
Doctoral Dissertation

Multi-Grained Reconfigurable Architecture
Powered by Elastic Neural Network for

Approximate Computing

Yirong Kan

February 4, 2022

Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Yirong Kan

Thesis Committee:
Professor Yasuhiko Nakashima (Supervisor)
Professor Yuichi Hayashi (Co-supervisor)
Associate Professor Renyuan Zhang (Co-supervisor)

Multi-Grained Reconfigurable Architecture
Powered by Elastic Neural Network for

Approximate Computing∗

Yirong Kan

Abstract

Beyond the boom of artificial intelligence, the next generation of computing
architectures with high speed and low cost are always demanded. In this thesis,
we proposed a multi-grained reconfigurable architecture for accelerating arbitrary
functions in fully parallel with high speed and low cost. The proposed architec-
ture is reconfigurable in fine-grained (arbitrary functions), mid-grained (flexible
function feature, accuracy, and number of operands), and coarse-grained (organi-
zation of kernels). By implementing a large scale of novel bisection neural network
(BNN) on hardware, the reconfiguration is conducted by partitioning entire BNN
into any specific pieces without redundancy. Each piece of BNN retrieves the ar-
bitrary function approximately. By reconfiguring the BNN topology in software,
we can easily adjust dimensions of the computing kernel without rewiring, and
achieve a wide range of trade-offs between accuracy and efficiency in hardware.
In this manner, the multi-grained reconfigurable architecture is achieved. For
proof-of-concept, a demo accelerator is built on FPGA. The processing element
is designed in 16-bit fixed point scheme including two synapses and one neuron.
In order to better support this architecture, we have also proposed a series of
system-level optimization techniques, including design flow, on-chip interconnec-
tion, and configuration strategies, etc. Since the architecture is flexible in all
grained levels, various configurations for each validation are demonstrated with
rich options of performance-cost matrix. From the FPGA implementation results,

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, February 4, 2022.

i

compared with CPU baseline, proposed architecture achieves speedups of 5.1x to
30.3x. Compared with other traditional function approximation methods, our
method provides fewer parameter storage requirements. The comparison against
related works proves that our accelerator has reduced the area-latency product
by at least 9.5% with a loss of accuracy by at most 8.9%.

Keywords:

Parallel computing, reconfigurable architecture, neural network, approximate
computing, FPGA implementation

ii

Contents

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Background . 1
1.2 Motivations and Contributions . 2
1.3 Organization of Thesis . 6

2 Related Works 7
2.1 Neural Network-based Approximate Computing 7
2.2 Hardware Accelerator for Neural Networks 9
2.3 Reconfigurable Architectures . 12

3 Neural Network Prototype of Proposed Architecture 16
3.1 Spatial-Expanded Implementation 16
3.2 Bisection Neural Network . 17
3.3 Towards Multi-Grained Reconfigurable Architecture 20
3.4 Design Flow . 23
3.5 Challenges . 27

3.5.1 On-Chip Interconnections 27
3.5.2 PE Utilization . 29

4 Hardware Architecture Design and Optimization 31
4.1 Overview of Proposed Accelerator 31
4.2 Design of PE Architecture . 33
4.3 On-Chip Interconnection for Efficient Buffer Utilization 35
4.4 Controller Design . 38

iii

4.5 Computation Datapath . 39
4.6 Configuration Strategy . 42

5 Evaluation 50
5.1 Experimental Setup . 50
5.2 Results by Software . 51
5.3 Results of Fixed-Point Hardware Simulation 53
5.4 Implementation Results on FPGA 55
5.5 Comparison with Other Works . 57
5.6 A Case Study on Fault-Tolerant Application 61

6 Conclusion 67
6.1 Summary . 67
6.2 Future Works . 68

References 71

Publication List 85

iv

List of Figures

1.1 Computing architectures: (a) General computing system, (b) Het-
erogeneous computing system. 1

1.2 Motivation of this thesis. 6

2.1 Modeling biological neurons into artificial neurons. 7
2.2 Multilayer perceptron model. 8
2.3 Heterogeneous computing system proposed by Esmaeilzadeh et al.

[42]. 10
2.4 Various neural network accelerator architectures. 11
2.5 General structure of FPGAs. 13
2.6 Typical structure of CGRAs [73]. 14

3.1 A NN performed by TDM and SEP architecture. 17
3.2 Partitioning an original NN in FC-NN and BNN style hardware. . 19
3.3 Workflow of proposed architecture. 21
3.4 BNN-based multi-grained reconfiguration architecture. 22
3.5 Software-hardware division of the design flow. 24
3.6 Convert FC-NN to BNN using mask matrix. 25
3.7 A top view of memory architecture for spatial array accelerator. . 27
3.8 Four common NoC interconnection designs. 28
3.9 An example of improving the PE utilization. 30

4.1 Overall architecture of the proposed MuGRA system. 32
4.2 Architecture of a PE. 33
4.3 Architecture of a neuron unit. 35
4.4 Logic structure of interconnection between buffers and kernels. . . 36
4.5 Interconnection of PEs and local buffer. 37

v

4.6 An example of large array configuration. 37
4.7 FSM controller of the system. 39
4.8 Datapath of a computing kernel. 40
4.9 Allocating two computing kernels on a 5× 5 PE array. 41
4.10 An example of mapping a computing kernel on PE array. 43
4.11 A flow diagram of NRP. 44
4.12 A flow diagram of ORP. 46
4.13 An instance of proposed configuration strategies. 47

5.1 Average accuracy with different precision. 53
5.2 Average accuracy with different fractional width by 16bit precision. 54
5.3 Resource utilization with different scale of PE arrays. 56
5.4 Speedup of TDMA and SEPA compared with CPU baseline. . . . 57
5.5 Approximate results of image segmentation. 61

vi

List of Tables

2.1 Comparison of various reconfigurable architectures 12

5.1 Calculation performance test for one-variable functions 51
5.2 Calculation performance test for two-variable functions 52
5.3 Implementation results of various topologies on FPGA 55
5.4 Comparison of memory size for one-variable functions 58
5.5 Comparison of memory size for two-variable functions 58
5.6 Comparison of implementation results for one-variable functions

with other FPGA-based works . 64
5.7 Comparison of implementation results for two-variable functions

with other FPGA-based works . 65
5.8 Comparison of power consumption with FPGA-based works . . . 66

vii

1 Introduction

1.1 Background
With the rapid development of big data and artificial intelligence (AI), the next
generation of computing architectures with high speed and low cost is always
demanded [1–5]. Emerging application scenarios such as virtual reality, robot
control and the Internet of Things require massive computing capabilities [6–
8]. However, the performance growth rate of general-purpose processors is too
slow to follow the rapid development of applications [9]. In particular, with the
bottleneck of data transfer between processing and memory units, the traditional
Von Neumann architecture has been unable to meet the growing demand on
computations [10,11]. As the high quality of service (QoS) is speed-greedy at the
end of application, one of the keys for speeding up is the parallelism [12]. In order
to implement a huge amount of computations at the application end, hardware
with massive computational cores have been widely employed as accelerators with
general-purpose processors [13,14], shown as Fig. 1.1.
During the past decades, various prototypes of Non-Von Neumann architectures

have been developed for processing the big and complex datum with high paral-

General-Purpose

Processor
Memory

(a) (b)

General-Purpose

Processor

Memory

Accelerator

Figure 1.1: Computing architectures: (a) General computing system, (b) Hetero-
geneous computing system.

1

lelism such as general purpose graphic processing units (GPGPU) [15] and tensor
processing units (TPUs) [16]. As a typical general-purpose multi-core processor,
GPGPU is widely used in the hardware acceleration for machine learning appli-
cations, which are usually resource-hungry. On the other hand, domain-specific
architectures (DSAs) [17] are developed to accelerate embedded applications with
low power and cost, but flexible acceleration features for unpredictable tasks can-
not be offered. Since the DSAs are application specific, their high performance
and low cost are easily eaten up by commercial cost [18]. Fortunately, plenty of
reconfigurable computing architectures have been developed to accelerate unpre-
dictable applications [19]. Meanwhile, it has seen that reasonably approximate
computing [20] processors appear the potential to achieve acceptable QoS with
greatly reduced complexity of circuits and systems. Obviously, an ideal architec-
ture is expected to win all the aspects of parallelism, flexibility, and cost.
As a powerful approximate computation model, neural networks (NNs) can

effectively replace the complex modules in general programs with slight accuracy
loss. Meanwhile, the NN algorithm is composed of a large number of regularized
multiply accumulate (MAC) modules, which makes it easy to design a dedicated
accelerator. Through configuration, the resources of the same accelerator can be
reused for different applications. Therefore, by designing a NN accelerator in a
general computing system, different tasks can be mapped to the accelerator for
execution without adding excessive redundant computation logic. The potential
flexibility and speedup of NN accelerators can greatly improve the performance
and energy efficiency of general computing systems. Since the architecture of
the NN accelerator will directly affect the performance of the overall system, the
study in this thesis will focus on the innovative design of the NN accelerator for
approximate computing, especially the design of the multi-grained reconfigurable
architecture.

1.2 Motivations and Contributions
In general, the flexibility of a parallel computing architecture lies on the re-
configurability of multiple levels (seen as grains), where the fine, middle, and
coarse grain indicate the function behavior, number of operands, and organization

2

of calculation units, respectively. The coarse-grained reconfigurable architectures
(CGRAs) are widely seen as TPUs or dataflow processing units (DPUs) [21] for
computer vision tasks. Without efficient function-flexibility, conventional CGRAs
are not always prime especially in carrying out massive non-linear complex func-
tions [22]. To enable (almost) arbitrary functions in-built, embedding powerful
arithmetic and logic units (ALUs) onto systems is unacceptable due to the cost
explosion problem. Several functional grained reconfigurable computing units
have been developed by emulating arbitrary functions through rich-behavior-
poor-bit ALUs [23], piece-wise linear approximation [24], and polynomial ex-
pansion [25]. However, the hardware implementations of those flexible function
retrievals should be designed by specifying the performance-cost feature which is
hardly re-configured post-fabric. In addition, the conventional function retrievals
above hardly achieve ultra compact chip estates for massive implementation. As
a result, simply migrating the function retrieve circuitry into ordinary CGRAs
can not offer the real multi-grained re-configurability.
Beyond those implementation styles, the implementations of regression algo-

rithms such as neural networks (NNs) have been reported on the aims at some
specific applications [26, 27]. However, the conventional fully connection (FC)
fashion of NNs leads to the hardware explosion and the remarkable redundancy
during the reconfiguration. Escaping from the FC-NNs, a feasibility study of
bisection topology of NN called ‘DiaNet’ has been reported for efficiently config-
uring NNs with rich trade-off between the accuracy and hardware cost [28–30].
In this sense, a single DiaNet on hardware behaves a specific computing kernel
for approximate computing [31]. Unfortunately, the previous efforts on bisection
neural network (BNN) are implemented by analog calculation, with problems
such as variation, memory and design experiences. In particular, previous work
has only explored the feasibility of a single DiaNet, while the reconfiguration
and routing mechanism of multi-core parallel computing has not been developed.
In this sense, not only the single-core level but also the multi-core architecture
should be reconsidered for the greatly parallel and efficiently reconfigurable im-
plementations. The motivation of this thesis is shown as Fig. 1.2.
The main contributions of this thesis are as follows:
1. This thesis proposes a multi-grained reconfigurable architecture powered by

3

a novel BNN topology [32]. From the perspective of neural networks, conventional
fully connected neural networks cannot support the design of space expansion
architecture due to the explosion of interconnection. However, the flexibility and
scalability of the BNN topology allows us to build a large-scale on-chip array. This
fully parallel design enables the system to achieve huge computing throughput.
Meanwhile, the characteristics of BNN make it unnecessary to waste synaptic
connections when allocating computing kernels on the array, thereby reducing
parameter storage overhead. From the perspective of reconfigurable computing,
the traditional FPGA architecture is complex to configure, while the CGRA
architecture cannot achieve fine-grained functional reconfiguration. The proposed
architecture is reconfigurable in fine-grained (arbitrary functions), mid-grained
(flexible function feature, accuracy, and number of operands), and coarse-grained
(organization of kernels). This architecture design idea brings a new perspective
to the field of reconfigurable computing. From the perspective of energy-efficient
computing, approximate computing based on neural networks have brought huge
energy gains to general-purpose processors. By approximating a large number
of complex computation modules with neural networks, application acceleration
can be achieved at low cost.
2. Based on the proposed architecture, we implemented a CPU+Accelerator

heterogeneous computing system on an FPGA-based SoC. At the system level,
based on the pre-trained neural network model, we can efficiently run the original
computing module on the proposed architecture. At the circuit level, we propose
to use on-chip data and configuration buffers to smoothly process calculation and
configuration information. The double-buffering design ensures that off-chip-on-
chip data exchange and the computing unit read/store data at the same time to
hide memory access delays. For PE design, we propose an activation function
implementation method that does not use a multiplier to perform Leaky-ReLU
calculations, which avoids neuron death and reduces circuit area overhead. The
efficient control unit design makes the entire system run in order. Meanwhile, we
propose a design flow to efficiently carry out system development and application
on both software and hardware.
3. We discussed the challenges of designing interconnection networks between

PE and on-chip memory in the proposed architecture. We analyzed that the

4

bottleneck of the proposed architecture in parallel computing is the inability to
provide data for a large number of PEs at the same time. In order to provide data
in parallel, the traditional approach is to use a crossbar switch to connect the PE
array and the on-chip memory. For large-scale PE arrays, non-scalable crossbar
switches will increase the complexity of the system. In order to solve this problem,
we introduced four common NoC interconnection schemes and discussed them.
Common NoC interconnects cannot be directly applied to our designs, resulting
in a decrease in on-chip memory utilization or configuration flexibility. In view
of the characteristics of the architecture, we designed a specific interconnection
scheme to support arbitrary kernel allocation and full parallel computing, with
improving the utilization of on-chip memory.
4. We propose three configuration strategies to place the computing kernels on

the PE array. Efficient configuration strategies can effectively improve the uti-
lization of PE, thereby improving the energy efficiency of the system. The naive
random placement strategy simply places the kernels randomly, which has lower
PE utilization in most cases. The greedy-based placement strategy assumes that
placing a larger kernel can improve PE utilization. Scan the entire array and
place the largest kernel first in the feasible space, with higher PE utilization.
The optimized random placement strategy is based on the simulated annealing
algorithm, which mutates the initial random placement solution to obtain a new
solution. If the new solution is better than the original solution, the new solu-
tion is accepted, otherwise the new solution is accepted with probability. The
optimized random placement strategy has the highest PE utilization rate in the
instance.
5. To prove the universality of the proposed method, we have investigated

multiple kinds of arithmetic functions, including one- and two-variable functions,
and demonstrated their theoretical and hardware calculation results by software
simulation and FPGA test, respectively. The test results of several functions show
that for one-variable functions, the topology with the minimum hardware resource
achieve an accuracy of over 99.75%; for two-variable functions, the topology with
the minimum hardware resource achieve an accuracy of over 91.1%. By testing
the average accuracy of different fixed-point implementation, we found that 16-
bit is the ideal precision to design PEs that approximates the software results.

5

Energy-Efficiency

Approximate Computing

Elastic Neural

Network

Figure 1.2: Motivation of this thesis.

