
Doctoral Dissertation

The Practice of Link Sharing in Code Review

Wang Dong
Program of Information Science and Engineering

Graduate School of Science and Technology
Nara Institute of Science and Technology

Supervisor: Kenichi Matsumoto
Software Engineering Lab. (Division of Information Science)

Submitted on February 28, 2022

A Doctoral Dissertation
submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of Engineering

Wang Dong

Thesis Committee:
Supervisor Kenichi Matsumoto

(Professor, Division of Information Science)
Keiichi Yasumoto
(Professor, Division of Information Science)
Takashi Ishio
(Associate Professor, Division of Information Science)
Raula Gaikovina Kula
(Assistant Professor, Division of Information Science)
Patanamon Thongtanunam
(Lecturer, The University of Melbourne)

The Practice of Link Sharing in Code Review∗

Wang Dong

Abstract

Code review (CR) is the cornerstone for software quality assurance and a
crucial practice for software development. From being a formal code inspec-
tion process, nowadays Modern Code Review (MCR) becomes more flexible with
asynchronous collaboration through online review tools. Not only improving the
quality of code changes, but MCR also serves as a mechanism to increase aware-
ness and share information. Literature review points out that an effective review
requires proper understanding. However, it is challenging to identify and acquire
the needed information to have a proper understanding to conduct a review.

This thesis presumes that the practice of link sharing can help developers fulfill
the information needs in the review process. To address this, first, an empirical
study is carried out to explore the prevalence of link sharing, investigate its ef-
fect, and qualitatively analyze the intentions. The results show that link sharing
is increasingly used, the number of internal links has a positive correlation with
the review time, and the intention is often used to provide context understand-
ing. Second, a study is conducted to explore the cross-patch collaborations via
patch linkage, and the results reveal that the collaboration contributions are not
trivial like voting. Third, this thesis proposes an automatic patch linkage detec-
tion model to aid link sharing. The evaluation results show that patch linkage
detection is promising, especially for Alternative Solution Linkage.

In all, this thesis emphasizes the role of link sharing in fulfilling informa-
tion needs during the review process. Furthermore, this thesis provides practical
implications to improve the review efficiency and the potential to facilitate the
existing code review tools.

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
and Technology, February 28, 2022.

i

Keywords:

Software Engineering, Code Review, Mining Software Repository, Information
Needs, Link Sharing

ii

Acknowledgements

I would like to thank the following people for their wisdom, guidance, support,
and dedicated effort on my work. Without these people, this thesis would never
have been possible.

First and foremost, I would like to express sincere gratitude to my supervisor,
Prof. Kenichi Matsumoto for giving me precious opportunities to study Master
and Ph.D. programs in his laboratory. He also provides me with insightful guid-
ance and encouragement during my student life. Without his support, I would
not successfully accomplish the doctoral degree.

I am deeply grateful to Assist. Prof. Raula Gaikovina Kula for his assistance
at every stage of the research project since the first year of Master program. His
wisdom helps me to resolve lots of research difficulties, improve my writing skills,
and shape the critical thinking. Without his support, I would not have chance to
collaborate with excellent software engineering researchers: Lecture Patanamon
Thongtanunam, Senior Lecturer Christoph Treude. Moreover, he acts as a friend
to relieve the stress during my daily life.

I would like to offer my special thanks to Lecture Patanamon Thongtanunam
for her support and patience. She is a very kind and insightful mentor. Not only
for her research advice, she also took a serious attention to my research, provided
constructive feedback, and brought my work to a higher level. Once again, thank
you for your kind support and participating in this committee!

I would also like to express my gratitude to the rest of my thesis committee,
including Prof. Keiichi Yasumoto, Assoc. Prof. Takashi Ishio. They give me
invaluable comments and suggestions to improve the quality of my research.

I would like to extend sincere thanks to my lab-mates in software engineering
lab and close friends (Chen Zheng and Xiao Tao). I would not have been able to
have great research experiences without their support.

In addition, I would like to thank my beloved parents for their encouragement
all the time. Without them, I would not have had a chance to pursue my dream
in Japan. Finally, I would like to extend my sincere thanks to Wang Siyu for her
wise counsel and sympathetic ear. She is always there for me and went through
this wonderful journey together.

iii

List of Publications

Journal paper

• Can We Benchmark Code Review Studies? A Systematic Map-
pingStudy of Methodology, Dataset, and Metric?
Dong Wang, Yuki Ueda, Raula Gaikovina Kula, Takashi Ishio, Kenichi Mat-
sumoto. Journal of Systems and Software (JSS), 180:111009, 2021. (Chap-
ter 3)

• Understanding Shared Links and Their Intentions to Meet In-
formation Needs in Modern Code Review: A Case Study of the
OpenStack and Qt Projects
Dong Wang, Tao Xiao, Patanamon Thongtanunam, Raula Gaikovina Kula,
Kenichi Matsumoto. Empirical Software Engineering (EMSE), 26(5), 1-32,
2021. (Chapter 4)

• Automatic Patch Linkage Detection in Code Review Using Tex-
tual Content and File Location Features
Dong Wang, Raula Gaikovina Kula, Takashi Ishio, Kenichi Matsumoto. In-
formation and Software Technology (IST), 139:106637, 2021. (Chapter 6)

iv

Contents

Abstract ii

Acknowledgements iii

List of publications iv

Contents iv

List of Figures viii

List of Tables x

1 Introduction 1
1 Problem Statement . 2
2 Contributions . 3
3 Thesis Outline . 4

2 Related Studies 7

I Systematic Mapping Study 11

3 Can We Benchmark Code Review Research? 12
1 Introduction . 12

1.1 Chapter Organization . 14
2 The Systematic Mapping Process 15
3 Results: Maps of CR Research . 25

v

4 Comparative Analysis . 36
5 Towards a Common Benchmark of Dataset and Metric 38
6 Threats To Validity . 40
7 Summary . 41

II Link Sharing in Code Review 43

4 Understanding Shared Links and Their Intentions to Meet In-
formation Needs 44
1 Introduction . 44

1.1 Chapter Organization . 47
2 Motivating Example . 47
3 Case Study Design . 50
4 Case Study Results . 62
5 Discussions . 76

5.1 Developer Feedback . 76
5.2 Suggestions . 79

6 Threats to Validity . 82
7 Summary . 83

5 An Exploration of Cross-Patch Collaborations via Patch Linkage 85
1 Introduction . 85
2 Data Collection . 87
3 Preliminary Study . 88

3.1 Requesting Collaboration 88
3.2 Collaboration after Patch Linkage 91

4 Threats to Validity . 94
5 Challenges and Opportunities . 94

III Automatic Patch Linkage Detection 96

6 Patch Linkage Detection Using Textual Content and File Loca-
tion Features 97

vi

1 Introduction . 97
1.1 Chapter Organization . 100

2 Motivating Example . 101
3 Impact of Patch Linkage on the Review Process 101
4 Patch Linkage Detection . 110
5 Discussion . 124
6 Threats to Validity . 127
7 Summary . 128

7 Conclusion 129
1 Contributions . 129
2 Opportunities for Future Work . 132

vii

List of Figures

1.1 An overview of the scope of the thesis. 5

3.1 Defined terms used in the search strings 16
3.2 The distribution of paper publication and their research types

yearly from 2011 to 2019. CR papers keep an upward trend and the
journal becomes a popular choice for publication. Mixed-Method
papers becomes popular in the recent time. 22

3.3 Visual Map for RQ1, showing the contribution and methodology
of CR research. The figure shows that evaluation is the most pop-
ular methodology, particularly targeting the contributions of un-
derstanding and socio-technical effects. 25

3.4 Visual Map for RQ2, showing the replicability of the collected pa-
pers. Note that papers analyzed in RQ2 are limited to quantitative
and mixed-method papers. The figure shows that 42 papers (50%)
provide the public datasets. 31

3.5 Nine research topics with their target metric sets. The figure shows
that different research topics tend to target particular metric sets. 35

4.1 Motivating examples of link sharing in MCR process. 49
4.2 An overview of data preparation. 51
4.3 An overview of the RQ2 quantitative analysis. 55
4.4 The proportion of reviews that have links in an interval of three

months. In 2015-2019, 25% and 20% of the reviews have at least
one link shared in a review discussion within the OpenStack and Qt. 62

viii

4.5 The proportion of internal and external links. 93% and 80% of
links that are shared in code reviews are internal links within the
OpenStack and Qt. 63

4.6 The direction of the relationships between the number of internal
links and the code review time. The light grey area shows the
95% confidence interval. It shows that the more internal links are
shared during the discussion, the longer review time will be taken. 69

4.7 Distribution of seven intentions behind sharing links across the
studied projects. The results show that Providing Context and
Elaborating are the most common intentions for internal and ex-
ternal links, respectively. 75

5.1 A conceptual illustration that describes (1) a linkage between two
patches is identified and (2) a collaboration activity happens where
a developer on one patch contributes to the review of the other patch. 87

6.1 A real world example to motivate the Alternative Solution link-
age between patch #86771 and patch #84977 in OpenStack. The
example suggests that the linked patches share similar textual con-
tent and modify similar set of file paths. 102

6.2 Box-plots showing comparison among linkage types (Notify-to-Decision-
Time and Notify-to-Decision-Revisions). The results show that
the patch with an Alternative Solution linkage tends to have a
quicker review process after the notification, compared with other
patch linkages. 107

6.3 Box-plots showing comparison against a control group (Submit-
to-Decision-Time and Submit-to-Decision-Revisions).The results
show that compared to patches having no linkages, patches with
linkages tend to take a longer time to complete the review process. 107

6.4 The overview of our linkage detection process. To calculate the
similarity between the two patches, we focus on the following fea-
tures: textual content feature (the concatenation of title and de-
scription text in a patch) and file location feature (a set of file
paths that the patch modifies). 111

ix

6.5 Recall@kall for the detection based on textual content (the con-
catenation of title and description text in a patch). The results
suggest that the recall rates for the textual content model decrease
when the time intervals get larger. 118

6.6 Recall@kall for the detection based on file location (a set of file
paths that the patch modifies). The results show that the file
location as a patch feature overall does not perform as well as the
textual content feature with relatively lower recall rates (16%–50%
for Qt, 19%–37% for OpenStack, and 19%–51% for AOSP). 120

6.7 Recall@kall for the detection based on file location and textual
content for studied projects. 122

x

List of Tables

3.1 Caption for LOF . 17
3.2 Statistics of the filtering of the papers during the conduct search

and screening process . 19
3.3 Summary of the classification scheme used to identify contribution,

methodology, replication, and metric. 21
3.4 Top 5 combination of contribution and methodology 27
3.5 Metric sets used in code review paper 34
3.6 Existing Systematic Review Characteristics 37
3.7 A summary of common metric sets and datasets used in various

SE topics. 39

4.1 Studied projects. 51
4.2 The studied explanatory variables. 56
4.3 The taxonomy of intentions for sharing links. 61
4.4 The five most common domains in OpenStack and Qt. 64
4.5 Frequency of link target types in our representative samples. The

bold target categories are complemented from the work by Hata
et al. [66]. 65

4.6 Review time model statistics. 68
4.7 The three most frequent intentions of sharing review links. 75
4.8 Feedback on findings of RQ1 and RQ2, using the Likert-scale scale

below: 1 = Strongly disagree, 2 = Partially disagree, 3 = No
opinion, 4 = Partially agree, 5 = Strongly agree. 78

4.9 Respondents feedback on the intentions for sharing links. 78

xi

5.1 The prevalence of link types and their timing nature. 88
5.2 The collaboration between the source patch and target patch. . . 91
5.3 The definition of contribution types and their distribution across

the link types. Note that one review message can be labeled with
more than one contribution type. 93

6.1 Collected dataset including three open source projects: Qt, Open-
Stack, and AOSP. In total, 11,353 patch linkages are retrieved from
these projects. 103

6.2 Ground-Truth based on Hirao et al. [69] and Control Group (patches
with no patch linkages). 105

6.3 Statistics showing comparison among linkage types (First-Notify-
Revisions and First-Notify-Time). The results suggest that la-
tency exists in the notification of a patch linkage (i.e., the median
of 1.2, 3.1, and 2.2 days for Qt, OpenStack, and AOSP). 108

6.4 File path comparison technique descriptions. Similar to the work
of Thongtanunam et al. [147] four comparison techniques are in-
cluded: LCP, LCS, LCSubstr, and LCSubseq. 113

6.5 Dataset used in experiment based on time intervals. Time intervals
are divided into 2 days, 7 days, 14 days, and 30 days. 115

6.6 Evaluation results (Recall@ktype and MRR@10) for the textual
content model. The recall rates for detecting the Alternative So-
lution linkage range from 34% to 69%, 34% to 80%, and 31% to
82% for Qt, OpenStack, and AOSP. 118

6.7 Evaluation results (Recall@ktype and MRR@10) for the file loca-
tion model. The recall rates for detecting the Alternative Solution
linkage range from 23% to 69%, 34% to 60%, and 26% to 72% for
Qt, OpenStack, and AOSP. 120

6.8 Evaluation results (Recall@ktype and MRR@10) for the feature
combination model. The higher MRR@10 scores show that the
model can detect more patch linkages in higher ranks (i.e., 33%–
44% for Qt, 33%–43% for OpenStack, and 40%–53% for AOSP). . 121

xii

6.9 Evaluation results (Precision@ktype) for the Alternative Solution
linkage. The results show that precision is relatively higher in
the separate models than in the feature combination models (i.e.,
60%–74% and 43%–67% in the textual content model for Qt and
OpenStack; 56%–67% in the file location model for AOSP). 123

6.10 Evaluation results using sample-based datasets. The statistics
show that in the sample-based evaluation, the file location model
performs better than the textual content model. 126

xiii

1 | Introduction

Code review is a well-documented practice for software quality assurance, where
developers discuss and examine the code changes. It is recognized as a valuable
tool by development community for reducing software defects [3, 4]. Fagan [47]
found that code inspections with in-person meetings reduce the number of post-
release defects. Shull et al. [136] also reported that code review often catches
more than half of a product’s defects. Moreover, Aurum et al. [12] stated that
code review improves the overall quality of software systems.

Code review practice has been constantly evolving. The formal variant of
code review, better known as software inspection or Fagan-inspection [47], was
first introduced in 1976, and has been an effective quality improvement practice
for a long time [48]. It is a well-structured structured process for reviewing
source code with the single goal of finding defects, usually conducted by groups
of reviewers in extended meetings. Fagan inspection involves six standard steps,
i.e., Planning, Overview, Preparation, In-spection Meeting, Rework, and Follow-
up. However, with the increasing popularity of distributed software development,
formal code inspection is hard to adopt due to the requirement of synchronous
and physical meetings.

Recently, Modern Code Review (MCR), an informal, lightweight, and tool-
based code review, has been widely used in both open source software and in-
dustrial software [13]. The MCR process comprises of patch upload, reviewer
assignment, examination and discussion, and integration. Broadly speaking, de-
velopers (the reviewers) other than the code change author manually inspect the
submitted changes and provide feedback that needs authors to address before
the code changes are finally integrated into the codebase [26]. Existing studies

1

have proved that MCR has the potential to improve the software quality and
dependability [101, 105]. Not only improving the quality of code changes, MCR
also has additional benefits. MCR is a collaborative process, where developers
and authors relying on review tools conduct an online discussion asynchronously.
Bacchelli and Bird [13] found that knowledge transfer and team awareness are
cited as the frequent motivations as well for code review. Indeed, their interview
cited that MCR reveals as an effective mechanism to increase awareness and share
information: “Code reviews are good FYIs [for your information].”

1 Problem Statement

Nevertheless, code reviews also incur cost on software development since they
can delay the integration of the code change and further slow down the overall
development process [46, 113]. Tao and Kim [143] pointed out that the time
spent by a developer on reviewing code changes is non-negligible, especially when
multiple issues are addressed in a single change. The code change integration
can even further be delayed if the reviewers have difficulty in understanding the
changes, i.e., not sure about the correctness, run-time behavior [13, 144]. Simi-
larly, Baum et al. [18] found that the erratic outcome of review process is caused
by the cognitive-demanding nature of reviewing. Reviewers often request addi-
tional information about correct understanding and alternative solution during
reviews [113]. Ebert et al. [46] observed that the three most frequent reasons for
confusion are missing rationale, discussion of the solution, and lack of familiarity
with existing code. Hence, identifying and acquiring the needed information to
gain a proper understanding is needed.

Recent work shows that the shared links in review discussions can be used
to provide information. Jiang et al. [73] found that various types of links are
shared in pull-based reviews. Meanwhile, Hirao et al. [69] show that shared links
between reviews can be used to indicate the information about patch dependency,
broader context, and alternative solution. Despite the above attempts, it still
remains unclear about (i) the effect of shared links in the review process, (ii)
how shared links fulfill information needs, (iii) the feasibility of automatically
identifying links between reviews to improve traceability. Therefore, I state this

2

thesis as follows:

Thesis Statement: An effective review requires proper understanding.
If the needed information would be at hand, it will reduce developers’
cognitive load and further improve the review efficiency. However, it is
challenging for developers to identify and acquire the needed information
to conduct a code review. This thesis presumes that the practice of link
sharing, one common and convenient way of knowledge sharing, could fulfill
such information needs.

2 Contributions

The main contributions of this thesis can be classified into three categories: em-
pirical observations, survey insights, and future CR research directions.

Empirical Observations

1. Links are increasingly shared in the review discussion, i.e., 20% to 25% of
the reviews have at least one link shared in studied projects. (Chapter 4)

2. Linear regression model results show that the internal link (project related
links) has a significant correlation with the code review time. (Chapter 4)

3. Seven intentions behind sharing links are identified. The most popular
intention for internal links is to provide context, while for the external
links, to elaborate the review discussions is the most common intention.
(Chapter 4)

4. Collaboration contributions across review links are not trivial. (Chapter 5)

5. There exists latency in the notification of linked patches. (Chapter 6)

6. Patch linkage detection is promising using textual content and file location
features, especially for the alternative solution linkage. (Chapter 6)

3

Survey Insights

1. The information brought from the shared links is useful and could aid the
code review process. (Chapter 4)

2. Existing functionalities integrated with review tools, which provide review
links of related changes and the same topic, has limitations. (Chapter 4)

Future CR research directions

1. All available datasets and metrics of existing CR research are collected
through a mapping study, which would be beneficial for future research.
(Chapter 3)

2. There is a lack of researches that report the CR experience and propose
solutions to deal with CR problems. (Chapter 3)

3. At this stage, a benchmark for CR research is not mature but has a much-
needed potential. (Chapter 3)

3 Thesis Outline

In this section, I provide an outline of this thesis. Figure 1.1 presents the structure
of the thesis and the potential research outcomes. In the remainder of the thesis,
first of all I introduce the general studies that are related to this thesis.

• Chapter 2— Three main related topics are discussed as follows: (i) code
review models, (ii) the practice of link sharing in software engineering do-
main, and (iii) duplicate software artifact detection.

To systematically understand the challenge of code review research field, a
mapping study is performed (Part I Systematic Mapping Study).

• Chapter 3—This chapter studies the contribution and methodology, datasets,
and metrics of the code review researches that are published in the last
decade. This study makes it convenient for researchers to use the existing
datasets and guides researchers to choose appropriate metrics in specific

4

Code Review Process
Part II

Link Sharing in Code
Review

Part III

Automatic Patch

Linkage Detection

Chapter 4

Empirical Studies

Shared Links and Their Intentions
to Meet Information Needs

Chapter 5
Cross-patch Collaborations

via Patch Linkage

Chapter 6
Patch Linkage Detection Using

Textual and File Location
Features

Research Outcomes

Shed light in the role
of link sharing

Code Review Research
Part I

Systematic Mapping

Study

Chapter 3

 Can We Benchmark

Code Review Research

Code review tool
support

Highlight the challenge
of information needs

C
ha

pt
er

 2

C
ha

pt
er

 7

R
el

at
ed

 S
tu

di
es

C
on

cl
us

io
n

Figure 1.1: An overview of the scope of the thesis.

topics. The mapping results also reveal that one of challenge is to fulfill
information needs during review process. At the same time, little is known
about how to identify and acquire the needed information.

Motivated by the systematic mapping study, I then present the main empirical
studies that are split into three chapters, to explicitly address the challenge of
information needs during review process. These chapters are organized into Part
II Link Sharing in Code Review and Part III Automatic Patch Linkage
Detection. Each chapter has corresponding potential research outcomes.

• Chapter 4— This chapter introduces the empirical study to investigate
the practice of link sharing and their intentions. The results show that
links are increasingly shared in the review discussions. The internal link
has a significant correlation with the code review time. Moreover, seven
intentions behind link sharing are identified.

• Chapter 5— This chapter explores the collaboration activities across the
patch, after the patch link is provided in the review discussion. Mixed-
method results show that the collaboration contributions are non-trivial,

5

with key contributions like voting which affects the review outcome of the
target patch, or revising which improves the patch.

• Chapter 6— This chapter investigates the feasibility of automatically de-
tecting patch linkage, in order to improve the patch traceability and fur-
ther make an efficient review process. The model evaluation results show
that the detection model using textual content and file location features is
promising, with high recall rates.

Finally, Chapter 7 provides our conclusion that includes the main research
results and contributions of this thesis. We also provide potential opportunities
for future code review research.

6

2 | Related Studies

Code review models - Code review is used to examine the changes made by
other developers, to find potential defects and improve project quality since the
1970s [47]. In an earlier time, it was well known as code inspection. Many
tools were developed to support the formal process of code inspection [38, 53, 97,
115]. Over the last decade, code review relying on modern review tools has been
widely adopted by many open source projects [125], i.e., Gerrit tool in OpenStack,
pull request in GitHub projects, CodeFlow in Microsoft [118]. There are two
review styles: review-then-commit (RTC) and commit-then-review (CTR). In
the pioneering work, Rigby et al. [128] empirically examined the comparison
between these two review techniques. For the style of CTR, projects allow trusted
developers to commit contributions before they are reviewed. In contrast to CTR,
RTC is a technique where a review is made before committing it to the original
code [129]. For instance, the Android project adopts RTC style using the Gerrit
tool to provide a discussion platform for the review process before the patch is
merged into the codebase [106]. Another example is that GitHub projects apply
pull-based development to conduct the code review [56, 58]. The study of open
source projects that use either the Gerrit tools or GitHub pull requests has been
extensively studied [126, 147, 178]. Our proposed solution is not applicable to all
projects. For instance, Baum et al. [21] reported that about 50% of commercial
teams use CTR review style. However, with the growth of large open source
projects, it is possible that teams are not able to be aware of the related patches
in RTC. This thesis focuses on the risk when team awareness is lacking, which is
only applicable for large teams or reviewing models that are RTC. This includes
all Gerrit tools and all GitHub Open Source projects, as they are pull-based

7

developments.
Collective knowledge through links sharing - Link sharing has become an im-

portant activity in the area of software engineering, which encourages developers
to exchange knowledge, increases the learning purpose, and mitigates potential
issues. The value of link sharing has been widely explored in the Q&A site and
Github. Gomez et al. [54] found that a significant proportion of links shared on
Stack Overflow (i.e., the Q&A site for professional and enthusiast programmers)
are referring readers to software development innovations like libraries and tools.
Ye et al. [170] used the URLs shared in StackOverflow to generate the structural
and dynamic properties of the emergent knowledge network, aiming to enable
more effective knowledge sharing in the community. With the increasing growth
of Github, 9.6 million links exist in source code comments across 25,925 reposito-
ries [66]. They identified more than a dozen different kinds of link targets, with
dead links, licenses, and software homepages being the most prevalent. As the
survey conducted by Baltes and Diehl [16], 40% of participants added a source
code comment with a Stack Overflow link to the corresponding question or an-
swer in Github projects. They analyzed how often these URLs are present in
Java files and found that developers more often refer to questions, i.e., the whole
thread, than to specific answers. Related to the issue linking, existing studies
have demonstrated the value of such links in identifying complex bugs and du-
plicate issue reports. For instance, Boisselle and Adams [31] reported that 44%
of bug reports in Ubuntu are linked to indicate duplicated work. The results of
Zhang et al. [179] showed that developers tend to link issues more cross-project
or cross-project over time. To ease the recovery of links, Zhang et al. [180] pro-
posed iLinker to address the problem of acquiring related issue knowledge so as
to improve the development efficiency. Rath et al. [122] showed that on average
only 60% of the commits were linked to specific issues and proposed an approach
to detect missing links between commits and issues using process and text-related
features.

Link Sharing in Code Reviews - Links are also been studied in peer code
review settings. Zampetti et al. [173] investigated to what extent and for which
purpose developers refer to external online resources when raising pull requests.
Their results indicate that external resources are useful for developers to learn

8

something new or to solve specific problems. Jiang et al. [73] found that 5.25% of
pull requests have links in review comments on average in ten GitHub projects.
Hirao et al. [69] suggested that review linkage is not uncommon in six studied
software communities. They observed five types of reivew linkage, such as patch
dependency, broader context, alternative solution. This thesis expands upon
the work of Hirao et al. by studying not only review links but all kinds of links.
In addition, this thesis systematically studies the effect of links on the review
process and identifies intentions behind links.

Duplicate pull request detection - Within code review models, the topic of the
duplicate pull request is specifically investigated. Yu et al. [171] created a dataset
extracted from 26 open source projects in Github by using a semi-automatic ap-
proach. Their analysis found 21% of duplicates were identified after a relatively
long latency (more than one week). Additionally, their statistics show that the re-
dundant review efforts were spent on the duplicates (i.e., on average 2.5 reviewers
participating in the redundant review discussions and 5.2 review comments are
generated before the duplicate relation is identified. To address the duplicate pull
request detection, by now there are two threads of work: one is using information
retrieval and the other one is using classification. For the information retrieval
thread, Li et al. [88] used text information of pull request to detect duplicates
on three popular projects hosted in GitHub. The evaluation shows that about
55.3%–71.0% of the duplicates can be found when we use the combination of title
similarity and description similarity. For the classification thread, Ren et al. [123]
calculated the similarity of nine pull request features where title and description
are both included, and then they adopted a machine learning algorithm to ag-
gregate the nine features. The result shows that the proposed classifiers achieve
57–83% precision for detecting duplicate code changes from the maintainer’s per-
spective, which outperforms the Li et al.’s work [88]. Recently, Wang et al. [162]
integrated the time feature to the nine features proposed by Ren et al. and the
experimental results show that it can substantially improve the performance of
Ren et al.’s work by 14.36% and 11.93% in terms of F1-score@1 and F1-score@5,
respectively. This thesis is different from the duplicate pull request detection, as
focus is not only limited to the duplication, but also consider other patch linkages
(i.e., alternative solution, broader context, and dependency).

9

Duplicate bug report detection - Although the duplicate pull request detection
is not widely studied, there has been much work on investigating the detection of
other duplicate artifacts in SE domains, such as duplicate bug reports in the issue
tracking system. Bug reports provide textual description that involves the natural
language bug description reported by developers, i.e., title and description. Nat-
ural language information and information retrieval (IR) techniques are widely
used to calculate the similarity scores between a given data and the retrieved data.
For instance, Runeson et al. [131] took natural language text of bug reports and
performed standard tokenization, stemming, and stop word removal. Their re-
sults recognize the importance of using textual information with two-thirds of
the duplicates can be found through NLP technologies. Bettenburg et al. [29]
studied the importance of duplicate bug reports and found that the additional
information provided by duplicates helps to resolve bugs quicker. At the same
time, their classification model achieved an average precision and recall of 68%
and 60%. Researchers also found that in addition to natural language informa-
tion, other extra report information can improve duplicate retrieval. Wang et al.
[163] combined natural language and execution information to detect the dupli-
cate reports. The approach they proposed can detect more duplication compared
to only using natural language information alone (i.e., 67%–73% of duplication
can be detected). Sun et al. [142] proposed REP to improve the accuracy of
duplicate bug retrieval. Not only text but also other available information such
as product, component, and priority are fully utilized in REP.

10

Part I

Systematic Mapping Study

11

3 | Can We Benchmark Code
Review Research?

The rise of contemporary review tools has brought the availability of data and
has driven a large body of coder review researches since the last decade. This
chapter introduces a systematic mapping study to investigate the Contribution
and Methodology, Datasets, and Metrics that are used in the code review related
research. The mapping study would help researchers and practitioners to under-
stand the challenge and keep track of the best practices and state-of-the-art.

1 Introduction

Code Review (CR) has always been the cornerstone for software quality assur-
ance and is a crucial practice for software development teams. CR not only has
the benefits of finding defects, but assists with other activities such as knowledge
transfer and team awareness within software teams [13]. Microsoft reveals how
“CRs at Microsoft are an integral part of the development process that thousands
of engineers perceive it as a great best practice and most high-performing teams
spend a lot of time doing”.1 The rise of contemporary review tools has brought
the availability of data, with the review process now being light-weight. Con-
temporary tool-based reviews (such as Gerrit2, Codestriker3, and ReviewBoard4)

1https://www.codegrip.tech/productivity/how-microsoft-does-its-code-review/
2https://www.Gerritcodereview.com/
3http://codestriker.sourceforge.net/
4https://www.reviewboard.org/

12

https://www.codegrip.tech/productivity/how-microsoft-does-its-code-review/
https://www.Gerritcodereview.com/
http://codestriker.sourceforge.net/
https://www.reviewboard.org/

are widely used in both open source and proprietary software projects. As CR
research increases, so does the diversity of research methodologies, datasets, and
metrics also increases, making it difficult to keep track of best practices.

This paper collects methodology, dataset, and metric for CR studies, with
the end-goal to investigate the potential of benchmarking. Other fields, such
as bio-medicine5, use benchmarking studies to address the issue of: ‘as increas-
ing numbers of methods are published in certain fields, it can be difficult to keep
track of best practices for their use’. Large-scale studies that benchmark these
methodologies on a wide range of datasets can be extremely useful to the scientific
community. In this regard, we conduct a systematic mapping study, executing
the guidelines provided by Petersen et al. [116]. The scope of the systematic study
revolves around three research questions: to uncover (RQ1) the state of contri-
butions and methodologies for research, (RQ2) replicability of existing research,
and (RQ3) the metrics used in CR research.

Through a collection of 19,847 papers from the high-impact SE venues, we
generate visual maps for the 112 collected papers including 80 conferences and 32
journals. For RQ1, we find that evaluation is the most common methodology (i.e.,
73 papers), targeting particularly socio-technical and the understanding aspects
of the CR process. However, there is a lack of papers that report the experience
and propose solutions to deal with CR problems (i.e., four papers and thirteen
papers, respectively). For RQ2, the results show that CR research not only relies
on the data sources from the CR process but also largely uses the data sources
from the software development process (i.e., issue tracking system and GitHub).
We observe that 50% of researches provide replicable datasets, i.e., 42 papers
out of 84 papers that use quantitative or mixed-method. For RQ3, we grouped
457 metrics that are used in the quantitative research into sixteen core sets (i.e.,
experience, code, ownership, comment, file, participant, temporal, revision, de-
scription, module, defect, queue, workload, decision, language, log, and others)
and classified nine research topics (i.e., Quality Assurance, Review Process Pre-
diction, Acceptance Predication, Review Process, Review Participation, Review
Process Prediction, Review Process Comments, CI & Review, Test & Review and
Technical/Non-technical & Review). We observe that the SE topic of quality as-

5https://www.biomedcentral.com/collections/benchmarkingstudies

13

https://www.biomedcentral.com/collections/benchmarkingstudies

surance is more likely to use metrics to conduct the research, with thirteen papers
being studied. In addition, the mapping shows that experience and code metric
sets are the two most frequent metrics used in the quantitative study. From the
mapping between metric sets and research topics, we find that different research
topics tend to use particular metric sets.

Upon further mapping between the common datasets and the metrics, we
conclude that at this stage, a benchmark for CR studies is not mature but has
a much-needed potential. The map shows that papers prefer to construct their
own metrics and datasets. To promote the common dataset usage, we encourage
the future researches to strive for a replicable dataset. With the rise of machine
learning and AI techniques, CR researchers will soon need to evaluate perfor-
mance accurately against a state-of-the-art benchmark. We envision that such a
benchmark will facilitate new researchers, including experts from other fields, to
propose new techniques and build on top of already established methodologies.

