
Doctoral Dissertation

Efficient Stochastic Computing Architectures for

Deep Neural Networks

Van Tinh Nguyen

January 24, 2022

Graduate School of Science and Technology

Nara Institute of Science and Technology



A Doctoral Dissertation

submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Van Tinh Nguyen

Thesis Committee:

Professor Yasuhiko Nakashima (Supervisor)

Professor Yuichi Hayashi (Co-supervisor)

Associate Professor Renyuan Zhang (Co-supervisor)



Efficient Stochastic Computing Architectures for

Deep Neural Networks*

Van Tinh Nguyen

Abstract

This thesis comprises four parts, where the first one presents a novel architec-

ture for radial basis function (RBF) computation employing stochastic comput-

ing. The RBF is optimized using proposed simple stochastic logic circuits. We

validated this approach by comparison with both Bernstein polynomial and two-

dimensional finite-state machine (2D-FSM)-based implementation. Optimally,

the mean absolute error is reduced by 40% and 80% compared to two other well-

known approaches, Bernstein polynomial and 2D-FSM-based implementation,

respectively. In terms of hardware cost, our proposed solution required as much

as the Bernstein method did. Moreover, the proposed approach outperforms

the 2D-FSM-based implementation, roughly 54% less hardware cost. Regard-

ing the critical path delay, the proposed system is less than 12% than others on

average. Besides, the proposed architecture also required 70% less power than

2D-FSM-based implementation. The second part of the thesis proposes a novel

technique implementation of hyperbolic tanh(ax) and sigmoid(2ax) functions for

high precision and compact computational hardware based on stochastic logic.

This work demonstrates the stochastic computation of tanh(ax) and sigmoid(2ax)

functions-based Bernstein polynomial using a bipolar format. The format con-

version from bipolar to unipolar format is involved in our implementation. One

achievement is that our proposed method is more accurate than the state-of-the-

art, including the finite-state machine (FSM)-based method, JK-FF. On average,

90% of improvement of this work in terms of mean square error (MAE) has been

*Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science

and Technology, January 24, 2022.

i



achieved while the hardware cost and power consumption are comparable to the

previous approaches. The third and fourth parts of the thesis propose an in-

memory binary spiking neural network (BSNN) using stochastic computing (SC)

for information encoding. The residual BSNN learning using a surrogate gradient

that shortens the time steps in the BSNN while maintaining sufficient accuracy

is proposed. At the circuit level, presynaptic spikes are fed to memory units

through differential bit lines (BLs), while binarized weights are stored in a sub-

array of nonvolatile spin-transfer-torque magneto-resistive RAM (STT-MRAM).

The hardware/software co-simulation results indicate that the proposed design

can deliver a performance of 176.6 TOPS/W for an in-memory computing (IMC)

subarray size of 1×288. The classification accuracy reaches 97.92% (83.85%) on

the MNIST (CIFAR-10) dataset. The impacts of the device nonidealities and

process variations are also thoroughly covered in the analysis.

Keywords:

Radial Basis Function (RBF), Hyperbolic tanh(ax) and sigmoid(2ax) Functions,

Stochastic Computing (SC), Binary Spiking Neural Network, Emerging Memory

Technology, In-Memory Computing, Neuromorphic Computing, Process Varia-

tion, STT-MRAM

ii



Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Dissertation Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Literature 6

2.1 Overview of Stochastic Computing . . . . . . . . . . . . . . . . . 6

2.2 Stochastic Computing based Activations . . . . . . . . . . . . . . 7

2.3 Stochastic BSNN with a Surrogate Gradient . . . . . . . . . . . . 8

3 Proposed Stochastic Computing based Activations 11

3.1 Efficient RBF Architectures . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Unipolar Stochastic Format for RBF . . . . . . . . . . . . 12

3.1.2 Bipolar Stochastic Format for RBF . . . . . . . . . . . . . 13

3.1.3 Experiment Results and Comparison . . . . . . . . . . . . 16

3.2 SC based Hyperbolic Tangent and Sigmoid Computation . . . . . 18

3.2.1 Background SC based Berstein Polynomial . . . . . . . . . 18

3.2.2 SC based Hyperbolic Tangen and Sigmoid Functions . . . 19

3.2.3 Experiment Results and Comparison . . . . . . . . . . . . 21

4 In-Memory Stochastic Binary Spiking Neural Network 24

4.1 BSNN with Residual Connections . . . . . . . . . . . . . . . . . . 24

4.2 In-Memory Stochastic BSNN on STT-MRAM . . . . . . . . . . . 25

4.2.1 XNOR-based Complementary 2T-2R STT-MRAM . . . . 27

4.2.2 Spiking MAC operations Using XNOR-based STT-MRAM 29

4.2.3 IF neuron and Spike-Element-Wise Circuit Designs . . . . 32

4.2.4 The effect of Non-linearity and Process Variation . . . . . 36

4.3 System-Level Evaluation . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Setup BSNN Traning Model . . . . . . . . . . . . . . . . . 40

4.3.2 Mapping the BSNN to the Circuit Model . . . . . . . . . . 41

4.3.3 Evaluation Classification Accuracy . . . . . . . . . . . . . 42

4.3.4 Energy, Throughput, and Area of the Subarray . . . . . . 44

iii



4.3.5 Comparision with Related Works . . . . . . . . . . . . . . 45

5 Conclusion 48

Acknowledgements 50

References 51

iv



List of Figures

1 Fundamental stochastic computational elements. . . . . . . . . . . 7

2 The state transition diagram of the 2-D FSM with 8 states. . . . . 8

3 SC based implementation using 2-D FSM. . . . . . . . . . . . . . 8

4 The RBF kernel implementation using SC. . . . . . . . . . . . . . 12

5 The proposed RBF architecture with N = 8. . . . . . . . . . . . 13

6 The proposed RBF architecture with N = 16. . . . . . . . . . . . 13

7 Fundamental unipolar stochastic computational elements. . . . . . 14

8 The proposed RBF architecture with N = 8 for with input in

bipolar format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

9 Simulation result of proposed method for one-dimention RBF. . . 15

10 Simulation result of proposed method for two-dimention RBF. . . 15

11 MAE dependence of k of the RBF employing none sharing LFSR

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

12 MAE dependence of k of the RBF employing sharing LFSR tech-

nique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

13 Stochastic implementation of sigmoid(2ax) via Bernstein compu-

tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

14 Simulation results compared different approaches with target func-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

15 (a) A conventional BSNN topology, (b) a BSNN topology with

residual connections using an inverter-AND spike-element-wise func-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

16 XNOR-based complementary 2T-2R STT-MRAM structure. . . . 28

17 SL voltages and XNOR bitcell currents for (+1) and (0) output. . 28

18 BSNN architecture for intra-layer processing using an XNOR cell

array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



19 (a) A single STT-MRAM row based on 2T-2R STT-MRAM bitcells

for realizing binarized MAC operations, (b) the SL voltage level

corresponding to the XNOR operation for a single 2T-2R bitcell

and (c) the dependence of the SL voltage on the number of (+1)

values among the XNOR outputs (K) of the circuit simulation for

a row of 288 bitcells. . . . . . . . . . . . . . . . . . . . . . . . . . 31

20 The IF neuron and SEW circuit of the proposed XNOR-based

BSNN inference with STT-MRAM synapses. . . . . . . . . . . . . 32

21 The IF neuron circuit simulation waveform within 2 time steps for

a row with 288 bitcells. . . . . . . . . . . . . . . . . . . . . . . . . 35

22 The effects of nonlinearity and variations on4V t
acc1,i (K) with non-

linear errors δ1 (K) and standard deviations σ1 (K) with respect

to the number of XNOR outputs (equal to +1 (K) in a row with

288 bitcells). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

23 The effect of process variations on the output of the CLSA within

a single time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

24 The effect of process variations on postsynaptic spike generation. . 40

25 Mapping BSNN Conv layers to STT-MRAM subarrays. . . . . . . 42

vi



List of Tables

1 The overall evaluation the performance of Stochastic SNN, SC-

DNN, and DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The overall performance evaluation of neuromorphic architectures 4

3 Hardware evaluation of proposed RBF, the 2D-FSM and Bernstein

methods without sharing LFSR . . . . . . . . . . . . . . . . . . . 16

4 Hardware evaluation of proposed RBF, the 2D-FSM and Bernstein

methods with sharing LFSR . . . . . . . . . . . . . . . . . . . . . 16

5 Bernstein coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Hardware evaluation and MAE of SC for hyperbolic tangent and

sigmoid computation . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 MTJ Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 The network structures for two different datasets . . . . . . . . . 41

9 Classification accuracies of BSNN model on the MNIST, CIFAR-10

datasets for four and eight time steps . . . . . . . . . . . . . . . . 43

10 The effect of process variation on the classification accuracy of the

BSNN model for 8 time steps . . . . . . . . . . . . . . . . . . . . 43

11 Comparison with previous works 45

12 Comparison with previous works with different technologies 46

vii



1 Introduction

This part represents the overview of SC in computational units for Deep Neural

Networks (DNNs), SC-based activations, which this thesis has focused on improv-

ing their accuracy and performance. Since the SC approaches can not solve the

problem of limited memory bandwidth in DNNs, we further study the stochastic

binary spiking neural network, which partially shifts the processing load from

the central processing unit to distributed processing elements in memory. It can

greatly reduce memory access while increasing performance and energy efficiency.

1.1 Overview

DNNs are used in many artificial intelligence (AI) applications such as computer

vision [1], natural language processing [2], and audio processing [3]. At the core of

the algorithms and architectures of DNNs are some basic computations present

in large numbers [4, 5]. In order to speed up the DNNs, many core architec-

tures are employed [6]. However, the potential of parallelism/speedup is limited

by the hardware efficiency [7]. Both algorithmic and architectural efforts have

been made to reduce the computing cost for AI edge devices. The former relies

on minimizing the demands on computations in the algorithm or architecture

[8]. A typical strategy for optimization is by pruning complicated DNNs into

the sparse schemes [9, 10, 11], which is also adapted in DNNs topology. On

the architectural side, the hardware implementation with low cost is always fa-

vored [12]. As a promising candidate, the approximate computing technology has

been widely applied to perform the necessary computations of DNNs efficiently

[13]. It is noticed that reasonably inaccurate computational cores powered by

resistive, quantum, analog, and SC can also offer satisfactory hardware cost in

the DNN applications [14, 15, 16, 17, 18]. SC perfectly fits the DNNs opera-

tions in the sense of hardware efficiency [19, 20, 21, 22, 23, 24, 25, 26]. The SC,

where data is represented and processed by a serial bit-stream with a probabilis-

tic feature, conducts the multiplication or summation by a single logic gate or

multiplexer (MUX) [27, 28, 29, 30, 31, 32, 33, 34, 35]. Some nonlinear functions

can also be executed with supplemented mechanisms [36, 37, 38, 39] encountered

in SC-based DNNs. Nonlinear functions based SC implementation for DNNs have

1



performed much higher efficiency than other approximate computing technolo-

gies [38, 39, 40, 41]. In the first part of this thesis, my work aims to propose

an implementation of nonlinear functions using stochastic logic to achieve high

accuracy while requiring reasonable hardware cost and fit the stochastic end-to-

end system. First, We propose novel approaches for nonlinear activations using

SC including RBF, hyperbolic tangent and sigmoid functions. The proposed ar-

chitectures are also synthesized using Synopsys ASIC flow, for 180 nm standard

cell library. The synthesis results proved that our work enhanced the hardware

performance significantly in terms of area, and energy.

On the other hand, DNNs face the challenge of high energy consumption

due to the requirement of a large number of tensor operations, which incurs

not only a high computational workload but also large memory accesses [42,

43, 44, 45, 46]. The conventional computer architecture with limited memory

bandwidth and a sequential computing framework is not ideal for such operations,

especially for DNNs in on-edge AI devices such as the Internet of Things (IoT)

or mobile systems with strict resource and power budgets constraints. IMC has

been recently introduced as a revolutionary approach to solving the memory

bottleneck challenge [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. This

approach partially shifts the processing load from the central processing unit

to distributed processing elements in memory, which greatly reduces memory

access while increasing performance and energy efficiency. IMC finds it difficult

to support complex processing operations such as multiply-accumulate (MAC);

therefore, the binary neural network (BNN) has recently emerged [61, 62, 63,

64, 65, 66], with the aim of simplifying network operations. Interestingly, IMC

approaches and BNNs apparently exhibit much synergy. Indeed, a BNN typically

performs calculations based on bitwise XNOR operations (for multiplication), and

bit counting (for accumulation) can be fully implemented in memory, as proposed

in some prior works [67]. For instance, in [68, 69, 70, 71, 72], IMC macros

employ 6T SRAM, 8T SRAM bitcell with dual wordline (WL) inputs to capture

a MAC calculation. However, the area and leakage power disadvantages of SRAM

degrade the expected effectiveness of in-memory calculation. Other recent IMC

designs employ RRAM (Resistive RAM) instead of SRAM to yield a low standby

power and improve array density [73, 74]. However, in these works, the current

2



summing approach is used for the accumulation that can draw significant energy

for a large network. As a further development, STT-MRAM was also adopted for

IMC. STT-MRAM exhibits outstanding advantages over other memories (e.g.,

RRAM, PCM-RAM) in terms of endurance [75, 76, 77, 78, 79], thus, it is well-

suited for on-chip memory and has been actively explored for the BNN-IMC

combination [80, 81, 82, 83, 84, 85]. In-memory logic operations are implemented

in [80, 84], but only bulk bit-wise functions are supported. Meanwhile, the STT-

MRAM based BNN accelerator architecture in [84] is only reasonable for a small

array size (8×4 array). The reason is that the magnetic tunnel junctions (MTJs)

have a low tunneling magneto-resistance ratio (TMR) that makes the current

sensing approach unsuitable for the larger memory array. Furthermore, in [85],

the authors introduce a scalable and fully parallel in-memory BNN structure,

which supports MAC operation in a single cycle by voltage sensing technique

and achieves better scalability and energy-efficient. Nonetheless, the accuracy of

BNNs strongly depends on the process variations, which could be quite severe in

finer technologies.

Table 1. The overall evaluation the performance of Stochastic SNN, SC-DNN,

and DNN
Compare Accuracy Speed Area Power Overall

DNNs ? ◦ × 4 ◦
SC-DNN 4 � ? � �
Stoch. SNN 4 � ? ? �

Spiking neural networks (SNNs), known as the third generation of DNNs,

not only better mimic biological neural behaviors but also exhibit great fault

tolerance and can potentially overcome the persistent drawback of binarized net-

works [86]. Stochastic SNN (Stoch. SNN) is the kind of SC-DNN in which

the spikes are encoded by SNG [87, 88, 89]. Stoch. In comparison with con-

ventional SC-DNNs, Stoch.SNN employs event-driven architecture, which can

minimize its power consumption. The overall evaluation between Stoch.SNN,

SC-DNN, and DNN have been illustrated in Table.1. Recently, IBM Neurosy-

napse (TrueNorth chip) system was produced as a well-known neuromorphic chip

3



which is the most energy efficiency in comparison with GPU and FPGA [90].

The memristor crossbar (RRAM) based neuromorphic architectures have been

studied that much improves the computational and energy efficiency compared

to the TrueNorth design [91, 92]. Due to the advantages of lower access energies

compared to RRAM and DRAM [46], MTJ was also adopted for stochastic SNNs

[87, 88, 89, 93, 94, 95]. The overall performance evaluation of the neuromorphic

architectures with various technologies is shown in Table.2.