Compared with other traditional function approximation methods, our method
provides fewer parameter storage requirements. Compared with various one- and
two-variable function generators based on FPGA implementation, the calculation
latency of our accelerator has been effectively reduced with slight accuracy loss.

1.3 Organization of Thesis
The rest of the thesis is organized as follows. Chapter 2 introduced related work,
including NN-based approximate computing, NN accelerator and reconfigurable
architectures. Chapter 3 give the definition of BNN, concepts of BNN-based
multi-grained reconfiguration architecture, a framework of design flow from soft-
ware to hardware and discussion of design challenges. Chapter 4 proposed the
hardware architecture designs, including overview of the MuGRA system, con-
troller design, PE architecture, on-chip interconnection design, computation data-
path and configuration strategies. Chapter 5 shows the experimental results of
proposed architecture. We summarize the thesis in Chapter 6.

6

2 Related Works

2.1 Neural Network-based Approximate
Computing

Many resource-consuming applications can tolerate approximate errors in their
output results without causing significant loss in quality of results [33–35], such
as image and video processing, voice recognition, web search, etc. The input of
these applications itself is real-world data with noise and redundancy, such as
image and audio data obtained from cameras and voice sensors. Their output
is also used for human perception. The user may not be able to distinguish the
subtle differences between the exact results and the approximate results, or the
results may have multiple user acceptable answers [36]. For such applications,
approximate computing can not only greatly reduce the complexity of circuits
and systems, but also achieve rich trade-offs between cost and accuracy loss.
Artificial neural network (ANN) is a mathematical model that simulates the

working principle of the nervous system in human brains. Through abstract
modeling of biological neural networks, a network that realizes a certain function
can be constructed artificially. For simulating nonlinear problems, ANN can

Modeling

 (a) Biological neuron [37] (b) Artificial neuron

Figure 2.1: Modeling biological neurons into artificial neurons.

7

Input Layer Hidden Layer Output Layer

Figure 2.2: Multilayer perceptron model.

use input and output data to find the optimal parameters through self-learning
capabilities without having to understand the exact model of the original problem.
A large number of basic information processing units are connected by a specific

structure in the ANN to form a system with nonlinear and adaptive information
processing capabilities. Neuron is the most basic information processing unit of
ANN. Figure 2.1 shows the biological neuron [37] and the corresponding artificial
neuron model. By modeling the biological neuron, the artificial neuron performs
a weighted summation of multiple input data xi according to the weight wi, and
obtains the output y through the activation function f . Although the function of
each neuron is very simple, a large number of neurons can be connected to each
other through a specific topological structure to achieve very complex arithmetic
functions.
The multilayer perceptron [38] (MLP) is a typical multilayer fully connected

neural network, as shown in Fig. 2.2. The basic unit of the MLP model is still an
artificial neuron, but the difference is that each neuron is fully connected with the
output of all neurons in the previous layer to form a multilayer structure. Data
enters the network from the input layer, sequentially passes through the hidden
layer neurons, and finally obtains the result from the output layer. Cybenko et al.
[39] proved that a 3-layer MLP is a general approximator, which can approximate
any continuous function on the closed interval. Therefore, ANN is widely used

8

to accelerate approximate computations in general programs.
Neural network is essentially an approximate computing model, which imitates

the original calculation rules by learning the mapping between input and out-
put, to achieves approximate results instead of exact results. Despite the loss
of accuracy due to the approximation, neural networks may still provide accept-
able results for a wide range of applications with inherent error tolerance [40].
By replacing some complex operations in general programs, neural networks can
reduce the delay and power consumption of key calculation modules, to achieve
acceleration of computing. For example, in image segmentation based on the k-
means algorithm, we have to calculate the similarity between each pixel, usually
the Euclidean distance. For an image of size N ×M , we have to calculate the
Euclidean distance between N × M pixels and k cluster centers in each itera-
tion, which is unacceptable on a general-purpose CPU. By offloading this type of
computing task to a large scale parallel accelerator powerd by neural networks,
we can achieve a calculation acceleration of more than 10 times. In addition,
hardware neural networks are also easy to implement in parallel and pipeline, so
throughput and efficiency could be improved.
In summary, the reasons why neural network can be used for approximate

computing are: 1. neural networks have good nonlinear mapping capabilities to
learn the behavior of the replaced module in the application with extremely high
accuracy; 2. neural networks have a large number of parallel processing units,
which can convert operations into basic multiply and add modules, with high
reconfigurability; 3. by modifying the parameters or topology, neural networks
can realize various applications with different accuracy without making a lot of
changes to the hardware. These reasons make neural networks very suitable as
the logical basis of reconfigurable computing architecture.

2.2 Hardware Accelerator for Neural Networks
In order to utilize the approximate computing performance of neural networks in
general-purpose processors, Esmaeilzadeh et al. [41–43] first proposed a hetero-
geneous computing system architecture of "general-purpose processors + neural
network accelerators". Neural network accelerators take on important computing

9

Figure 2.3: Heterogeneous computing system proposed by Esmaeilzadeh et al.
[42].

tasks in general computing in the form of coprocessors to improve the energy
efficiency of the entire system, as shown in Fig. 2.3. After that, neural net-
work accelerators for general-purpose computing have developed tremendously.
Moreau et al. [44] designed a neural network accelerator SNNAP based on FPGA
to avoid changes to the instruction set and micro-architecture of general-purpose
processors. Yazdanbakhsh et al. [45] integrated neural network accelerators and
GPUs to form an NGPU architecture to implement approximate computations
for CUDA applications. Eldridge et al. [26] used the general approximation per-
formance of neural networks to design a function approximator for accelerating
the calculation of transcendental functions. Wang et al. [46] integrated the neural
network accelerator into the JPEG encoder to achieve high-performance and low-
power JPEG encoding. Tu et al. [47] used the reconfigurability of neural networks
to map neural networks on reconfigurable hardware to accelerate calculations in
multimedia applications.
At the same time, the use of various hardware to realize the computational

optimization of neural networks has also been extensively studied. St. Amant et
al. [48] used analog circuits to realize neurons to build accelerator ANPU, which
can further improve the performance and energy efficiency of general neural net-
work approximation compared with traditional digital neurons. Zhang et al. [49]
used the Roofline model to analyze the trade-off relationship between calculation
and memory access, and found the design parameters with the lowest calculation
delay on the FPGA platform. Chen et al. [50] designed the ASIC chip Eye-
iss, which greatly improved the on-chip data reuse by using a specific calculation
model. Yin et al. [51] designed a chip based on a reconfigurable architecture called

10

(a) ANPU [48] (b) FPGA-based [49]

(c) Eyeriss [50] (d) Thinker [51]

Figure 2.4: Various neural network accelerator architectures.

Thinker that supports hybrid neural networks computing. The above hardware
systems are shown in Fig. 2.4. Although the principles of many optimization
methods are the same on FPGA and ASIC, the implementation styles of the two
are quite different, which directly affects their scope of application and optimiza-
tion results. Since FPGA has the ability of reconfiguration, it is easy to construct
optimization problems according to the execution goals and find the optimal de-
sign parameters. However, FPGAs have high power consumption and are not
easy to optimize. FPGA-based designs usually only take performance-related
indicators as optimization targets [49, 52–55]. ASIC-based designs have obvious
advantages in terms of power consumption, but their reconstruction ability is
weak, and they often only support a fixed calculation mode [56–58].
In addition, the use of the characteristics of algorithms for effective neural net-

work acceleration has also been widely studied. The main idea is to use the fault-
tolerant characteristics of neural networks to perform model compression, which

11

Table 2.1: Comparison of various reconfigurable architectures

Architecture PLA FPGA CGRA EGRA

Granularity Fine Fine Coarse Coarse

Component Gate LUT ALU ALU Clusters

Arithmatic Boolean Boolean Numeric Expression

Flexibility High High Low Low

Configuration Hard Hard Easy Easy

is divided into two types of techniques: sparsity [59–61] and quantization [62–64].
The core idea is that the neural network contains redundant information. By re-
moving unnecessary calculations and reducing the data bit width, the amount of
calculation or parameter storage is greatly reduced. Advances in algorithms have
also prompted hardware researchers to design some neural network accelerators
that support sparse computing [65–67] and low-bit-width computing [68–70].

2.3 Reconfigurable Architectures
The concept of reconfigurable computing was first proposed by Estrin et al. [71]
in 1960. The reconfigurable hardware is controlled by the controller, and the
structure is reconstructed according to the specific task, so as to realize the task-
customized computation path. In 1999, DeHon et al. [72] further defined the
reconfigurable processor: it can be customized post-silicon to realize the spatial
mapping of tasks to the chip. According to this definition, a reconfigurable proces-
sor can have the programmability and flexibility of a general-purpose processor,
as well as the high performance of spatial parallel computing on hardware.
Generally, the reconfiguration level of hardware is divided into two levels, fine-

grained and coarse-grained. Table 2.1 compares various reconfigurable architec-
tures. Programmable logic array (PLA) and FPGA are typical representatives of
fine-grained reconfigurable architecture. The fine-grained architecture uses logic

12

Figure 2.5: General structure of FPGAs.

gates or look-up tables (LUTs) as basic units and glues them together with a
flexible interconnection network, shown as Fig. 2.5. The LUT unit is a piece of
static random access memory (SRAM) with address input lines. Through differ-
ent inputs to the address lines, the numbers corresponding to different addresses
can be taken from the SRAM as output, thereby realizing the function of a LUT.
Arbitrary logic functions can be realized by configuring the LUTs. Although the
fine-grained architecture is highly flexible, its reconfiguration is very expensive,
and the synthesis and layout of large-scale circuits usually take several hours.
In contrast, another representative of typical reconfigurable architecture is

coarse-grained reconfigurable architectures (CGRA) [73–75]. The typical struc-
ture of CGRA is shown as Fig. 2.6. The on-chip structure of CGRA is usually
composed of data buffer, configuration buffer, processing element (PE) array and
configurable interconnection. Generally, the working phase of CGRA is divided
into configuration phase, input phase, execution phase and storage phase. The
configuration process of the on-chip structure is controlled by a controller. The
PE unit is usually composed of a configurable ALU and input/output registers.

13

Figure 2.6: Typical structure of CGRAs [73].

According to the configuration information, the ALU in each PE unit can be
configured to perform common logic operations, such as arithmetic operations,
AND or NOT, shifting, etc. By using a coarser operand granularity, the typical
overhead of fine-grained FPGAs can be reduced in CGRA. In addition, a coarse-
grained architecture with ALU clusters as the basic unit is also reported, such
as expression-grained reconfigurable array (EGRA) [76]. The basic units of these
coarse-grained architectures are usually composed of ALUs, whose arithmetic
logic functions have been fixed to a limited number after the design is completed,
and cannot be reconfigured. In order to execute complex applications, it is usu-
ally necessary to map the computation-intensive part to the reconfigurable PE
array.
In addition to the above four architectures, the concept of mixed-grained re-

configurable architecture [77,78] has been proposed. Unlike single-grained recon-
figurable architecture, mixed-grained reconfigurable architectures are expected to
reconfigure hardware at multiple levels to improve efficiency and flexibility. The
existing mixed-grained reconfigurable architectures are usually the integration of

14

CGRA and FPGA, with the purpose of increasing the flexibility of CGRA in
fine-grained configuration.

15

3 Neural Network Prototype of
Proposed Architecture

3.1 Spatial-Expanded Implementation
Many high-performance NN accelerators exploit time-division multiplexing (TDM)
architecture, only arranging a small number of hardware neurons on chip, or map-
ping a complex NN into a small PE array by layer [79–84]. At each time step,
some neurons in a layer are temporarily mapped to the network by obtaining the
corresponding synapses. The intermediate output is stored to be used as input
to the next layer of neurons. It takes several time steps to execute the entire
NN. In this way, a large-scale NN can be effectively executed, but the challenge
is how to store a large number of parameters into on-chip memory to overcome
the bottleneck of data transmission. By contrast, in a NN accelerator based on
spatially expanded in parallel (SEP) architecture [85], the hardware structure
and operation are similar to that of a biological NN: Synapses are stored in dis-
tributed locations close to neurons; all neurons are mapped to the hardware; data
flows from the input layer to the output layer. In addition to the resulting short
synaptic weight access latency, the internal synaptic weight bandwidth is high.
Meanwhile, distributed synaptic storage can save most of the power consumption
caused by data transmission.
The architecture of TDM and SEP are shown in Fig. 3.1. A PE performs

the basic functions of a neuron. The number of PEs in the TDM architecture
is the same as the width of the NN, and the calculation time requires cycles
of the depth of NN. In each cycle, the TDM architecture must obtains weights
from the large-capacity on-chip weight memory, while the SEP architecture only
have to access the internal weight register. By using pipeline technique, the SEP

16

PE

PE

PE

PE

PE PE

Input

Buffer

Output

Buffer

Weight Memory

PE PE PE

Input

Buffer

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

OP

WR

Weight

Register

Output

Buffer

Operation

Input
Output

Input

Figure 3.1: A NN performed by TDM and SEP architecture.

architecture can improve runtime throughput, but will produce a larger area. The
key factor in choosing TDM or SEP to implement hardware NNs is the dimension
of input and output, because it can significantly affect the depth and width of the
network topology. Since the goal of our accelerator is to accelerate the functions
evaluation in applications, such as the calculation of Euclidean distance in k-
means clustering, to reduce the calculation delay. The input dimensions of most
of this applications will not exceed 10, so the focus of this paper is on the SEP
architecture rather than the TDM architecture.

