data from multiple IoT applications in the presence and ab-
sence of VSI-DDoS attacks. We aim to achieve the following three goals:

• VSI-DDoS datasets, i.e., generating a VSI-DDoS IoT applications dataset
with diverse attack scenarios and making it public.

• VSI-DDoS detection, i.e., detecting VSI-DDoS attacks in IoT applica-
tions to alleviate QoS interruption.
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• Experimental analysis, i.e., carry out exhaustive experimental analysis
using both testbed and benchmark datasets with diverse attack scenarios.

5.3.2 VSI-DDoS attacks
Goal and operation. The VSI-DDoS attack is a new form of application-layer
short-burst low-rate DDoS attack with the aim to degrade the users QoS. Specifi-
cally, IoT applications are mostly latency-sensitive where even a little degradation
of performance at the user is not acceptable either for the short or long run. Many
service providers such as Google and Amazon have put a lot of effort to lessen
the tail latency that creates inconvenience to users. If a user experiences such
weariness of service from a service provider then they immediately switch to an-
other provider for preventing the target services from being used. Unlike the
classical DDoS attacks that aim to exhaust servers’ resources, VSI-DDoS attacks
cause transient saturation of resources and increase tail latency of legitimate re-
quests. Because the number of requests is made in a short period of time, like
within a millisecond, and it exceeds the server’s queue capacity. As a result, the
transmission of a legitimate user’s request is delayed significantly and the delay is
materialized in the TCP retransmission. These repeated retransmissions aggra-
vate the user’s experience because of serious packet drops. To alleviate the impact
of VSI-DDoS attacks, we generated VSI-DDoS attacks towards IoT applications
deployed in the edge cloud as reported in Figure 5.5.
Detection adversity. Requests in VSI-DDoS attacks are similar to legitimate

users’ requests, but they exhaust a server’s queues in milliseconds. Hence, adverse
effects happen to the detection systems when they use second-level monitoring
systems such as sar†, vmstat‡, and top§. VSI-DDoS attacks can easily bypass
the state-of-art detection systems and make significant impact on the QoS of the
legitimate users of the target services in IoT applications with tail latency. There-
fore, we propose a deep learning-based approach to detect VSI-DDoS attacks in
IoT applications.

†https://en.wikipedia.org/wiki/Sar_(Unix)
‡https://linux.die.net/man/8/vmstat
§https://en.wikipedia.org/wiki/Top_(software)
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5.3.3 Proposed CNN-based detection model
Convolutional Neural Network (CNN), inspired by the visual cortex of animals,
is widely used for object recognition tasks [65]. As a deep learning architecture,
CNN is proposed to minimize the data preprocessing requirements. The most
powerful part of CNN is the learning feature hierarchies from a large amount
of unlabeled data. Thus, CNN are quite promising for applications in network
attack detection [67]. The basic structure of CNN is composed of input and
output layers and multiple hidden layers which include convolution layer, pooling
layer, and fully-connected layer [114].
Convolution layer.

The convolution layers are the core of the CNN and useful for extracting domi-
nant features which are rotational and positional invariants, thus maintaining the
process of effectively training the model. The preprocessing required in a CNN
is much lower as compared to other classification algorithms where convolution
and pooling layers of the CNN perform a role as feature extraction. Typically,
the previous layers of convolution layers map features are convolved with multi-
ple convolutional filters. The output of the convolution operators are added by a
bias and put through the activation function to form the feature map for the next
layer. The convolution is a linear operation and thus limits the ability to learn
complex nonlinear behavior of the input. In order to introduce nonlinearity, the
intermediate feature maps of a convolution layer are put through an activation
function to form the formal feature maps [115].

x1

x2

xN

F1,m

F2,m

FN,m

...

+
x1*F1,m

x2*F2,m

xN*FN,m

bm

Sigmoid()
fm()

xm = fm   bm +     xn * Fn,m
 n=1

N

Figure 5.2: Typical architecture of a 1D-CNN unit cell.