In [87, 88, 89], the authors leveraged the binary switching of an MTJ to map

the sigmoid function in an artificial neural network (ANN) to an SNN. However,

this mapping may cause significant accuracy degradation. Additionally, the accu-

racy suffers from unstable MTJ switching and bias current variation. Inhibitory

and excitatory spike-timing-dependent plasticity was processed for on-chip learn-

ing with MTJ-synaptic [93] and MTJ-neuron [94] implementations. In [93], a

stochastic synapse was introduced, in which synaptic propagation was modu-

lated stochastically by a full-precision weight. Then, each neuron accumulated

incoming synaptic events sequentially using a spike counter, which significantly

affected the network latency. In [94], the leaky-integrate-fire spiking model was

used to emulate biological neuron dynamics, but this work focused only on neuron

circuitry and did not cover the impact of variation. On the other hand, in [95],

the author presented a compact probabilistic Poisson method based on a back-

hopping oscillation in an MTJ, where the number of spikes was exponentially

proportional to the synaptic current in the utilized sampling time (within a time

step). However, the classification accuracy of this approach is highly sensitive to

the sampling period.

Table 2. The overall performance evaluation of neuromorphic architectures

Compare Accuracy Speed Area Power Overall

GPU ? ◦ × × ◦
Memristor 4 � ? 4 ◦
True North � � 4 4 ◦
MRAM 4 � ? ? �

4



1.2 Research Contribution

Our research contributions can be summrized as follows:

• We propose a novel design of the RBF using SC. The experimental results

show that our work achieves a compact and high-level accuracy in the hardware

design compared with previous works. We have also presented the unipolar and

bipolar stochastic format analyses applying for our proposal.

•We propose an implementation of hyperbolic tangent and sigmoid functions

using SC to achieve high accuracy while requiring reasonable hardware costs and

fitting the stochastic end-to-end system. Bernstein polynomial has been used

in this work as a kernel to approximate those two functions in our proposed

implementation. Format conversion from bipolar to unipolar format has been

used in our work.

•We propose a BSNN with residual connections and train the network with a

surrogate gradient, which enables higher classification accuracy with fewer time

steps.

• The proposed dynamic threshold mechanism allows neural synapses to be

mapped to XNOR cells based on the STT-MRAM subarray and reduces the

complexity of the neuron circuit by incorporating BN.

• The proposed approaches are built for circuit-level simulations. The net-

work’s accuracy and other performance metrics are then evaluated based on pa-

rameters realistically extracted from circuit simulations, including the nonlinear-

ity and process variations.

The contributions have been published in [96, 97, 98, 99].

1.3 Dissertation Layout

The rest of this dissertation is organized as follows. Section 2 presents related

works in high-performance SC-based activations and BSNN. Section 3 describes

proposed SC-based architectures for some activation functions. Section 4 ex-

presses the models of the STT-BSNN subarray, and the energy efficiency of our

design is compared with that of previous studies. Then, Section 5 concludes this

work.

5



2 Related Literature

2.1 Overview of Stochastic Computing

The SC constituent elements are circuits that convert binary numbers to stochas-

tic numbers and vice versa, as shown in Fig. 1a. Fig. 1a shows a circuit, which

describes the process of binary-to-stochastic numbers conversion, which is called

a stochastic number generator (SNG). The SNG often consists of a comparator

and a random number generator RNG (in this work, an LFSR is employed for

RNG) [14, 27, 36]. An m-bit random binary number is generated in each clock

cycle by the RNG and compared to the m-bit binary number (that is to be con-

verted). If the random number is less than the binary number, then the output

of the comparator will be 1, otherwise a 0. A stochastic bit-stream is converted

back to a binary number using a counter that counts the number of 1’s in this

stream.

In SC, we use unipolar and bipolar formats for positive and negative fractional

numbers, respectively. For the unipolar format, a value of stochastic bit stream

X is indicated by x, where x ⊆ [0, 1], and PX = x defines the probability of ones

in X.

Suppose that Y is a stochastic bitstream in a bipolar format. Then, we

determined the value of this bitstream, which is indicated by y, where y ⊆ [−1, 1].

Additionally, the probability of the ones in the bit-stream Y is indicated by

PY , where PY ⊆ [0, 1]. Finally, the relation between y and PY is expressed as

y = 2PY − 1.

The main advantage of SC is that the fundamental processing elements can

be implemented based on simple logic gates. For example, the NOT gate is used

to implement 1-x in unipolar format and -x in bipolar format. Multiplication

which requires a high hardware cost in the binary format representation is now

implemented just by an AND gate in unipolar format or XNOR gate in the

bipolar format as shows in Fig. 1b and Fig. 1c, respectively. A multiplexer (MUX)

implements a scaled addition for both unipolar and bipolar formats.

6



RNG

Binary 
number

SC-operations Counter

Binary 
number

Bit-stream 
operation

+

-

X = 4/8 = 01110010

Y = 2/8 = 00000110
Z = 1/8 =  00000100

X = 8/8 = 11111111

Y = 4/8 = 11110110
Z = 4/8 = 11110110

Comparator

(a)

(b)

(c)

RNG

Binary 
number

SC-operations Counter

Binary 
number

Bit-stream 
operation

+

-

X = 4/8 = 01110010

Y = 2/8 = 00000110
Z = 1/8 =  00000100

X = 8/8 = 11111111

Y = 4/8 = 11110110
Z = 4/8 = 11110110

Comparator

(a)

(b)

(c)

Figure 1. Fundamental stochastic computational elements.

2.2 Stochastic Computing based Activations

Brown and Card in [34] have first proposed SC implementations of hyperbolic

tangent and exponential functions using FSM. An improvement of this approach

used 2-D FSM was presented in [37]. One problem with this means of implemen-

tation is accuracy degradation when it is small small. An example of 2D-FSM

topology in Fig. 2 accepts two input bit streams X and K and provides the tran-

sition condition numbers corresponding to the input X and the input K. For

example, for 2D-FSM topology with eight states (si), the output of 2D-FSM is

encoded by using three binary bits. The complete circuit for implementation of

the stochastic function is illustrated in Fig. 3. The corresponding probabilities of

K and w are Pk and Pwi
(i- the number of states) which are calculated by using

the optimized algorithm as described in [37].

An alternative approach was proposed in [41], in which hyperbolic tangent

and sigmoid function were approximated by series expansion and JK-Flip Flops.

However, this approach leads to even lower accuracy than the FSM approach

while requiring a higher hardware cost [41]. In [36, 39], the authors proposed

an approximated approach for those two functions based on a piecewise linear

7



s0
0

s1
1

s2
2

s3
3

s4
4

s5
5

s6
6

s7
7

00 or 01 11 or 01

00 or 10 11 or 10

11

00

11 11

00 00
01 10 01 10 01 10 01 10

00 00 00

11 11 11

01 01

10 10

Figure 2. The state transition diagram of the 2-D FSM with 8 states.

FSM
core MUXthe current

state number

w0 w1 w7

X

K

Y

Figure 3. SC based implementation using 2-D FSM.

approximation which achieves good accuracy. However, this approach requires a

stochastic to binary converter used in the pipelined system as a look-up table to

store coefficients.

2.3 Stochastic BSNN with a Surrogate Gradient

This section presents the training process for BSNNs using surrogate gradient

backpropagation with residual connections. In our training model, the binarized

weights are represented in bipolar format (i.e., ±1), as introduced in [67]. The

input information is encoded by using SNG [100].

In the training model, we use the conventional integrate-and-fire (IF) model,

8



where the membrane potential ut,li can be expressed as follows

ut,li = ut−1,li +
γ

σ

(
M∑
j=1

wlij · s
t,l−1
j − µ

)
+ β (1)

Here, γ and β are scaling and shifting parameters, respectively; σ and µ corre-

spond to the standard deviation and mean of batch normalization (BN), respec-

tively. M denotes the number of presynaptic spikes, and st,l−1j is the presynaptic

spike in the j-th neuron. wlij = α ·wb,lij represents the latent weight of the BSNN,

where wb,lij = sign(wlij) is the corresponding binary weight and α = |wlij| is the

latent weight scaling factor.

The real input data are converted into spike format using a Poisson random

number generator as an SNG for the spike representation. . The generated value

is proportional to the total number of spikes within T time steps. According to

the IF model in (1), if the membrane potential ut,li surpasses the firing threshold

θli, a postsynaptic spike ot,li is generated. Then, the membrane potential is reset

to zero before being accumulated again. Furthermore, the cross-entropy loss

function is calculated through the last output membrane potential uT,Li , which is

expressed as follows

Lp =
C∑
i=1

yi · log

 exp
(
uT,Li

)
∑C

k=1 exp
(
uT,Lk

)
 (2)

where Y = (y1, y2, . . . , yC) is a label vector and C is the total number of net-

work outputs. During the training process, the loss function Lp is minimized by

gradient descent, and the latent weight is updated as follows [100]

wlij = wlij − η ·
∑
t=1

∂Lp
∂wt,lij

(3)

where η is a learning rate.
∑

t=1
∂Lp
∂wt,l

ij

is the accumulated gradient over all time

steps, which is calculated as in [100]:

∑
t=1

∂Lp
∂wt,lij

=


∑
t=1

∂Lp
∂ot,li

∂ot,li
∂ut,li

∂ut,li
∂wt,lij

if 1 ≤ L < l

∑
t=1

∂Lp
∂uT,Li

∂uT,Li
∂wt,Lij

if l = L

(4)

9



In (4), the gradient calculation suffers from nondifferentiable spiking activities.

To address this issue, an approximate gradient (i.e., a surrogate gradient) was

introduced in [100, 101], which is formally expressed as

∂Lp
∂wt,lij

= δ ·max

(
0, 1−

∣∣∣∣∣ut,li − θliθli

∣∣∣∣∣
)

(5)

where δ typically is set to 0.3. The surrogate gradient is effective for solving

nondifferentiable spiking activity. However, when the network gets deeper, the

training process based on gradient descent in (3)-(4) suffers from the degradation

problem [102, 103]. In the following, we present how a residual connection [102,

103] can be adopted for our BSNN to tackle the degradation issue.

10



3 Proposed Stochastic Computing based Activations

This part of the thesis presents the proposed hardware efficiency of several SC-

based activations, including radial basis, hyperbolic tangent, and sigmoid func-

tions. The proposed approaches are built on a 180-nm CMOS for hardware im-

plementation and comparison. The proposed design approaches with a practical

circuit solution could potentially enhance the performance of DNNs to be applied

in on-edge AI applications.

3.1 Efficient RBF Architectures

In this subsection, we focus on reducing the hardware complexity and power

consumption as well as improving the accuracy of RBF. The first contribution in

this subsection is a proposed novel design of the RBF, which includes a compact

and a high level of accuracy in the hardware design compared with other works.

The second contribution is the analyses of unipolar and bipolar stochastic format

applying for RBF.

The RBF kernel is a kernel in the form of radial basis functions. The RBF kernel

is defined as follows

Krbf (x, c) =exp
(
−k‖x− c‖2

)
k =

s2

2σ2

(6)

where σ is the width of the Gaussian, s is a scaled factor of x and c. All elements in

vectors x and c must be scaled in [0,1] for unipolar stochastic representation and

[-1,1] for bipolar stochastic representation. Notice that the output of Krbf (x, c) is

unipolar stochastic representation. If there areM features in given input data, the

dimension of vectors x, and c are M , where x = x1, x2, . . . , xM , c = c1, c2, . . . , cM .

The RBF in (6) can be rewritten as follows

Krbf (x, c) = exp

(
−k

M∑
i=1

(xi − ci)2
)

=
M∏
i=1

exp
(
−k(xi − ci)2

) (7)

11



The RBF is defined as follows

Krbf (x, c) = exp
(
−k(x− c)2

)
(8)

Notice that the output of function Krbf (x, c) is arranged in [0, 1]. Consider the

stochastic computing of Krbf (x, c) shown in Fig. 4. The whole stochastic RBF

kernel is implemented by multiplying M outputs from function Krbf (x, c) us-

ing an AND gate. Since the accuracy of Krbf (x, c) depends on the accuracy of

Krbf (x, c) calculation, in this paper we only synthesize and evaluate the RBF

performance by employing an univariate RBF Krbf (x, c). Additionally, the cal-

culation of multivariate from depends on the accuracy of univariate form, but

also on the correlation between bit streams.

Krbf (x1, c1)

Krbf (xM, cM)

Krbf (xi, ci)
Krbf (x, c)

Figure 4. The RBF kernel implementation using SC.

3.1.1 Unipolar Stochastic Format for RBF

Using the definition of a limit of an exponent as the exponential function, we

have

Krbf (x, c) = exp
(
−k(x− c)2

)
= lim

n→∞

(
1− k(x− c)2

n

)n

≈

(
1− k(x− c)2

N

)N

(9)

Where N is a finite value of n. The higher the N we select the closer approx-

imate we get for Krbf (x, c). Our experiment shows that the optimized value of

N can be selected from 8 to 16, in this case k is not expected to exceed N . If we

put k1 = k/N , the (9) becomes

12



x

1D

|x-c| (x-c)2

4D

c
4	D

{1-k1(x-c)2}2

1-k1(x-c)2
k1

1D

4D

2D

4	D

{1-k1(x-c)2}8

Figure 5. The proposed RBF architecture with N = 8.

4D
4D

1D

4D

2D

k1

8D

x
c

{1-k1(x-c)2}16

{1-k1(x-c)2}8
{1-k1(x-c)2}2

1-k1(x-c)2(x-c)2|x-c|

Figure 6. The proposed RBF architecture with N = 16.

Krbf (x, c) =
(
1− k1(x− c)2

)N
(10)

Fig. 5 shows the stochastic implementation of Krbf (x, c) using (10) with the

inputs x and c in the range [0, 1] for N = 8. Notice that N must be chosen

to satisfy the range of k1 is [0, 1]. Fig. 6 shows the stochastic implementation

of Krbf (x, c) with N = 16. To describe in more detail for Fig. 5 and Fig. 6,

the fundamental building blocks with input and output in unipolar format are

illustrated in Fig. 7. The delay elements are employed for the decorrelation of all

paths.

3.1.2 Bipolar Stochastic Format for RBF

Consider the case where the input is represented in bipolar format and the output

is represented in unipolar format. The absolute value of a subtraction |x− c| can

13



	D

x1 y x
x2 y y

x1
x2

(a) (b) (c)

Figure 7. Fundamental unipolar stochastic computational elements.

x

1D

4D

2D

k'1

|x'-c'| (x'-c')2

{1-k'1(x'-c')2}8
4D

1-k'1(x'-c')2

{1-k'1(x'-c')2}2

c
4D

Figure 8. The proposed RBF architecture with N = 8 for with input in bipolar

format.

be rewritten as follows

y = |x− c| = 2

∣∣∣∣1− x2
− 1− c

2

∣∣∣∣ = 2y′ (11)

if we put

x′ = 1−x
2

c′ = 1−c
2

we have y′ = |x′ − c′|. x′ and c′ can be simply imple-

mented using a NOT gate with input in bipolar format and output in unipolar

format [41]. Notice that x′ and c′ are arranged in [0, 1]. The XOR gate is used

to perform the absolute value of a subtraction |x′ − c′|. Then the final output is

given by
Krbf (x′, c′) =

(
1− k′1(x′ − c′)2

)N
(12)

where k′1 = 4k/N . Since the range of inputs x′ and c′ is [0,1] is unipolar

format, it is possible to implement of Krbf (x′, c′) as in Fig. 8 for N = 8. The

whole architecture of the univariate function Krbf (x, c) for N = 8 with input

in bipolar format and output in unipolar format is illustrated in Fig. 8. Notice

that the coefficient k′1 must be arranged in [0, 1]. Fig. 9 shows the the software

simulation result of proposed method to compared with original one-dimention

RBF with k= 7 and c=0.5. The MAE is equal to 0.53 %. Fig. 10 shows the

14



-1 -0.5 0 0.5 1

x

0

0.5

1

K
(x

)
Original

Proposed

Figure 9. Simulation result of proposed method for one-dimention RBF.