3.2 Bisection Neural Network
NN-based approximate computing accelerate the application by learning the map-
ping of input data and output results. Many previous works have proposed the
use of multi-layer fully-connected (FC) networks (i.e., multi-layer perceptron,
MLP) to design accelerators. The training process includes selecting the network
topology, learning synaptic weights and neuron biases. Figure 3.2 shows a typical
MLP in the middle. In this topology, each neuron structure in i-th layer receives

17

all (i.e., Ni−1) inputs from the previous layer and outputs the results to all (i.e.,
Ni+1) neurons in the post layer. In this case, each neuron in i-th layer consists
of Ni−1 synapse connections, one neuron and Ni+1 output interfaces. The output
function of j-th neuron in the l-th layer can be formulated as

xlj = σ(
Nl−1∑
i=1

wl−1
i,j x

l−1
i + blj) (3.1)

where xl−1
i is the input from the neuron i in layer (l− 1), wl−1

i,j denote the weight
of the edge connecting neuron i in layer l − 1 and neuron j in layer l, blj denote
the bias of the neuron j in layer l. σ refers to an activation function, i.e., sigmoid
or rectified linear unit (ReLU), denoted as follows:

sigmoid(x) = 1
1 + e−x (3.2)

ReLU(x) = max(0, x) (3.3)

sigmoid is widely used in classification because it is easy to derivate and compress
values. However, because it includes division and exponential operations, it is not
suitable for the implementation of the SEP architecture, because each PE needs
to be activated, which causes a lot of hardware overhead. In contrast, the easy
hardware implementation of ReLU makes it more suitable for NN regression [86].
However, since the output of ReLU in the negative domain is 0, which leads
to neuron death, [87] proposed to use Leaky-ReLU instead of ReLU to activate
neurons, which is defined as follows:

LReLU(x) =

x if x ≥ 0
αx if x < 0

(3.4)

where α is an adjustable negative slope parameter.
In the FC network, redundant synaptic connections may not have an impact on

the final results, but they occupy a lot of hardware resources [88–90]. For example,
for a neuron withNi synaptic connections, its output function needs to performNi

multiply accumulate (MAC) operations, and store Ni+1 parameters. NN pruning
[91] and neural architecture search [92–94] are two kinds of network sparsity

18

D
e

p
th

=
4

Width=4

Original NN
Partitioning in

FC-NN style

Partitioning in

BNN style

Waste and inflexible Compact and elastic

Figure 3.2: Partitioning an original NN in FC-NN and BNN style hardware.

methods for parameter compression and efficient hardware implementation of
NNs. However, no matter whether it is a FC or sparsely connected network,
it cannot be flexibly reconfigured on SEP hardware. Therefore, it is a feasible
solution to design a hardware NN based on a predefined network structure [95,96].
BNN is a feedforward NN with a predefined bisection topology, which is used to
replace the function of FC network. The definition of each neuron in BNN is as
follows:

xlj = σ(wl−1
1,j x

l−1
i + wl−1

2,j x
l−1
i+1 + blj) (3.5)

j = i+ d (3.6)

where d denote the number of neurons in a row. Assuming a BNN is an L-
layer network, the depth is defined as the number of layers L, and the width is
defined as max(N1, N2, ..., NL). For an M -input BNN, the minimum topology
is defined by constraint Ni+1 = Ni − 1 of each layer, and the width and depth of
the minimum topology both are M . By modifying the constraints on the number
of neurons between layers (Ni+1 = Ni + 1 or Ni+1 = Ni − 1), we can arbitrarily
set the width and depth of an M -input BNN.
The right side of Fig. 3.2 shows a typical BNN, which is a sparse network with

symmetrically connection. Specifically, each neuron in the BNN only accepts the
outputs from two adjacent neurons in the previous layer; and fans out the data to

19

two adjacent neurons in the post layer. Compared with a fully connected hard-
ware NN, BNN has the following advantages: (1) The sparse network structure
can reduce the overhead of on-chip memory for parameter storage; (2) Dividing
a large-scale BNN into multiple sub-networks avoids wasting a large number of
virtual synaptic connections in the hardware; (3) It is easy to expand the NN on
multiple chips without considering the complicated wiring.

3.3 Towards Multi-Grained Reconfigurable
Architecture

Figure 3.3 shows the workflow of proposed architecture. The right side shows
training process of neural networks, the left side shows mapping process from
application codes to hardware, and the middle shows a general hardware archi-
tecture of a reconfigurable accelerator, which includes the following steps:

• Determine the dimensions of input/output data to select the suitable NN
model (network topology) that balances accuracy and efficiency.

• Generate and collect input/output pairs that reflect actual execution of the
target function, and run the back propagation algorithm to train parameters
of the NN offline.

• Call the trained NN to generate a bitstream with model parameters and
configuration files during compilation, which is used to configure the accel-
erator.

• Throughout execution, the accelerator is invoked to perform a NN-powered
function evaluation in lieu of executing the original code region.

Unlike previous NN accelerators based on the TDM architecture, the BNN-
based design is to symmetrically map all neurons and synapses in the network to
hardware in a simple manner. Therefore, our purpose is not to accelerate those
huge and complex popular NNs for classification, such as VGG network, etc., but
to use the inherent flexibility of BNN to design a multi-grained reconfigurable
accelerator for approximate computing. The efficient and compact BNN topology

20

R
e

c
o

n
fi
g

u
ra

b
le

A
c
c
e
le

ra
to

r

F
u

n
c
ti
o

n

L
ib

ra
ry

N
N

 m
o

d
e

l

M
o

d
e

l
g

e
n
e

ra
ti
o

n

D
a

ta
 g

e
n

e
ra

ti
o

n

D
a

ta

G
P

U
 s

e
rv

e
r

T
ra

in
in

g

M
o

d
e

l

p
a

ra
m

e
te

rs

A
p
p

lic
a

ti
o

n

C
o
d
e

s

P
re

-c
o

d
e

s

T
a
rg

e
t

c
o

d
e
s

P
o

s
t-

c
o

d
e

s

B
it
-s

tr
e
a
m

G
e

n
e

ra
ti
o

n

R
e

s
o

u
rc

e

A
llo

c
a

ti
o

n

H
a

rd
w

a
re

M
a
p

p
in

g

C
o

n
fi
g

u
ra

ti
o

n

C
a

ll

In
te

ra
c
ti
o
n

C
o

n
tr

o
l

U
n

it

R
e

c
o

n
fi
g

u
ra

b
le

P
E

 A
rr

a
y

On-chip Buffer

I/O Interface

Figure 3.3: Workflow of proposed architecture.

21

......

Bisection Neural Network Coarse-grained

∑
W1 W2

b

X1 X2

ReLU

Output

∑
W1 W2

b

X1 X2

ReLU

Output

Computing

Kernel

Computing

Kernel

Computing

KernelPE

Fine-grained Medium-grained

Figure 3.4: BNN-based multi-grained reconfiguration architecture.

allows us to build a large-scale network, and a single task may only occupy a
small part of the network. This enables multiple tasks in applications to share
the entire network without resource conflicts. Even if there is only one task in the
application, we can also build multiple copies of a computing kernel for this task
on the network to further improve the overall throughput. This offer a parallel
hardware implementation for massive complex computations.
The basic concept of the accelerator is shown in Fig. 3.4. Specifically, we

consider reconfiguring BNN-based accelerators at three levels. Fine-grained re-
configuration is based on the control of neurons and synaptic behavior. The
synapse weight and bias corresponding to each neuron can be reset by modifying
the parameter register to achieve the purpose of reprogramming. Medium-grained
reconfiguration is based on the combination of multiple synapses and neurons to
construct a computing kernel. Each neuron can be configured as an input/output
layer neuron that exchanges data with on-chip memory or a hidden layer neuron
that only processes data. Coarse-grained reconfiguration is based on the organi-

22

zation and allocation of multiple computing kernels on chip. The purpose is to
minimize the number of unallocated neurons to maximize the utilization of neu-
rons and to improve the communication efficiency between multiple computing
kernels.
In order to reprogram neurons, we use a PE to describe the entire neuron that

contains a neuron, synapses and its control module. PEs are organized into a
two-dimensional array on-chip and interconnected by BNN topology. According
to the demands of the target application, the entire PE array can be arbitrarily
cut into multiple computing kernels with a small-scale bisection topology neural
structure. Each computing kernel is formed by cascading input layer PE (PEin),
hidden layer PE (PEhd) and output layer PE (PEout). The computing kernel can
be regarded as a multi-input function evaluator. If the computing kernel expects
to support M inputs, the number of neurons in the input layer will be set to M .
Starting from the first layer, the number of neurons in each hidden layer is +1/-1
of the previous layer, until the number is equal to 1, which is the output layer.
This means that we can arbitrarily adjust the width and depth of the BNN until
the preset accuracy and efficiency constraints are met. Each PEin of input layer
reads one-dimensional data of the input vector and passes it to the next layer
in parallel. The data is loaded from the external memory to the local memory,
which could be accessed by PEin in parallel with a high bandwidth. After the
calculation process, the PEout writes the results back to the local memory.

3.4 Design Flow
Figure 3.5 shows the software and hardware division of the design flow. At the
hardware level, after designing the Verilog HDL code for the hardware archi-
tecture, we use Synopsys Design Compiler with Renesas 65nm CMOS library
to synthesize the HDL code to obtain netlist file. Then, we use Synopsys Ver-
ilog Compile Simulator to simulate the netlist file and get the optimized design
parameters. If the functional verification is correct, we perform FPGA-based sim-
ulation on the Xilinx Vivado design kit, and then implement the HDL code on
the ZCU102 SoC. At the software level, after given a target function, we use this
function to generate training data and the corresponding minimum initial model

23

Training

Data

Target

Function

Accelerator

Verilog HDL

Model

Training

Initial

Model

Accuracy

Constraint

Model

optimization

Accuracy

Mapping

Final

Model

Software

Tech.

Library

Function

Verification

(VCS)

Design

Compiler

Synthesis

Gate-level

netlist

Design

Parameters

FPGA

Simulation

(Vivado)

SoC

Verification

(ZCU102)

Hardware

Figure 3.5: Software-hardware division of the design flow.

topology to training, then obtain model parameters and accuracy results. Gener-
ally, the initial topology cannot meet the preset accuracy constraints. Therefore,
we optimize the model by modifying the topology to achieve the preset accuracy
constraints. Finally, the optimal model that satisfies the accuracy constraints is
output.
The topology of BNN is the algorithmic basis of the reconfigurable architecture

in this research. Unlike a fully connected network, the BNN topology has a
special form of sparse connection. When modeling the BNN on software, we need
to generate the corresponding topological mask matrix for the BNN of a specific
topology. For example, the mask matrix of a BNN as shown in Fig. 3.6. When
using the backpropagation algorithm to train model parameters, masking the

24

FC-Network BNN

Mask

Figure 3.6: Convert FC-NN to BNN using mask matrix.

parameter matrix by the mask matrix, the fully connected network model can be
constrained to the corresponding BNN topology. To efficient get BNN topology
from FC-NN, we propose Algorithm 1 to generate the mask matrix of any BNN
model.
In Algorithm 1, we only consider a single layer. For the mask matrix generation

of the entire network, algorithm 1 is called multiple times. The number of neurons
Ni in i-th layer and the number of neurons Ni−1 in the (i− 1)-th layer are used
as input to generate a mask matrix for i-th layer. Consider two scenarios: If
Ni < Ni−1, the neuron at the edge of i-th layer only has a synaptic connection
with one edge neuron of the (i − 1)-th layer; If Ni > Ni−1, all neurons in i-th
layer have two synaptic connections with neurons of the (i− 1)-th layer.

25

Algorithm 1: Mask Matrix Generation for i-th Layer
Input: Ni−1, Ni

Output: maski
1 if Ni−1 < Ni then
2 maski(0, 0) = 1;
3 maski(Ni − 1, Ni−1 − 1) = 1;
4 x = 1;
5 y = 1;
6 while x < Ni − 2 do
7 maski(x, y) = 1;
8 maski(x, y + 1) = 1;
9 x = x+ 1;

10 y = y + 1;
11 end
12 else
13 x = 0;
14 y = 0;
15 while x < Ni − 1 do
16 maski(x, y) = 1;
17 maski(x, y + 1) = 1;
18 x = x+ 1;
19 y = y + 1;
20 end
21 end

26

External

Memory

Local

Buffer

Registers &

PE Array

External

Memory

Bank1

Bank2

Bank4

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Bank3

(a) A three-level memory architecture

(b) A multi-bank memory interconnection with crossbar switch

Large Bit-width &

High-speed Interface

On-chip

Interconnection

Multi-bank Memory Crossbar Switch

Figure 3.7: A top view of memory architecture for spatial array accelerator.

3.5 Challenges

3.5.1 On-Chip Interconnections

Although the spatial parallel architecture can effectively use data-level parallelism
and fully pipeline to accelerate calculations, the data transmission between PE
array and memory is the main bottleneck that limits the parallelism of the Mu-
GRA [97]. In different configurations, the status of PE may switch from the
hidden layer of the computing kernel to the input layer or the output layer,
which requires each PE to have the ability to access local memory. In addition,
there is a data dependency between the layers of the BNN, that is, the input data
of the neurons in the post layer is the results of the neurons in the previous layer.
According to this feature, the data flow of the computing kernel is calculated
layer by layer from the input layer through the hidden layer to the output layer.

27

PE

PE

PE

PE

PEPE

PE

PE

PE

PE

PEPEPE

PE

PE

PE

Local Buffer

PE

PE

PE

PE

PEPE

PE

PE

PE

PE

PEPEPE

PE

PE

PE

Local Buffer

PE

PE

PE

PE

PEPE

PE

PE

PE

PE

PEPEPE

PE

PE

PE

Local Buffer

PE

PE

PE

PE

PEPE

PE

PE

PE

PE

PEPEPE

PE

PE

PE

Local Buffer

(a) Broadcast Networks (b) Multicast Networks

(c) Systolic Networks (d) Unicast Networks

Figure 3.8: Four common NoC interconnection designs.

Therefore, pipelined computing kernel can improve the utilization of PE and the
throughput of accelerator. The maximum throughput under this mapping is the
calculation of a layer in each clock cycle. In order to achieve this throughput
to save energy, the computing kernel must be allocated non-conflict access local
memory ports to provide a continuous data stream.
Many spatial array accelerators (e.g., CGRA) adopt a three-level memory ar-

chitecture including large-capacity external memory, local on-chip memory and
PE internal memory, shown as Fig. 3.7(a). The arithmetic data generated by the
main processor is stored in the external memory, and the data transmission be-
tween off-chip and on-chip memory is carried out at a block granularity. The local

28

buffer and PE are interconnected through a flexible NoC to support continuous
data stream transmission.
The local memory is a unit that the PE array can directly access, and can

be designed as a single bank or multiple banks. Figure 3.7(b) shows a typical
multi-bank memory interconnect architecture. In this architecture, the local data
memory is composed of multiple banks, and each bank has a single port/multi-
port. For multi-bank memory, the programmer/compiler is responsible for en-
suring that the data accessed by the PE exists in the bank it can access. The
memory banks and the PE array are interconnected through crossbar switches to
ensure that each PE can flexibly access any bank. However, the complexity of the
crossbar switch increases sharply with the growth of the number of ports, which
causes the cost of memory access for large-scale PE arrays become expensive.
Figure 3.8 shows several common NoC designs used in interconnections between

PE arrays and local buffer [98]. Due to the property of BNN-based accelerator,
using a single NoC design will not be able to balance bandwidth of data trans-
mission and consumption of on-chip memory resource. For example, a broadcast
network can use the least amount of on-chip memory bank to send data, but its
low source bandwidth can limit the throughput when data reuse is low. Using a
multicast network at the expense of consuming more on-chip memory banks can
increase throughput, but PEs located in different rows still need to wait several
clock cycles to obtain data. Combining the systolic network and the pipeline,
the PE can obtain data from the neighboring PE without directly accessing the
local buffer, but the flexibility of the PE array configuration is reduced. Unicast
network is the most extreme way of interconnection. Each PE has a dedicated
channel and independent connection to the memory bank, providing maximum
throughput and flexibility for PE array. However, the cost of its design increases
with the number of PEs, and therefore is difficult to support the expansion of
scale of the PE array.

3.5.2 PE Utilization

In the case of a fixed array size, placing as many computing kernels on the PE
array as possible can increase the utilization of the PEs to improve the energy
efficiency of the system. Arbitrarily placing computing kernels on the array may

29

 (a) Before adjustment (b) After adjustment

Figure 3.9: An example of improving the PE utilization.

result in reduced PE utilization. Figure 3.9 shows an example of placing comput-
ing kernels on an 8*8 PE array. The colored ones are PEs used by the computing
kernels, and the gray ones are idle PEs. Figure 3.9(a) randomly placed 4 com-
puting kernels on the array, a total of 41 PEs were used, and the utilization rate
was 41/64 = 64.1%. In Fig. 3.9(b), after careful adjustment, while keeping the
original 4 computing kernels on array, one more computing kernel is added, which
increases the PE utilization rate to 51/64 = 79.7%. This example proves that if
an effective configuration strategy is used, the efficiency of the entire system can
be improved.

