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Abstract

The independent development of methods for unsupervised and supervised

learning induces the different treatments to the unsupervised phoneme discovery

and the supervised speech recognition; the two tasks both need acoustic modeling

to find patterns that form the perceptual units such as phonemes and words; the

only difference is at different supervised levels. So it is reasonable to regard the

unsupervised phoneme discovery as the unsupervised ASR (that finds units from

speech without text). We propose to use universal acoustic modeling (instead of

separated ones) of supervised and unsupervised ASR for the whole process from

acoustic waveform to speech units.

The study aims to construct universal acoustic modeling for speech recog-

nition at different supervised levels. Specifically, the work proposes the hybrid

model, which combines the Dirichlet process Gaussian mixture model and re-

current neural network (DPGMM-RNN). Furthermore, the proposed approach

is utilized (1) to improve phoneme categorization by relieving the fragmentation

problem; (2) to extract perceptual features to improve ASR performance.
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Chapter 1

Introduction

1.1. Background

1.1.1 An Universal Model for Spoken Language Learning

The ASR aims to find speech patterns that match such perceptual units as

phonemes and words. These units serve as acoustic elements and semantic en-

coding that are highly developed and optimized in evolution to fit the needs of

conveying meaningful messages efficiently [14]. Such communicative units come

into the brains of the infants, which might be ‘blank papers’ to be written by

sensory stimuli such as speech [15]. Infants can find perceptual units before read-

ing or writing that involves textual languages [16]. When infants grow older and

have more language experiences, they learn these units by speaking, reading, and

writing besides hearing. These behaviors unify in the neural learning of the brain

cortex by processing the impulses that come from the ears that extract meaning-

ful units, eyes that read the text words, and motor-controlled muscles that speak

out or write down the words [17]. In such a view, the brain cortex stores such

perceptual patterns as traces formed by electrical impulses from sensory organs.

The neural encoding of the traces engraved by the sensory experiences serves as

the physical basis of the spoken language learning. The neural learning processes

leave the traces to encode with the past knowledge and retrieve the information

for speech communication [18]. All these processes happen in one brain.

Inspired by the neural studies, this thesis considers the potential Automatic

1



Speech Recognition (ASR) model that learns its parameters from speech corpora

to mimic the development of the same area within the temporal lobe [17] of the

brain to store, update, and retrieve information from spoken language learning

experiences starting from an infant of a blank state to adult of full development.

The ultimate goal of the thesis is to construct universal acoustic modeling for

ASR. Such acoustic modeling involves the whole process from acoustic waveform

to speech units to realize the brain functionality [15] that finds perceptual units in

speech without text (from infants to 4-year-olds), in a limited amount of speech

with text (from 4-year-olds to children), and in a large amount of speech and text

(from children to adults).

In this thesis, we propose the DPGMM-RNN hybrid model for the univer-

sal acoustic modeling. This proposal is a preliminary work to achieve universal

methods on both unsupervised and supervised ASR tasks. Several related works

discuss extensions about universal acoustic modeling. The previous work [19]

combines data from different domains using a mixture model to solve the domain

mismatching problem as an acoustic model universal to different domains. The

previous work [20] uses a universal set of phones instead of phonemes special to

a language to build an acoustic model universal to languages. There are also

several works about acoustic models universal to different applications such as

the acoustic sounds of music [21] and electromagnetic acoustic noise of cars [22].

The proposed method and features can be extended to such related tasks as ap-

plications universal to different domains [19], the discovery of phoneme set across

languages [20], and application extension of different types of sounds such as

music [21] and electromagnetic acoustic noise [22].

To explore such universal acoustic modeling for unsupervised phoneme dis-

covery of infants and supervised speech recognition of adults, we first review the

existing models in the Section 1.1.2 and Section 1.1.3, then discuss the limitation

of the existing models in the Section 1.1.4, and finally state the contribution of

this thesis to construct the universal acoustic models.

1.1.2 Automatic Speech Recognition

The ASR mimics the human auditory ability to decode the perceptual units from

the speech signals. It is a fundamental spoken language technology that makes
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our daily life convenient. We apply the ASR technology to build dialogue systems

to help people with impairments, translation systems to help break the language

barriers, and automatic spoken typing systems to help second language learners

with the difficulty of written languages.

Early ASR methods started with the spectrum template matching and evolved

to be HMM-GMM model that combines the temporal modeling of Hidden Markov

Model (HMM) and the spectrum modeling of Gaussian Mixture Model (GMM) [23],

which had been the standard method. In 2011, the HMM-DNN hybrid model that

uses the DNN to relearn the temporal-spectrum connections and the acoustical

distribution of speech segments achieved a breakthrough in Large Vocabulary

Continuous Speech Recognition (LVCSR) tasks [24]. To replace HMM model with

RNN for temporal modeling, Connectionist Temporal Classification (CTC) [25]

and attention models [26, 8] have gained popularity. The recent success of trans-

former [27] in natural language processing also attracts research interest for ASR

communities.

1.1.3 Unsupervised Phoneme Discovery

The infants can find the perceptual units from speech without text mainly within

the first year [16] that is long before they learn reading and writing. Such un-

supervised ability contrasts the mainstream success in the ASR with the neural

network technology [8, 24] by training a large amount of paired data of speech

and text. Inspired by infant studies, the research of finding phoneme-like units

from audio without text (the unsupervised phoneme discovery) has attracted the

interest of researchers. Such technology can help fieldworks of linguists in docu-

menting languages without written form (which needs expert linguistic knowledge

and professional auditory training) [6] and help automatic linguistic unit anno-

tation of low-resource languages to build ASR systems (which costs money and

time) [7]. The model simulation of the unsupervised phoneme discovery also helps

illustrate the infant learning process [28].

In recent years, researchers are holding several Zerospeech challenges [29, 30, 3]

to provide the same datasets and measurements including the ABX discrimina-

tion test [31] for fair comparision of different models in ability to discriminate

the phonemes. The models in Zerospeech includes neural representation learning
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by autoencoder [32, 33, 34], neural discriminative training by ABnet [35], neural

discretized learning by VQ-VAE [36], traditional clustering by GMM [36] and

K-means [37, 36], and nonparametric clustering by the Dirichlet Process Gaus-

sian Mixture Model (DPGMM) trained with Gibbs sampling [38] or variational

inference [39, 40].

Zerospeech Challenges compared various unsupervised models. The DPGMM

feature achieved state-of-art performances from Zerospeech 2015 to Zerospeech

2019. The VQVAE and VQCPC features achieved a competitive performance

and state-of-art performance in Zerospeech 2019 and 2020 respectively. Next,

I will point out the problems of such VAE-based methods as the VQVAE and

VQCPC, and compare them with our proposed DPGMM-based methods.

Both VQVAE and VQCPC originate from the autoencoder. The autoencoder

extracts the hidden representation from a middle layer of a neural network that

maps each feature to itself. The extracted over-rich hidden representation can

easily copy unimportant details of the original data; the autoencoder representa-

tion loses the generalization power.

The variational autoencoder (VAE) partially solves the problem by constrain-

ing the over-rich representation. The VAE model appends the reconstruction

loss with a regularization term that constrains over-rich encoded representation

to be simple, distributed as close to a Gaussian or uniform prior distribution as

possible.

The VAE suffers from variational approximation in its maximum likelihood

estimation. The variational approximation includes two approximations: 1) vari-

ational assumption and 2) neural network approximation. Firstly, VAE uses the

variational assumption. The VAE aims to minimize the KL distance between the

variational distribution and the posterior distribution for each data point. The

VAE usually assumes the variational distribution to be a simple mathematically-

convenient Gaussian. Such an assumption make KL distance never become zero

to cause suboptimal solutions to the maximum likelihood estimator. Secondly,

under the variational assumption, the VAE uses neural network approximation.

Encoder infers a mean and variance that minimizes KL distance. Such a huge

search space (of Gaussian functions for every single data point) makes the neural

network approximate, but never precisely reach, the exact analytic solutions (of
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KL minimization for most data points in practice). The neural network sacrifices

the accuracy (to solve the KL optimization problem for each single data point)

to boost the efficiency (to approximate the KL optimization problem for many

data points simultaneously).

The VQVAE constrains the VAE to encode tons of continuous feature vectors

into a limited number of continuous features. Such quantization decreases the

complexity of the original input signal for downstream tasks. It also decreases

the bit rate. However, error rate and bit rate tradeoff might occur that the quan-

tization might remove important properties of the original signal. The VQCPC

uses CPC discriminative training on top of VQVAE.

Both VQVAE and VQCPC are based on VAE that suffers from over-rich

hidden representation and variational approximation. Compared with VAE ap-

proximation of such VAE-based methods as VQVAE and VQCPC that rarely

converges to the ideal maximum likelihood estimator. The DPGMM trained

with MCMC sampling has no approximation and is guaranteed to converge ac-

cording to detailed balance condition of Markov chain theory. The DPGMM can

be quite powerful on the Gaussian-distributed speech features.

Our proposed DPGMM-RNN model improves DPGMM. The VQCPC model

improves VQVAE. We will compare the DPGMM-RNN model and VQCPC model

by low-resource ASR task.

The DPGMM model is a graphical model with a few parameters, each has its

causal meaning. In contrast, the VQVAE based model uses neural networks with

many parameters. The meaning of these model parameters and the interpretabil-

ity of the model features are still left as important open research problems in the

study of unsupervised phoneme discovery.

Compared to the unsupervised VQVAE based model, our proposed DPGMM-

RNN hybrid model combines the unsupervised DPGMM module with a super-

vised RNN module. Recently, the supervised transformer model has a great suc-

cess in NLP in learning distant linguistic relations. The success in NLP suggests

that, in speech processing, the transformer can explore the underlying linguistic

structure. Further linguistic and semantic analysis of DPGMM hybrid models

with supervised transformer and RNN modules would be challenging but mean-

ingful, which is an open problem to the study of unsupervised phoneme discovery.
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Compared to the simple and general model assumption of DPGMM, the

DPGMM extension as a more complex graphical model can be effective only

if the causal assumption of speech data is right. Such extension is difficult due to

the complexity of speech data from the real world and the naive linguistic knowl-

edge of humans. But once successful, it rewards us with meaningful parameters

to increase our knowledge.

1.1.4 Limitation

The independent development of methods for unsupervised and supervised learn-

ing induces the different treatments to the unsupervised phoneme discovery and

the supervised speech recognition.

However, both Zerospeech and ASR tasks need acoustic modeling to find

patterns that form the perceptual units such as phonemes and words; the only

difference is at different supervised levels. So it is reasonable to regard the Ze-

rospeech task as the unsupervised ASR to find the units without text information.

In this thesis, we will explore the methods for universal acoustic modeling to ASR

at different supervised levels, including unsupervised phoneme discovery and au-

tomatic speech recognition.

1.2. Thesis Contribution

This thesis has the following contribution.

� We combined DPGMM and neural network (to construct DPGMM-RNN

hybrid model) to improve unsupervised phoneme discovery.

� We used DPGMM and DPGMM-RNN hybrid model as universal methods

to improve acoustic modeling of ASR at different supervised levels — in-

cluding unsupervised phoneme discovery, low-resource ASR, and LVCSR

(with a comparison with bottleneck features from Kaldi).

� We proposed a new direction of tackling unsupervised phoneme discovery

in an alternative perception-driven approach besides the data-driven ap-

proach.
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� We analyzed the relation between DPGMM based features and infant au-

ditory perception. We used DPGMM based features as perceptual features

that can model infant speech learning experiences to improve ASR perfor-

mance of MFCC features as the sensational features that fail to model the

influence from past experiences.

1.3. Thesis Outline

The thesis is arranged as follows.

� The second chapter introduces the DPGMM clustering algorithm and the

proposed DPGMM-RNN hybrid model; it also introduces the proposed per-

ceptual feature extraction from these models for ASR.

� The third chapter introduces the first proposal of the DPGMM-RNN hybrid

model to improve unsupervised phoneme discovery.

� The fourth chapter introduces the second proposal of DPGMM and DPGMM-

RNN perceptual features to improve the low-resource ASR and LVCSR.

� The final chapter concludes that the two proposals provide universal meth-

ods to improve acoustic modeling at the feature level to ASR at different

supervised levels.
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Chapter 2

DPGMM Based Methods

2.1. Basic DPGMM Clustering Algorithm

2.1.1 Definition of DGPMM as a Generative Model

We can view each frame of a speech feature as one sample generated by a Gaussian

Mixture Model (GMM) for the following reasons. Theoretically, a GMM has

the power to model any distribution, especially spherical or elliptical ones with

multiple local modes; practically, the GMM is suitable to fit the spectrum feature,

as done in a HMM-GMM hybrid system [41] for speech recognition.

More specifically, if our data have a sequence of speech featuresX = X1, . . . , Xn,

then each speech feature Xi has a distribution of K Gaussians mixed with weight

π1, . . . , πK :

p(xi) =
K∑
k=1

πkp(xi|µk,Σk) . (2.1)

When clustering, we can generate each speech feature Xi in an equivalent way

to Eq. (2.1). Sample one hidden Gaussian cluster Zi and feature Xi from that

Gaussian:

p(xi) =
K∑
k=1

p(Zi = k)p(xi|Zi = k), (2.2)

where p(Zi = k) = πk and p(xi|Zi = k) = p(xi|µk,Σk).

The Dirichlet Process Gaussian Mixture Model (DPGMM) is a nonparametric

Bayesian [42] version of GMM. The number of clusters K is learned from data
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X nonparametrically (the number of parameters can grow with the data size);

in the Bayesian world, our parameters are no longer unknown constants, but

random variables with certain distributions. Now we generate the parameters

(the weight, the mean, and the variance for each Gaussian) from their prior

distributions.

Generate weight

We generate weights π1, . . . , πk, . . . by the stick-breaking process [43]. Imag-

ine a stick with length 1. We break off the stick with lengths 0.5 and 0.5

remain, and then we break off the remainder with lengths 0.25 and 0.25 re-

main, and we can break off more pieces in this manner forever whose lengths are

0.5, 0.25, 0.125, 0.0625, . . .. Finally, we get an infinite sequence of numbers that

represents the mixture weights of Gaussians (π1, π2, π3, . . . = 0.5, 0.25, 0.125, · · · ).
If every time we randomly break the previous remainder (length: rk−1) into a

k-th piece (length: Vk · rk−1) and the next remainder (length: (1−Vk) · rk−1) with

random proportion Vk ∼ Beta(1, α), then we get an infinite sequence of random

variables known as the stick-breaking process. We generate weight π1, ..., πk, ...

by the stick-breaking process (Algorithm 1).

Algorithm 1 Stick-breaking Process for Generating Weights

Draw V1, V2, · · · ∼ Beta(1, α)

Let π1 = V1

Let r1 = 1− V1
for k = 2, 3, . . . do

Let πk = Vk · rk−1
Let rk = (1− Vk) · rk−1

end for

When applying the DPGMM clustering for unsupervised phoneme discovery,

parameters α are set according to our prior knowledge before we see the data:

� If we only believe a few phonemes are extremely frequently used in the

speech, we should set parameter α to small (according to Algorithm 1. If α

is small, then V tends to be large; so after several breaks of the stick with
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very long pieces, the remainder will be very small for creating new Gaussian

clusters.

Generate mean and variance

We generate mean and variance (µ1,Σ1), . . . , (µk,Σk), . . . by sampling from the

normal-inverse-Wishart distributionNIW(µ0, λ,Σ0, ν) [44] with the density func-

tion:

p(µ,Σ) = p(Σ) · p(µ|Σ)

=W−1(Σ|Σ0, ν) · N (µ|µ0,
1

λ
Σ) ,

(2.3)

where µ0 and Σ0 are the prior beliefs of the mean and the variance and λ and ν

are our strengths of the beliefs of the mean and the variance. W−1 is the inverse

Wishart distribution. By its definition, we immediately get the expectation of

the variance (of inverse-Wishart distribution) and the variance of the mean (of

normal-inverse-Wishart distribution):

E(Σ) =
1

ν − d− 1
Σ0 , (2.4)

Var(µ|Σ) =
1

λ
Σ , (2.5)

where d is the dimension of the feature (ν > d+ 1).

When applying DPGMM clustering to unsupervised phoneme discovery, the

parameters (µ0, λ,Σ0, ν) are set by our prior knowledge before we see the data:

� Prior beliefs of the mean (µ0) and variance (Σ0) can be approximated by

the sample mean and variance of speech features from the data or by some

empirical knowledge.

� If we believe the phonemes sound very different from each other, we should

set the belief-strength of mean (λ) to a small value (Eq. (2.5)).

� If we believe each phoneme has high pronunciation variation, we should set

the belief-strength of variance (ν) to a small value (Eq. (2.4)).
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Generate data from parameters

We generated the parameters of the weight, the mean, and the variance for each

Gaussian by sampling from the stick-breaking process (Algorithm 1) and the

normal-inverse-Wishart distribution (equation (2.3)). Now we sample our data

as we do in the GMM model (Eq. (2.2)): sample one hidden Gaussian cluster Zi

according to the weights and sample feature Xi from that Gaussian.

The DPGMM(α,NIW(µ0, λ,Σ0, ν)) can be defined by its data generation pro-

cess or equivalently be represented by a Bayesian network (Fig. 2.1).

Summary: the DPGMM definition as a graphical model

We give a summary of the definition of DPGMM: we treat DPGMM as an infinite

GMM with density p(xi) =
∑∞

k=1 πkp(xi|µk,Σk) (alternatively with an auxiliary

hidden variable, p(xi) =
∑∞

k=1 p(Zi = k)p(xi|Zi = k)). DPGMM is defined as a

graphical model (Fig. 2.1) with the following generative process.