Figure 10. Simulation result of proposed method for two-dimention RBF.

the simulation result of two-dimensions RBF with k= 7 and c=0.5. The MAE is

equal to 0.45 %.

15



3.1.3 Experiment Results and Comparison

Table 3. Hardware evaluation of proposed RBF, the 2D-FSM and Bernstein

methods without sharing LFSR

None Sharing LFSR

METHOD Proposed 2D-FSM Bernstain

N=8 N=16
8

States

16

States

Degree

3

Degree

7

Area (µm2 ) 2948 4157 6525 10644 4590 9828

Latency(ns) 3.37 3.65 3.86 4.86 3.83 5.442

Power (mW ) 0.141 0.144 0.46 0.83 0.26 0.59

Table 4. Hardware evaluation of proposed RBF, the 2D-FSM and Bernstein

methods with sharing LFSR

Sharing LFSR

METHOD Proposed 2D-FSM Bernstain

N=8 N=16
8

States

16

States

Degree

3

Degree

7

Area (µm2 ) 2496 3712 5838 9412 1632 2106

Latency(ns) 2.57 2.78 3.98 4.6 2.18 3.3

Power (mW ) 0.097 0.116 0.42 0.72 0.09 0.11

The Table.3 and Table.4 illustrates the hardware evaluation of RBF using the pro-

posed method, the 2D-FSM-based implementation [40] and the Bernstein method

[31] with different orders. The architectures are implemented using CMOS 180

nm libraries and synthesized using Synopsys Design Complier. In our experi-

ments, we use 1024 bits to represent a numerical value stochastically, so the bit

width of LFSRs is 10 to calculate the functions with both sharing LFSR and non

sharing LFSR. In terms of hardware cost, our proposed solution required as much

as the Bernstein method did. Moreover, the proposed approach outperforms the

two-dimension finite state machine, roughly 54% less hardware cost. Regarding

16



the critical path delay, the proposed approach is less 12% than others on aver-

age. Besides, the proposed architecture also required 70% less power than the

two-dimension finite state machine.

Fig. 11 shows the effect on MAE of different methods by employing the non

0 2 4 6 8 10 12 14 16
0
2
4
6
8

10
12
14
16
18
20
22

k

M
A

E
(%

)

2D-FSM 16 states

2D-FSM 8 states

Bernstein-Degree 3

Bernstein-Degree 7

Proposed Method

Figure 11. MAE dependence of k of the RBF employing none sharing LFSR

technique.

sharing LFSR technique. The Monte Carlo simulation method was used to eval-

uate the MAE of different algorithms. The output results are obtained using

Monte Carlo experiments for different inputs, and the experiment is repeated for

different values of coefficient k. In the most optimal case, the MAE is reduced

40% and 80% compared to two other well-known approaches, Bernstein polyno-

mial and two-dimension finite-state machine-based implementation, respectively.

However, the results indicate that the different error by varying the coefficient k

when employing the proposed method is slightly changed.

In this subsection, we have presented a novel architecture of stochastic com-

puting for the univariate RBF kernel. Fig. 12 shows the MAE slightly increased

by employing the sharing LFSR technique. The correlation causes this problem

among SNG as they use the same LFSR. The generalized methods for unipo-

lar and bipolar stochastic computation using the 2D-FSM-based and Bernstein

methods have also been presented. However, the proposed method reached higher

17



0 2 4 6 8 10 12 14 16
0
2
4
6
8

10
12
14
16
18
20
22

k

M
A

E
(%

)

2D-FSM 16 states

2D-FSM 8 states

Bernstein-Degree 3

Bernstein-Degree 7

Proposed Method

Figure 12. MAE dependence of k of the RBF employing sharing LFSR technique.

accuracy in the different cases of k, and the ASIC implementation results have

clarified the improvement of the proposed method.

3.2 SC based Hyperbolic Tangent and Sigmoid Computation

3.2.1 Background SC based Berstein Polynomial

The form of SC-based Bernstein polynomial [31] is expressed as follows:

B(x) =
n∑
i=0

biBi,n(x) (13)

where bi is a Bernstein coefficient, and n is the degree of the Bernstein polynomial.

Bi,n(x) is a Bernstein basic polynomial, which is described as follows:

Bi,n(x) =

(
n

i

)
xi (1− x)n−i (14)

Suppose that X1, ..., Xn are the associated stochastic bit streams of the inputs

x1, ..., xn which are given by the probabilities P (Xi = 1) = xi = x ⊆ [0, 1], for

1 ≤ i ≤ n. Similarly, the stochastic bit streams of the inputs b0, ..., bn are given

by the probabilities P (Bi = 1) = bi ⊆ [0, 1], for 0 ≤ i ≤ n. We must find a set of

18



coefficients b0, ..., bn in the interval [0, 1], that minimize an objective function:∫ 1

0

(f(x)−
n∑
i=0

biBi,n(x))2dx (15)

Following [31], an objective function which is obtained by expanding (14) is given

as follows:

f(b) =
1

2
bTHb + cTb, (16)

where

b =
[
b0, · · · , bn

]T
,

c =
[
−
∫ 1

0
f(x)B0,n(x)dx , · · · , −

∫ 1

0
f(x)Bn,n(x)dx

]T
,

H =


∫ 1

0
B0,n(x)B0,n(x)dx · · ·

∫ 1

0
B0,n(x)Bn,n(x)dx∫ 1

0
B1,n(x)B0,n(x)dx · · ·

∫ 1

0
B1,n(x)Bn,n(x)dx

...
. . .

...∫ 1

0
Bn,n(x)B0,n(x)dx · · ·

∫ 1

0
Bn,n(x)Bn,n(x)dx


Hence, optimizing (16) leads to a (linearly constrained) quadratic optimization.

Therefore, the optimization vector [b0, ..., bn], is obtained using quadratic pro-

gramming. Generally speaking, the main circuit consists of a multiplexer, delay

elements and an n bit adder. To analyze the behaviour of this circuit bahavior,

firstly, we define a set PX1 , ..., PXn as the input data of the adder, and the set

PB0 , ..., PBn as the input data of multiplexer, where PXi
= P (Xi = 1) = x(1 ≤

i ≤ n) and PBi
= P (Bi = 1) = bi(0 ≤ i ≤ n). Secondly, the output of the

adder
∑n

i=1Xi is used to select which input signal gets relayed to the output of

multiplexer, whose value is defined by a set of the probabilities PBi
. Finally, a

set of delay elements 1D, 2D, ..., (n − 1)D is used by employing (n − 1) D-type

flip-flops respectively to all input paths for the binary adder.

3.2.2 SC based Hyperbolic Tangen and Sigmoid Functions

This section presents an approach to implementing hyperbolic tangent and sig-

moid function in the bipolar format. The format conversion is embedded in our

approach. The input lies in the range [−1, 1]. The mathematical equation of

19



tanh(ax)(a > 0) is described as follows:

tanh(ax) =
1− exp(−2ax)

1 + exp(−2ax)
(17)

Additionally, the sigmoid function is given by:

sigmoid(2ax) =
1

1 + exp(−2ax)
(18)

From the two equations above, a relation between tanh(ax) and sigmoid(2ax) is

illustrated as equation below:

tanh(ax) = 2
1

1 + exp(−2ax)
− 1 = 2 · sigmoid(2ax)− 1 (19)

The bipolar format defines x = 2Px − 1 in which x represents a bipolar value

while Px represent the number of ones in the corresponding bitstream. Clearly, x

is in the range [−1, 1] and Px is in the range [0, 1]. The definition of bipolar format

also suggests that a format conversion between unipolar and bipolar format is

possible.

+

-

+

-

+

-

+

-

+

-

LFSR

b0

b1

bn-2

bn-1

0,1,...,n-1

Counter

(n-1)D

1D
Binary
Adder

M
U
X

x

B(x)

r

clk

Figure 13. Stochastic implementation of sigmoid(2ax) via Bernstein computation.

20



Given the input in the range [−1, 1], the output of sigmoid(2ax) ∈ [0, 1].

Hence, the output of sigmoid(2ax) can be represented in unipolar format. By

using the same bitstream of sigmoid(2ax), and applying to equation (19) which

can be considered as format conversion, then the bipolar output is tanh(ax). This

analysis means that the same circuit can be used to implement bot functions, by

considering the output bitstreams in unipolar format for sigmoid(2ax) while the

same output in bipolar format for tanh(ax). The implementation of sigmoid(2ax)

can be done by using bipolar stochastic logic elements. However, with some simple

mathematical transformations below, sigmoid(2ax) can be implemented by using

unipolar stochastic logic elements.

sigmoid(2ax) =
1

1 + exp(−2ax)
=

1

1 + exp(−2a(2Px − 1))

=
1

1 + exp(−4aPx) exp(−2a)
=

exp(−2a)

exp(−2a) + exp(−4aPx)

(20)

From (20) x is substituted by 2Px − 1, where Px is the unipolar value of the

input bitstream X. Therefore, sigmoid(2ax) can be implemented by unipolar

stochastic logic while the input is still original bitstream. The approximation of

equation (20) can be made by using Bernstein computation. The circuit diagram

approximating sigmoid(2ax) is shown in Fig. 13. In the circuit, the set of Bern-

stein coefficients and input x are represented in unipolar format. Binary addition

is used whose output is fed to the input of the multiplexer to select which input is

connected to the output. To reduce the complexity of the circuit, only one LFSR

is used to generate the pseudo-random number. The uncorrelated requirement of

bitstreams is solved by inserting a set of delays shown in Fig. 13.

3.2.3 Experiment Results and Comparison

This section gives the experimental results of the performance of our proposed

implementation compared to the previous studies.

21



Table 5. Bernstein coefficients

Coefficients b0 b1 b2 b3 b4 b5

sigmoid(2x) 0.12 0.2 0.34 0.66 0.8 0.87

sigmoid(4x) 0.03 0.02 0 1 0.98 0.96

Sigmoid(2x) and sigmoid(4x), tanh(x) and tanh(2x) were respectively simu-

lated to evaluate the accuracy. Solving the quadratic programming problem in

equation (16) for sigmoid(2ax) applied equation (20), a set of Bernstein coeffi-

cients of 5th order Bernstein polynomial is obtained as being shown in Table.5.

The length stochastic bitstream is 1024, which means that 10-bit LFSR is used

for SNG. In our simulation, the inputs of target functions are given by 0:0.03:1.

The output results are collected through Monte Carlo experiments. The accu-

racy is evaluated via MAE. Fig. 14 shows the simulation results of approximated

functions in different approaches and target functions.

Table 6. Hardware evaluation and MAE of SC for hyperbolic tangent and sigmoid

computation

Function tanh(x) and sigmoid(2x) tanh(2x) and sigmoid(4x)

METHOD Proposed FSM [34] JK-FF [41] Proposed FSM JK-FF

D=3 D=5 2 States − D=5 D=7 4 States −
Area (µm2 ) 1554 1777 1345 10121 1777 2106 1551 17660

Latency(ns) 2.25 2.33 2.38 3.42 2.33 3.3 3.07 4.3

Power (mW ) 0.07 0.08 0.06 0.4 0.08 0.11 0.08 0.8

MAE 0.003 0.001 0.06 0.02 0.007 0.003 0.03 0.05

Synthesize results of the proposed function and state-of-the-arts for sigmoid(2x)

and sigmoid(4x), tanh(x) and tanh(2x) are considered. All architectures are im-

plemented using 180nm CMOS technology node and synthesized Synopsys Design

Compiler. A summarized table of power consumption, area, delay and MAE is

shown in Table.6. It is noted that the same circuit can be used to implement

both sigmoid(2ax) and tanh(ax), then the same hardware cost, power consump-

tion and MAE are achieved. In terms of accuracy, our proposed implementation

22



is roughly 60 times and 20 times more accurate than FSM-based method and

JK-FF based method, respectively, for sigmoid(2ax) and tanh(x). Additionally,

10 and 16 times of improvement of accuracy, on average, are achieved by our

proposed method in comparison to FSM and JK-FF based method, respectively,

sigmoid(4x) and tanh(2x). Our proposed implementations are 80% and 85% less

area and power consumption than the JK-FF approach. The proposed circuit

was employing 3th and 5th order Bernstein polynomial reduced roughly 20% of

critical path delay in comparison with FSM and JK-FF-based implementation.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

bipolar input 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

b
ip

o
la

r 
o

u
tp

u
t

Original

FSM

JK-FF

Proposed

(a) tanh(x)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

bipolar input 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

b
ip

o
la

r 
o

u
tp

u
t

Original

FSM

JK-FF

Proposed

(b) tanh(2x)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

bipolar input 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
n

ip
o

la
r 

o
u

tp
u

t

Original

FSM

JK-FF

Proposed

(c) sigmoid(2x)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

bipolar input 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
n

ip
o

la
r 

o
u

tp
u

t

Original

FSM

JK-FF

Proposed

(d) sigmoid(4x)

Figure 14. Simulation results compared different approaches with target func-

tions.

23



BN

3 x 3 Conv

IF

3 x 3 Conv

BN

IF

+

(b)

BN

3 x 3 Conv

IF

3 x 3 Conv

BN

IF

(a)

Id
en

tity
 M

ap
p
in

g

l
FF

l
F

t,l-2O

t,l-1O

t,lO

Input Spikes

Output Spikes

Input Spikes

Output Spikes

Figure 15. (a) A conventional BSNN topology, (b) a BSNN topology with residual

connections using an inverter-AND spike-element-wise function.

4 In-Memory Stochastic Binary Spiking Neural Net-

work

4.1 BSNN with Residual Connections

Residual connection is an effective technique that helps to stabilize the training

processes and improve the classification accuracies of deep networks [102, 103].

We hence propose a BSNN training model using a surrogate gradient in con-

junction with residual connections. As illustrated in Fig. 15, relative to the

conventional BSNN network in Fig. 15(a), each convolutional (Conv) layer in the

residual structure in Fig. 15(b) has an additional connection from layer (l-1) to

layer l via the inverter-AND spike-element-wise (SEW) function g. The spike st,li
of layer l is now dependent on the IF output ot,li and the spike st,l−1i as follows

st,li = g(ot,li , s
t,l−1
i ) = (1− ot,l) ∧ st,l−1 (21)

24



By supporting the SEW function in (21), if ot,l = 0, the output of the element-wise

function becomes st,l = st,l−1, which satisfies the identity mapping condition.

4.2 In-Memory Stochastic BSNN on STT-MRAM

This section presents a BSNN inference model that utilizes the MAC operation

based on an XNOR array; the latter is suited for implementation in memory using

emerging technologies [85, 104]. To simplify the inference model in (1) without

accuracy degradation, we set γ = 1 and β = 0 in the BN layers [105]. The original

IF model for a BSNN is expressed as

Integration : ut,li = ut,l−1i +
α

σ

(
M∑
j=1

wb,lij · s
t,l−1
j − µ

α

)
,

Firing : ot,li =

{
1 if ut,li > θli

2 otherwise
,

Resetting : ut,li = 0.

(22)

In this model, during every time step, the membrane potential ut,li accumu-

lates with α
σ

(∑M
j=1w

b,l
ij · s

t,l−1
j − µ

α

)
and then is compared with a threshold θli

for the firing decision. To avoid multiplication in (22), which could be costly to

implement at the circuit level, we scale both the membrane potential and the

threshold by a factor of α
σ
. Given that, the scaled membrane potential ût,li and

the threshold θ̂li can be rewritten as

ût,li = ût,l−1i +
M∑
j=1

wb,lij · s
t,l−1
j − µ

α
,

θ̂li =
σ

α
· θli.