30

4 Hardware Architecture Design
and Optimization

4.1 Overview of Proposed Accelerator
Figure 4.1 shows the overall architecture of the proposed MuGRA system. It
is a CPU+FPGA heterogeneous architecture used to accelerate the approximate
calculation of arithmetic functions. The architecture includes the host proces-
sor, FPGA coprocessor and external memory. A PE array, a finite state ma-
chine (FSM) controller and an on-chip local memory system are implemented on
the FPGA coprocessor. We implemented the MuGRA system on the commer-
cial system-on-chip (SoC) Xilinx ZCU102. The SoC provides a quad-core ARM
Cortex-A53, an FPGA fabric, DRAM controller and 32.1Mb on-chip memory.
The application program running on the host processor communicates with the
coprocessor through the Advanced Extensible Interface (AXI), which can be used
to implement memory-registers mapping.
After synthesizing the accelerator on the programmable logic, the host proces-

sor can configure it through the communication interface without reprogramming
the FPGA. The PEs are interconnected in a bisection topology, and each PE can
access the local buffers. Local buffers are all realized by BRAM, which can be
set to FIFO or RAM mode. The configuration file includes synaptic weights,
neuron biases and control field of each PE. In the static configuration phase, the
host processor sends the configuration file to the configuration buffer (CB) on the
FPGA for temporary buffering. Then, the FSM controller smoothly fanning mas-
sive configuration files from the CB to configuration registers inside PEs, which
helps to reduce the transmission latency and achieve data reuse. In the execution
phase, each PE accesses the parameters in its own configuration register instead

31

Host

Processor

Instru.

Buffer

Off-chip

DRAM

DMA

Config.

Buffer

FSM

Controller

Data

Buffer

Memory

Controller

PE PE PE

PE

PE

PE PE

PEPE

...

...

...

...

...

...

...

Figure 4.1: Overall architecture of the proposed MuGRA system.

of the CB.
The operation data generated by the application of the host processor is stored

in the off-chip DRAM. Under the command of the host processor, direct memory
access (DMA) is used to transfer data between the local data buffer (DB) and
the off-chip DRAM. The DB is composed of an input buffer (IB) and an output
buffer (OB). The IB is responsible for storing the data transmitted by the off-
chip DRAM, and the OB is responsible for storing the calculation results of the
PE array. There are multiple memory banks in each buffer, which can provide
data for the PE array in parallel. Each memory bank is implemented based
on BRAM and works in a double-buffered manner. Through this mechanism,
the data exchange between the PE array and the DB and the data prefetching
between the DB and the off-chip DRAM are carried out simultaneously, which
is used to hide memory access delays. The instructions generated by the host
processor are stored in the instruction buffer (InB) through the AXI interface.
The FSM-based control unit is used to read, analyze and execute the instructions
generated by the host processor to schedule the hardware accelerator system on
the FPGA.

32

Neuron Unit

Accumulation

Unit

Activation

Unit

C
o

n
fi
g
u

ra
ti
o

n
 R

e
g

is
te

r

Register

Input

Buffer

Output

Buffer

PE

Post layer

0 1

Config.

Buffer

Previous

layer(left)

Previous

layer(right)

0 1

RD

W1，W2

b

α

WR

Q，

Figure 4.2: Architecture of a PE.

4.2 Design of PE Architecture
The architecture of PE is shown in Fig. 4.2. It consists of a neuron unit (NU), a
multiplexer (MUX), a demultiplexer (DeMUX), a configuration register and an
output register. Each PE is identical, and its operating mode is controlled by the
programmable configuration register. The configuration register loads data from
the CB and can only be modified during the static configuration phase. MUX is
used to select output of PE from NU or IB, indicated by the RD field. When
working as a input neuron in the network, the PE is in PEin mode, its input
comes from the IB, and the NU does not perform any processing. In other cases,
the input of PE comes from previous layer of the PE, and output calculation
results of the NU to post layer or OB. The output path is controlled by DeMUX,
indicated by the WR field. The results of the PEin and PEhd are output to the
next layer, while the results of PEout are output to the OB.

33

The NU is composed of an accumulation unit and an activation unit, as shown
in Fig. 4.3. Input/output data, synapse weights and biases are all in Nw-bit
signed fixed-point format, with 1-bit sign, Q-bit fraction and (Nw − Q)-bit in-
teger. A reasonable value of Nw will be tested in Section V. The value of Q is
stored in the configuration register. By modifying the value of Q, the range and
accuracy of neuron operands can be modified according to the application. The
two input data X1, X2 from the adjacent PE of the previous layer are passed into
the accumulation unit as operands, and the fixed-point multiplication operation
X1∗W1, X2∗W2 is performed in parallel with the synaptic weightsW1,W2 passed
in from the configuration register respectively. The result after fixed-point mul-
tiplication is expanded to 2Nw-bit, and truncated to Nw-bit original fixed-point
format after right shifting by Q bits. Then, perform two addition operations seri-
ally to output the result X1 ∗W1 +X2 ∗W2 + b, where b is the bias of the neuron.
A configuration register stores two Nw-bit synapse weights, one Nw-bit bias, and
an 8-bit control field, for a total of 3Nw + 8 bits. For FPGA implementation, it
is possible to synthesize a configuration register of this size near the computation
logic by using the on-chip flip-flops to achieve distributed storage of parameters.
Specifically, in the description of Verilog syntax, we define the weight registers
inside the "PE module", and synthesize them as flip-flop (FF) instead of latch
through sequential logic description. Then, the register and computation logic
will be synthesized in a same PE block, by using the FF and LUT within the
basic cells (slice) of FPGA respectively. It should be noticed that the number of
FF and LUT in each slice is very limited (Each slice contains 8 FFs and 4 LUTs).
Our strategy is feasible only if the scale of weights in each PE is small, which
is difficult to achieve with conventional FC-NN. Fortunately, with 16bit imple-
mentation, each PE of the BNN merely stores two 16-bit weights, one 16-bit bias
and an 8-bit control field, for a total of 56 bits. Therefore, connecting 56 FFs in
7 slices in parallel is sufficient as a register to store all the parameters of a PE
block, and LUTs in these slices can be used as computation logic.
The activation unit provides the NN with non-linear approximation for tran-

scendental functions regression. We recommend using Leaky-ReLU to activate
neurons in BNN-based regression, since the output of ReLU in negative domain
is zero, which leads to neuron death and non-negative output. For efficiently

34

Shifter

b

Shifter

Accumulation Unit

Shifter

Sign

Activation Unit

Neuron
Unit

0

1

O
u

tp
u

t

α
Q

W2

W1

X
1

X
2

Figure 4.3: Architecture of a neuron unit.

implementing Leaky-ReLU on hardware, we set the parameter of negative part
slope to α = 2−p when pre-training the model, where p is a positive integer. For
example, if α = 0.125, then p = 3. Therefore, by shifting the negative input to
the right by p bits, the result of Leaky-ReLU can be quickly calculated without
a multiplier. The value of p is adjusted according to the target function, so it is
stored as a parameter in the configuration register. The MUX in the activation
unit is used for the segmented output of Leaky-ReLU, controlled by the sign bit
of the input data. The operation of PE is completed in one clock cycle, and cal-
culation result of the PE is stored in the output register and transmitted to the
adjacent PE of the post layer in next clock cycle. The PE is then fully pipelined
across layers that exploits the inter-layer data correlation of the NN.

4.3 On-Chip Interconnection for Efficient Buffer
Utilization

The memory access conflict between the PE array and the local DB is the main
bottleneck that limits the efficiency of MuGRA. After configuration, the PE ar-
ray is divided into multiple computing kernels. The computing kernels work in

35

Computing

Kernel A

Computing

Kernel B

Computing

Kernel C

E
x
te

rn
a

l
M

e
m

o
ry

On-chip

Buffer A

On-chip

Buffer B

On-chip

Buffer C

Figure 4.4: Logic structure of interconnection between buffers and kernels.

parallel and independently access the local DB. Multiple PEsin inside the com-
puting kernel load data from the local DB at the same time to achieve data-level
parallelism. Therefore, the local DB is designed as a multi-bank architecture,
which can provide input data for the PE array in parallel. The logic structure of
interconnection between buffers and kernels is shown as Fig. 4.4.
In the MuGRA architecture, we hope that all PEs have the opportunity to

be configured as PEin that can access local DB without conflict. A straightfor-
ward approach is to configure independent memory bank for all PEs. If a PE is
configured as PEin, the input data will be buffered in the memory bank directly
connected to it. Although this design ensures the conflict-free memory access of
the PEin, it causes huge overhead and redundancy of the memory unit, because
only a few memory banks may be used in a configuration. Another way to reduce
memory redundancy is to use a crossbar switch to connect the memory bank and
the PE array. Only the PE set as the PEin can communicate with the memory
bank. However, the inextensibility and complexity of the crossbar switch makes
it only suitable for small-scale PE arrays. Therefore, it is necessary to design the
interconnection between the DB and the PE array according to the features of
the MuGRA architecture.
In a computing kernel, the positions of all input PEs are in different columns of

the first layer (i.e., the input layer), and the output PEs are in the last layer (i.e.,

36

H

I

H

I

H

I

H

H H H

H H

I

H

I

H

O

I I

H H H H

O H H

PE

PE

PE

PE

In
p
u

t
B

a
n

k

O
u

tp
u

t
B

a
n

k

Hidden PEH Hidden PEH

Output PEO Output PEOI Input PEI Input PE

Idle PEIdle PE

Four PEs in a group

T
h
re

e
 c

o
m

p
u

ti
n
g

 k
e

rn
e

ls

s
h

a
re

 t
h

e
 i
n

p
u

t/
o
u

tp
u

t
b

a
n

k
s

Input bank: Used by the green kernel

Output bank: Used by the orange kernel

Parallel input of each group

Figure 4.5: Interconnection of PEs and local buffer.

H

I

H H

I

H

H H H H

H H H

I

H

O

H

I

H

I

H

H I H H

H H O

I

H

I

H

H H

H

O

I I

H H

H H

Parallel input

Independent

input/output bank

Figure 4.6: An example of large array configuration.

37

the output layer), and the middle layer (i.e., the hidden layer) does not access the
memory bank. In order to reduce the use of memory banks, we interconnected
PEs and memory banks by memory-sharing, as shown in Fig. 4.5. According to
the features of BNN, the minimum computing kernel is a 4-layer (1 input layer, 2
hidden layers, 1 output layer) network, so we connect 4 PEs in the same column
to 1 input bank and 1 output bank as a group. Under a certain configuration,
there is only one PE accessing the input bank and one PE accessing the output
bank in a group. This sharing method has the following advantages: 1. The data-
level parallelism of the computing kernel will not be destroyed since the PE of
each column can access the memory bank without conflict; 2. The overhead of the
memory bank is reduced by 4x compared with unicast networks; 3. Scaling up the
PE array is easy since the implementation cost increases linearly. Although the
flexibility of PE array configuration is undermined, the features of the BNN can
be used to cover up. For example, the three input PEs of the orange computing
kernel in Fig. 4.5 are in different groups (columns), so the inputs are parallel.
Since the hidden PEs do not access the memory banks, it will not cause a memory
access conflict with the input PE in the same group. The output PE of the orange
kernel and the leftmost input PE of the green kernel use the output bank and
input bank of a same group respectively, while the output PE of the green kernel
will use an output bank of another group (the green kernel is not fully shown).
In the example of Fig. 4.5, 7 out of 8 input banks are used (three in orange
kernel, two in blue kernel and two in green kernel). Therefore, in this example,
the utilization rate of input bank of this design is 7/8*100%=87.5%, while the
unicast network is 7/56*100%=12.5%, since each PE of the unicast network is
configured with one input bank. An example of large array configuration is shown
as Fig. 4.6.

4.4 Controller Design
The controller of the proposed architecture consists of a FSM and an instruction
decoder. The state transition of the FSM is shown in Fig. 4.7, which has 6 states:
Idle, Load Config, Run Config, Load Data, Execution and Store Data. After the
system is started, the state machine automatically enters the Idle state, and reads

38

Load

Config.

Store

Data

Idle

Run

Config.

Load

Data

Configuration

ComputeExecution

Hold

Waiting

for data
!enable

Compute

Waiting

for para.

Running

Waiting

for Store

Finish

Figure 4.7: FSM controller of the system.

instructions from the first address of the instruction buffer. If the configuration
instruction is read, the system enters the configuration mode and waits for the
configuration information loading to configuration buffer. In the configuration
mode, the controller loads the configuration information from the configuration
buffer and broadcasts it to the PE array. After finishing the configuration, jump
back to the Idle state or enter the execution mode according to the instruction.
In the execution mode, the controller loads data from the data buffer, and the
PE stores the result back to the data buffer after performing the computation.
After the execution is completed, the system automatically enters the Idle state.
The controller supports one configuration and multiple executions. Therefore, the
execution mode can be entered from the Idle state through compute instructions
without executing the configuration mode.

4.5 Computation Datapath
The configuration of the PE array includes the setting of internal data path of the
computing kernel and allocation of multiple tasks on the PE array. For computing
kernels, each of which can be regarded as a multi-dimensional function evalua-

39

Neuron

Unit

C
o
n

fi
g

.
R

e
g

Reg

MUX

Neuron

Unit

C
o
n

fi
g

.
R

e
g

Reg

MUX

Neuron

Unit

C
o
n

fi
g

.
R

e
g

Reg

MUX

Neuron

Unit

C
o
n

fi
g

.
R

e
g

Reg

MUX

Neuron

Unit

C
o
n

fi
g

.
R

e
g

Reg

MUX

Neuron

Unit

C
o
n

fi
g

.
R

e
g

Reg

MUX

Neuron

Unit

C
o
n

fi
g

.
R

e
g

Reg

MUX

Neuron

Unit

C
o
n

fi
g

.
R

e
g

Reg

MUX

Input Input

Output

Configuration

parameters

Data

Parameters

Inactivated

Path:

Figure 4.8: Datapath of a computing kernel.

40

PE A0 PE B0 B1

A1 A2 B2 B3 B4

A3 A4 A5 B5 B6

A6 A7 PE B7 PE

PE A8 PE PE PE

PE Task Mode

0

1

2

3

4

5

6

...

24

0 2'b00

1 2'b01

0 2'b00

2 2'b01

2 2'b01

1 2'b10

1 2'b10

... ...

0 2'b00

PE Task Mode

0

1

2

3

4

5

6

...

24

0 2'b00

1 2'b01

0 2'b00

2 2'b01

2 2'b01

1 2'b10

1 2'b10

... ...