� It generates mixture weights {πk}∞k=1 from a stick-breaking process [43] with

concentration parameter α;

� it generates means and variances {µk,Σk}∞k=1 from normal-inverse-Wishart

(NIW) distribution with a belief of mean µ0, a belief of variance Σ0, a

belief-strength of mean λ, and a belief-strength of variance ν; the NIW

distribution has the parameter β = (µ0, λ,Σ0, ν);

� it generates a hidden variable Zi = k by mixture weights {πk}∞k=1; the hid-

den variable indicates that the i-th data point is generated by k-th Gaussian;

� it generates each data point Xi by the Gaussian with mean µk and variance

Σk indicated by the hidden variable Zi = k.

We summarize this generative procedure for the graphical model of DPGMM and

describe the dependency relations among the random variables of the model in

Fig. 2.1.
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parameters
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Data

Normal-

inverse-Wishart

distribution

Stick-breaking

process

Gaussian mixture model

i = 1, … , n

Dirichlet process

Figure 2.1: The graphical model of Dirichlet Process Gaussian Mixture Model

(DPGMM) generates parameters of weights (π = π1, . . . , πk, . . .), means, and

variances ((µ,Σ) = (µ1,Σ1), . . . , (µk,Σk), . . .) of Gaussians from stick-breaking

process (with concentration parameter α) and normal-inverse-Wishart distribu-

tion (with parameter β = (µ0, λ,Σ0, ν)) respectively; it generates hidden indi-

cator variable Zi = k according to weights; it generates each frame of speech

feature Xi (of data X = X1, . . . , Xn) by one Gaussian with mean µk and

variance Σk indicated by hidden variable Zi = k. The box, with (Zi, Xi)

inside, is all n data points (features) with their indicator hidden variables

((Z1, X1), . . . , (Zi, Xi), . . . , (Zn, Xn)).
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2.1.2 Posterior Inference of DPGMM by Gibbs Sampling

Algorithm 2 Gibbs sampling for DPGMM (Fig. 2.1) given hyperparameters α

and β and observed data x

Randomly initialize cluster indicator z = z1, ..., zn

for Iteration iter = 1, 2, . . . do

Sample π′ ∼ p(π|z, α) by Eq. (2.9),

π1, · · · , πK , π∗K+1|z, α ∼ Dir(n1, n2, · · · , nK , α)

Sample µ′,Σ′ ∼ p(µ,Σ|z, β, x) by Eq. (2.10),

µk,Σk|z, β, x ∼ NIW(µ
(k)
0 , λ(k),Σ

(k)
0 , ν(k))

Sample z′i ∼ p(zi|π′, µ′,Σ′, xi) by Eq. (2.12),

zi|π, µ,Σ, xi ∼ πkp(xi|µk,Σk)/p(xi)

Update z = (z′1, ..., z
′
n).

end for

After the DPGMM sees the data, we can update it by Gibbs sampling [45].

Assume that we already have a set of the hyperparameters of α and β (β =

(µ0, λ,Σ0, ν)) and want to update the hidden indicator variables (Z = Z1, . . . , Zn)

and the parameters of the weights (π = π1, . . . , πk, . . .), the means and the vari-

ances ((µ,Σ) = (µ1,Σ1), . . . , (µk,Σk), . . .) for the Gaussians based on the observed

data (x = x1, . . . , xn).

The Gibbs sampling of DPGMM iteratively samples the hidden variables or

the parameters conditioned on all other variables until it converges. We can sim-

plify the sampling process by conditioning on the ‘surrounding’ variables (the

Markov blankets [46]) instead of ‘all other’ variables, based on the Bayesian net-

work representation (Fig. 2.1) of DPGMM:

p(π|z, µ,Σ, α, β, x) = p(π|z, α) (2.6)

p(µ,Σ|z, π, α, β, x) = p(µ,Σ|z, β, x) (2.7)

p(zi|π, µ,Σ, α, β, xi) = p(zi|π, µ,Σ, xi). (2.8)

More specifically, the Gibbs sampling of DPGMM, similar to the EM algorithm,

iterates over two steps until it converges.
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Fix the hidden variables Z=z, estimate the parameters

First, we update the weights by sampling from a Dirichlet distribution:

π1, · · · , πK , π∗K+1|z, α ∼ Dir(n1, n2, · · · , nK , α) , (2.9)

where K is the number of the clusters of the currently observed data, π∗K+1 =∑∞
k=K+1 πk is the sum of the weights for the future possible clusters, and nk =∑n
i=1 δ(zi = k) is the number of data points in cluster k, which is counted by

given hidden indicator variables z = z1, . . . , zn.

As shown in Eq. (2.9),

� the more data (nk) we see in Gaussian cluster k, the more weight πk we

assign to that cluster (because of expectation E(πk) = nk

α+
∑K

k nk
);

� we always leave some chance of creating new clusters for future observed

data by α; the smaller α is, the less the tendency to create a new cluster

(because of expectation E(π∗K+1) = α

α+
∑K

k nk
).

Second, we update the mean and the variance for each Gaussian cluster k by

sampling a normal-inverse-Wishart distribution after seeing data x:

µk,Σk|z, β, x ∼ NIW(µ
(k)
0 , λ(k),Σ

(k)
0 , ν(k)) , (2.10)

where

µ
(k)
0 =

λ

λ+ nk
· µ0 +

nk
λ+ nk

· x̄k

λ(k) = λ+ nk

ν(k) = ν + nk

Σ
(k)
0 = Σ0 + Sk +

λnk
λ+ nk

(x̄k − µ0)(x̄k − µ0)
T

with

x̄k =
1

nk

n∑
i=1,zi=k

xi; Sk =
n∑

i=1,zi=k

(xi − x̄k)(xi − x̄k)T .

(2.11)

As shown in Eqs. (2.10), (2.16), if we have more data points nk in Gaussian

cluster k,
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� the cluster becomes more stable during sampling, the sampled centers (µk)

become closer to each other, the sampled variances (Σk) become smaller

(see Eqs. (2.4), (2.5) when belief-strengths (λ(k), ν(k)) become larger);

� our posterior belief of the mean (µ
(k)
0 ) of cluster k is closer to the sample

mean (x̄k) of the cluster. The posterior belief of the variance (Σ
(k)
0 ) will

be the summation of the prior belief of the variance (Σ0), the sample vari-

ance (Sk) of the cluster, the deviation (between the data center (x̄k), and

the prior center (µ0)).

Fix the parameters and infer the hidden variables

We update the hidden variables by sampling the posterior distribution:

p(zi = k|π, µ,Σ, xi) =
πkp(xi|µk,Σk)

p(xi)
∝ πkp(xi|µk,Σk) . (2.12)

After the Gibbs sampling (Algorithm 2) converges, we can infer the cluster

for each speech feature (data point) by the posterior:

z∗i = argmaxk p(zi = k|π, µ,Σ, xi) , (2.13)

where the posterior can be computed by Eq. (2.12).
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2.2. Proposed Extended DPGMM Methods

2.2.1 RNN Structure with Temporal Contextual Enhance-

ments

The RNN structure is an extension of the feedforward neural network structure

emphasizing in modeling temporality. The feedforward neural network is a stack

of linear layers. Each node of a linear layer is a parameter-weighted linear combi-

nation of nodes from the previous layer that passes through an activation function

such as the sigmoid function (Fig. 2.2 (a)):

ht = σ(Wxhxt + bh) , (2.14)

where σ is the sigmoid function, ht is the hidden state, Wxh is the weighted

matrix between the input xt and the hidden state ht, and bh is the bias. The RNN

is an infinite sequence of feedforward neural networks with one at each time step.

These feedforward neural networks share identical parameters at each layer and

accumulate information through time steps by temporal connections in certain

layers (Fig. 2.2 (b)):

ht = σ(Wxhxt +Whhht−1 + bh) , (2.15)

whereWxh is the weighted matrix between the input and the hidden state, Whh

is the weighted matrix between the previous hidden state ht−1 and the current

hidden state ht, and bh is the bias. Alternatively, rather than a sequence of the

parameter-shared feedforward neural networks, the RNN is a single feedforward

neural network with feedback loops at certain layers. The feedback loops of RNN

accumulate temporal information (Fig. 2.2 (b)). The loops also accumulate

the multiplications of gradient matrice backpropagated in RNN training. Such

matrice multiplication of small neural network gradients causes the problem of

the vanish of the gradient. The problem of the vanish of the gradient is relieved
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Figure 2.2: Structure of an RNN. The bottom left subfigure is (a) feedforward

network that is the basic unit of RNN. A feedforward network feeds an activated

weighted linear combination of dimensions of a feature to the next layer. The top

subfigure is (b) RNN that is a sequence of copies of the feedforward networks with

temporal information flowing through hidden units. The bottom right subfigure

is (c) LSTM cell that is the extension of an RNN hidden state. An LSTM cell

includes the input gate that masks out the standard RNN inputs, the forget gate

that masks out the previous cell, the cell that stores a mixture from the input

and the forget gates, and the output gate that masks out the values of the current

hidden states. We emphasize the temporal information flow with red lines that

is the key to the temporal modeling of RNN.

by LSTM by introducing the forget gates (Fig. 2.2 (c)):

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ottanh(ct) ,

(2.16)
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where it is the input gate that masks out the standard RNN inputs, ft is the

forget gate that masks out the previous cell, ct is the cell that stores a mixture

from the input and the forget gates and ot is the output gate that masks out

the values of the current hidden states ht. The RNN, or widely-used LSTM, is

a powerful structure to capture the temporal information of input features. This

idea drives us to use the RNN model to enhance the weak temporal relations

between the DPGMM labels [59].

Now we introduce the DPGMM-RNN hybrid model. The DPGMM-RNN hy-

brid model improves the DPGMM clusters in two steps. First, 1) train an RNN

(with parameters W ) to map (fW ) the input feature x to the given DPGMM label

z. The RNN maximizes the likelihood (equivalently, minimizes the cross-entropy

loss lce). We obtain an RNN-optimized parameter W ∗ through the gradient de-

scent algorithm:

W ∗ = arg max
W

∑
i

p(zi|xi,W ) , (2.17)

equivalently,

W ∗ = arg min
W

∑
i

lce(fW (xi), zi) . (2.18)

2) Second, generate the DPMM-RNN label z∗ by the RNN with an RNN-optimized

parameter.

z∗i = fW ∗(xi) . (2.19)
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2.2.2 DPGMM-RNN Hybrid Model—Combine DPGMM

and RNN

We generally construct the DPGMM-RNN hybrid model using RNN to refine

the DPGMM clusters. We apply the hybrid model to the unsupervised phoneme

discovery, which uses RNN to relieve the fragmentation problem of the DPGMM

clusters in three steps (Fig. 2.3):

Speech 

waveform

Acoustic 

features

DPGMM 

clusters

DPGMM 
clustering 
(fragmental)

RNN

Current frame

Current 

label

Contextual 

frames

RNN RNN RNN 
training

RNN

 

Current frame

Current 

label

Contextual 

frames

RNN RNN

RNN 
generation 
( less frag.)

5 6 1 2 1 1

5 6 1 2 1 1 5 6 1 2 1 1 5 6 1 2 1 1

5 5 1 5 5 1 1 5 5 1 1 1

Figure 2.3: Three steps to construct DPGMM-RNN hybrid model for unsu-

pervised phoneme discovery — DPGMM clustering, DPGMM training, and

DPGMM reconstruction — using RNN to relieve segmentation problem of

DPGMM clusters. The RNN target can be DPGMM cluster label for unsuper-

vised phoneme discovery, or DPGMM posterior vector for unsupervised feature

extraction.
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� DPGMM clustering: after extracting the features from the raw audio,

we apply the DPGMM clustering algorithm to get a cluster label for each

feature frame. Many DPGMM segments (successive frames with identical

cluster labels) are fragmental, which are much shorter (one or few frames)

than phonemes in human language (Fig. 3.1). We use RNN to relieve this

fragmentation problem.

� RNN training: we train the RNN model by mapping from a feature

segment to the DPGMM cluster label (or the DPGMM posterior vector) of

the last frame of that segment. RNN uses a shared memory to remember

the tendency that momentarily produced the DPGMM cluster label (or the

posterior vector) from the nearest acoustic segment.

� RNN reconstruction: we use RNN to get the posterior vector frame-

wisely by inputting the speech segment. The dimension of the maximum

probability in the posterior vector is chosen as the output cluster label.

The RNN reconstruction of cluster labels helps relieve the fragmentation

problem (Fig. 3.3). For example, DPGMM fragmental structure “a a b a

a” in several successive frames is usually revised by RNN to “a a a a a.”

The RNN target can be cluster labels or posterior vectors. We usually use

clusters as the target if the goal is to find discrete segments for unsupervised

phoneme discovery. We use posteriorgrams as the target in this paper because

the goal is to find continuous features.

We explore three types of context windows: the forward window, the backward

window, and the bidirectional window. For example, when using eight frames of

acoustic features as RNN input context, the forward window takes a current frame

along with eight past frames, the bidirectional window takes a current frame along

with four past frames and four future frames, and the backward window takes a

current frame and eight future frames.
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2.2.3 DPGMM Based Features—Apply DPGMM Meth-

ods to ASR

We propose to extend the MFCC features with DPGMM posteriorgrams or

DPGMM-RNN posteriorgrams by concatenation (Fig. 2.4) to improve ASR, where

� the MFCC features represent acoustic features,

� the DPGMM generates DPGMM posteriorgrams after adaptation of DPGMM

parameters with MFCC features,

Feature
extraction

Input
speech

MFCC

DPGMM
clustering

DPGMM
posteriorgram ASR

Feature
extraction

Input
speech

MFCC
ASR

Our proposed
        ASR

Traditional
ASR

Feature
extraction

Input
speech

MFCC

DPGMM
clustering

RNN
posteriorgram ASR

Our proposed
       ASR

RNN

Figure 2.4: Proposed feature extension by concatenating an MFCC feature with

a DPGMM posteriorgram (from the DPGMM clustering algorithm) or with an

RNN posteriorgram (from the DPGMM-RNN hybrid model) in feature extrac-

tion for ASR. A posteriorgram is a vector whose k-th dimension represents the

probability that an observed frame belongs to the k-th cluster.
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� the DPGMM-RNN hybrid model generates DPGMM-RNN posteriorgrams

(or RNN posteriorgrams for short) after adaptation of the RNN parameters

to connect the MFCC chunk with the DPGMM cluster or posteriorgram,

� and the posteriorgram is a posterior probability vector whose k-th dimen-

sion represents the probability that the observed data belong to the k-th

cluster.

We integrated the proposed feature extension (with a DPGMM posteriorgram

or an RNN posteriorgram) into the feature extraction to improve the ASR system

(Fig. 2.4).

2.3. DPGMM Based Methods to Unsupervised

Phoneme Discovery and Low-resource ASR

The ASR seeks a sequence of linguistic units such as phonemes and words for each

speech utterance. The state-of-art ASR system needs deep learning technology

that requires a huge amount of speech and annotation resources. The ASR tech-

nology becomes mature in such rich-resource languages as European languages.

Researchers attempted to develop new speech technology for the low-resource

languages such as African languages with less speech recording and, more im-

portantly, fewer linguistic annotations of the speech recordings. Such a task is

meaningful but challenges the traditional deep learning technologies supervised

by a huge amount of annotations.

One related task to the low-resource ASR is unsupervised phoneme discovery

that attempts the find the linguistic units from an audio signal without annotation

or knowledge of linguistic data. We evaluate rich-resource or low-resource ASRs

by the character error rate (CER) or the word error rate (WER). The evaluation

for the unsupervised phoneme discovery is more challenging. Several Zerospeech

challenges [3, 29, 30] use the ABX error rates and the bitrates as evaluations.

The ABX error rates [47] measure the discriminability of the representations in

discriminate phonemes. Bitrates [3] in Zerospeech challenges are defined with

two steps: treat each feature frame symbolically as a character. The test set of

all utterances becomes a long sequence of characters, from whose frequency they
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compute the character entropy. The bitrate of the test set is defined as the total

entropy — the entropy-per-character multiplied by the number of characters —

divided by the total duration of speech of the whole test set. Ideal representations

of speech should have low ABX error rates and bitrates similar to a textual

language with a low bitrate. We will examine our proposed DPGMM based

unsupervised features on the tasks of unsupervised phoneme discovery and low-

resource ASR.

< ��� > ��−1

�1 ��−1 �� ��

�1 ��−1 �� < ��� >

... ...

�1 �� ��

ℎ1 ℎ� ℎ�... ...

��

���

��−2 ��−1

Figure 2.5: Structure of an attentional encoder-decoder ASR.

Now we describe the attentional encoder-decoder ASR model used in our

experiments (Fig. 2.5). The ASR is trained with the maximum likelihood esti-

mation. The joint probability of the likelihood is decomposed into conditional

probabilities (guesses) formulated as follows. Assume that the ASR hears an

utterance x = (x1, . . . , xj, . . . , xT ) and attempts to guess one word (or one char-

acter) after another until it detects the termination signal (of symbol <eos>).