The basic cell of a 1D-CNN layer is given in Figure 5.2. A hidden layer output
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vector x of a 1D-CNN cell consists of M hidden units xm.

x = [x1, x2, xm, ...xM ]T (5.1)

where an independent unit is an outcome of a nonlinear transformation applied
on a transformation of the N differently filtered input features x. fm represents
the activation function that performs the nonlinear transformation, Fn,m are the
coefficients of the N filters and bm is the bias.

xl
m = fm

(
bl

m +
N∑

n=1
xl−1

n ∗ F l
n,m

)
(5.2)

where xl
m is the output in layer l, bl

m is the bias in layer l, xl−1
n is the input of

the filter n in layer l − 1, F l
n,m is the mth neuron of the filter n in layer l. The

output size of the feature maps is calculated as:

O = I − F + Pstart + Pend

S
+ 1 (5.3)

where I is the length of the input, F is the length of the filter, P is the amount
of zero padding, S is the stride, and O is the output size of the feature map. For
instance, for the testbed dataset of this study, the I=9, the input layer convolved
with a 3 filter with stride 1, O = 7. Each filter contains its own weight with
the defined kernel size, considering the length of the input matrix [116]. In the
convolution layer of the 1D-CNN, we use 3 filters to extract 7 handy different
features for the testbed dataset and we use a sigmoid activation function for
the testbed dataset and a relu activation function for the benchmark dataset.
The sigmoid and relu activation functions are defined as in Equation (5.4) and
Equation (5.5), respectively.

fm = 1
1 + e−x̂n

(5.4)

and

fm = max(0, x̂n) (5.5)

where e is Euler’s number, x̂n is expressed as:

x̂n = bl
m +

N∑
n=1

xl−1
n ∗ F l

n,m (5.6)
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Figure 5.3: Sigmoid and max pool operation - an example.

Pooling.

The pooling layer aims to decrease the computational power required to process
the data through dimensionality reduction [117]. This layer is useful for extracting
dominant features which are rotational and positional invariants and effective for
model training. There are two types of pooling operations: max pooling [118]
and average pooling [119].

xl
m = xl−1

m ∗ P l (5.7)

where xl−1
m is the convolved features in layer l − 1, P l is the pooling operator in

layer l. The output size of the feature maps in a pooling layer is estimated as in
Equation (5.8).

Opool = O − Ppool

Spool

+ 1 (5.8)

where Ppool is the length of the pooling operator, Spool is the stride and O is the
size of the feature maps of the previous convolution layer. In the pooling layer,
we use 1D max pooling with pooling size 2 and stride size 1. The 1D max pooling
returns the maximum value that is estimated from the portion under filter. A
simple example of pooling operation is depicted in Figure 5.3. After the pooling
layer, we use a dropout to avoid the overfitting of 1D-CNN [120].

Detection module.

The detection module consists of two layers: the fully connected layers and the
softmax layer. We embed two fully connected layers to perform the classification
at the end. In the fully connected layer, neurons from the previous layer are re-
shaped as 1D layers in regular networks, and have full connection to all activation
in the previous layer estimated as in Equation (5.9).

xl
j = f

(
M∑

m=1
xl−1

m W l + bl
j

)
(5.9)
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Figure 5.4: Demonstration of neurons and weights assignment in the detection
module.

where xl
j is the j-th neuron in a fully connected layer and M is the layer size.

xl−1
m is a neuron in the previous feature map l−1 (whether the feature map is the

output of convolution or a pooling operation). W l is the corresponding weight
with xl−1

m between layer l − 1 and layer l, bl
j is the bias in the input of xl

j and
f(.) denotes an activation function. We have chosen the relu activation function
for our experiments. A demonstration of neurons and weights location in the
detection module is shown in Figure 5.4. Next, the high-level features vectors
from the full connection layer are fed into the softmax layer, which is defined as
in Equation (5.10).

yc = [P (prediction = c|xl−1;W l
c)] = eW l

cxl−1

C∑
m=1

eW l
mxl−1

xl−1 = [xl−1
1 , · · ·xl−1

m , · · ·xl−1
M ]T

W l
c = [W l

c1, · · ·W l
ci, · · ·W l

cI ],Wl = [W l
1, · · ·W l

c , · · ·W l
C ]T

(5.10)

Let’s assume that l is the softmax layer, yc is the output probability for a
particular class c, and C is the number of classes. Hence, the total probability is
given by Equation (5.11).