0 2'b00

Status Table

Figure 4.9: Allocating two computing kernels on a 5× 5 PE array.

tor with SIMD feature to perform approximate calculations of specific arithmetic
function. PE can be reused in different computing kernels is the key to reconfig-
uration. Therefore, we design the PE as a triple mode of PEin, PEhd and PEout,
which can be reconfigured by modifying parameters in PE. Figure 4.8 shows an
example of a data path for a computing kernel with two PEin, five PEhd, and one
PEout. The PEs of the input layer are all PEin mode, and they simultaneously
load input data from the IB to exploit the intra-layer parallelism of the NN. The
PE in the hidden layer is set to PEhd mode, receives data from the PEs of the
previous layer, and feeds the calculation result to the subsequent PEs. The PE in
the output layer is set to PEout mode, and its output is stored in the OB instead
of the PE in the post layer. All PEs have been pipelined, that is, new data is
acquired at each input of each clock cycle and new results are sent at each output
of each clock cycle.
The running mode of all PEs in the array is maintained by a scheduling status

table. The compiler can generate hardware configuration parameters based on the
information in the table, so as to allocate idle PE resources to the incoming tasks.
Figure 4.9 shows an example of allocating two computing kernels named A and
B on a 5× 5 PE array. Since all parameters are set to zero when the accelerator

41

is initialized, the hardware isolation of multiple computing kernels exploit the
nature of the BNN without additional hardware control logic. For example, as
shown in Fig. 4.9, A5 is physically connected to A2 and B2. The output of A5 can
be expressed as PEout(A5) = σ(W1(A5)∗PEout(A2)+W2(A5)∗PEout(B2)+b(A5)).
Even if the input data of A5 contains the output from B2, since W2(A5) is set
to zero during initialization and has not been modified during the configuration
phase, the value of W2(A5) ∗ PEout(B2) is always equal to zero.

4.6 Configuration Strategy
Efficiently mapping computing kernels to the PE array is a key technology for
coarse-grained reconfiguration. For large-scale PE arrays, the higher the utiliza-
tion rate of PE, the higher the energy efficiency of the entire system. Even if
there is only one type of computing kernel, we can copy this computing kernel
multiple times and place them on the PE array for parallel acceleration. There-
fore, it is necessary to explore efficient configuration strategies for effective PE
array configuration. In order to facilitate the description, we give the following
definitions.
Definition 1. A PE array is denoted as a two-dimensional matrix Array(x, y),

where x and y indicate the coordinate of a PE in the x-th row and the y-th column,
respectively.
Definition 2. Suppose that there are k types of computing kernel Kernel1,

Kernel2, ..., Kernelk. Let Kerneli(j)(1 ≤ i ≤ k, 1 ≤ j ≤ Kerneli.len) indicated
the number of neurons in j-th layer of i-th kernel, where Kerneli.len is the depth
of i-th kernel.
Definition 3. Let P (i) denotes the allocated number of i-th kernel, N(i)

denotes the number of neurons of i-th kernel. Thus, we can obtain

N(i) =
Kerneli.len∑

j=1
Kerneli(j) (4.1)

The utilization rate of the PE array can be defined by

PEU =
∑k
i=1 P (i) ·N(i)
H ·W

× 100% (4.2)

42

Unmapped

Mapped

Figure 4.10: An example of mapping a computing kernel on PE array.

Where H and W are the height and width of the PE array, respectively. For
a computing kernel of arbitrary shape, a sequence can be used to describe the
topological structure. For example, the topology 1-2-3-2-1 is a 5-layer network
with 9 neurons, while the topology 1-2-3-4-3-2-1 is a 7-layer network with 16
neurons. In the case that the PE array has been partially allocated, a new
computing kernel may not be placed, as shown in Fig. 4.10. Therefore, we
propose Algorithm 2 to determine whether any computing kernel can be placed
on the PE array. In Algorithm 2, the input is the topological description of the
computing kernel and the placement coordinates of the neurons in the upper
left corner, and the output is a Boolean value indicating whether the computing
kernel can be placed legally. The PE array is described by a two-dimensional
matrix and updated after placement.
For configuration strategies, we propose three solutions: naive random place-

ment (NRP), optimized random placement (ORP) and greedy-based placement
(GBP). For the NRP, we try t times, each time we randomly select coordinates
and computing kernels on the PE array for placement, and take the one with
the largest PE utilization rate as the result, as shown in Algorithm 3. The flow
diagram of NRP is shown as Fig. 4.11. In this strategy, the number of trials has

43

Randomly generate a coordinate (x,y) and Randomly

generate a kernel K from set

Determine whether the kernel K can be placed on the

coordinate (x,y)

Yes

No

Place K on the

coordinate (x,y)

Initial the PE Array

If try times = T

No

Compute PE utilization

Yes

Figure 4.11: A flow diagram of NRP.

44

Algorithm 2: Allocate a computing kernel
Input: Kernel, Array, x, y
Output: Match, Array

1 dx = 0; dy = 0;
2 if (Array.H-x+1) < Kernel.len then
3 Return(Match = 0);
4 end
5 for i = 1 to Kernel.len do
6 if i == 1 then
7 dx = x; dy = y;
8 else
9 if (dx+i-1) mod 2 == 0 then

10 if Kernel(i) > Kernel(i-1) then
11 dy = dy − 1;
12 if dy < 1 then
13 Return(Match = 0);
14 end
15 end
16 else
17 if Kernel(i) < Kernel(i-1) then
18 dy = dy + 1;
19 end
20 end
21 end
22 if (Array.W - dy + 1) < Kernel(i) then
23 Return(Match = 0);
24 end
25 for j = 1 to Kernel(i) do
26 if Array(dx+i-1,dy+j-1) != 0 then
27 Return(Match = 0);
28 end
29 Array(dx+ i− 1, dy + j − 1) = Kernel.number;
30 end
31 end
32 Return(Match = 1); Return(Array);

45

Initial the PE Array and

set SA parameters

Generate an initial

solution

Compute difference of

cost function (PEU)

Compute acceptance rate

Accept the new solution

Whether to reach the set

temperature

End and output PEU of

last solution

No

Yes

Generate a new solution

based on last solution

Whether to accept the

new solution

If the new solution is

better

Yes

No

Cooling down

No

Yes

Figure 4.12: A flow diagram of ORP.

a great influence on the final result. Try as much as possible to get better results.
For the ORP, based on the idea of simulated annealing, we mutate the result
of initial random placement to obtain a relevant result. If the PE utilization of
the mutation result is better than the initial result, then the result is accepted,
otherwise the result is accepted with probability. Repeat this operation t times,
and take the one with the largest PE utilization rate as the result. The flow
diagram of ORP is shown as Fig. 4.12 and idea is shown in Algorithm 4. For
the GBP, we scan all idle PEs in turn and place the computing kernel with the
most neurons first. If it cannot be placed, try to place the computing kernel with
the second most neurons until all computing kernels are traversed. The idea is
shown in Algorithm 5. Figure 4.13 shows an instance of the three configuration
strategies on a 20 × 20 PE array with three computing kernels.

46

 (a) NRP(70.25%) (b) GBP(75.00%)

(c) ORP(79.00%)

Figure 4.13: An instance of proposed configuration strategies.

47

Algorithm 3: Naive random placement (NRP)
Input: T , Array, Kernels
Output: Array, MaxU

1 MaxU = 0;
2 for t = 1 to T do
3 Match = 0;
4 A = Initial(Array);
5 for i = 1 to size(A) do
6 x = random(A.H);
7 y = random(A.W);
8 if A(x,y) == 0 then
9 K = random(Kernels);

10 Match = Allocate(K,A, x, y);
11 end
12 if Match == 1 then
13 P (i) = P (i) + 1;
14 Match = 0;
15 end
16 end

17 PEU =
∑k

i=1 P (i)·N(i)
A.H·A.W × 100%;

18 if PEU>MaxU then
19 MaxU = PEU ;
20 Array = A;
21 end
22 end

48

Algorithm 4: Optimized random placement (ORP)
Input: T0, Tend, L, q, Array, Kernels
Output: Array, MaxU

1 T = logq(Tend/T0);
2 MaxU = 0;
3 A = RandomSolution(Array,Kernels);
4 for t = 1 to T do
5 for k = 1 to L do
6 NS = NewSolution(A);
7 NewA = Metropolis(A,NS);
8 if PEU(NewA)>MaxU then
9 MaxU = PEU(NewA);

10 Array = A;
11 end
12 end
13 end

Algorithm 5: Greedy-based placement (GDP)
Input: Array, Kernels
Output: Array, MaxU

1 A = Initial(Array);
2 for i = 1 to A.H do
3 for j = 1 to A.W do
4 for k = MAX(Kernels) to MIN(Kernels) do
5 if A(i,j) == 0 then
6 Match = Allocate(k,A, i, j);
7 end
8 end
9 end

10 end
11 MaxU = PEU(A); Array = A;

49

5 Evaluation

5.1 Experimental Setup
In this section, we evaluate the approximate calculation results of several func-
tions based on BNN regression and the FPGA implementation results of the
MuGRA system. To prove the universality of the proposed method, we have
investigated multiple kinds of arithmetic functions, including one-variable func-
tions and two-variable functions, and demonstrated their theoretical calculation
and fixed-point representation results respectively. All the parameters of the
BNN model are generated in Python, using the open source NN framework based
on Pytorch. We manually generate equal interval discrete sampling points ac-
cording to the target function as the training, validation and testing dataset of
BNN. For example, assuming that the function f(x) is approximated on the range
[M,N], we sample k data on [M,N], then input and output set can be defined as
X = {M,M+1(N−M)/k,M+2(N−M)/k, ..., N} and Y = f(X), respectively.
For f(x), we generate 1000, 256 and 384 points on input range as the train-
ing/validation/testing set, where the batch size is 1000. For f(x, y), we generate
100*100, 45*45 and 55*55 points on input range as the training/validation/testing
set, where the batch size is 10000. We set the maximum epoch = 50000, loss func-
tion is L1loss, and optimizer is Adam. We save the parameters with the minimum
loss in all epochs as results.
The proposed hardware accelerator architecture is written using RTL-level V

erilog HDL, and is synthesized and implemented on the Xilinx Zynq UltraScale+
ZCU102 Evaluation Board using Vivado (v2018.3). The ZCU102 board con-
tains a quad-core ARM Cortex-A53 and XCZU9EG-2FFVB1156 FPGA devices,
which can be used to verify our proposed CPU+FPGA heterogeneous architec-
ture. Then, we verified the resource consumption and acceleration performance of

50

Table 5.1: Calculation performance test for one-variable functions

Function Input range Topology MAE MRE

sin(x) x ∈ [0, π4]
1-2-3-2-1 0.0006 0.16%

1-2-3-4-3-2-1 0.0006 0.16%

tanh(x) x ∈ [0, 1]
1-2-3-2-1 0.0011 0.25%

1-2-3-4-3-2-1 0.0007 0.15%

2x x ∈ [0, 1]
1-2-3-2-1 0.0024 0.17%

1-2-3-4-3-2-1 0.0013 0.09%

log2(1 + x) x ∈ [0, 1]
1-2-3-2-1 0.0010 0.19%

1-2-3-4-3-2-1 0.0008 0.14%

the accelerator under different configurations through synthesize results and real
hardware test. Finally, we compared our method with other methods in terms of
memory size, latency, and resource consumption to prove the superiority of our
method.

5.2 Results by Software
Table 5.1 and 5.2 show the theoretical calculation results of 4 one-variable func-
tions and 3 two-variable functions based on BNN regression, respectively. The
theoretical calculation results are based on software simulation on Python to
verify the approximate performance of the BNN. We have chosen four represen-
tative one-variable functions sin(x), tanh(x), 2x and log2(1 +x), the input range
of sin(x) is [0,π4], and the rest of the functions is [0,1]. Even if the input range
of the verified elementary function is limited, we can also calculate any input
by scaling, with simple addition and multiplication. We calculate the regression
error by mean absolute error (MAE) and mean relative error (MRE), which are

51

Table 5.2: Calculation performance test for two-variable functions

Function Input range Topology MAE MRE

√
x2 + y2 x, y ∈ [0, 1]

2-3-2-1 0.0085 1.10%

2-3-4-3-2-1 0.0035 0.45%

3
√
x3 + y3 x, y ∈ [0, 1]

2-3-2-1 0.0143 2.00%

2-3-4-3-2-1 0.0057 0.79%

exsin(πy) x, y ∈ [0, 1]
2-3-2-1 0.0965 8.90%

2-3-4-3-2-1 0.0410 3.78%

defined as:

MAE(X, h) = 1
k

k∑
i=1
|h(xi)− yi| (5.1)

MRE(X, h) =
∑k
i=1 |h(xi)− yi|∑k

i=1 |yi|
× 100% (5.2)

where h(xi) is a regression result, yi is a real value and k is the number of test
data.
For one-variable functions, we tested MAE and MRE of two different topolo-

gies, the length of which indicates the depth of network layers, and the number
indicates the number of neurons in each layer. For example, the topology 1-2-3-2-
1 is a 5-layer network with 9 neurons, while the topology 1-2-3-4-3-2-1 is a 7-layer
network with 16 neurons. Compared with the 5-layer network, the number of
neurons in the 7-layer network has increased by 77.8% for one-variable functions.
As can be seen from Table 1, for sin(x), compared with the 5-layer network, the
performance of the 7-layer network is not significantly improved. Since sin(x)
is highly linear in [0,π4], a 5-layer network is sufficient to approximate the ex-
act result of the function. For more complex functions, such as tanh(x), 2x and
log2(1 + x), compared with the 5-layer network, the MRE of the 7-layer network

52

8 10 12 14 16 18 20

Precision (bit)

93

94

95

96

97

98

99

100
A

v
e

ra
g

e
 A

c
c
u

ra
c
y
 (

%
)

Figure 5.1: Average accuracy with different precision.

has decreased by 40.0%, 47.1% and 26.3%, respectively. For the two-variable
functions

√
x2 + y2, 3

√
x3 + y3 and exsin(πy), we also tested the theoretical cal-

culation results of the 4-layer network and the 6-layer network with input range
[0,1]. Compared with the 4-layer network, the number of neurons in the 6-layer
network has increased by 87.5% for two-variable functions. It can be seen from
Table 2 that compared with the 4-layer network, the MRE of the 6-layer network
has decreased by 59.1%, 60.5% and 57.5%, respectively.

5.3 Results of Fixed-Point Hardware Simulation
To verify the approximate performance of the hardware accelerator under various
bit-width configurations, we tested the average accuracy of different fixed-point
number formats. Input/output data, synaptic weights and biases of neuron are
all represented in a set fixed-point format to approximate the results of software.
Figure 5.1 shows the average accuracy of each function when the fixed-point
precision (i.e. Nw) is increased from 8bit to 20bit. The results of the one-variable

53

2 4 6 8 10 12 14

Fractional Width (bit)

40

50

60

70

80

90

100
A

v
e

ra
g

e
 A

c
c
u

ra
c
y
 (

%
)

Figure 5.2: Average accuracy with different fractional width by 16bit precision.

function is based on a 5-layer network, and the two-variable function is calculated
based on a 6-layer network. In the experiment in Fig. 5.1, we set the fractional
width under each precision to Nw − 3, which ensures that the integer bits of the
intermediate data and calculation results will not overflow during the calculation
process. It can be seen from Fig. 5.1 that the average accuracy of the functions
increases with the precision increases. For most objective functions, when the
precision is greater than 14bit, the average accuracy rate reaches the theoretical
value and no longer increases. After repeated function verification, we think it
is reasonable to set the precision to 16bit, because this value ensures that the
average accuracy of the results will not be lower than the theoretical value, and it
occupies exactly two bytes. In addition, Figure 5.2 shows the average accuracy of
each function when the fractional width is changed under 16bit precision. It can
be seen from Fig. 5.2 that when the fractional width is below 4bit, the average
accuracy of the function is very unstable, especially the average accuracy of sin(x)
oscillates around 3bit. The reason is that the calculation result deviates from the
exact value, because of the low bit-width representation of the fractional bits.