The ASR guesses the current word yi according to the current state si, the most

recently guessed word yi−1 and the acoustic context ci

p(yi|y1, . . . , yi−1, x) = f(si, yi−1, ci) , (2.20)
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where the current state si is inferred from the past state si−1, the past word yi−1,

and the acoustic context ci,

si = g(si−1, yi−1, ci) , (2.21)

the acoustic context ci is summarized by ASR’s attention a = (ai1 . . . , aij, . . . , aiT )

distributed on the RNN-encoded states h = (h1 . . . , hj, . . . , hT ) of the utterance,

ci =
T∑
j=1

aijhj , (2.22)

and the attention aij is normalized as weights whose summation is one. The

attention a′ij (before normalization) of the current ith guess on the jth frame

depends on how similar this frame hj to the past state si−1. Such similarity

is measured by inner production similarity a′ij =< si−i, hj > or neural network

similarity a′ij = V T tanhW [si−i, hj], where the neural network has two layers with

parameters V and W that maps the concatenated vector to a scalar similarity

a′ij. The whole model of encoder-decoder attentional ASR decodes (guesses) one

word after another by attending to different parts of an utterance for each word.
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Chapter 3

DPGMM-RNN Hybrid Model

for Unsupervised Phoneme

Discovery

3.1. Motivation: A Perception Driven Approach

Deep neural network technology has recently achieved great success by learning

from a large amount of human annotated data. Although annotating such lin-

guistic units as words and phonemes is essential for applying deep learning to the

spoken language processing, it is expensive, time consuming, and requires expert

knowledge of specific languages. One solution is to directly identify phoneme-like

units from speech by machine learning (unsupervised phoneme discovery) instead

of human annotation.

As we mentioned earlier in the Section 1.1.3, unsupervised phoneme discovery

[38, 48] or similar tasks [49, 50, 51] have been explored by different experiment

settings with different measurements. Recently the Zerospeech Challenge [29]

was organized to compare the performance of these methods. Typical methods

include neural network technology, such as representation learning by autoen-

coder [32, 33, 34] or discriminative training by ABnet [35], traditional clustering

such as GMM [36] or k-means [37, 36], and nonparametric clustering such as the

Dirichlet Process Gaussian Mixture Model (DPGMM) trained by Gibbs sampling

[38], or variational inference [39, 40]. Among them, DPGMM, which is acoustic
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clustering, achieved the top performance at Zerospeech 2015 and 2017 [52, 53].

An acoustic driven approach (e.g., DPGMM clustering) identifies different

acoustic patterns and treats them as different linguistic units such as phonemes.

It sometimes discovers acoustic segments that do not agree with phonemes. For

example, in Japanese, /r/ and /l/ are acoustically different without distinguishing

the meaning of the utterances, and thus they are treated as the same phoneme.

Sometimes abrupt or local changes, such as a sudden burst of air that is released

at the stop of /p/, create several acoustic segments inside one phoneme.

To tackle the problems of the acoustic driven approach, we propose an alter-

native perception driven approach and introduce the concept of the perception

bias of phonemes (against acoustic speech) and a method to deal with it.

3.1.1 Bias of Phoneme Perception

Identifying phonemes from natural speech is challenging. Early studies on the

high correlation between sound spectra and isolated phonemes provided encour-

agement that the problem could be solved. For example, we can identify vowels

by formant values or stops by silent periods, which are verified by the speech

synthesis practice [54, 55]. However, seeking phonemes from the spectrum in

spontaneous speech flow is frustrating. While we are listening to some phonemes,

features, or breaks at certain moments, we cannot find enough evidence about

them from the spectrum [56]. The spectrum faithfully reacts to energy of different

frequencies at a certain moment; it doesn’t react to the sound history or subse-

quent sounds. However, our phoneme perception is biased. Instead of merely

momentarily decoding the speech, our perception is influenced by the expecta-

tion of what will come next or our speaking and hearing experience. The lack

of correspondence between speech perception and sound stream forms a central

challenge in phoneme discovery from spontaneous speech [57].

The human perception of phonemes is biased against speech sounds. For

example, when a virtually identical burst happens before /i/, /a/, or /u/, we

tend to hear /pi/, /ka/, or /pu/ [56] because we hear them while referencing

how we say them [57]. Since the lips are close together when we generate /i/

and /u/, this bilabial articulation may interpret the burst as /p/; when the

tongue is relatively low and back when we generate /a/, dorso-velar articulation
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may interpret the burst as /k/. Visual context can also bias our perception

[58]. When hearing a recording /ba/ while watching a video of a face saying

/ga/, the listeners report that they hear /da/. The compromise between visual

and auditory information indicates that with accurate visual information, we can

probably correct the phonemes.

Human perception has an “auto filling” ability for perceiving phonemes in

sound streams [59]. Even when a phoneme (with its transition cues) is replaced

by noise, people report they hear it and don’t notice any noise or its location.

Our lexicon knowledge influences our perception of phonemes. By adding an

identical, intermediate sound between /d/ and /t/ in front of “ask” and “ash,”

Ganong found that people reported hearing “task” rather than “dask” and “dash”

rather than “tash” [60]. Sometimes our perception relies less on lexical knowledge

and more on the probability of sequences of phonemes (e.g., compensation for co-

articulation varies with phonotactic probability [61]). A person’s speaking and

listening experiences, including the segment probabilities or sequences as well as

how he says or hears these segments to achieve economical communication, also

implicitly bias his perception.

Phoneme perception categorizes acoustic sounds [57], which shows another

fundamental perceptual bias. If we create linearly changed acoustic stimuli be-

tween two phonemes, such as /t/ and /d/, our perception nonlinearly jumps from

one category to another because we cannot identify different acoustic realizations

inside one phoneme category.

The above studies show that our phoneme perception is biased. Perception

bias becomes a big problem in unsupervised phoneme discovery (Zero Resource

Speech Challenge [3], as we introduced at the beginning of our paper), which asks

machines to learn phonemes from acoustic speech in an unsupervised way [38, 3].

A machine learning algorithm discovers objective acoustic segments from speech,

while humans annotate subjective perceptual phonemes as underground truth

with perception bias.
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For example, in Fig. 3.1, the clustering algorithm treats the same phoneme

/æ/ in ‘example’ and ‘and’ as different acoustic segments because their acous-

tical spectra are quite different; it treats the same phoneme /f/ in ‘for,’ ‘farm,’

and ‘fields’ as different acoustic segments by faithfully recording the acoustic

fragmental realizations inside the phoneme category.

In the following sections, this paper proposes one method to tackle the dis-

agreement between phonemes and acoustic signals caused by the perceptual bias

for unsupervised phoneme discovery.

3.1.2 DPGMM-RNN Model and Phoneme Categorization

Machines can directly get discrete segments by applying such clustering algo-

rithms as K-means [37, 36], GMM [36], or DPGMM clustering [39, 38, 40] from

the acoustic features. The DPGMM algorithm [62] retained the state-of-the-art

approach in the Zerospeech 2015 and 2017 [52, 53].

However, framewisely clustering acoustic features to get segments suffers from

the intra-phoneme fragmentation problem (Fig. 3.1). First, these traditional

clustering algorithms cannot fully capture the temporal information of speech

features. As long as the spatial distribution of these acoustic features in high-

dimensional space does not change, such clustering algorithms as K-means or

GMM always get similar results because they ignore the time order of these fea-

tures. The DPGMM algorithm introduces the Dirichlet Process (DP) to help

dynamically create new clusters at every moment based on the frequency of the

clusters of all the previous frames without considering their order [63]. Theo-

retically, DP is infinitely exchangeable; joint distribution doesn’t depend on the

order of data if they are infinite [64]. We believe DPGMM involves weak tem-

poral contextual modeling for finite sequential data clustering. Second, in actual

unsupervised phoneme discovery practices, after carefully tuning the parameters

(e.g., DPGMM’s concentration parameter, which is closely related to the number

of clusters), such optimal performances (in discriminating phonemes in different

languages) always create more clusters than the number of phonemes in normal

human languages [1, 53]. Third, the DPGMM algorithm creates small clusters

inside one phoneme—the fragmentation problem—with such a complex acous-

tic structure as a fricative with high-frequency components or a vowel with a
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sharp format change [1]. The DPGMM algorithm tries to get higher resolution

by struggling to discriminate among acoustically complex phonemes, which also

tends to increase the number of clusters overall.

Human perception of speech is categorical [65]. We don’t hear intra-phoneme

fragmental details when discriminating complex phonemes [59, 65]. For general

sounds, for example, people can discriminate about 2000 different pitches, but

they can only identify about seven absolute ones [57]. For speech sounds, how-

ever, similar discriminability and identifiability of phonemes make people fail to

discriminate the acoustic variations inside each phoneme category [65]. If we be-

lieve one phoneme type is a set of segments, then our biased perception cannot

distinguish within the set, including the unstable fragmental acoustic realizations,

created from the clustering algorithm, of these segments.

In this paper, we propose the DPGMM-RNN hybrid model, which uses RNN

to relieve the DPGMM intra-phoneme fragmentation problem. Assume that hu-

man perception is hierarchical at low-level perception. At the first run, very low-

level, bottom-up unbiased clustering can get fragmental details with sufficient

discriminability of the segments from the raw stimuli of speech by air vibration.

At the second run, the ear uses a primitive top-down acoustical contextual re-

finement and pays little attention to the variations inside one phoneme. Such

perceptual refinement can be achieved by RNN mapping (Fig. 2.3). We train

RNN intensively by remembering the phoneme (DPGMM clusters) at every mo-

ment of speech by listening to a chunk of sound that includes that moment.

Listening by chunks helps integrate long acoustical contexts as a whole instead of

concentrating on random short-time fragmental changes over a few frames. After

RNN remembers different chunk realizations for each phoneme, it has the ability

to identify the sounds. We show that RNN refinement relieves the fragmentation

problem inside phoneme categories.

Moreover, facing the weak contextual modeling of DPGMM, whose joint likeli-

hood does not depend on the order of the observed data when they are infinite [64]

and mainly captures acoustic information at the frame level, RNN refinement with

chunks of successive frames instead of single frames of speech can rediscover such

temporal structures as formant transitions, which cross several frames and are

important acoustic cues to perceptually discriminate phonemes in spontaneous
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speech [57].

In human perception, top-down contextual constraints, not only acoustical

or phonemic ones but also linguistic and lexical ones help correct or remove the

segments that are wrongly discovered to make them closer to phoneme units [60].

In previous research [66, 67, 68] on infant phoneme acquisition, the words and

phonemes are assumed to be acquired at the same period and jointly optimize

each other, supported by phoneme-lexicon joint discovery by adaptor grammar

framework [69] and hierarchical nonparametric Bayesian model [70]. Language

model of discovered segments was trained to optimize phoneme discovery [71].

In our proposed DPGMM-RNN hybrid model, RNN remembers the statistical

structure, reflecting on such contextual constraints at the phonetic and lexicon

levels, of audio segments from DPGMM clusters. For example, if the DPGMM

clustering algorithm confuses ‘bite’ with ‘kite’ inside an utterance that contains

the sound ‘dog,’ RNN can correct such mistakes because sounds ‘dog’ and ‘bite’

are semantically correlated. RNN remembers their co-occurrence.

We propose the DPGMM-RNN hybrid model for decoding segments from

speech signals. The DPGMM algorithm finds fragmental segments, while RNN

fixes the fragmentation problem. From the view of using machine learning to

track the bias of human perception, our DPGMM-RNN hybrid model achieves

better phoneme categorization by solving the fragmentation problem.

We propose to use conditional perplexity (of clusters conditioned on phoneme)

to measure the fragmental level of the discovered segments. We use the conid-

tional entropy to evaluate our proposals, which is the average number of clusters

per phoneme; we also use the ABX discriminability score [31] to evaluate our

proposals, which is the cluster represenation’s ability in discriminating among

phonemes.

3.2. Experiments

3.2.1 Evaluation Metric

We evaluated our generated segments with conditional entropy-based measure-

ments (conditional perplexity, homogeneity, completeness, and v-measure) and
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psychology-based measurements (ABX discriminability score and ABX error rate).

We proposed the DPGMM-RNN hybrid model to relieve the fragmentation

problem of DPGMM clusters. To measure the fragmental level of the generated

representation, we computed the average number of cluster types correspond-

ing to one phoneme type, conditional perplexity, with the exponential of the

conditional entropy of cluster C conditioned on phoneme truth T with base 2:

ppl(C|T ) = 2H(C|T ) , (3.1)

H(C|T ) =
∑
t

p(t)H(C|T = t)

= −
∑
t

p(t)
∑
c

p(c|t) · logp(c|t)

= −
∑
t

nt
n

∑
c

nct
nt
· lognct

nt
,

(3.2)

where n is the number of frames, nt is the number of frames of phoneme truth t,

and nct is the number of frames annotated as phoneme t and clustered as cluster

c.

However, the conditional perplexity is insufficient to describe the matching

degree of the generated clusters and the underground phonemes. For example,

if we generate identical clusters for the whole corpus, which means that no frag-

ments exist. Then conditional perplexity of cluster given phoneme is the lowest,

however, the discovered identical clusters mismatch the different phonemes.

In another word, the conditional perplexity detects an oversegmention prob-

lem that one phoneme has several cluster segments inside, but it ignores the

undersegmention problem that one cluster segment covers several phonemes. Be-

sides the amount of clusters per phoneme class (the conditional perplexity), we

also need the amount of phoneme classes per cluster as an additional measure-

ment.
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Cluster:

Figure 3.2: Relationship between evaluation metrics (homogeneity, completeness,

and v-measure) and mismatching problems (fragmentation, oversegmentation,

and undersegmentation). All metrics range between 0 to 1; higher value means

better matching.

Completeness, homogeneity, and v-measure (Fig. 3.2) are measurements

[72] (similar to accuracy, recall, and F-score) that reflect the matching degree

between generated clusters and underground phonemes using normalized condi-

tional entropy. Completeness c, homogeneity h, and v-measure v (harmonic mean

of h and c) are defined as follows:

c = 1− H(C|T )

H(C)
, (3.3)

h = 1− H(T |C)

H(T )
, (3.4)

v =
c · h
c+ h

. (3.5)

We compute the entropy and the conditional entropy by the relative frequency,

similar to Eq. (3.2) of the framewise samples from generated cluster C and
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phoneme truth T . All three measurements were normalized between 0 to 1 (as

H(T ) ≥ H(T |C)), and the higher value shows better matching between the gen-

erated clusters and the underground phonemes. High completeness shows that

each phoneme type almost ‘completely’ (completeness) corresponds to a unique

generated cluster type; high homogeneity shows that one cluster type should

correspond to the ‘same’ (homogeneity) phoneme truth type.

As shown in Fig. 3.2, low completeness indicates that the cluster represen-

tation is fragmental or oversegmental with respect to the phoneme truth. Low

homogeneity indicates undersegmental. Only high v-measure indicates that the

representation is neither oversegmental (fragmental) nor undersegmental because

the clusters agree with the phonemes.

In addition to the above conditional entropy-based measurements, which are

based on the global frequency, we also evaluate our representation by the dis-

criminability of the local phoneme segments using psychological measurements:

ABX discriminability score (or its reverse: ABX error rate) [31].

In auditory perception experiments, we used the ABX test to measure a sub-

ject’s ability to discriminate between sound categories A and B. The subject hears

sound A, then sound B, and finally a third sound X that is either from category

A or category B. Here we assume X belongs to category A. If the perception dis-

tance between A and X is less than that of B and X, then the subject will think

sounds X and A are from the same category, which indicates he can discriminate

between category A and category B.

If we replace the subjective perception distance with the objective distance

of our cluster representation (e.g., the cosine distance between the one-hot rep-

resentation of the clusters), then the ABX test can measure the ability of the

clusters to discriminate among different sound segments: ABX discriminabil-

ity score. For example, given triphone a-p-a as A, another triphone a-b-a as B,

and a third triphone a-p-a as X, based on a cluster presentation of triphones, if

the distance between A and X is smaller than that between B and X, then the

ABX discriminability score of the triplet (A, B, X) is +1, and otherwise the ABX

discriminability score is -1.

In theory, we can also define the discriminability score between the triphone

category pair (c1, c2) [47] by taking samples A and X from c1 and sample B from
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c2 and define score s and its point estimator as follows:

s(c1, c2) = p(d(A,X) < d(B,X)|A,X ∈ c1, B ∈ c2)

+
1

2
p(d(A,X) = d(B,X)|A,X ∈ c1, B ∈ c2)

=
1

m(m− 1)n

∑
a∈c1

∑
x∈(c1−{a})

∑
b∈c2

(δd(a,x)<d(b,x) +
1

2
δd(a,x)=d(b,x)) ,

(3.6)

where δc is the indicator function (taking value 1 if condition c is true and 0 if

c is false). Coefficient m is the number of triphones of the c1 category, and n

is the number of triphones of the c2 category. Metric d is any distance of the

cluster representation between triphone segments, which are extracted by the

phoneme annotation. We computed three specific distances between the triphone

segments, with possible different number of frames, by Dynamic Time Warping

(DTW) based on a frame-to-frame cosine distance (cos), symmetric Kullback-

Leibler divergence (kl), and edit distance (edit) [47].

We computed the frame-to-frame distances between two frame feature vectors

x = (x1, . . . , xD) and y = (y1, . . . , yD) with identical dimension D according to

the following equations:

dcos(x, y) =
x · y
|x||y|

=

∑D
i=1 xiyi√∑D

i=1 x
2
i

√∑D
i=1 y

2
i

, (3.7)

where dcos(x, y) is the cosine distance between the two features and |x| and |y|
are their magnitudes.

dkl(x, y) =
1

2
KL(x||y) +

1

2
KL(y||x)

=
1

2

D∑
i=1

xilog
xi
yi

+
1

2

D∑
i=1

yilog
yi
xi
,

(3.8)

where dkl(x, y) is the symmetric Kullback-Leibler divergence between the two fea-

tures and KL(x||y) is the Kullback-Leibler divergence. Note that here the feature

x = (x1, . . . , xD) should be a distribution under the constraint that
∑D

i=1 xi = 1;

the feature y also should follow the constraint.
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dedit(x, y) = dD,D(x, y)

di,j(x, y) =



max(i, j) if min(i, j) = 0,

min


di−1,j(x, y) + 1

di,j−1(x, y) + 1

di−1,j−1(x, y) + δxi 6=yj

otherwise,

(3.9)

where dedit(x, y) is the edit distance between strings x1x2...xD and y1y2...yD, no-

tation di,j(x, y) is the edit distance between x1x2...xi and y1y2...yj, and δc is an

indicator function (taking value 1 if condition c is true and 0 if c is false). Note

that we assume the features take a binary value at each dimension.