To highlight the novelty of the mapping study, we did a comparative analysis
of existing systematic reviews in CR, following the protocol provided by Petersen
et al. [116]. Three secondary studies [14, 42, 80] are identified before or in 2019.
Kollanus and Koskinen [80] conducted a mapping study on the software inspec-
tions, which is outdated, not targeting the tool-based reviews. Coelho et al.
[42] focused on the specific theme of tool-based code review, i.e., refactoring-
awareness. Badampudi et al. [14] did a preliminary study on understanding the
research topic evolution of the tool-based review field. Although these two sys-
tematic studies are highly relevant to the field, the study first gives a visual
summary of the potential of the benchmark with in-depth analysis. Specifically,
we only study those papers that are published in the premium venues, as we be-
lieve that high-quality papers are deemed to form a best representative view for
future researches. Furthermore, the outcome of this mapping study is a listing of
methodologies and contributions, 42 available datasets, and 457 metrics.

1.1 Chapter Organization

The remainder of this chapter is organized as follows. Section 2 presents the
systematic mapping process, including research questions, search conduction,
screening process, classification schemes, and data extraction. Section 3 shows

14

the results of the systematic mapping study. Section 4 describes the compara-
tive analysis of existing systematic reviews relevant to CR. Section 5 discloses
the challenges for the benchmark of dataset and metric. Section 6 explains the
threats to the validity of the research. Finally, we summarize this paper in Section
7.

2 The Systematic Mapping Process

The process is based on the work of Petersen et al. [116] and similar to the
systematic mapping study performed by Abelein and Paech [2]. Essentially, the
process steps of the systematic mapping study are the definition of the research
questions, search conduction of papers, screening process, keywording for the
mapping, and data extraction.

Research Questions

To define the scope of the mapping study, we formulate the following research
questions:

1. (RQ1): What contributions and methodologies does CR research target?
The motivation for the first research question is to understand the current
focus of research. Based on the work of Bacchelli and Bird [13], we would
like to map out the outcomes, expectations, and contributions that the most
impactful CR research tackles from the point of view of both a practitioner
and researcher.

2. (RQ2): How much CR research has the potential for replicability? The
motivation for the second research question is to understand how the data
source impacts CR research. Understanding the sources can provide insight
into the current state and gaps in terms of the data collection and avail-
ability. Furthermore, there has been growing initiatives to make data open
and replicability which is encouraged in the community 6.

6A recent initiative by the Springer EMSE Journal shows how research is working towards
open science and replicable studies at https://github.com/emsejournal/openscience

15

https://github.com/emsejournal/openscience

Term 1

Term 2

NOT

code(inspection, review) OR peer (review, inspection)
OR pull (based, request)
OR patch OR code change OR review(ing, process)

systematic review AND code review

Search Terms in title, abstract, keywords

Figure 3.1: Defined terms used in the search strings

3. (RQ3): What metrics and topics are used with CR studies? The motivation
for the third research question is to uncover what kinds of metrics are used
in CR empirical studies. Understanding how the metrics are used and the
associated topics can motivate the potential to benchmark CR studies.

Conduct Search

We use the following strict characteristics as recommended by A. Kitchenham
[1] to formulate our search string: (C1) a defined search strategy, (C2) a defined
search string, based on a list of synonyms combined by ANDs and ORs, (C3) a
broad collection of search sources, (C4) strict documentation of the search, (C5)
paper selection should be checked by at least two researchers. Figure 3.1 shows
the defined search string. For Term 1 in the search string, as shown in Figure 3.1,
We apply commonly used terminologies in CR to search, such as code inspection,
code review, peer review, peer inspection, or tools such as pull requests or pull-
based. To enlarge the paper dataset, other terminologies such as patch, code
changes, and reviewing are also considered as appropriate for CR research. For
Term 2 in the search string, we do not include the CR related papers that are
in the form of the systematic review. Nevertheless, we separately conduct a
comparative analysis of existing systematic reviews in Section 4.

Based on RQ1, to ensure papers of high quality and understand the state-
of-the-art in the field, we specifically searched for papers published in the high-
impact journals and conferences from the software engineering domain between
2011 and 2019. Inspired by the work of Badampudi et al. [14], we select the

16

Table 3.1: Corpus of venues (conferences and journals) studied in this paper.
Note that ICSM now is called ICSME; and WCRE and CSMR are fused into
SANER. In addition, the GPCE h5-index is not retrieved but is ranked as B.

Journal Name Impact factor Established

TSE IEEE Transactions on Software Engineering 6.112 1991
ESE Empirical Software Engineering 3.156 1996
IST Information and Software Technology 2.726 1992
S/W IEEE Software 2.589 1991
TOSEM Transactions on Software Engineering and Methodology 2.516 1992
JSS The Journal of Systems and Software 2.450 1991
REJ Requirements Engineering Journal 1.933 1996
SOSYM Software and System Modeling 1.876 2002
ASEJ Automated Software Engineering Journal 1.857 1994
SPE Software: Practice and Experience 1.786 1991
SQJ Software Quality Journal 1.460 1995
STVR Software Testing, Verification and Reliability 1.226 1992
SMR Journal of Software: Evolution and Process 1.178 1991
ISSE Innovations in Systems and Software Engineering 0.950 2005
IJSEKE International Journal of Software Engineering and Knowledge Engineering 0.886 1991
NOTES ACM SIGSOFT Software Engineering Notes 0.490 1999
Conference Name h5-index Established

ICSE International Conference on Software Engineering 75 1994
FSE ACM SIGSOFT Symposium on the Foundations of Software Engineering 51 1993
ASE IEEE/ACM International Conference on Automated Software Engineering 40 1994
MSR Working Conference on Mining Software Repositories 38 2004
ISSTA International Symposium on Software Testing and Analysis 35 1989
ICSM IEEE International Conference on Software Maintenance 33 1994
ICPC IEEE International Conference on Program Comprehension 33 1997
SANER IEEE International Conference on Software Analysis, Evolution and Re-engineering 30 2014
ICST IEEE International Conference on Software Testing, Verification and Validation 27 2008
RE IEEE International Requirements Engineering Conference 25 1993
CSMR European Conference on Software Maintenance and Re-engineering 25 1997
WCRE Working Conference on Reverse Engineering 22 1995
MDLS International Conference On Model Driven Engineering Languages And Systems 21 2005
ESEM International Symposium on Empirical Software Engineering and Measurement 20 2007
FASE International Conference on Fundamental Approaches to Software Engineering 18 1998
SSBSE International Symposium on Search Based Software Engineering 15 2011
SCAM International Working Conference on Source Code Analysis & Manipulation 15 2001
GPCE Generative Programming and Component Engineering 2000

17

2011 time-frame as our starting point, since Badampudi et al. identified a steady
upward trend regarding publications related to the contemporary tool-based re-
view starting in 2011. In addition, several well-known open-source projects (e.g.,
OpenStack and Qt projects) use the Gerrit platform since 2011. Table 3.1 shows
the summary of paper collection source. Regarding the publication venue se-
lection, similar to the mapping study conducted by Mathew et al. [98], papers
were extracted from 18 conferences (i.e., International Conference on Software
Engineering) with relatively high h5-index and 16 journals with high impact fac-
tors. h5 is the h-index for articles published in a period of 5 complete years
obtained from Google Scholar. We rely on Guide2Research7 to retrieve the h5-
index. Although Generative Programming and Component Engineering (GPCE)
is not recorded with the h5-index, it is ranked as B according to core ranking.8

The Impact Factor (IF) is is an index (numerical value) to evaluate how much
impact a journal (scientific journals) has, based on Clarivate Analytics.9 The
conferences with higher h5-index or the journals with higher impact factors are
deemed to carry more intrinsic prestige in their respective fields. To reduce its
selection bias, we selected from a wide range of digital resources to follow (C3)
a broad collection of search sources: ACM Digital Library, IEEE Xplore, Science
Direct, and SpringerLink databases. For example, the data from 2012 to 2019
for Mining Software Repositories Conference is collected through IEEE Xplore,
but the data from 2011 is available in ACM Digital Library. We extracted 19,847
papers from the above four search sources that were published in the last nine
years (i.e., 2011∼2019), as shown in Table 3.2.

Assessing the quality of primary papers can be used as an additional criterion
for the exclusion [77]. As part of our quality assessment, we exclusively con-
sider papers from these premium venues as we assume they are of high quality
and widely get recognized within the SE domain. Additionally, to ensure only
technical contributions, in the further data processing, we filter out short papers,
editorials, tutorials, panels, poster sessions and prefaces, and opinions (8 pages
or less). Nonetheless, internal and conclusion threats may exist, and we further
discuss the threats with regard to this assessment in Section 6. After the conduct

7https://www.guide2research.com/
8http://portal.core.edu.au/conf-ranks/
9https://clarivate.com/webofsciencegroup/essays/impact-factor/

18

https://www.guide2research.com/
http://portal.core.edu.au/conf-ranks/
https://clarivate.com/webofsciencegroup/essays/impact-factor/

Table 3.2: Statistics of the filtering of the papers during the conduct search and
screening process

of Papers
Conduct Search

Search String Result 19,847
All Papers 437
Screening of Papers

Conference paper 80
Journal paper 32

Total Papers 112

search, we were able to get 437 initial papers, as shown in Table 3.2.

Screening Process

Our screening process is comprised of inclusion and exclusion criteria. For this
manual exclusion, the following inclusion and exclusion criteria were applied to
the abstract of each paper. Inclusion criteria: Three inclusion criteria are de-
fined, namely, (IC1): paper should focus on topics on code inspections, code
review, code review tools, pull request, (IC2): the paper is peer reviewed, (IC3):
the paper is written in English and the paper has full text available. Exclusion
criteria: Four exclusion criteria were defined that cover the datasets, purposes
and the evaluation of the studies. The following papers were excluded that met
these criteria: (EC1): the paper does not mention any CR activities, (EC2): the
paper focuses on other software development process, e.g., issue tracking process,
continuous integration, testing, (EC3): the paper is out of scope with focusing
on other sub-fields such as program analysis, code clone, defect prediction, refac-
toring, social technique, (EC4): the paper is outsides our studied time-frame.

To reduce bias and follow (C5), this manual paper selection was conducted
by the first and the second authors. As a result of the screening process, we were
able to collect 112 papers out of 437 initial papers, which include 80 premium
conference papers and 32 high-impact journal papers, as shown in Table 3.2.

19

Figure 3.2(a) depicts the distribution of these 112 papers based on conferences
and journals during our studied time frame. In detail, the figure shows that the
CR research publications keep an upward trend in the recent three years, i.e.,
fourteen, sixteen, and twenty papers are published in 2017, 2018, and 2019. We
also observed that papers submitted to journals are on the upward trend from
2015, i.e., eight papers were submitted to journals in 2019.

To further explore the trend of the research type, we manually classified the
types of research papers (e.g., quantitative and qualitative) according to the
work of Bernard [27]. We classify the research types into four categories: i)
Quantitative only, ii) Quantitative only, iii) Mixed-Method, and iv) Survey only.
The Mixed-Method refers to those papers using the combination of quantitative
method and qualitative/survey method. For the Survey only type, it not only
includes survey but also includes interview and user/control studies. We classify
papers which do not fit the above types into others. We classify research paper
types with two rounds. First, two authors classified them in the first round. In
the second round, the third author full with research experience joined to vali-
date each collected paper. Figure 3.2(b) shows the research type distribution of
112 papers during our studied time frame. We observe that the Mixed-Method
papers become popular in the recent time, i.e., eleven Mixed-method papers are
published in 2019.

Keywording of Relevant Papers

Inspired by Petersen et al. [116], we classified each paper based on the scope
outlined in each research question with results shown in Table 3.3. During the
classification, it not only includes the detailed reading of the abstract, but some-
times requires a careful reading of the whole paper itself.

Contributions and Methodologies (RQ1). To classify research contribu-
tions of the papers, we base our work on the work of Bacchelli and Bird [13]. They
classify contributions for two objectives (i.e., contributions to benefit practitioner
and researcher). For the classification process, three co-authors sat in a round-
table and labeled each contribution based on seven category features shown in
Table 3.3. The process was to first read the abstract and decide the classification.

20

Table 3.3: Summary of the classification scheme used to identify contribution,
methodology, replication, and metric.

Class Sub-class Category Description

C
on

tr
ib
ut
io
ns

Practitioner Communication [13] The developers are provided with the need of richer communication than com-
ments annotating the changed code when reviewing. Teams should provide mech-
anisms for in-person or, at least, synchronous communication.

Potential Benefit [13] Modern CR provides benefits beyond finding defects. CR can be used to improve
code style, find alternative solutions, increase learning, share code ownership, etc.
This should guide CR policies.

Quality Assurance [13] CR does not result in identifying defects as often as project members would like
and even more rarely detects deep, subtle, or “macro” level issues.

Understanding [13] When reviewers have prior knowledge of the context and the code, they complete
reviews more quickly and provide more valuable feedback to author.

Researcher Automation [13] Tools for enforcing team code conventions, checking for typos, and identifying
dead code already exist. Even more advanced tasks such as checking boundary
conditions or catching common mistakes have been shown to work in practice on
real code. Automating these tasks frees reviewers to look for deeper, more subtle
defects.

Program comprehension [13] Context and change understanding are challenges that developers face when re-
viewing, with a direct relationship to the quality of review comments.

Socio-technical effect [13] These are studies that involves the consideration of both human and technical
aspects. In terms of CR, Studies can be designed and carried out to determine if
and how team collaboration, coordination, awareness and learning occurs.

M
et
ho

do
lo
gi
es

– Validation Research [165] Techniques investigated are novel and have not yet been implemented in practice.
Techniques used are for example experiments, i.e, work done in lab

Evaluation Research [165] Techniques are implemented in practice and an evolution of the technique is con-
ducted.That means, it is shown how the technique is implemented in practice
(solution implementation) and what are the consequences of the implementa-
tion in terms of benefits and drawbacks (implementation evaluation). This also
includes to identify problems in industry.

Solution Proposal [165] A solution for a problem is proposed, the solution can be either novel or a signif-
icant extension of an existing technique. The potential benefits and the applica-
bility of the solution is shown by small example or a good line of argumentation.

Experience Paper [165] Experience papers explain on what and how something has been done in practice.
It has to be the personal experience of the author

Survey Paper These papers are qualitative studies that use a questionnaire or interviews to
evaluate some phenomena

R
ep
lic
at
io
n - Private Datasets Neither dataset nor the source code is available. The study may not be replicated.

Partial Datasets Part of the dataset is available. The study could not be replicated fully with
partial datasets.

Public Datasets Replication including either full dataset or the source code is provided via hyper-
links or paper references. The study is deemed to be replicable using provided
datasets.

M
et
ri
c

- Metric sets used in empirical studies Metrics that are used in CR research can be classified according to the level of
three aspects: product, process, and people.

21

(a) Distribution of paper publication (b) Distribution of research types

Figure 3.2: The distribution of paper publication and their research types yearly
from 2011 to 2019. CR papers keep an upward trend and the journal becomes
a popular choice for publication. Mixed-Method papers becomes popular in the
recent time.

If there was a dispute, then the paper was quickly analyzed and a discussion of
the paper started between the co-authors before the consensus reached. To clas-
sify methodologies that were applied to the studies, we used existing definitions
of research facets [116]. For the classification, three co-authors sat in a round-
table and labeled each methodology based on the category features. The first
keywords relating to the methodology were searched and discussed. Similar to
the keywording of contributions, the full contents of the paper were consulted if
a dispute arose among the co-authors.

Replication (RQ2). To classify the replicability of papers, we identified the
source of the data, whether the dataset is either available via the link or is referred
to a prior dataset. Our scope is limited to the quantitative and mixed-method
papers. Since detailed information of the dataset is not likely to be in the ab-
stracts, co-authors were required to scan the papers to extract any online links
of a dataset or a reference to an existing dataset. Furthermore, as shown in
Table 3.3, authors classified the papers according to the nature of the studied
systems (i.e., open source projects or industry). Note that the classification is
non-exclusive as some studies involved projects that were both open and closed

22

data.

Metrics (RQ3). To group the metrics used in collected papers, we only scan
the papers conducted in quantitative method and mixed-method. For the classi-
fication, we do the following two: (1) metrics mapping research aspects and (2)
metrics mapping research topics. For the first classification, we pick up all metric
description tables from papers. We then apply open card sorting to construct a
taxonomy of codes of the metrics. In detail, following the metric descriptions,
the coded metrics are merged into cohesive groups that can be represented by
a similar high-level code, i.e., metric sets. In the card sorting process, three
authors sit together and sort metrics until all achieve the consensus. Based on
prior work [169], the aspects of CR research can be divided into three targets:
product, process, and people. Following these aspects, we then classify the con-
structed high-level metric sets using ticks. For the second classification, the first
author classified initial research topic groups by reading the abstracts and intro-
ductions. After that, another experienced author did the validation to assure the
constructed topic groups that were distinguished.

Data Extraction and Mapping of Studies

Using the classification scheme, we then utilize visual mappings of the results to
highlight states in the collected papers. To identify which categories have been
emphasized in past research and show possible opportunities for future work,
we use three plot types to show maps (i) tables, (ii) bar plots, and (iii) bubble
maps. Once the scheme is in place, we used excel spreadsheets to store the data
and applied R scripts to extract and categorize the papers. Furthermore, we put
rationales to decide why we believe each paper is categorized. Below are the
visual techniques and rationale for answering each RQ:

Visual Map of RQ1. To answer RQ1, we show a visual mapping of the contri-
butions (with the researchers and practitioners separately) against the method-
ologies. We intend to find out how the methodologies influence the contributions
and what is the popular combination of contributions and methodologies. A bub-
ble map will be used to show results. The map should show what contributions

23

are saturated and which perceived contributions have the potential for future
work. We will also pick up examples of each classified paper for an in-depth
discussion of the maps.

Visual Map of RQ2. To answer RQ2, we show a visual mapping of the replica-
bility of the collected papers. We intend to determine how much CR research has
the potential to be replicated. A bar chart will be used to visualize the main re-
sults. The map should show the proportion of how many papers can be replicated
and show what forms are used to provide replication (i.e., via links or reference
to the dataset). For a deeper understanding of the data sources, we perform
additional sub-classification of the source: (i) research that extracts data from
pure code review tools (e.g., Gerrit tools in OSS and special review systems or
tools in industry such as CodeFlow tool in Microsoft), (ii) research that extracts
data that not only contains CR, but expands on other software development tools
such as mailing lists, version control system, GitHub, and issue tracking system,
(iii) research that extracts data from observational experiments in the form of
interviews, survey, and control study. Additionally, we classify the platforms
where the available datasets are provided into four types: (i) online storage, i.e.,
dropbox, (ii) permanent storage, i.e., zenodo, (iii) GitHub /BitBucket, and (iv)
personal or university.

Visual Map of RQ3. To answer RQ3, we show a visual mapping of the metric
benchmark in terms of research aspects (i.e., product, process, and human) and
research topics. We intend to formulate a systematic metric group for a future
research guide and understand in which topic what kinds of metrics should be
included. Two tables will be drawn to present our benchmark details. The first ta-
ble map should show 1) how many different metrics are used with their frequency
in papers and (2) what research aspects do these metrics target. The second table
map should show different combinations of metrics are used in different research
topics.

24

1673

14 5313

1281

2

3

1

18

6

21

4

22

9 4

48

8 18

2

11

10

1

14

10 2

413

1

1

Practitioner Researcher

Communication

Potential benefits

Quality
 assurance

Understanding

Automation
Other

Program comprehension

Socio−technical effects

Evaluation

Experience

Solution

Survey

Validation

Contribution

M
et

ho
do

lo
gy

Figure 3.3: Visual Map for RQ1, showing the contribution and methodology of
CR research. The figure shows that evaluation is the most popular methodol-
ogy, particularly targeting the contributions of understanding and socio-technical
effects.

3 Results: Maps of CR Research

The results will answer the research questions, with the visual maps of the cate-
gories of the papers.

(RQ1): What contributions and methodologies does CR
research target?

Figure 3.3 shows both the saturation of papers as well as the potential research
opportunities for the field. Note that a paper can target multiple contributions,
using more than one methodology. The figure clearly shows that evaluation is
the most popular methodology, benefiting both the practitioners and researchers.
For practitioners, most of the papers have contributions to potential benefits and
understanding aspects. Potential benefits mean that modern CR provides benefits
beyond the fundamental need to find defects. CR is demonstrated to be useful

25

for other tasks. We introduce three examples in detail below. For the task of
improving code style, Zhang et al. [177] presented an interactive approach named
CRITICS for inspecting systematic changes and the results show that it should
improve developer productivity during this process. For the task of increasing
the learning, Gousios et al. [57] conducted a large-scale survey to investigate work
practices and challenges in pull-based development model and results show that
integrator should consider several factors in their decision making. For the task
of review comments usefulness, Rahman et al. [118] found that useful comments
share more vocabulary with the changed code, contain salient items like relevant
code elements, and their reviewers are generally more experienced. For instance,
exploring how CR is conducted can be used for practitioners to better implement
review activity and improve the review quality. Understanding is when reviewers
have prior knowledge of the context and the code, they complete reviews more
quickly and provide more valuable feedback to the author. Key examples are
researches that look into the quality of review and types of defects. Kononenko
et al. [82] provided a deep insight into how developers define review quality, what
factors contribute to how they evaluate submitted code, and what challenges
they face when performing review tasks. Beller et al. [26] conducted a manual
research to increase the understanding of practical benefits that the MCR process
produces on reviewed source code. Their results show that types of changes due
to the MCR process in OSS are strikingly similar to those in the industry and
academic systems.

On the other hand, researcher-oriented CR studies mostly focus on socio-
technical contributions. Socio-technical related papers are studies that involve
the consideration of both human and technical aspects. One popular topic is
reviewers recommendation and many studies have been done on this topic. Xia
et al. [167] put textual information and file location analyses together to rec-
ommend reviewers more accurately. Hannebauer et al. [63] recommended code
reviewers based on their expertise. Apart from reviewer recommendation topic,
many other human related researches have been conducted such as review partic-
ipation Thongtanunam et al. [150], evaluation of contributions Tsay et al. [154]
and broadcast during CR process Rigby and Storey [127]. In terms of CR, stud-
ies can be designed and carried out to determine if and how team collaboration,

26

Table 3.4: Top 5 combination of contribution and methodology

Contribution
Socio-technical effects Understanding Potential Benefits

Methodology Evaluation [11, 24, 25, 26, 34, 36, 44, 46,
49, 55, 56, 67, 69, 71, 72, 74,
75, 76, 81, 83, 84, 99, 100,
101, 103, 105, 114, 118, 126,
127, 129, 130, 134, 138, 140,
147, 148, 149, 150, 153, 154,
159, 167, 172, 178, 183]

[10, 20, 22, 24, 25, 26, 28,
34, 36, 43, 46, 55, 56, 59, 67,
69, 71, 74, 76, 81, 83, 93, 99,
100, 101, 103, 105, 111, 112,
114, 126, 127, 129, 130, 134,
138, 140, 145, 148, 149, 150,
153, 157, 159, 161, 172, 173,
174, 175, 178, 182, 183, 184]

[25, 35, 44, 45, 49, 59, 72, 75,
92, 93, 101, 110, 118, 126,
129, 133, 143, 152, 161, 167,
172]

Validation [6, 23, 49, 72, 75, 99, 100,
101, 103, 109, 117, 118, 148,
149, 150, 167, 172]

[7, 15, 17, 23, 49, 63, 72, 75,
79, 101, 102, 109, 117, 118,
167, 172, 176, 177]

coordination, awareness and learning occurs. In terms of opportunities, Figure
3.3 highlights the lack of experience papers. This is crucial and shows a lack of
reporting and feedback from developers. Instead, we see that there are a stable
number of survey papers. Other notable potential methodologies are the experi-
ence and solution, which indicates that more practical tools need to be developed
to help practitioners in reality.

Table 3.4 shows a listing of top five paper contributions with the method-
ologies used, illustrating how evaluation studies are dominant. According to
our results, two most popular combinations are the evaluation study that has
a understanding contribution (e.g., 53 papers), then followed by the study with
socio-technical effect target following the evaluation methodology (e.g., 48 pa-
pers). For the understanding target with evaluation methodology, we introduce
two representative studies. In the work of Tao et al. [145], they investigate the
patch rejected reasons with 300 samples and formulate the practical suggestions
for patch author submission. This work helps patch authors to better understand
what kinds of patch should be submitted so as to reduce the rejection chance.
Another work conducted by Zampetti et al. [173] empirically analyze how de-
velopers document pull requests with external references using mixed-method.
Their results indicate that for developers, external resources are useful to learn
something new or to solve specific problems. One example of the evaluation study
with a social-technical effect is Thongtanunam et al. [148], which investigates CR

27

practices in defective files combined with human factors (e.g., the participation
of the reviewer in the process). In detail, authors evaluate the results using a
detailed empirical study of the Gerrit review system within the Qt project. Sim-
ilarly, Kononenko et al. [81] reported on a case study investigating CR quality
for Mozilla and explore the relationships between the reviewers’ code inspections
and a set of factors, both personal and social. It is interesting to note that 36 out
of 53 papers, i.e., around 68%, that contribute to better understanding also have
socio-technical contributions. For example, Thongtanunam et al. [150] studied
what factors influence review participation in the CR process which in turn helps
practitioners understand the situation when they tend to join. While within the
validation methodology, we find the most popular combination is papers that
target contributions of potential benefits with such methodology. The major-
ity of the validation papers are based on recommendation or prediction models.
An example of this type of paper is Rahman et al. [117], where authors suggest
an approach of reviewer recommendation based on cross-project and technology
experience.

Apart from the referred papers using two popular methodologies that are listed
in the Table 3.4, we also provide the complete paper list for those papers using
survey, solution, and experience methodology. Among these three methodologies,
survey is relatively frequent with eighteen papers being retrieved [10, 13, 18, 19,
30, 32, 33, 46, 51, 57, 58, 82, 86, 91, 119, 132, 144, 174]. Thirteen papers are
classified as solution [7, 17, 36, 62, 89, 96, 102, 117, 135, 155, 160, 164, 177].
The last experience methodology is the most rare case, only four papers being
found [36, 125, 135, 137].

28

Answering RQ1: Our results show that 65% of CR researches published
in premium SE venues use sound evaluation methodology (i.e., 73 papers),
targeting particularly socio-technical and understanding of CR processes.
However, there is a lack of papers that report the experience and propose
solutions to deal with CR problems (i.e., four papers and thirteen papers,
separately). The implication of RQ1 is that, we encourage the practitioners
to more emphasize and share the experience with CR. At the same time,
future research could propose more solution tool support to facilitate the
developers to make the CR process more efficient.

(RQ2): How much CR research has the potential for replicability?

We divide all premium papers into different classification according to the defini-
tion of data sources shown in Section 2.5. We describe each data source in detail
below. In CR Process, for example, Mcintosh et al. [101] conducted the research
to see the impact of code reviews on software quality. They only focus on review
process and extract the data from QT, VTK, ITK projects using review tools
(e.g., Gerrit). For Software Development Process, for example, Kononenko et al.
[81] investigated whether people and participation matter the quality of review.
In their research, they collected data from issue tracking system (e.g., Bugzilla)
which belongs to the development process. In Interview/Survey/Control Study,
for instance, Bosu et al. [33] analyzed the process aspects and social dynamics of
CR from the diverse surveys of Mircosoft and other open source projects. In an-
other example, Floyd et al. [50] researched the representation of code in the brain
with fMRI study. They involved 29 participants to carry out the controlled exper-
iment and got result feedback. We find that code review process related dataset
is the most extracted from the well-studied Gerrit tool. One advancement has
been the release of the rest API, in which anyone is able to download and collect
data on projects. We summarize and draw the top 3 popular projects using Ger-
rit tools. We observe that for these CR papers, Qt project is the most studied
project, with sixteen, fifteen, and twelve papers investigating Qt, OpenStack, and

29

Android respectively.
Figure 3.4 shows two important findings with the proportion of replicability.

The first finding is that there are in total 38 papers (i.e., 9 papers with closed
data, 23 papers open data, and 6 papers open data/closed data) out of 84 papers
(around 45%) that do not provide any access to their datasets. Taking a closer
look at the closed data, studies are usually conducted within industries, surveys
and control studies. An example of this paper is Balachandran [15], where the
authors conducted research on how to reduce human efforts and improve review
quality using the data from industry project named VMware. For papers that
labeled as open data, the researchers collected data from open source projects
but did not share a replication package. For instance, Mirhosseini and Parnin
[103] investigated whether or not pull requests encourage developers to upgrade
out-of-date dependencies with the data from OSS (i.e., 7,470 projects in GitHub).
It could be argued that since the data is open source and available for anyone
to download themselves. The second finding is that, as shown in Figure 3.4,
we observe that 42 papers out of 84 papers (around 50%) released a replication
package, either referred to a published dataset or released their own dataset via
an online link. For the work of Thongtanunam et al. [149], authors referred to
a dataset that was previously published [61] to revisit code ownership and its
relationship with software quality. Usually, papers release a link to the dataset.
For instance, Baysal et al. [25] shared the dataset link (e.g., WebKit and Blinkin
projects). Upon a closer inspection on the dataset platforms of these replication
package links, we found that GitHub/Bit Bucket and Personal/University are
the most common dataset platforms (i.e., seventeen, respectively). While few
researches make their dataset immutable (i.e., Permanent Storage), with three
papers being classified. We summarize the available replication datasets with
their URL links from these quantitative and mixed-method papers, referred to
our Appendix.

30

13

9236

3012

Partial Datasets

Private Datasets

Public Datasets

0 10 20 30 40
Number of Papers

Closed data
Open data
Open data available via link
Open data/Closed data
Reference to dataset
Reference to dataset/Closed data
Reference to dataset/Open data

Figure 3.4: Visual Map for RQ2, showing the replicability of the collected papers.
Note that papers analyzed in RQ2 are limited to quantitative and mixed-method
papers. The figure shows that 42 papers (50%) provide the public datasets.

Answering RQ2: CR research not only relies on the data sources from
the CR process but also largely uses the data sources from the software
development process (i.e., issue tracking system and GitHub). We observed
that 50% of CR papers (i.e., 42 papers out of 84 papers) that use the
quantitative method or mixed-method provide the public datasets (i.e., the
replication links are provided in the papers). The implication of RQ2 is
that, to promote the validity of scientific findings, we encourage future
researches to strive for a replicable dataset.

(RQ3): What metrics and topics are used with CR studies?

Table 3.5 shows sixteen core metrics sets based on 457 identified metrics with their
corresponding review aspect and frequency. We summarize three findings. First,
we observe that Experience and Code are the two most frequently used metric
sets, which are far more than other classified metric sets. In detail, 76 and 72 met-
rics are involve in Experience and Code sets respectively. Experience is referred
to those metrics computing the patch author or reviewer experience in submit-

31

ting historical patches. Given an example, Ruangwan et al. [130] took four ex-
perience related metrics into account: Reviewer Code Authoring Experience,
Reviewer Reviewing Experience, Patch Author Code Authoring Experience,
Patch Author Reviewing Experience. Code denotes to those metrics that fo-
cus on measuring the source code of a system. For instance, McIntosh and Kamei
[99] computed the number of added and deleted code lines. Apart from the gen-
eral patch size, Maddila et al. [92] proposed in-depth code related metrics such
as Class churn, Loop churn, and Method churn. Others refers to those metric
sets that can not fit to the common metric sets with their definition. Second,
from the view of the referred paper number, the result indicates that Code is con-
sidered as the first ranking basic metric set applied to model constructions. 28
out of total 31 papers (i.e., around 90%) take such metric set in to account. The
third observation is that as we see from Table 3.5, one metric set can represent
multiple CR aspects. For example, File metric set can either belong to Product
and Process. Those metrics that compute the number of added and deleted files
in the patch are regarded as Process aspect [49, 56, 75, 178]. On the other hand,
researchers calculate the file entropy [75, 99, 150]. Such metrics are more likely
to be dynamic and are viewed as Process aspect. To answer the correlation be-
tween metrics and their corresponding research topics, we summarize nine topics
regarding code review and list related papers below:

• Quality Assurance: refers to papers focusing on the code quality such as
bug fixing [75, 81, 99, 100, 101, 105, 135, 139, 148, 149, 152]

• Acceptance Predication: refers to papers focusing on predicting the decision
of the patches [49, 74, 83] .

• Review Process : refers to papers exploring or comparing the different peer
review models [10, 56].

• Review Participation: refers to papers focusing on the reviewer participa-
tion [130, 138, 150].

• Review Process Prediction: refers to papers focusing on predicting the pe-
riod taken to complete the review [26, 92, 178, 182].

32

• Review Process Comments : refers to papers focusing on predicting useful-
ness of review comments [118].

• CI & Review : refers to papers focusing on the correlation between CI im-
plementation and code review [28, 174].