(23)

The MAC component
∑M

j=1w
b,l
ij · s

t,l−1
j in (23) is essentially the most compu-

tationally extensive operation. On the other hand, in the binary spiking model, a

spike signal is represented in unipolar format (0, 1) [106, 107], while the weights

wb,l are trained with a bipolar format (-1, 1). Therefore, unlike in the case of a

BNN [85, 104], it is not possible to directly utilize an XNOR array for a BSNN

MAC function. To overcome this issue, assuming that the M weights in (23)

25



have M1 negative weights (w−bij ) and M −M1 positive weights (w+b
ij ), the MAC

function in (23) can be reformulated as

M∑
j=1

wb,lij · s
t,l−1
j =

M∑
j=1

(1 + w−bij )⊕ st,l−1j −M1 +

M−M1∑
j=1

(1 + w+b
ij )⊕ st,l−1j

=
M∑
j=1

wu,lij ⊕ s
t,l−1
j −M1.

(24)

In (24), wu,lij is represented in unipolar format (wu,lij =
(wb,l

ij +1)

2
). Substituting

the expression of (24) into (23) and denoting ρ = M1 + µ
α

, the scaled membrane

potential in (23) is now expressed as

ût,li = ût,l−1i +
M∑
j=1

wu,lij ⊕ s
t,l−1
j − ρ (25)

In (25), the component
∑M

j=1w
u,l
ij ⊕ s

t,l−1
j can be realized entirely in memory

by using an XNOR array. However, this transformation introduces a constant ρ

in (25) implies that the hardware implementation must support both accumula-

tion and subtraction. The latter leads to undesirable complexity in the circuit

implementation. To solve this problem, we propose an equivalent IF model with

a dynamic threshold mechanism. Specifically, instead of a fixed threshold, we can

transform the negative component ρ of the scaled membrane in (25) into a posi-

tive component of the threshold θ̂li, which is now considered the time-dependent

quantity θ̂t,ldyn,i. Therefore, the proposed IF model can be formulated as follows

Integration :


ût,lxnor,i = ût,l−1xnor,i +

M∑
j=1

wu,lij ⊕ s
t,l−1
j

θ̂t,lxdyn,i = θ̂t,l−1dyn,i + ρ, θ̂t=0,l
dyn,i = θ̂li

Firing : ot,li =

{
1 if ût,li > θ̂li

0 otherwise

Resetting : ût,li = 0

(26)

Compared to the IF model in (22), the IF model in (26) requires only accu-

mulation operations. This means that the latter model can help to simplify the

26



Table 7. MTJ Parameters

MTJ size (W × L) 60 nm × 60 nm

MTJ thickness (Tm) 1.5 nm

Oxide thickness (TMgO) 1.15 nm

Relative MTJ resistance variability 5 %

Nominal R MTJ at P (AP) 2 k Ω (4 k Ω)

TMJ 100 %

subsequent hardware implementation. However, the model in (26) is correct only

when ρ is positive. Although it rarely occurs, the value of ρ can theoretically

be negative, i.e., the subtraction in (25) is an addition. In that case, we retain

the original expression in (25) and keep the threshold constant. Accordingly, a

small modification is required in the IF neuron circuit implementation (detailed

in Section IV) for covering both positive and negative values of ρ.

4.2.1 XNOR-based Complementary 2T-2R STT-MRAM

Table 7 shown the fundamental MTJ parameters used in this work. The compli-

mentary XNOR circuit as shown in Fig. 16 (presented in [85]) is used in this work.

It includes two programable magnetic junctions MTJ, 0 and MTJ, 1, are repre-

sented by high resistance (anti-parallel magnetization resistance RAP ) and low

resistance (parallel magnetization resistance RP ) to store the binarized weights

(+1, 0). The compliment bitlines (BLs) are applied to the first terminal of

MTJ, 0 and MTJ, 1 to represent a single input spike.

For simplified analysis, the pair bitlines VBL, 0 > 0 and VBL, 1 = 0 corespond

the high state (bit 1) input spike access to junctions MTJ, 0 and MTJ, 1 in a

single bitcell are applied. This means that only RMTJ,0 contributes to the Ibitcell.

RMTJ,0 detemines Ibitcell, hence, the stored weight represent Ibitcell the XNOR be-

tween bitcell weight and input spike. The ovelrall resistance formed by the bicell

SL terminal is a data-independent and defined by (RMTJ,0 + Raccess)||(RMTJ,1 +

Raccess).

27



RMTJ0 RMTJ1

Ibitcell

WL

SL

Weight W (0, 1)

BL0 BL1

Figure 16. XNOR-based complementary 2T-2R STT-MRAM structure.

110 mV results of (0,  1) or (1, 0)

results of (1,  1) or (0, 0)184 mV

XNOR = 0
XNOR = 1

41 uA

-41 uA
39 uA

-39 uA

0.3 V

0.3 V

0.9 V

0 V

0 V

VSL

Ibitcell

-Ibitcell

BL0

BL1

WL

Figure 17. SL voltages and XNOR bitcell currents for (+1) and (0) output.

In a different context, the VSL formed by Rbitcell passes Ibitcell to the single

28



bitcell at the position (i, j) in-memory array can be expressed as follows [85]

VSL,bitcell = RbitcellIbitcell =
VBL
Xi,j

(27)

where Xi,j is detemined as follows

Xi,j =


RP +Raccess

Rbitcell

if Wi,j ⊕ INj = +1

RAP +Raccess

Rbitcell

if Wi,j ⊕ INj = 0

(28)

where Wi,j denotes the bitcell stored weight and INj is a binary spike corespond

collum j in-memory array. In a deeper analysis, Fig. 17 shows the circuit sim-

ulation of the BSNN bitcell. As intended, the maximum read current is bellow

50 µA. The simulation conditions are VWL = 0.9V and VBL = 0.3, and the

maximum MTJ current has Ibitcell = 41µA. At this maximum Ibitcell, the sourse

line volatge VSL = 110mV corespoding the combination (+1, 0) or (0, +1), while

VSL = 184mV resulting from (+1, 0) or (0, +1).

4.2.2 Spiking MAC operations Using XNOR-based STT-MRAM

This part presents the circuit implementation for the BSNN model in (26). The

general architecture for intra-layer processing using the proposed model is shown

in Fig. 18. First, the binarized weight wu,lij ≡ wij is mapped into the memory

of the N × M STT subarray. Then, the digital presynaptic spikes st,l−1j are

encoded by the column decoder and fed to the array through bit line BLj (j =

1 −M) to fit the XNOR-MAC computation. Finally, the source line (SL) SLi

(i = 1 − N) voltage, which represents the output of the MAC operation, is

passed into the IF model in (26) to generate postsynaptic spikes ot,li . To map

an MAC computational unit into the IMC memory, we employ a 2T-2R STT-

MRAM-based XNOR cell in subsection 4.2.1. Updating the binary weights is

performed at the beginning. Since SL is shared among the cells in the same

row, each MTJ has to be written individually. Specifically, apart from the BL

corresponding to the active MTJ , other BLs are left in the high-impedance state

while an appropriate voltage is applied across (BL, SL) for flipping the MTJ

magnetization. The write peripheral circuit is omitted for clarity, details can be

29



S
t,l-1

S
t,l-1

S
t,l-1

S
t,l-1

IF

IF

IF

1

O
t,l

O
t,l

O
t,l

1

2

N

w11 w12 w13 w1M

w22w21 w23 w2M

wN1 wN2 wN3 wNM

BL1 BL2 BL3 BLM

2 3 M

collunm decoder

SL2

SLN

SL1

XNOR-cellpresynaptic spikes

NxM STT- 

subarray

N neurons

postsynaptic spikes 

Figure 18. BSNN architecture for intra-layer processing using an XNOR cell

array.

found in [108, 109]. As seen in Fig. 19(a), for a single XNOR bitcell, the binarized

weight (0, 1) is encoded by the MTJ states (RAP and RP ), and the presynaptic

spike is encoded to a pair of BL voltages as follows

st,l−1j =

{
0 if BLt,l0,j = 0(V ), BLt,l1,j = VBL

1 if BLt,l0,j = VBL, BL
t,l
1,j = 0(V )

(29)

The BL driver encodes incoming spikes using a pair of complementary transis-

tors (an n-channel MOS (NMOS) and a p-channel MOS (PMOS)). The SL volt-

age represents the output of a single XNOR operation (see Fig. 19(b)). Fig. 19(a)

shows the circuit implementation for a single-row XNOR-based BSNN using STT-

MRAM.

Each high-load WL is driven by a buffer (an 4-stage inverter chain) that

guarantees the fast transition and stable level value during the MAC operation

on the memory row. Additionally, from [85], the MAC product in the output of

the i-th row connection is represented by the merged SL voltage V t,l
SL,i (i.e., all

30



bitcells in a row share the same SL), which is equal to [85]

V t,l
SL,i = VBL

(
M −K
M

· Rbitcell

RAP +Raccess

+
K

M
· Rbitcell

RP +Raccess

)
(30)

WL

RAP RP RAP RP RAP RP

S
t,l-1

1

BL
t,l-1

1,1
BL

t,l-1

0,j
BL

t,l-1

1,j
BL

t,l-1

0,M
BL

t,l-1

1,M

S
t,l-1
j S

t,l-1

M

gnd

0

(K)

28872 144 216

110

130

150

170

190

Equivalent to XNOR operation 

for a 2T-2R bitcell

(a)

(b) (c)

110

120

130

140

150

160

170

180

190

0 9
1
8
2
7
3
6
4
5
5
4
6
3
7
2
8
1
9
0
9
9

1
0
8

1
1
7

1
2
6

1
3
5

1
4
4

1
5
3

1
6
2

1
7
1

1
8
0

1
8
9

1
9
8

2
0
7

2
1
6

2
2
5

2
3
4

2
4
3

2
5
2

2
6
1

2
7
0

2
7
9

Experiment Ideal

XNOR-cell

VBL=0.3 V

SL

wij(0, 1)

collunm decoder

VBL, 0

 (1)

0, VBL 

(0)

AP, P 

(0)

P, AP

 (1)

Low

(0)

High 

(1)

Low 

(0)

High 

(1)

VBL, 0

 (1)

0, VBL 

(0)

AP, P 

(0)

P, AP

 (1)

Low

(0)

High 

(1)

Low 

(0)

High 

(1)

(m
V

)
V

t,
l 

  

S
L

,i
V

t,
l 

  

S
L

,i

number +1

BL
t,l-1

0,1
BL

t,l-1

0,1

Figure 19. (a) A single STT-MRAM row based on 2T-2R STT-MRAM bitcells

for realizing binarized MAC operations, (b) the SL voltage level corresponding

to the XNOR operation for a single 2T-2R bitcell and (c) the dependence of the

SL voltage on the number of (+1) values among the XNOR outputs (K) of the

circuit simulation for a row of 288 bitcells.

where Rbitcell is the overall resistance seen from the SL terminal of the bitcell,

31



M
3

D 

Q  

 

 

CLKCLSA

Vini,i

+

-

SBE

SBE

SBE

Cb,4

Cb,1

SPE

SCE

Vprech

ACC1 FS

CB

C1

M
1

C2

M
2

ENacc1

M
4

V
t, l

boost,i
V

t ,l

SL,i

V
t 

acc1,i

V
t 

acc2,i

ACC2

Vr 

ENacc2n

ENacc2p

Vr 

SEW

ENacc2p

ENacc2nSCE

sign (   )r 

sign (   )r  

ENacc1
STE

o
t,l

i
o

t,l

i

s
t,l

i
s

t,l

i

s
t,l-1

i

D

sign (   )r  

sign (   )r  

Figure 20. The IF neuron and SEW circuit of the proposed XNOR-based BSNN

inference with STT-MRAM synapses.

which is data-independent and equal to (RAP +Raccess)‖(RP +Raccess); K denotes

the number of XNOR outputs (i.e., wu,lij ⊕ s
t,l−1
j ) equal to +1 across the entire

row of M bitcells. The SL voltage linearly depends on K and ranges from VBL ·
Rbitcell

RAP+Raccess
(K= 0) to VBL · Rbitcell

RP+Raccess
(K= M).

In Fig. 19(c), we plot the circuit simulation of V t,l
SL,i with respect to K. The

simulation results show that V t,l
SL,i, which ranges from 110 mV to 184 mV , is

linearly dependent on K. This confirms that the MAC calculation (26) can be

performed within a single in-memory access phase. In the following, we introduce

an approach for implementing an IF neuron mechanism (the model in (26)) using

circuit computation in the charge domain, whose input is the SL voltage V t,l
SL,i

from the MAC operation.

4.2.3 IF neuron and Spike-Element-Wise Circuit Designs

Fig. 20 shows the proposed implementation of the IF neuron and SEW circuit

architecture. The IF neuron circuit consists of two charge-based accumulations

(ACC1 and ACC2), a capacitive voltage booster (CB), and firing and shaping

(FS) circuits. The charge-based accumulations are used to update the membrane

potential and the dynamic threshold. As discussed earlier, the result of an MAC

operation is represented in the form of a voltage at the merged SL V t,l
SL,i. Sub-

sequently, this voltage must be accumulated in every time step, followed by the

IF model in (26). However, since V t,l
SL,i varies from 110 mV to 184 mV , it must

32



be amplified to an adequate level to limit the charging current. If V t,l
SL,i is used

directly to control the charging current (the drain current of the PMOS M1), the

accumulated charge on C1 can quickly reach the saturation level (i.e., VDD × C,

where C is the capacitance of C1) because the M1 transistor is almost at the

full-driving state. The amplification process is performed by the CB circuit in-

troduced in [110], considering the amplification factor (G) does not require high

precision, and the CB circuit is very compact and energy efficient. As seen in

Fig. 21, V t,l
SL,i is sampled before being fed into the booster circuit, the sampling

time τsample for this array size is chosen to be 1 ns (when SCE=1). The capaci-

tors in the CB are precharged by Vprech up to the middle level of V t,l
SL,i (150 mV )

to optimize the timing, as detailed in [110]. The precharging time τprecharge is

set to 0.5 ns (when SPE=1). After boosting, V t,l
boost,i is maintained for the dura-

tion of τboost=4.5 ns (when SBE=1). During that time, when the signal ENacc1

is activated, V t,l
boost,i is connected to the gate of M1 transistor for charging C1

within a fixed duration of time τcharge=1 ns. The additional amount of charge

in C1 hence is proportional to V t,l
boost,i and to V t,l

SL,i. The voltage level across C1

is equal to V t
acc1,i =

Qt
acc1,i

C
, which indirectly represents the accumulation of V t,l

SL,i

at time step t. Similarly, ACC2 is utilized for dynamic threshold accumulation.

Assume that ρ¿0, and Vρ represents the value of ρ in the voltage domain. As

shown inFig. 21, when ENacc2p is activated, Vρ is used to charge C2 through M2

(ENacc2p ≡ ENacc1). The amount of additional charge corresponds to the voltage

increment at the output V t
acc2,i of capacitor C2. In such a way, V t

acc2,i represents

the dynamic threshold accumulation corresponding to the model in (26) .