The ABX error rate [47] is defined as one minus the average of the discrim-

inability scores of all the category pairs with corresponding triplets A, B and X.

If (A, B, X) comes from the same speaker, we call it the ABX error rate within

speakers. If (A, X) and (B, X) come from different speakers, then we call it the

ABX error rate across speakers.

3.2.2 Dataset and Experiment Setup

Dataset

We analyzed the DPGMM-RNN hybrid model with the test set of the TIMIT

corpus [2], which contains 0.81 hours read speech with 1344 English utterances.

We compared the DPGMM-RNN hybrid model with the methods that achieved

the top results in Zerospeech 2019 [3] with English read speech: 5941 training

utterances spoken by 100 speakers (about 15 hours and 40 minutes) and 455 test

utterances spoken by 24 speakers (about 28 minutes).

Experiment setup

We used 39-dimensional MFCC+∆+∆∆ acoustic features (25-ms frame size and

10-ms frame shift) with mean and variance normalization and vocal tract length

normalization.

We obtained clusters with the DPGMM algorithm using the same parameter

setting as previous works [53, 73] with a toolkit [62]. We set the concentration
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parameter to 1 and the mean and variance of the prior to the global mean and

the global variance of the MFCC features with belief-strengths 1 and 42. We got

cluster labels after 1500 sampling iterations.

Our DPGMM-RNN hybrid model uses clusters from the DPGMM algorithm

as targets. We used an RNN that contains 3 layers of LSTM with input layer

and hidden layer sizes of 39 and 512, and output layer size matching the number

of DPGMM clusters. The training of RNN uses 20 epochs with a batch size of

256.

We trained RNN from discrete DPGMM cluster labels with cross entropy loss,

denoted as “RNNLabel;” we also trained RNN from continuous DPGMM poste-

riorgrams with MSE loss, denoted as “RNNPost.” We experimented with RNN

with different contexts. First, we explored the length of the context with “RNNn”

that denotes the DPGMM-RNN hybrid model with an RNN trained with n past

contextual frames with cross entropy loss. Second, we explored the directions of

the context: “RNN forward,” “RNN backward,” and “RNN bidirectional.” For

example, when using the eight frames of acoustic features as RNN input con-

text, “RNN forward” takes a current frame along with the eight past frames,

“RNN bidirectional” takes a current frame along with four past frames and four

future frames, and “RNN backward” takes a current frame and the eight future

frames.

We got the conditional entropy-based measurements (conditional perplexity,

completeness, homogeneity, and v-measure) by python and Scikit-learn [74]. We

computed the ABX discriminability scores and the ABX error rates with a toolkit

provided by Zerospeech 2015 and compared the DPGMM methods with other

methods proposed in Zerospeech 2019 with its official evaluation program.

3.3. Results
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3.3.1 DPGMM-RNN Hybrid Model and Fragmentation Prob-

lem

We first use two examples to illustrate how the DPGMM-RNN hybrid model

relieved the fragmentation problem and later demonstrate the quantitative met-

rics of the fragmentation level, such as conditional entropy and completeness, in

Sections 3.3.2 and 3.3.3.

Figure 3.3 shows that the DPGMM algorithm generates fragmental segments

inside phonemes, and some fragments disappear after applying RNN reconstruc-

tion (as shown by red circles).

Figure 3.4 shows that the DPGMM-RNN hybrid model decreases tiny frag-

ments using RNN by accepting longer chunks, each of which is composed of the

current frame and its past successive frames, with stronger contextual modeling.

Table 3.1: Mapping from distinctive feature to phonemes. We represent phonemes

as 39 TIMIT phonemic symbols used by the Kaldi recipe [5]. We also included

International Phonetic Alphabet (IPA) of TIMIT phoneme symbols. ‘stop u’

denotes an unvoiced stop; ‘stop v’ denotes a voiced stop; ‘S(Z)’ means S and Z are

represented as identical TIMIT phonemic symbol ‘sh’.

Feature Phoneme IPA

Stop u p t k p t k

Stop v b d g b d g

Affricate u ch tS

Affricate v jh dZ

Fricative u hh f th s h f T s

Fricative v sh v dh z S(Z) v D z

Nasal m n ng m n N

Semivowel w l r y w l r y

Diphthong ay oy aw ey ow aI OI au eI @u

Front iy ih eh ae i: I e æ

Mid er ah aa 3: 2(@) A:

Back uw uh u: u

Closure dx sil (closure) (silence)
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3.3.2 Distinctive Features and Fragmentation Problem

We explored why the fragmentation problem happens, how the sensitivity of the

acoustics of the DPGMM clustering algorithm is associated with distinctive fea-

tures, and how the proposed DPGMM-RNN hybrid model reacts to different

distinctive features. After partitioning the set of phonemes into groups by dis-

tinctive features, we computed the conditional perplexity for each phoneme group

to determine the average number of clusters per phoneme (the fragmental level)

for each distinctive feature. Fig. 3.5a shows the following results.

� The vowels are more fragmental than the consonants; voiced consonants are

more fragmental than unvoiced ones.

� The vowels from front to back became more and more fragmental when

the first and second formants became closer and harder to differentiate

(Fig. 3.5b).

� The fricatives are the most fragmental consonants, which involve high-

frequency components in the speech signals (Fig. 3.5c) and irregularity and

rapid changes of acoustics.

� The DPGMM-RNN hybrid model (RNNn) can relieve the fragmentation

problem of the DPGMM clusters (DPGMM) by decreasing the conditional

perplexity for each distinctive feature.

� We computed the relative decrease ratio of the conditional perplexity be-

tween DPGMM and RNN16. Features that are more fragmental decreased

more, except for affricatives and nasals.

� Even after applying RNN to relieve the fragmental problem, the conditional

perplexity, which is the average number of clusters per phoneme, remained

high for each feature.
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(a) Conditional perplexity of clusters given phoneme classes

(b) Spectrogram of vowels from front to back with weaker discrimination of formants
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(c) Spectrogram of fricatives with high-frequency noisy components

Figure 3.5: Upper subfigure (a): conditional perplexity to show fragmental level

for each distinctive feature Table 3.1); RNNn denotes DPGMM-RNN hybrid

model with n contextual frames. Middle subfigure (b): spectrogram of vowels

from front to back; first and second formants are marked by red bars. Lower

subfigure (c): spectrogram of fricatives. We extended highest frequency from

4000 to 10000 Hz compared to subfigure (a) to see high-frequency components of

fricatives (inside red rectangle).

The DPGMM-RNN hybrid model can relieve the fragmentation problem and

find more acoustic stable phonemes. But the fragmentation problem is far from

being solved. According to the analysis of the conditional entropy, most phonemes

still have more than five DPGMM-RNN clusters corresponding to them. Many

DPGMM-RNN segments are short and can not cover a whole phoneme.

Overall Performance

Figure 3.6 shows that the DPGMM-RNN hybrid models (RNNLabel, RNNPost)

outperformed the DPGMM algorithm (DPGMM) for homogeneity, completeness,

and v measure.
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Since direct RNN learning from the discrete DPGMM label always gets better

results than from the continuous DPGMM posteriorgram, in later experiments,

our hybrid model learned from the label (RNNn or RNNLabel) by default.

Contextual Modeling

As we increase the length of the context of the DPGMM-RNN hybrid model, the

v measure becomes larger (Fig. 3.6), showing better matching of the generated

model clusters and the underground phoneme classes.

The DPGMM-RNN hybrid model utilizes the RNN to rediscover the hidden

statistical structure of the speech under the supervision of the noisy DPGMM

clusters. The hybrid model can correct the DPGMM cluster labels even with 0

contextual frame (RNN0), because the RNN always classifies each acoustic frame

by choosing the most likely DPGMM cluster label with the maximum probability,

such that the RNN correctly relabels some fragmental DPGMM clusters with

extremely low probabilities from Gibbs sampling given the acoustic features.
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Figure 3.6: Homogeneity, completeness, and v measure scores of TIMIT test

set to show matching degree between clusters and phonemes. Dashed line is

DPGMM clustering scores, and solid and dotted lines are DPGMM-RNN hybrid

model scores. RNNLabel learns from discrete DPGMM cluster label with cross

entropy loss; RNNPost learns from the continuous DPGMM posteriorgram with

MSE loss. RNNn denotes DPGMM-RNN hybrid model with n contextual frames.
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3.3.3 Analysis of Cluster Agreement with Phoneme Class

Figure 3.8 shows that the hybrid model gains better v measure by learning

the RNN from both past and future acoustic features (RNN bidirectional) com-

pared to merely learning from the past (RNN forward or RNNn) or the future

(RNN backward). Since the implementation of simpler models needs less effort

and makes it easier for communities to reproduce our results, most DPGMM-

RNN hybrid models of this paper used the simplest strategy: learning mapping

from past acoustic features (RNNn).

Oversegmentation and Undersegmentation

RNN0 (the hybrid model without a contextual frame for RNN) has relatively

low homogeneity and high completeness (Fig. 3.6), which suffers from the possi-

ble undersegmentation problem: the number of cluster types of RNN0 is lower

than the others (Fig. 3.7). RNN4 (hybrid model with four contextual frames for

RNN) has relatively high homogeneity and low completeness (Fig. 3.6), which

suffers from the possible oversegmentation problem: the number of RNN4 cluster

types is higher than the other hybrid models (Fig. 3.7). Both homogeneity and

completeness increase from RNN8 to RNN16.
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Representation Compression

Figure 3.7 shows that the DPGMM-RNN hybrid model (RNNn) generates fewer

cluster types than the DPGMM algorithm (DPGMM) and can compress the

DPGMM clusters by ignoring the unstable ones with low probabilities, which

makes the number of generated clusters nearer to the numbers of phonemes of

the normal human languages.
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Figure 3.7: Number of cluster types from DPGMM clustering (blue bar) and

that from DPGMM-RNN hybrid models with 0, 4, 8, and 16 contextual frames

(orange bars).
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Figure 3.8: v measure of DPGMM-RNN hybrid model with different context

models. For example, when using eight frames of acoustic features as RNN in-

put context, RNN forward takes a current frame along with eight past frames,

RNN bidirectional takes a current frame along with four past frames and four

future frames, and RNN backward takes a current frame and eight future frames.

Performance per Utterance

Besides the above comparisons between the v measures of the whole corpus, we

also did paired t-tests on the v measures of the utterances of the timit test set.

Except for the DPGMM-RNN hybrid model with 0 contextual frames (RNN0),

all the other hybrid models with longer contexts (RNN4, RNN8, and RNN16) sig-

nificantly outperformed the DPGMM algorithm (DPGMM) on v measures with

p-value p ≤ 0.0001.
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Figure 3.9: Boxplots of homogeneity, completeness and v measure of utterances of

the timit test set using DPGMM clustering algorithm and DPGMM-RNN hybrid

model. RNNn is short for the DPGMM-RNN hybrid model with n contextual

frames. We use the paired t-test for measures of all utterances to get the p values

with the significant star **** meaning p ≤ 0.0001 and * meaning p ≤ 0.05.

To show the statistically significant improvement of our methods, we do the

paired t-test on homogeneity, completeness and v measure of utterances of the

timit test set, along with the boxplots representing their distributions (Fig-

ure 3.9). The DPGMM-RNN hybrid model optimizes to solve the fragmenta-

tion problem, because RNN maps in the direction from the acoustic signal, with

hidden information of true phonemes, to the DPGMM clusters, such that intu-

itively each true phoneme segment should become more certain about its cluster

representation. So the completeness, representing the inverse of the fragmenta-

tion level, significantly increases from DPGMM to DPGMM-RNN hybrid model,

and from the DPGMM-RNN hybrid model with 0 contextual frame (RNN0) to

that with 16 contextual frames (RNN16). For homogeneity and v measure, we
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find significant improvement from DPGMM clustering to DPGMM-RNN hybrid

model, but slight improvement in increasing the number of contextual frames.

3.3.4 Analysis of Cluster Discriminability of Phoneme Cat-

egories

As well as the information theory inspired by measures based on the relative

frequency at the global corpus level, we measured the ability of our generated

clusters for discriminating the triphone categories by computing the ABX dis-

criminability scores [29] at the local segmental level.

Figure 3.10 shows that the clusters from our proposed DPGMM-RNN hybrid

model more effectively discriminate the phonemes than those from the DPGMM

algorithm in ABX discriminability scores with three distances across and within

speakers. The performance improvement shows statistical significance with the

paired t-test. The error bar of the 95% confidence interval shows that the hybrid

model achieved fewer errors than the DPGMM algorithm in ABX discriminability

scores.
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Figure 3.10: Average ABX discriminability score within speakers (upper sub-

figure) and across speakers (lower subfigure) on TIMIT test corpus. We com-

pared average ABX discriminability scores of all n triplets (A, B and X) between

DPGMM algorithm (DPGMM) and DPGMM-RNN hybrid model of 16 contex-

tual frames (RNN16) with cosine distance (cos), Kullback-Leibler divergence (kl),

and Levenshtein distance (edit). Significance of paired t-test is indicated by stars:

**** means p ≤ 0.0001, ** means p ≤ 0.01, and * means p ≤ 0.05. Error bar is

95% confidence interval; error is annotated above.

3.3.5 DPGMM-RNN Hybrid Model in Zerospeech 2019

Figure 3.11 shows that the DPGMM-RNN hybrid model is better at discrimi-

nating phonemes (which is the decrease of the ABX error rate across different

distances) and compressing representation (which is the decrease of the bit rate

of the one-hot representation of clusters) compared to the DPGMM algorithm.
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Table 3.2: ABX error rate and bit rate of DPGMM-RNN hybrid models (RNN48

and BiRNN16) and top models from Zerospeech 2019. The provided Zerospeech

baseline uses DPGMM clusters trained by variational inference. VQ-VAE extracts

discrete representation with speaker-adversarial enhancement (VQ-VAE). Adver-

sarial multi-task learning is used on DPGMM clusters obtained from acoustic

features after FHVAE transformation (FHVAE). Our models first get DPGMM

clusters (DPGMM) from which we train the DPGMM-RNN hybrid model using

the unidirectional RNN with 48 contextual frames (RNN48). Contextual model-

ing of the hybrid model is further enhanced using the bidirectional RNN with 16

contextual frames (BiRNN16). Numbers of contextual frames of different hybrid

models are chosen based on their lowest ABX error rates and lowest bit rates on

the Zerospeech dataset.

Method Baseline VQ-VAE FHVAE(a) FHVAE(b) DPGMM RNN48 BiRNN16

ABX cos 35.63 20.25 13.82 22.32 23.52 20.47 20.08

ABX kl 34.74 50 13.72 21.67 23.42 19.79 19.97

ABX edit 35.7 37.31 44.3 26.46 25.94 23.609 22.58

Bitrate 71.98 158.7 1732.81 413 214.69 195.1 188.08

As the number of contextual frames increases, the ABX error rates and the

bit rates gradually decrease. We choose RNN48 (about three or four syllables [75]

as RNN context) as the result of our DPGMM-RNN model for Zerospeech 2019

because the error rate with the cosine distance and KL divergence start increasing

and that with the edit distance is still decreasing.

The Figure 3.11 shows a sharp decrease in the bit rate and the ABX error

rates between the DPGMM clustering algorithm and the DPGMM-RNN hybrid

model. However, within the DPGMM-RNN models, increasing the length of the

contexts slightly decreases the ABX error rate or the bit rate in Zerospeech 2019.

The reason might be explained by its English training set, which only contains

very short utterances, where the mean duration per utterance is 2.063 seconds,

and the three longest utterance durations are 14, 7.99, and 7.82 seconds. When

we increase the length of the context of the DPGMM-RNN hybrid model, we

expect to capture both the acoustic structure of each phoneme and the statistical

structure of a short sequence of several phonemes. This effect of modeling long
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contexts is relatively weak because most of the utterances of the English training

corpus of Zerospeech 2019 are triphones instead of complete sentences of natural

utterances. Longer contextual modeling doesn’t show its full power on the dataset

when all of the utterances are short.

The VQ-VAE [76, 36] and Factorized Hierarchical Variational Auto-encoder

(FHVAE) [77] systems got the top ABX error rate results in Zerospeech 2019

[3]. We compared the system of the DPGMM-RNN hybrid model with these top

systems with official toolkits from Zerospeech 2019 (Table 3.2).

The best Zerospeech 2019 system used VQ-VAE [76] to quantize the MFCC

acoustic features with several centroids. The system also uses a speaker-adversarial

approach [78] to make the final representation speaker independent. Although

our system of the DPGMM-RNN hybrid model (RNN48) got a relatively low

ABX error rate, it had a slightly higher bit rate than the VQ-VAE based system.