C∑
c=1

yc = 1 (5.11)

xl−1 is the feature vector of size M × 1, W l
c is the c-th row weight vector of size

1 ×M . The detection accuracy of the networks is evaluated by measuring the
error between the discrete probability distributions of real classes and predicted
classes. The cross-entropy is applied as the objective function to optimize the
learning rate and the overall detection accuracy.
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5.4 Performance Evaluation
This section reports and explains the intensive experimental results obtained from
a testbed and benchmark datasets. We begin with the dataset’s description and
proceed with experimental results.

5.4.1 Datasets
We evaluate our proposed 1D-CNN deep learning approach using two datasets:
(i) testbed data, and (ii) benchmark data. The testbed data is generated by
emulating VSI-DDoS attacks when deploying IoT applications in edge cloud.
Testbed data: We use Time Series Benchmark Suite (TSBS)¶, which simulates
data streaming from a set of trucks belonging to a fictional trucking company
in IoT applications. As shown in Figure 5.5, our system consists of the IoT
applications for a fictional trucking company, an IoT applications database server,
bots, and legitimate users.

IoT Applications
Servers

VSI-DDoS Attack

 requests

Legitim
ate

requests

Edge Cloud

Figure 5.5: Experimental testbed setup and topology

IoT applications server. We have created multiple IoT applications servers
with the specification of a 1.8 GHz two core virtual CPU and a 2 GB of Random
Access Memory (RAM) for each. This setup was used to generate, collect and
process data for our learning models for the detection of VSI-DDoS attacks.
Legitimate users. The behavior of a total of 1000 legitimate users is imitated

using the query "last-loc" to get the real-time location of each truck of the TSBS
setup. The legitimate users continuously send requests to the IoT applications
servers for real-time location information of the trucks.

¶https://github.com/timescale/tsbs#appendix-i-query-types
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Bot for VSI-DDoS attacks. First, we create 100 queries to retrieve real-time
locations from 1000 trucks using the tsbs_generate_queries command of the
TSBS setup. The execution time of the 100 queries is 50ms. Second, every 2
seconds, we send the created queries to the IoT application servers using the
watch command. Finally, we increase the number of bots from 2 to 24 as a
requirement for generating sets of VSI-DDoS attacks. We observed that most
responses for the IoT application’s requests are quickly returned to the users
within 100ms in absence of VSI-DDoS attacks. However, some of the responses
are delayed for more than 1 second due to VSI-DDoS attacks and we observe
more delayed responses based on cumulative distribution function (cdf) analysis
when the number of botnets increases from 2 to 24 as shown in Figure 5.6.

Figure 5.6: Cumulative distribution analysis of response time.

Benchmark data: Since there is a non-availability of benchmark datasets for
VSI-DDoS attacks, we use the N-BaIoT [39] dataset for initial empirical valida-
tion of our proposed method. This dataset was prepared by using two attack
generation tools, i.e., Mirai (scan, ACK flooding, SYN flooding, UDP flood-
ing, UDPplain attacks) and Bashlite (scan, junk, UDP flooding, TCP flooding,
COMBO attacks), with 9 commercial IoT devices such as Provision-PT-838 Se-
curity Camera, Ecobee thermostat, and Danmini doorbell. There are 5 Bashlite,
5 Mirai, and 1 legitimate datasets, having 115 features in each of them. As base-
line models validation, we employ 1% of the imbalanced multiple attacks data
of Provision-PT-838 Security Camera to detect DDoS attacks. This experiment
uses seven classes, including benign, Mirai (scan, SYN flooding, ACK flooding)
and Bashlite (TCP flooding, junk, UDP flooding). The detailed dataset statistics
for both benchmark and testbed are given in Table 5.1.
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Table 5.1: Dataset statistics - testbed and benchmark.
Dataset number of

features
number of legiti-
mate instances

number of anoma-
lous instances

Testbed 9 276868 90503
Benchmark 115 99494 918

5.4.2 Results
In this section, we start with the characterization of data and report experimental
results.

Characterization of data.