Finally, V t
acc1,i and V t

acc2,i are fed into the current latched sense amplifier (CLSA)

[111] circuit for a voltage level comparison. If the firing condition in (26) is sat-

isfied V t
acc1,i > V t

acc2,i, a spike is generated in the output of the CLSA (Vout,CLSA),

as an example shows in Fig. 21. Subsequently, Vout,CLSA is shaped by two invert-

ers before being fed into a D-flip-flop (D-FF) for the postsynaptic generation of

spike ot,li . The frequency of the clock (CLK) signal determines the postsynaptic

spike period (Tspike=6 ns). Additionally, after two inverters, a signal D, which is

Vout,CLSA delayed by two inverters, is used for resetting ACC1 and ACC2 before

starting the next step operation. To reset the dynamic threshold (after firing and

during initialization), C2 is precharged by Vini,i, which represents the threshold

33



θli (see (26)) in the voltage domain. According to Fig. 20, that C2 is precharged

when both the STE and output of the D-FF are equal to 1, where STE is a

periodic signal that enables the threshold precharging circuit for a fixed duration

within a time step. In the normal working mode, the STE is activated when a

generated postsynaptic spike occurs. For example, V t
acc2,i is precharged to Vini,i

(14.7mV ) within the duration τini (0.5 ns) after firing, as seen in Fig. 21. During

the initialization process, the D-FF output is manually set to ‘1’ to preset the

threshold. After IF processing, the output of the D-FF is fed into the SEW circuit

to perform residual connection according to the model in (21). Specifically, ot,li is

added with the spike from the previous layer st,l−1i using a single inverter-AND

gate, as shown in Fig. 20. Note that in some rare cases, if ρ <0 (sign (ρ)≡ 0) (see

(26)), ENacc2p is deactivated, and ENacc2n is active. In such cases,Vρ accumulates

in ACC1 instead of ACC2. In other words, the output of ACC2 is fixed as Vini,i.

This switching mechanism recalls our discussion about ρ in subsection 4.2.

The detailed charge-based accumulation, analysis and circuit implementation of

the core functions are described below. As shown in Fig. 20, the charge-based

accumulation architecture consists of a PMOS transistor and a capacitor. Accord-

ing to the well-knownα-power law model [112], the charging current I tds passing

through transistors M1 and M2 is equal to

I tds =
µ · Cox ·W

L
(VGS − VTH)α (31)

where α is the model power index, which ranges from 1-2 depending on the

adopted technology. In our chosen technology (a 65-nm CMOS), the transistor

is considered a short channel; i.e., theoretically, α ≈1.

We further experimentally verify that the charging current is quasi-linear and

dependent on VGS in the range of interest (VGS from -702 mV to -443 mV ).

This fact is very important and allows the proposed model in (26) to be directly

mapped to the circuit solution. Note that the value of V t,l
SL,i and its boosted

value V t,l
boost,i=G · V

t,l
SL,i (G ≈3.6) are constants within a time step duration. The

charging current I tds in (31) can therefore be considered unchanged during the

accumulation time. Thus, the amount of charge accumulated in C1 in the time

34



O
t,l

i

Vout,CLSA D

V
t 

acc1,i V
t 

acc2,i

V
t, l

boost,i

V
t ,l

SL,i

τboost

τcharge

τini

Tspike

firing

204mV

200mV

14.7mV

CLK

SBE SBE

SCE ENacc1 ENacc1

STE

SPE

τprecharge

SCE

τsample

O
t,l

i

Vout,CLSA D

V
t 

acc1,i V
t 

acc2,i

V
t, l

boost,i

V
t ,l

SL,i

τboost

τcharge

τini

Tspike

firing

204mV

200mV

14.7mV

CLK

SBE SBE

SCE ENacc1 ENacc1

STE

SPE

τprecharge

SCE

τsample

Figure 21. The IF neuron circuit simulation waveform within 2 time steps for a

row with 288 bitcells.

step from t-1 to t is equal to

4Qacc1,i =

∫ t

t−1
I tds dt

=
µ · Cox ·W · τcharge

L
(G · V t,l

SL,i − VDD − VTH) = β · V t,l
SL,i + ϕ.

(32)

Here, β = G · µ·Cox·W ·τcharge
L

and ϕ = −µ·Cox·W ·τcharge
L

(VDD + VTH). Accordingly,

the amount of charge in C1 at time step t equals to

Qt
acc1,i = Qt−1

acc1,i +4Qacc1,i (33)

By replacing V t
acc1,i =

Qt
acc1,i

C
and 4V t

acc1,i =
4Qacc1,i

C
(in (33)), the accumulated

35



voltage at the second plate of the capacitor equals

V t
acc1,i = V t−1

acc1,i +4V t
acc1,i (34)

Note that 4V t
acc1,i represents the voltage increment in ACC1 when V t,l

SL,i is ap-

plied to the input analog accumulation. For a dynamic threshold, the circuit

implementation is almost the same, but V t,l
SL,i is replaced with Vρ in (32)-(34).

We have

V t
acc2,i = V t−1

acc2,i +
β

C
· Vρ +

1

C
· ϕ (35)

The dynamic threshold can be reformulated as follows

V t
acc2,i = V t−1

acc2,i +4V t
acc2,i (36)

where 4V t
acc2,i = β

C
· Vρ + 1

C
· ϕ . The equations for V t

acc1,i and V t
acc2,i in (34) and

(36), respectively, in the circuit domain hence can be mapped to the model in

(26).

4.2.4 The effect of Non-linearity and Process Variation

As introduced in (34) and (36), the IF model in (26) can be directly mapped to the

charge-based accumulation circuit, which is introduced in Fig. 20. However, this

model suffers from inevitable nonlinearity, and process variation comes from both

the CMOS and MTJ devices. These effects essentially degrade the IF accuracy, as

well as the overall system performance. In this section, we quantify this nonideal

impact based on actual circuit simulations, aiming to have a realistic evaluation

of the proposed BSNN model at the system level in the subsequent section. To

capture the effect of process variation, we run Monte Carlo simulations for a

synaptic array (a row of STT-MRAM) in Fig. 19 (a) and the proposed IF neuron

circuit in Fig. 20. The variation in the CMOS device is set according to the

provided by foundry models. For the MTJ, the variability in the MTJ resistance is

approximately 5% according to [113]. The accumulated output 4V t
acc1,i depends

on K (the number of XNOR outputs that are equal to +1), as presented in

subsection 4.2.1. Each IMC row is designed for 288 bitcells that later fit with

the BSNN inference model. Monte Carlo simulations have been performed for

289 cases of K. Fig. 22 plots the results of mapping K to 4V t
acc1,i(K) under

36



0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101105109113117121125129133137141145149153157161165169173177181185189193197201205209213217221225229233237241245249253257261265269273277281285

Series1 Series2 (K)

0

20

40

80

100

60(m
V

)
Δ

 V
t 

  

a
c
c1

,i

0 48 96 144 192 240 288

Δ V
t   

acc1,iΔ V
t   
1

nonlinearity 

std. deviation

number +1

σ1, min =1.15mV

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101105109113117121125129133137141145149153157161165169173177181185189193197201205209213217221225229233237241245249253257261265269273277281285

Series1 Series2 (K)

0

20

40

80

100

60(m
V

)
Δ

 V
t 

  

a
c
c1

,i

0 48 96 144 192 240 288

Δ V
t   

acc1,iΔ V
t   
1

nonlinearity 

std. deviation

number +1

σ1, min =1.15mV

Figure 22. The effects of nonlinearity and variations on 4V t
acc1,i (K) with non-

linear errors δ1 (K) and standard deviations σ1 (K) with respect to the number

of XNOR outputs (equal to +1 (K) in a row with 288 bitcells).

nonlinear and variation effects. The capacitances C in ACC1 and ACC2 are

set to 150 fF and 100 fF for all capacitors in the booster circuit. The PMOS

sizes in ACC1 and ACC2 are set to W=8×Wmin, L=7× Lmin. The NMOS

size in the array is set to W=4×Wmin, L = Lmin. From Fig. 22, we can see

the effect of nonlinearity on 4V t
acc1,i(K) (the solid line). As shown in Fig. 22,

4V t
acc1,i(K) is quasi-linearly dependent on K. From the simulation data, the

difference δ1(K) = 4V t
acc1,i(K)−4V t

1 (K) between the ideal linear value 4V t
1 (K)

(the dashed line) and the simulated 4V t
acc1,i(K) is negligible in the middle but

becomes significant near the boundary. For example, δ1,max (0)=7.27 mV , and

δ1,min (144)=0.01 mV . In Fig. 22, we also present the statistical analysis of

4V t
acc1,i(K) . The statistical results show that the variations of 4V t

acc1,i(K) can

be approximately fit to Gaussian distributions with a standard deviation σ1(K).

The results indicate that σ1(K) is not the same for every K. This effect is

understandable from the circuit perspective, where the working points of the M1

transistor for different values of K are not the same. For example, σ1(K) reaches

its maximum value at 3.60 mV for K=2 and its minimum value at 1.15 mV

37



for K=221. The noise profile, represented by a normal distribution n(0,σ1(K))

is added to the ideal value 4V t
acc1,i . The actual voltage level in the output of

ACC1 can be approximated as

4V t
acc1,i = 4V t

1 (K) + δ1(K) + n(0, σ1(K)) (37)

A similar analysis and model are conducted for 4V t
acc2,i. The difference is that

the variation 4V t
acc2,i comes from the ACC2 circuit itself without contributions

from the synapse circuits (i.e., the memory array). We have

4V t
acc2,i = 4V t

2 (K) + δ2(K) + n(0, σ2(K)) (38)

Where 4V t
2,ρ is the ideal linear; σ2(ρ) and n(0,σ2(ρ)) are the ρ-dependent nonlin-

ear errors and random variation of 4V t
acc2,i. Finally, the nonlinear and variation

effects on4V t
acc1,i and4V t

acc2,i are added into the accumulations in (34) and (36).

The effects of nonlinearity and process variation on the full circuit simulation are

studied in the following subsection.

In this subsection, we conduct a full circuit simulation for an IF neuron cir-

cuit, which is directly connected with the M synapses of 288 STT memory cells.

We extract the trained network parameters (i.e., weights, BN parameters, and

threshold) from the PyTorch model and feed them to the circuit model, which

is encapsulated in the HSPICE netlist. The network hyperparameters are set so

that the kernel size is 3×3 and the number of input channels is 32, correspond-

ing to an IMC array size of 1×288. Fig. 23 shows an example waveform of the

CLSA output (Vout,CLSA) for a single time step considering the process variation

effect. From the figure, the shift delay can fluctuate from τdelay,1(≈170 ps) to

τdelay,2 (≈740 ps). However, this variation barely affects the output spike because

Vout,CLSA is shaped and latched in a fairly stable position. Furthermore, for mul-

tiple time steps, the process variation also affects the spike position and the total

number of spikes. Fig. 24 presents the postsynaptic spike waveform for T=8×
Tspike corresponding to 288 input bitstrings. From multiple Monte Carlo samples,

it is very common that the positions of the spikes in the output pattern ot,li,simulated
are shifted back and forth from the positions of the expected software simulation

output ot,li,expected. However, since we use rate encoding, this effect does not affect

the final result, which is determined by the total number of spikes within T pe-

riod. It can also be observed that the output pattern may miss or introduce one

38



O
t,l

i, simulated

Vout,CLSA

Vout,CLSA

latch timing

τ delay,2=740ps 

τ delay,1=170ps

O
t,l

i, simulated

Vout,CLSA

Vout,CLSA

latch timing

τ delay,2=740ps 

τ delay,1=170ps

Figure 23. The effect of process variations on the output of the CLSA within a

single time step.

spike, as shown in Fig. 24(b) and 24(c). Nevertheless, the undesirable missing or

addition of one spike has little impact on the final result also thanks to the use

of the rate encoding. In rare cases, we also observe missing or introduced two

spikes, but that is the maximum number of incorrect spikes observed thus far in

our simulations.

To quantify the impact of process variation on the robustness of the neu-

ron implementation, we extracted the mean square error (MSE) of the output

bitstreams from the multiple Monte Carlo simulations as follows

MSE =
1

NMonte

NMonte∑
j=1

1

T 2
·

(
T∑
j=1

ot,lij,expected −
T∑
j=1

ot,lij,expected

)
(39)

where NMonte is the number of Monte Carlo simulations. According to (39), the

MSE for 500-Monte Carlo simulations in this experiment has a value of 1.45%.

Thus, process variation essentially has an impact on the classification accuracy,

but this impact is small and can be reasonably accepted. The results obtained

from the above analysis could be a solid evidence for the SNN fault-tolerant

nature. In fact, it is not possible to simulate the whole network at the circuit

level with massive input patterns. However, as we have mentioned earlier, the

statistical error models of 4V t
acc1,i and 4V t

acc2,i in (37) and (38) can be exactly

39



(c)

(a)

CLK

O
t,l
i,simulated

(b)

Vout,CLSA

V
t

acc1,i

O
t,l
i,simulated

Vout,CLSA

V
t

acc1,i

O
t,l
i,simulated

1 1O
t,l
i,expected

11

1

1 1 1

1 2 3 4 5 6 7 8

(c)

(a)

CLK

O
t,l
i,simulated

(b)

Vout,CLSA

V
t

acc1,i

O
t,l
i,simulated

Vout,CLSA

V
t

acc1,i

O
t,l
i,simulated

1 1O
t,l
i,expected

11

1

1 1 1

1 2 3 4 5 6 7 8

Figure 24. The effect of process variations on postsynaptic spike generation.

injected into the system model to realistically estimate the system accuracy. The

details of the model and evaluation process are discussed in the next section.

4.3 System-Level Evaluation

4.3.1 Setup BSNN Traning Model

To evaluate the performance of the BSNN at the system level, we use the training

method proposed in subsection 4.2. The network structures and major parameters

are shown in Table 8. The training and inference models are written in the

Python language using the PyTorch library. We use the MNIST and CIFAR-

10 [114] datasets for training and evaluation. The networks are trained for 300

(50) epochs with a batch size of 128 (100) for the CIFAR-10 (MNIST) dataset.

40



Table 8. The network structures for two different datasets

Datasets Architecture

MNIST

(2 Conv layers)

32 Conv (rate encoding) – AvrPool2-32 Conv

-AvrPool2-128FC1-512FC2-10FC3

CIFAR-10

(7 Conv layers)

32 Conv (rate encoding)- 32 Conv- 32 Conv-32

Conv- 32 Conv- 32 Conv - 256 Conv -AvrPool4

-512FC1-10FC2

CIFAR-10(7 Conv

layers with SEWa)

Input layer l = g (Output layer l-1,

Output layer l-2) l=3-7

aSEW: the networks with residual connections [103]

The base learning rate is set to 0.3, and the stochastic gradient descent (SGD)

optimizer has a momentum of 0.9. The learning rate is scheduled with a decay

factor of 10 at 50%, 70%, and 90% of the total epochs. For the CIFAR-10 dataset,

we adopt BSNNs using 7 Conv layers for both networks (with and without the

residual connections). Since the Conv layers occupy most of the computational

workload and latency (more than 90%) [115, 116] in the deep neural network, only

the hidden Conv layers are binarized in the BSNN to balance the accuracy with

that of the conventional SNN [89]. Therefore, in our work, the IMC XNOR-based

STT subarrays substitute for all hidden Conv layers in the BSNN evaluation.

4.3.2 Mapping the BSNN to the Circuit Model

Fig. 25 shows the mapping of a BSNN Conv layer to the STT subarray. The

main calculation workload to shift from presynaptic spikes to postsynaptic spikes

is done by the IMC and IF circuits described in subsection 4.2. As seen in the

figure, we unroll each sliding window calculation for the given input into a vector

of presynaptic spikes. Then, the unrolled vector is passed to an N ×M subarray

through M BL decoders. The kernel is mapped and stored in the M bitcells to

perform convolution between unrolled spikes and the kernel weights. If N output

channels are generated simultaneously, the N ×M subarray performs one sliding

window, as illustrated in Fig. 25. Furthermore, intra-layer parallelism can be

41



presynaptic spikes weights

1
IF

2
IF

P
IF

 sub-

array

MM

NN

XNOR

presynaptic spikes weights

1
IF

2
IF

P
IF

 sub-

array

M

N

XNOR

Figure 25. Mapping BSNN Conv layers to STT-MRAM subarrays.

realized by utilizing P subarrays that calculate P parallel sliding windows [117].

P hence indicates the level of parallelism, which reflects the tradeoff between the

hardware cost and the speed of computation. For the practical implementation

in this work, each Conv layer has N =32 input and output channels, and a kernel

size of 3×3 corresponds to a subarray size of 32×288 (M=288).