• Test & Review : refers to papers focusing on the correlation between test
and code review [140, 141].

• Technical/Non-Technical & Review refers to papers investigating the tech-
nical and non-technical factor impact on the code review [24, 25, 153].

Figure 3.5 maps the metric sets with nine CR research topics. Two findings
are observed based on the related paper list and Figure 3.5. First, we find that
Quality Assurance related topics are more likely to use CR metrics to conduct the
research, i.e., eleven papers are identified within this topic. For instance, Mcintosh
et al. [101] conducted an empirical study to investigate the relationship between
post-release defects and code review practices such as coverage, participation, and
reviewer expertise. Their findings confirmed the intuition that poorly-reviewed
code has a negative impact on software quality. The second popular topic is
Reviewer Process Prediction, i.e., four papers retrieved, which refers to papers
focusing on predicting the review period. One example of the process prediction
topic is that in the study of Zhao et al. [182], they applied a couple of eighteen
metrics like source code, textual information, experience, and social connection
related metrics to recommend pull requests that can be quickly reviewed by re-
viewers. The second finding is that different research topics use particular metric
sets. As shown in Figure 3.5, Review Process Comments only adopt Experience,
Code, and Comment into their statistic model construction. However, for Quality
Assurance, Acceptance Predication, and Review Participation, the metric sets are
diverse considering comprehensive angles. For instance, the Review Participation
topic takes almost all kinds of metric sets into accounts except for language,
Queue, and Log. In addition, for those specific research topic, the particular met-
ric sets will be computed specially such as Build related metric sets used in
the CI & Review topic. The detailed metrics within each metric set are listed in
the Appendix.

33

Table 3.5: Metric sets used in code review paper

Metric Set Product Process People Others Referred papers # Related metrics
Experience X X [24, 25, 28, 49, 56, 74, 75,

81, 83, 92, 99, 100, 105, 118,
135, 138, 141, 150, 152, 161,
174, 178, 182]

76

Code X X [10, 24, 25, 26, 28, 49, 56,
74, 75, 81, 83, 92, 99, 100,
101, 105, 130, 135, 139, 140,
148, 149, 150, 152, 153, 174,
178, 182]

72

Ownership X [26, 49, 74, 81, 100, 101, 105,
118, 135, 138, 139, 140, 148,
149, 150, 152, 174]

38

Comment X [28, 56, 74, 81, 83, 99, 105,
118, 130, 135, 139, 148, 150,
152, 153, 174, 178]

37

File X X [26, 28, 49, 56, 74, 75, 81, 83,
92, 99, 100, 135, 138, 139,
149, 150, 152, 153, 174, 178,
182]

31

Participant X [10, 26, 56, 74, 75, 81, 83, 92,
99, 100, 105, 130, 135, 138,
139, 148, 149, 153, 182]

31

Temporal X [10, 28, 74, 75, 99, 105, 135,
139, 141, 148, 150, 152, 174]

26

Revision X X [10, 28, 49, 56, 74, 75, 83, 92,
99, 100, 105, 138, 148, 152,
174, 178, 182]

24

Description X X [26, 28, 49, 75, 92, 150, 152,
174, 182]

21

Module X [24, 25, 26, 49, 56, 74, 75, 81,
92, 99, 140, 150, 152, 153,
174, 182]

21

Defect X [10, 24, 25, 101, 139, 150] 14
Queue X [10, 24, 25, 28, 81, 92] 6
Workload X [28, 130, 150] 5
Decision X [74, 92, 138, 178] 5
Language X [49, 92] 4
Log X [28] 1
Email X [74] 11
Collaboration X [49, 153] 10
Build related X [174] 4
Project X [25, 153] 9
Others X [24, 81, 83, 92, 105, 130, 138,

141, 174]
11

Total 31 457

34

0
0

0

0

0

1

1

1

2

3

3

4

5

5

5

6

6

6

9

11

13

0

0

0
0

0
0

0

1

1

1
1

1

1

2

2

2

3

3

4

4

5

0
0
0
0
0
0
0
0

1

2

3

7
8

9

11

13

17

19

24

25
33

0

0

0
0

0
0

1

1
1

1

1

2

2

2

2

3

3
3

4

4

11
0

0
0
0
0
0
0
0

0
0
0

0

0
0
0
0
0
0

1

2
5

0

0

0

0
0

0
0

1
1

1

1

2

2

3

3

3

3

7

8

9

17
0

0

0
0
0
0
0
0
0

0

1

1
1
1

2
2

2

2
2
3

3

0

0
0
0

0
0
0
0
0

0

0

1
1
1

2
2

3

3

3

4

5

0
0
0

0
0

0
0
0

0

0
0
0
0
0

1

1
1

1

3
4

7

Others
Project

Build related
Collaboration

Email
Log

Language
Decision

Workload
Queue
Defect

Module
Description

Revision
Temporal

Participant
File

Comment
Ownership

Code
Experience

Quality
 Assurance

Acceptance Prediction

Review Process

Review Partic
ipation

Review Process Prediction

Review Process Comments

CI &
 Review

Test &
 Review

Technical/N
on−Technical &

 Review

0

10

20

30

Count

Figure 3.5: Nine research topics with their target metric sets. The figure shows
that different research topics tend to target particular metric sets.

35

Answering RQ3: Sixteen core metrics sets are grouped based on 457
metrics extracted from the quantitative papers, and nine research topics
that use these metrics are classified (quality assurance, review process pre-
diction, acceptance prediction, and so on). We observe that the SE topic
of quality assurance is more likely to use CR metrics to conduct the re-
search, i.e., eleven papers. In addition, experience and code are the two
most frequently used metric sets. From the mapping between metric sets
and research topics, we find that it has the potential to benchmark the met-
ric based CR research, as different research topics tend to use particular
metric sets. The implcation of RQ3 is that, we encourage the researchers
to take the existing metrics into account when conducting a certain topic.

4 Comparative Analysis

In this section, we followed the protocol of comparative analysis provided by the
work of Petersen et al. [116] to compare and highlight the novelty of our work
against existing systematic reviews. The systematic review studies were identified
using the following search string: “systematic review” AND “code review” and by
searching a broad collection source (i.e., ACM Digital Library, IEEE Xplore,
Science Direct, and SpringerLink databases). We exclude papers that did not
explicitly state in the title or abstract that they were systematic reviews or were
not published in the traditional SE domain based venues. The search results in
a total of three systematic reviews [14, 42, 80] before or in 2019.

For each of the three CR systematic reviews, we characterize them based on
their research goals, criteria for inclusion requirements, the number of papers,
and means of analysis. Table 3.6 shows the characteristics of the three existing
systematic reviews. Below, we now discuss the differences between our study and
the existing systematic reviews in detail, with the aspect of research goals, the
process, and the breadth and depth:

• Difference in Research Goals: The systematic review conducted by Kol-
lanus and Koskinen [80] aims at reviewing how the software inspection field

36

Table 3.6: Existing Systematic Review Characteristics

Reference Systematic Reviews Kollanus and Koskinen [80] Badampudi et al. [14] Coelho et al. [42]
Research Goals
Identify Best and Typical Practices X X

Classification and Taxonomy X X

Emphasis on Topic Categories X X

Identify Publication Fora X X X

Inclusion Requirements
Research is Within Focus Area X X X

Empirical Methods Used X X X

Number of Included Articles
Potentially Relevant Studies 229 873 -
Relevant Studies (Included) 153 (1980-2008) 177 (2005-2018) 13 (2007-2018)
Means of Analysis
Meta Study X X X

Comparative Analysis
Thematic Analysis X X

Narrative Summary X

has evolved between 1980 and 2008. Their focus is set in the context of
the software inspection. However, our mapping study addresses the con-
temporary tool-based code review, which is a light variant of the software
inspection and has been widely adopted in both industrial and open-source
projects. Although Badampudi et al. [14] and Coelho et al. [42] conducted
the systematic review related to contemporary tool-based code review, the
goal of our mapping study is also different from them. The main goal of
the work by Badampudi et al. [14] is to observe the evolution of the re-
search topic, while the work by Coelho et al. [42] is to gather evidence on
the extent of the work related to refactoring-awareness during code review.
Differently, our study aims at investigating the potential of benchmarking
in the aspect of datasets and metrics. We believe that a common bench-
mark could facilitate future CR related researches and help researchers to
propose new approaches and compare against existing ones.

• Difference in Process: We observe two main differences in the process
when compared to the two systematic reviews related to the tool-based re-
view. First, compared to the work of Coelho et al. [42], we include the the-
matic analysis (i.e., classification schema of methodologies, contributions,

37

data, and metrics). For the systematic mapping study, thematic analysis
is an interesting analysis method, which helps to see which categories are
well covered in terms of number of publications [116]. Second, compared to
both work by Coelho et al. [42] and Badampudi et al. [14], we conduct an
in-depth narrative summary analysis with qualitative review of each paper,
as both of them are served as a preliminary study.

• Difference in Breadth and Depth: Two differences are summarized,
based on the systematic reviews related to the tool-based review. On the
one hand, Coelho et al. [42] focused on the specific theme of tool-based code
review, i.e., refactoring-awareness. However, our study covers all potential
themes. On the other hand, in the study of Badampudi et al. [14], they
extracted CR related papers from all possible venues (i.e., 177 papers are
retrieved between 2005 and 2018). While to ensure the paper quality and
form a best representative view for future researches, we only focus on
the papers that are published in the premium venues (i.e., 112 papers are
retrieved between 2011 and 2019).

5 Towards a Common Benchmark of Dataset and
Metric

Although our results suggest that CR research is mostly driven by empirical evalu-
ation, we conclude that at this stage, we cannot benchmark CR studies. However,
the existing datasets and metrics do show potential for creating a benchmark.
With the rise of machine learning and AI techniques, CR researchers will soon
need to agree on the common set of metrics that should be included to accu-
rately compare such techniques against each other. Having a benchmark will
facilitate new researchers, including experts from other fields, to innovate new
techniques and build on top of already established methodologies. This mapping
commonalities between metrics and datasets is shown in Table 3.7.

Table 3.7 suggests that there exists a regular group of metric set combinations
commonly used for papers that are addressing a specific SE topic. We selected
metrics that are commonly mentioned in more than 60% of the classified papers

38

Table 3.7: A summary of common metric sets and datasets used in various SE
topics.

CR Topic # Papers Common Metric Sets Common Datasets Review Settings

Quality Assurance 11 Code (100%), Ownership (82%),
File, Participant (73%), Experi-
ence (64%)

18% Gerrit (8), Pull-
based (0), Others
(3)

Review Process Prediction 4 Code (100%), Participant, File,
Module, Description, Experience,
Revision (75%)

0 Gerrit (1), Pull-
based (3), Others
(0)

Acceptance Prediction 3 Code, Experience, File (100%),
Comment, Ownership (66%)

0 Gerrit (1), Pull-
based (1), Others
(1)

Review Participation 3 Experience (100%), Code, File,
Workload, Participant, Comment
(66%)

0 Gerrit (2), Pull-
based (1), Others
(0)

Review Process 2 Code, Revision, Participant
(100%)

0 Gerrit (0), Pull-
based (1), Others
(1)

CI & Review 2 Code, Comment, Description,
Experience, File, Revision, Tem-
poral (100%)

0 Gerrit (0), Pull-
based (2), Others
(0)

Test & Review 2 - 0 Gerrit (1), Pull-
based (0), Others
(1)

Technical/Non-Technical & Review 3 Code, Module (100%), Defect,
Experience, Defect (66%)

67% Gerrit (0), Pull-
based (1), Others
(2)

39

(i.e., from RQ3). For instance, in Quality Assurance related papers, Code is
computed for all (i.e., 100%) and around 82% of papers take Ownership into
account. In Acceptance Prediction related papers, all three papers compute the
metrics of Code, File, and Experience. On the other hand, Table 3.7 also shows
that common datasets were not commonly adopted by researchers. For instance,
since two of the three papers in Technical/Non-Technical and Review were written
by the same authors, the ratio for having a common dataset is high (i.e., 67%).
This means that researchers from different groups prefer to construct their own
datasets to conduct their study. Another reason is because the technology used
to generate datasets constantly evolve, thus, deeming any prior datasets as being
outdated. Furthermore, since more datasets are taken from either the Gerrit or
GitHub Pull-request API, they sometimes miss the essential elements needed for
a specific study. This process can be time-consuming, and could be easily resolved
by using a benchmark. We also find that different review settings (i.e., Gerrit
and Pull-based) have different emphases on the SE topics. For example, Quality
Assurance datasets are almost from Gerrit while in CI and Review datasets are
all from Pull-based review settings. One possible reason is that some specific
metric sets are not easily available to be retrieved from different review settings.

6 Threats To Validity

I now discuss threats to the validity of our mapping study.

External validity. External validity is concerned with our ability to generalize
based on our results. The results of this mapping study are considered with regard
to the CR domain, while the validity of conclusions is applicable only to the CR
context. The external validity threats are thus not applicable.

Construct validity. Construct validity is concerned with the degree to which
our measurements capture what we aim to study. During the qualitative analysis,
especially for the methodology and the contribution classification, methodologies
and contributions may be miscoded due to the subjective nature of our coding
approach. To mitigate this threat, three co-authors sat in a round-table and

40

did the classification. If a dispute occurred, the full contents of the papers were
discussed before the consensus was reached.

Internal validity. Internal validity is the approximate truth about inferences
regarding cause-effect or causal relationships. We summarize three potential in-
ternal threats. The first threat is related to the venue selection. In this mapping
study, we only consider 34 top venues considering their online citation indices and
feedback from the software engineering community, similar to the work of Mathew
et al. [98]. Thus, there will always be a venue missing from such a study and can
be considered. However, we believe these 34 top venues can represent the best
practice for the CR research. The second threat is related to the paper selection
of the studies during the screening process. Due to the large amount of hits from
our search string, our initial step includes the first author scanning through and
discarding papers based on titles and abstracts, which potentially raises a bias
in the paper selection. Nevertheless, we are confident of this threat, as the first
author is an existing code review researcher and is familiar with the domain. The
third possible internal threat is with regard to the terms that are used in our
search string. The case might exist that the search string will not cover all terms.
To reduce such risk, in the initial round, we manually checked twenty CR related
papers to group the term candidates, and we were confident that the existing
search term is sufficient.

Conclusion validity. Conclusion validity is the degree to which conclusions we
reach about relationships in our data are reasonable. In the case of our datasets,
there is a threat that our grouping is not accurate. Since there is no related work
that has similar results, we cannot verify our findings. To mitigate this, we rely
on the systematic guidelines for our outcomes. In addition, we publish a website
and open it to both researchers and practitioners to criticize or add to our results.

7 Summary

Code review (CR), as a well-known practice, plays a vital role in software quality
assurance. In the recent decade, the contemporary review tools have made the

41

review process now being light-weight and have been widely adopted in both open-
source and industrial projects. Due to the availability of datasets brought by these
review tools, CR related researches are largely carried out. In order to understand
the state-of-the-art practices„ we first conduct a systematic mapping study to
provide a visual summary of the benchmark potential within the CR domain
through 112 papers that are published in premium conferences and journals.

Three main maps are visualized. First, concerning the map between method-
ologies and contributions, we find that 65% of CR researches use sound evaluation
methodology (i.e., 73 papers), targeting particularly socio-technical and under-
standing of CR. While, there is a lack of papers that report the experience and
propose solutions to deal with CR problems (i.e., four papers and thirteen papers,
separately). Second, concerning the map of the datasets, our results show that
few researches provide replicable datasets, i.e., around 50%. Third, concerning
the map of metrics, we identify 457 metrics which are grouped into sixteen core
metrics sets, and we observe that the SE topic of quality assurance is more likely
to use CR metrics to conduct the research, with eleven papers being classified.
Additionally, we find that different research topics use particular metric sets,
which provides the potential for a benchmark.

The next step is the creation of a benchmark to facilitate future research
against the state-of-the-art. With the rise of machine learning and AI techniques,
a common benchmark is needed as it will facilitate CR researchers to accurately
compare techniques against each other and propose new approaches. To en-
courage this framework construction, we provide a listing of methodologies and
contribution, 42 public datasets, and 457 identified metrics across nine research
topics which is available at https://naist-se.github.io/code-review/.

42

https://naist-se.github.io/code-review/

Part II

Link Sharing in Code Review

43

4 | Understanding Shared Links
and Their Intentions to Meet
Information Needs

In the previous chapter, through the mapping study, the literature reviews reveal
that it is challenging to identify and acquire needed information in the context of
code review research field. Hence, in this chapter, an empirical study is performed
to gain a deeper understanding of the role of sharing links in fulfilling information
needs during code review process.

1 Introduction

Software code reviews serve as quality assurance for software teams [70, 127].
From being a formal code inspection process conducted by face-to-face meet-
ings [47], nowadays the Modern Code Review (MCR) process becomes more flex-
ible with asynchronous collaboration through an online tool (such as Gerrit1,
Codestriker2, and ReviewBoard3). These online tools are now widely adopted in
both open sthece and proprietary software projects [126, 132]. Not only improving
the overall quality of a patch (i.e., software changes), Bacchelli and Bird [13] also
reported that MCR also serves as an effective mechanism to increase awareness
and share information: “Code reviews are good FYIs [for ythe information].”

1https://www.gerritcodereview.com/
2http://codestriker.stheceforge.net/
3https://www.reviewboard.org/

44

https://www.gerritcodereview.com/
http://codestriker.stheceforge.net/
https://www.reviewboard.org/

An effective review requires proper understanding. However, it is challenging
to identify and acquire the needed information to have a proper understanding
to conduct a review. This is especially a case for a large software project like
OpenStack, which has code reviews of over 20 million lines of codes that are sub-
mitted by over 100,000 contributors spread more than 600 code repositories [181].
Pascarella et al. [113] find that during reviews, reviewers often request additional
information about correct understanding, alternative solution, to improve patch
quality. Ebert et al. [46] report that reviewers often suffer from confusion due to a
lack of information about the intention of a patch (i.e., a rationale for a change).

Recent work points out that the link shared in the review discussion can
be used to provide information related to a review. Hirao et al. [69] show that
shared links between reviews can be used to indicate the information about patch
dependency, broader context, and alternative solution. However, the other types
of links other than review links were not studied in the work of Hirao et al. [69].
On the other hand, Jiang et al. [73] conducted a quantitative analysis to find
developers that share various types of links in ten GitHub projects. However,
this study does not systematically investigate the correlation between the shared
links and the review process, and lacks of qualitative analysis of why these various
types of links are shared.

Based on the findings of prior work (Hirao et al., 2019), we hypothesize that
sharing links may help developers fulfill the information needs. Yet, it is still
unclear about what types of information could be fulfilled by these various types
of links. To fill this gap, this work aims to explore the prevalence of link sharing,
systematically investigate the correlation between link sharing and review time,
and qualitatively investigate what are the intentions of sharing links. In this pa-
per, the intention is defined as the intention of sharing a link to meet a certain
type of information needed during code review. Through a case study of the
OpenStack and Qt projects (two large-scale and thriving open sthece projects
with globally distributed teams that actively perform code reviews), we iden-
tify 19,268 reviews that have 34,264 links shared during review discussions. We
formulate three research questions to guide the study:

• RQ1: To what extent do developers share links in the review
discussion? It is not yet known how a project of repositories uses link

45

sharing in their communities. Using a sample of well-known OpenStack
and Qt projects, we would like to investigate the trend of link sharing,
common domains in the project, and the link target types.

• RQ2: Does the number of links shared in the review discussion
correlate with review time? Prior studies [25, 83] analyzed the impact
of technical and non-technical factors on the review process (e.g., review
outcome, review time). However, little is known about whether or not the
practice of sharing links can be correlated with review time. It is possible
that link sharing may shorten the review time as it provides the required
information to a review, which might help reviewers to conduct a review
faster. To address this RQ, we conduct a statistical analysis using a non-
linear regression model to analyze a correlation between link sharing and
review time.

• RQ3: What are the common intentions of links shared in the
review discussion? Previous work [113] has identified different types of
information that are needed by reviewers when conducting a review. Yet,
little is known to what extent can link sharing meets such information needs.
Hence, we aim to investigate the intention behind link sharing in order to
better understand the role and usefulness of link sharing during reviews.

The key results of each RQ are as follow: For RQ1, the results show that in
the past five years, 25% and 20% of the reviews have at least one link shared in a
review discussion within the OpenStack and Qt. 93% and 80% of shared links are
the internal links that are directly related to the project. Importantly, although
the majority of the internal links are referencing to reviews, bug reports, and
sthece code are also shared in review discussions. For RQ2, the non-linear regres-
sion model results show that the internal link has a significant correlation with
the code review time. However, the external link is not significantly correlated,
for OpenStack and Qt. Furthermore, we observe that the number of internal
links has an increasing relationship with the review time. For RQ3, we identify
seven intentions of sharing links: (1) Providing Context, (2) Elaborating, (3)
Clarifying, (4) Explaining Necessity, (5) Proposing Improvement, (6) Suggesting
Experts, and (7) Informing Splitted Request. Specifically, for the internal links,

46

we observe that the most popular intention is to provide context. While for the
external links, to elaborate the review discussions (i.e., provide a reference or
related information) is the most common intention.

The results lead us to conclude that link sharing is increasingly used as a
mechanism of sharing information in a code review process, the number of in-
ternal links has a positive correlation with the review time, and the intention of
link sharing is often used to provide context understanding. For patch authors,
they should provide a clear context of the patch by sharing links (i.e., containing
implementation related information) for reviewer teams to better understand a
patch. For review teams, link sharing should be enctheaged, as results indicate
that it can fulfill information needs and contains crucial knowledge to assist the
author, which will support a more efficient review process. For researchers, with
the increasing usage of links, there is an opportunity for tool support for sug-
gesting shared links to retrieve useful information for both patch authors and
review teams. The study contributions are three-fold: (i) a large quantitative
and qualitative study on link sharing on the MCR process, (ii) a taxonomy of
seven intentions of sharing links, and (iii) a full replication of the study, including
the scripts and datasets. 4

1.1 Chapter Organization

The remainder of this chapter is organized as follows: Section 2 introduces the
background of the study. Section 3 describes the studied projects, the data prepa-
ration, and the analysis approach for each research question. Section 4 reports
the results of the empirical study. Section 5 discusses the implications from the
findings. Section 6 discloses the threats to validity. Finally, we conclude the
paper in Section 7.

2 Motivating Example

We highlight two challenges in identifying information needs in Code Review. The
first challenge is that the rationale to meet information needs is unclear. Prior

4https://github.com/NAIST-SE/LinkIntentioninCR/

47

studies found that missing a rationale and a lack of familiarity with existing code
(e.g., a lack of knowledge about the code that’s being modified) are the most
prevalent reasons for causing discussion confusion and low reviewer participation
in code reviews [46, 130]. Such confusion can delay the incorporation of a code
change into a code base. Patch description is another vital information to help
developers understand the changes. Tao et al. [144] stated that one of the most
important pieces of information for reviewers is a description of the rationale of
a change. In addition, the description length shares an increasing relationship
with the likelihood of reviewer participation [150]. The second challenge is un-
derstanding which information is needed to facilitate the review. As reported by
Bacchelli and Bird [13], understanding is the main challenge for developers when
doing code reviews. The most difficult task from the understanding perspective
is finding defects, immediately followed by alternative solutions. They point out
that context and change understanding must be improved if managers and de-
velopers want to match their needs. Recently, Pascarella et al. [113] highlights
the presence of seven types of high-level information needs, with the two most
prominent being the needs to know (1) whether a proposed alternative solution
is valid and (2) whether the understanding of the reviewer about the code under
review is correct.

To help developers find related changes, the code review tool like Gerrit has
provided functionalities that allow a patch author to share the links of reviews
that have related changes or in the same topics.5 Yet, we observe that developers
still share links in the review discussion. Figure 4.1 shows three motivating ex-
amples of how sharing links in the review discussion can be a means to fill in the
needed information. The first observation is that various links can be shared in a
review discussion to provide information. For instance, as shown in Figure 4.1(a),
the reviewer Anton Arefiev shared a link of a review in the PatchSet 7 (i.e., the
seventh revision of the review #289676) to inform the patch author of the review
#289676 that the review #284160 covered the current review #289676. Figure
4.1(b) shows another example where the reviewer melanle witt shared a link of
Python documentation in a review discussion of the review #207794 in order to
improve the coding format.

5https://gerrit-review.googlesthece.com/Documentation/user-review-ui.html

48

(a) Review comment with a review related link in the
review #289676 from OpenStack.

(b) Review comment with a python related link in the
review #207794 from OpenStack.

(c) Review comment with a review related link in the
review #150718 from OpenStack.

Figure 4.1: Motivating examples of link sharing in MCR process.

49

While the work of Hirao et al. (2019) extensively investigate the review links
shared in code reviews, these motivating examples show that links that point to
other information stheces are also shared in code reviews. Hence, in this study, we
aim to investigate the trend and characteristics of shared links in terms of their
types (internal or external) and the kinds of content to which those links point.
In this study, we define ‘internal links’ are the links that are directly related to
the project (e.g., review links, bug reports, git repository), while external links
are the links that refer to restheces outside the project (e.g., Python Document).

Apart from the various links, the second observation is that the intentions
behind sharing links can be different even if the shared links have the same
type. In Figure 4.1(a), the intention of the reviewer of sharing a review link is
to point out that the current review #289696 is no longer necessary. While, in
Figure 4.1(c), although the reviewer also shared a link to the review #150718,
the intention of the reviewer is to help the patch authors clearly understand the
context and code dependency of the current patch.

While the work of Jiang et al. [73] investigate the different types of links
shared in pull-based review, the motivating examples show that the intention of
providing information can be different even though the types of shared links are
the same. Thus, we aim to better understand the intentions behind link sharing
and to what extent can link sharing meet the information needs of review teams.

3 Case Study Design

In this section, we describe the studied projects and data preparation. Then we
present the analysis approach for each research question.

Studied Projects

Since we want to study the practice of link sharing, we focus on the projects
that use a code review tool. In this study, we select the projects that use the
well-known Gerrit platform, a review tool that is largely adopted by many open
sthece projects, where the review data is accessible through REST API. From
the range of open sthece projects that are listed in the work of Thongtanunam
and Hassan [146], we start with fthe projects: OpenStack, Qt, LibreOffice, and

50

(DP1) Clean datasets (DP2) Extract links

Review
Datasets

Cleaned
Datasets

Figure 4.2: An overview of data preparation.

Table 4.1: Studied projects.

OpenStack Qt

Studied Period 11/2011-07/2019 05/2011-07/2019
Reviews (#Merged/#Abandoned) 58,212 (45,439/12,773) 40,758 (35,284/5,474)
Reviewers 4,568 1,123
Reviews with Links 14,655 (25.2%) 4,613 (11.3%)
Unique Links 26,746 7,518
Total Links 31,698 7,988
Links per Review (1st Qu./Median/3rd Qu.) 1/1/2 1/1/2
Percent of Links Shared by Reviewers 62.3% 44.0%
Percent of Links Shared by Authors 37.6% 56.0%

Chromium, as these fthe projects actively perform code reviews through Gerrit.
However, we observe that a large proportion of LibreOffice reviews have only one
reviewer. For the Chromium project, we find that it is not trivial to analyze the
shared links based on their domains (i.e., most are under the google.com domain),
since we want to investigate whether the link is external or not. To gain more
insights and avoid potential errors, we exclude LibreOffice and Chromium from
the study. Therefore, in this paper, we perform a case study on OpenStack and
Qt projects.

OpenStack is an open sthece software project where many well-known orga-
nizations and companies, e.g., IBM, VMware, and NEC, collaboratively develop
a platform for cloud computing. Qt project is developed for creating graphical
user interfaces as well as cross-platform applications that run on various software
and hardware platforms, such as Linux, and Windows.

51

Data Preparation

Figure 4.2 describes an overview of the data preparation. the data preparation
process (DP) consists of two steps: (DP1) clean dataset and (DP2) extract links.

(DP1) Clean dataset. For two studied projects, we use the review datasets
from the work of Thongtanunam and Hassan [146]. In order to study the corre-
lation between review process duration and the link, we only include the reviews
whose status are abandoned or merged. we exclude reviews with open status,
since we can not calculate the review time of these reviews. Since we want to
investigate the trend of links that are shared in review discussions, we exclude
the comments that are posted by automated tools in the discussion thread. We
refer to the documentation of the studied systems6 to identify the automated
tools that are integrated with the code review tools. In addition, we exclude
the reviews that do not have comments posted by the reviewers (or have only
comments posted by the patch author). Table 1 shows the number of remaining
reviews that are studied in this work. For OpenStack, 58,212 reviews are cap-
tured from November 2011 to July 2019. Qt owns 40,758 reviews from May 2011
to July 2019.

(DP2) Extract links. To identify the links in the review discussion, we ap-
ply regular expression (i.e., ‘https?://\S+’) to search for hyper links in review
discussions. Finally, as shown in Table 4.1, we are able to collect 14,655 reviews
with 31,698 links and 4,613 reviews including 7,988 links for OpenStack and Qt
projects, respectively. Table 1 provides summary statistics of links per review and
whether the links are shared by a patch author or a reviewer. More specifically,
in the datasets, 37.6% of links in OpenStack are shared by the patch authors,
while 62.3% of links are shared by the reviewers. For Qt, 44% of links are shared
by the patch authors, while 56% of links are shared by the patch authors.

6https://docs.openstack.org/infra/manual/developers.html, and https://wiki.qt.io/CI
Overview

52

RQ1 Analysis

To answer RQ1: To what extent do developers share links in the review discussion?,
we analyze to which extent of links are shared in three main aspects: (1) the trend
of link sharing, (2) the common domains, and (3) the types of link targets. Below,
we describe the analysis approach for each aspect.

Link Sharing Trend. To investigate the trend of link sharing, we examine
how often reviews will have link sharing overtime. Similar to prior work [69], we
measure the proportion of reviews that have at least one link shared in the review
discussion in an interval of three months.

Common Domain in the Project. To analyze the domain popularity, we first
determine whether the links are internal (i.e., the links that are directly related
to the project), or external (i.e., the links that refer to the restheces outside the
projects. To identify whether the links are internal or external, we manually
examine the domain name and its homepage to determine the links are directly
related to the projects (i.e., internal links). More specifically, for OpenStack, we
determine the links with the domain names that have the ‘openstack’, ‘opendev’,
keywords (e.g., https://wiki.openstack.org/) as internal links of the OpenStack
project. We also consider the links under “https://blueprints.launchpad.net/open
stack” and “https://github.com/openstack” as the internal links of the OpenStack
project. Similarly, for Qt, we consider the links with the domain name that
has the ‘qt’ keyword as internal links of the Qt project. We also consider the
links under “http://github.com/qt/” as internal links of Qt. Links that are not
identified as internal links will be identified as external links. Once we identify
whether the links are internal or external, we examine the popular domain for
internal and external links. To do so, we measure the frequency of links in each
domain.

Link Target Types. To understand what kinds of link targets are referenced in
review discussions, we perform a manual analysis on a statistically representative
sample of the link dataset.

53

• (I) Representative dataset construction. As the full set of the constructed
data is too large to manually examine their link targets, we then draw a
statistically representative sample. The required sample size was calculated
so that the conclusions about the ratio of links with a specific character-
istic would generalize to all links in the same bucket with a confidence
level of 95% and a confidence interval of 5.7 The calculation of statistically
significant sample sizes based on population size, confidence interval, and
confidence level is well established [85]. We randomly sample 379 internal
links and 327 external links from the unique links of the OpenStack project,
and 363 internal links and 309 external links of the Qt project. To remove
the threat of links being inaccessible (404), the approach includes verifying
each link until the sample size is reached. To do so, we first randomly select
500 internal candidate links and 500 external candidate links for each stud-
ied project. Then we automatically verified and filtered out links that are
inaccessible. In the end, we filtered out 70 inaccessible internal links and 138
inaccessible external links for the OpenStack project, and 75 inaccessible
internal links and 147 inaccessible external links for the Qt project.

• (II) Manual coding. To classify the type of link targets, we perform two
iterations of manual coding. In the first iteration, the first two authors
independently coded 50 internal and external links in the sample. The
initial codes were based on the coding scheme of Hata et al. (2019) which
provides the 14 types of link targets in sthece code comments. However,
we found that their codes did not cover all link targets in the datasets.
Hence, the following five codes emerged from the manual analysis in the
first iteration:

– Communication channel: links target for the mailing list, chat room.

– Github activity: links target for pull requests, commits, and issues.