To observe the behaviour of both testbed and benchmark datasets, we estimate
the cumulative distribution function for legitimate and attack instances shown
in Figure 5.7. In the benchmark dataset, the distribution of legitimate instances
differs from the distribution of the attack instances as clearly illustrated in Figure
5.7 (b). However, in the testbed dataset, we can observe from the Figure 5.7 (a)
that the distributions of legitimate instances and attack instances are almost the
same due to the stealthy behavior of the VSI-DDoS attacks.
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(a) Testbed data
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Figure 5.7: Data characterization - cdf for legitimate vs. attack instances over
features set.
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Hyper-parameters tuning.

The hyper-parameters of the CNN and LSTM models are tuned based on the
data for configuring optimal parameters. Batch sizes, numbers of layers, learning
rates, and types of loss functions are some of the hyper-parameters tuned by
employing a grid search algorithm (GSA) to improve the performance of the
model. The proposed 1D-CNN-based deep learning model was modified based
on these optimal hyper-parameters and the GSA was run again to find a suitable
optimizer.
(a) Experiments with different batch sizes and number of layers: The batch size
impacts how quickly a model learns and the stability of the learning process. As
it plays a vital role in deep learning model performance, we tuned the parameters
with respect to our problem [121]. We start with tuning the number of layers
and batch sizes at the same time. For the testbed dataset, Figure 5.8 illustrates
our empirical evaluation results with optimal batch sizes of 32 for the 1D-CNN
and 128 for the LSTM, while the optimal number of layers is 1 for the 1D-CNN
and 2 for the LSTM. Besides, the benchmark experiment results is obtained as
shown in Figure 5.8 by choosing optimal batch size 256 for both the 1D-CNN
and LSTM, while the optimal number of layers is 2 for the 1D-CNN and 1 for the
LSTM. As shown in Figure 5.8, we observe that the detection of the VSI-DDoS
attacks is a more difficult task than the detection of the classical DDoS attacks
in IoT.
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Figure 5.8: Choosing and analysing optimal batch size and number of layers using
GSA.

(b) Experiments with different learning rates: As the learning rate controls how
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quickly a model adapts to the problem, it is the most important hyperparame-
ter [82]. Therefore, we perform experiments on 1D-CNN and LSTM models with
varied learning rates including 0.5, 0.1, 0.01, 0.001, and 0.0001 for obtaining opti-
mal values. Figure 5.9 illustrates the experimental results based on the different
learning rates. According to the results, we found that 0.01 learning rate gives the
best detection rate in the testbed and benchmark datasets, respectively. Hence,
we run all trails of experiments with the 0.01 learning rate till 100 epochs.
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Figure 5.9: Choosing and analysing of optimal learning rate for the testbed and
benchmark datasets.

(c) Experiments with different loss functions: As our problem is classification cen-
tric, we investigated three binary classification loss functions, binary_crossentropy,
hinge, and squared_hinge for the testbed dataset. In addition, we investigated
three multi-class classification loss functions, categorical_crossentropy, sparse_cat
egorical_crossentropy and kullback_leibler_divergence for the benchmark dataset.
Figure 5.10 shows that binary_crossentropy loss function performs best for both
CNN and LSTM for the testbed dataset, while the categorical_crossentropy loss
function performs best for both CNN and LSTM for the benchmark dataset.