Compared with the DPGMM-RNN hybrid model, the VQ-VAE based system

got a much higher ABX error rate with KL divergence because its frame represen-

tation was not normalized to be a distribution. The VQ-VAE model got a higher

ABX error rate with edit distance because that the DPGMM-RNN hybrid model

uses a one-hot vector representation where the maximum edit distance between

two frames is 2; the VQ-VAE based system uses discrete representation whose

maximum edit distance between two frames might be very large.

Another difference between the two models is that the DPGMM-RNN hybrid

model is constrained from accepting Gaussian distributed acoustic features as

inputs, and some neural network embeddings containing rich speech information

with complex distribution may not work for DPGMM clustering. But VQ-VAE

ideally works for any kind of feature.

The second best system first used the FHVAE extracted features to get

DPGMM clusters. Those clusters and speaker ids are trained with adversar-

ial multi-task learning to get a final representation. The system has its primary

representation (FHVAE(b)) and an alternative (FHVAE(a)) [79].

The system FHVAE(a) gets a very low ABX error rate using continuous repre-

sentation and high sampling rate to get more acoustic details, which also increases

the error rate with edit distance and a very high bit rate. To decrease the bit rate

and get discrete representation, the softmax outputs is converted to one-hot rep-
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resentations (FHVAE (b)). The system of our proposed DPGMM-RNN hybrid

model got a lower ABX error rate across three provided distances and a lower bit

rate than the FHVAE (b) system.

The official baseline [39] of Zerospeech 2019 uses compact representation (low

bit rate) but sacrifices the discriminability of phonemes (relatively high ABX

error rate).

We further enhanced the contextual modeling of the DPGMM-RNN hybrid

model using a bidirectional RNN (BiRNN16) as well as the unidirectional RNN

(RNN48). Similar to a hybrid model using a unidirectional RNN, the hybrid

model using a bidirectional RNN achieved lower ABX error rates (with cosine,

KL and edit distances) and a lower bit rate than the DPGMM clustering algo-

rithm. The performance worsened with too many contextual frames because of

the limitation of the RNN’s contextual modeling ability on the English dataset

of Zerospeech 2019 with many short utterances.

The DPGMM-RNN hybrid model using the bidirectional RNN achieved the

best performance in the Zerospeech dataset using 16 contextual frames (BiRNN16

with a current frame along with 8 past frames and 8 future frames), which had

relatively lower ABX error rates and a lower bit rate than the hybrid system

using a unidirectional RNN (RNN48) (Table 3.2).

3.4. Discussion

When we try to identify phonemes from acoustic signals, we directly categorize

these units with the non-linear perception from the complex and detailed acoustic

signals (bottom-up processing). At the same time, we have abundant high-level

knowledge about the statistical structure of phoneme sequences, and this knowl-

edge influences our perception of sound units (top-down processing).

We extracted phoneme-like units using DPGMM clustering on acoustic fea-

tures, which likes bottom-up processing without high-level knowledge top-down

constraints and sometimes concentrates on the local irregularities of the speech,

suffering from the fragmentation problem.

We first question whether the fragmentation problem comes from the clus-

tering difficulty of complex acoustical events because people use highly variated
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gestures to pronounce sounds with various manners, abstracted as distinctive

features.

By exploring the fragmental level of different distinctive features by condi-

tional perplexity (Fig. 3.5), we found that the DPGMM algorithm is worse at

categorizing vowels than consonants because it generates more fragmental frames

inside the phonemes. A similar situation happens in perception experiments

where stably observing the construction of vowel categorization is more difficult

than consonant categorization. For example, our perception jumps from one

category to another when listening to the stimuli from /p/ to /t/ with equal

acoustic changes of the consonants. However, our perception seems more contin-

uous (hearing intra-phonemic variations) than categorical when listening to the

stimuli from /i/, /I/ to /E/ with equal acoustic changes of the vowels [57].

The sensitivity of complex acoustic events causes the DPGMM algorithm to

suffer from the fragmentation problem. Fig. 3.5 also shows that the fragments

of the vowels are associated with the shapes and dynamics of formants. The

fragments of the fricatives are associated with the energy concentrated at high

frequencies, similar to noise.

Humans can perceive these noisy phonemes with the knowledge of language

structure, even when we replace them with actual white noise [59]. This idea

inspired us to propose such top-down contextual enhanced methods as RNN and

functional load to capture the statistical structure of the acoustical segments for

unsupervised phoneme discovery.

Our proposal, the DPGMM-RNN hybrid model, explores how we can use

high-level contextual information to relieve the problem of fragmentation. The

hybrid model decreases the fragmental level (completeness increase) more than

just using DPGMM clustering (Fig. 3.3, Fig. 3.6). Since we experimented on a

longer context by taking more frames as RNN input, the fragmental level de-

creased more. With the same length of contextual frames, considering both the

past and future context performances better than just considering one direction

(Fig. 3.8).

Enhancing the contextual modeling by RNN helps remove the short-time frag-

mental segments without generating super-segments that cover several phonemes

(Fig. 3.6), as shown by the decrease of the homogeneity and v-measure of our
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DPGMM-RNN model (Fig. 3.2, Fig. 3.6). The DPGMM-RNN hybrid model also

compressed the segment systems by decreasing the number of clusters (Fig. 3.7).

The DPGMM-RNN hybrid model not only relieves the fragmentation prob-

lem but it also finds clusters that more accurately discriminate between phoneme

categories. The hybrid model makes less ABX discrimination error (higher dis-

criminability score) and performs more stable (tighter error bar) (Fig. 3.10). The

DPGMM-RNN model also got a competitive performance in Zerospeech 2019 in

discriminating English triphone segments (Table 3.2).

Clustering algorithms merely based on acoustics, such as the DPGMM clus-

tering algorithm, objectively consider every tiny acoustic detail. The human

auditory system has much bias. People are lazy to hear every acoustic detail and

merely concentrate on speech units with key information that efficiently conveys

the meaning of speech communication (economical principle of speech communi-

cation [14]).

The DPGMM-RNN hybrid model uses the RNN to enhance the local contex-

tual model and reduce the fragmentation problem. The DPGMM-RNN model can

simulate the human perceptual bias to auto-filling of the noise (fragments) [59],

frequent-spoken words [60], and phoneme categorization [57]. The DPGMM-

RNN model cannot model the bias induced by the shared cell activations [18]

from motor [56] or visual areas [58]. These dynamical activations might rely

on the structure determined by gene heredity and spoken and visual habitual

experiences.

We reported our results on the same DPGMM setting as the previous works.

We also tried other parameter settings [53, 73]. One important one is the con-

centration parameter that reflects the ability to generate the new clusters. We

found that the small concentration parameter always converges but with a slightly

slow converge rate. Making concentration parameters large will not decrease the

number of clusters. In contrast, the training of DPGMM can be unstable and

sometimes never converges. The performance of DPGMM also depends on the

distribution of the input features. We attempted some features from neural net-

works which do not follow the Gaussian distribution, where the DPGMM never

converges.

While DPGMM works in the unsupervised phoneme discovery. It is hard to
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generate many DPGMM segments long enough to represent the words. Because

the model assumes that each feature frame comes from a Gaussian. One Gaussian

Cluster might have the limited expression to cover the acoustic variation of a word

that contains the variations of several phonemes. Increasing the concentration

parameter of DPGMM can slightly make segments longer but not enough to make

the segments longer than words.

The DPGMM-RNN hybrid model can generate the DPGMM-RNN labels that

are different from the DPGMM labels. These different DPGMM-RNN labels can

improve the performance of unsupervised phoneme discovery. That means the

wrong predictions by DPGMM-RNN have a positive effect on better clustering of

labels. We verified this hypothesis by analysis of the positive correlation between

wrong prediction and phoneme accuracy, where the RNN wrong prediction of the

DPGMM label is measured by the training loss of the last epoch and the phoneme

accuracy is measured by the v-measure.

The frames that RNN labels are different from DPGMM labels mainly come

from acoustic-complex phonemes such as fricatives. The DPGMM’s framewise

prediction suffers from such acoustical complexity. The DPGMM model at frame

level also cannot capture the short-time stationary property of speech signals. The

DPGMM-RNN hybrid model can capture the short-time stationary property of

speech signals by mapping the feature chunks to DPGMM labels.
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Chapter 4

DPGMM and DPGMM-RNN

Hybrid Model for Low-resource

ASR and LVCSR

4.1. Motivation: Unsupervised Empirical Adap-

tation in Perception Formation Process

Speech feature extraction can affect ASR performance. Such features as Mel-

Frequency Cepstrum Coefficients (MFCC) [80] and Perceptual Linear Prediction

(PLP) [81] work well in ASR systems using mel-scaled and bark-spaced filterbanks

[80, 81] that mimic log-scaled speech perception.

However, speech perception is changed by hearing experiences. Such features

as MFCC or PLP, widely used in ASR applications, fail to model the perceptual

change due to the past speech learning experiences. Infant perception is changed

by listening to speech without text. We propose to model this unsupervised

process for feature extraction to improve ASR.

The rest of our introduction is arranged as follows. The first two subsections

describe the motivation of our work by arguing that an infant’s unsupervised

learning experiences change speech perception by causing the permanent brain

state modifications that served as a physical fundamental basis for the lifetime

speech perception formation process; this realization motivates us to model such
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an unsupervised process to improve ASR. The remaining subsections discuss the

computational models that are suitable to such an unsupervised learning process

of infants in practical and interpretable perspectives and use the features from

these models to improve ASR.

4.1.1 Experiences Engraved on Cortex Cells to Affect Per-

ception

Experiences change perception. For example, infants in different countries who

are born with similar auditory organs can differentiate phoneme contrasts across

languages; their perception is changed to bias their mother tongue after they

have more listening experiences [82]. When Japanese infants hear Japanese speech

more often from their parents and their surrounding people, they may adapt their

perception to become less sensitive to and finally become completely unable to

discriminate the phoneme contrast of /l/ and /r/, because this discrimination does

not help them differentiate Japanese meanings. In contrast, American infants can

discriminate /l/ and /r/ after a year. This empirically adapted perception has

long effects in later life as adults.

Empirical adaptation can happen at the organic level. In On the Origin of

Species, Charles Darwin argued that empirical “habits produce an inherited ef-

fect.” Here he is relying on his observation of domestic ducks that “the bones of

the wing weigh less and the bones of the leg more” compared with wild ducks,

because domestic ducks are “flying much less, and walking more” [83]. Expe-

riences can leave “a permanent record . . . written or engraved on the irritable

substance” [84], and “past occurrences in the history of the organism as part of

the causes of the present response” [85]. The term “permanent record” is coined

as a “mnemic trace” or an “engram” by the evolutionary biologist Richard Se-

mon [84, 85], who first introduced the concept to the scientific community.

Engram research of mnemic phenomena has recently become an exciting topic

in neural science [86]. We intuitively know that if infants play with fire and get

badly burned, the painful experience might make them feel fear whenever they

see a fire in their lifetime. The key question is whether one can find evidence

to support that such experiences actually cause organic changes, especially per-
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manent brain changes. Several generations failed for about ten decades until

“engram renaissance” [87] started from the early 21th century, sparked by the

development of molecular and circuit tools that probe and precisely manipulate

brain functions. Neural scientists recently verified the existence of engram cells

by tagging the brain cells of mice with stable activations after exposing them to

fearful experiences [88]. The tagged cells can be physically manipulated to make

mice recall experiences without stimuli [89], disrupt brain records as if such ex-

periences never happened [90], or even implant “fake” memories of non-existing

experiences [91, 92]. The endurance of engram changes was verified by measuring

the strength of engram cell connections [93, 94].

Neurosurgery studies on patients provide evidence for the neuronal records

of engrams. In the Harvey Lecture of 1936, the neurosurgeon Wilder Penfield

reported that electrical stimulation on the temporal cortex caused a patient to

re-live a frightening childhood episode, which was repeated in her dreams, and she

finally freed herself from dream attacks after portions of her right temporal lobe

were removed. In the Ferrier Lecture of 1946, Penfield reviewed 190 neurosurgery

operations. He determined that stimulation on the temporal lobe created “ex-

periential hallucinations” (the dream-like states) that caused patients to become

frightened and cry out. He discovered that stimulation on the temporal lobe

created instant “perceptual illusions” that caused patients to alter perceptual

interpretations of present experiences [18].

In the early 20th century, in the section of “The Definition of Perception” of

the book of The Analysis of Mind, Bertrand Russell defined the perception of

objects as appearances of objects that “give rise to mnemic phenomena; they are

themselves affected by mnemic phenomena” [85]. Russell borrowed the concepts

of mnemic phenomena and engrams from Semon. He elaborated the essence of

perception in the tradition of Locke [95] and Hume [96], philosophers who in the

17th and 18th centuries argued that such mind-objects as perception come from

experiences.

After defining perception in the book, Russell gave the following example

that described how current perceptions are affected by past experiences that

were engraved in engrams, which are the permanent neuronal records:

For example, the effect of a spoken sentence upon the hearer depends
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upon whether the hearer knows the language or not, which is a ques-

tion of past experience. . . connected with mnemic phenomena. . .

The engravement of experiences in the brain (the mnemic phenomena that affect

perception) of Russell’s seminal idea of perception is verified by contemporary

neural science that argues that engram cells in the cortex can be 1) activated by

learning experiences, 2) physically or chemically modified by learning experiences,

and 3) reactivated by subsequent stimuli that represent learning experiences to

cause further physical or chemical modifications [86].

In other words, perception starts from experiences and is adapted (changed

or affected) by experiences. Speech perception can be adapted by frequent expo-

sure to particular sounds [97]; such adaptations include selective adaptation [98]

that lasts for minutes, lexicon adaptation [99] for hours or days (after stimuli of

minutes), and language learning adaptation for months or years [17].

4.1.2 Infant Learning Experiences to Establish Lifetime

Perception

Speech perception is adapted through language learning experiences (Fig. 4.1).

The lifetime speech perception formation process has been initialized at birth.

Before exposure to any empirical speech data, such auditory organs as the cochlea

are preliminarily sensitive to the range of frequencies within human speech and

insensitive to higher frequencies [100].

The primary stage of language learning starts when an infant’s “psychological

urge” [17] emerges. This urge incentivizes the infants to get what they want or

to satisfy a persistent curiosity. They satisfy this desire when they communicate

with their parents by unconsciously acquiring spoken language tools and learning

to segment and find units inside the speech.

An infant’s brain is also “physiologically plastic” [17] for adapting and en-

graving the neuronal records of word-sounds, concepts, and their connections by

frequently listening to the elementary speech from his or her parents that con-

tains fundamental segment units for describing life situations. A neuronal record

is formed by the passage of electrical potentials through the nerve cells and over

their connecting fibers to alter the states of the engram cells and their nerve
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branches and synapses that are waiting to be reactivated or reinforced when sim-

ilar speech stimuli occur. The formation of such neuronal records allows speech

unit retrieval during the process of language learning. Any dysfunction in shaping

the neuronal records of speech—the destruction of the “formation of engrams of

words” [101]—may cause perception impairment [102], including deafness, apha-

sia (word-blindness), or agnosia to speech sensory impressions or their associa-

tion with other mental images. The reinforced engraving of neuronal records can

hardly be erased after the first decade of an infant’s life; the inevitable decrease

of neuronal plasticity increases the difficulty of adding new long-lasting neuronal

records in later life [17].

After the primary stage, an infant enters the second stage of language learning

called the vocabulary spurt [15] that starts roughly from the second half of the

second year. Since toddlers generally can’t read or write until about the age of

four [17], their speech perception is affected by neuronal records encoding the

knowledge accumulated by unsupervised speech learning experiences.

The early infant period of unsupervised empirical adaptation by speech has

long-lasting effects in the formation of perception that is further shaped by super-

vised empirical adaptation when a child eventually learns to write and to build

connections between speech and text [15].

Modeling the speech perception formation process (Fig. 4.1) to extract the

perceptual features that are related to language learning experiences can im-

prove ASR performance. To model the physiological prior extraction that mimics

the log-scaled function of the cochlea, we can extract spectrum features such as

MFCC [80] and PLP [81] features; to model the supervised empirical adaptation

that learns from speech and text, we can extract supervised features such as bot-

tleneck features (BNF) [13] or language embeddings [103]. However, modeling

unsupervised empirical adaptation in the infant period has been less explored for

ASR applications (highlighted in red rectangle in Fig. 4.1), especially for Large

Vocabulary Continuous Speech Recognition (LVCSR) or low-resource ASR.
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4.1.3 Modeling Unsupervised Empirical Adaptation by DPGMM

for ASR

If we believe that speech perception adaptation through experience is an accu-

mulated process from the infant to the adult periods, where each stage might

leave organically permanent records, then adaptation in the infant period should

have foundational importance in shaping speech perception and language learn-

ing. The ASR should improve when we apply the knowledge from the models of

unsupervised empirical adaptation of the infant period.

We propose to use the Dirichlet Process Gaussian Mixture Model (DPGMM) [42]

to model the unsupervised empirical adaptation to improve ASR for practical

and interpretable reasons. DPGMM retained the state-of-the-art performances

in the ABX discrimination test at the Zerospeech challenges of 2015, 2017, and

2019 [52, 53, 79]. These Zerospeech challenges aimed to find features strong at

identifying and discriminating phonemes from speech without text and compared

features that included acoustic features of MFCC or PLP [31], neural network

features from autoencoder [32, 33, 34], ABnet [35], and VQ-VAE [36], paramet-

ric clustering features from GMM [36] and K-means [36, 37], and nonparametric

clustering features from DPGMM trained with Gibbs sampling [52, 53] and vari-

ational inference [39, 40]. DPGMM also worked in spoken term detection [38],

but it was rarely applied in ASR, especially in LVCSR [104] or low-resource ASR

that we will tackle in this paper.