– Media: links target for pictures and videos.

– Memo: links target for the personally recorded documentation.

– Review: links target for the code review.
7https://www.surveysystem.com/sscalc.htm

54

Dependent
Variable

Explanatory
Variables

Fit non-linear
regression model

Cleaned
Datasets

Metric Computation Model Construction

Assess model
stability

Analyze
explanatory variables

Model Analysis

Figure 4.3: An overview of the RQ2 quantitative analysis.

To validate the codes, we perform a second iteration of manual coding. In
this iteration, the three authors of this paper independently coded another 30
internal and external links in the sample. Then, we measure the inter-rater
agreement using Cohen’s Kappa across the 19 types of link targets. The score of
the Kappa agreement is 0.83, which is implied as nearly perfect [156]. Based on
this enctheaging result, we divided the remaining samples into two sets. Then, the
first author independently coded the first set and the second author independently
coded the second set.

RQ2 Analysis

To answer RQ2: Does the number of links shared in the review discussion correlate
with review time?, we perform a statistical analysis using a non-linear regression
model to investigate the correlation between the link sharing and the review
process (i.e., review time), while consider several confounding variables. Similar
to the prior studies [130, 150], the goal of the statistical analysis is not to predict
the review time, but to understand the associations between the link sharing
and the review time. In this section, we first describe the selected explanatory
variables, then we describe the model construction, and finally, I explain how
we analyze the model. Figure 4.3 presents an overview of the RQ2 quantitative
analysis.

Explanatory Variables. Table 2 describes the 14 metrics that are used as
explanatory variables in the model. Since we want to investigate the correlation
between link sharing and the code review time, we count the number of internal
links, external links, and the total links. As prior studies have shown that several

55

Table 4.2: The studied explanatory variables.

Confounding variables Description
Add The number of added lines by a patch.
Delete The number of deleted lines by a patch.
Patch size The total number of added and deleted lines by a

patch.
Purpose The purpose of a patch, i.e., bug, document, fea-

ture.
Files The number of files what were changed by a patch.
Revisions The number of review iterations.
Patch author experience The number of prior patches that were submitted

by the patch author.
Comments The number of messages posted in a review discus-

sion by reviewers and the patch authors, excluding
messages for change updates and the number of in-
line comments.

Author comments The number of messages posted in a review dis-
cussion by the patch author, excluding messages
for change updates and the number of inline com-
ments.

Reviewer comments The number of messages posted in a review discus-
sion by reviewers, excluding messages for change
updates and the number of inline comments.

Reviewers The number of developers who posted a comment
to a review discussion.

Link sharing variables Description
External links The number of external links shared in the general

discussion.
Internal links The number of internal links shared in the general

discussion.
Total links The number of internal and external links shared

in the general discussion.

56

factors can have an impact on the review time [83, 149], we also include 11
variables shown in Table 2 into the model. Similar to the prior work [100, 150],
we classify a patch where its description contains ‘doc”, “copyright”, or “license”
words as documentation, while a patch where its description contains “fix”, “bug”,
or “defect” words is classified as bug fixing. The remaining patches are classified
as feature introduction.

For the dependent variable (i.e., review time), we measure the time interval in
hthes from the time when the first comment was posted until the time when the
last comment was posted. We did not include the time between the patch was
submitted and the first comment was made because this period of time could be
the review waiting time of a patch, which is not a key focus of this study.

Model Construction (MC). To investigate the association between link shar-
ing and review time, we choose the Ordinary Least Squares (OLS) multiple re-
gression model. This technique allows us to fit the nonlinear relationship between
the explanatory variables and the dependent variable. We adopt the model con-
struction approach of Harrell Jr. et al. (1984), which was also used by Mcintosh
et al. [101]. This construction approach also enables a more accurate and robust
fit of the dataset, while carefully considering the potential for over-fitting. The
model construction approach consists of five steps and we explain below:

(MC1) Estimate budget for degrees of freedom. As suggested by Harrell Jr.
et al. [64], we estimate a budget for the model before fitting the regression
model, i.e., the maximum number of degrees of freedom that we can spend.
We spend no more than n

15
degrees of freedom in the OLS model, where n

refers to the number of studied reviews in the dataset.

(MC2) Normality adjustment. OLS expects that the response variable (i.e.,
review time) is normally distributed. Since software engineering data is often
skewed, we analyze the distribution of review time in each studied project
before fitting the model. We use skewness and kurtosis function of the
moments R package to check whether or not the modeled dataset is skewed.
If the distribution of review time is skewed (i.e., p_value < 0.05), similar to
prior work [101], we use a log transformation to lessen the skew in order to
better fit the assumption of the OLS technique.

57

(MC3) Correlation and redundancy analysis. Highly correlated explanatory
variables can interfere with each other when examining the significance of
the relationship between each explanatory variable and the response variable,
which potentially leads to spurious conclusions. Hence, we use the Spearman
rank correlation (ρ) to assess the correlation between each pair of metrics.
We repeat this process until the Spearman correlation coefficient values of
all pairs of metrics are less than 0.7. Although correlation analysis reduces
collinearity among the explanatory variables, it may not detect redundant
variables (i.e., an explanatory variable that does not have a unique signal
from other explanatory variables). To assure that studied variables provide a
unique signal, we use the redun function of the rms R package to detect the
redundant variables and remove them from the models.

(MC4) Allocating degrees of freedom. After removing highly correlated and
redundant variables, we consider how to allocate degrees of freedom to the
remaining variables most effectively. Similar to prior work [101], we use the
spearman2 function of the rms R package to calculate the Spearman multiple
ρ2 between the explanatory and response variables. The larger Spearman
multiple ρ2 denotes to the higher potential of sharing a nonlinear relationship.
Thus, variables with larger ρ2 values are allocated more degrees of freedom
than variables with smaller ρ2 values. To avoid the over-fitting issue, we only
allocate three to five degrees of freedom to those variables with high ρ2 values
and allocate one degree of freedom (i.e., a linear relationship) to variables
with low ρ2 values.

(MC5) Fitting statistical models. Once we decide the allocation of freedom
degrees to the variables, we construct a non-linear multiple regression model.
Similar to prior work [101], we use restricted cubic splines which force the tails
of the first and last degrees of freedom to be linear, to fit the modeled dataset.
We use the rcs function of the rms R package to assign the allocated degress
of freedom to each explanatory variable. Then, we use the ols function of the
rms R package to construct the model.

Model Analysis (MA). After the model construction, we assess the goodness
of fitting the models and examine the relationship between the review time and

58

the explanatory variables especially for the number of internal and external links
shared in the review discussions. We analyze the model using the three steps: (1)
assessing the goodness of fit and model stability, (2) estimating the power of ex-
planatory variables, and (3) examining the relationship between the explanatory
variables and the review time. We describe each step in detail below:

(MA1) Assessing model stability. We use the adjusted R2 [65] to evaluate
how well the model fits the dataset based on the studied metrics. However,
the adjusted R2 can be overestimated if the model is overfit to the dataset.
Hence, we use the bootstrap validation approach to estimate the optimism of
the adjusted R2. To do so, we first generate a bootstrap sample, i.e., a sample
with replacement from the original dataset. Then, we construct a model using
the bootstrap sample (i.e., a bootstrap model). The optimism is a difference
in the adjusted R2 values between the bootstrap model when applied to the
original R2 optimism. Finally, we subtract the average R2 optimism from the
initial adjusted R2 value to obtain the optimism-reduced adjusted R2.

(MA2) Estimating the power of explanatory variables. To identify the vari-
ables that are highly correlated with the review time, we estimate the power
of explanatory variables that contribute to the fit of the model. Similar to
prior work [101], we use Wald χ2 maximum likelihood tests to jointly test a
set of model terms for each explanatory variable since these variables are allo-
cated more than one degrees of freedom. The larger the χ2 of an explanatory
variable is, the larger the contribution that the variable made to the model.
we use the anova function of the rms R package to report both the Wald χ2

value and its corresponding p-value.

(MA3) Examining relationship. Finally, we examine the direction of the
relationship between each explanatory variable and the review time. To do
so, we use the Predict function of the rms package to plot the estimated
review time while varying the value of a particular explanatory variable and
hold the other explanatory variables at their median values.

59

RQ3 Analysis

To answer RQ3: What are the common intentions of links shared in the review
discussion?, we conduct a qualitative analysis to investigate the intention of link
sharing. In particular, we perform manual coding on a representative sample.
Note that we use the same representative sample used in RQ1 (see 3). Below, we
describe the coding scheme and manual coding process.

Coding scheme of intentions for link sharing: We hypothesis that links
are shared to fulfill different information needs. Hence, we use the taxonomy of
information needs of Pascarella et al. (2018) as the initial coding scheme. I rely on
their taxonomy because their taxonomy is closely relevant to the study, i.e., what
kinds of information that was requested by reviewers during code review in the
MCR context, and the taxonomy has been validated based on a semi-structured
interview.

To test how well the taxonomy of information needs of Pascarella et al. (2018)
can be used to classify the intentions of link sharing, we randomly select 50
samples from the representative datasets and classify them into the taxonomy
of information needs. More specifically, we identify the category of information
needs which the share link aims to fulfill. This classification is conducted by the
two authors of this paper. After the classification, the first fthe authors discuss
whether the taxonomy of information needs can be used. We find that the links
can be classified into the taxonomy of the information needs of Pascarella et al.
However, we refine the taxonomy to focus on the intentions of link sharing since
the taxonomy of Pascarella et al. focuses on the reviewers’ questions. Table 4.3
shows the refined taxonomy of intentions of the work, which is derived from the
taxonomy of information needs of Pascarella et al.

Manual coding process: After we refine the taxonomy of intentions for link
sharing, we validate the coding schema by classifying another 30 links of the
representative samples based on the taxonomy. This coding was conducted by
the three authors of this paper. Then, we measure the inter-rater agreement
using Cohen’s Kappa. The average Cohen’s Kappa score is 0.72 which indicates
“substantial agreement” [156]. The somewhat lower agreement can be explained

60

Table 4.3: The taxonomy of intentions for sharing links.

Category Description Taxonomy of information needs [113]

Providing
Context

The link is shared to pro-
vide the additional informa-
tion related to the implemen-
tation.

Context–Reviewers ask about the in-
formation aimed at clarifying the con-
text of a given implementation

Elaborating The link is shared to com-
plete the information or ref-
erences related to the patch.

Rationale–Reviewers ask questions to
get a rationale why the patch was im-
plemented in a certain way.

Clarifying The link is shared to clar-
ify some doubts about the
review process or to correct
the reviewer’s understanding
of the patch.

Correct Understanding–Reviewers
ask questions to confirm the re-
viewer’s interpretation/understanding
or to clarify doubts.

Explaining
Necessity

The link is shared to inform
more suitable solutions or ex-
plain the reasons why the
patch is no longer needed.

Necessity–Reviewers need to know
whether the patch (or a part of it) is
necessary.

Proposing
Improve-
ment

The link is shared to point
out an alternative solution or
suggestion improvement.

Suitability of An Alternative Solu-
tion–Reviewers pose a question to dis-
cuss options and alternative solutions
to the implementation of the patch.

Suggesting
Experts

The link is shared to point
out to an expert (other de-
velopers) who should be in-
volved.

Specialized Expertise–Reviewers
ask other reviewers to contribute with
their specialized expertise.

Informing
Splitted
Patches

The link is shared to inform
that the patch has been split-
ted.

Splittable–Reviewers ask questions to
seek the possibility of splitting the
patch into multiple, separated patches.

61

0

10

20

30

20
11

−0
6

20
11

−1
2

20
12

−0
6

20
12

−1
2

20
13

−0
6

20
13

−1
2

20
14

−0
6

20
14

−1
2

20
15

−0
6

20
15

−1
2

20
16

−0
6

20
16

−1
2

20
17

−0
6

20
17

−1
2

20
18

−0
6

20
18

−1
2

20
19

−0
6

R
ev

ie
w

s
w

ith
 li

nk
s

ra
te

OpenStack Qt

Figure 4.4: The proportion of reviews that have links in an interval of three
months. In 2015-2019, 25% and 20% of the reviews have at least one link shared
in a review discussion within the OpenStack and Qt.

by the need to extrapolate the intention behind a link from its context in the
review discussion alone, without being able to interview the developer who added
the link. After the validation, we splitted the remaining links into two sets.
Then, the first author independently coded the first set and the second author
independently coded the second set. In total, we manually classify 1,378 links.
Note that when we classify the links, we also consider the textual content of the
comments that contain links and the entire discussion thread to have a better
understanding of the context.

4 Case Study Results

In this section, we present the results for each of the research questions.

62

7% 93%

20% 80%Qt

OpenStack

0% 25% 50% 75% 100%
Percent

Internal External

Figure 4.5: The proportion of internal and external links. 93% and 80% of links
that are shared in code reviews are internal links within the OpenStack and Qt.

RQ1: To what extent do developers share links in the review
discussion?

To answer RQ1, we analyze (1) the trend of link sharing (i.e., how often reviews
have shared links overtime), (2) the common domains of the shared links, and (3)
the types of link targets. Figure 4, 5, and Table 4 show the results of the analysis
which is described in Section 3. We now discuss the results below.

Link Sharing Trend. In 2015–2019, 25% and 20% of the reviews have at
least one link shared in a review discussion within the OpenStack and Qt, re-
spectively. Figure 4.4 presents the proportion of reviews that have at least one
link in the review discussion over time. We find that the proportion of reviews
has an increasing trend from 2011 until 2014 for both OpenStack and Qt. Then
the proportion of reviews remains at 20%–30% (OpenStack) and 15%–20% (Qt)
from 2014 and onwards. This result suggests that links are commonly shared in
a review discussion for code review.

63

Table 4.4: The five most common domains in OpenStack and Qt.

Internal External

OpenStack Qt OpenStack Qt

Top 1
review.openstack.org

(51%)
codereview.qt-project.org

(79%)
github.com

(15%)
paste.kde.org

(14%)

Top 2
github.com/openstack

(13%)
bugreports.qt.io

(6%)
docs.python.org

(4%)
github.com

(6%)

Top 3
bugs.launchpad.net

(7%)
testresults.qt.io

(4%)
gist.github.com

(4%)
msdn.microsoft.com

(5%)

Top 4
logs.openstack.org

(6%)
doc.qt.io

(2%)
bugzilla.redhat.com

(3%)
pastebin.kde.org

(3%)

Top 5
wiki.openstack.org

(4%)
wiki.qt.io

(2%)
stackoverflow.com

(2%)
gcc.gnu.org

(3%)

Common Domain in the Project. 93% and 80% of links that are shared in
code reviews are internal links. Table 4.4 shows the ratio between internal and
external links that are shared in OpenStack and Qt. We find the majority of
links that are shared in the code reviews are internal links (i.e., links that are
directly related to the projects). More specifically, Table 4.4 shows that 93% of
links shared in OpenStack reviews are internal links, while only 7% of the links
are external links (i.e., not directly related to OpenStack). Qt also has a similar
ratio, where 80% of the links shared in Qt reviews are internal, and 20% of the
links are external. These results indicate that links that are often shared in the
review discussion are directly related to the project. In addition, Table 4.4 shows
that the most common domains for the internal links are review.openstack.org
and codereview.qt-project.org, which account for 51% and 79% of the internal
links shared in OpenStack and Qt, respectively. The other common domains of
the internal links shared in OpenStack reviews are github.com/openstack (Open-
Stack mirror projects in Github), bugs.launchpad.net, log.openstack.org, and
wiki.openstack.org, which account for 30% of the internal links. For Qt, the
other four common domains of the internal links are bugreports.qt.io, testre-
sult.qt.io, doc.qt.io, and wiki.qt.io, which account for 14% of the internal links.
On the other hand, the most common domain of external links is github.com for
OpenStack and paste.kde.org for Qt.

64

Table 4.5: Frequency of link target types in our representative samples. The bold
target categories are complemented from the work by Hata et al. [66].

Internal External

OpenStack Qt OpenStack Qt

Licence - - 0.3% -
Software homepage 1.1% 0.6% 9.2% 3.6%
Specification 2.6% - 2.8% 0.6%
Organization homepage - - 0.6% 0.3%
Tutorial or article 7.1% 5.8% 18.7% 14.6%
API documentation - 2.5% 15.3% 16.5%
Blog post - - 2.8% 1.9%
Bug report 9.2% 9.9% 8.3% 8.4%
Research paper - - 0.3% -
Code 13.5% 4.1% 13.5% 10.4%
Forum thread - 0.8% 0.3% 0.6%
Book content - - 0.6% 1.0%
Q&A thread - - 1.2% 0.6%
Stack Overflow - - 3.1% 1.9%
Communication channel 2.6% 0.3% 4.9% 3.6%
Github activity 0.3% - 4.9% 3.6%
Media - - 2.1% 5.5%
Memo 5.8% 1.1% 5.8% 6.5%
Review 55.9% 73.6% - 0.3%
Others 1.8% 1.4% 5.5% 20.1%

65

Link Target Types. We now further examine what kinds of information to
which the shared links are referenced. Based on a manual coding on a statistical
representative sample, Table 4.5 shows that reviews (a set of code changes) are
the most frequently referenced by internal links, which account for 55.9% and
73.6% of the internal links for OpenStack and Qt, respectively. The other kinds
of information that are frequently referenced by the internal links are bug report
(9.2% for OpenStack; 9.9% for Qt), source code (13.5% for OpenStack; 4.1%
for Qt), and tutorial or article (7.1% for OpenStack; 5.8% for Qt). On the
other hands, we find that tutorial or article and API documentation are the two
most frequent targets referenced by external links, which account for 18.7% and
15.3%, and 14.6% and 16.5% the external links shared in OpenStack and Qt,
respectively. The other kinds of information that are frequently referenced by
the external links are source code (13.5% for OpenStack; 10.4% for Qt), and
bug report (8.3% for OpenStack; 8.4% for Qt). This might suggest that the
external links often reference to temporary information. Specifically, within the
Qt, we observe that 20.1% of external links are classified as Others. Through the
manual analysis, these links are mostly referred to the links that can be accessible
but requiring authentication. For example, when we click on the external link
https://paste.kde.org/pgjaet12z, the web page shows that we need to sign in or
sign up before continuing.

RQ1 Summary: In the past five years, 25% and 20% of the reviews have
at least one link shared in a review discussion within the OpenStack and
Qt. 93% and 80% of shared links are the internal links that are directly
related to the project. Importantly, although the majority of the internal
links are referencing to reviews, we find that the links referencing to bug
reports and source code are also shared in review discussions. In addition,
we find that the common target types of external links are tutorial and API
documentation.

66

RQ2: Does the number of links shared in the review discussion
correlate with review time?

To answer RQ2, we analyze the correlation between link sharing variables and
the review time, using a non-linear regression model. Figure 6 and Table 6 show
the results of our model construction and model analysis which is described in
Section 3. We now discuss our results below.

Model Construction. We first describe our model construction. Table 4.6
shows the surviving explanatory variables that are used in our models. Based
on the hierarchical clustering analysis, we remove those explanatory variables
that are highly correlated with one another, i.e., Patch size, # Comments, #
Reviewers, and # Total links. For the surviving explanatory variables, we do not
find a redundant variable, i.e., the variable that has a fit with an R2 greater than
0.9 during the redundancy analysis. The budgeted degrees of freedom are then
carefully allocated to the surviving explanatory variables based on their potential
for sharing a nonlinear relationship with the response variable as described in
Section 3.4. We spent 24 degrees of freedom on OpenStack and Qt models.

Model Analysis. We now analyze the goodness of fit of our models. Ta-
ble 4.6 shows that our non-linear regression model achieve an adjusted R2 of
0.3737 (OpenStack) and 0.4580 (Qt). The adjusted R2 scores are acceptable as
our models are supposed to be explanatory not for the predictive purpose [104].
Taking overestimation into account, after applying the bootstrap techniques with
1,000 iterations, we find that the optimism of an adjusted R2 is 0.0004 and 0.0007
for OpenStack and Qt models, respectively. The result indicates that our con-
structed models are stable and can provide a meaningful and robust amount of
explanatory power.

We now discuss the explanatory power of the variables of interests (i.e., #
External links, # Internal links) and their relationship with the review time. Ta-
ble 4.6 shows the explanatory power (Wald χ2 value) of our explanatory variables
that contribute to the fit of our models. In the table, the ‘Overall’ column shows
the Wald χ2 value of the entire model fit that the explanatory variable contributes
to the fit of the model, while the ‘Nonlinear’ column shows the Wald χ2 value

67

Table 4.6: Review time model statistics.

OpenStack Qt
Adjusted R2 0.3737 0.4580
Optimism-reduced adjusted R2 0.3733 0.4573
Overall Wald χ2 34,649 34,358
Budgeted Degrees of Freedom 3,873 2,711
Spent Degrees of Freedom 24 24
Confounding variables Overall Nonlinear Overall Nonlinear

Patch size
D.F.

† †
χ2

Add
D.F. 2 1 2 1
χ2 154∗∗∗ 153∗∗∗ 337∗∗∗ 337∗∗∗

Delete
D.F. 1

-
1

-
χ2 1o 0.53o

Purpose
D.F. 2

-
2

-
χ2 276∗∗∗ 131∗∗∗

Files
D.F. 2

-
1

-
χ2 31∗∗∗ 0.34o

Patch author Exp.
D.F. 1

-
1

-
χ2 220∗∗∗ 98∗∗∗

Comments
D.F.

† †
χ2

Author comments
D.F. 3 2 3 2
χ2 1936∗∗∗ 1679∗∗∗ 2216∗∗∗ 1549∗∗∗

Reviewer comments
D.F. 4 3 3 2
χ2 1360∗∗∗ 1066∗∗∗ 4908∗∗∗ 4036∗∗∗

Reviewers
D.F.

† †
χ2

Revisions
D.F. 3 2 3 2
χ2 3237∗∗∗ 1847∗∗∗ 2038∗∗∗ 1687∗∗∗

Link sharing variables Overall Nonlinear Overall Nonlinear

External links
D.F. 1

-
1

-
χ2 3o 0.22o

Internal links
D.F. 1

-
1

-
χ2 119∗∗∗ 78∗∗∗

Total links
D.F.

† †
χ2

†: This explanatory variable is discarded during variable clustering analysis |ρ|≥0.7
-: Nonlinear degrees of freedom not allocated
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:
o p≥0.05; ∗ p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001

68

400

800

1200

1600

0 5 10 15 20 25
The number of internal links

R
ev

ie
w

 T
im

e
(H

ou
rs

)

(a) OpenStack

50

100

150

0 2 4 6 8 10
The number of internal links

R
ev

ie
w

 T
im

e
(H

ou
rs

)

(b) Qt

Figure 4.6: The direction of the relationships between the number of internal
links and the code review time. The light grey area shows the 95% confidence
interval. It shows that the more internal links are shared during the discussion,
the longer review time will be taken.

that the nonlinear component of the explanatory variable contributes to the fit
of the model. Taking a look into link sharing variables, the statistics show that
there is no significant correlation between the number of external links and the
review time (p-value >0.05) for both studied projects. On the other hand, we
observe that the number of internal links has a significant correlation with the
review time (p-value <0.001). However, the explanatory power of the number
of internal links is not as large as the explanatory powers of the confounding
variables. More specifically, the Wald χ2 values of the number of internal links
account for only 0.4% (119

34,649
; OpenStack) and 0.3% (78

34,358
; Qt), while the Wald

χ2 values of the variables range from 0.4%–10% (OpenStack) and 0.3%–13% (Qt).
These results suggest that the internal link has a relatively weak correlation with
the review time when compared to other variables.

Figure 4.6 shows the relationship between the number of internal links and
the review time. We find that for both studied projects, the number of internal
links has an increasing relationship with the review time. In other words, the
more internal links shared in the review discussions, it tends to take a longer
time for the patch to be reviewed. There are two possible conjectures that how
internal links may contribute in a longer review process. One potential reason is
that developers may spend time on finding the related internal links. Another

69

possible reason is that since the internal links are closely related to the project
resources, it will take time for developers to pay attention to and understand the
project environment. Although the model shows an increasing relationship, we
can not explain the causality between the internal link count and the review time,
since before the internal links occur, the long review time could have already been
taken.

RQ2 Summary: Our non-linear regression models show that the internal
link has a significant correlation (but relatively weak) with the review time.
However, the external link is not significantly correlated with the review
time. Furthermore, we observe that the number of internal links has an
increasing relationship with the review time.

RQ3: What are the common intentions of links shared in
the review discussion?

To answer RQ3, we analyze (1) the kinds of common intentions of sharing links,
and (2) the frequency of these intentions within our studied projects. Below, we
first provide representative examples for each intention type, and then we discuss
the result of the frequency of intentions (Figure 7).

Taxonomy of Common Intentions. Seven intentions of sharing links are
classified through our qualitative analysis, which is described in Section 3:

(I) Providing Context. This category emerges by grouping discussions in which
the links are shared to provide additional information related to the implemen-
tation. The Ex 18 shows that the reviewer shared an internal review link for the
author to inform the review team of the dependent patch. During the classifica-
tion process, we observe that apart from sharing review links, the developers also
share specific log results or screenshots for review teams to better understand the
code change implementation. For instance, in the Ex 29, the reviewer self came
across a test failure. To reduce the confusion, the reviewer attached an external
memo link recorded with the log result for the review team to check. Note that

8https://codereview.qt-project.org/c/qt/qtbase/+/194731
9https://review.opendev.org/#/c/25515/

70

although the log result is from the CI tool of the studied project, the link that is
shared is not directly related to the project.

Ex 1
Reviewer: Depends on [internal review link].

Ex 2
Reviewer: Hmm, test failures from Jenkins look real, if confusing:
[external memo link].

(II) Elaborating. The category refers to the links that are shared to complete
the information provided in the review comment or references related to the patch.
In this case, the keywords are usually left on the comments such as “refer to”, “
for example, “for your information”. We show the following two representative
examples to describe the intention of elaborating regarding internal and external
links. In the Ex 310, the reviewer presented his review suggestion, and to complete
the opinion, the reviewer as well shared an internal code link as a reference for
the author. For the external link, as shown in the Ex 411, the author shared a
Q&A thread link to explain what is the needed HZ value.

Ex 3
Reviewer: I would prefer that you didn’t merge this. Like men-
tioned in previous review, if ’import’ is removed and there is no
code/comment/docstring, the license header should be removed
as well. Please refer to: [internal doc link]

Ex 4
Author: For example on page [external Q&A thread link] it is
well explained for what is this HZ value needed there.

(III) Clarifying. In this category, the links are shared to clarify some doubts
of review process or to correct the reviewer’s understanding of the patch. We
find the clarification can be claimed from either the reviewer or the patch author
aspect. The Ex 512 illustrates the case where the patch author used an internal
code link to address the reviewer’s doubts about the undefined behaviour with the

10https://review.opendev.org/#/c/75839/
11https://review.opendev.org/#/c/236210/
12https://codereview.qt-project.org/c/qt/qtbase/+/160883

71

code change. In the Ex 613, the patch author thought that signed types implicitly
converting to unsigned ones was not a problem. However, the reviewer shared
external doc links to explain that it is a true problem that should be focused on.

Ex 5
Reviewer: What is this fixing? Is there an undefined behaviour
i am not seeing?
Author: I probably need to add this to the commit message,
but: 1. by fixing it to QObject, we fix it to a specified size,
independent of which class type the member belonged to (see
long explanation in [internal review link].) 2. since it no longer
depends on the class type, the impl() functions are generated
based only on the signal and slot’s arguments, not on the class
they are from. This reduces template bloat. [internal code link].

Ex 6
Author: Signed types implicitly convert to unsigned ones. That’s
not a problem.
Reviewer: I think that *is* a problem: going from signed to
unsigned is not an integral promotion [external doc link], but an
integral conversion [external doc link]

(IV) Explaining Necessity. This category refers to the links that are shared to
inform more suitable solutions or explain the reasons why the patch is no longer
needed. We observe this category can happen in both internal and external links.
For example, as shown in the Ex 714, the reviewer shared a review link and
pointed out that the linked review had already changed network_type validation
using a simple approach. And further suggested that the current patch was
not really needed. The Ex 815 is related to the shared external link with the
intention of explaining necessity. One developer considered the submitted change
was not sufficient since libproxy already had a fix. At the end of the comment,
the developer shared an external GitHub link to indeed prove that the fix has
been done through this link. Note that the external GitHub link is not directly

13https://codereview.qt-project.org/c/qt/qtbase/+/186305
14https://review.opendev.org/#/c/22928/
15https://codereview.qt-project.org/c/qt/qtbase/+/200463

72

related to the GitHub of the studied project.
Ex 7
Reviewer: I would prefer that you didn’t merge this
The WIP ml2 patch at [internal review link] changes the net-
work_type validation in the core to simply validate a string. Is
anything more really needed?

Ex 8
Author: This change is insufficient. libproxy already has a mu-
tex, so adding another one won’t solve anything.
* [external GitHub link]
(V) Proposing Improvement. In this category, we group discussions in which

the links are shared to point out an alternative solution or suggestion improve-
ment. As shown in the Ex 916, the reviewer provided the author with an internal
GitHub code link and suggested the author should follow the proposed method.
Similarly, the reviewer asked the author to do something like what the shared
long-term memory link did in the Ex 10.17

Ex 9
Reviewer: The compute api loading code and the new hostapi
loading code (and network api loading code for that matter)
should follow the method that the volume api loading code uses
here: [internal GitHub code link]

Ex 10
Reviewer: could we do something like that: [external long-term memory
link]
... a bit rough but you should get the idea ... get all (without specifying any
attr) layer

(VI) Suggesting Experts. We define this category as the links are shared to
point out to an expert (other developers) who should be involved. In Ex 1118,
the author shared an internal review link related to the spec change and invited
the reviewer named John to have a review as well. In the Ex 1219, in order to

16https://review.opendev.org/#/c/12311
17https://codereview.qt-project.org/c/qt/qtbase/+/126975
18https://review.opendev.org/#/c/219248/
19https://review.opendev.org/#/c/219248/

73

address the reviewer’s question, the author used @ to suggest an expert along
with an issue link to point out he was an experienced maintainer regarding such
a situation.

Ex 11
Author: Hi John, spec is on review: [internal review link]. Could
you please review it?

Ex 12
Reviewer: Or is it a bug in the protocol?
Author: @psychon (a.k.a Uli Schlachter) who is a maintainer of
Awesome WM has a good comment regarding the situation with
the standard [external GitHub issue link].

(VII) Informing Splitted Patches. In this category, the links are shared to in-
form that the patch has been splitted. We only find this intention existing behind
the internal link sharing. As shown in the Ex 1320, the reviewer was trying to
abandon the current patch and split it into several small chunks to fulfill the
request, along with internal review links.

Ex 13
Reviewer: I’m abandoning this patch as a result of the request to
split this review into smaller chunks - these reviews are [internal
review link].

Frequency of intentions for link sharing. We now examine what are the
common intentions for sharing links in the review discussion. Figure 4.7 shows
the distribution of each intention category within internal and external types for
OpenStack and Qt. The figure clearly reveals that not all the intentions are
equally distributed and highlights the presence of a particular type. Specifically,
for internal links (i.e., directly related to the project), we observe that Providing
Context category is the most frequent intention in OpenStack and Qt (128 and
134 links, respectively). The result indicates that internal links are commonly
shared in the review discussion to provide additional information related to the
implementation of a patch. For the external links (i.e., not directly related to
the project), we find that the most common intention is Elaborating in both

20https://review.opendev.org/#/c/103167

74

Intentions behind links in Qt

Intentions behind links in OpenStack

Prov
iding C

ontex
t

Elaboratin
g

Clarify
ing

Exp
laining N

ece
ss

ity

Proposin
g Im

prov
ement

Suggesti
ng E

xp
erts

Inform
ing S

plitt
ed P

atch
es

0

50

100

0

50

100

F
re

qu
en

cy

Internal Links
External Links

Figure 4.7: Distribution of seven intentions behind sharing links across the studied
projects. The results show that Providing Context and Elaborating are the most
common intentions for internal and external links, respectively.

projects (145 and 115 links, respectively). This finding suggests that external
links are commonly shared to complement the information provided in the review
comment.

Table 4.7: The three most frequent intentions of sharing review links.

Intention OpenStack Qt

Providing Context 40% 40%
Explaining Necessity 23% 18%
Elaborating 19% 16%

Upon closer inspection on the review links (i.e., the most common shared link
target in RQ1), as shown in Table 4.7, we find that the most frequent intention
is to provide context, accounting for 40% for both OpenStack and Qt project.
Through our manual coding, we observe that such context is usually concerning

75

the patch dependency21 and integration test environment.22 The second most
frequent intention of sharing review links is to explain necessity, accounting for
23% and 18% for the OpenStack and Qt project, respectively. The third most
frequent intention is to elaborate, i.e., 19% and 16% for the OpenStack and Qt
project, respectively.