4.3.3 Evaluation Classification Accuracy

We investigate the impact of time steps on the classification accuracy for both

the MNIST and CIFAR-10 datasets. The classification accuracies of the BSNN

inferences with six network configurations are shown in Table 9.

From the table, using more time steps essentially improves accuracy. Specif-

ically, for networks without SEW, increasing the number of time steps from 4

to 8 results in an accuracy increase of 0.64% (3.24%) for MNIST (CIFAR-10).

Additionally, it is clear that the networks with SEW achieve 2.52% (1.82%) bet-

ter accuracy with 4 (8) time steps for CIFAR-10 than the conventional networks

[106]. These results confirm that the training method using a surrogate gradi-

ent with SEW significantly reduces the required number of time steps compared

with that of the ANN-SNN conversion method [107]. Furthermore, the nonideal

42



Table 9. Classification accuracies of BSNN model on the MNIST, CIFAR-10

datasets for four and eight time steps

Datasets Architecture Accuracy % Time steps

MNIST 2 Conv layers 97.50 4

MNIST 2 Conv layers 98.14 8

CIFAR-10 7 Conv layers 79.70 4

CIFAR-10 7 Conv layers 82.94 8

CIFAR-10 7 Conv layers +SEW 82.22 4

CIFAR-10 7 Conv layers +SEW 84.76 8

charge increments in (37) and (38) are injected into the Python BSNN inference

model to evaluate the effect of process variation on the classification accuracy.

This is completed by replacing the linear models of the membrane potential and

threshold with the actual models with an incorporated nonlinearity bias and a

Gaussian random quantity , which are characterized by the Monte Carlo simula-

tions in subsection 4.2. The models are evaluated on the test set multiple times

(a 100-variation netlist) with different variation seeds. The means (µBSNN) and

standard deviations (σBSNN) are reported in Table 10.

Table 10. The effect of process variation on the classification accuracy of the

BSNN model for 8 time steps

Datasets Architecture
Accuracy %

No variation

Accuracy %

With variation µBSNN σBSNN

MNIST 2 Conv layers 98.14 97.92/0.23%

CIFAR-10 7 Conv layers +SEW 84.76 83.85/0.03%

From the table, the mean classification accuracy is slightly reduced by 0.22%

(0.91%) for MNIST (CIFAR-10) with 8 time steps compared to the reported

accuracies for the models without variation. Additionally, the accuracies eval-

uated with different configurations are not much different, with standard devi-

ations of 0.23% (MNIST) and 0.03% (CIFAR-10). In the extreme case at the

43



6×σBSNN point, the classification accuracy is degraded by 1.38% (MNIST) and

0.18% (CIFAR-10). Overall, these results permit us to conclude that process

variation has a minor impact on classification accuracy and the proposed BSNN

exhibits a very good level of fault tolerance.

4.3.4 Energy, Throughput, and Area of the Subarray

In the proposed STT-BSNN architecture, the energy per spiking operation is

provided by the energy for synapses and for the IF neuron circuit:

Espike = Esynapses + Eneuron = Ewl + Ebitcell + Eneuron (40)

where Esynapses is the energy consumed by the synapse operations of the IMC cir-

cuit (i.e., the MAC operations). This includes the precharged energy required for

the high-load word lines Ewl and the energy consumed by the M bitcells Ebitcell.

The latter essentially accounts for the main portion of the total energy, which

is proportional to the sampling time and the accumulated current drawn from

the BL source voltage VBL. Eneuron is the energy spent on the IF neuron circuit,

which includes the energy needed for the CB, ACC1, ACC2 and FS subcircuits

in Fig. 20. Since these circuits are all charge-based circuits, they consume energy

only during switching, i.e., without any direct currents. Therefore, their energy

proportions are small compared to Esynapses, which normally accounts for the

main contribution in Espike. Specifically, for an IMC array row of size 288, the

Esynapses for 288 synaptic elements is found to be 1.58 pJ (where Ewl = 0.064 pJ

and Ebitcell = 1.52 pJ), where the optimal sampling time is set to 1 ns when using

the precharged technique for the booster [31].Eneuron accounts for only 0.052 pJ ,

which results in a total spiking operation energy of Espike=1.63 pJ . In this work,

we define the number of operations to be equal to the size of the MAC function.

This means that 288 operations are executed within one time step. Therefore,

the energy efficiency Eeff (TOPS/W ) for an IMC array row of size 288 is esti-

mated to be 288/1.63=176.6 TOPS/W . The rough estimation of the subarray

area is equal to 608 µm2 for a single-row implementation with 288 bitcells. The

estimation area for a neuron is equal to 115 µm2 For a subarray of size 32×288,

the number of operations is equal to 32Ö288=9216 (operations) over 8 time steps

with a period of Tspike=6 ns. The throughput efficiency Tsubarray is equal to

44



Table 11. Comparison with previous works

IJCNN’19

[89]

TNNSL’20

[93]

VLSI’20

[95]
Our work

synapse MTJ MTJ MTJ MTJ

neuron MTJ Digital MTJ Analog

technology 45 nm 28 nm N/A 65 nm

network type BSNN SNN BSNN BSNN

structure 3 Conv FC layers 2 Conv 2/7 Conv

neuron sigmoid IF Poisson IF

weight +1/-1 +1/0c +1/-1 +1/0

energy/operation(fJ) 36b 8.87 N/A 5.48

area/neuron(F 2)a N/A ≈ 15 × 105 6 × 103 32 × 103

acuuracy MNIST/

CIFAR-10

N/A

70.3 %

91.5 %

N/A

≈ 97.4 %

N/A

97.92 %

83.85 %

aThe area is normalized to F 2, with F is the technology feature size.
bThe maximum energy consumption per spiking event for a synapse, as reported

in [118, 119].
cThe full-precision weights are converted into stochastic bits (+1/0) in each time

step.

(9216 /8× 6)=192 GOPS. If P sliding windows are processed simultaneously,

the throughput efficiency increases by P times (P×Tsubarray).

4.3.5 Comparision with Related Works

Table 11 summarizes a comparison with previous work on IMC architectures for

SNNs. Although there are many similar works [89, 93, 94, 95] on this topic,

we have selected the most relevant studies using spintronic memory and spiking

networks for comparison. Regarding accuracy, using a deeper network and di-

rect training method, the accuracy level of BSNN in this work is ≈13.8% higher

than that in [89], evaluated using CIFAR-10 dataset. The implementation in

[93] with spintronic synapse and digital neuron also achieves lower accuracy (by

6.3% for MNIST dataset) compared to our work. This is partly because their

45



Table 12. Comparison with previous works with different technologies

TCAS’20

[120]

L-SSC’21

[121]

TrueNorth

[122]
Our work

synapse SRAM SRAM Digital MTJ

neuron Digital Analog Digital Analog

technology 90 nm 65 nm 28nm 65 nm

network type BSNN SNN T-SNN BSNN

energy eff.(TOPS/W ) 89.49 0.99 N/A 176.6

energy/operation(fJ) 184 N/A 2700 5.48

Frequency(MHz) 37.5 500 N/A 166

acuuracy MNIST/

CIFAR-10

92.30 %

N/A

98.96 %

N/A

97.6 %

89.32 %

97.92 %

83.85 %

results are reported for a fully connected network. An all-spin SNN in [95] ex-

hibits similar accuracy for MNIST dataset, though their spiking rate is much

lower than ours. The reason is that their method requires a large sampling time

to convert synaptic current into a spike duty cycle in each time step. Regard-

ing the energy, the energy consumption per synapse calculated for our BSNN is

∼6.5 times lower than that of the MTJ synapse reported in [89], not considering

their synapse is implemented in a smaller technology node (45nm). Similarly,

our work is still 1.6× more energy-efficient than the reported synapse energy in

[93], even though their work is implemented on a 28nm CMOS, theoretically ≈2

times more energy-efficient than the same 65nm implementation. Finally, for

area comparison reported in F 2 (F is the technology feature size), the area per

neuron of our model is essentially much better than digital implementation [93].

Still, it is not as good as all spintronic one in [95]. That advantage comes with

the clear trade-offs in energy and latency, as mentioned earlier. Table 12 shows a

comparison table of recently presented spiking neural network accelerators with

different technologies. In [120], a stochastic bit enabled BSNN is presented to

mitigate the hardware complexity for rate-encoding for on-chip learning. How-

ever, the dominated computation in [120] is implemented with digital circuits,

leading to high power consumption compared to our work. The authors in [121]

46



implemented a reconfigurable IMC macro, supporting all instructions for SNN

inference. The area is roughly estimated in this work considering the necessity of

this performance metric since such design in this emerging technology is not fully

available for taping out at the current state. However, the IMC macro in [121]

suffers the limitation of size. In detail, the array size equal (restricted to the input

channels of Conv layers is 14 with 3x3 kernel size) might not be adopted for deep

spiking structures. Furthermore, this work’s peak energy efficiency achieves up to

0.99 TOPS/W, which is still lower than our IMC macro due to the representation

of the full-precision weighs. In comparison to [122], our work has advantages in

terms of energy efficiency but lower classification accuracy.

47



5 Conclusion

We have shown the hardware implementation of the RBF using stochastic com-

puting based on the definition of a limit of an exponent. It is shown that this

method is experimentally superior to competing classical approaches in term of

accuracy. Future work will be towards stochastic computing for the RBF kernel

for full neural networks. The results show that our work outperforms the two-

dimensional finite-state machine-based implementation, roughly 54% less hard-

ware cost. Regarding the critical path delay, our design is less than 12% than oth-

ers on average. Besides, the power consumtion is 70% lower than two-dimensional

finite-state machine-based implementation.

In the 2-nd part of the thesis, an approached computation of sigmoid(2ax)

and tanh(ax) in a bipolar format based Bernstein polynomial has been proposed.

The results showed that 90% improvement of accuracy had been achieved while

maintaining a comparable hardware cost compared to the state-of-the-art.

The 3-rd part of the thesis presents an in-memory BSNN based on STT-

MRAM for low-power, low-latency on-edge AI applications. We propose a direct

BSNN training approach using a surrogate gradient with residual connections

that achieves high classification accuracy with much fewer time steps than the

number of steps required in prior works. Furthermore, we propose a full-circuit

solution for IMC MAC operations based on an STT-MRAM array, which allows

ultrafast vector multiplication to be performed within one memory access phase.

Furthermore, we propose a dynamic threshold approach for the IF circuit that

mimics the neuron spiking behavior and consumes very low power. The BSNN

system model is then re-evaluated using realistic circuit parameters and exact

circuit simulations. The results indicate that device mismatches and nonlinearity

essentially affect the misclassification accuracy of the model. Nonetheless, the

accuracy degradation is insignificant, and the proposed BSNN still offers decent

performance in comparison with other methods. The results show that the pro-

posed design can achieve a performance of 176.6 TOPS/W for the IMC subarray

of 1×288. The classification accuracy is 97.92% (83.85%) for the MNIST (CIFAR-

10) dataset. The impacts of the device nonidealities and process variations are

also thoroughly covered in the analysis. The proposed design approach with a

48



practical circuit solution could potentially pave the way for ultralow-power DNNs

to be applied in on-edge AI applications. We are working forward to improve the

architecture and design to fit deeper and larger networks.

49



Acknowledgements

First and foremost, I am extremely grateful to my supervisor, Prof. Yasuhiko

Nakashima, for his invaluable advice, continuous support, and patience during

my Ph.D. study. His immense knowledge and great experience have encouraged

me in my academic research and daily life. I would also like to thank Assoc.

Prof. Renyuan ZHANG and Dr. Kien Trinh for their technical support of my

study. Besides, I would like to thank Prof. Yuichi Hayashi for serving on my

thesis committee and giving valuable evaluations.

Next, I would like to thank the Computing Architecture Laboratory, Division

of Information Science, Nara Institute of Science and Technology (NAIST) for

supporting me in my career. I also would like to thank the Japanese Ministry of

Education, Culture, Sport, Science, and Technology (MEXT) for giving me the

scholarship to study in Japan.

Finally, I would like to thank my mother for sacrificing so much in her life to help

me live mine.

50



References

[1] Bhattarabhorn Wattanacheep and Orachat Chitsobhuk. Camera pose es-

timation using cnn. In 2020 the 3rd International Conference on Control

and Computer Vision, page 84–88, 2020.

[2] M. P. Bhuyan, S. K. Sarma, and M. Rahman. Natural language processing

based stochastic model for the correctness of assamese sentences. In 2020

5th International Conference on Communication and Electronics Systems

(ICCES), pages 1179–1182, 2020.

[3] Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee. A regression approach

to speech enhancement based on deep neural networks. IEEE/ACM Trans-

actions on Audio, Speech, and Language Processing, 23(1):7–19, 2015.

[4] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. A

survey of accelerator architectures for deep neural networks. Engineering,

6(3):264–274, 2020.

[5] Sun-Ting Tsai, En-Jui Kuo, and Pratyush Tiwary. Learning molecular

dynamics with simple language model built upon long short-term memory

neural network. Nature communications, 11(1):1–11, 2020.

[6] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna

Das, and Scott Mahlke. Scalpel: Customizing dnn pruning to the under-

lying hardware parallelism. ACM SIGARCH Computer Architecture News,

45(2):548–560, 2017.

[7] Li Zhou, Mohammad Hossein Samavatian, Anys Bacha, Saikat Majumdar,

and Radu Teodorescu. Adaptive parallel execution of deep neural networks

on heterogeneous edge devices. In Proceedings of the 4th ACM/IEEE Sym-

posium on Edge Computing, pages 195–208, 2019.

[8] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review.

Proceedings of the IEEE, 107(8):1655–1674, 2019.

51



[9] Sourya Dey, Diandian Chen, Zongyang Li, Souvik Kundu, Kuan-Wen

Huang, Keith M. Chugg, and Peter A. Beerel. A highly parallel fpga

implementation of sparse neural network training. In 2018 International

Conference on ReConFigurable Computing and FPGAs (ReConFig), pages

1–4, 2018.

[10] Sourya Dey, Kuan-Wen Huang, Peter A. Beerel, and Keith M. Chugg. Pre-

defined sparse neural networks with hardware acceleration. IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, 9(2):332–345,

2019.

[11] Jeremy Kepner, Simon Alford, Vijay Gadepally, Michael Jones, Lauren

Milechin, Ryan Robinett, and Sid Samsi. Sparse deep neural network graph

challenge. In 2019 IEEE High Performance Extreme Computing Conference

(HPEC), pages 1–7, 2019.

[12] Ali Keshavarzi, Kai Ni, Wilbert Van Den Hoek, Suman Datta, and Ar-

ijit Raychowdhury. Ferroelectronics for edge intelligence. IEEE Micro,

40(6):33–48, 2020.

[13] Erwei Wang, James J Davis, Ruizhe Zhao, Ho-Cheung Ng, Xinyu Niu,

Wayne Luk, Peter YK Cheung, and George A Constantinides. Deep neural

network approximation for custom hardware: Where we’ve been, where

we’re going. ACM Computing Surveys (CSUR), 52(2):1–39, 2019.

[14] Armin Alaghi and John P Hayes. Survey of stochastic computing. ACM

Transactions on Embedded computing systems (TECS), 12(2s):1–19, 2013.

[15] Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne,

Robert Salzmann, Daniel Scheiermann, and Ramona Wolf. Training deep

quantum neural networks. Nature communications, 11(1):1–6, 2020.

[16] Saurabh Jain, Longyang Lin, and Massimo Alioto. Broad-purpose in-

memory computing for signal monitoring and machine learning workloads.

IEEE Solid-State Circuits Letters, 3:394–397, 2020.

52



[17] Ankit Mondal and Ankur Srivastava. Energy-efficient design of mtj-based

neural networks with stochastic computing. ACM Journal on Emerging

Technologies in Computing Systems (JETC), 16(1):1–27, 2019.