The DPGMM is interpretable as a graphical model [42] that represents con-

ditional dependencies between random variables that 1) show such statistical

descriptions as means, variances, and amounts of each potential phoneme-like

cluster and 2) show the generative process by unsupervisedly adapting these de-

scriptive parameters to dynamically fit empirical speech data 3) with possible

flexible hierarchical extensions [105] that contain more sophisticated explainable

linguistic factors, including lexicon or grammar priors [68].

Empowered by its interpretability, in cognitive science, Feldman et al. used

DPGMM with a lexicon prior as a computational model to simulate the unsuper-

vised speech learning process of an infant. The simulation illustrated the possi-

ble feedback from word segmentation learning that influences phoneme category

learning. Such phenomenon challenged and compensated for the traditional view

66



of the sequential language acquisition of infants from phoneme to word without

emphasizing the interaction between the two learning processes [68]. The interac-

tive learning process illustrated by DPGMM was further verified by Feldman et

al. to show consistency with infant auditory experiments that demonstrated how

word-level information affects the infant perception of phonetic contrasts [28].

This stream of literature aims to use model simulation to illustrate infant dis-

tributional learning [106, 107] during phoneme category acquisition and to provide

evidence for mechanisms [68, 106] to explain the developmental changes [82, 68,

108] in infant categorical perception. The related research used computational

models of unimodal, bimodal, GMM, and DPGMM with rich information from

the descriptive statistics of modals (simulating linguistic categories) and flexible

extensions to integrate more knowledge such as lexicons. Maye et al. used the

unimodal or bimodal frequency distribution [106] to demonstrate an infant’s sen-

sitivity to the statistical distribution of speech sounds. Boerl and Kuhl et al.

used GMM with the EM algorithm [107] to illustrate that infants can learn more

easily and accurately with infant-directed speech than adult speech. McMurray

et al. used a GMM with gradient descent [108] to introduce the continuous devel-

opment trajectories of the infant distributional learning of phoneme categories.

Feldman et al. used a non-parametric Bayesian approach of DPGMM to study

feedback mechanisms from word learning to phoneme learning [68]. Feldman’s

finding of the interactive learning process of the infants using DPGMM is well

referenced by cognitive science, psychology, and infant language acquisition.

4.1.4 Modeling Unsupervised Empirical Adaptation by DPGMM-

RNN Hybrid Models for ASR

However, DPGMM fails to model the temporal order of speech features [63],

because the Dirichlet Process (DP) of DPGMM is theoretically infinitely ex-

changeable, meaning that the joint distribution of DPGMM does not depend on

the order of data if they are infinite [64]. The weak framewise temporal model-

ing increases the model sensitivity to local trivial random acoustic details. Such

sensitivity makes DPGMM clustering uncertain for assigning clusters to frames

(Fig. 4.2) and creates small, random cluster segments inside a phoneme (Fig. 2.3).
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This is DPGMM’s “fragmentation problem” [4].

In unsupervised phoneme discovery, DPGMM tends to suffers from a frag-

mentation problem when the model encounters the frames from such acoustically

complex phonemes as a fricative with noise-like high frequencies or a vowel with

rapid formant transitions [4, 1]. DPGMM tends to generate more clusters than

the number of phonemes in any human language [53, 1] when it struggles to

discriminate between complex phonemes with higher resolution.

We propose to use the DPGMM-RNN hybrid model [4], which enhances

DPGMM, to model unsupervised empirical adaptation to improve ASR. The

DPGMM-RNN hybrid model 1) improves temporal modeling and 2) relieves frag-

mentation problems of DPGMM with RNN to relearn the connection between

acoustic features and DPGMM cluster labels or posterior vectors by listening to

feature chunks instead of concentrating on trivial details at the frame level like

DPGMM.

In unsupervised phoneme discovery, the DPGMM-RNN hybrid model en-

hances temporal modeling to improve its capturing of such important acoustic

cues as the formant transitions that occur within diphthongs, the coarticulation

effects from adjacent phonemes, and the suprasegmental factors over phonemes.

The DPGMM-RNN hybrid model relieved the fragmentation problem and de-

creased the fragmental level measured by the conditional perplexity [109] and

the v-measure [72]. It also reduced the number of clusters of DPGMM [4] and

overperformed DPGMM in unsupervised phoneme discovery on datasets from

Zerospeech 2019 with an ABX discrimination test at a moderate bitrate [4].

Inspired by the relation between engram and perception, we use DPGMM and

DPGMM-RNN hybrid model to extract perceptual features. The engrams that

encode past speech experiences can transform sensations into perception, where

Russell [85] defined the sensations as the parts inside perception without influence

from the past experiences. For example, by retrieving the language knowledge

from the learning experiences that are stored at the engram, we transform our

sensation of the sound to our perception of the speech. Our computational model

parameters that encode past empirical speech data (after adapting parameters to

fit the data) can transform the present sensational features into the perceptual

features, where the sensational features include MFCC that has a log-scale audi-
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tory property.

In summary, we propose to use DPGMM and the DPGMM-RNN hybrid model

to model the unsupervised empirical adaptation and extract perceptual features

to improve ASR (Fig. 4.1), where these perceptual features extend MFCC features

with DPGMM or DPGMM-RNN posteriorgrams by concatenation (Fig. 2.4).

The rest of this article is arranged as follows:

1. We verify the effectiveness of our proposed features with the ASR system on

the English corpora of TIMIT [2] and WSJ [12] (a widely used dataset for

LVCSR) and on the low-resource corpora of Mboshi [6] and Javanese [7] (a

telephone conversation dataset that roughly contains a three-hour training

set with hundreds of speakers from different dialect regions talking under

noisy environments).

2. We compare the ASR performance of unsupervised DPGMM features from

our proposal with the supervised bottleneck features (BNF) from Kaldi [5].

3. In the discussion section, we scrutinize that the DPGMM and DPGMM-

RNN model perplexities agree with infant perceptual perplexity from audi-

tory experiments. Our analysis provides evidence to support our hypothesis

that our proposed features reflect unsupervised perception adaptation at an

early infant period.

4. In the discussion section, we examine relation between the perception for-

mation process and the ASR results.

4.2. Experiments

4.2.1 Datasets and Their Divisions

TIMIT

We analyzed the models on the TIMIT corpus [2] of English read speech because

it includes reliable and detailed phoneme annotations. We followed the official

division [2] of a training set of 3.14 hours, a development set, and a complete test

set of 1344 utterances.
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WSJ

We checked the LVCSR performance on the WSJ corpus [12] of the English

speech. We followed the official division [12] of the training datasets of WSJ

SI-84 of 15.08 hours and WSJ SI-284 of 81.25 hours, an identical development

dataset called dev93, and an identical evaluation dataset called eval92.

Mboshi

We further experimented on a low-resource African read corpus of Mboshi [6]

that is spoken in Congo Brazzaville and Diaspora. It has a writing system de-

veloped by missionaries without standardized orthography. The Mboshi text

mainly comes from the Bible. The corpus extracted all the spoken sentences

from a Mboshi-French dictionary [110] and a fieldwork-oriented Bouquiaux and

Thomas’s corpus [111].

The Mboshi dataset [7] officially contains training and development sets. We

divided the original training set into a development set of 200 utterances and

a training set of remaining utterances and treated the original development set

as a test set. The development set took the first few utterances (Table 4.1) of

each speaker with the roughly same ratio of utterances per speaker in the original

training dataset that contains sorted utterances according to utterance ids. We

computed the durations after trimming the head and tail silences (Section 4.2.2).

Table 4.1 summarizes the statistics of the Mboshi dataset.

Javanese

We attempted some challenging experiments on a low-resource Indonesia tele-

phone conversational corpus of Javanese [7] that represents its Central, Western,

and Eastern dialect regions. These telephone calls were recorded by hundreds of

speakers from 16 to 65 years old of roughly equal genders using different models

of mobile phones (e.g., Nokia, Sony) by different networks (e.g., Smartfren, XL)

or using landlines in various environments, including cars, offices, streets, and

public places.

We divided the Javanese dataset based on the utterance order in demograph-

ics.tsv, which is a documentation file that accompanied the data release [7] that
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Table 4.1: Statistics of low-resource Mboshi read speech datasets [6] of three

speakers.

Mboshi #Hours #Utterences #Utterences/speaker

Train 2 4416 3186 / 1060 / 170

Development 0.07 200 144 / 48 / 8

Test 0.21 514 351 / 126 / 37

contains the information of the utterances grouped by speakers, in the following

steps:

� The dataset with 6720 utterances was decreased to 3749 utterances after

removing those that contained tokens of <X>, including <non-speech>

and <int> (interrupt), and it was further decreased to 3157 utterances

after removing the utterances that only contained one token.

� We then divided the 3157 utterances with the first 200 utterances as a

development set, the second 200 utterances as a test set, and the remaining

2757 utterances as a training set.

� To ensure that the divisions contained no speaker overlap, we adjusted the

217, 194, and 2746 utterances as development, test, and training sets by the

utterance order of the records (grouped by speakers) in demographics.tsv.

� To ensure that no text overlap exists in the division between the test set

and the training or development sets, we removed the utterances from the

test set whose texts occurred in the training or development sets. Finally,

we got 217, 155, and 2746 utterances as development, test, and training

sets for our experiments.

We computed the durations after trimming the head and tail silences (Sec-

tion 4.2.2). Table 4.2 summarizes the statistics of the Javanese dataset.
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Table 4.2: Statistics of low-resource Javanese telephone datasets [7]. The 3-hour

conversational dataset was recorded by hundreds of speakers from different dialect

regions using different mobile devices under various noisy backgrounds, where the

designed division was non-overlapping in speakers or sentences between test set

and training set or development set.

Javanese #Hours #Utterences #Speakers #Speakers/gender

Train 2.88 2746 201 F 100 M 101

Development 0.2 217 14 F 8 M 6

Test 0.17 155 15 F 6 M 9

4.2.2 Feature Extraction

Acoustic feature extraction

We followed Kaldi [5] using a 39-dimensional MFCC+∆+∆∆ (25-ms frame size

and 10-ms frame shift) with mean and variance normalization (CMVN) as the

acoustic feature for TIMIT and a 40-dimensional MFCC of high resolution with

CMVN as the acoustic feature for WSJ. We used the identical feature setup as

TIMIT for the Mboshi and Javanese corpora that have similar data amount as

TIMIT.

VAD for low-resource corpora

We found utterances in Mboshi and Javanese have long head and tail silences

(sometimes over five seconds), with which our encoder-decoder attentional ASR

struggled. We did energy-based Voice Activity Detection (VAD) for both corpora.

For the Mboshi corpus, since we found that the officially provided alignments

of silences from a light-weight ASR toolkit [112] failed to precisely perform VAD,

we trimmed the head and tail silence segments whose maximum absolute ampli-

tudes were smaller than the threshold of 0.1.

For the Javanese corpus, the VAD with a fixed amplitude threshold failed

because the complex recording devices and environments made utterances whose

sounds were weaker than the noisy silences of other utterances. We dealt with

the problem by a simple method called dynamical VAD that halved the initial
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threshold of 0.1 several times until the trimmed audio had more than 100 samples

for each utterance.

DPGMM and RNN posteriorgram extraction

We extracted the DPGMM posteriorgrams with a basic implementation that

strictly followed the steps described in the method section without any optimiza-

tions or approximations. In our practice, we found a simple implementation with

Numpy without GPU optimization, with several hundred lines of codes, provided

an acceptable speed for our experiments.

Instead of independently applying the DPGMM algorithm on the test set, we

froze the DPGMM parameters adapted by the training sets and used these fixed

parameters to generate DPGMM posteriorgrams for the development and test

sets.

The training process for DPGMM used the same parameter setup as previous

works [53, 4, 73]. We set the concentration parameter to 1, the mean and variance

of the priors to the global mean and global variance of the MFCC features, and

the belief-strengths of the mean and the variance to 1 and D + 2, where D is

the dimension of MFCC. We obtained clusters and posteriorgrams after 1500

sampling iterations.

We extracted RNN posteriorgrams from the DPGMM-RNN hybrid model [4]

and fed the RNN with the MFCC feature chunk of a center frame binding with

eight left and eight right adjacent frames. We used an RNN of a 5-layer BiLSTM

whose input layer size matched the MFCC dimension, whose output layer size

matched the number of DPGMM clusters, and whose hidden layer size was 512.

The training of RNN used 20 epochs with a batch size of 256.
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Table 4.3: Hyperparameters for encoder-decoder ASR and DPGMM. Notion D

is number of dimensions of MFCC features.

Model Parameters Value

ASR

Dropout probability 0.25

Label-smoothing ratio 0.05

Learning rate 0.001

Beam size 10

DPGMM

Concentration parameter 1

Belief-strength of mean 1

Belief-strength of variance D + 2

Belief of mean Feature mean

Belief of variance Feature variance

Number of iterations 1500

4.2.3 Attentional Encoder-Decoder ASR System

We used pytorch to implement an ASR system of an attentional encoder-decoder

model [8] that consisted of a three-layer pyramid bidirectional LSTM encoder [8]

that had 256 hidden units at each direction and dropped half of the frames to

reduce the time resolution by a factor of 2 at each layer, a decoder [9] that contains

a single-layer LSTM with 512 hidden units, and MLP attention [9].

MLP attention scheme generated the expected contextual vector by a prob-

ability vector output from a fully connected layer (MLP) fed with the concate-

nation of the current decoder hidden state and the encoder output (contextual

vector). Table 4.4 shows that the decoder [9], at each time step, was fed with

the concatenated feature of the output from the embedding layer and output

from the previous decoding step, which was further processed by the LSTM and

dropout layers. The output that was concatenated with the expected contextual

vector from the attention was fed into a fully connected layer of 256 hidden units,

followed by a tanh activation function. For the encoder with three layers, we

dropped half of frames at each layer such that the 3-layer encoder output has

a length that is 1/8 of the number of frames of the current utterance features,
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Table 4.4: Architecture of attentional encoder-decoder ASR system. A → B

denotes next layer of layer A is layer B. pBiLSTM denotes a pyramid bidirectional

LSTM [8]; FC stands for a full-connected layer; EMBED denotes an embedding

layer. Module-N denotes module with N hidden units (e.g., FC-512 denotes a fully

connected layer with 512 hidden units). Contextual FC-256 is a fully connected

layer fed with current embedding concatenated with expected contextual vector

from attention. At each time step, the decoder, proposed by Luong [9], is fed

with a concatenated feature of output of decoder pre-net and output of decoder

from previous step. Encoder input is acoustic features; input of decoder pre-net

is characters. pBiLSTM uses dropout regularization at each layer.

Module Cascaded layers of module

FC-512 → ReLU → Dropout

Encoder → 3-layer pBiLSTM-256

(reduce half of the frames per layer)

Decoder pre-net EMBED-256 → Dropout

(Pre-net output + Prev. decoder output)

Decoder [9] Single-layer LSTM-512 → Dropout

→ Contextual FC-256 → Tanh

Decoder post-net Softmax

MLP attention FC-256 → Tanh

which decreased the number of frames and captured the contexts across successive

frames.

In the encoding stage, we fed speech features into a fully connected layer of

512 hidden units, followed by a ReLU activation function and a dropout layer

with probability 0.25 before the pyramid BiLSTM. On the decoding stage, we

put each character into an embedding layer of 256 hidden units, followed by a

dropout layer before the decoder, whose output was converted into a probability

vector by a softmax layer. For the MLP attention, we used one hidden layer of

256 units, followed by a tanh activation function. We used weight tying [113]
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between the input and output embeddings and label smoothing [114] with a ratio

0.05 in the decoder. We used the weight normalization in the attention.

When we trained the ASR system, we set the batch size to 32 and used the

Adam optimizer [115] with an initial learning rate of 0.001, which decreased by

a half whenever the loss successively increased for more than three epochs. Our

ASR systems usually converged between 30 and 70 epochs after the learning rate

dropped below 1e-5. We used a gradient norm clipping strategy [116] when train-

ing each batch to deal with the problems of exploding and vanishing gradients.

We evaluated our ASR system with a beam search where the beam size was

10 and the expand size [117] (which denotes as the maximum candidates per

node to introduce more diversity into the search) was 5. We also increased the

penalty [118] for long sentences with coefficient 1.

All reported ASR results in the paper are from this ASR system without any

pronunciation dictionaries or language models in the decoding process.

In summary, we used an attentional encoder-decoder ASR system [8] which

includes an encoder of a three-layer LSTM, an attention of a Multi-Layer Per-

ceptron (MLP), and a decoder of a one-layer LSTM. The setups of the ASR

include dropout probability as 0.05, label smoothing ratio as 0.05, learning rate

as 0.001 (which halves whenever the training loss successively increases for more

than three epochs), and beamsize as 10.

The ASR and DPGMM hyperparameters are summarized in Table 4.3 and

the structure of our attentional encoder-decoder ASR system is summarized in

Table 4.4.
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4.3. Results

4.3.1 Discriminative Posteriorgram and Fragmentation Prob-

lem

We concatenated the MFCC features with the posteriorgrams from the DPGMM

clustering algorithm or the DPGMM-RNN hybrid model. We describe the char-

acteristics of these posteriorgrams using an utterance from the TIMIT test set.

Fig. 4.2 shows that the DPGMM posteriorgram discovered those phonemes

with stable acoustics (see the red rectangles). However, it suffers from fragmenta-

tion problems from complex acoustics (see the black circles). The fragmentation

problems represent the uncertainty of the DPGMM algorithm when judging the

cluster assignment to each frame.