RQ3 Summary: We identify seven intentions of sharing links: (1) Provid-
ing Context, (2) Elaborating, (3) Clarifying, (4) Explaining Necessity, (5)
Proposing Improvement, (6) Suggesting Experts, and (7) Informing Split-
ted Request. We find that providing context is the most common intention
for sharing internal links and elaborating (i.e., providing a reference or re-
lated information) to complement review comments is the most common
intention for sharing external links.

5 Discussions

In this section, we discuss the implications of our analysis results. To gain a
further insight of the perception of sharing links by developers, we conduct a
survey study with OpenStack and Qt developers. Below, we first present the
results of our survey. Then we provide suggestions to the patch author, review
teams, and researchers.

5.1 Developer Feedback

To gain insights into developer perception of link sharing, we sent out a survey23

to OpenStack and Qt developers, with the goal to (i) receive feedback on the
three study findings, (ii) solicit developers’ opinions, and (iii) collect insights into
the developer experience with existing functionalities (i.e., related changes, same
topic). The survey consists of two likert scale questions and five open-ended
questions. We sent our online survey invitation to 1,871 developers who have
shared links in the past based on our studied dataset. The survey was open from

21https://review.opendev.org/#/c/612393/
22https://review.opendev.org/#/c/453537/
23https://forms.gle/hiBameBdGFMhnxNSA

76

January 22 to February 13, 2021. We received responses from 53 developers in
total. To analyze the responses of the open-ended questions, we use the card
sorting method. Below, we present our survey questions and discuss the survey
results.

Feedback on Findings of RQ1 and RQ2. Table 4.8 shows the feedback on
our findings of RQ1 and RQ2. For the finding of RQ1, forty-eight respondents
(90% = 48/53) agreed that developers often share internal links to reference
reviews, bug reports, and source code, while external links often reference tu-
torials and API documentation. In the open-ended questions, six respondents
reported that the external link target is also to point out to bug reports out-
side the projects. This response is consistent with our analysis results of RQ1
as well, i.e., bug report is the fourth frequent external link target (see Table 5).
Interestingly, one respondent stated that “This (links) is useful for example for
newcomers that may have missed guidelines or did not found the corresponding
bug report when doing submitting a fix.”.

We found that eleven respondents partially agreed with the finding of our RQ2,
while fifteen respondents did not have opinion and twenty-seven respondents dis-
agreed with our findings. One of the respondents who agree cited that “Sometime
we are not familiar wit the exact context of internal item.”. Eleven respondents
who did not agree reported that the information brought with the shared links
is useful and could aid the review process. For instance, one respondent cited
that “Links usually provide a concise and clear answer compared to trying to ex-
plain it in prose.”. Such perception of developers is consistent with our intuition
as stated under the RQ2 Motivation in the Introduction. However, the analysis
result shows an inverse relationship. There could be other confounding factors
that play a role, and future work should further investigate the causality of this
relationship.

Survey on Intentions of Sharing Links. In the survey questions, we also
asked the respondents to select the intention(s) that they usually use when shar-
ing link. Table 4.9 shows the most selected intention of sharing link is to pro-
vide context (48/53 = 90% of respondents).The second most frequent intention
from developers was to explain necessity using links (forty respondents voting),

77

Table 4.8: Feedback on findings of RQ1 and RQ2, using the Likert-scale scale
below: 1 = Strongly disagree, 2 = Partially disagree, 3 = No opinion, 4 = Partially
agree, 5 = Strongly agree.

1 2 3 4 5

Finding of RQ1–“Developers often share in-
ternal links to reference reviews, bug reports
and source code, while external links often
reference tutorials and API documentation.”

0 3 2 31 17

Finding of RQ2–“A review that has an inter-
nal link shared during its review discussion
is likely to take reviewing time longer than
other reviews.”

3 24 15 11 0

Table 4.9: Respondents feedback on the intentions for sharing links.

Intention Respondent Count

Providing Context 48
Explaining Necessity 40
Elaborating 35
Clarifying 33
Proposing Improvement 26
Informing Splitted Patches 17
Suggesting Experts 6
Others 3

followed by the intention to elaborate (thirty-five respondents voting). These
frequent intentions are overall consistent with our findings of our RQ3, especially
for internal links (see Fig. 7). The least frequent intentions from respondents are
to inform splitted patches (17 respondents) and suggest experts (6 respondents).
In regards to the open-ended feedback, one respondent stated that “Usually when
doing a code review, if an expert should take a look at the review, he will likely be
added by one of the reviewer if not already by the submitter.”.

78

Survey on Perception of Existing Functionalities of Sharing Related
Patch . Finally, we asked the respondents about their experience and percep-
tion of the Gerrit functionalities, which provide review links of related changes
and the same topic. Out of thirty-five responses, twenty-four respondents claimed
experience in using the functionalities. On the one hand, fourteen respondents
acknowledged the usefulness, especially to find related patches or track depen-
dencies. On the other hand, respondents did express limitations, e.g., “ It seems
useful for seeing what changes are submitted at a similar point in the change his-
tory, but doesn’t seem useful for finding patches that are related by content (e.g.,
changing the same feature) but separated by longer periods of time.”.

When we asked about the differences between existing functionalities and the
practice of sharing links in the review discussion, twelve respondents acknowl-
edged how both approaches can complement each other. For example, one of
the respondents commented: “The tool can help you find information you were
already looking for, but the posting of a link is a communication option to help
convey the idea to other people.”.

5.2 Suggestions

Based on the our results of RQs 1-3 and the survey results, we now present our
suggestions of the study.

Suggestions for Patch Authors. Our RQ1 shows that the majority of
shared links are directly related to the project. Figure 5 shows that 93% and
80% of shared links are internal links for OpenStack and Qt, respectively. The
link targets are diverse from different locations with the complexity of projects.
As shown in Table 5 from RQ1, we found eleven different target types. We
suggest that in the case of well-documented projects (i.e., OpenStack and Qt),
patch authors (especially for newcomers or novice developers) should read the
project related guidelines to be familiar with the environment before their sub-
mission. For instance, in the review #3784324, one reviewer shared a link related
to the Gerrit Workflow (i.e., https://wiki.openstack.org/wiki/Gerrit_Workflow)
with the patch author who was newly to the project, to avoid the broken con-
flict. This is also supported by the responses of developers: “This (links) is useful

24https://review.opendev.org/#/c/37843

79

for example for newcomers that may have missed guidelines or did not found the
corresponding bug report when doing submitting a fix.”.

Through our qualitative analysis in RQ3, the observation suggests that the
information brought by the shared links is helpful as an indicator for review
teams to clearly understand the patch implementation context. For one example
of clarifying intention (Ex 5) shown in Section 4.3, during the review process, the
reviewer got confused about the behaviour of the fix. To reduce the confusion, the
author decided to improve the patch content in the commit message, along with
shared links to supplement further explanation. Another example of elaborating
intention (Ex 4) illustrates that to help the review team better understand what
is HZ value, the patch author shared a Q&A thread link as a reference. One
surveyed respondent also suggested that “It could also decrease the review time
by making more clear the intent of the code change.”. Inspired by these examples,
we encourage patch authors to provide more information such as implementation
related information via shared links during their submission, in turn to receive
efficient feedback from review teams quicker and reduce the discussion confusion.

Suggestions for Review Teams. Our study indicates that the practice of
sharing links can fulfill various information needs. Seven intentions are classified
as shown in Table 3. Our frequency analysis in RQ3 shows that the links are
commonly shared to provide the context, further elaborate, and clarify doubts.
Moreover, the information that is shared through links is also diverse. The exam-
ple of providing context intention (Ex 2) in Section 4.3 shows that one reviewer
shared an external memo link which was recorded with CI tool test failure results,
in order to solve the confusion among the review team and the patch author. On
the other hand, as shown in the example of explaining necessity intention (Ex 7),
the reviewer noticed that a related patch already changed the network_type val-
idation and shared this review link in the review discussions to suggest that the
current patch was no longer needed. These findings show that sharing links can
help developers fulfill the information needs (the challenges discovered by Pas-
carella et al.), which potentially saves the reviewer effort. Thus, we suggest that
during the future review process, the review teams should share links to transfer
the needed information for guiding the patch author and the review process, es-
pecially for the review team that does not adopt such practice. One respondent

80

from our survey commented that “Links usually provide a concise and clear an-
swer compared to trying to explain it in prose.” Our suggestion also extends the
suggestion of Pascarrella et al. that in addition to automatic change summariza-
tion, sharing links could be another method to meet the information needs. We
believe that such information may help to conduct a more efficient review and
also assist with mentoring new members to the review team.

Suggestions for Researchers. Our RQ1 results indicate that link sharing is
becoming a popular practice during review discussions in the MCR. Furthermore,
Figure 4 shows that in the last five years, around 25% and 20% of the reviews
have at least one link within the OpenStack and Qt project. As the practice
of linking sharing increases, new opportunities arise for researchers to develop
tool support, especially to recommend related and useful links for both the patch
author and review teams in order to facilitate the review process. An intelligent
tool may reduce the time for developers to find the needed links. We propose
the following three potential features that could be embedded in the future code
review tool: First, the mechanism to automatically recommend related patches
can be improved not only based on the similar change history, but also considering
the patch contents. Such limitation is also pointed by the responses “It seems
useful for seeing what changes are submitted at a similar point in the change
history, but doesn’t seem useful for finding patches that are related by content (e.g.,
changing the same feature) but separated by longer periods of time.”. Second, a
functionality to detect alternative solution patches (i.e., patches aim to achieve
the same objective) is needed, since our empirical study shows that the second
most frequent intention of sharing review links is to explain necessity (See Table
7). Third, a tool to recommend guideline and tutorial related link would be
especially useful for novice developers and help them to be familiar with the
project environment. This study also lays the groundwork for future research on
the links shared in the review process to generate the structural and dynamic
properties of the emergent knowledge network, aiming to enable more effective
knowledge sharing within the project.

81

6 Threats to Validity

We now discuss threats to the validity of our empirical study.

External Validity. We perform an empirical study on two projects relying on
Gerrit review tools. Although OpenStack and Qt commonly used in the prior
research, the observations based on this case study may not generalize to other
projects or peer review settings such as the pull-based review process. However,
our goal is not to build a theory that can be fit to all projects, but rather to
shed light in some large open-source projects, the links being often shared in the
code reviews to provide the context, elaborate to complement review comments.
We only focus on the large open-source projects with distributed teams, since
most of the code review activities are performed through the code review tool
(the data is available). The data or communication recorded in the small or
medium team may be incomplete as they can have in-person communication or
using other channels to discuss, like slack. Nonetheless, additional replication
studies would help to generalize our observations. Thus, in order to encourage
future replication studies, our replication package is available online including the
raw review datasets, manually labeled link targets and their intentions, and the
script to construct the non-linear regression model.

Construct Validity. We summarize two threats regarding construct validity.
First, in the identification of external and internal links, we apply the keyword
search to automatically split domains into external and internal types. However,
cases might occur where some domains not including any indicated keywords can
still belong to internal links. To reduce such bias, we manually click the domains
to validate the correctness carefully.

Second, in our qualitative analysis, especially for intention classification, in-
tentions may be miscoded due to the subjective nature of our coding approach. To
mitigate this threat, we took a systematic approach to first test our comprehen-
sion with 30 samples using Kappa agreement scores by three separate individuals.
Only until the Kappa score reaches more than 0.7 (i.e., 0.83 for link targets and
0.72 for link intentions), indicating that the agreement is substantial (0.61–0.80)

82

or almost perfect (0.81–1.00), we were able to complete the rest of the sample
dataset.

Internal Validity. Four related threats are summarized. The first threat is
concerning the link extraction. In this study, we only consider the links which
are posted in the general comments. We understand that links can also be shared
in the inline comments. However, the prior work [69] pointed out that the pro-
portions of links in the inline comments are relatively low, accounting for 18%
and 10% for OpenStack and Qt project, respectively. The analysis of links shared
in inline comments may provide further insights, but may not have a large impact
on our findings in this paper.

The second threat is related to the results derived from the statistical models
that we fitted to our data. Though we can observe the correlation between
explanatory and dependent variables, the causal effects of link sharing on the
review time cannot be represented. Thus, future in-depth qualitative analysis
or experimental studies are needed so as to better understand the reasons and
effects of link sharing impact.

The third threat is regarding our factor selection to fit the statistical models.
Other factors might also influence the review time. For instance, the prior study
showed that the code ownership has an impact on the review process [149]. Yet,
we take commonly used metrics into account similar to the work conducted by
Kononenko et al. [83]. We are confident that these selected explanatory factors
are appropriate to be considered and measured.

The last threat is concerning the model performance overestimation. An
overfit model may exaggerate spurious relationships between explanatory and
response variables. To mitigate this concern, we validate our model results using
the bootstrap-calculated optimism with 1,000 iterations.

7 Summary

In this paper, we perform an empirical study on two open source projects, i.e.,
OpenStack and Qt, to (1) analyze to what extent do developers share links, (2)
analyze the correlation between link sharing and the review time using the sta-

83

tistical model, and (3) investigate the common intentions of sharing links. Our
results show that the majority of shared links are internal links (directly related
to the project), i.e., 93% and 80% for OpenStack and Qt. We find that although
the majority of the internal links are referencing to reviews, the links referencing
to bug reports and source code are also shared in review discussions. Through
the statistical models, our results show that the number of internal links has an
increasing relationship with the review time. Regarding the intention classifica-
tion, we identify seven intentions behind link sharing, with providing context and
elaborating being the most common intentions for internal and external links.

Our study highlights the role that shared links play in the review discussion
and the link is served as an important resource to fulfill various information needs
for patch authors and review teams. The next logical step would be a deeper study
of investigating the causality of these factors and understanding the reasons why
it takes a longer time to complete the review. Future research directions also
include the extension of a more exhaustive study that investigate the small and
medium open-source projects, the in-depth analysis of link sharing practices (e.g.,
an impact of links shared by a patch author and reviewers on the review process),
the potential for tool support, and the management of the collective knowledge
within projects.

84

5 | An Exploration of Cross-
Patch Collaborations via
Patch Linkage

Empirical results in Chapter 4 show that the most common links shared by de-
velopers are review links (patch related links). As highlighted in the recent work,
collaboration is crucial and becomes a challenge during code review process. This
chapter hypothesizes that patch linkage may have association with collaborations.
Specifically, this chapter investigates to what extent do developers collaborate
across linked patches after the patch related links are shared.

1 Introduction

Software development teams nowadays benefit from online code review tools (e.g.,
Gerrit, Codestriker, and ReviewBoard) to effectively inspect patches and improve
the code quality of their projects, while enabling the teams to perform synchro-
nized code reviews that are more lightweight and flexible [132]. On the other
hand, a large number of code reviews are being performed by software teams
as new patches (i.e., a set of code changes) frequently occur in a contemporary
code review setting [126]. For example, the 2018 OpenStack User Survey report1

showed that about 70,000 patches were reviewed, with an average of 182 code
reviews changes per day. Such a large number of code reviews potentially poses a

1https://www.openstack.org/user-survey/2018-user-survey-report/

85

new challenge of collaboration (e.g., improving the patch, fixing defects) during
code reviews and development tasks.

More specifically, recent studies highlight evidence of why developers should
collaborate across code review tasks. Zhang et al. [178] found that redundant
patches (i.e., patches that address the same task or problem) are often submitted
for a review in software projects hosted in GitHub. Ebert et al. [46] observed that
the inclusion of more people in the code review increases their awareness of the
code change, i.e., confusion resolution contributes to knowledge sharing. Recently,
Wang et al. [158] observed that developers are likely to share links during review
discussions with seven intentions to fulfill information needs. Meanwhile, Hirao
et al. [69] shed light that the patch linkage (i.e., posting a patch link to another
patch) is used to indicate patch dependency, competing solutions, or provide
broader context. As the recent work has shown that patch linkage can increase
the awareness of the related patches, we further investigate to what extent do
developers collaborate across these linked patches.

Figure 5.1 provides an illustrative scenario where collaboration occurs after
the patch linkage. As shown in the figure, a reviewer Pink in Patch A posted a
patch link to Patch B in the review discussion. In this patch linkage, we consider
Patch A as a source patch and Patch B as a target patch. After the patch link
is posted, a developer Green who participated in the Patch A discussion votes
and leaves review comments in Patch B. At the same time, a developer Blue who
participated in the Patch B discussion before the linking time could also provide
comments in Patch A discussion. We consider either of these two cases as a
collaboration occurrence.

In a realistic scenario (i.e., review at https://review.openstack.org/#/c/
211019), we observed that a reviewer posted a comment with a collaboration
request to the patch author:

‘Could you please sync your efforts with another patch [https://review
.openstack.org/#/c/209612/]?’

After the patch link is posted, we observe that the author and one of the reviewers
from Patch 211019made the specific review comments related to the code changes
in Patch 209612. We hypothesize that there exist collaborations (cross-patch
collaborations) that occur after the patch linkage.

86

https://review.openstack.org/#/c/211019
https://review.openstack.org/#/c/211019

Figure 5.1: A conceptual illustration that describes (1) a linkage between two
patches is identified and (2) a collaboration activity happens where a developer
on one patch contributes to the review of the other patch.

In this work, we conduct an empirical exploration study of 368 patch linkages
from a total of 8,612 linked patches to better understand the intentions of the
patch linkage (e.g., requesting a collaboration) and the degree to which collabora-
tion occurs after the patches are linked. Furthermore, we investigate how different
types of linkage sharing lead to collaboration opportunities and characterize the
contributions that follow after the link is identified.

2 Data Collection

For our experiments, we used the OpenStack review dataset provided by Thong-
tanunam and Hassan [146]. The dataset includes 58,212 patches dated from
November 2011 to July 2019.

Since we focus on the collaboration and contributions done by patch authors
or reviewers, we exclude the comments that are posted by automated tools in

87

Table 5.1: The prevalence of link types and their timing nature.

Link Type Count
Patch-linked Time (# days) Patch-closed Time (# days)

1st Qu. Median Mean 3rd Qu. 1st Qu. Median Mean 3rd Qu.

Requesting collaboration 57 1.2 14.1 48.8 56.5 3.3 20.6 92.1 67.2
Sharing information 211 0.9 11.6 38.3 48.2 1.0 10.8 55.1 49.2
Pointing out an alternative solution 100 0.4 4.0 31.7 32.8 0.0 0.9 31.2 19.2

the discussion threads. To do so, we refer to the documentation of the studied
system2 to identify the automated tools that are integrated with the code review
tools.

To identify the patch links, we applied the regular expression to search all
messages in the review discussions that include a patch URL in the following for-
mat: https?://review.openstack|opendev.org/#/c/[1-9]+[0-9]*. A total of 8,944
pairs of patches are retrieved. Then we exclude the case where the source and
target patches are the same. In our study, we keep the cases where (i) the patch
linkages are written by the same patch authors and (ii) the patch authors post
links by themselves, as we assume that collaboration could occur between the
reviewers of both patches. Finally, we obtain 8,612 pair of patches that met our
experiment criteria.

3 Preliminary Study

Although Hirao et al. [69] have shown that patch linkage is mainly for team
awareness (i.e., indicating dependency, providing broader context, and pointing
out an alternative solution), we hypothesize that the sharing of patch linkage
has association with developer collaboration across the patches. The goal of our
preliminary study is to first analyze the requests made for collaboration and then
identify collaboration after the patch linkage.

3.1 Requesting Collaboration

We perform a manual analysis to investigate the intention behind the patch link-
age. More specifically, our analysis mainly focuses on how often the patches are

2https://docs.openstack.org/infra/manual/developers.html

88

linked to request collaboration. Below, we describe our manual coding based on
a statistically representative sample of our patch linkage dataset:

• Representative dataset construction. As the full set of our constructed
data is too large to manually examine their collaboration intention, we then
draw a statistically representative sample. The calculation of statistically
significant sample sizes based on population size, confidence interval, and
confidence level is well established [85], with a confidence level of 95% and
a confidence interval of 5. We randomly sample 368 patch linkages.3

• Manual coding. In this step, we classify whether the patch linkage is for
requesting collaboration or not. Based on the finding of prior work, patch
linkage can be also for sharing information or pointing out an alternative
solution. Hence, we classify the intention of patch linkages into three main
types:

– Requesting collaboration: Patch linkage for requesting collaboration
is the linkage where a developer (either a patch author or reviewer)
posts a link with a message that explicitly requests other developers
to collaborate in the target patch. In this case, developers often write
the message which includes words such as ‘help’, ‘collaborate’, ‘inte-
grate’ or ‘rebase on’. For example, “Patch Set 1: Code-Review-1 Can
we please rebase this on https://review.openstack.org/#/c/93842/ that
review ensures specific values is present in the string for the flag to be
switched on. thanks, dims”.

– Sharing information: Patch linkage for sharing information is the link-
age where a developer posts a link to increase team awareness (e.g.,
indicating patch dependency, providing broader context)

– Pointing out an alternative solution: Patch linkage for pointing out
an alternative solution is the linkage where a developer posts a link to
mention that the target patch attempts to explicitly address the same
or similar objective as the source patch.

3https://www.surveysystem.com/sscalc.htm

89

To classify the patch linkages into a category, we consider the whole tex-
tual message that comes with the link. In some cases, we also read the
whole review discussion to understand the context. To test the compre-
hensive understanding of the constructed schema, we randomly select 30
samples from our representative dataset, and the three authors of this pa-
per independently coded these samples. Among the three coders, we obtain
a Kappa agreement score of 0.77 (i.e., substantial). The three coders then
discussed the samples with inconsistent codes to reach a consensus. Finally,
the remaining data was then coded by one coder.

Analysis I - Timeline of patch linkage. To understand the timeline of
patch linkage, we measure patch-linked time and patch-closed time. In terms of
the timeline, we hypothesize that the time differs between linkage categories. The
patch-linked time is the duration form when reviews start on a patch to the time
when the patch link is posted into the review discussion. The patch-closed time
is the duration from when a patch link is posted to the time when the review
is closed. Then, we perform a statistical analysis to examine if the time differs
between linkage categories (i.e., requesting collaboration, sharing information,
and pointing out an alternative solution) is different. To do so, we use a Kruskal-
Wallis test, i.e., a non-parametric test, to compute the statistical significance.

Results: We observe two main findings. First, patch linkage for request-
ing collaboration is relatively less frequent than others. Table 5.1 shows
that only 57 patch linkages (15%) where developers post a patch link with an
explicit request for collaboration. Most patch linkages (i.e., 211 patch linkages)
are posted for sharing information such as patch dependency and broader con-
text, while the other 100 patch linkages that are for pointing out an alternative
solution.

Second, we observe around 4 to 14 days (median) before a review
member posts a patch linkage. Regarding the patch-linked time, we find
that it takes a relatively long time for review teams to post patch linkage. The
median of 11.6, 4.0, and 14.1 days are taken for each linkage type, as shown
in Table 5.1. Related to the patch-closed time, we find that the patch with
the linkage indicating an alternative solution is more likely to be closed quicker
than the other categories. Interestingly, we find that the linkage for requesting

90

Table 5.2: The collaboration between the source patch and target patch.

Collaboration Direction Link Type Occurrence Percent

Source → Target

Requesting collaboration 0.72
Sharing information 0.57
Pointing out an alternative solution 0.47
Average 0.57

Source ← Target

Requesting collaboration 0.62
Sharing information 0.49
Pointing out an alternative solution 0.34
Average 0.47

collaboration takes a longer time to be closed compared with other categories.
The Kruskal-Wallis test confirms that there is a significant difference (p-value <
0.001) in the patch-closed time between different linkage types.

Takeaway I: Requesting for collaboration when posting a patch linkage
is less frequent. Furthermore, we observed a delay from 4 to 14 days be-
fore a patch linkage is posted and the linkage for requesting collaboration
statistically takes a longer time.

3.2 Collaboration after Patch Linkage

Prior work sheds light that patch linkage can increase the awareness [69]. Yet,
little is known if patch linkage can promote collaboration. To better understand
this, we investigate whether collaboration occurs after a patch link is posted, and
what kinds of collaboration contribution types are made.

Analysis II - Collaboration occurrence. To investigate the collaboration
occurrence after the patch linkage, we analyze the set of additional developers
who newly join and contribute to the patch after the patch link is posted. We
consider both directions of collaboration, i.e., developers who participate in the
source patch contribute to the target patch (Source → Target) and developers
who participate in the target patch contribute to the source patch (Source ←
Target).

91

To identify the additional developers and direction of collaboration, we first
identify the set of developers who contribute (e.g., provide a comment, voting) to
the source patch before the patch link is posted (S) and the set of other developers
who *only* contribute after the link is posted (S’). Note that S includes the
developer who posted the patch link. Similarly, we identify the set of developers
who contribute to the target patch based on the time point when the patch link
is posted (T and T’). Then, we identify the set of developers in the source patch
who contribute to the target patch after the patch link is posted (i.e., Source →
Target = S ∩ T’) and the number of developers in the target patch who contribute
to the source patch after the patch link is posted (i.e., Source ← Target = T ∩
S’).

For example, in Figure 5.1, we will identify the following sets of developers: S
= {Green, Pink}, S’ = {Blue}, T = {Blue, Orange}, and T’ = {Green}. There-
fore, in this example, the developer Green is considered as the one who is from
the source patch and contributes to the target patch. Similarly, the developer
Blue is considered as the one who is from the target patch and contributes to
the source patch. Note that since we will analyze the collaboration occurrence
across the three link types, we perform this analysis based on the labeled 368
patch linkages.

Results: Patch linkage with requesting collaboration has a relatively
higher percentage of collaboration than the other two types. Table 5.2
shows the percentage of patch linkages that have at least one developer from the
source patch who contributes to the target patch or vice versa. We find that on
average, 72% of the patch linkages for requesting collaboration have at least one
developer from the source patch who contributes to the target patch (Source →
Target). Similarly, 62% of the patch linkages for requesting collaboration have at
least one developer from the target patch contributes to the source patch (Source
← Target). On the other hand, the percentages of collaboration in the other
two link types are relatively lower than the percentage of the patch linkages for
requesting collaboration (i.e., 34%–57%).

Takeaway II: A cross-patch collaboration is more likely to occur when the
patch linkage comment is accompanied with a request for collaboration.

92

Table 5.3: The definition of contribution types and their distribution across the
link types. Note that one review message can be labeled with more than one
contribution type.

Contribution after Linkage Definition Link Type Percent

Vote
Collaborator votes whether to merge
or abandon the patch, i.e.,
“Code-Review +1”.

Requesting collaboration 0.56
Sharing information 0.59
Pointing out an alternative solution 0.61

Specific Comments
Collaborator posts a comment that is
directly related to patch change, i.e.,
typically an inline comment.

Requesting collaboration 0.29
Sharing information 0.37
Pointing out an alternative solution 0.31

General Comments
Collaborator posts a generic comment
that does not directly relate to or
reference any line of code in the patch.

Requesting collaboration 0.43
Sharing information 0.47
Pointing out an alternative solution 0.52

Revise
Collaborator uploads revised patches,
i.e., “Uploaded patch set 3”.

Requesting collaboration 0.15
Sharing information 0.09
Pointing out an alternative solution 0.05

Analysis III - Collaboration contribution type. In addition to the oc-
currence analysis, we examine what collaboration contributions were made by the
additional developers (i.e., S ∩ T’ and S’ ∩ T). In this work, based on an open
discussion with ten random samples and the OpenStack documentation by the
first three authors of this paper, we focus on four types of contribution: 1) Vote,
2) Specific Comments, 3) General Comments, and 4) Revise. Table 5.3 describes
the definition of four contribution types.

To identify the contribution, we extract the contribution information recorded
in the review message, i.e., 1,898 contributions are retrieved. In particular,
we first use a regular expression to identify each type of contribution. Then,
we manually validate the extraction. In addition, we highlight those general
comments that are not trivial. For instance, a not trivial general comment
is left with “Patch Set 2: Code-Review-1 i think you should update this file
https://github.com/openstack/neutron/blob/master/doc/requirement
s.txt because after the new PTI, doc requirements are moved here.”

Results: While vote is the most common collaboration contribution
type, the revise contribution type in the patch linkage for requesting
collaboration is relatively higher than other types of patch linkage.
Table 5.3 shows the distribution of contribution types across the link types. We

93

find that among four contribution types, Vote is the most common type (i.e., 56%
for requesting collaboration, 59% for sharing information, and 61% for pointing
out an alternative solution). The following common contribution type is Gen-
eral Comments. Based on our manual validation, we observe that around 20%
of these comments are left with not trivial information. For instance, one com-
ment provides advice to fix up the eventlet change, i.e., “Patch Set 4: OK, fix
up the docstring on run_vios_command_as_root and I think the commit mes-
sage should mention the eventlet change, and then I’m +1.”. Interestingly, we
find that Revise contribution type is relatively more frequent in the patch link-
age for requesting collaboration (15%) than other two link types (9% and 5%,
respectively).

Takeaway III: The cross-patch collaboration via the patch linakge in-
cludes voting, writing specific and general comments, and a revision of
patches.

4 Threats to Validity

We summarize two key threats. The first threat is regarding the generalizability of
the results. Our study only focuses on the ecosystem level using a tool-based code
review. We understand that there are not many multi-project review ecosystems
similar to OpenStack. However, as open source adoption has grown significantly
in the last decade, and numerous companies have built business models around
OSS ecosystems [168], we believe it is important to study the ecosystem level.

The second threat is related to the internal threat of our approach. We employ
manual analysis for classifying linkage types. The label might be miscoded due
to the subjective nature of understanding. To eliminate such a threat, we use the
Kappa agreement to measure inter-rater reliability.

5 Challenges and Opportunities

The preliminary results show the potential for this new kind of collaboration that
is triggered by a patch linkage. Hence, the study calls for new avenues for research

94

into this kind of collaboration. In fact, we show that cross-patch collaboration
contributions via the patch linkage are non-trivial, with key contributions like
voting which affects the review outcome of the target patch, or revising which
improves the patch.

There are still open challenges that remain. For instance, the current approach
has the threat to include collaborations that may have not been triggered by the
patch linkage. Hence, future work needs to address the soundness of our approach.
Another challenge may include capturing cross-patch collaborations that do not
have patch linkage. This can also be addressed in a bigger study. Furthermore,
we would need a developer study to validate the practical implications of the
study.

Our work lays out future opportunities for directions on how patch linkage
sharing can lead to these new kinds of collaboration. We highlight three below
to name a few:

• Identify heuristics and the information required for a reviewer to contribute
to a linked patch. To gain more practical insights, a survey or interview
of the reviewer who posts the link could reveal collaboration barriers and
opportunities

• Investigate the impact of the collaboration on patch quality and code review
quality. To further understand the impact of the collaboration, one promis-
ing direction is to explore if the patch involved with contribution via the
linkage is likely to decrease the probability of defects.

• Automatic recovery of links (especially for Duplicate/Alternative Solution
Detection). Provide tool support to early detect or recommend patches
to reduce the time taken to identify the link, especially since we find that
pointing out an alternative solutions earlier leads to a shorter review time
compared to the other link types.

95

Part III

Automatic Patch Linkage
Detection

96

6 | Patch Linkage Detection Us-
ing Textual Content and
File Location Features

Chapter 4 and Chapter 5 provide evidence that patch related links are most fre-
quently shared and the contributions across these links are not trivial. Inspired by
these findings, this chapter further explores the feasibility of patch linkage detec-
tion, with the goal to support existing code review tools. Patch linkage detection
could facilitate developers to identify the needed information efficiently.

1 Introduction

Contemporary software development teams widely adopt code review tools for
their software quality assurance [13, 126]. Over the last ten years, review tools
have been utilized by well-known Open Source projects such as Android, Open-
Stack [8, 108], and industry giants such as Google and Microsoft [13, 132]. In
contrast to the traditional vigorous face-to-face meetings between small team
members, larger teams can adopt a review tool that integrates review discussions
[25, 129]. Tools such as Gerrit, Codestriker, and ReviewBoard allow for patches
to be submitted, and later assigned to a review team (i.e., patch author and
assigned reviewers) [41, 52, 124].