5.4.3 Comparison with competing methods
We use LSTM [72], Support Vector Machines (SVM) [64], and Naive Bayes (NB)
[122] as our baselines. In this study, we consider the classification problem, thus
we chose classification-based deep and machine learning methods as our baseline
methods. We use classification accuracy to show the performance compared with
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Figure 5.10: Experimental results - 1 layer 1D-CNN and 2 layers LSTM with
different loss functions on the testbed and benchmark datasets.

baselines. Figure 5.11 shows the accuracy of each model. As results of the
hyper-parameters tuning for the benchmark dataset, 1 layer 1D-CNN provides the
highest detection accuracy of 100%, with 256 batch size, relu activation function,
categorical_crossentropy loss function and the Adam optimizer with a learning
rate of 0.01. The experiment results show that our 1D-CNN model has the highest
accuracy compared with LSTM and the other baseline machine learning methods.
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Figure 5.11: Comparison of the proposed method with baseline models

5.5 Summary and Observations
In this chapter, firstly, we generated a new VSI-DDoS attacks IoT application
dataset. A detailed description of designing the testbed configuration is pre-
sented and collected data by deploying multiple services in presence and absence
of attacks. Second, we evaluate the impact of VSI-DDoS attacks on the IoT
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application over many different services. Finally, we presented a 1D-CNN deep
learning method for detecting VSI-DDoS attacks in IoT applications. The major
limitations of the proposed approach are that it can’t deal with finite context
length, computational inefficiency, and handling time stretching, however, our
tasks weren’t focused to address these problems rather tuned the model for an
efficient detection performance to combat VSI-DDoS attacks in IoT applications.

80



6 Conclusions

In this research, our main aim is to devise and develop comprehensive approaches
to detect, prevent, and predict cyberattacks in IoT devices and applications by
integrating DL with SDN. To begin with, we investigate challenges in IoT cy-
berattacks detection and prevention approaches, and then we find challenges
including data heterogeneity, data imbalance, dynamic flow management, and
prediction of the future status of the IoT devices. We investigate the proper
solution for each challenge, and we find that deep ensemble DL approaches can
address the data heterogeneity and data imbalance problem. Thus, firstly we
present a novel deep ensemble learning model based framework called DeL-IoT
for IoT anomaly detection using SDN primarily to detect anomalies or dynamic
attacks for increasing detection performance, switch-level dynamic flow manage-
ment, and forecasting short and long term device status. We suggest the deep
and stacked auto-encoders to extract features for stacking into an ensemble of
PNNs learning model for performance improvement while addressing the data
imbalance problem. Additionally, we propose a novel mechanism for dynamic
flow management in presence of attacks and forecasting device status based on
the status table. The system manager can utilize this forecasting features for
early action against dynamic attacks from the device to physical infrastructures.
We have demonstrated the improved performance in the testbed and benchmark
datasets with 99.8% and 99.9% detection rates, respectively, better than the ex-
isting methods. Our proposed DeL-IoT method results show that in the 1%
imbalanced datasets for both single and multi-class anomalies F1 and MCC mea-
sures are around 2%-3% better than a single model. Finally, we conclude that
the use of the deep or stacked autoencoder in combination with ensemble PNN
improves the performance of IoT anomaly detection in data imbalance problem
and also can forecast device status efficiently.
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Second, we propose a 1D-CNN deep learning method for VSI-DDoS attacks
detection with a vector of time series data. Because 1D-CNN lends benefits for
extracting fine-grained features together with learning model with low-cost com-
putation but achieves high accuracy in detecting VSI-DDoS attacks. In addition,
we design a new IoT application VSI-DDoS attacks dataset and give a detailed
description of designing the testbed configuration and emulated IoT application.
We evaluate the impact and detect VSI-DDoS attacks on the IoT application.
Using concrete experimental results we show that VSI-DDoS attacks are effective
and stealthy towards a target service because they cause QoS issues of the target
IoT application while the average usage rate of all the system resources is at
a moderate level. We perform experiments on our created testbed and bench-
mark datasets. The results show that our proposed approach achieved maxi-
mum detection rate in contrast to LSTM and other machine learning approaches.
We comprehensively investigate the hyper-parameters, and we select the optimal
hyper-parameter values to obtain maximum detection accuracy. Based on our
exhaustive experimental analysis using testbed and benchmark datasets, the pro-
posed approaches reach the maximum accuracy of 99.3% and 100% which gives
improvement by 33.15% and 0.01% detection accuracy in comparison to baseline
models, respectively.
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7 Future Directions