54

Table 5.3: Implementation results of various topologies on FPGA

Topology Pipeline Synthesis LUT FF DSP Power Max Freq.

1-2-3-2-1 4-stage
LUT-only 1810 128 0 52mW 238.1MHz

DSP-enable 345 64 12 30mW 265.9MHz

1-2-3-4-3-2-1 6-stage
LUT-only 3958 240 0 104mW 217.4MHz

DSP-enable 770 144 26 49mW 252.5MHz

2-3-2-1 3-stage
LUT-only 1002 80 0 28mW 243.9MHz

DSP-enable 201 48 7 18mW 294.1MHz

2-3-4-3-2-1 5-stage
LUT-only 3030 192 0 74mW 229.4MHz

DSP-enable 666 64 25 37mW 259.1MHz

With the improvement of the fractional bits representation, the average accuracy
tends to stabilize and reach the theoretical value between 8bit and 12bit. We
continue to increase the fractional width to 14bit, then the integer bit width is
1bit. Even if the output results of the objective function only need an integer
width of 1bit, the parameters and intermediate data in the calculation process
may need an integer width of at least 2bit. The overflow of integer bits causes a
sharp drop in the average accuracy when the 14bit fractional width is used.

5.4 Implementation Results on FPGA
On the basis of the hardware architecture proposed in Chapter 4, we evaluated
the results of the FPGA-based implementation. All results are derived from the
report of Vivado after implementation. Table 5.3 shows the hardware resource
consumption, power and maximum frequency of the four different topologies,
with pure LUT and DSP-enable synthesis respectively. For a d-layer network, the
pipeline stage is d−1, since the input layer does not participate in the operation.

55

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8X8 12X12 16X16 20X20 24X24 28X28

U
ti
liz

a
ti
o

n

Size of PE array

FF LUT

DSP BRAM

Figure 5.3: Resource utilization with different scale of PE arrays.

It can be seen that for the same topology, using DSP can achieve higher frequency
and lower power than pure LUT synthesis; for different topologies with same
synthesis, hardware consumption increases with the increase of network depth.
In addition, we evaluated the system-level resource consumption of the accel-

erator by modifying the size of the PE array. Figure 5.3 shows the resource
utilization with different scale of PE arrays. Among them, BRAM is used to
build on-chip buffer, each individual BRAM module is configured with 16 ∗ 2304
bits, and each PE takes up exactly one BRAM36K slice. It can be seen from Fig.
5.3 that the consumption of hardware resources increases as the size of the array
increases. BRAM resources limit the maximum array size on ZCU102 to 28x28.
This bottleneck can be alleviated by using the on-chip interconnection proposed
in Chapter 4.
Finally, we compare the speedup of the time division multiplexing architecture

(TDMA) and the spatially expanded in parallel architecture (SEPA). Using the
CPU baseline on ZCU102, we calculated 10 basic functions provided by the glib
library, and each function used 106 samples to calculate the total calculation
time. The TDM architecture uses one layer of neurons to perform operations
multiple times, and the intermediate data and parameters of each operation need

56

0

5

10

15

20

25

30

35

sin cos asin acos sinh cosh tanh exp log sqrt

S
p
e
e
d
u
p

TDMA+Non-Pipelined SEPA+Pipelined

Figure 5.4: Speedup of TDMA and SEPA compared with CPU baseline.

to be repeatedly loaded from outside the PE. The SEP architecture is constructed
using a neuromorphic approach of multilayer neurons whose parameters are stored
inside the PE. Through fully pipelining, each layer processes different samples,
which greatly speeds up the calculation. As can be seen from Fig. 5.4, compared
with the CPU baseline, the TDM architecture achieves a speedup of 2.1x-12.1x,
while the SEP architecture achieves a speedup of 5.1x-30.3x.

5.5 Comparison with Other Works
Many function generation methods require storage of parameters, such as func-
tion values or polynomial coefficients. The scale of the parameters will affect the
circuit area, especially the overhead of LUTs. For one-variable functions, Table
5.4 shows the comparison between the proposed method and the existing three
typical methods in terms of memory size. For a fair comparison, we implemented
the same functions as the reference for the same input range. For the sin(x)
function, we evaluate the memory size with a 5-layer network, and evaluate the
ln(1 + x) function with a 7-layer network. For the proposed method, the param-
eters refer to the synaptic weights and biases directly involved in the calculation.

57

Table 5.4: Comparison of memory size for one-variable functions

Method Mult. Function Width Input Memory

Table-based

[99]
No

sin(x) 16bit x ∈ [0, π4] 6272 bits

2x 16bit x ∈ [0, 1] 6656 bits

Polynomial

[100]
Yes

ln(1 + x) 18bit x ∈ [0, 1) 1664 bits

sin(x) 24bit x ∈ [0, π4] 4480 bits

Interpolation

[100]
Yes

ln(1 + x) 18bit x ∈ [0, 1) 1462 bits

sin(x) 24bit x ∈ [0, π4] 3773 bits

Proposed Yes
sin(x) 16bit x ∈ [0, π4] 384 bits

ln(1 + x) 16bit x ∈ [0, 1) 720 bits

Table 5.5: Comparison of memory size for two-variable functions

Method Mult. Function Width Input Memory

Polynomial

[101]
Yes

√
x2 + y2 8bit x, y ∈ [0, 1) 9334 bits

3
√
x3 + y3 8bit x, y ∈ [0, 1) 9658 bits

Interpolation

[102]
Yes

x
x2+y2 8bit x, y ∈ [0, 1) 4708 bits

exsin(πy) 8bit x, y ∈ [0, 1) 5200 bits

Proposed Yes
√
x2 + y2 16bit x, y ∈ [0, 1) 288 bits

exsin(πy) 16bit x, y ∈ [0, 1) 624 bits

In [99], a table-based function generator without multipliers is realized by using a
table addition method based on hierarchical multipartite (HMP). Although this

58

method does not require expensive multiplication, it has a huge memory overhead
and increases exponentially as the function range increases. [100] evaluated two
typical multiplication-driven function generation methods: polynomial-based and
interpolation-based methods. The difference between the two methods is that the
polynomial method uses stored coefficients to calculate the function value, while
the interpolation method uses the stored function value to calculate the coeffi-
cient on-the-fly. Polynomial methods usually use degree-1 or degree-2 for piece-
wise approximation, which leads to large-scale segmentation and coefficient stor-
age overhead. Compared with the polynomial method, the interpolation-based
method requires less memory, but at the cost of additional calculations. Obvi-
ously, compared with other methods, the proposed method requires less memory
because it does not use large-scale segmentation of the functions to achieve suf-
ficient accuracy. Even if the application requires higher accuracy results, our
method can be implemented with fewer segments. Table 5.5 shows the memory
size comparison between the proposed method and the two existing two-variable
function generation methods. We implemented the

√
x2 + y2 function using a 4-

layer network and the exsin(πy) function using a 6-layer network. [101] Solved the
calculation problem of two-variable function based on polynomial method. The
polynomial method of the two-variable function must use a specific plane segmen-
tation method to achieve. If the curvature of the two-variable function is large,
a large number of plane divisions are needed to approximate the original surface,
which leads to a large segmented storage overhead. The method in [102] regards
complex functions as two-variable real functions, and uses two-dimensional in-
terpolation to solve the calculation problem of two-variable functions. Similar
to polynomial methods, interpolation-based methods usually only use low-degree
interpolation, which results in segmentation overhead.
In addition, we compared the hardware implementation results against exist-

ing works. For fairness, the related works retrieved are based on Xilinx FPGA
platform design. By evaluating LUT, frequency and latency, we can compare
the resource consumption and performance of each work in general. In our
work, the BNN is implemented in a pipelined manner, and its critical path is
the internal operations of a neuron. Therefore, the minimum area and delay
of a neuron are Amin = 2Amul + 2Aadd + 3Ashift + Amux + Areg and Tmin =

59

Tmul+2Tadd+2Tshift+Tmux+Treg, respectively. For a d-layer network, the number
of pipeline stages and clock cycle are both d−1. Considering that each work uses
a different frequency, we use normalized latency as a measurement of processing
time, defined as latency = delay ∗ cycles, where delay = 1/frequency, expressed
in nanoseconds. In order to compare the core area (number of LUT) fairly, we
have synthesized various BNN topologies using pure LUTs. Since [106] uses 4
DSPs, we use 1DSP=196LUT to convert to an equivalent LUT, refer to [105].
Considering that [104] and [105] use larger bit widths, we use the ALP/bit as a
metric, where ALP denotes area-latency product, to make comparisons fairly be-
tween various widths, since the hardware resource increases along the bit-length.
Table 5.6 and 5.7 show the FPGA implementation results of several one- and two-
variable function generators, respectively. In general, increasing the depth/width
of BNN helps to improve retrieve quality; but in most cases, the minimum topol-
ogy is sufficient for error tolerant applications. Since the topology is optional,
we show the implementation results of the four typical topologies, where 5 and
7-layer networks are used for one-variable functions, 4 and 6-layer networks are
for two-variable functions. The related works in the tables report implemen-
tation results of particular functions, while our method is general for arbitrary
functions. Compared with the CORDIC method for sin(x) in [103], the 5-layer
network consumes more area and lower latency, while reducing the ALP/bit by
42.4%. Compared with the polynomial method for cos(x) in [104], the 5-layer
network consumes less area and lower latency, while reducing the ALP/bit by
69.0%. Compared with the polynomial method for log2(1 + x) in [105], the 5-
layer network consumes more area and lower latency, while reducing the ALP/bit
by 22.1%. Compared with the polynomial method for sigmoid(x) and tanh(x)
in [106], the 5-layer network consumes more area and lower latency, while re-
ducing the ALP/bit by 81.6% and 74.8%, respectively. As the 7-layer network
achieves a larger area, this leads to a disadvantage in ALP/bit. However, it still
achieves a lower latency than other works, and reduces the ALP/bit than two
functions in [106] by 33.9% and 9.5%, respectively. For two-variable functions,
due to less work based on Xilinx FPGA platform, we can merely retrieve recent
works [107] and [108], which are based on interpolation methods, as shown in
Table 5.7. Compared with [107] and [108], the ALP/bit of the 4-layer network

60

(a) Original image (b) Exact segmentation (c) Approximate segmentation

Figure 5.5: Approximate results of image segmentation.

and the 6-layer network are reduced by 20.4% and 63.4%, respectively. Since
FPGA-based designs rarely report their power consumption, but as a reference,
we still compare the power consumption with the two works [103] and [109] in Ta-
ble 5.8. Generally, DSP-based implementations produce lower power and higher
frequencies than LUT-based implementations. Compared with the PFR in [103],
the LUT-based in our work is higher, but the DSP-based is lower. Compared
with the PFR in [109], both LUT-based and DSP-based are lower in our work.
Although the above related works can approximate the function with the best
accuracy, our work is a general method for any function, and it is flexible in both
software and hardware. The comparison against related works proves that the
proposed accelerator can approximate various functions efficiently.

5.6 A Case Study on Fault-Tolerant Application
Approximate computing has potential in fault-tolerant applications such as video
and image processing. In this section, we take the K-means-based image segmen-
tation task as a case to illustrate the real application of the proposed approximate
computing method. The K-means algorithm is an unsupervised clustering algo-
rithm that treats similar samples as one class by calculating the similarity between
samples. For color images, each pixel has three color values (r, g, b) ∈ [0, 255].
The K-means algorithm can effectively divide pixels with similar color values into
a same cluster, so as to achieve image segmentation. In the image segmentation

61

task based on the K-means algorithm, since the pixel color value is a scalar, we
usually use the Euclidean distance

d(p1, p2) =
√

(r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2 (5.3)

to measure the similarity between pixels, where (r1, g1, b1) and (r2, g2, b2) are the
color values of pixels p1 and p2, respectively. In order to prevent the color channel
with a larger value range in the pixel from affecting other channels with a smaller
value range, we use

p̄i = (pi −min(pi))/(max(pi)−min(pi)) (5.4)

to normalize the color value to the range [0,1] and then calculate the Euclidean
distance. Thus, BNN-based methods only need to approximate the Euclidean
distance function in the input range of [0,1]. The image segmentation method
based on K-means is described as follows:
(1) Input image, normalize pixel color value to [0,1] based on Eq. 5.4;
(2) Randomly extract k pixels from all pixels as the initial cluster center;
(3) Calculate the similarity between each pixel (ri, gi, bi) and the cluster center

(rj, gj, bj) based on the Eq. 5.3, and assign each pixel to the corresponding cluster
cj according to the principle of being closest to the cluster center;
(4) Calculate the mean value of all pixels in each cluster as the new cluster

center;
(5) Go back to step (3) and execute in a loop until all cluster centers no longer

change.
In this algorithm, a large number of Euclidean distance calculations are per-

formed in multiple iterations, which is the main bottleneck of computational effi-
ciency. Meanwhile, in one iteration, the similarity between each pixel of the image
can be calculated in parallel, so that the calculation efficiency can be improved.
Therefore, the architecture proposed in this paper can be effectively used in this
application. Figure 5.5 shows the results of the proposed approximate computing
method on the K-means-based image segmentation task: the original image is
Fig. 5.5 (a); the segmentation results based on exact and approximate Euclidean
distance calculations are Fig. 5.5 (b) and (c), respectively. In this application, we
use 3-4-3-2-1 as the BNN topology for Euclidean distance function approxima-
tion. As can be seen from Fig. 5.5, the BNN-based method achieves high-quality

62

approximation results on this task. The MAE and MRE of the three-variable Eu-
clidean distance function are 0.0325 and 3.38%, respectively. The relative error
of the segmented image is 8.2% by calculating the image differences.