On the downside, massive projects like OpenStack (i.e., which attracts more
than 100,000 contributors that spread over 600 repositories [181]) are susceptible

97

to having their contributors submit patches that may be similar to an already
existing patch. This happens due to the parallel and distributed nature of a
review-then-commit model [128], where submitted patches achieve a similar goal
(i.e., with duplication being the most typical case). This lack of awareness occurs
because review teams (i) do not possess the knowledge of other review teams or
(ii) do not notice when other authors submit similar work.

To raise awareness of similar patches during review discussions, review teams
may post a linkage between two patches to notify developers [69]. Existing work
shows that the late duplicate patch identification leads to additional maintenance
costs and redundant efforts [58]. Specifically, Yu et al. [171] manually studied
pull requests from 26 popular projects on Github, observed that on average, 2.5
reviewers participated in the review discussions of redundant pull requests, and
5.2 review comments were generated before the duplicate relation is identified.

Apart from raising awareness of duplication, Hirao et al. [69] claimed that
the linkage that is posted in a review discussion can be used to point out three
common patch linkage types: Dependency (a patch linkage to another patch
that it is dependent upon), Broader Context (a patch linkage to another patch
that provides related resources), and Alternative Solution (a patch linkage to
another patch that implements similar functionality). Their results suggest that
reviewer recommendation can be improved by incorporating information from
linked reviews and these linkages could be exploited by code review analytics.
Inspired by their work, we argue that the early detection of the patch linkage
would help contributors to avoid unnecessary efforts, strengthen collaboration
between reviewers, and encourage an effective review process.

In this paper, we extend from the idea of duplication detection to investigate
the potential of detecting three different types of patch linkages (i.e., Dependency,
Broader Context, and Alternative Solution). Different from patch duplication,
we do not look at the similarity of the patch source code, but instead focus on
linkages between two patches. Through a case study of three large Open Source
projects, i.e., Qt, OpenStack, and Android Open Source Project (AOSP), we
are able to extract 11,353 patch linkages in total. We formulate two research
questions to guide our study:

• (RQ1) What is the impact of the patch linkage on the review

98

process?
Motivation. Hirao et al. [69] investigated the different types of linkage
by classifying their various purposes in the review discussion. However,
the impact of the linkage on the review process is unknown. Specifically,
we would like to investigate the impact in terms of when the linkage is
first notified (i.e., submission time to notification time) and the time taken
for that review (i.e., notification time to decision time). Moreover, we
would like to investigate whether or not the entire review process (i.e.,
submission time to decision time) of patches with patch linkages is different
from those patches with no patch linkages. To address this RQ, we conduct
an exploratory study.

• (RQ2) What is the performance of detecting patch linkages?
Motivation. Motivated by the exploratory study (RQ1), we would like to
evaluate whether or not it is promising to detect these patch linkages. Al-
though recent work [88, 123, 162] investigate the feasibility of detecting pull
request in the code review setting, it is still unclear that how linkage detec-
tion performs in a realistic setting, other than duplication. We assume that
patches that are linked tend to share similar textual content and modify
similar code locations. Thus, we use these two patch features to construct
our detection model borrowed from the information retrieval-based and file
location-based recommendation. Taking realistic evaluation into account,
we evaluate our models based on four time intervals (i.e., 2, 7, 14, and 30
days). This RQ is split into three sub-questions:

– (RQ2.1) What is the performance of using textual content to
detect patch linkage?

– (RQ2.1) What is the performance of using file location to
detect patch linkage?

– (RQ2.3) How does using more than one feature (textual con-
tent and file location) improve the performance of linkage
detection?

The key results of each RQ are: For RQ1, results show that there exists la-
tency in the notification of linked patches (i.e., a median of 1.2 days, 3.1 days,

99

and 2.2 days for Qt, OpenStack, and AOSP). Results also show that patches with
linkages are likely to take a longer time to review when compared to a control
group (i.e., patches without linkages), as patches without linkages seem to not
require additional reviewing efforts (23 out of 28 patches). Earlier patch linkage
notification could make for a more efficient review, especially in detecting the
Alternative Solution. For RQ2, results show that combining two features (i.e.,
textual content and file location) performs better than two separate models. In
experiments that span four time intervals, the model performs with promising
recall rates (i.e., 24%–68% for Qt, 25%–61% for OpenStack, and 28%–81% for
AOSP). The Alternative Solution linkage detection is also promising with rel-
atively high recall rates (i.e., 74%–95% for Qt, 71%–87% for OpenStack, and
77%–94% for AOSP in the Top-10). Reasonable Alternative Solution linkage de-
tection also means that the precision rates are feasible, with 60%–74% for Qt,
43%–67% for OpenStack in the textual content model, and 56%–67% for AOSP
in the file location model.

We suggest that improving the awareness between the patches may also in-
crease the likelihood that the linked patches will be identified. To improve the
textual content model, developers could be encouraged to increase the natural
language or generate a project specific corpus. We also see that linkage detection
is promising in a realistic setting, especially for the Alternative Solution linkage.
The main contributions of this paper are three-fold: First, our exploratory study
provides evidence that the latency of the linkage notification exists. Second, we
propose and evaluate our detection models for three different types of patch link-
ages. Finally, we provide a replication package which includes (a) manually coded
patch linkages with various properties and (b) experiment datasets and scripts
that can be used to reproduce our detection model.

1.1 Chapter Organization

The remainder of this chapter is structured as follows: Section 2 describes the
motivating example. Section 3 presents an exploratory study on the impact of
the patch linkage on the review process. Section 4 introduces the patch linkage
detection. Section 5 discusses the implications from our findings. Section 6
discloses threats to the validity of our study. Finally, we draw our conclusions in

100

Section 7.

2 Motivating Example

Figure 6.1 is a real-world example to illustrate how a reviewer posts a linkage
to notify the review team there is a similar patch. In the figure, one author
(Ken’ichi Ohmichi) submitted a patch # 86771 to the review tool. The patch #
86771 aims to add API tests in a new Nova API called “server-group”. During
a review discussion, the reviewer (Zhi Kun Liu) pointed out that this patch
addressed an issue similar to another patch: ‘similar patch https: // review.
openstack. org/ #/ c/ 84977/ ’ and provided an explicit link of that patch. Once
notified, the author (Ken’ichi Ohmichi) proceeded to abandon the patch without
any revisions on that same day. From the description of the patch #84977, we
observe that its goal is as well to add several tests for “server-group” Nova APIs.
From the activity log, three days passed before the reviewer identified and posted
the linkage into the patch # 86771. The example provides evidence that latency
exists before the team is notified to become aware of the linkage, i.e., around
three days are taken in the motivating example.

In terms of the feature similarity between two linked patches, we find that the
linked patches from the example share similar textual content and modify similar
file locations. As shown in the figure, the two patches use the same keywords (i.e.,
server-group, Nova, v2, tests). Apart from highly similar textual content, both
patches touch the same file path (i.e., tempest/api/compute/base.py).

3 Impact of Patch Linkage on the Review Process

To answer RQ1, we conduct an exploratory study to investigate the impact of
patch linkage on the review process. In this section, we first describe the stud-
ied projects (Section 3.1), then we describe the data preparation (Section 3.2),
and present the analysis approach (Section 3.3). Finally, we discuss our results
(Section 3.4).

101

https://review.openstack.org/#/c/84977/
https://review.openstack.org/#/c/84977/

(a) Submitted patch with textual content and
file location. #86771

(b) Target patch with textual content and file
location. #84977

Figure 6.1: A real world example to motivate the Alternative Solution linkage
between patch #86771 and patch #84977 in OpenStack. The example suggests
that the linked patches share similar textual content and modify similar set of
file paths.

102

Table 6.1: Collected dataset including three open source projects: Qt, OpenStack,
and AOSP. In total, 11,353 patch linkages are retrieved from these projects.

Qt OpenStack AOSP
Time Period Aug.2011 ∼ Apr.2015 Aug.2011 ∼ Nov.2016 Oct.2008 ∼ Apr.2015
Sub-Projects 111 1,528 567
Files 176,898 158,168 166,931
Patches 107,858 215,725 59,490
Revisions 258,066 766,017 113,501
Lines of Code (LOC) 4 273,395 8,753,713 35,202,362
Patch linkages (Hyperlinks) 705 8,048 1,079
Patch linkages (Review #, Changeid) 253 1,002 266
Total (0.8%) 958 (4.2%) 9,050 (2.2%) 1,345

Studied Projects

We select studied projects with the two criteria: (1) large software projects
actively use review tools (e.g., Gerrit) and (2) projects are representative and
have been commonly analyzed in prior work. From the range of open source
projects, we select three projects: Qt, OpenStack, and Android Open Source
Project (AOSP) as these three projects actively perform code reviews through
Gerrit. Qt is a cross-platform application for creating graphical user interfaces.
OpenStack is a collaborative platform for cloud computing, which is used by
many well-known organizations and companies (e.g., IBM, VMware, and NEC).
Finally, AOSP is a mobile operating system developed by Google.

Data Preparation

Our data preparation process consists of three parts: (DP1) patch linkage re-
covery and filtering, (DP2) ground-truth construction, and (DP3) control group
construction. We define the patch linkage as any unique linkage from a patch
to another. Let two patches be pa and pb, where pa refers to a patch where the
review team posts a linkage into the review discussion and pb denotes the target
patch. Therefore, a linkage from pa to target pb and a linkage from pb to target
pa are counted separately.

• (DP1) Patch linkage recovery and filtering: For studied projects, we adopted
the Yang et al. [169] dataset as our original dataset. Table 6.1 shows

103

our dataset summary (i.e., 107,858 patches for Qt, 215,725 patches for
OpenStack, and 59,490 patches for AOSP). To recover the patch link-
age, we make sure that all linkage formats should be considered includ-
ing Changeid, Review # as well as the hyperlinks. For the hyperlink
format, we use regular expression patterns to search all discussions (e.g.,
https://review.openstack.org/#/c/84977/). Additionally, we conduct man-
ual checks on each review carefully to ensure the number is correctly re-
lated to the Changeid and Review #, but not for other information such
as bug id. For example, a detected Changeid would be “would conflict
with 9afb02412eadc567e82a0aca10c6401937d213e9", while an example of a
detected Review # is “Replaced by 22724, 22725 ”.

Furthermore, we apply three filters to ensure an unbiased dataset. The first
filter is to remove cases where the patch author is aware of the linkage. This
is done by using two conditions. The first condition is to detect the case
where linked patches are written by the same author. The second condition
is to detect the case where a patch author cherry-picks or reverts an already
known patch. The second filter is to remove patches with incomplete author
information (i.e., where the authors could not be retrieved from the REST
API). The third filter involves the removal of duplicate patch linkages. We
only detect the first instance of a linkage, as the same patch linkage can be
used several times by different reviewers during review discussions. After
DP1, we are left with 1,345, 9,050, and 958 distinct linkages posted by
different authors as shown in Table 6.1.

• (DP2) Ground-truth construction: To construct our ground-truth, we man-
ually classify the three different types of patch linkages (i.e., Alternative
Solution, Broader Context, and Dependency) using the linkage taxonomy
defined by Hirao et al. [69]. Since our collected data from DP1 is too large
to manually examine, we statistically generate a representative sample us-
ing a statistical calculator [39] with a 95% confidence level and a margin
error of no more than 5%, which is similar to previous empirical studies
in the SE domain [9, 66]. We end up with 369 patch linkages, 299 patch
linkages, and 274 patch linkages as shown in Table 6.2.

104

Table 6.2: Ground-Truth based on Hirao et al. [69] and Control Group (patches
with no patch linkages).

Ground-Truth Control Group
Project Alternative Solution Broader Context Dependency Others Sample Size Non-PatchLink
Qt 93 77 74 30 274 244
OpenStack 97 147 101 24 369 345
AOSP 127 87 58 27 299 272
Total 317 311 233 81 942 861

In the coding process, we first test our comprehension with a statistical
agreement. Three authors of this article independently coded a random
sample of 30 comments that contain the patch linkages based on the con-
structed coding scheme. We then measured the Kappa agreement for the
coding results. The Kappa statistic is used frequently to measure inter-
rater reliability for qualitative (categorical) items [156]. We ended up with
a Kappa score of 0.83, which indicates that our agreement is nearly perfect.
Two authors then completed the coding for the remaining sample dataset.
We classify those patch linkages which do not indicate Broader Context,
Dependency, and Alternative Solution into Others Category. After DP2,
317 patches, 311 patches, and 233 patches are labeled as either Alternative
Solution, Broader Context, and Dependency.

• (DP3) Control group construction: To construct a balanced control group,
we then randomly select an equal 861 patches from the ground-truth in
DP2, as shown in Table 2. We carefully and manually checked each patch
to ensure that there was no indication of a linkage to another patch.

Analysis for RQ1

To analyze the impact of patch linkage on the review process, we focus on two
main aspects: (1) comparison among linkage types and (2) comparison against a
control group (patches with no patch linkages). Below, we describe our analysis
approach for each aspect.

Comparison among linkage types. We now investigate the three different patch
linkage types, in terms of their review process (i.e., review time, patch revisions

105

before and after the patch linkage notification). We define four metrics to conduct
our statistic analysis as shown below:

• First-Notify-Time (# days) is the duration from when the author submits
pa until when the link to pb first appears in the review discussion.

• First-Notify-Revisions is the number of patch revisions that occur after the
author submits a pa until the link to pb first appears in the review discussion.
Note that the linkage is always mapped to the current patch revision, thus
the first submission is counted as the first patch revision.

• Notify-to-Decision-Time (# days) is the duration from when the link of pb
first appears until there is a decision to either abandon or merge pa into the
codebase.

• Notify-to-Decision-Revisions is the number of patch revisions that occur
after the link to pb first appears until there is a decision to either abandon
or merge pa into the codebase.

After the metric computation, we then test the hypothesis ‘a patch with the Alter-
native Solution linkage is reviewed quicker after notification when compared with
other two linkages.’ We use a Mann-Whitney U test (α= 0.05) [94] to validate
our hypothesis and investigate the effect size using Cliff’s Delta [40]. Effect size is
analyzed as follows: (1) |δ| < 0.147 as Negligible, (2) 0.147 ≤ |δ| <0.33 as Small,
(3) 0.33 ≤ |δ| <0.474 as Medium, or (4) 0.474 ≤ |δ| as Large.

Comparison against control group (patches with no patch linkages). In this as-
pect, we compare the review process between patches with linkages and patches
that do not have any patch linkages with two additional metrics. Two metrics
related to the entire review process are defined as follows:

• Submit-to-Decision-Time (# days) is the duration from when the author
submits a patch until there is a decision to either abandon or merge the
patch into the codebase.

• Submit-to-Decision-Revisions is the number of patch revisions from when
the author submits a patch until there is a decision to either abandon or
merge the patch into the codebase.

106

(a) Notify-to-Decision-Time Distribution. (b) Notify-to-Decision-Revisions Distribu-
tion.

Figure 6.2: Box-plots showing comparison among linkage types (Notify-to-
Decision-Time and Notify-to-Decision-Revisions). The results show that the
patch with an Alternative Solution linkage tends to have a quicker review process
after the notification, compared with other patch linkages.

(a) Submit-to-Decision-Time Distribution. (b) Submit-to-Decision-Revisions Distribu-
tion.

Figure 6.3: Box-plots showing comparison against a control group (Submit-to-
Decision-Time and Submit-to-Decision-Revisions).The results show that com-
pared to patches having no linkages, patches with linkages tend to take a longer
time to complete the review process.

107

Table 6.3: Statistics showing comparison among linkage types (First-Notify-
Revisions and First-Notify-Time). The results suggest that latency exists in
the notification of a patch linkage (i.e., the median of 1.2, 3.1, and 2.2 days for
Qt, OpenStack, and AOSP).

First-Notify-Revisions First-Notify-Time (# days)
Project Linkage Type Median Mean Max Median Mean Max

Qt

Alternative Solution 1 2 18 1.1 16.4 261.6
Broader Context 2 3 21 1.1 21.4 627.8
Dependency 2 5 56 2.6 20.4 400.5
All 2 3 56 1.2 19.2 627.8

OpenStack

Alternative Solution 1 3 29 1.1 26.5 448.0
Broader Context 2 5 28 3.5 22.6 418.0
Dependency 3 6 43 4.3 26.8 574.8
All 2 4 43 3.1 25.0 574.8

AOSP

Alternative Solution 1 2 8 6.2 48.7 669.0
Broader Context 1 2 9 0.6 13.2 258.7
Dependency 1 2 14 0.8 32.3 771.0
All 1 2 14 2.2 33.5 771.0

After the metric computation, we test our hypothesis that ‘there exists a difference
between patches with linkages and those that do not have any patch linkages with
regard to the reviewing time’. We use Kruskal-Wallis non-parametric statistical
test [37] to validate our hypothesis.

Results for RQ1

We analyze the impact of the patch linkage on the review process in terms of the
comparison among patch linkage types and the comparison against the control
group (patches with no patch linkages). Table 3 and Figure 3 show the related
results. We now discuss our results below.

Comparison among linkage types. Latency exists in the notification of a patch
linkage. Table 6.3 shows the statistics of First-Notify-Time and First-Notify-
Revisions. Using First-Notify-Time metric, we find that it takes a median of 1.2,
3.1, and 2.2 days for the linkage to be notified for Qt, OpenStack, and AOSP.
Comparing the projects, we find that OpenStack tends to have more linkage

108

latency compared with the other two projects. We find that the time latency is
up to around 3.5 and 4.3 days (i.e., median) for Broader Context and Dependency
linkages, while in AOSP, the Alternative Solution linkage takes almost 6.2 days
before the patch is made known to the review team. On the other hand, using
the First-Notify-Revisions metric, we observe that the author already revised the
patch before a patch linkage was notified, especially for Qt and OpenStack.

The patch with an Alternative Solution linkage tends to have a quicker process
after the notification. Figure 6.2 shows the comparison from the time when the
review team is notified until the decision for the patch has been made. Figure
6.2(a) shows evidence that a patch with the Alternative Solution linkage tends to
be reviewed quicker when compared to the other patch linkages. For a patch with
the Broader Context or Dependency linkage, it takes a longer time to complete the
review. Based on our experience with manual coding, a potential reason is due to
the nature of both patch linkages. Furthermore, Figure 6.2(b) shows that a patch
with the Alternative Solution linkage will be resolved without patch revisions after
the notification. For instance, the median of Notify-to-Decision-Revisions for the
Alternative Solution linkage is 0 for all projects, while for Broader Context and
Dependency linkages, patches with them tend to have additional revisions, i.e.,
one more patch revision in Qt and OpenStack. For the statistical test, Mann-
Whitney U tests confirm that ‘a patch with the Alternative Solution linkage is
quicker to complete the review after the notification compared with other two
linkages’ with p-value < 0.001 for the three studied projects. Additionally, the
Cliff’s Delta scores indeed prove our hypothesis, i.e., |δ|=0.43 (medium) for Qt,
|δ|=0.48 (large) for OpenStack, and |δ|=0.36 (medium) for AOSP.

Comparison against control group (patches with no patch linkages). Com-
pared to those patches with no linkages, patches with linkages tend to take a
relatively longer time to complete the review process. Figure 6.3(b) presents the
distribution of Submit-to-Decision-Revisions. The results show that a patch with
the Broader Context or Dependency linkage is likely to have more patch revisions
than our control group. On the other hand, Figure 6.3(a) shows that patches with
linkages tend to have longer reviewing time compared to those that do not have
any patch linkages. It may mean that patches including linkages require more
review discussion [46, 68], although our results suggest that the Alternative Solu-

109

tion linkage does not require as much discussion or revisions. For the statistical
test, the values of Kruskal-Wallis tests reveal that ‘there exists a difference be-
tween patches with linkages and those that do not have any patch linkages with
regard to the reviewing time’.

Inspired by the results, we would like to further explore why the review pro-
cess of the patch with no linkages is quicker than the patch with an Alternative
Solution linkage. To do so, we randomly select 30 samples (i.e., the median of
Submit-to-Decision-Time is smaller than the median time for the Alternative So-
lution linkage), covering three studied projects from the control group. Then we
conduct a qualitative analysis to investigate these 30 samples in the aspect of the
reviewer participation [150], review divergence [68], and review confusion [46].
The analysis results show that within these 28 patches (ignoring 2 self- approved
patches), the reviewer response is timely while few comments are left (i.e., 20 out
of 28 patches have less than 3 comments), review divergence rarely exists (i.e.,
all 28 patches do not have the case where reviewers have divergence), and the
confused reviews seldom occur (i.e., 5 out of 28 patches have confusion). The
qualitative findings suggest that the review process of the patch with no linkages
is relatively straightforward, which could explain why the patch with no linkages
is likely to take a shorter time compared to the patch with linkages.

Answering RQ1: Our exploratory results show latency in the notification
of linked patches (i.e., a median of 1.2 days, 3.1 days, and 2.2 days for Qt,
OpenStack, and AOSP). Results also show that patches with linkages are
likely to take a longer time to review when compared to a control group
(i.e., patches without linkages), as patches without linkages seem to not
require additional reviewing efforts (23 out of 28 patches). Earlier patch
linkage notification could make for a more efficient review, especially in
detecting the Alternative Solution.

4 Patch Linkage Detection

To answer RQ2, we propose techniques using two patch features (i.e., textual
content and file location) to detect the patch linkage. Particularly, we aim to

110

Figure 6.4: The overview of our linkage detection process. To calculate the
similarity between the two patches, we focus on the following features: textual
content feature (the concatenation of title and description text in a patch) and
file location feature (a set of file paths that the patch modifies).

detect the Alternative Solution linkage, which has potential for an efficient review.
In this section, we first provide a technique overview (Section 4.1), then introduce
our experiment dataset (Section 4.2), and describe the evaluation metrics (Section
4.3). Finally, we discuss our results (Section 4.4).

Technique Overview

Figure 6.4 presents an overview of our proposed process to detect patch linkage,
focusing on the patch itself. Our key assumption is that linked patches share
similar textual contents and modify similar file locations. We define the textual
content as the concatenation of title and description text in a patch. The file
location refers to a set of file paths that the patch modifies. For instance, in the
figure, the file location of the Patch A is [A_test.py, A_doc.py].

Detection Using Textual Content - The first technique is to compute the
textual content similarity. Since the length of the textual content is relatively
short, it is appropriate to use the vector space model (VSM), which works well
and is widely applied in a similar context such as duplicate bug reports [151].
The first step involves text processing, which includes tokenization, stop word
removal, and stemming. Next, in the representation step, our pre-processed text
is converted as a vector weight representation. Then we employ a term frequency-
inverse document frequency (tf-idf) [120] as weighting scheme and calculate the

111

cosine similarity [95] between two linked patches.

Algorithm 1: Detect linkage based on textual content similarity
Input : A new patch (pn); A set of patches (Patches)
Output : A list of candidate patches

1 Tn ← Tokenize(pn.textualcontent);
2 Remove stop words from Tn;
3 Stem each word in Tn;
4 vn ← ConstructVSM(Tn);
5 for pi ∈ Patches do
6 Ti ← Tokenize(pi.title, pi.message);
7 Remove stop words from Ti;
8 Stem each word in Ti;
9 vi ← ConstructVSM(Ti);

10 simi ← CosineSimilarity(vn, vi);
11 end
12 return A patch list in Patches in the descending order of simi;

Based on Runeson et al. [131], Algorithm 1 details our procedure to rank
patches based on textual content similarity. Inputs are new patch pn and a set
of patches Patches. In detail, we first perform the text processing for pn (i.e.,
the concatenation of title and description text) using NLTK1 package and well
known Porter stemming [166] (lines 1-3). Then we apply gensim2 package to
create a VSM representation defined as vn weighted by tf-idf (line 4). To process
the textual content for each pi ∈ Patches, we construct a VSM representation
defined as vi (lines 5-9). We compute the similarity between vn and vi ∈ Patches
through cosine similarity (line 10) and then sort the patches in Patches based
on their cosine scores (line 12), returning a resultant list of candidate patches in
descending similarity order.

Detection Using File Location - The second technique is to compute the
file location similarity. We apply the file location-based model which performs
well in reviewer recommendation task [147, 172]. In this model, the key step is to

1https://www.nltk.org/
2https://radimrehurek.com/gensim/

112

https://www.nltk.org/
https://radimrehurek.com/gensim/

Table 6.4: File path comparison technique descriptions. Similar to the work of
Thongtanunam et al. [147] four comparison techniques are included: LCP, LCS,
LCSubstr, and LCSubseq.

Functions Description Example

Longest Common Prefix
(LCP)

Longest consecutive path components
that appears in the beginning of both
file paths.

f1 =“src/com/android/settings/LocationSettings.java”
f2 = “src/com/android/settings/Utils.java”
LCP(f1, f2) = length([src, com, android, settings]) = 4

Longest Common Suffix
(LCS)

Longest consecutive path components
that appears in the end of both file
paths

f1 = “src/imports/undo/undo.pro”
f2 = “tests/auto/undo/undo.pro”
LCS(f1, f2) = length([undo, undo.pro]) = 2

Longest Common
Substring (LCSubstr)

Longest consecutive path components
that appears in both file paths

f1 = “res/layout/bluetooth_pin_entry.xml”
f2 = “tests/res/layout/operator_main.xml”
LCSubstr(f1, f2) = length([res, layout]) = 2

Longest Common
Subsequence
(LCSubseq)

Longest path components that appear
in both file paths in relative order but
not necessarily contiguous

f1 =“apps/CtsVerifier/src/com/android/cts/verifier/
sensors/MagnetometerTestActivity.java”
f2 =“tests/tests/hardware/src/android/hardware/cts/
SensorTest.java”
LCSubseq(f1, f2) = length([src, android, cts]) = 3

calculate the file path similarity, with file path fa and fb computation as follows:

FilePathSimilarityLCx(fa, fb) =
LCx(fa, fb)

max(Length(fa), Length(fb))
(6.1)

where LCx(fa, fb) function is a parameter specifying how to compare file path
components fa and fb. Table 6.4 presents the definitions and example calculation
for four file path comparison techniques. The four comparison techniques, i.e.
Longest Common Prefix (LCP), Longest Common Suffix (LCS), Longest Com-
mon Substring (LCSubstr), and Longest Common Subsequence (LCSubseq) [60],
are used in the LCx function. The comparison function value is normalized by
the maximum length of fa and fb, i.e., the number of file path components.

Algorithm 2 describes the procedure used to calculate file location similar-
ity. Inputs include a new patch pn, a set of patches Patches, and a file path
comparison function LCx. Files(p) represents extracting a modified file set in a
patch p (line 1 and 3). Then for each patch pi in the Patches, the file location
similarity score between pn and pi is computed using the FilePathSimilarityLCx

function (lines 4-9). Finally, (simi) measures the average value of the file path
similarity for every file path in pn and pi (line 10). After the patches are sorted
based on their similarity scores, the algorithm returns a list of candidate patches
in descending similarity order (line 12).

113

Algorithm 2: Detect linkage based on file location similarity
Input : A new patch (pn); A set of patches (Patches); A file path comparison

function LCx

Output : A list of candidate patches
1 Fn ← Files(pn);
2 for pi ∈ Patches do
3 Fi ← Files(pi);
4 SimilaritySum← 0;
5 for fn ∈ Fn do
6 for fi ∈ Fi do
7 SimilaritySum← SimilaritySum+ FilePathSimilarityLCx(fn, fi);
8 end
9 end

10 simi ← 1
|Fn|·|Fi|SimilaritySum;

11 end
12 return A patch list in Patches in the descending order of simi;

Combination Technique - Prior work [78] successfully shows that the model
performance can be improved when combining individual techniques. Simi-
lar to Thongtanunam et al. [147], our algorithm is based on the Borda count
method [121] for scoring the ranks. The Borda count is a voting technique that
simply combines the recommendation lists based on the rank.

• Combined file location model (fl). First, we combine the four string com-
parison techniques (i.e., LCP, LCS, LCSubstr, and LCSubseq) used in the
file location model. For each patch candidate pk, we assign scores based on
the rank of pk in each recommendation list generated from four comparison
techniques, with the candidate with the highest ranks receiving the highest
scores. For example, if a recommendation list of CLCP votes a patch candi-
date p1 as the first rank and the number of total candidates are S, then this
patch candidate will get the score of S. The candidate p1 will get a score of
S - 10. Given a set of recommendation lists C ∈ {CLCP , CLCS, CLCSubstr,
CLCSubseq}, the score for a patch candidate pk is defined as follows:

Combination(pk) =
∑
Ci∈C

Si − rank(pk|Ci) (6.2)

114

Table 6.5: Dataset used in experiment based on time intervals. Time intervals
are divided into 2 days, 7 days, 14 days, and 30 days.

Ground-truth from RQ1 Experiment Dataset
Porject Interval (Days) #Patches #File Paths #Avg. Patches #Total Patches #Avg. File Paths #Total File Paths

Qt

2 40 198 174 6,953 1,868 74,714
7 74 455 528 39,033 5,948 440,115
14 96 528 1,018 97,723 10,718 1,028,905
30 119 632 2,169 258,070 23,193 2,760,000

OpenStack

2 87 259 605 52,637 1,755 152,644
7 147 689 1,659 243,791 5,199 764,209
14 196 811 3,398 666,040 10,681 2,093,308
30 233 1,055 7,267 1693,125 23,143 5,392,245

AOSP

2 62 708 117 7,259 2,493 154,539
7 106 971 327 34,629 8,755 928,019
14 137 2,759 654 89,574 17,017 2,331,345
30 170 2,997 1,393 236,714 31,659 5,381,939

where Si is the total number of the recommended patch candidates, rank
(pk | Ci) represents the rank of patch candidate pk in Ci. The patch linkage
recommendation is a list of patch candidates that are ranked according to
their scores. To resolve tie-breakers, we reorder candidate patches whose
Borda scores are same based on their created time, bubbling up recent
patches to the top.

• Combined File location and Textual Contents. Second, we combine our
candidate lists from the textual content model (tc) and the combined file
location model (fl). Following Equation 6.2, we assign scores based on the
rank of pk in each recommendation list from tc and fl (C ∈ {Ctc,Cfl})
and rank the patch candidates according to their Borda scores. Like the
combined file location algorithm, we use the patch created time to reorder
candidate patches that return the same scores.

Data Preparation

Table 6.5 shows our dataset that is adopted in the model evaluation experiment,
using the same three projects from the exploratory study. To construct a more
realistic experiment setting, we now use time intervals. For the ground-truth, we
collect patches that are created in the same time interval (i.e., 2, 7, 14, and 30
days.) with the ground-truth patch as our experiment dataset (i.e., document set

115

for the textual similarity analysis). Note that within a patch pair, we always treat
the patches whose created time are later as our ground truth. Our ground truth
includes patch features (i.e., textual content and file location). Our assumption is
that a closer time interval should have a higher textual and file location similarity
for that patch linkage. For instance, the OpenStack ground truth includes 87
labeled patches (2 days), 147 labeled patches (7 days), 196 labeled patches (14
days), and 233 labeled patches (30 days).

Evaluation Metrics

To evaluate our approach for patch linkage detection, we use recommendation
metrics that are commonly used in software engineering domains [5, 107, 147].
Since each patch only allows one target patch, other evaluation metrics (i.e., Mean
Average Precision) are not suitable for this study. The metrics are defined below:

• Recall@k calculates the relevant items proportion found in the candidate
list. A high recall means that an algorithm returned more relevant results.

Recall@kall =
|D|
|G|

(6.3a)

Recall@ktype =
|Dtype|
|Gtype|

(6.3b)

The Equation 6.3a defines how the Recall@k is calculated for all patch link-
age types. In this formula, D refers to a set of ground truth (patches) whose
linked patches are retrieved in the candidate list, while G refers to a set of
ground truth (patches) used in the experiment. Equation 6.3b computes the
Recall@k for specific linkage type. Dtype is a set of ground truth (patches)
labeled with one linkage type whose linked patches are retrieved in the can-
didate list, while Gtype refers to a set of ground truth (patches) labeled with
one linkage type used in the experiment. Inspired by the previous study
[15, 90], we set k to range from 1 to 10.

• Precision@ktype calculates the ratio of correctly predicted positive observa-
tions to the total predicted positive observations. A high precision relates
to the low false-positive rate.

116

Precision@ktype =
|Dtype|
|D|

(6.4)

Equation 6.4 defines our precision calculation for specific linkage type, where
Dtype refers to a set of ground truth (patches) labeled with one linkage type
whose linked patches are retrieved in the candidate list, while D refers to
a set of ground truth (patches) whose linked patches are retrieved in the
candidate list.

• Mean Reciprocal Rank (MRR@k) calculates an average of the reciprocal
ranks for correctly detected patches in a candidate list. A high MRR score
indicates that the first true positive is being returned closer to the top list.