[18] Ankit Mondal and Ankur Srivastava. Energy-efficient design of mtj-based

neural networks with stochastic computing. ACM Journal on Emerging

Technologies in Computing Systems (JETC), 16(1):1–27, 2019.

[19] G. Maor, X. Zeng, Z. Wang, and Y. Hu. An fpga implementation of stochas-

tic computing-based lstm. In 2019 IEEE 37th International Conference on

Computer Design (ICCD), pages 38–46, 2019.

[20] H. Xiong, M. Abu bakar, and G. He. Hardware implementation of an

improved stochastic computing based deep neural network using short se-

quence length. IEEE Transactions on Circuits and Systems II: Express

Briefs, 67(11):2667–2671, 2020.

[21] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross.

Vlsi implementation of deep neural network using integral stochastic com-

puting. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 25(10):2688–2699, 2017.

[22] N. Onizawa, W. J. Gross, and T. Hanyu. Stochastic-computing based brain-

wave lsi towards an intelligence edge. In 2019 26th IEEE International

Conference on Electronics, Circuits and Systems (ICECS), pages 434–437,

2019.

[23] B. Li, M. H. Najafi, and D. J. Lilja. An fpga implementation of a re-

stricted boltzmann machine classifier using stochastic bit streams. In 2015

IEEE 26th International Conference on Application-specific Systems, Ar-

chitectures and Processors (ASAP), pages 68–69, 2015.

[24] J. Yu, K. Kim, J. Lee, and K. Choi. Accurate and efficient stochastic

computing hardware for convolutional neural networks. In 2017 IEEE In-

ternational Conference on Computer Design (ICCD), pages 105–112, 2017.

53



[25] Z. Li, J. Li, A. Ren, R. Cai, C. Ding, X. Qian, J. Draper, B. Yuan,

J. Tang, Q. Qiu, and Y. Wang. Heif: Highly efficient stochastic computing-

based inference framework for deep neural networks. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 38(8):1543–

1556, 2019.

[26] T. Hirtzlin, B. Penkovsky, M. Bocquet, J. Klein, J. Portal, and D. Quer-

lioz. Stochastic computing for hardware implementation of binarized neural

networks. IEEE Access, 7:76394–76403, 2019.

[27] Brian R Gaines. Stochastic computing. In Proceedings of the April 18-20,

1967, spring joint computer conference, pages 149–156, 1967.

[28] Renyuan Zhang, Tati Erlina, Tinh Van Nguyen, and Yasuhiko Nakashima.

Hybrid stochastic computing circuits in continuous statistics domain. In

2020 IEEE 33rd International System-on-Chip Conference (SOCC), pages

225–230. IEEE, 2020.

[29] Keshab K Parhi. Analysis of stochastic logic circuits in unipolar, bipolar

and hybrid formats. In 2017 IEEE International Symposium on Circuits

and Systems (ISCAS), pages 1–4. IEEE, 2017.

[30] M Hassan Najafi, David J Lilja, and Marc Riedel. Deterministic methods for

stochastic computing using low-discrepancy sequences. In 2018 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages 1–8.

IEEE, 2018.

[31] Weikang Qian, Xin Li, Marc D Riedel, Kia Bazargan, and David J Lilja.

An architecture for fault-tolerant computation with stochastic logic. IEEE

transactions on computers, 60(1):93–105, 2010.

[32] Sina Asadi, M Hassan Najafi, and Mohsen Imani. A low-cost fsm-based

bit-stream generator for low-discrepancy stochastic computing. In 2021

Design, Automation & Test in Europe Conference & Exhibition (DATE),

pages 908–913. IEEE, 2021.

54



[33] Amir Ardakani, Arash Ardakani, and Warren J Gross. Fault-tolerance of

binarized and stochastic computing-based neural networks. In 2021 IEEE

Workshop on Signal Processing Systems (SiPS), pages 52–57. IEEE, 2021.

[34] B.D. Brown and H.C. Card. Stochastic neural computation. i. computa-

tional elements. IEEE Transactions on Computers, 50(9):891–905, 2001.

[35] Tati Erlina, Renyuan Zhang, and Yasuhiko Nakashima. A feasibility study

of multi-domain stochastic computing circuit. IEICE Transactions on Elec-

tronics, 2020.

[36] Van-Tinh Nguyen, Tieu-Khanh Luong, Han Le Duc, and Van-Phuc Hoang.

An efficient hardware implementation of activation functions using stochas-

tic computing for deep neural networks. In 2018 IEEE 12th International

Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC),

pages 233–236, 2018.

[37] Keshab K. Parhi and Yin Liu. Computing arithmetic functions using

stochastic logic by series expansion. IEEE Transactions on Emerging Topics

in Computing, 7(1):44–59, 2019.

[38] Tieu-Khanh Luong, Van-Tinh Nguyen, Anh-Thai Nguyen, and Emanuel

Popovici. Efficient architectures and implementation of arithmetic func-

tions approximation based stochastic computing. In 2019 IEEE 30th In-

ternational Conference on Application-specific Systems, Architectures and

Processors (ASAP), volume 2160, pages 281–287. IEEE, 2019.

[39] Tati Erlina, Renyuan Zhang, Yasuhiko Nakashima, et al. A programmable

approximate calculation unit employing time-encoded stochastic computing

elements. In 2019 Seventh International Symposium on Computing and

Networking Workshops (CANDARW), pages 91–96. IEEE, 2019.

[40] Peng Li, David J Lilja, Weikang Qian, Kia Bazargan, and Marc Riedel.

The synthesis of complex arithmetic computation on stochastic bit streams

using sequential logic. In Proceedings of the International Conference on

Computer-Aided Design, pages 480–487, 2012.

55



[41] Yin Liu and Keshab K Parhi. Computing hyperbolic tangent and sigmoid

functions using stochastic logic. In 2016 50th Asilomar Conference on Sig-

nals, Systems and Computers, pages 1580–1585. IEEE, 2016.

[42] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:

An energy-efficient reconfigurable accelerator for deep convolutional neural

networks. IEEE journal of solid-state circuits, 52(1):127–138, 2016.

[43] Bert Moons, Roel Uytterhoeven, Wim Dehaene, and Marian Verhelst. 14.5

envision: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-

frequency-scalable convolutional neural network processor in 28nm fdsoi. In

2017 IEEE International Solid-State Circuits Conference (ISSCC), pages

246–247. IEEE, 2017.

[44] Dongjoo Shin, Jinmook Lee, Jinsu Lee, and Hoi-Jun Yoo. 14.2 dnpu: An

8.1 tops/w reconfigurable cnn-rnn processor for general-purpose deep neu-

ral networks. In 2017 IEEE International Solid-State Circuits Conference

(ISSCC), pages 240–241. IEEE, 2017.

[45] P Narayanan, S Ambrogio, A Okazaki, K Hosokawa, H Tsai, A Nomura,

T Yasuda, C Mackin, SC Lewis, A Friz, et al. Fully on-chip mac at 14nm

enabled by accurate row-wise programming of pcm-based weights and par-

allel vector-transport in duration-format. In 2021 Symposium on VLSI

Technology, pages 1–2. IEEE, 2021.

[46] Avilash Mukherjee, Kumar Saurav, Prashant Nair, Sudip Shekhar, and

Mieszko Lis. A case for emerging memories in dnn accelerators. In 2021

Design, Automation & Test in Europe Conference & Exhibition (DATE),

pages 938–941. IEEE, 2021.

[47] Saurabh Jain, Longyang Lin, and Massimo Alioto. Broad-purpose in-

memory computing for signal monitoring and machine learning workloads.

IEEE Solid-State Circuits Letters, 3:394–397, 2020.

[48] Bin Zhang, Weilin Chen, Jianmin Zeng, Fei Fan, Junwei Gu, Xinhui Chen,

Lin Yan, Guangjun Xie, Shuzhi Liu, Qing Yan, et al. 90% yield production

56



of polymer nano-memristor for in-memory computing. Nature communica-

tions, 12(1):1–11, 2021.

[49] Yin Wang, Hongwei Tang, Yufeng Xie, Xinyu Chen, Shunli Ma, Zheng-

zong Sun, Qingqing Sun, Lin Chen, Hao Zhu, Jing Wan, et al. An in-

memory computing architecture based on two-dimensional semiconductors

for multiply-accumulate operations. Nature communications, 12(1):1–8,

2021.

[50] Fei Xue, Xin He, Zhenyu Wang, José Ramón Durán Retamal, Zheng Chai,

Lingling Jing, Chenhui Zhang, Hui Fang, Yang Chai, Tao Jiang, et al.

Giant ferroelectric resistance switching controlled by a modulatory terminal

for low-power neuromorphic in-memory computing. Advanced Materials,

33(21):2008709, 2021.

[51] Hongyang Jia, Murat Ozatay, Yinqi Tang, Hossein Valavi, Rakshit Pathak,

Jinseok Lee, and Naveen Verma. 15.1 a programmable neural-network in-

ference accelerator based on scalable in-memory computing. In 2021 IEEE

International Solid-State Circuits Conference (ISSCC), volume 64, pages

236–238. IEEE, 2021.

[52] Nikolaos Vasileiadis, Vasileios Ntinas, Iosif-Angelos Fyrigos, Rafailia-Eleni

Karamani, Vassilios Ioannou-Sougleridis, Pascal Normand, Ioannis Karafyl-

lidis, Georgios Ch Sirakoulis, and Panagiotis Dimitrakis. A new 1p1r image

sensor with in-memory computing properties based on silicon nitride de-

vices. In 2021 IEEE International Symposium on Circuits and Systems

(ISCAS), pages 1–5. IEEE, 2021.

[53] Martino Dazzi, Abu Sebastian, Thomas Parnell, Pier Andrea Francese,

Luca Benini, and Evangelos Eleftheriou. Efficient pipelined execution of

cnns based on in-memory computing and graph homomorphism verification.

IEEE Transactions on Computers, 70(6):922–935, 2021.

[54] Mohsen Riahi Alam, M Hassan Najafi, and Nima Taheri Nejad. Exact

stochastic computing multiplication in memristive memory. IEEE Design

& Test, 2021.

57



[55] Corey Lammie, Jason K Eshraghian, Wei D Lu, and Mostafa Rahimi

Azghadi. Memristive stochastic computing for deep learning parameter op-

timization. IEEE Transactions on Circuits and Systems II: Express Briefs,

68(5):1650–1654, 2021.

[56] Ruiqi Guo, Zhiheng Yue, Xin Si, Te Hu, Hao Li, Limei Tang, Yabing Wang,

Leibo Liu, Meng-Fan Chang, Qiang Li, et al. 15.4 a 5.99-to-691.1 tops/w

tensor-train in-memory-computing processor using bit-level-sparsity-based

optimization and variable-precision quantization. In 2021 IEEE Interna-

tional Solid-State Circuits Conference (ISSCC), volume 64, pages 242–244.

IEEE, 2021.

[57] Guodong Yin, Yi Cai, Juejian Wu, Zhengyang Duan, Zhenhua Zhu, Yong-

pan Liu, Yu Wang, Huazhong Yang, and Xueqing Li. Enabling lower-

power charge-domain nonvolatile in-memory computing with ferroelectric

fets. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021.

[58] Jiahao Song, Yuan Wang, Minguang Guo, Xiang Ji, Kaili Cheng, Yix-

uan Hu, Xiyuan Tang, Runsheng Wang, and Ru Huang. Td-sram: Time-

domain-based in-memory computing macro for binary neural networks.

IEEE Transactions on Circuits and Systems I: Regular Papers, 2021.

[59] Jian Meng, Li Yang, Xiaochen Peng, Shimeng Yu, Deliang Fan, and Jae-

Sun Seo. Structured pruning of rram crossbars for efficient in-memory

computing acceleration of deep neural networks. IEEE Transactions on

Circuits and Systems II: Express Briefs, 68(5):1576–1580, 2021.

[60] Gihun Choe, Wonbo Shim, Panni Wang, Jae Hur, Asif Islam Khan, and Shi-

meng Yu. Impact of random phase distribution in ferroelectric transistors-

based 3-d nand architecture on in-memory computing. IEEE Transactions

on Electron Devices, 68(5):2543–2548, 2021.

[61] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and

Yoshua Bengio. Binarized neural networks. Advances in neural information

processing systems, 29, 2016.

58



[62] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and

Yoshua Bengio. Binarized neural networks: Training deep neural net-

works with weights and activations constrained to+ 1 or-1. arXiv preprint

arXiv:1602.02830, 2016.

[63] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh

Venkatesh, and Debbie Marr. Accelerating binarized neural networks: Com-

parison of fpga, cpu, gpu, and asic. In 2016 International Conference on

Field-Programmable Technology (FPT), pages 77–84. IEEE, 2016.

[64] Nicholas J Fraser, Yaman Umuroglu, Giulio Gambardella, Michaela Blott,

Philip Leong, Magnus Jahre, and Kees Vissers. Scaling binarized neural

networks on reconfigurable logic. In Proceedings of the 8th Workshop and

6th Workshop on Parallel Programming and Run-Time Management Tech-

niques for Many-core Architectures and Design Tools and Architectures for

Multicore Embedded Computing Platforms, pages 25–30, 2017.

[65] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott,

Philip Leong, Magnus Jahre, and Kees Vissers. Finn: A framework for

fast, scalable binarized neural network inference. In Proceedings of the

2017 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, pages 65–74, 2017.

[66] Mohammad Ghasemzadeh, Mohammad Samragh, and Farinaz Koushan-

far. Rebnet: Residual binarized neural network. In 2018 IEEE 26th An-

nual International Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 57–64. IEEE, 2018.

[67] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.

Xnor-net: Imagenet classification using binary convolutional neural net-

works. In European conference on computer vision, pages 525–542. Springer,

2016.

[68] Rui Liu, Xiaochen Peng, Xiaoyu Sun, Win-San Khwa, Xin Si, Jia-Jing

Chen, Jia-Fang Li, Meng-Fan Chang, and Shimeng Yu. Parallelizing

sram arrays with customized bit-cell for binary neural networks. In 2018

59



55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6.

IEEE, 2018.

[69] Hyungjun Kim, Hyunmyung Oh, and Jae-Joon Kim. Energy-efficient xnor-

free in-memory bnn accelerator with input distribution regularization. In

Proceedings of the 39th International Conference on Computer-Aided De-

sign, pages 1–9, 2020.

[70] Xin Si, Yung-Ning Tu, Wei-Hsing Huang, Jian-Wei Su, Pei-Jung Lu, Jing-

Hong Wang, Ta-Wei Liu, Ssu-Yen Wu, Ruhui Liu, Yen-Chi Chou, et al.

15.5 a 28nm 64kb 6t sram computing-in-memory macro with 8b mac op-

eration for ai edge chips. In 2020 IEEE International Solid-State Circuits

Conference-(ISSCC), pages 246–248. IEEE, 2020.

[71] Chengshuo Yu, Taegeun Yoo, Tony Tae-Hyoung Kim, Kevin Chai Tshun

Chuan, and Bongjin Kim. A 16k current-based 8t sram compute-in-memory

macro with decoupled read/write and 1-5bit column adc. In 2020 IEEE

Custom Integrated Circuits Conference (CICC), pages 1–4. IEEE, 2020.

[72] Amogh Agrawal, Adarsh Kosta, Sangamesh Kodge, Dong Eun Kim, and

Kaushik Roy. Cash-ram: Enabling in-memory computations for edge in-

ference using charge accumulation and sharing in standard 8t-sram arrays.

IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

10(3):295–305, 2020.

[73] Xiaoyu Sun, Shihui Yin, Xiaochen Peng, Rui Liu, Jae-sun Seo, and Shimeng

Yu. Xnor-rram: A scalable and parallel resistive synaptic architecture for

binary neural networks. In 2018 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 1423–1428. IEEE, 2018.