7.1 Boost difficulties with resource constraints
nature in IoT

In recent years, cyberattacks have become sophisticated, advanced and are grow-
ing at a very fast pace. DL models self-learn from past cyberattacks by inves-
tigating available data and performing user behavior analysis to uncover hidden
data patterns to detect cyberattacks. As we aforementioned in this study, a more
scalable and efficient approach to detect zero-day and emerging cyberattacks in
the IoT ecosystem is DL models. However, the resource constraint nature of IoT
devices is one main limitation that makes the challenge the adoption of DL-based
IDS in IoT ecosystems. Hence, in this study, we propose to install DL models
on the SDN controller to detect cyberattacks in the IoT ecosystem due to the
resource limitation of IoT devices. In addition, edge and fog computing are both
extensions of cloud computing which is widely used by various organizations.
Cisco predicts that by 2021, the organizations will move fifty percent of their
workloads and costly computational processes to the cloud or network edge [123].
Thus, in the future, since IoT devices have resource limitations and DL models
are computationally expensive, researchers may propose to move the computa-
tional processes of deep learning models to edge/fog nodes. This will help security
through the firewall, complex models training, and IDSs and give redundancy and
failover advantages if a critical site gets hit by a large-scale cyberattack.

7.2 Unknown cyberattacks detection
The unique characteristics of the IoT ecosystem require careful model designing
and training for IDS. Therefore, it is crucial to train ML and DL models on a
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dataset that is IoT specific and comprises various cyberattacks traffic. There are
several datasets publicly available for evaluation of IoT cyberattacks detection
approaches and systems including DS2OS traffic traces [37], BoT-IoT [38], N-
BaIoT [39], IoT Network Intrusion Dataset [40], ToN-IoT [44], NF-BoT-IoT,
and NF-BoT-IoT. However, these datasets mainly include botnets, DoS, DDoS
attacks data and do not contain other new types of cyberattacks. Moreover, lack
of real-life datasets in the IoT cybersecurity ecosystem. Thus, it is imperative to
devise real-life datasets that include emerging cyberattacks in the IoT ecosystem.
An essential future research direction is the use of crowd-sourcing methods for
generating datasets related to IoT threats and cyberattacks. Rich datasets that
include nearly all cyberattack patterns should be generated for training ML and
DL models.

7.3 Lack of cross-layer real-time/testbed
datasets

The IoT ecosystems consist of several components including devices, applications,
proxies or interfaces, and edge servers. The existing IoT benchmark datasets are
mostly on IoT devices. Here, cross-layer implies how we collect data together in
devices, applications, and infrastructures (physical and virtual). In large-scale
IoT systems, each component plays a key role when ensuring secure services and
protecting devices during communication in diverse environments. There are no
such datasets in the existing literature, we like to create one that can be used to
validate methods and systems for detecting and protecting cross-layer attacks.

7.4 Root-cause analysis of cyberattacks
Root-cause detection of attacks in large systems can be a black box and white box
perspective. From the black box perspective, graph-based algorithms are com-
monly used to learn the dependencies between different parts of a system using
unsupervised learning to analyze kernel and userspace traces in system logs. The
root-cause analysis brings several benefits such as cost-effective mitigation, auto-
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mated detection, and mitigation, and recommends specific action. The existing
methods didn’t implement in cross-layer scenarios against emerging cyberattacks,
specifically low-rate DDoS attacks. By applying DL and probabilistic-reasoning
approaches, we like to design and develop a method to detect and identify root
causes at an early stage that saves enormous cost and also ensures the security
of devices and applications.

7.5 Blockchain-enabled SDN controller
Blockchain is an emerging technology that employs cryptography to secure trans-
actions within a network [124]. The blockchain delivers a decentralized database
of transactions, of which each node on the network is aware [125]. The decen-
tralized nature of blockchain supports secure distributed computing through the
distributed trust concept. IoT devices and SDN controller servers can safely
share data using blockchain. Thus, a secure blockchain-enabled architecture of
DL-based SDN controllers for IoT networks is still required.
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