63

Ta
bl
e
5.
6:

C
om

pa
ris

on
of

im
pl
em

en
ta
tio

n
re
su
lts

fo
r
on

e-
va
ria

bl
e
fu
nc
tio

ns
w
ith

ot
he
r
FP

G
A
-b
as
ed

wo
rk
s

Fu
nc
ti
on

A
pp

ro
ac
h

P
la
tf
or
m

B
it
-w

id
th

LU
T

F
F

D
SP

eq
.
LU

T
C
yc
le
@
Fr
eq
.
La

t.
(n
s)

A
LP

/b
it

si
n

(x
)

C
O
R
D
IC

[1
03
]

X
C
6S

LX
9

16
bi
t(
Fx

P)
95
1

94
0

95
1

6@
10
8.
1M

H
z

55
.4
9

32
98
.1
9

co
s(
x

)
Po

ly
no

m
ia
l[
10
4]

X
C
4V

LX
10
0

32
bi
t(
FP

)
30
77

/
0

30
77

/
63
.8
4

61
38
.6
2

lo
g 2

(1
+
x

)
Po

ly
no

m
ia
l[
10
5]

X
C
6V

LX
24
0T

36
bi
t(
Fx

P)
17
80

/
0

17
80

19
@
38
5M

H
z

49
.3
5

24
40
.0
8

si
g
m
oi
d
(x

)
Po

ly
no

m
ia
l[
10
6]

X
C
7V

X
69
0T

16
bi
t(
FP

)
74
4

12
58

4
15
28

68
@
62
8.
5M

H
z

10
8.
19

10
33
2.
15

ta
n
h

(x
)

Po
ly
no

m
ia
l[
10
6]

X
C
7V

X
69
0T

16
bi
t(
FP

)
50
8

13
99

4
12
92

62
@
66
3.
6M

H
z

93
.4
3

75
44
.4
7

A
rb
itr

ar
y

5-
la
ye
r
BN

N
[O

ur
]

X
C
ZU

9E
G

16
bi
t(
Fx

P)
18
10

12
8

0
18
10

4@
23
8.
1M

H
z

16
.8
0

19
00
.5
0

A
rb
itr

ar
y

7-
la
ye
r
BN

N
[O

ur
]

X
C
ZU

9E
G

16
bi
t(
Fx

P)
39
58

24
0

0
39
58

6@
21
7.
4M

H
z

27
.6
0

68
27
.5
5

a.
U
se

1D
SP

=
19
6L

U
T

to
co
nv

er
t
to

eq
ui
va
le
nt

LU
T
,r

ef
er

to
[1
05
].

b.
A
LP

de
no

te
s
A
re
a-
La

te
nc

y
Pr

od
uc

t,
w
he

re
A
re
a
is

th
e
nu

m
be

r
of

eq
ui
va
le
nt

LU
T
.

c.
Fx

P
an

d
FP

de
no

te
fix

ed
-p
oi
nt

an
d
flo

at
in
g-
po

in
t,
re
sp
ec
tiv

el
y.

64

Ta
bl
e
5.
7:

C
om

pa
ris

on
of

im
pl
em

en
ta
tio

n
re
su
lts

fo
r
tw

o-
va
ria

bl
e
fu
nc
tio

ns
w
ith

ot
he
r
FP

G
A
-b
as
ed

wo
rk
s

Fu
nc
ti
on

A
pp

ro
ac
h

P
la
tf
or
m

B
it
-w

id
th

LU
T

F
F

D
SP

eq
.
LU

T
C
yc
le
@
Fr
eq
.
La

t.
(n
s)

A
LP

/b
it

a
ta
n

2(
x
,y

)
In
te
rp
ol
at
io
n
[1
07
]
X
C
7K

32
5T

16
bi
t(
Fx

P)
89
3

81
0

89
3

3@
17
3M

H
z

17
.3
4

96
7.
79

ex
si
n

(π
y
)

In
te
rp
ol
at
io
n
[1
08
]
X
C
4V

LX
60

16
bi
t(
FP

)
33
25

/
0

33
25

/
54
.2
6

11
27
5.
91

A
rb
itr

ar
y

4-
la
ye
r
BN

N
[O

ur
]
X
C
ZU

9E
G

16
bi
t(
Fx

P)
10
02

80
0

10
02

3@
24
3.
9M

H
z

12
.3
0

77
0.
29

A
rb
itr

ar
y

6-
la
ye
r
BN

N
[O

ur
]
X
C
ZU

9E
G

16
bi
t(
Fx

P)
30
30

19
2

0
30
30

5@
22
9.
4M

H
z

21
.7
9

41
26
.4
8

65

Table 5.8: Comparison of power consumption with FPGA-based works

[103]
Proposed

[109]
Proposed

LUT DSP LUT DSP

Function sin(x) atan2(x, y)

Freq. (MHz) 108.1 238.1 265.9 93.6 243.9 294.1

Power (mW) 14 52 30 24.2 28 18

PFR (mW/MHz) 0.13 0.22 0.11 0.26 0.11 0.06
a. PFR denotes Power-Frequency Ratio.

66

6 Conclusion

6.1 Summary
This thesis mainly studies the architecture design of a novel multi-grained re-
configurable accelerator and its supporting optimization technologies. Neural
network-based accelerators have gradually become an important part of comput-
ing systems in the past decade. As a new type of computing system, the hetero-
geneous computing system of "General Purpose Processor + Neural Network Ac-
celerator" brings new hope to conventional computing models and architectures.
Offloading complex calculations on general-purpose processors to neural network
accelerators for approximation can significantly improve the energy efficiency of
the entire system. Although a large number of architectural solutions have been
proposed by the academic community and the industry, there are still various
problems in flexibility, parallelism, and cost. Obviously, an ideal architecture is
expected to win all the aspects of parallelism, flexibility, and cost. Therefore, this
article attempts to start from the above three points to discuss the realization of
this ideal architecture.
In this thesis, we proposed a multi-grained reconfigurable architecture powered

by BNN for approximate computing. By implementing a large scale of bisection
mesh of NN on hardware, the entire network-on-chip (NoC) is expected to be
partitioned and configured into pieces for any specific applications (almost) with-
out redundancy. By configuring BNN into massive pieces on-chip, where each
small piece performs as a computing kernel through NN regressions, arbitrary
acceleration architecture can be achieved with flexible features. In this man-
ner, the computing kernels (fine-grained), their performance-scale-cost features
(mid-grained), and organization scheme are re-configurable. In this work, the
FPGA-based solution of MuGRA is offered along with a special on-chip memory

67

organization to optimize PE communication throughput and on-chip Block-RAM
(BRAM) overhead. For proof-of-concept, a demo accelerator is built on FPGA in
the scale up to 28×28 process elements (PEs) which is capable for accommodating
more than a hundred computing kernels. The proposed MuGRA system is im-
plemented on the Xilinx Zynq UltraScale+ ZCU102 Evaluation Board. To prove
the universality of the proposed method, we have investigated multiple kinds
of arithmetic functions, including one- and two-variable functions, and demon-
strated their theoretical and hardware calculation results by software simulation
and FPGA test, respectively. The test results of several functions show that
for one-variable functions, the topology with the minimum hardware resource
achieve an accuracy of over 99.75%; for two-variable functions, the topology with
the minimum hardware resource achieve an accuracy of over 91.1%. By testing
the average accuracy of different fixed-point implementation, we found that 16-
bit is the ideal precision to design PEs that approximates the software results.
From the FPGA implementation results, compared with CPU baseline, proposed
architecture achieves a speedup of 5.1x to 30.3x. Compared with other traditional
function approximation methods, our method provides fewer parameter storage
requirements. Compared with various one- and two-variable function generators
based on FPGA implementation, the area-latency product of our accelerator has
been reduced at least 9.5% with a loss of accuracy by at most 8.9%.

6.2 Future Works
In future work, the following points are worth exploring:
1. For more input applications, the proposed architecture loses its advantages.

Since the current architecture can only input data in the first layer of the neural
network, the increase in dimensionality will greatly increase the depth of the
topology, resulting in the inability to train an effective neural network model.
Therefore, it is inevitable to explore the next generation of reconfigurable neural
network topology that supports more inputs.
2. Explore the in-memory computing architecture. With the network scale

increases, a large amount of data and weights can only be stored in off-chip
memory. The separation of storage and computing has led to an increase in the

68

energy consumption of data movement and has become the main bottleneck of the
system. In the in-memory computing architecture, the computing units and the
memory units are coupled together, with greatly reduced on the cost of memory
access.
3. Computing architecture based on new devices. With the end of Moore’s Law,

CMOS-based devices have been difficult to upgrade. As a promising alternative,
AQFP-based superconducting quantum computing technology can be used as
the infrastructure of data centers and supercomputing centers. Compared with
CMOS, AQFP only needs to be powered by alternating current, and the static
power consumption is close to zero, which further reduces the current required
by the switching device.

69

Acknowledgements

Upon the completion of this doctoral thesis, I would like to express my utmost
gratitude to important people.
I would like to express my deepest appreciation to Prof. Yasuhiko Nakashima,

who is my supervisor, for his guidance and encouragement throughout my re-
search period. I would like to extend my deepest gratitude to Associate Prof.
Renyuan Zhang, who is also my supervisor, for his guidance and encouragement
during the whole period of my Ph.D course in NAIST. I have learned a lot of
important things from him including academic thinking, technical writing, how
to proceed with a research project, and education. Their kindness and academic
ability encourage me not only in my study but also in my future work. I would
also like to thank all the member of Computing Architecture Laboratory.
I would like to thank my parents and family members for their kind support.
This research was partly supported by JST, PRESTO Grant Number JP-

MJPR18M7, Japan.

70

References

[1] J. Lee, S. Kang, J. Lee, D. Shin, D. Han, and H.-J. Yoo, “The hardware
and algorithm co-design for energy-efficient dnn processor on edge/mobile
devices,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 67, no. 10, pp. 3458–3470, 2020.

[2] O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, and M. Shafique, “X-
cgra: An energy-efficient approximate coarse-grained reconfigurable architec-
ture,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 10, pp. 2558–2571, 2019.

[3] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “Diannao family: energy-
efficient hardware accelerators for machine learning,” Communications of the
ACM, vol. 59, no. 11, pp. 105–112, 2016.

[4] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, “Design of ion-implanted mosfet’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268,
1974.

[5] E. Baek, D. Kwon, and J. Kim, “A multi-neural network acceleration ar-
chitecture,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2020, pp. 940–953.

[6] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chan-
dra, “Heterogeneous dataflow accelerators for multi-dnn workloads,” in 2021
IEEE International Symposium on High-Performance Computer Architec-
ture (HPCA). IEEE, 2021, pp. 71–83.

[7] S. Lian, Y. Han, X. Chen, Y. Wang, and H. Xiao, “Dadu-p: A scalable
accelerator for robot motion planning in a dynamic environment,” in 2018

71

55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE,
2018, pp. 1–6.

[8] A. Ardakani, C. Condo, and W. J. Gross, “Fast and efficient convolutional
accelerator for edge computing,” IEEE Transactions on Computers, vol. 69,
no. 1, pp. 138–152, 2019.

[9] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
“Dark silicon and the end of multicore scaling,” IEEE Micro, vol. 32, no. 3,
pp. 122–134, 2012.

[10] D. Shin and H.-J. Yoo, “The heterogeneous deep neural network processor
with a non-von neumann architecture,” Proceedings of the IEEE, vol. 108,
no. 8, pp. 1245–1260, 2019.

[11] S. Dutta, H. Jeong, Y. Yang, V. Cadambe, T. M. Low, and P. Grover,
“Addressing unreliability in emerging devices and non-von neumann archi-
tectures using coded computing,” Proceedings of the IEEE, vol. 108, no. 8,
pp. 1219–1234, 2020.

[12] J. Cong, P. Wei, C. H. Yu, and P. Zhang, “Automated accelerator genera-
tion and optimization with composable, parallel and pipeline architecture,”
in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).
IEEE, 2018, pp. 1–6.

[13] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: a flexi-
ble multicore accelerator with virtualized execution for mobile multimedia
applications,” in Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2009, pp. 370–380.

[14] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao, C. Zhao,
Z. Azad, S. Canakci, B. Veluri et al., “Blackparrot: An agile open-source
risc-v multicore for accelerator socs,” IEEE Micro, vol. 40, no. 4, pp. 93–
102, 2020.

[15] D. Peroni, M. Imani, H. Nejatollahi, N. Dutt, and T. Rosing, “Arga: Ap-
proximate reuse for gpgpu acceleration,” in 2019 56th ACM/IEEE Design
Automation Conference (DAC). IEEE, 2019, pp. 1–6.

72

[16] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in Proceedings of the 44th annual
international symposium on computer architecture, 2017, pp. 1–12.

[17] B. Zamanlooy and M. Mirhassani, “Efficient vlsi implementation of neural
networks with hyperbolic tangent activation function,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 1, pp. 39–48,
2013.

[18] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Dian-
nao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning,” ACM SIGARCH Computer Architecture News, vol. 42, no. 1, pp.
269–284, 2014.

[19] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable computing architec-
tures,” Proceedings of the IEEE, vol. 103, no. 3, pp. 332–354, 2015.

[20] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Ap-
proximate computing and the quest for computing efficiency,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2015,
pp. 1–6.

[21] C. Nicol, “A coarse grain reconfigurable array (cgra) for statically scheduled
data flow computing,” Wave Computing White Paper, 2017.

[22] H. Sun, Y. Luo, Y. Ha, Y. Shi, Y. Gao, Q. Shen, and H. Pan, “A universal
method of linear approximation with controllable error for the efficient im-
plementation of transcendental functions,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 67, no. 1, pp. 177–188, 2019.

[23] T. Filippov, M. Dorojevets, A. Sahu, A. Kirichenko, C. Ayala, and
O. Mukhanov, “8-bit asynchronous wave-pipelined rsfq arithmetic-logic
unit,” IEEE transactions on applied superconductivity, vol. 21, no. 3, pp.
847–851, 2011.

73

[24] H. Dong, M. Wang, Y. Luo, M. Zheng, M. An, Y. Ha, and H. Pan, “Plac:
Piecewise linear approximation computation for all nonlinear unary func-
tions,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 28, no. 9, pp. 2014–2027, 2020.

[25] K. K. Parhi and Y. Liu, “Computing arithmetic functions using stochas-
tic logic by series expansion,” IEEE Transactions on Emerging Topics in
Computing, vol. 7, no. 1, pp. 44–59, 2016.

[26] S. Eldridge, F. Raudies, D. Zou, and A. Joshi, “Neural network-based ac-
celerators for transcendental function approximation,” in Proceedings of the
24th edition of the great lakes symposium on VLSI, 2014, pp. 169–174.

[27] P. Wijesinghe, C. M. Liyanagedera, and K. Roy, “Fast, low power evaluation
of elementary functions using radial basis function networks,” in Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE,
2017, pp. 208–213.

[28] R. Zhang, Y. Chen, T. Nakada, and Y. Nakashima, “Dianet: An efficient
multi-grained re-configurable neural network in silicon,” in 2019 32nd IEEE
International System-on-Chip Conference (SOCC). IEEE, 2019, pp. 132–
137.

[29] M. Wu, Y. Chen, Y. Kan, T. Nomura, R. Zhang, and Y. Nakashima, “An
elastic neural network toward multi-grained re-configurable accelerator,” in
2020 18th IEEE International New Circuits and Systems Conference (NEW-
CAS). IEEE, 2020, pp. 218–221.

[30] M. Wu, Y. Kan, T. Erlina, R. Zhang, and Y. Nakashima, “Dianet: An
elastic neural network for effectively re-configurable implementation,” Neu-
rocomputing, vol. 464, pp. 242–251, 2021.

[31] Y. Kan, M. Wu, R. Zhang, and Y. Nakashima, “A multi-grained recon-
figurable accelerator for approximate computing,” in 2020 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). IEEE, 2020, pp. 90–95.

74

[32] Y. Kan, M. Wu, R. Zhang, and Y. Nakashima, “Mugra: A scalable multi-
grained reconfigurable accelerator powered by elastic neural network,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp.
258-271, 2022.

[33] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in 2010 Design, Automation & Test in Europe Conference &
Exhibition (DATE 2010). IEEE, 2010, pp. 957–960.

[34] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi, “De-
sign and evaluation of approximate logarithmic multipliers for low power
error-tolerant applications,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 65, no. 9, pp. 2856–2868, 2018.

[35] L. Chen, J. Han, W. Liu, and F. Lombardi, “On the design of approxi-
mate restoring dividers for error-tolerant applications,” IEEE Transactions
on Computers, vol. 65, no. 8, pp. 2522–2533, 2015.