MRR@k =
1

|G|
∑
ð∈G

1

rank(candidates(ð))
(6.5)

Equation 6.5 explains the MRR@k calculation. Given a set of ground truth
G (patches) used in the experiment, the rank(candidates(ð)) refers to the
rank position value of a ground truth ð (a patch) whose linked patch is
retrieved in the candidate list. If there is no correctly retrieved patch in the
candidate list, the value of 1

rank(candidates(ð)) will be 0.

Results for RQ2

Results for RQ2.1 – To evaluate the performance of the textual content model, we
compute the Recall@kall for each project, the Recall@ktype for each patch linkage
type, and the MeanReciprocalRank (MRR) scores. Figure 6.5 and Table 6.6
show the evaluation results of the textual content model. We summarize two
main findings from this table.

The recall rates for the textual content model decrease when the time intervals
get larger. Figure 6.5 shows the recall rates of the textual content model covering
all patch linkage types from Top-1 to Top-10 for Qt, OpenStack, and AOSP.
We observe that when the time interval is set as 2 days, the recall rates can
range from 40% to 53%, 28% to 55%, and 40% to 76% for these projects. While
when the time intervals are set as 7, 14, 30 days, the recall rates keep increasing

117

2 4 6 8 10
Top-k

20

30

40

50

60

70

80

R
ec

al
l-r

at
e

(%
)

Qt

Interval
2 days
7 days
14 days
30 days

2 4 6 8 10
Top-k

OpenStack

2 4 6 8 10
Top-k

AOSP

Figure 6.5: Recall@kall for the detection based on textual content (the concate-
nation of title and description text in a patch). The results suggest that the recall
rates for the textual content model decrease when the time intervals get larger.

Table 6.6: Evaluation results (Recall@ktype andMRR@10) for the textual content
model. The recall rates for detecting the Alternative Solution linkage range from
34% to 69%, 34% to 80%, and 31% to 82% for Qt, OpenStack, and AOSP.

Alternative Solution Recall Broader Context Recall Dependency Recall MRR
Project Interval (Days) Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-10

Qt

2 58% 63% 69% 69% 34% 45% 45% 56% 17% 17% 17% 25% 43%
7 45% 62% 65% 68% 20% 25% 40% 45% 9% 18% 22% 22% 34%
14 34% 54% 54% 61% 16% 24% 32% 44% 3% 10% 10% 16% 27%
30 35% 45% 47% 55% 19% 23% 23% 32% 5% 5% 8% 13% 25%

OpenStack

2 54% 67% 70% 80% 13% 38% 41% 47% 17% 21% 25% 38% 36%
7 56% 70% 73% 79% 13% 28% 40% 44% 18% 25% 29% 29% 36%
14 46% 62% 62% 63% 15% 20% 29% 40% 14% 19% 22% 26% 29%
30 34% 49% 56% 60% 15% 18% 22% 30% 12% 14% 20% 24% 24%

AOSP

2 43% 68% 75% 82% 30% 50% 65% 65% 50% 64% 71% 79% 53%
7 42% 61% 70% 74% 14% 42% 45% 47% 38% 50% 54% 54% 42%
14 43% 56% 67% 71% 10% 30% 37% 40% 26% 36% 39% 48% 38%
30 31% 48% 57% 64% 13% 22% 31% 46% 22% 27% 33% 43% 32%

118

compared to the interval of 2 days. For instance, in the interval of 30 days, the
recall rates vary from 21% to 35%, 19% to 38%, and 24% to 54% for the three
projects. These results indicate that the selection of the time interval affects the
textual content model performance, as more submitted patches could potentially
increase the complexity of the textual corpus.

The detection of the Alternative Solution linkage outperforms the other patch
linkage types with relatively high recall rates. Table 6.6 reports the recall rates for
the Top-1, Top-3, Top-5, and Top-10 of three studied linkage types. We observe
that the recall rates of the Alternative Solution linkages can range from 34% to
69%, 34% to 80%, and 31% to 82% for Qt, OpenStack, and AOSP. On the other
hand, the recall rates of the Broader Context linkage vary from 16% to 56%, 13%
to 47%, and 10% to 65%. For the Dependency linkage, the recall rates range from
3% to 25%, 12% to 38%, and 22% to 79%. These results suggest that the linked
patches with an Alternative Solution linkage share more similar textual contents
than the other two linkage types.

Results for RQ2.2 – We use the combination technique as described in Sec-
tion 4.1 to combine recommendation lists from four string comparison techniques
(i.e., LCP, LCS, LCSubstr, and LCSubseq). To evaluate the performance of the
file location model, similarly, we compute the Recall@kall for each project, the
Recall@ktype for each patch linkage type, and the MeanReciprocalRank (MRR)
scores. Figure 6.6 and Table 6.7 show the evaluation results of the file location
model. We now discuss our findings below.

The detection using file location feature overall can not perform as well as the
model using the textual content feature. Figure 6.6 shows the recall rates of the
file location model from Top-1 to Top-10 for Qt, OpenStack, and AOSP. As we
can see, the overall performance is visually lower than the model using textual
content (except for the cases in the intervals of 14 days and 30 days for Qt).
For example, when the interval is set as 2 days, the recall rates range from 30%
to 50%, 24% to 32%, and 29% to 48% for the three projects. Table 6.7 shows
the recall rates for each patch linkage type using file location. We observe that
the Alternative Solution linkage still outperforms the other linkage types, i.e., the
Recall@10 rates of 69%, 50%, and 72% in the interval of 2 days for three projects.
Such result indicates that the linked patches with an Alternative Solution linkage

119

2 4 6 8 10
Top-k

20

30

40

50

60

70

80

R
ec

al
l-r

at
e

(%
)

Qt

Interval
2 days
7 days
14 days
30 days

2 4 6 8 10
Top-k

OpenStack

2 4 6 8 10
Top-k

AOSP

Figure 6.6: Recall@kall for the detection based on file location (a set of file paths
that the patch modifies). The results show that the file location as a patch feature
overall does not perform as well as the textual content feature with relatively
lower recall rates (16%–50% for Qt, 19%–37% for OpenStack, and 19%–51% for
AOSP).

Table 6.7: Evaluation results (Recall@ktype and MRR@10) for the file location
model. The recall rates for detecting the Alternative Solution linkage range from
23% to 69%, 34% to 60%, and 26% to 72% for Qt, OpenStack, and AOSP.

Alternative Solution Recall Broader Context Recall Dependency Recall MRR
Project Interval (days) Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-10

Qt

2 37% 53% 63% 69% 22% 45% 45% 45% 25% 25% 25% 25% 50%
7 29% 42% 45% 55% 20% 45% 50% 50% 26% 31% 31% 31% 34%
14 24% 46% 49% 56% 24% 44% 48% 48% 16% 19% 26% 26% 30%
30 23% 41% 47% 57% 13% 39% 42% 45% 10% 21% 21% 26% 26%

OpenStack

2 34% 47% 47% 50% 24% 24% 24% 27% 13% 17% 17% 17% 27%
7 47% 53% 55% 60% 22% 27% 29% 29% 18% 18% 20% 22% 31%
14 40% 51% 53% 56% 19% 23% 28% 28% 12% 14% 15% 15% 30%
30 35% 40% 46% 52% 17% 20% 23% 25% 9% 11% 14% 16% 23%

AOSP

2 43% 64% 68% 72% 20% 30% 30% 30% 14% 29% 29% 29% 37%
7 37% 59% 63% 68% 17% 36% 36% 36% 21% 29% 38% 42% 36%
14 32% 57% 59% 61% 9% 30% 37% 37% 23% 26% 32% 39% 33%
30 26% 49% 55% 60% 9% 29% 36% 40% 19% 33% 35% 41% 30%

120

Table 6.8: Evaluation results (Recall@ktype andMRR@10) for the feature combi-
nation model. The higher MRR@10 scores show that the model can detect more
patch linkages in higher ranks (i.e., 33%–44% for Qt, 33%–43% for OpenStack,
and 40%–53% for AOSP).

Alternative Solution Recall Broader Context Recall Dependency Recall MRR
Project Interval (days) Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-10

Qt

2 32% 74% 84% 95% 33% 67% 67% 67% 17% 25% 25% 25% 44%
7 35% 68% 78% 81% 30% 45% 55% 60% 17% 35% 35% 39% 41%
14 37% 59% 66% 76% 28% 52% 56% 56% 10% 23% 26% 26% 36%
30 39% 55% 63% 76% 23% 48% 52% 55% 5% 21% 23% 23% 33%

OpenStack

2 50% 77% 84% 84% 21% 39% 46% 55% 29% 34% 34% 38% 43%
7 60% 83% 83% 85% 20% 42% 47% 60% 18% 34% 34% 36% 43%
14 47% 70% 74% 79% 21% 34% 39% 50% 12% 25% 27% 31% 35%
30 39% 59% 64% 71% 22% 31% 34% 41% 14% 23% 24% 29% 33%

AOSP

2 50% 72% 79% 89% 25% 45% 65% 75% 29% 64% 71% 71% 53%
7 44% 70% 87% 94% 17% 47% 58% 58% 29% 46% 54% 63% 46%
14 49% 68% 79% 90% 14% 40% 49% 56% 26% 39% 42% 48% 44%
30 41% 64% 68% 77% 16% 35% 44% 56% 24% 35% 46% 54% 40%

are more likely to modify similar file locations.
Results for RQ2.3 – We use the combination technique as described in Sec-

tion 4.1 to combine two features, based on two Top-10 candidate lists from the
separate models (textual content model and file location model). To evaluate
the performance of the model combined with two features, we compute the
Recall@kall for the three projects, the Recall@ktype for linkage types, and the
MeanReciprocalRank (MRR) scores. In addition, we would like to investigate
the Precision@ktype of the Alternative Solution linkage, since the separate mod-
els were able to detect the Alternative Solution linkage best. Figure 6.7, Table 8,
and Table 9 show the evaluation results related to the feature combination model.
We now discuss two main findings below.

The model combined with two features performs better than two separate
models using a single feature. Figure 6.2 shows the combination model perfor-
mance for three projects at different time intervals. From the interval of 2 days
to the interval of 30 days, the feature combination model performs with a recall
rate, ranging from 24% to 68% for Qt, 25% to 61% for OpenStack, and 28% to
81% for AOSP. Moreover, Table 8 records the MRR@10 scores for each stud-
ied project. Compared to the MRR@10 scores in separate models, we find that
the MRR@10 scores as well increase in the feature combination model. For in-
stance, in the OpenStack project, theMRR@10 scores are between 33% and 43%

121

20

30

40

50

60

70

80

R
ec

al
l-r

at
e

(%
)

Qt OpenStack

2 days

AOSP

20

30

40

50

60

70

80

R
ec

al
l-r

at
e

(%
)

7 days

20

30

40

50

60

70

80

R
ec

al
l-r

at
e

(%
)

14 days

1 2 3 4 5 6 7 8 9 10
Top-k

20

30

40

50

60

70

80

R
ec

al
l-r

at
e

(%
)

1 2 3 4 5 6 7 8 9 10
Top-k

1 2 3 4 5 6 7 8 9 10
Top-k

30 days

Feature
Textual Content
File Location
Combination

Figure 6.7: Recall@kall for the detection based on file location and textual content
for studied projects.

122

Table 6.9: Evaluation results (Precision@ktype) for the Alternative Solution link-
age. The results show that precision is relatively higher in the separate models
than in the feature combination models (i.e., 60%–74% and 43%–67% in the tex-
tual content model for Qt and OpenStack; 56%–67% in the file location model
for AOSP).

Textual Content File Location Combination
Project Interval (Days) Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Qt

2 69% 67% 68% 62% 58% 59% 68% 70% 55% 61% 64% 67%
7 70% 68% 63% 60% 47% 45% 45% 50% 52% 55% 56% 54%
14 74% 71% 67% 61% 47% 53% 53% 54% 60% 55% 55% 59%
30 68% 71% 72% 64% 58% 50% 53% 54% 68% 54% 55% 59%

OpenStack

2 67% 54% 53% 50% 48% 54% 54% 54% 52% 52% 52% 48%
7 64% 56% 49% 50% 52% 52% 51% 52% 60% 51% 49% 45%
14 57% 56% 50% 43% 51% 51% 48% 48% 53% 49% 47% 44%
30 53% 57% 53% 49% 54% 53% 52% 52% 48% 49% 49% 47%

AOSP

2 48% 53% 50% 49% 67% 64% 66% 67% 61% 53% 49% 52%
7 58% 51% 53% 53% 61% 57% 57% 58% 61% 53% 54% 54%
14 69% 59% 60% 59% 65% 63% 59% 58% 69% 60% 60% 59%
30 63% 63% 61% 55% 63% 58% 57% 56% 64% 61% 56% 54%

while the scores are between 24% and 36%, 23% and 31% in the textual content
model and file location model. The higher MRR scores indicate that the feature
combination model can detect more patch linkages with higher ranks.

The detection of the Alternative Solution linkage is promising with high recall
rates and possible precision rates. Table 6.8 shows the recall rates of three linkage
types detected at different intervals. We observe that with the combination of
two features, the recall rates of the Alternative Solution linkage increase to 76%–
95%, 71%–85%, and 77%–94% in the Top-10 for Qt, OpenStack, and Android,
which is much higher than the other two patch linkages (i.e., 23%–39%, 29%–
38%, and 48%–71% for the Dependency linkage). Table 6.9 specifically calculates
the Precision@ktype for the Alternative Solution linkage. The table shows that
overall the precision does not increase in the combination model compared to
those separate models. For example, for Qt and OpenStack projects, the textual
content model generally performs better with the precision rates being from 60%
to 74% and 43% to 67%. On the other hand, for AOSP project, the file location
model achieves higher precision rates, ranging from 56% to 67%.

123

Answering RQ2: Results show that combining two features (i.e., textual
content and file location) performs better than two separate models. In
experiments that span four time intervals (i.e., 2, 7, 14, and 30 days), the
model performs with promising recall rates (i.e., 24%–68% for Qt, 25%–
61% for OpenStack, and 28%–81% for AOSP). The Alternative Solution
linkage detection is also promising with relatively high recall rates (i.e.,
74%–95% for Qt, 71%–87% for OpenStack, and 77%–94% for AOSP in
the Top-10). Reasonable Alternative Solution linkage detection also means
that the precision rates are feasible, with 60%–74% for Qt, 43%–67% for
OpenStack in the textual content model, and 56%–67% for AOSP in the
file location model.

5 Discussion

We now discuss four insights from our empirical experiments and the interpreta-
tion of the results.

1. Latency of patch linkage notification. The exploratory results provide evi-
dence that there is latency until the review team is notified with the patch
linkage. Yu et al. [171] similarly recognized this detection latency in the case
of duplicate pull requests. For researchers, we believe that this study can
be used to motivate the need for early detection of potential patch linkages,
which could be in the form of automatic tool support. Furthermore, we are
unsure if the latency is due to team awareness or that the review is not
yet fully understood by the team that is reviewing the patch. For the re-
view team, maybe part of the workflow should include the search for similar
patches that could be linked, especially those patches that introduce alter-
native solutions. Potential future work would be studying reasons for the
latency and its impact on the review process. A possible example includes
latency caused by waiting for a reviewer.

2. Team awareness enhancement . Active awareness can improve teams’ trust,
relationships, and efficiency [87] as review discussions particularly serve as

124

an important mechanism for coordination and collaboration between team
members. Bacchelli and Bird [13] reported that practitioners at Microsoft
view team awareness as an important motivation for conducting code re-
view. According to the results in our exploratory study, we notice that
the patch with an Alternative solution linkage tends to finish the review
process quicker after the linkage has been established. For researchers,
understanding the role that linkages play in team awareness might be a
potential future research avenue. For the practitioners, we suggest that im-
proving the awareness between the patches may also increase the likelihood
that the linked patches will be identified. This can be done by making sure
there are overlaps in the review teams.

3. Detection improvements. Results show that using more than one feature
(i.e., textual content and file location) can improve performance. We also
find that the textual information in a patch is complex and very difficult
to standardize English. As such, using the typical information retrieval
methods might not be ideal. To improve the textual content model, devel-
opers could be encouraged to increase the natural language or generate a
project specific corpus. For researchers, other more sophisticated textual
similarity could be calculated. Furthermore, looking at the similarity of the
patch contents themselves (i.e., source code) might be interesting for im-
provement of the model. For developers, our research shows the potential
for related patches, which is already adopted in practice. For example, the
Gerrit OpenStack web interface is able to show (i) related patches and (ii)
same topic patches for a patch under review.

4. Detection in Practice. The linkage detection is promising in a realistic set-
ting, especially for the Alternative Solution linkage. Our results in Table 6.8
and Table 6.9 from RQ2 show that the detection of the Alternative Solution
linkage can reach the recall rates of 74%–95%, 71%–87%, and 77%–94% in
the Top-10 for Qt, OpenStack, and AOSP. Although the precision rates
are possible (60%–74%, Qt; 43%–67%, OpenStack; 56%–67%, AOSP), we
acknowledge that our model still has room for improvement. One possible
clue is to set the threshold for the textual similarity, as the similarity shared

125

Table 6.10: Evaluation results using sample-based datasets. The statistics show
that in the sample-based evaluation, the file location model performs better than
the textual content model.

All Alternative Solution Broader Context Dependency
Project Feature Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Qt
Textual Content 24% 32% 36% 43% 39% 45% 53% 61% 14% 23% 27% 35% 15% 23% 23% 27%
File Location 31% 44% 48% 56% 44% 56% 61% 71% 23% 36% 39% 45% 22% 37% 42% 47%

OpenStack
Textual Content 24% 32% 37% 44% 45% 58% 64% 68% 16% 24% 28% 34% 13% 19% 25% 25%
File Location 29% 39% 44% 52% 53% 61% 66% 75% 20% 31% 35% 44% 19% 29% 35% 42%

Android
Textual Content 29% 41% 47% 56% 35% 52% 58% 64% 18% 30% 36% 49% 32% 37% 40% 47%
File Location 40% 51% 57% 65% 54% 65% 72% 79% 28% 38% 46% 53% 26% 40% 40% 53%

by different linkage types could be different.

At the same time, we would like to investigate whether there is a difference
between the realistic experiment and the sample-based experiment. To do
so, following the technique employed by previous work, we apply the 20%
and 80% ratio to construct the sample-based datasets. In detail, 20% are
ground truth patches with labeled linkage types, while 80% are randomly
selected patches with no linkages. Table 6.10 shows the model evaluation re-
sults using sample-based datasets. Two observations are summarized from
the table. The first observation is that the file location models perform
better than the textual content models. In contrast, in our time interval
based experiment, the results suggest that the textual content models out-
perform. One potential reason leading to the difference could be that the
file location is not as flexible as the textual content in the reality. The one
same file location can be edited by more than one developer with differ-
ent purposes. The second observation is that in all, the experiment based
on the time intervals performs better than the one using the sample-based
datasets. This observation indicates that patches that are closer in specific
time intervals are more likely to share similar textual contents and file lo-
cations than patches that are relatively longer time apart. Inspired by the
existing results from the time interval based experiment, the immediate fu-
ture work is to find out whether or not the implementation of our proposed
models would be useful by studying real users.

126

6 Threats to Validity

In this section, we describe the threats to the validity of both exploratory study
and linkage detection study.

Construct validity. We summarize the construct validity into two parts ac-
cording to our exploratory study and patch linkage detection study. In the ex-
ploratory study, the threat exists in our approach to recover patch linkages. We
use regular expressions to identify the patch linkages in the form of Changeid,
Review #, and hyperlinks. However, it is prone to generate false positives which
means these formats cannot assure the target is a patch, i.e., Review # could
be bug id. To mitigate the risk of such false positives, we conducted a careful
manual check as described in Section 3.2 (DP1) Patch linkage recovery and filter-
ing. With regards to the patch linkage detection, one threat is the time interval
selection in our experiment dataset, as we cannot cover all patch linkages using
the current time intervals. However, we believe that such an experiment setting
is closed to reality and could provide insight into whether or not the time interval
has influence on the linkage detection. Another threat related to the detection
experiment is patch feature selection as we do not include other features such as
source code. Our assumption is that the file location provides some heuristic of
the source code. We will list this as an immediate future study to improve our
models.

Internal validity. In our exploratory study, a potential threat exists in our
qualitative method to manually classify types of patch linkages. Patch link-
ages may be mis-coded due to the subjective nature of understanding the coding
schema by the co-authors. To mitigate this threat, we took a systematic approach
to first test our comprehension with 30 samples using Kappa agreement scores
by three separate individuals. Only until the Kappa score reaches more than 0.8
(nearly perfect), we were able to complete the rest of the sample dataset. Another
threat is related to the tool selection for our study, as they may change the results
of the study. In our study, we rely on various tools such as gensim for the tf-idf
calculation and the Mann-Whitney U test for the statistical significance testing.
We are however confident, as these tools have been widely used in other studies.

127

External validity. External validity is related to the result generalization. Our
empirical findings are based on three open source projects using the Gerrit code
review tool, i.e., Qt, OpenStack, and AOSP. However, it is unknown whether our
results can be generalized to the other tool-based code review such as pull-based
code review. For those smaller commercial projects or projects that adopt the
commit-then-review style, unawareness of patch linkage could not be an issue.
Thus, the patch linkage issue might only affect large open source projects or
projects that adopt the review-then-commit style. Due to the popular rise of
tools (i.e., Gerrit and Pull-Requests) that support the review-then-commit style,
I believe that the problem still does affect many software development teams. In
order to encourage future replication studies, our replication package is available
at https://github.com/dong-w/Replication-Patch-Linkage.

7 Summary

Our study provides evidence that latency exists in the notification of a patch
linkage, and confirms that patch linkage detection is promising, with likely im-
provements if the practice of posting linkages becomes more prevalent. This
study provides many open avenues for future work, which includes (i) studying
the role that linkages play in a review team awareness, (ii) improvement of the
detection using alternative approaches with additional features (i.e., source code),
(iii) improving our feature metrics, and (iv) studying real users through the im-
plementation of our proposed models. From our discussions, this paper lays the
groundwork for future research on how to increase patch linkage awareness, which
may facilitate a more efficient review.

128

https://github.com/dong-w/Replication-Patch-Linkage

7 | Conclusion

Code review plays a vital role in software quality assurance. Recently, the
lightweight variant of code review process, known as Modern Code Review (MCR)
has been widely adopted in both open source projects and industrial projects.
MCR is a collaborative process, where developers and authors relying on review
tools conduct an online discussion asynchronously at the distributed teams. Dif-
ferent from the traditional code inspection, the motivation of MCR is not only
limited to defect finding, but also includes knowledge transfer, context under-
standing, and team transparency.

An effective review requires a proper understanding. However, it is challenging
to identify and acquire the needed information to conduct a review. This thesis
continues on this line of better supporting the code review process and presume
that the practice of link sharing can fulfill the information needs. To address this,
three empirical studies are performed around understanding the nature of link
sharing and facilitating the traceability of review links. To the end, a mapping
study is presented to figure out the existent CR research gap and provide the
future direction for researchers. In the remainder of this chapter, we outline the
implications and suggestions of this thesis and lay out opportunities for future
research.

1 Contributions

The outcomes drawn from this thesis could be beneficial for both practitioners
and researchers. Below, the contribution along with suggestions are summarized
for each part as follows:

129

Part I Map for Future Code Review Research

• Mapping results show that 65% of CR researches published in premium
SE venues use sound evaluation methodology, targeting particularly socio-
technical and understanding of CR processes. However, there is a lack of
papers that report the experience and propose solutions to deal with CR
problems.
Suggestion. Practitioners are encouraged to more emphasize and share the
experience with CR. At the same time, future research could propose more
solution tool support to facilitate the developers to make the CR process
more efficient.

• CR research not only relies on the data sources from the CR process but
also largely uses the data sources from the software development process
(i.e., issue tracking system and GitHub). Only 50% of CR papers that use
the quantitative method or mixed-method provide the public datasets (i.e.,
the replication links are provided in the papers).
Suggestion. To promote the validity of scientific findings, future researches
are encouraged to strive for a replicable dataset.

• The SE topic of quality assurance is more likely to use CR metrics to con-
duct the research. In addition, experience and code are the two most fre-
quently used metric sets. From the mapping between metric sets and re-
search topics, results show that it has the potential to benchmark the metric
based CR research, as different research topics tend to use particular metric
sets.
Suggestion. The researchers are encouraged to take the existing metrics
into account when conducting a certain topic.

Part II Link Sharing in Code Review

• The link targets are diverse from different locations with the complexity
of projects. One survey respondent cited that “This (links) is useful for
example for newcomers that may have missed guidelines or did not found
the corresponding bug report when doing submitting a fix.”

130

Suggestion. Patch authors (especiallyfor newcomers or novice developers)
should read the project related guidelines to be familiar with the environ-
ment before their submission.

• The study indicates that the practice of sharing links can fulfill various in-
formation needs, i.e., seven intentions are classified. One respondent from
our survey commented that “Links usually provide a concise and clear an-
swer compared to trying to explain it in prose.”
Suggestion. Reviewers are encouraged to share links as such information
may help to conduct a more efficient review and also assist with mentoring
new members to the review team.

• Results indicate that link sharing isbecoming a popular practice during
review discussions in the MCR. In addition, the existing functionality to
automatically recommend related patches falls short. Such limitation is
also pointed by the responses “It seems useful for seeing what changes are
submitted at a similar point in the change history, but doesn’t seem useful
for finding patches that are related by content (e.g., changing the same fea-
ture) but separated by longer periods of time.”.
Suggestion. New opportunities arise for researchers to develop tool sup-
port, especially to recommend related and useful links for both the patch
author and review teams in order to facilitate the review process.

Part III Automatic Patch Linkage Detection

• Results show latency in the notification of linked patches. Results also show
that patches with linkages are likely to take a longer time to review when
compared to a control group (i.e., patches without linkages), as patches
without linkages seem to not require additional reviewing efforts.
Suggestion. Earlier patch linkage notification could make for a more effi-
cient review, especially in detecting the Alternative Solution.

• Results show that combining two features (i.e., textual content and file loca-
tion) performs better than two separate models. The Alternative Solution
linkage detection is also promising with relatively high recall rates.

131

Suggestion. The implementation of the proposed models using textual
content and file location features is possible, while there is still room for
precision improvement.

2 Opportunities for Future Work

We believe that this thesis makes a major contribution to improving the code
review process. However, there are many open challenges for future work. Below,
we outline a list of potential opportunities.

(I) Studying the causality between the link sharing and the review out-
comes. In Chapter 3, statistical model results show that the internal link has a
significant correlation (but relatively weak) with the review time. However, the
external link is not significantly correlated with the review time. Furthermore,
the number of internal links has an increasing relationship with the review time.
Though we can observe the correlation between explanatory and dependent vari-
ables, the causal effects of link sharing on the review time cannot be represented.
Thus, future in-depth qualitative analysis or experimental studies are needed so
as to better understand the reasons and effects of link sharing impact. Apart
from the review time, future research could investigate whether the link sharing
has effect on the code change quality.

(II) Understanding the challenges of cross-patch collaboration. In
Chapter 4, empirical results show that after the patch linkage is provided, de-
velopers are likely to collaborate with each other. Moreover, collaboration con-
tributions are non-trivial, with key contributions like voting which affects the
review outcome of the target patch, or revising which improves the patch. Future
research should investigate if there exist any challenges when developers tend
to collaborate once the patch linkage is provided (i.e., human factors including
workload, familiarly with codes, social distance, etc.). The effective collaboration
could make the review process more efficient.

132

(III) Automatic recovery of links to recommend the needed informa-
tion. This thesis shows evidence that the links is useful and it has potential
to automatically identify the specific links (i.e., patch linkage). In Chapter 3,
empirical results show that links regarding project guidelines is often shared as
will, which indicates that newcomers may be not familiar with the environment
before their submission. Such observation is also supported by our survey results.
Thus, it is a necessity to develop a functionality or chat-bot that can systemati-
cally manage project related and automatically recommend project related links
to mentor newcomers. In Chapter 5, model evaluation shows that detecting patch
linkage using textual content and file location features is promising, with high re-
call rates. Thus, future work can adopt this model and implement a tool into the
practice by studying real users. Moreover, improvement of the detection using
alternative approaches with additional feature is also an immediate future work,
as there is still room for precision.

(III) Establish a Common Benchmark of Dataset and Metric for CR
research. In Chapter 6, results from the mapping study indicates that at this
stage, we cannot benchmark CR studies. However, the existing datasets and
metrics do show potential for creating a benchmark. For instance, results show
that there exists a regular group of metric set combinations commonly used for
papers that are addressing a specific SE topic. On the other hand, observations
show that researchers from different groups prefer to construct their own datasets
to conduct their study. With the rise of machine learning and AI techniques, CR
researchers will soon need to agree on the common set of metrics that should
be included to accurately compare such techniques against each other. Having a
benchmark will facilitate new researchers, including experts from other fields, to
innovate new techniques and build on top of already established methodologies.

133

References

[1] B A. Kitchenham. Guidelines for performing systematic literature reviews in
software engineering. Technical Report EBSE 2007-001, Keele University and
Durham University Joint Report, 2007.

[2] Ulrike Abelein and Barbara Paech. Understanding the influence of user participa-
tion and involvement on system success - a systematic mapping study. In Software
Engineering 2016, pages 85–86, 2016.

[3] A. Frank Ackerman, Priscilla J. Fowler, and Robert G. Ebenau. Software in-
spections and the industrial production of software. In Proc. of a Symposium
on Software Validation: Inspection-Testing-Verification-Alternatives, page 13–40,
USA, 1984. Elsevier North-Holland, Inc. ISBN 044487593X.

[4] A. Frank Ackerman, Lynne S. Buchwald, and Frank H. Lewski. Software inspec-
tions: An effective verification process. IEEE Softw., 6(3):31–36, May 1989. ISSN
0740-7459. doi: 10.1109/52.28121. URL https://doi.org/10.1109/52.28121.

[5] Muhammad Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K. Roy, and
Kevin A. Schneider. Mining duplicate questions in stack overflow. In Proceedings
of the 13th International Conference on Mining Software Repositories, MSR ’16,
pages 402–412, 2016.

[6] A. Alami, M. Leavitt Cohn, and A. Wąsowski. Why does code review work
for open source software communities? In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 1073–1083, 2019.

[7] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. Learn-
ing natural coding conventions. In Proceedings of the 22Nd ACM SIGSOFT

134

https://doi.org/10.1109/52.28121

International Symposium on Foundations of Software Engineering, FSE 2014,
pages 281–293, 2014.

[8] Android, 2019. URL http://android-review.googlesource.com.

[9] Maurício Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Pinto,
Margaret-Anne Storey, and Marco Aurélio Gerosa. How modern news aggregators
help development communities shape and share knowledge. In Proceedings of the
40th International Conference on Software Engineering, page 499–510, 2018.

[10] F. Armstrong, F. Khomh, and B. Adams. Broadcast vs. unicast review technology:
Does it matter? In 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 219–229, 2017.

[11] Ikram El Asri, Noureddine Kerzazi, Gias Uddin, Foutse Khomh, and M.A. Ja-
nati Idrissi. An empirical study of sentiments in code reviews. Information and
Software Technology, pages 37 – 54, 2019.

[12] Aybüke Aurum, Håkan Petersson, and Claes Wohlin. State-of-the-art: software
inspections after 25 years. Softw. Test., Verif. Reliab., 12:133–154, 2002.

[13] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges
of modern code review. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 712–721, 2013.

[14] Deepika Badampudi, Ricardo Britto, and Michael Unterkalmsteiner. Modern code
reviews - preliminary results of a systematic mapping study. In Proceedings of the
Evaluation and Assessment on Software Engineering, EASE ’19, pages 340–345.
ACM, 2019.

[15] Vipin Balachandran. Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation. In
Proceedings of the 2013 International Conference on Software Engineering, ICSE
’13, pages 931–940, 2013.

[16] Sebastian Baltes and Stephan Diehl. Usage and attribution of stack overflow code
snippets in github projects. Empirical Software Engineering, page 1259–1295,
2019.

135

http://android-review.googlesource.com

[17] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. Helping
developers help themselves: Automatic decomposition of code review changesets.
In Proceedings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ’15, pages 134–144, 2015.

[18] T. Baum, K. Schneider, and A. Bacchelli. On the optimal order of reading source
code changes for review. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 329–340, 2017.

[19] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schneider. Factors influencing
code review processes in industry. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2016,
pages 85–96, 2016.