Fig. 4.2 also shows that the RNN posteriorgram (from the DPGMM-RNN

hybrid model) can relieve the fragmental problems from the DPGMM poste-

riorgram on such phonemes with complex acoustics as fricatives that contain

noise-like high-frequency components (see the black circles).

4.3.2 Fragmentation Problem and ASR Error

We analyzed the potential relations between the fragmentation characteristics and

the ASR performance of the proposed features. We measured the ASR perfor-

mance by counting the ASR phoneme errors of the TIMIT test set by comparing

the annotated references with the recognized hypotheses; the references and hy-

potheses were aligned to have the same length by sclite [5] for each utterance.

We analyzed the decrease of the phoneme errors by the categories of distinctive

features (rather than deletion, insertion, and substitution categories). For ex-

ample, the number of phoneme errors of the distinctive features of the stops is

the number of stop consonants in the test set whose ASR alignments mismatch

the underground annotations; the decrease of the phoneme errors of the stops

from the MFCC features to their concatenation with the DPGMM posterior-

grams (MFCC vs MFCC+DPGMM in Fig. 4.3) is the difference of the number

of phoneme errors of the stops before and after concatenation, which indicates an

ASR improvement of the proposed feature compared to the MFCC feature.
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The ASR improvement, indicated by the decreased number of ASR errors, is

induced by the proposed feature extension with DPGMM or RNN posteriorgrams

characterized by the severity of their fragmentation problems. We measured the

fragmental level of the posteriorgrams by the conditional perplexity of the clusters

given phonemes [4], which is the exponential of conditional entropy [109] that

reflects the average number of DPGMM or RNN clusters per phoneme.

Feature extensions with the posteriorgrams of different fragmental levels change

the phoneme error distribution of the ASR system. Fig. 4.3 shows the following

results.

� Unvoiced consonants, less fragmental than voiced ones, tend to have more

ASR improvement.

� Vowels from back to front that are less fragmental tend to have more ASR

improvement when their first and second formants become less compacted

and easier to differentiate.

(a) The fragmental level measured by conditional entropy
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(b) The ASR improvement measured by error decrease

Figure 4.3: Fragmental levels and ASR improvements of distinctive fea-

tures on TIMIT test set. Upper subfigure (a): conditional perplexity of

cluster given phonemes [4] that shows fragmental level of posteriorgrams

from DGPMM algorithm (DPGMM posteriorgram) and DPGMM-RNN hybrid

model [4] (RNN posteriorgram) for each distinctive feature. Lower subfigure

(b): decrease number of phoneme errors that shows ASR improvements from

MFCC acoustic features to their concatenations with DPGMM posteriorgrams

(MFCC vs MFCC+DPGMM) and from MFCC features to their concatenations

with RNN posteriorgram (MFCC vs MFCC+RNN) for each distinctive feature;

we also added results of bottleneck features (BNF) from Kaldi default scripts.

Red rectangles with arrows show tendency between decrease of fragmental level

and improvement of ASR performance among distinctive features. stop v denotes

voiced stop; stop u denotes unvoiced stop. Ins denotes insertion errors of ASR

that inserts symbols not in reference phonemes. Closure includes silences and

short pauses.

� The RNN posteriorgram relieves the fragmental problem of the DPGMM

posteriorgram [4] (Fig. 4.2), indicated by decrease of fragmental level mea-
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sured by conditional perplexity for each distinctive feature (Fig. 4.3a). The

concatenation of the MFCC feature with the RNN posteriorgram (MFCC+RNN)

tends to achieve more ASR improvement than concatenation with the DPGMM

posteriorgram (MFCC+DPGMM) (Fig. 4.3b).

� The MFCC feature extension with the RNN posteriorgram (MFCC+RNN),

compared with the DPGMM posteriorgram (MFCC+DPGMM), tends to

have more ASR improvement on such complex acoustics as fricatives con-

taining noisy, high-frequency components, diphthongs with complex for-

mant structures, or closures with various silences (sometimes with back-

ground noises) and short pauses (Figs. 4.3b and 4.2).

� Unsupervised DPGMM based features (MFCC+DPGMM and MFCC+RNN)

work well at silences (closure). The RNN context enhancements (MFCC+RNN

and MFCC+RNN+BNF) help remove insertion errors. The unsupervised

features compensate for the supervised features (MFCC+BNF vs. MFCC+RNN+BNF)

in ASR.

4.3.3 Evaluation by Large Vocabulary Continuous ASR

Our preliminary analysis on the TIMIT corpus show that our proposed feature

extension improved the simple ASR of read speech. The improvement on the

simple ASR drove us to explore the performance of our proposed features on a

more challenging LVCSR task on the WSJ corpus of the WSJ SI-284 set (an

80-hour training set) and the WSJ SI-84 set (a 15-hour training set).

We first attempted to directly feed the DPGMM or RNN posteriorgrams into

the ASR system because the DPGMM posteriorgrams effectively discriminated

the phonemes on several Zerospeech challenges [29, 30, 3], and the DPGMM-RNN

hybrid model outperformed the DPGMM clustering algorithm at discriminat-

ing and identifying phonemes [4]. Table 4.5 shows that the RNN posteriorgram

(RNN) worked better than the DPGMM posteriorgram (DPGMM) in ASR, but

neither reached the ASR performance of MFCC.
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Table 4.5: LVCSR performance on WSJ. We compared MFCC features, DPGMM

posteriorgrams, RNN posteriorgrams, and their concatenations on our attentional

encoder-decoder ASR system, along with two baselines [10, 11], by character er-

ror rates (CERs) on WSJ speech corpus [12], including training datasets of WSJ

SI-84 that is about 15 hours or WSJ SI-284 that is about 80 hours, without pro-

nunciation dictionaries or language models in decoding process. Both baselines

used Mel-scale filterbank coefficients (MEL) that are frequency-domain equiva-

lent forms of MFCC features. The WERs were consistent with the CERs. On our

encoder-decoder ASR without a language model, our proposed feature concate-

nation achieved a 15.25% in WER on WSJ SI-284 set, compared with a previous

report of 18.2% [10].

System with feature WSJ SI-84 CER(%) WSJ SI-284 CER(%)

Baseline ASR1 MEL [10] 17.01 8.17

Baseline ASR2 MEL [11] 17.35 7.12

Our ASR MFCC 16.61 6.57

Our ASR DPGMM 35.5 12.35

Our ASR RNN 29.21 11.27

Our ASR MFCC+DPGMM 14.86 5.67

Our ASR MFCC+RNN 14.25 5.55

We further attempt to concatenate the MFCC features with the DPGMM or

RNN posteriorgrams. Although the posteriorgrams strengthened the discrimi-

nation capability on acoustically stable phonemes, they suffer from fragmenta-

tion problems on acoustically complex phonemes (Fig. 4.2) that can be com-

pensated by MFCC features. Table 4.5 shows that the concatenated features

(MFCC+DPGMM or MFCC+RNN) got fewer ASR errors than the MFCC fea-

tures (MFCC); the concatenated features converged faster and retained the im-

provement of the character accuracy of the development set during the training

process better than the MFCC features [104].

Table 4.5 shows that the feature extension with the RNN posteriorgram

(MFCC+RNN) achieved a lower CER than that with the DPGMM posterior-
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gram (MFCC+DPGMM); both of the proposed feature extensions outperformed

the MFCC feature (MFCC). The WERs were consistent with CERs; our pro-

posed feature extension (MFCC+RNN) achieved a WER of 15.3%, compared

with 18.2% in a previous work [10], on the WSJ SI-284 set with an encoder-

decoder ASR without a language model.

We observed that the absolute ASR improvement, from the MFCC feature

(MFCC) to its DPGMM feature extension (MFCC+DPGMM), on the WSJ SI-

284 set is smaller than that on the WSJ SI-84 set (0.9% and 1.75% respectively in

Table 4.5). We explored the relation between the absolute ASR improvement and

the amount of data. We trained the ASR system by the first N utterances of the

WSJ SI-284 training set to examine the change of the absolute ASR improvement

when N became smaller, until the data amount was too small to support ASR

(Fig. 4.4).
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Figure 4.4: ASR tendency with less data. Upper subfigure: ASR improve-

ment from MFCC feature to concatenation of MFCC feature and DPGMM

posteriorgram (MFCC vs MFCC+DPGMM). Lower subfigure: ASR improve-

ment from DPGMM posteriorgram (MFCC+DPGMM) to RNN posteriorgram

(MFCC+RNN). We trained ASR with the first N utterances of WSJ SI-284 set,

where the first 37318 utterances are the WSJ SI-284 set and the first 7138 utter-

ances are the WSJ SI-84 set. The CERs of ASR trained with first 3000 utterances

exceed 80% (not shown in figures) and that of first 4000 utterances were about

40%.

Fig. 4.4a shows that extending the MFCC feature with the DPGMM pos-

teriorgram (MFCC vs MFCC+DPGMM) improved the ASR performance more

with less data. Fig. 4.4b shows that enhancing the DPGMM posteriorgram with

the RNN posteriorgram (MFCC+DPGMM vs MFCC+RNN) improved the ASR

performance more with less data.
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4.3.4 Evaluation by Low-resource Read and Telephone ASR

Our LVCSR results on WSJ show that the proposed feature extensions are more

effective with less data. This finding suggests a potential of our proposed features

for a low-resource ASR when low-resource languages lack a well-studied written

form with limited speech data that have annotations transcribed by expert lin-

guists mainly from fieldwork (e.g., Mboshi) or when the low-resource languages

have limited annotated data (e.g., Javanese). We verified the effectiveness of our

proposed features on the low-resource ASR.

Table 4.6: ASR performance on low-resource corpora. We compared MFCC fea-

tures (MFCC) and their feature extensions with DPGMM and RNN posterior-

grams (MFCC+DPGMM and MFCC+RNN) by ASR error rates on low-resource

speech corpora of Mboshi [6] and Javanese [7] and on TIMIT [2] as a simulation

of a low-resource corpus due to its small data amount. Feature extraction and

ASR system of three corpora shared identical scripts with identical parameter

setups.

Feature
Javanese

CER(%)

Mboshi

PER(%)

TIMIT

PER(%)

MFCC 53.23 22.67 23.92

MFCC+DPGMM 51.68 20.91 22.74

MFCC+RNN 48.19 20.67 22.38

We treated TIMIT as a simulation of a low-resource dataset because it has a

small amount of data close to the other two low-resource datasets. The Mboshi

read speech dataset has been well recorded, annotated, and checked by linguists.

The Mboshi is officially divided into the training and development sets that con-

tain three overlapped speakers. Table 4.6 shows that the ASR on Mboshi out-

performed TIMIT.

The Javanese telephone conversation dataset included hundreds of speakers

whose ages ranged from 16 to 65 using 24 types of mobile devices or landlines

through eight types of networks in seven types of environments with speech rep-

resenting three different dialect regions. Some utterances were weak and hard to
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hear clearly; some were recorded under loud background noises; the annotation

of the Javanese dataset was relatively difficult and noisy. The dataset division

did not overlap between speakers or sentences. Table 4.6 shows lower ASR per-

formance on Javanese than TIMIT or Mboshi.

Table 4.6 shows that the feature extensions by the DPGMM or RNN pos-

teriorgrams (MFCC+DPGMM or MFCC+RNN) had better ASR performances

than the MFCC features (MFCC).

Table 4.6 further shows that the RNN posteriorgram extension (MFCC+RNN)

improved over the DPGMM posteriorgram extension (MFCC+DPGMM) and

more improvement on Javanese than on Mboshi and TIMIT. The noisy Javanese

corpus made DPGMM relatively unstable. The RNN posteriorgrams with RNN

contextual enhancement stabilized the DPGMM posteriorgrams and made them

more robust on noisy Javanese compared to Mboshi and TIMIT.

We compared the DPGMM-RNN feature with the VQCPC feature in the

low-resource ASR of Javanese telephone speech. We extracted the VQCPC fea-

ture from the state-of-art implementation in the Zerospeech 2020 [119]. The

DPGMM-RNN features performed better than the VQCPC feature on the noisy

low-resource ASR (CER 48.19% vs. 50.12%). The VQCPC feature from its au-

toencoder module might suffer from over-rich representation risky in learning the

noise. In contrast, DPGMM-RNN uses the GMM to fit the Gaussian-distributed

MFCC feature that may be more robust to noise. The DPGMM-RNN model also

has the RNN to enhance contextual modeling.

4.3.5 Comparsion and Combination with Supervised BNF

in ASR

Both supervised BNF [13] and unsupervised DPGMM-RNN features [4] help

increase the ability of acoustic features to discriminate phonemes. It would be

more persuasive to show the effectiveness of our proposed unsupervised DPGMM-

RNN features by comparison with the widely-used supervised BNF features with

a reliable implementation.

The BNF feature needs accurate alignments (estimated starting and ending

times of each phoneme) to work well; Kaldi [5] is state-of-art for this purpose.
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Table 4.7: ASR performance of unsupervised and supervised features.

We compared unsupervised feature extension with RNN posteriorgrams [4]

(MFCC+RNN) with supervised feature extension with BNF features [13]

(MFCC+BNF). For WSJ and TIMIT, we used Kaldi’s [5] official scripts without

modification for ASR alignment and BNF extraction; for Javanese and Mboshi,

we followed the Kaldi scripts of TIMIT. The following table includes ASR results

of the concatenated features by MFCC, RNN, and BNF (MFCC+RNN+BNF).

The abbreviations of the recording devices of TEL, MOB, and MIC denote tele-

phones, mobiles, and microphones. The WSJ corpus contains spontaneous dicta-

tion from journalists.

Feature
Javanese

CER(%)

Mboshi

PER(%)

TIMIT

PER(%)

WSJ SI-284

CER(%)

Data amount (hours) 2.88 2.00 3.14 81.25

Data style Spontaneous Read Read Read

Recording devices TEL/MOB MIC MIC MIC

MFCC 53.23 22.67 23.92 6.57

MFCC+RNN 48.19 20.67 22.38 5.55

MFCC+BNF [5] 47.47 21.93 23.04 5.00

MFCC+RNN+BNF 43.23 21.26 22.53 4.48
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For example, Kaldi attained a WER of 2.3% [120] on the WSJ corpus with a

hybrid system and a language model; the performance is a breakthrough achieve-

ment for existing ASR implementations. We obtained the ASR alignments for

BNF extraction on WSJ with the official Kaldi scripts without modification. We

extracted the BNF features of WSJ and TIMIT with the official Kaldi script for

BNF extraction (run bnf.sh) without modification except for changing paths to

datasets; we believe the default settings of the BNF script were well tested and

tuned. We obtained the alignments and extracted the BNF of Mboshi and Ja-

vanese following the Kaldi scripts of TIMIT because these datasets have similar

data amounts.

The Kaldi toolkit extracted the BNF features by training a 5-hidden-layer neu-

ral network with 1024 hidden dimensions and 42 bottleneck dimensions to map

each frame of the MFCC feature concatenated with four left frames and four

right frames to alignments generated by a system pipeline of monophone train-

ing, triphone training, LDA transformation, MLLT transformation, and speaker

adaptive training (SAT) [5].

Compared with the BNF features with dense representations (similar values

in every dimension) whose segment boundaries are affected by the given ASR

alignments, the DPGMM or DPGMM-RNN posteriorgrams with sparse repre-

sentations (compressing information in a few dimensions) have phoneme discrim-

inability affected by the fitness of the MFCC acoustic distributions to Gaussian

mixture assumptions. The sparseness of the posteriorgrams removes the redun-

dancies for phoneme discrimination between acoustic stable segments; the over-

compression with information loss of the posteriorgrams causes instabilities for

segment judgment on acoustic complex phonemes, such as noisy fricatives.

In other words, the alignment-based BNF features and the Gaussian-based

DPGMM-RNN features capture different discrimination information dependent

on the supervised ASR alignments and the unsupervised Gaussian fitness. The

two types of features improve different perspectives of the ASR and can com-

pensate for each other. Table 4.7 shows that ASR achieved better performance

on the concatenation of MFCC, RNN, and BNF (MFCC+RNN+BNF) than the

concatenation of MFCC and BNF (MFCC+BNF) for all the corpora.

Table 4.7 shows that the combination of MFCC, RNN, and BNF features
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(MFCC+RNN+BNF) worked best on WSJ and Javanese. In both cases, super-

vised BNF features (MFCC+BNF) overperformed unsupervised DPGMM-RNN

features (MFCC+RNN). Because the BNF features (MFCC+BNF) from a neural

network were supervised by huge-data-guided reliable ASR alignments on WSJ

and were supervised by noise-resistant annotated training text on Javanese com-

pared with DPGMM-RNN features (MFCC+RNN) that are sensitive to noise

and have no text supervision.

Table 4.7 also shows that a combination of MFCC and RNN posteriorgram

(MFCC+RNN) achieved the best performance for Mboshi and TIMIT. In both

datasets, the small amount of data, just several hours, caused difficulties in learn-

ing reliable alignments and training a neural network to extract BNF. The data

condition of the read speech of Mboshi and TIMIT is clean enough to reflect the

Gaussian-distributed nature of the MFCC features to extract reliable DPGMM-

RNN features.

We build models for incremental perceptual learning at different stages. We

model the newborn infant’s innate auditory perception with the MFCC feature

whose filterbank module simulates the cochlea’s nonlinear auditory sensation.

We model the young infant’s unsupervised speech perception with the DPGMM

that simulates the infant’s unsupervised speech parsing and classification practice

before knowing the written language. We model the grow-up infant’s supervised

speech perception with BNF that simulates the infant linguistic feature learning

by associating the speech signals with linguistic units after the infant learns the

textual language and acquires basic word-phoneme correspondence knowledge.