[36] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel, “Cross-
layer approximate computing: From logic to architectures,” in Proceedings
of the 53rd Annual Design Automation Conference, 2016, pp. 1–6.

[37] S. Li, Z. Zhang, R. Mao, J. Xiao, L. Chang, and J. Zhou, “A fast and energy-
efficient snn processor with adaptive clock/event-driven computation scheme
and online learning,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 68, no. 4, pp. 1543–1552, 2021.

[38] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536,
1986.

[39] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[40] A. Yasoubi, R. Hojabr, and M. Modarressi, “Power-efficient accelerator de-
sign for neural networks using computation reuse,” IEEE Computer Archi-
tecture Letters, vol. 16, no. 1, pp. 72–75, 2016.

75

[41] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Towards neural
acceleration for general-purpose approximate computing,” in Proceedings of
the 4th Workshop on Energy Efficient Design, ISCA, vol. 12.

[42] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE, 2012,
pp. 449–460.

[43] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration
for general-purpose approximate programs,” Communications of the ACM,
vol. 58, no. 1, pp. 105–115, 2014.

[44] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze,
and M. Oskin, “Snnap: Approximate computing on programmable socs via
neural acceleration,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2015, pp. 603–614.

[45] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Es-
maeilzadeh, “Neural acceleration for gpu throughput processors,” in Pro-
ceedings of the 48th international symposium on microarchitecture, 2015, pp.
482–493.

[46] Z. Wang, S. Yin, F. Tu, L. Liu, and S. Wei, “An energy efficient jpeg encoder
with neural network based approximation and near-threshold computing,”
in 2018 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2018, pp. 1–5.

[47] F. Tu, S. Yin, P. Ouyang, L. Liu, and S. Wei, “Reconfigurable architecture
for neural approximation in multimedia computing,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 29, no. 3, pp. 892–906, 2018.

[48] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger, “General-purpose code acceleration with
limited-precision analog computation,” ACM SIGARCH Computer Architec-
ture News, vol. 42, no. 3, pp. 505–516, 2014.

76

[49] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,” in
Proceedings of the 2015 ACM/SIGDA international symposium on field-
programmable gate arrays, 2015, pp. 161–170.

[50] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE
journal of solid-state circuits, vol. 52, no. 1, pp. 127–138, 2016.

[51] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, S. Zheng, T. Lu, J. Gu, L. Liu, and
S. Wei, “A high energy efficient reconfigurable hybrid neural network pro-
cessor for deep learning applications,” IEEE Journal of Solid-State Circuits,
vol. 53, no. 4, pp. 968–982, 2017.

[52] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song et al., “Going deeper with embedded fpga platform for convolu-
tional neural network,” in Proceedings of the 2016 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, 2016, pp. 26–35.

[53] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-
s. Seo, and Y. Cao, “Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, 2016, pp. 16–25.

[54] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Toward
uniformed representation and acceleration for deep convolutional neural net-
works,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 38, no. 11, pp. 2072–2085, 2018.

[55] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator efficiency
through resource partitioning,” in 2017 ACM/IEEE 44th Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 2017, pp. 535–
547.

77

[56] L. Cavigelli and L. Benini, “Origami: A 803-gop/s/w convolutional network
accelerator,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 27, no. 11, pp. 2461–2475, 2016.

[57] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li, “C-brain: A deep
learning accelerator that tames the diversity of cnns through adaptive data-
level parallelization,” in 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2016, pp. 1–6.

[58] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “14.2 dnpu: An 8.1 tops/w reconfig-
urable cnn-rnn processor for general-purpose deep neural networks,” in 2017
IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2017,
pp. 240–241.

[59] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” Advances in neural information
processing systems, vol. 28, pp. 1135–1143, 2015.

[60] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse convolu-
tional neural networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 806–814.

[61] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolu-
tional neural networks using energy-aware pruning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.
5687–5695.

[62] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning
with limited numerical precision,” in International conference on machine
learning. PMLR, 2015, pp. 1737–1746.

[63] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep
neural networks with binary weights during propagations,” in Advances in
neural information processing systems, 2015, pp. 3123–3131.

[64] P. Wang, Q. Hu, Y. Zhang, C. Zhang, Y. Liu, and J. Cheng, “Two-step quan-
tization for low-bit neural networks,” in Proceedings of the IEEE Conference
on computer vision and pattern recognition, 2018, pp. 4376–4384.

78

[65] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“Eie: Efficient inference engine on compressed deep neural network,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 243–254, 2016.

[66] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). IEEE, 2016, pp. 1–12.

[67] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An accelerator for
compressed-sparse convolutional neural networks,” ACM SIGARCH Com-
puter Architecture News, vol. 45, no. 2, pp. 27–40, 2017.

[68] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural network accelerator
based on outlier-aware low-precision computation,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). IEEE,
2018, pp. 688–698.

[69] P. Guo, H. Ma, R. Chen, P. Li, S. Xie, and D. Wang, “Fbna: A fully binarized
neural network accelerator,” in 2018 28th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 2018, pp. 51–513.

[70] Y. Cai, T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, “Low bit-width
convolutional neural network on rram,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 7, pp. 1414–
1427, 2019.

[71] G. Estrin, “Organization of computer systems: the fixed plus variable struc-
ture computer,” in Papers presented at the May 3-5, 1960, western joint
IRE-AIEE-ACM computer conference, 1960, pp. 33–40.

[72] A. DeHon and J. Wawrzynek, “Reconfigurable computing: what, why,
and implications for design automation,” in Proceedings of the 36th annual
ACM/IEEE Design Automation Conference, 1999, pp. 610–615.

79

[73] S. Yin, X. Yao, D. Liu, L. Liu, and S. Wei, “Memory-aware loop mapping
on coarse-grained reconfigurable architectures,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1895–1908, 2015.

[74] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined and
dynamically composable architecture of cgra,” in 2014 IEEE 22nd Annual
International Symposium on Field-Programmable Custom Computing Ma-
chines. IEEE, 2014, pp. 9–16.

[75] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “Hycube: A cgra
with reconfigurable single-cycle multi-hop interconnect,” in Proceedings of
the 54th Annual Design Automation Conference 2017, 2017, pp. 1–6.

[76] G. Ansaloni, P. Bonzini, and L. Pozzi, “Egra: A coarse grained reconfigurable
architectural template,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 19, no. 6, pp. 1062–1074, 2010.

[77] C. M. Diniz, M. Shafique, S. Bampi, and J. Henkel, “Run-time accelerator
binding for tile-based mixed-grained reconfigurable architectures,” in 2014
24th International Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2014, pp. 1–4.

[78] L. Liu, Z. Li, C. Yang, C. Deng, S. Yin, and S. Wei, “Hrea: An energy-
efficient embedded dynamically reconfigurable fabric for 13-dwarfs process-
ing,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65,
no. 3, pp. 381–385, 2017.

[79] P. O. Domingos, F. M. Silva, and H. C. Neto, “An efficient and scalable
architecture for neural networks with backpropagation learning,” in Inter-
national Conference on Field Programmable Logic and Applications, 2005.
IEEE, 2005, pp. 89–94.

[80] M. Pietras, “Hardware conversion of neural networks simulation models
for neural processing accelerator implemented as fpga-based soc,” in 2014
24th International Conference on Field Programmable Logic and Applica-
tions (FPL). IEEE, 2014, pp. 1–4.

80

[81] D. Ferrer, R. González, R. Fleitas, J. P. Acle, and R. Canetti, “Neurofpga-
implementing artificial neural networks on programmable logic devices,” in
Proceedings Design, Automation and Test in Europe Conference and Exhibi-
tion, vol. 3. IEEE, 2004, pp. 218–223.

[82] C. Latino, M. A. Moreno-Armendariz, and M. Hagan, “Realizing general mlp
networks with minimal fpga resources,” in 2009 International Joint Confer-
ence on Neural Networks. IEEE, 2009, pp. 1722–1729.

[83] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: En-
abling low-power, highly-accurate deep neural network accelerators,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architec-
ture (ISCA). IEEE, 2016, pp. 267–278.

[84] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G.-Y. Wei,
“14.3 a 28nm soc with a 1.2 ghz 568nj/prediction sparse deep-neural-network
engine with> 0.1 timing error rate tolerance for iot applications,” in 2017
IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2017,
pp. 242–243.

[85] O. Temam, “A defect-tolerant accelerator for emerging high-performance
applications,” in 2012 39th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2012, pp. 356–367.

[86] D. Yarotsky, “Error bounds for approximations with deep relu networks,”
Neural Networks, vol. 94, pp. 103–114, 2017.

[87] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities improve
neural network acoustic models,” in Proc. icml, vol. 30, no. 1. Citeseer,
2013, p. 3.

[88] G. Yang, J. Yang, Z. Lu, and D. Liu, “A convolutional neural network with
sparse representation,” Knowledge-Based Systems, vol. 209, p. 106419, 2020.

[89] J. Yang and J. Ma, “Feed-forward neural network training using sparse rep-
resentation,” Expert Systems with Applications, vol. 116, pp. 255–264, 2019.

81

[90] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-Morales,
I.-A. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco, S.-C. Liu et al.,
“Nullhop: A flexible convolutional neural network accelerator based on
sparse representations of feature maps,” IEEE transactions on neural net-
works and learning systems, vol. 30, no. 3, pp. 644–656, 2018.

[91] H.-J. Kang, “Accelerator-aware pruning for convolutional neural networks,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 30,
no. 7, pp. 2093–2103, 2019.

[92] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp. 1997–
2017, 2019.

[93] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural architec-
ture search via parameters sharing,” in International Conference on Machine
Learning. PMLR, 2018, pp. 4095–4104.

[94] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-
Fei, A. Yuille, J. Huang, and K. Murphy, “Progressive neural architec-
ture search,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 19–34.

[95] S. Dey, K.-W. Huang, P. A. Beerel, and K. M. Chugg, “Pre-defined sparse
neural networks with hardware acceleration,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 332–345,
2019.

[96] S. Kundu, M. Nazemi, M. Pedram, K. M. Chugg, and P. A. Beerel, “Pre-
defined sparsity for low-complexity convolutional neural networks,” IEEE
Transactions on Computers, vol. 69, no. 7, pp. 1045–1058, 2020.

[97] A. Tretter, G. Giannopoulou, M. Baer, and L. Thiele, “Minimising access
conflicts on shared multi-bank memory,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 16, no. 5s, pp. 1–20, 2017.

82

[98] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accel-
erator for emerging deep neural networks on mobile devices,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp.
292–308, 2019.

[99] S.-F. Hsiao, C.-S. Wen, Y.-H. Chen, and K.-C. Huang, “Hierarchical mul-
tipartite function evaluation,” IEEE Transactions on Computers, vol. 66,
no. 1, pp. 89–99, 2016.

[100] D.-U. Lee, R. Cheung, W. Luk, and J. Villasenor, “Hardware implemen-
tation trade-offs of polynomial approximations and interpolations,” IEEE
Transactions on computers, vol. 57, no. 5, pp. 686–701, 2008.

[101] S. Nagayama, T. Sasao, and J. T. Butler, “Programmable architectures and
design methods for two-variable numeric function generators,” IPSJ Trans-
actions on System LSI Design Methodology, vol. 3, pp. 118–129, 2010.

[102] D. Wang, M. D. Ercegovac, and Y. Xiao, “Complex function approxima-
tion using two-dimensional interpolation,” IEEE Transactions on Comput-
ers, vol. 63, no. 12, pp. 2948–2960, 2013.

[103] F. Salehi, E. Farshidi, and H. Kaabi, “Novel design for a low-latency cordic
algorithm for sine-cosine computation and its implementation on fpga,” Mi-
croprocessors and Microsystems, vol. 77, p. 103197, 2020.

[104] K. Long, H. Chen, and X. Li, “Analysis and optimization for hard-
ware implementation of sine/cosine with faithful rounding and monotonicity
through piecewise quadratic polynomial,” IEICE Electronics Express, pp.
18–20 210 158, 2021.

[105] S. Xu, S. A. Fahmy, and I. V. McLoughlin, “Square-rich fixed point poly-
nomial evaluation on fpgas,” in Proceedings of the 2014 ACM/SIGDA inter-
national symposium on Field-programmable gate arrays, 2014, pp. 99–108.

[106] S. M. Ho and H. K.-H. So, “Nncore: A parameterized non-linear function
generator for machine learning applications in fpgas,” in 2017 International
Conference on Field Programmable Technology (ICFPT). IEEE, 2017, pp.
160–167.

83

[107] V. Torres and J. Valls, “A fast and low-complexity operator for the compu-
tation of the arctangent of a complex number,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 9, pp. 2663–2667, 2017.

[108] A. Hosseiny and G. Jaberipur, “Complex exponential functions: A high-
precision hardware realization,” Integration, vol. 73, pp. 18–29, 2020.

[109] R. Gutierrez and J. Valls, “Low-power fpga-implementation of atan (y/x)
using look-up table methods for communication applications,” Journal of
Signal Processing Systems, vol. 56, no. 1, pp. 25–33, 2009.

84

Publication List

Journal Papers

[1] Y. Kan, M. Wu, R. Zhang, and Y. Nakashima, "MuGRA: A Scalable Multi-
Grained Reconfigurable Accelerator Powered by Elastic Neural Network," IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp.
258-271, Jan. (2022)
Corresponds to Chapter 4 and 5

[2] M. Wu, Y. Kan, T. Erlina, R. Zhang, and Y. Nakashima, "DiaNet: An Elastic
Neural Network for Effectively Re-Configurable Implementation," Neurocomput-
ing 464, pp. 242-251, Aug. (2021)

Conference Papers

[1] Y. Kan, M. Wu, R. Zhang, and Y. Nakashima, "A Multi-Grained Reconfig-
urable Accelerator for Approximate Computing," IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp. 90-95, Aug. (2020)
Corresponds to Chapter 3 and 5

[2] M. Wu, Y. Chen, Y. Kan, T. Nomura, R. Zhang, and Y. Nakashima, "An
Elastic Neural Network toward Multi-Grained Re-configurable Accelerator," 18th
IEEE International New Circuits and Systems Conference (NEWCAS), pp. 218-
221, Jun. (2020)

85

	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Motivations and Contributions
	1.3 Organization of Thesis

	2 Related Works
	2.1 Neural Network-based Approximate Computing
	2.2 Hardware Accelerator for Neural Networks
	2.3 Reconfigurable Architectures

	3 Neural Network Prototype of Proposed Architecture
	3.1 Spatial-Expanded Implementation
	3.2 Bisection Neural Network
	3.3 Towards Multi-Grained Reconfigurable Architecture
	3.4 Design Flow
	3.5 Challenges
	3.5.1 On-Chip Interconnections
	3.5.2 PE Utilization

	4 Hardware Architecture Design and Optimization
	4.1 Overview of Proposed Accelerator
	4.2 Design of PE Architecture
	4.3 On-Chip Interconnection for Efficient Buffer Utilization
	4.4 Controller Design
	4.5 Computation Datapath
	4.6 Configuration Strategy

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results by Software
	5.3 Results of Fixed-Point Hardware Simulation
	5.4 Implementation Results on FPGA
	5.5 Comparison with Other Works
	5.6 A Case Study on Fault-Tolerant Application

	6 Conclusion
	6.1 Summary
	6.2 Future Works

	References
	Publication List