[20] Tobias Baum, Fabian Kortum, Kurt Schneider, Arthur Brack, and Jens Schauder.
Comparing pre-commit reviews and post-commit reviews using process simula-
tion. Journal of Software: Evolution and Process, page e1865, 2017.

[21] Tobias Baum, Hendrik Leßmann, and Kurt Schneider. The choice of code re-
view process: A survey on the state of the practice. In Michael Felderer, Daniel
Méndez Fernández, Burak Turhan, Marcos Kalinowski, Federica Sarro, and Di-
etmar Winkler, editors, Product-Focused Software Process Improvement, pages
111–127, 2017.

[22] G. Bavota and B. Russo. Four eyes are better than two: On the impact of code
reviews on software quality. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 81–90, 2015.

[23] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. The secret life of
patches: A firefox case study. In 2012 19th Working Conference on Reverse
Engineering, pages 447–455, 2012.

[24] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. The influence of non-
technical factors on code review. In 2013 20th Working Conference on Reverse
Engineering (WCRE), pages 122–131, 2013.

[25] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. In-
vestigating technical and non-technical factors influencing modern code review.
Empirical Software Engineering, 21:932–959, 2015.

136

[26] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. Modern
code reviews in open-source projects: Which problems do they fix? In Proceedings
of the 11th Working Conference on Mining Software Repositories, MSR 2014,
pages 202–211, 2014.

[27] H. Bernard. Research Methods in Anthropology: Qualitative and Quantitative
Approaches. Rowman & Littlefield, 2011.

[28] João Helis Bernardo, Daniel Alencar da Costa, and Uirá Kulesza. Studying
the impact of adopting continuous integration on the delivery time of pull re-
quests. In Proceedings of the 15th International Conference on Mining Software
Repositories, MSR ’18, pages 131–141, 2018.

[29] N. Bettenburg, R. Premraj, T. Zimmermann, and 3. Sunghun Kim. Duplicate bug
reports considered harmful . . . really? In 2008 IEEE International Conference on
Software Maintenance, pages 337–345, 2008.

[30] Christian Bird, Trevor Carnahan, and Michaela Greiler. Lessons learned from
building and deploying a code review analytics platform. In Proceedings of the
12th Working Conference on Mining Software Repositories, MSR ’15, pages 191–
201, 2015.

[31] V. Boisselle and B. Adams. The impact of cross-distribution bug duplicates,
empirical study on debian and ubuntu. In 2015 IEEE 15th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 131–140,
2015.

[32] A. Bosu and J. C. Carver. Impact of peer code review on peer impression for-
mation: A survey. In 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 133–142, 2013.

[33] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley. Process aspects
and social dynamics of contemporary code review: Insights from open source
development and industrial practice at microsoft. IEEE Transactions on Software
Engineering, pages 56–75, 2017.

[34] Amiangshu Bosu and Jeffrey C. Carver. Impact of developer reputation on code
review outcomes in oss projects: An empirical investigation. In Proceedings of

137

the 8th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM ’14, pages 33:1–33:10, 2014.

[35] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek
Janni. Identifying the characteristics of vulnerable code changes: An empirical
study. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 257–268, 2014.

[36] Amiangshu Bosu, Michaela Greiler, and Christian Bird. Characteristics of useful
code reviews: An empirical study at microsoft. In Proceedings of the 12th Working
Conference on Mining Software Repositories, MSR ’15, pages 146–156, 2015.

[37] NORMAN BRESLOW. A generalized Kruskal-Wallis test for comparing K sam-
ples subject to unequal patterns of censorship. Biometrika, pages 579–594, 1970.

[38] L. Brothers, V. Sembugamoorthy, and M. Muller. Icicle: Groupware for code
inspection. In Proceedings of the 1990 ACM Conference on Computer-Supported
Cooperative Work, page 169–181, 1990.

[39] Sample Size Calculator, 2020. URL https://www.surveysystem.com/sscalc.

htm.

[40] Norman Cliff. Answering Ordinal Questions with Ordinal Data Using Ordinal
Statistics. Multivariate Behavioral Research, (3):331–350, 1996.

[41] Codestriker, 2019. URL http://codestriker.sourceforge.net.

[42] F. Coelho, T. Massoni, and E. L.G. Alves. Refactoring-aware code review: A
systematic mapping study. In 2019 IEEE/ACM 3rd International Workshop on
Refactoring (IWoR), pages 63–66, 2019.

[43] Manoel Limeira de Lima Júnior, Daricélio Moreira Soares, Alexandre Plastino,
and Leonardo Murta. Automatic assignment of integrators to pull requests: The
importance of selecting appropriate attributes. Journal of Systems and Software,
pages 181 – 196, 2018.

[44] R. M. de Mello, R. Oliveira, and A. Garcia. On the influence of human factors
for identifying code smells: A multi-trial empirical study. In 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 68–77, 2017.

138

https://www.surveysystem.com/sscalc.htm
https://www.surveysystem.com/sscalc.htm
http://codestriker.sourceforge.net

[45] M. di Biase, M. Bruntink, and A. Bacchelli. A security perspective on code review:
The case of chromium. In 2016 IEEE 16th International Working Conference on
Source Code Analysis and Manipulation (SCAM), pages 21–30, 2016.

[46] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. Confusion in code re-
views: Reasons, impacts, and coping strategies. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
49–60, 2019.

[47] M. E. Fagan. Design and code inspections to reduce errors in program develop-
ment. IBM Systems Journal, 15(3):182–211, 1976. doi: 10.1147/sj.153.0182.

[48] Michael Fagan. A History of Software Inspections, pages 562–573. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-3-642-59412-0. doi: 10.1007/
978-3-642-59412-0_34. URL https://doi.org/10.1007/978-3-642-59412-0_

34.

[49] Yuanrui Fan, Xin Xia, David Lo, and Shanping Li. Early prediction of merged
code changes to prioritize reviewing tasks. Empirical Softw. Engg., pages 3346–
3393, 2018.

[50] Benjamin Floyd, Tyler Santander, and Westley Weimer. Decoding the repre-
sentation of code in the brain: An fmri study of code review and expertise. In
Proceedings of the 39th International Conference on Software Engineering, ICSE
’17, pages 175–186. IEEE Press, 2017.

[51] Daniel M. German, Gregorio Robles, Germán Poo-Caamaño, Xin Yang, Hajimu
Iida, and Katsuro Inoue. "was my contribution fairly reviewed?": A framework
to study the perception of fairness in modern code reviews. In Proceedings of the
40th International Conference on Software Engineering, ICSE ’18, pages 523–534.
ACM, 2018.

[52] Gerrit, 2019. URL http://www.gerritcodereview.com.

[53] John Gintell, John Arnold, Michael Houde, Jacek Kruszelnicki, Roland McKen-
ney, and Gérard Memmi. Scrutiny: A collaborative inspection and review system.
In Ian Sommerville and Manfred Paul, editors, Proceedings of the 4th European
Software Engineering Conference, pages 344–360, 1993.

139

https://doi.org/10.1007/978-3-642-59412-0_34
https://doi.org/10.1007/978-3-642-59412-0_34
http://www.gerritcodereview.com

[54] Carlos Gomez, Brendan Cleary, and Leif Singer. A study of innovation diffusion
through link sharing on stack overflow. In IEEE International Working Conference
on Mining Software Repositories, pages 81–84, 05 2013.

[55] Anurag Goswami, Gursimran Walia, and Abhinav Singh. Using learning styles of
software professionals to improve their inspection team performance. International
Journal of Software Engineering and Knowledge Engineering, pages 1721–1726,
2015.

[56] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study
of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages 345–355,
2014.

[57] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen.
Work practices and challenges in pull-based development: The integrator’s per-
spective. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ICSE ’15, pages 358–368. IEEE Press, 2015.

[58] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work prac-
tices and challenges in pull-based development: The contributor’s perspective. In
Proceedings of the 38th International Conference on Software Engineering, ICSE
’16, pages 285–296, 2016.

[59] Monika Gupta, Ashish Sureka, and Srinivas Padmanabhuni. Process mining mul-
tiple repositories for software defect resolution from control and organizational
perspective. In Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pages 122–131, 2014.

[60] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

[61] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, A. E. Camargo Cruz,
Kenji Fujiwara, and Hajimu Iida. Who does what during a code review? datasets
of oss peer review repositories. In Proceedings of the 10th Working Conference
on Mining Software Repositories, MSR ’13, pages 49–52, 2013.

[62] Q. Hanam, A. Mesbah, and R. Holmes. Aiding code change understanding with
semantic change impact analysis. In 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 202–212, 2019.

140

[63] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and Volker Gruhn.
Automatically recommending code reviewers based on their expertise: An empir-
ical comparison. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ASE 2016, pages 99–110, 2016.

[64] Frank E. Harrell Jr., Kerry L. Lee, Robert M. Califf, David B. Pryor, and
Robert A. Rosati. Regression modelling strategies for improved prognostic pre-
diction. Statistics in Medicine, pages 143–152, 1984.

[65] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, 2009.

[66] H. Hata, C. Treude, R. G. Kula, and T. Ishio. 9.6 Million Links in Source
Code Comments: Purpose, Evolution, and Decay. In Proceedings of the 41st
International Conference on Software Engineering, page 1211–1221, 2019.

[67] Vincent J. Hellendoorn, Premkumar T. Devanbu, and Alberto Bacchelli. Will they
like this?: Evaluating code contributions with language models. In Proceedings of
the 12th Working Conference on Mining Software Repositories, MSR ’15, pages
157–167, 2015.

[68] T. Hirao, S. McIntosh, A. Ihara, and K. Matsumoto. Code reviews with divergent
review scores: An empirical study of the openstack and qt communities. IEEE
Transactions on Software Engineering, pages 1–1, 03 2020.

[69] Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto. The
review linkage graph for code review analytics: A recovery approach and empir-
ical study. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, page 578–589, 2019.

[70] Dorota Huizinga and Adam Kolawa. Automated Defect Prevention: Best
Practices in Software Management. John Wiley & Sons, 2007. ISBN 0470042125.

[71] Jing Jiang, David Lo, Xinyu Ma, Fuli Feng, and Li Zhang. Understanding inactive
yet available assignees in github. Inf. Softw. Technol., pages 44–55, 2017.

[72] Jing Jiang, Yun Yang, Jiahuan He, Xavier Blanc, and Li Zhang. Who should
comment on this pull request? analyzing attributes for more accurate commenter

141

recommendation in pull-based development. Inf. Softw. Technol., pages 48–62,
2017.

[73] Jing Jiang, Jin Cao, and Li Zhang. An empirical study of link sharing in review
comments. In Zheng Li, He Jiang, Ge Li, Minghui Zhou, and Ming Li, editors,
Software Engineering and Methodology for Emerging Domains, pages 101–114,
2019.

[74] Y. Jiang, B. Adams, and D. M. German. Will my patch make it? and how
fast? case study on the linux kernel. In 2013 10th Working Conference on Mining
Software Repositories (MSR), pages 101–110, 2013.

[75] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and
N. Ubayashi. A large-scale empirical study of just-in-time quality assurance.
IEEE Transactions on Software Engineering, pages 757–773, 2013.

[76] D. Kavaler, P. Devanbu, and V. Filkov. Whom are you going to call?: Determi-
nants of @-mentions in github discussions. Empirical Software Engineering, page
3904–3932, 2019.

[77] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK,
Keele Univ., 33:1–26, 2004.

[78] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On combining
classifiers. IEEE Trans. Pattern Anal. Mach. Intell., pages 226–239, March 1998.
ISSN 0162-8828.

[79] Sami Kollanus. Icmm—a maturity model for software inspections. J. Softw.
Maint. Evol., page 327–341, 2011.

[80] Sami Kollanus and Jussi Koskinen. Survey of software inspection research. The
Open Software Engineering Journal, 3:15–34, 05 2009.

[81] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey. Investi-
gating code review quality: Do people and participation matter? In 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pages
111–120, 2015.

142

[82] O. Kononenko, O. Baysal, and M. W. Godfrey. Code review quality: How de-
velopers see it. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 1028–1038, 2016.

[83] Oleksii Kononenko, Tresa Rose, Olga Baysal, Michael Godfrey, Dennis Theisen,
and Bart de Water. Studying pull request merges: A case study of shopify’s
active merchant. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, ICSE-SEIP ’18, pages 124–133.
ACM, 2018.

[84] Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and
Alberto Bacchelli. Does reviewer recommendation help developers? IEEE
Transactions on Software Engineering, pages 710–731, August 2018.

[85] Robert V. Krejcie and Daryle W. Morgan. Determining sample size for research
activities. Educational and Psychological Measurement, 30(3):607–610, 1970.

[86] Stephan Krusche, Mjellma Berisha, and Bernd Bruegge. Teaching code re-
view management using branch based workflows. In Proceedings of the 38th
International Conference on Software Engineering Companion, ICSE ’16, pages
384–393. ACM, 2016.

[87] F. Lanubile, F. Calefato, and C. Ebert. Group awareness in global software
engineering. IEEE Software, (2):18–23, March 2013.

[88] Zhixing Li, Gang Yin, Yue Yu, Tao Wang, and Huaimin Wang. Detecting dupli-
cate pull-requests in github. In Proceedings of the 9th Asia-Pacific Symposium
on Internetware, Internetware’17, pages 20:1–20:6, 2017.

[89] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. Automatic
generation of pull request descriptions. In Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’19, page
176–188, 2019.

[90] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito. Expert recommendation with
usage expertise. In 2009 IEEE International Conference on Software Maintenance,
pages 535–538, 2009.

[91] L. MacLeod, M. Greiler, M. Storey, C. Bird, and J. Czerwonka. Code reviewing
in the trenches: Challenges and best practices. IEEE Software, pages 34–42, 2018.

143

[92] Chandra Maddila, Chetan Bansal, and Nachiappan Nagappan. Predicting pull re-
quest completion time: A case study on large scale cloud services. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ES-
EC/FSE 2019, page 874–882, 2019.

[93] I. Malavolta, R. Verdecchia, B. Filipovic, M. Bruntink, and P. Lago. How main-
tainability issues of android apps evolve. In 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 334–344, Sep. 2018.

[94] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. Annals of Mathematical Statistics, pages
50–60, 1947.

[95] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

[96] Vadim Markovtsev, Waren Long, Hugo Mougard, Konstantin Slavnov, and Egor
Bulychev. Style-analyzer: Fixing code style inconsistencies with interpretable
unsupervised algorithms. In Proceedings of the 16th International Conference on
Mining Software Repositories, MSR ’19, page 468–478, 2019.

[97] V. Mashayekhi, J. M. Drake, W. . Tsai, and J. Riedl. Distributed, collaborative
software inspection. IEEE Software, pages 66–75, 1993.

[98] G. Mathew, A. Agrawal, and T. Menzies. Finding trends in software research.
IEEE Transactions on Software Engineering, pages 1–1, 2018.

[99] S. McIntosh and Y. Kamei. Are fix-inducing changes a moving target? a longitu-
dinal case study of just-in-time defect prediction. IEEE Transactions on Software
Engineering, pages 412–428, 2018.

[100] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. The
impact of code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 192–201, 2014.

[101] Shane Mcintosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. An
empirical study of the impact of modern code review practices on software quality.
Empirical Softw. Engg., 21:2146–2189, 2016. ISSN 1382-3256.

144

[102] Massimiliano Menarini, Yan Yan, and William G. Griswold. Semantics-assisted
code review: An efficient toolchain and a user study. In Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software Engineering, ASE
2017, pages 554–565, 2017.

[103] Samim Mirhosseini and Chris Parnin. Can automated pull requests encourage
software developers to upgrade out-of-date dependencies? In Proceedings of the
32Nd IEEE/ACM International Conference on Automated Software Engineering,
ASE 2017, pages 84–94, 2017.

[104] Ferenc Moksony. Small is beautiful: The use and interpretation of r2 in social
research. Szociologiai Szemle, pages 130–138, 01 1999.

[105] R. Morales, S. McIntosh, and F. Khomh. Do code review practices impact de-
sign quality? a case study of the qt, vtk, and itk projects. In 2015 IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 171–180, 2015.

[106] Murtuza Mukadam, Christian Bird, and Peter C. Rigby. Gerrit software code
review data from android. In Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, page 45–48, 2013.

[107] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen, David Lo, and Cheng-
nian Sun. Duplicate Bug Report Detection with a Combination of Information Re-
trieval and Topic Modeling. In Proceedings of the 27th International Conference
on Automated Software Engineering, pages 70–79, 2012.

[108] OpenStack, 2019. URL http://review.openstack.org.

[109] A. Ouni, R. G. Kula, and K. Inoue. Search-based peer reviewers recommenda-
tion in modern code review. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 367–377, 2016.

[110] M. Paixao and P. H. Maia. Rebasing in code review considered harmful: A large-
scale empirical investigation. In 2019 19th International Working Conference on
Source Code Analysis and Manipulation (SCAM), pages 45–55, 2019.

[111] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and
Mark Harman. Are developers aware of the architectural impact of their changes?

145

http://review.openstack.org

In Proceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, pages 95–105, 2017.

[112] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol. Would static anal-
ysis tools help developers with code reviews? In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), pages
161–170, 2015.

[113] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto
Bacchelli. Information Needs in Contemporary Code Review. Proceedings of
the ACM Conference on Computer Supported Cooperative Work, 2:135:1–135:27,
2018.

[114] Rajshakhar Paul, Amiangshu Bosu, and Kazi Zakia Sultana. Expressions of sen-
timents during code reviews: Male vs. female. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
26–37, 2019.

[115] J. M. Perpich, D. E. Perry, A. A. Porter, L. G. Votta, and M. W. Wade. Any-
where, anytime code inspections: Using the web to remove inspection bottlenecks
in large-scale software development. In Proceedings of the 19th International
Conference on Software Engineering, page 14–21, 1997.

[116] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic
mapping studies in software engineering. In Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering, EASE’08,
pages 68–77, 2008.

[117] Mohammad Masudur Rahman, Chanchal K. Roy, and Jason A. Collins. Correct:
Code reviewer recommendation in github based on cross-project and technology
experience. In Proceedings of the 38th International Conference on Software
Engineering Companion, ICSE ’16, pages 222–231. ACM, 2016.

[118] Mohammad Masudur Rahman, Chanchal K. Roy, and Raula G. Kula. Predicting
usefulness of code review comments using textual features and developer expe-
rience. In Proceedings of the 14th International Conference on Mining Software
Repositories, MSR ’17, pages 215–226, 2017.

146

[119] Achyudh Ram, Anand Ashok Sawant, Marco Castelluccio, and Alberto Bacchelli.
What makes a code change easier to review: An empirical investigation on code
change reviewability. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2018, pages 201–212. ACM, 2018.

[120] J. Ramos. Using tf-idf to determine word relevance in document queries. In
Proceedings of the first Instructional Conference on Machine Learning, pages
133–142, 2003.

[121] Romesh Ranawana and Vasile Palade. Multi-classifier systems: Review and a
roadmap for developers. Int. J. Hybrid Intell. Syst., page 35–61, 2006.

[122] Michael Rath, Jacob Rendall, Jin L. C. Guo, Jane Cleland-Huang, and
Patrick Mäder. Traceability in the wild: Automatically augmenting incomplete
trace links. In Proceedings of the 40th International Conference on Software
Engineering, ICSE ’18, page 834–845, 2018.

[123] L. Ren, S. Zhou, C. Kästner, and A. Wąsowski. Identifying redundancies in fork-
based development. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 230–241, 2019.

[124] ReviewBoard, 2019. URL http://www.reviewboard.org.

[125] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German. Contemporary
peer review in action: Lessons from open source development. IEEE Software,
pages 56–61, 2012.

[126] Peter C. Rigby and Christian Bird. Convergent contemporary software peer review
practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 202–212, 2013.

[127] Peter C. Rigby and Margaret-Anne Storey. Understanding broadcast based peer
review on open source software projects. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 541–550, 2011.

[128] Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. Open source
software peer review practices: A case study of the apache server. In Proceedings
of the 30th International Conference on Software Engineering, ICSE ’08, pages
541–550, 2008.

147

http://www.reviewboard.org

[129] Peter C. Rigby, Daniel M. German, Laura Cowen, and Margaret-Anne Storey.
Peer review on open-source software projects: Parameters, statistical models,
and theory. ACM Trans. Softw. Eng. Methodol., pages 35:1–35:33, 2014.

[130] Shade Ruangwan, Patanamon Thongtanunam, Akinori Ihara, and Kenichi Mat-
sumoto. The impact of human factors on the participation decision of reviewers
in modern code review. Empirical Software Engineering, page 973–1016, 2018.

[131] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of Duplicate De-
fect Reports Using Natural Language Processing. In Proceedings of the 29th
International Conference on Software Engineering, pages 499–510, 2007.

[132] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. Modern code review: A case study at google. In Proceedings of the
40th International Conference on Software Engineering: Software Engineering in
Practice, ICSE-SEIP ’18, pages 181–190. ACM, 2018.

[133] Shipra Sharma and Balwinder Sodhi. Using stack overflow content to assist in
code review. Software: Practice and Experience, pages 1255–1277, 2019.

[134] J. Shimagaki, Y. Kamei, S. McIntosh, D. Pursehouse, and N. Ubayashi. Why
are commits being reverted?: A comparative study of industrial and open source
projects. In 2016 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 301–311, 2016.

[135] Junji Shimagaki, Yasutaka Kamei, Shane McIntosh, Ahmed E. Hassan, and Naoy-
asu Ubayashi. A study of the quality-impacting practices of modern code review
at sony mobile. In Proceedings of the 38th International Conference on Software
Engineering Companion, ICSE ’16, pages 212–221. ACM, 2016.

[136] Forrest Shull, Vic Basili, Barry Boehm, A. Winsor Brown, Patricia Costa, Mikael
Lindvall, Dan Port, Ioana Rus, Roseanne Tesoriero, and Marvin Zelkowitz. What
we have learned about fighting defects. METRICS ’02, page 249, USA, 2002.
IEEE Computer Society. ISBN 0769513395.

[137] Forrest Shull, Raimund L. Feldmann, Carolyn B. Seaman, Myrna Regardie, and
Sally Godfrey. Fully employing software inspections data. Innovations in Systems
and Software Engineering, pages 243–254, 2010.

148

[138] Daricélio M. Soares, Manoel L. de Lima Júnior, Alexandre Plastino, and Leonardo
Murta. What factors influence the reviewer assignment to pull requests?
Information and Software Technology, 98:32 – 43, 2018.

[139] Behjat Soltanifar, Atakan Erdem, and Ayse Bener. Predicting defectiveness
of software patches. In Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM ’16,
pages 22:1–22:10, 2016.

[140] Davide Spadini, Maurício Aniche, Margaret-Anne Storey, Magiel Bruntink, and
Alberto Bacchelli. When testing meets code review: Why and how developers
review tests. In Proceedings of the 40th International Conference on Software
Engineering, ICSE ’18, pages 677–687. ACM, 2018.

[141] Davide Spadini, Fabio Palomba, Tobias Baum, Stefan Hanenberg, Magiel
Bruntink, and Alberto Bacchelli. Test-driven code review: An empirical study. In
Proceedings of the 41st International Conference on Software Engineering, ICSE
’19, page 1061–1072, 2019.

[142] C. Sun, D. Lo, S. Khoo, and J. Jiang. Towards more accurate retrieval of duplicate
bug reports. In 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pages 253–262, Nov 2011.

[143] Yida Tao and Sunghun Kim. Partitioning composite code changes to facilitate
code review. In Proceedings of the 12th Working Conference on Mining Software
Repositories, MSR ’15, pages 180–190, 2015.

[144] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. How
do software engineers understand code changes?: An exploratory study in indus-
try. In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ’12, pages 51:1–51:11, 2012.

[145] Yida Tao, Donggyun Han, and Sunghun Kim. Writing acceptable patches: An
empirical study of open source project patches. In Proceedings of the 2014 IEEE
International Conference on Software Maintenance and Evolution, ICSME ’14,
pages 271–280, 2014.

[146] P. Thongtanunam and A. E. Hassan. Review dynamics and their impact on
software quality. IEEE Transactions on Software Engineering, pages 1–1, 2020.

149

[147] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K. Matsumoto. Who should review my code? a file location-based code-
reviewer recommendation approach for modern code review. In 2015 IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 141–150, 2015.

[148] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu
Iida. Investigating code review practices in defective files: An empirical study of
the qt system. In Proceedings of the 12th Working Conference on Mining Software
Repositories, MSR ’15, pages 168–179, 2015.

[149] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu
Iida. Revisiting code ownership and its relationship with software quality in the
scope of modern code review. In Proceedings of the 38th International Conference
on Software Engineering, ICSE ’16, pages 1039–1050. ACM, 2016.

[150] Patanamon Thongtanunam, Shane Mcintosh, Ahmed E. Hassan, and Hajimu
Iida. Review participation in modern code review. Empirical Softw. Engg., pages
768–817, 2017.

[151] Ferdian Thung, Pavneet Singh Kochhar, and David Lo. Dupfinder: Integrated tool
support for duplicate bug report detection. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14, pages
871–874, 2014.

[152] P. Tourani and B. Adams. The impact of human discussions on just-in-time
quality assurance: An empirical study on openstack and eclipse. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 189–200, 2016.

[153] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and tech-
nical factors for evaluating contribution in github. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages 356–366,
2014.

[154] Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s talk about it: Evaluating
contributions through discussion in github. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2014, pages 144–154, 2014.

150

[155] Y. Tymchuk, A. Mocci, and M. Lanza. Code review: Veni, vidi, vici. In
2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 151–160, 2015.

[156] Anthony J Viera, Joanne M Garrett, et al. Understanding Interobserver Agree-
ment: The Kappa Statistic. Family Medicine, 37(5):360–363, 2005.

[157] Robert J. Walker, Shreya Rawal, and Jonathan Sillito. Do crosscutting con-
cerns cause modularity problems? In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12,
pages 49:1–49:11, 2012.

[158] Dong Wang, Tao Xiao, Patanamon Thongtanunam, Raula Gaikovina Kula,
and Kenichi Matsumoto. Understanding shared links and their intentions to
meet information needs in modern code review. Empir. Softw. Eng., 26(5):
96, 2021. doi: 10.1007/s10664-021-09997-x. URL https://doi.org/10.1007/

s10664-021-09997-x.

[159] Jing Wang, Patrick C. Shih, Yu Wu, and John M. Carroll. Comparative case
studies of open source software peer review practices. Inf. Softw. Technol., 67:
1–12, 2015.

[160] M. Wang, Z. Lin, Y. Zou, and B. Xie. Cora: Decomposing and describing tangled
code changes for reviewer. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 1050–1061, 2019.

[161] Qingye Wang, Xin Xia, David Lo, and Shanping Li. Why is my code change
abandoned? Information and Software Technology, pages 108 – 120, 2019.

[162] Qingye Wang, Bowen Xu, Xin Xia, Ting Wang, and Shanping Li. Duplicate pull
request detection: When time matters. In Proceedings of the 11th Asia-Pacific
Symposium on Internetware, Internetware ’19, pages 1–10, 2019.

[163] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting
duplicate bug reports using natural language and execution information. In 2008
ACM/IEEE 30th International Conference on Software Engineering, pages 461–
470, 2008.

[164] Ruiyin Wen, David Gilbert, Michael G. Roche, and Shane McIntosh. BLIMP
Tracer: Integrating Build Impact Analysis with Code Review. In Proc. of the

151

https://doi.org/10.1007/s10664-021-09997-x
https://doi.org/10.1007/s10664-021-09997-x

International Conference on Software Maintenance and Evolution (ICSME), page
685–694, 2018.

[165] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Requirements
engineering paper classification and evaluation criteria: A proposal and a discus-
sion. Requir. Eng., 11(1):102–107, December 2005.

[166] Peter Willett. The porter stemming algorithm: then and now. Program, pages
219–223, 2006.

[167] Xin Xia, David Lo, Xinyu Wang, and Xiaohu Yang. Who should review this
change?: Putting text and file location analyses together for more accurate rec-
ommendations. In 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 261–270, 09 2015.

[168] Yu xia Zhang, Minghui Zhou, Klaas-Jan Stol, Jian yu Wu, and Z. Jin. How do
companies collaborate in open source ecosystems? an empirical study of open-
stack. 2020 IEEE/ACM 42nd International Conference on Software Engineering,
page 1196–1208, 2020.

[169] X. Yang, R. G. Kula, N. Yoshida, and H. Iida. Mining the modern code review
repositories: A dataset of people, process and product. In 2016 IEEE/ACM
13th Working Conference on Mining Software Repositories (MSR), pages 460–
463, 2016.

[170] Deheng Ye, Zhenchang Xing, and Nachiket Kapre. The structure and dynamics of
knowledge network in domain-specific q&a sites: A case study of stack overflow.
Empirical Softw. Engg., page 375–406, 2017.

[171] Y. Yu, Z. Li, G. Yin, T. Wang, and H. Wang. A dataset of duplicate pull-requests
in github. In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), pages 22–25, May 2018.

[172] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. Reviewer recommendation
for pull-requests in github. Inf. Softw. Technol., 74:204–218, 2016.

[173] F. Zampetti, L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, and M. Lanza. How
developers document pull requests with external references. In 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC), pages 23–33,
2017.

152

[174] F. Zampetti, G. Bavota, G. Canfora, and M. D. Penta. A study on the interplay
between pull request review and continuous integration builds. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 38–48, 2019.

[175] Farida El Zanaty, Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi
Matsumoto. An empirical study of design discussions in code review. In
Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’18, pages 11:1–11:10, 2018.

[176] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. Automatically
recommending peer reviewers in modern code review. IEEE Trans. Softw. Eng.,
pages 530–543, 2016.

[177] Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung Kim. Interactive
code review for systematic changes. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE ’15, pages 111–122. IEEE
Press, 2015.

[178] X. Zhang, Y. Chen, Y. Gu, W. Zou, X. Xie, X. Jia, and J. Xuan. How do multiple
pull requests change the same code: A study of competing pull requests in github.
In 2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 228–239, 2018.

[179] Yang Zhang, Yue Yu, Huaimin Wang, Bogdan Vasilescu, and Vladimir Filkov.
Within-ecosystem issue linking: A large-scale study of rails. In Proceedings of
the 7th International Workshop on Software Mining, SoftwareMining 2018, page
12–19, 2018.

[180] Yang Zhang, Yiwen Wu, Tao Wang, and Huaimin Wang. ilinker: a novel approach
for issue knowledge acquisition in github projects. World Wide Web, 23:1589–
1619, 2020.

[181] Yuxia Zhang, Minghui Zhou, Audris Mockus, and Zhi Jin. Companies’ participa-
tion in oss development - an empirical study of openstack. IEEE Transactions on
Software Engineering, pages 1–1, 2019.

[182] Guoliang Zhao, Daniel Alencar Costa, and Ying Zou. Improving the pull requests
review process using learning-to-rank algorithms. Empirical Softw. Engg., page
2140–2170, 2019.

153

[183] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. Effectiveness of code contri-
bution: From patch-based to pull-request-based tools. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, pages 871–882, 2016.

[184] Weiqin Zou, Jifeng Xuan, Xiaoyuan Xie, Zhenyu Chen, and Baowen Xu. How
does code style inconsistency affect pull request integration? an exploratory study
on 117 github projects. Empirical Software Engineering, page 3871–3903, 2019.

154

	Abstract
	Acknowledgements
	List of publications
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contributions
	Thesis Outline

	Related Studies
	I Systematic Mapping Study
	Can We Benchmark Code Review Research?
	Introduction
	Chapter Organization

	The Systematic Mapping Process
	Results: Maps of CR Research
	Comparative Analysis
	Towards a Common Benchmark of Dataset and Metric
	Threats To Validity
	Summary

	II Link Sharing in Code Review
	Understanding Shared Links and Their Intentions to Meet Information Needs
	Introduction
	Chapter Organization

	Motivating Example
	Case Study Design
	Case Study Results
	Discussions
	Developer Feedback
	Suggestions

	Threats to Validity
	Summary

	An Exploration of Cross-Patch Collaborations via Patch Linkage
	Introduction
	Data Collection
	Preliminary Study
	Requesting Collaboration
	Collaboration after Patch Linkage

	Threats to Validity
	Challenges and Opportunities

	III Automatic Patch Linkage Detection
	Patch Linkage Detection Using Textual Content and File Location Features
	Introduction
	Chapter Organization

	Motivating Example
	Impact of Patch Linkage on the Review Process
	Patch Linkage Detection
	Discussion
	Threats to Validity
	Summary

	Conclusion
	Contributions
	Opportunities for Future Work