[74] Xiaoyu Sun, Xiaochen Peng, Pai-Yu Chen, Rui Liu, Jae-sun Seo, and Shi-

meng Yu. Fully parallel rram synaptic array for implementing binary neural

network with (+ 1,- 1) weights and (+ 1, 0) neurons. In 2018 23rd Asia and

South Pacific Design Automation Conference (ASP-DAC), pages 574–579.

IEEE, 2018.

60



[75] Nuo Xu, Yang Lu, Weiyi Qi, Zhengping Jiang, Xiaochen Peng, Fan Chen,

Jing Wang, Woosung Choi, Shimeng Yu, and Dae Sin Kim. Stt-mram

design technology co-optimization for hardware neural networks. In 2018

IEEE International Electron Devices Meeting (IEDM), pages 15–3. IEEE,

2018.

[76] Yuhan Shi, Sangheon Oh, Zhisheng Huang, Xiao Lu, Seung H Kang, and

Duygu Kuzum. Performance prospects of deeply scaled spin-transfer torque

magnetic random-access memory for in-memory computing. IEEE Electron

Device Letters, 41(7):1126–1129, 2020.

[77] Simon Van Beek, Siddharth Rao, Shreya Kundu, Woojin Kim, Barry J

O’Sullivan, Stefan Cosemans, Farukh Yasin, Robert Carpenter, Sebastien

Couet, Shamin H Sharifi, et al. Edge-induced reliability & performance

degradation in stt-mram: an etch engineering solution. In 2021 IEEE In-

ternational Reliability Physics Symposium (IRPS), pages 1–5. IEEE, 2021.

[78] Vivek Parmar, Manan Suri, Kazutaka Yamane, Taeyoung Lee, Nyuk Leong

Chung, and Vinayak Bharat Naik. Mram-based ber resilient quantized edge-

ai networks for harsh industrial conditions. In 2021 IEEE 3rd International

Conference on Artificial Intelligence Circuits and Systems (AICAS), pages

1–4. IEEE, 2021.

[79] Hao Cai, Juntong Chen, Yongliang Zhou, and Weisheng Zhao. Towards

energy-efficient stt-mram design with multi-modes reconfiguration. IEEE

Transactions on Circuits and Systems II: Express Briefs, 2021.

[80] Shubham Jain, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan.

Computing in memory with spin-transfer torque magnetic ram. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 26(3):470–

483, 2017.

[81] Liang Chang, Xin Ma, Zhaohao Wang, Youguang Zhang, Yuan Xie, and

Weisheng Zhao. Pxnor-bnn: In/with spin-orbit torque mram preset-xnor

operation-based binary neural networks. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 27(11):2668–2679, 2019.

61



[82] Chih-Cheng Chang, Ming-Hung Wu, Jia-Wei Lin, Chun-Hsien Li, Vivek

Parmar, Heng-Yuan Lee, Jeng-Hua Wei, Shyh-Shyuan Sheu, Manan Suri,

Tian-Sheuan Chang, et al. Nv-bnn: An accurate deep convolutional neu-

ral network based on binary stt-mram for adaptive ai edge. In 2019 56th

ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2019.

[83] Salonik Resch, S Karen Khatamifard, Zamshed Iqbal Chowdhury, Masoud

Zabihi, Zhengyang Zhao, Jian-Ping Wang, Sachin S Sapatnekar, and Ulya R

Karpuzcu. Pimball: Binary neural networks in spintronic memory. ACM

Transactions on Architecture and Code Optimization (TACO), 16(4):1–26,

2019.

[84] Shifan Gao, Bing Chen, Yiming Qu, and Yi Zhao. Mram acceleration

core for vector matrix multiplication and xnor-binarized neural network

inference. In 2020 International Symposium on VLSI Technology, Systems

and Applications (VLSI-TSA), pages 153–154. IEEE, 2020.

[85] Thi-Nhan Pham, Quang-Kien Trinh, Ik-Joon Chang, and Massimo Alioto.

Stt-mram architecture with parallel accumulator for in-memory binary neu-

ral networks. In 2021 IEEE International Symposium on Circuits and Sys-

tems (ISCAS), pages 1–5. IEEE, 2021.

[86] Wenzhe Guo, Mohammed E Fouda, Ahmed M Eltawil, and Khaled Nabil

Salama. Neural coding in spiking neural networks: A comparative study

for robust neuromorphic systems. Frontiers in Neuroscience, 15:212, 2021.

[87] Abhronil Sengupta, Maryam Parsa, Bing Han, and Kaushik Roy. Proba-

bilistic deep spiking neural systems enabled by magnetic tunnel junction.

IEEE Transactions on Electron Devices, 63(7):2963–2970, 2016.

[88] Abhronil Sengupta, Gopalakrishnan Srinivasan, Deboleena Roy, and

Kaushik Roy. Stochastic inference and learning enabled by magnetic tunnel

junctions. In 2018 IEEE International Electron Devices Meeting (IEDM),

pages 15–6. IEEE, 2018.

[89] Akhilesh Jaiswal, Amogh Agrawal, Indranil Chakraborty, Deboleena Roy,

and Kaushik Roy. On robustness of spin-orbit-torque based stochastic sig-

62



moid neurons for spiking neural networks. In 2019 International Joint

Conference on Neural Networks (IJCNN), pages 1–6. IEEE, 2019.

[90] Hsin-Pai Cheng, Wei Wen, Chunpeng Wu, Sicheng Li, Hai Helen Li, and

Yiran Chen. Understanding the design of ibm neurosynaptic system and

its tradeoffs: A user perspective. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2017, pages 139–144, 2017.

[91] Surya Narayanan, Ali Shafiee, and Rajeev Balasubramonian. Inxs: Bridg-

ing the throughput and energy gap for spiking neural networks. In 2017

International Joint Conference on Neural Networks (IJCNN), pages 2451–

2459, 2017.

[92] Luis A Camuñas-Mesa, Bernabé Linares-Barranco, and Teresa Serrano-

Gotarredona. Implementation of a tunable spiking neuron for stdp with

memristors in fdsoi 28nm. In 2020 2nd IEEE International Conference on

Artificial Intelligence Circuits and Systems (AICAS), pages 94–98. IEEE,

2020.

[93] Samuel N Pagliarini, Sudipta Bhuin, Mehmet Meric Isgenc, Ayan Kumar

Biswas, and Larry Pileggi. A probabilistic synapse with strained mtjs for

spiking neural networks. IEEE transactions on neural networks and learning

systems, 31(4):1113–1123, 2019.

[94] Akhilesh Jaiswal, Sourjya Roy, Gopalakrishnan Srinivasan, and Kaushik

Roy. Proposal for a leaky-integrate-fire spiking neuron based on magneto-

electric switching of ferromagnets. IEEE Transactions on Electron Devices,

64(4):1818–1824, 2017.

[95] Ming-Hung Wu, Ming-Shun Huang, Zhifeng Zhu, Fu-Xiang Liang, Ming-

Chun Hong, Jiefang Deng, Jeng-Hua Wei, Shyh-Shyuan Sheu, Chih-I Wu,

Gengchiau Liang, et al. Compact probabilistic poisson neuron based on

back-hopping oscillation in stt-mram for all-spin deep spiking neural net-

work. In 2020 IEEE Symposium on VLSI Technology, pages 1–2. IEEE,

2020.

63



[96] Van-Tinh Nguyen, Tieu-Khanh Luong, Renyuan Zhang, and Yasuhiko

Nakashima. A compact and accuracy-reconfigurable univariate rbf kernel

based on stochastic logic. In 2020 IEEE International Symposium on Cir-

cuits and Systems (ISCAS), pages 1–5. IEEE, 2020.

[97] Van-Tinh Nguyen, Tieu-Khanh Luong, Emanuel Popovici, Quang-Kien

Trinh, Renyuan Zhang, and Yasuhiko Nakashima. An accurate and com-

pact hyperbolic tangent and sigmoid computation based stochastic logic.

In 2021 IEEE International Midwest Symposium on Circuits and Systems

(MWSCAS), pages 386–390. IEEE, 2021.

[98] Van-Tinh Nguyen, Qung-Kien Tring, Renyuan Zhang, and Yasuhiko

Nakashima. Xnor-bsnn: In-memory computing model for deep binarized

spiking neural network. In International Conference on High Performance

Big Data and Intelligent Systems, (accepted for oral presentation). IEEE,

2021.

[99] Van-Tinh Nguyen, Quang-Kien Trinh, Renyuan Zhang, and Yasuhiko

Nakashima. Stt-bsnn: An in-memory deep binary spiking neural network

based on stt-mram. IEEE Access, 9:151373–151385, 2021.

[100] Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization

for training low-latency deep spiking neural networks from scratch. arXiv

preprint arXiv:2010.01729, 2020.

[101] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct

training for spiking neural networks: Faster, larger, better. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 33, pages 1311–

1318, 2019.

[102] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going

deeper with directly-trained larger spiking neural networks. arXiv preprint

arXiv:2011.05280, 2020.

[103] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier,

and Yonghong Tian. Deep residual learning in spiking neural networks.

arXiv preprint arXiv:2102.04159, 2021.

64



[104] Muath Abu Lebdeh, Heba Abunahla, Baker Mohammad, and Mahmoud Al-

Qutayri. An efficient heterogeneous memristive xnor for in-memory com-

puting. IEEE Transactions on Circuits and Systems I: Regular Papers,

64(9):2427–2437, 2017.

[105] Tifenn Hirtzlin, Bogdan Penkovsky, Marc Bocquet, Jacques-Olivier Klein,

Jean-Michel Portal, and Damien Querlioz. Stochastic computing for hard-

ware implementation of binarized neural networks. IEEE Access, 7:76394–

76403, 2019.

[106] Hong-Han Lien, Chung-Wei Hsu, and Tian-Sheuan Chang. Vsa: Reconfig-

urable vectorwise spiking neural network accelerator. In 2021 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE,

2021.

[107] Yixuan Wang, Yang Xu, Rui Yan, and Huajin Tang. Deep spiking neural

networks with binary weights for object recognition. IEEE Transactions on

Cognitive and Developmental Systems, 2020.

[108] Quang Kien Trinh, Sergio Ruocco, and Massimo Alioto. Voltage scaled stt-

mrams towards minimum-energy write access. IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, 6(3):305–318, 2016.

[109] TRINH QUANG KIEN. Stt-mrams circuit techniques for enhanced robust-

ness in low power embedded applications. 2017.

[110] Quang Kien Trinh, Sergio Ruocco, and Massimo Alioto. Novel boosted-

voltage sensing scheme for variation-resilient stt-mram read. IEEE Trans-

actions on Circuits and Systems I: Regular Papers, 63(10):1652–1660, 2016.

[111] Michiel Van Elzakker, Ed van Tuijl, Paul Geraedts, Daniel Schinkel,

Eric AM Klumperink, and Bram Nauta. A 10-bit charge-redistribution

adc consuming 1.9 uw at 1 ms/s. IEEE Journal of Solid-State Circuits,

45(5):1007–1015, 2010.

[112] Takayasu Sakurai and A Richard Newton. Alpha-power law mosfet model

and its applications to cmos inverter delay and other formulas. IEEE Jour-

nal of solid-state circuits, 25(2):584–594, 1990.

65



[113] E Chen, D Apalkov, Z Diao, A Driskill-Smith, D Druist, D Lottis, V Nikitin,

X Tang, S Watts, S Wang, et al. Advances and future prospects of spin-

transfer torque random access memory. IEEE Transactions on Magnetics,

46(6):1873–1878, 2010.

[114] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. 2009.

[115] Yan Chen, Jing Zhang, Yuebing Xu, Yingjie Zhang, Renyuan Zhang, and

Yasuhiko Nakashima. An efficient reram-based inference accelerator for con-

volutional neural networks via activation reuse. IEICE Electronics Express,

pages 16–20190396, 2019.

[116] Lei Jiang, Minje Kim, Wujie Wen, and Danghui Wang. Xnor-pop: A

processing-in-memory architecture for binary convolutional neural networks

in wide-io2 drams. In 2017 IEEE/ACM International Symposium on Low

Power Electronics and Design (ISLPED), pages 1–6, 2017.

[117] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. Pipelayer: A pipelined

reram-based accelerator for deep learning. In 2017 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages

541–552, 2017.

[118] Gopalakrishnan Srinivasan, Abhronil Sengupta, and Kaushik Roy. Mag-

netic tunnel junction enabled all-spin stochastic spiking neural network. In

Design, Automation Test in Europe Conference Exhibition (DATE), 2017,

pages 530–535, 2017.

[119] Abhronil Sengupta Srinivasan, Gopalakrishnan and Kaushik Roy. Magnetic

tunnel junction based long-term short-term stochastic synapse for a spiking

neural network with on-chip stdp learning. Scientific reports, pages 1–13,

2016.

[120] Minsuk Koo, Gopalakrishnan Srinivasan, Yong Shim, and Kaushik Roy.

sbsnn: Stochastic-bits enabled binary spiking neural network with on-chip

learning for energy efficient neuromorphic computing at the edge. IEEE

66



Transactions on Circuits and Systems I: Regular Papers, 67(8):2546–2555,

2020.

[121] Amogh Agrawal, Mustafa Ali, Minsuk Koo, Nitin Rathi, Akhilesh Jaiswal,

and Kaushik Roy. Impulse: A 65-nm digital compute-in-memory macro

with fused weights and membrane potential for spike-based sequential learn-

ing tasks. volume 4, pages 137–140, 2021.

[122] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy,

Jun Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo,

Yutaka Nakamura, et al. A million spiking-neuron integrated circuit with a

scalable communication network and interface. Science, 345(6197):668–673,

2014.

67



List of publications

Peer review journal papers

1. Van-Tinh Nguyen, Kien-Quang Trinh, Zhang Renyuan, Yasuhiko Nakashima;

“STT-BSNN: An In-Memory Deep Binary Spiking Neural Network Based

on STT-MRAM”; IEEE Access, Vol. 9, pp.151373-151385 , Nov. 2021.

Peer review conference papers

1. Van-Tinh Nguyen,Erlina Tati,Zhang Renyuan, Yasuhiko Nakashima; “A

Programmable Approximate Calculation Unit Employing Time-Encoded

Stochastic Computing Elements”; 2019 Seventh International Symposium

on Computing and Networking Workshops (CANDARW), pp.91–96, Nov.

2019.

2. Van-Tinh Nguyen, Zhang Renyuan, Yasuhiko Nakashima; “A Compact and

Accuracy-Reconfigurable Univariate RBF Kernel Based on Stochastic Logic”;

2020 IEEE International Symposium on Circuits and Systems (ISCAS),

pp.1–5 , Oct. 2020.

3. Van-Tinh Nguyen, Zhang Renyuan, Yasuhiko Nakashima; “An Accurate

and Compact Hyperbolic Tangent and Sigmoid Computation Based Stochas-

tic Logic”; 2021 IEEE International Midwest Symposium on Circuits and

Systems (MWSCAS), pp.386–390 , Aug. 2021.

4. Van-Tinh Nguyen,Kien-Quang Trinh, Zhang Renyuan, Yasuhiko Nakashima;

“XNOR-BSNN: In-Memory Computing Model for Deep Binarized Spiking

Neural Network”; 2021 International Conference on High Performance Big

Data and Intelligent Systems,accepted for oral presentation, Dec.2021.

5. Zhang Renyuan,Erlina Tati, Van-Tinh Nguyen, Yasuhiko Nakashima; “Hy-

brid Stochastic Computing Circuits in Continuous Statistics Domain”; 2020

IEEE 33rd International System-on-Chip Conference (SOCC), pp. 225-230,

Sept. 2020.

68