The whole incremental perceptual learning process to recognize the speech can

be simulated by a combination of the MFCC, DPGMM, and BNF features.

4.4. Discussion

4.4.1 Linking DPGMM Computational Perplexity, Infant

Perceptual Perplexity, and ASR error

One slippery, fundamental question is whether such computational features as

DPGMM (or DPGMM-RNN) features can be called ‘perceptual’ and can match
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human categorical perception, especially infant perception that is both not fully

developed [16] and different from adult perception [82]. That is, can we show evi-

dence that DPGMM categorizes speech well where infants perceive well and that

DPGMM categorizes speech poorly where infants perceive poorly. Our DPGMM

analysis by conditional perplexity on TIMIT (Fig. 4.5) shed light on this question.

We define the DPGMM perplexity of phonemes as conditional perplexity of

DPGMM clusters given the phonemes [4] where conditional perplexity is the

exponential of the conditional entropy [109]); we define the DPGMM perplexity of

a distinctive feature as the DPGMM perplexity of phonemes with that distinctive

feature.

Our analysis on the conditional perplexity on TIMIT (Fig. 4.5) shows the fol-

lowing associations between DPGMM computational perplexity and infant per-

ceptual perplexity on phonemes. The DPGMM (or DPGMM-RNN) perplexity

of the consonant stops is relatively low among all the distinctive features. There

exists extensive literature about infant perception of stops. Eimas et al. found

that 1- and 4-month-old infants can perceptually categorize the stop consonants

(/b/ and /p/) [121]. Bertoncini et al. further found that 4- to 5-day-old neonates

can discriminate the stops of consonants /b, d, g/ in an environment of a vowel

/a/ or /i/ [122]. Stops are among the easiest and the earliest distinctive features

perceived by infants.
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Figure 4.5: Relation between DPGMM model perplexity on TIMIT corpus and

infant perceptual perplexity by auditory experiments. Circled numbers denote

degrees of perplexity, including DPGMM and DPGMM-RNN model perplexity

vertically and infant perceptual perplexity horizontally. Infant perceivable line

divides distinctive features that are easy (green) or hard (red) for infants to

discriminate.

The DPGMM perplexity of vowels is higher than consonants, and voiced con-

sonants are higher than unvoiced ones. Trehub et al. examined infant vowel

discrimination (/i/ vs. /u/ and /a/ vs. /i/) but could not determine whether in-

fants can discriminate vowels categorically, as they did for stop consonants [123].
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Their work inspired Swoboda et al. to start the very first systematic study, and

they found that 8-week-olds discriminate vowels (/i/ vs. /I/) in a continuous as

opposed to a categorical manner [124].

The DPGMM perplexity of fricatives is high among the consonants. Fricatives

/f/ and /T/ are fragmental with high perplexity and are frequently observed in

individual utterance examples (Fig. 4.2) of DPGMM clustering [4]. Eimas et al.

found that 6- and 12-month-olds cannot discriminate /fa/ and /Ta/; only 12-

month-olds can discriminate /fi/ and /Ti/ [125]. The contrast of /f/ and /T/ is

difficult for toddlers as well. Eilers and Oiler reported on 2-year-olds [126]; Abbs

and Minifie reported on preschool children from 3- to 5-year-olds [127].

The DPGMM perplexity becomes higher from front vowels to back vowels.

Swoboda et al. showed that 8-week-olds cannot categorize front vowels [124].

The accurate discrimination of vowels by school-age children, in the phonemic

environment of /r/, is ranked roughly from front to back [128].

The DPGMM-RNN perplexity is smaller than the DPGMM perplexity in

semivowels, diphthongs, and nasals, because DPGMM does not involve tempo-

ral order modeling [64], and the DPGMM-RNN hybrid model involves temporal

order modeling that may help capture such important temporal cues as formant

transitions. Jusczyk et al. found that 2-month-olds discriminated semivowels

(/w/ and /y/) based on formant transition differences [129]. Byrne et al. found

that 3- and 6-month-olds can discriminate interphonemeic transitions inside a

diphthong [130]. Nasals (/ma/ and /na/) can be distinguished by formant tran-

sitions [125, 131].

Our further analysis (Fig. 4.3b) suggests a potential causal relation between

DPGMM computational perplexity and DPGMM ASR performance because our

proposed feature extension with DPGMM posteriorgrams changed the ASR error

distribution. Fig. 4.3b shows that several groups, including unvoiced vs. voiced

consonants, indicated by red rectangles, of related distinctive features with lower

perceptual perplexity tended to have more ASR improvement.
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4.4.2 Modeling Perception Formation Process for ASR with

Exposure to Different Data Amounts and Data Com-

plexity

Our results agree with our intuition under the perception formation process

(Fig. 4.1). The DPGMM or RNN posteriorgrams (modeling unsupervised em-

pirical adaptation) compensate for the MFCC features (modeling physiological

prior) and the BNF features (modeling supervised empirical adaptation). Ta-

ble 4.7 shows that in all corpora, feature extension with RNN posteriorgram

(MFCC+RNN) works better than MFCC feature (MFCC); feature extension

with RNN and BNF features (MFCC+RNN+BNF) outperformed the feature

extension with BNF features (MFCC+BNF).

When exposed to a small amount of clean data in TIMIT and Mboshi, the un-

supervised features (MFCC+RNN) worked better than the supervised features

(MFCC+BNF) (Table 4.7). This result implies that unsupervised adaptation

hugely impacts the early perception-shaping process of the infant period under

limited speech exposure in a relatively stable environment with simple and lim-

ited linguistic knowledge. Both TIMIT and Mboshi are well designed and pro-

fessionally annotated with fair details and high accuracy through several rounds

of careful checks for delicate analysis in phonetic and linguistic research. Our

experiments on WSJ also support that unsupervised adaptation modeling shows

more power when exposed to less speech data (Fig. 4.4).

When exposed to a large amount of data in WSJ or complex noisy data in Ja-

vanese, unsupervised features compensated the supervised features (MFCC+RNN+BNF

vs. MFCC+BNF) to improve the ASR performance (Table 4.7). Supervised

adaptation with a neural network (MFCC+BNF) that simulates a late period

of supervised acquisition, such as powerful learning and robust discrimination

of adults, greatly improved the recognition performance (Table 4.7). Unsuper-

vised adaptation has quite different discriminative power compared to supervised

adaptation and serves as a basis for future supervised adaptation.

Computational models encode experiences as parameters. For example, the

neural networks including feedforward and recurrent neural networks parameter-

ize the empirical data using continuous and dense representations with enormous
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connections. The graphical models including GMM and DPGMM parameterize

the empirical data using probabilistic relations among a few key factors. We

can use their empirically adapted encoding that compresses the information from

history speech stimuli to transform the raw sensational features of the current

speech stimuli to an approximation of empirically affected perceptual represen-

tations. For example, we used DPGMM training parameters to transform the

MFCC features into perceptual features. These computational encodings are

likely to be associated with biological experimental measurements of engrams.

The construction mechanism of the sparse engram complex revealed by neural

science are likely to provide a hint for how to computationally render efficient

and informative experiential encoding. It would be interesting to explore, from

biological and computational perspectives, the mechanism of how engrams (from

experience to encoding) affect the transformation (from sensation to perception).

The future exploration that advances these research problems will deepen our

knowledge about the perception formation mechanisms and inspire the construc-

tion of novel and practical learning algorithms.
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Chapter 5

Conclusion and Future works

5.1. Conclusion

In this thesis, we have two proposals. For the first proposal, to mimic the human

perception bias of phonemes over acoustic signals, we proposed the DPGMM-

RNN hybrid model to improve phoneme categorization. Results show that with

the DPGMM-RNN hybrid model, we can relieve the fragmental problem and

improve phoneme discriminability

Our second proposal used the DPGMM algorithm and the DPGMM-RNN hy-

brid model to model the unsupervised empirical adaptation to extract perceptual

features to improve ASR. We found that our proposed unsupervised DPGMM

and DPGMM-RNN features achieved better performance than MFCC features

on the LVCSR and the low-resource conversational ASR.

We compared our proposed unsupervised DPGMM-RNN features with the

supervised bottleneck features from Kaldi; the ASR results demonstrate that

1) unsupervised features outperformed supervised features on small and clean

datasets; 2) unsupervised features compensated for the supervised features on

huge or noisy data datasets.

Our analysis on TIMIT that discloses the relation between the DPGMM com-

putational perplexity and the infant perceptual perplexity provides evidence to

support our declaration that the proposed features reflect the infant perception,

whose phonemic categorizations are not fully developed.

The analysis on TIMIT also supports our arguments that 1) the DPGMM
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and DPGMM-RNN hybrid model with adapted parameters that encode empirical

speech data, same as the engrams that encode the knowledge learned from the

experience of hearing speech, can transform sensational features into perceptual

features; 2) we can improve the ASR performance using the perceptual features

of our proposed DPGMM or DPGMM-RNN features compared to the sensational

features of MFCC that fail to model the influence from the past experiences.

Our results of unsupervised phoneme discovery and low-resource ASR show

that the DPGMM-RNN feature is better than the DPGMM feature; the DPGMM

feature is better than the MFCC feature. The MFCC and PLP features use

windows and filterbanks to summarize the spectrum context of a few successive

acoustic samples. Such resolution is relatively fine and involves noises. The

DPGMM on MFCC and PLP features start another level of the contextual model,

but a weak one, on the DPGMM and PLP frames. Such DPGMM roughly

remembers the frequency or unigram of the cluster history as the experiences

or contexts. The DPGMM-RNN model uses RNN to learn wilder context from

DPGMM features and captures higher-level context. Such multi-step modeling

of hierarchical contexts might generate a more stable representation at each step

from MFCC, DPGMM, to DPGMM-RNN features.

Our analysis of the unsupervised phoneme discovery improvement measured

by v-measure from DPGMM feature to RNN feature supports the temporal en-

hancement from the DPGMM and the DPGMM-RNN model. Our analysis of

ASR improvement (on TIMIT) shows that the obvious insertion error decrease

indicates 1) the highest ASR improvement from MFCC feature to DPGMM-RNN

feature and 2) the highest ASR improvement from DPGMM feature to DPGMM-

RNN feature among the ASR improvements by other error decreases of different

auditory features. We explain that the incremental contextual model from the

MFCC feature to the DPGMM-RNN feature has stabilized the local acoustic

representations that smoothed the irregularities of MFCC feature inducing the

ASR insertion of random labels. Such incremental contextual model decreases

insertion error from MFCC to DPGMM based features.
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5.2. Future works

Our two proposals explored to find the universal methods at the feature level

to improve acoustic modeling of ASR at different supervised levels that the Ze-

rospeech and ASR communities have been using different methods to deal with.

In the future, we would attempt to extend this work to universal methods at the

syntactic and semantic levels to find hierarchical structures or semantic embed-

dings to improve unsupervised phoneme discovery, low-resource ASR, and LVCSR

tasks.

We proposed the universal acoustic models to find speech units as a human

does in speech recognition at the different supervised levels including only speech

as infants, a small amount of parallel data of speech and text as children, and

a large amount of parallel data as adults. In the spoken language learning, we

learn from limited samples of parallel speech and text that contain the connection

between speech and text from parents, schools, and dictionaries. We learn from

abundant samples of speech when we communicate with different talkers (without

text but with larger acoustic variation). We learn from abundant samples of

text when we read different books (without speech but with complex semantic

contexts). From a practical view, a weak ASR has a potential to become stronger

if it can learn from a large amount of audio or text files on the internet. In future

work, we also want to extend our framework to include and handle such cases as

with a mixture of a small amount of parallel data and a large amount of unparallel

speech (or text).

Our proposed DPGMM-RNN model uses the DPGMM module to find the

spectral modes and the RNN module to smooth the local irregularities. The

DPGMM sometimes maps the different phonemes with similar acoustics into

the same cluster type. For example, some vowels such as nasals are voiced and

mapped to the same DPGMM cluster. The study of vowel sounds shows stable

discrimination by the formants. If the vowels only differ slightly by formants, such

a small difference might be hard to detect by the DPGMM clustering algorithm.

A decision tree that asks the formant-related questions on the DPGMM frame

might obtain higher formant discriminations for vowels.

The DPGMM fragmentation problem is relieved by the RNN but far from

being solved. The conditional entropy analysis shows that most phonemes cor-
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respond to more than five DPGMM-RNN clusters. We also observe that many

DPGMM-RNN segments capture only portions of a phoneme. One potential so-

lution might be to introduce the hidden Markov states into the DPGMM model

to capture the temporal information, which might be risky to increase the model

complexity and increase the training cost. The Markov state may be transient or

recurrent depending on the distribution of speech data. Another potential solu-

tion is the multi-resolution DPGMM-RNN hybrid model. The DGPMM assumes

that a frame comes from a Gaussian. Then we can induce that the concatenation

of several frames is also a Gaussian. Under such insight, we can concatenate sev-

eral frames of a segment into a new frame to generate the low-resolution DPGMM

labels. Such labels learn segments rather than frames and may ignore more frame-

wised acoustic details that might cause fragments. The RNN can learn both from

low-resolution DPGMM labels and original DPGMM labels to learn the hierar-

chal hidden structure and may further relieve the fragmental problems.

Several future directions about model structure optimization deserve more

exploration. First, such VQVAE based models as VQCPC uses self-supervised

learning techniques to learn the hidden representations. The model optimization

of such hidden representation can help in downstream tasks of speech technology.

The interpretation of the representation of VQVAE or VQCPC needs some explo-

ration. Second, we want to enhance the syntactic and semantic modeling for the

DPGMM-RNN feature, where the syntactic and semantic processing are widely

studied in NLP. The transformer enhancement is promising due to its success in

NLP tasks. Thus we can integrate the powerful NLP models such as a transformer

or at least combine the self-attention modules with the RNN modules of the cur-

rent proposed model. One core challenge would be analysis about improvements

of the phonological, grammatical, or semantic linguistic structures that under-

lie the speech due to transformer enhancement. Third, it would be meaningful

and challenging to design reasonable casual assumptions and add such factors to

enrich the Baysian network of DPGMM.

In this thesis, we scrutinized the perception bias in phoneme discovery. We

proposed the DPGMM-RNN hybrid model to deal with several failures in DPGMM’s

modeling of perceptual bias. We analyzed how the DPGMM-RNN model achieves

better phoneme categorization (a typical perceptual bias). We also emphasized
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speech perception formation by the language learning experience. We proposed

the DPGMM-RNN feature to improve the low-resource ASR. We provided ev-

idence about the relation between the DPGMM based features and infant un-

supervised perceptual adaptation. We want to continue our exploration of the

fundamental research programs of this thesis: the mechanism of infant perception

for phoneme discovery and the formation of speech perception by the learning ex-

periences. Now we list some potential research directions for further explorations.

The first future direction is studying the mechanism under speech perception

by the brain activities using deep learning. 1) First, apply deep unsupervised

learning to obtain hidden representations that approximate the underlying dis-

tribution of the high-dimensional source data from speech signals, brain activa-

tions, and motor activities to enhance the speech-related downstream tasks. 2)

Second, design information-rich and interpretable causal models including graph-

ical models to simulate the distributions of signals from speech, brain, and motor

activities and induce the relationships between the brain and motor activities and

acoustic signal of the speech. 3) Third, use deep learning to learn the distribution

of the functional representation in the brain and dig its relation to categorical

perception.

The second future direction is modeling the perceptual learning process from

experiences. 1) First, we want to find representations of neural records of speech

experiences. We can use deep learning technology to find better representations

from speech or brain images. For example, a direct application of DPGMM to

brain images to see the possible distribution. 2) Second, we can use reinforcement

learning to study the speech learning that is associated with environments such

as infant-directed speech, infant self-exploration activities, or parent’s cultivation

activities. We need to design and abstract the language learning rewards of infant

interaction with environments of real life.

The third future direction is to study the evolutional view of categorical per-

ceptual instinct determined by genes. 1) First, study how speech perceptual

formation from the genetic view. The process of the raw perception to the ma-

ture perception of an infant of periods, from a cell to the early-age infant, might

reflect the evolution from cell to animals to human, a highly selection-survived

process that forms instincts as gene expressions. In such a view, the gene is a
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recorder of the successful survival experiences from ancestors. In the genes, some

important experiences are encoded and expressed as instincts including catego-

rization of speech, a basic language ability of infants. 2) Second, explore the

problem of how the instinct of auditory or speech parsing is possible. Speech

perception, as an auditory ability, might have some transitional periods from an

audition of sound to the perception of language. Such transition period might

remain in some animals with some rudimentary process of language or speech.

For such animals that have categorical perception of sound, one problem is that

is there any gene expressions that determine such categorization instinct as the

evolutionary evidence to human language ability. 3) Third, exploration of the

genetic root of speech perception and empirical formation of speech perception

through early infant activity or animal experiments also might provide a new

perspective to deal with language disorders.

The fourth future direction is to study the cellular root of language percep-

tual learning ability. 1) First, explore the possibility of using brain imaging or

calcium imaging to observe brain activities to explore the association between the

functional areas and the perception behaviors. 2) Second, explore the possibility

of using optogenetics to manually turn on or off a few target neurons in these

areas to observe the causal relation between neuron cell firing and perceptual be-

havior for determining the ‘language’ neurons. 3) Third, revisit speech learning

about these ‘language’ neuronal plasticity that reflects language learning abil-

ity. 4) Fourth, explore the possibility of using iPS cell technology to recover the

plasticity of ‘language neuron’.
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