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In Pursuit of Depression Biomarkers:
Exploring the Neural Energy Landscapes of

Melancholic Depression∗

Paul Rossener R. Regonia

Abstract

Neurodynamic biomarkers are crucial for accurate diagnosis and effective treat-

ment of mental illnesses. Depression biomarker research has been active now,

more than ever before. However, current neurodynamic biomarkers for MDD are

based on functional connectivity (FC), which cannot capture higher-order inter-

actions between multiple brain regions. Our goal is to find potential biomarkers

for major depressive disorder (MDD), a debilitating disorder that has a worldwide

impact.

This thesis introduces energy landscape analysis (ELA), a data-driven frame-

work for modeling multilevel brain network dynamics of resting-state fMRI de-

pression data using Pairwise Maximum Entropy Model (P-MEM). We explore

different frameworks for characterizing depression. One is a singular model frame-

work focused on building an unbiased baseline for classifying depressed individ-

uals. Another is a separate model for melancholic depression, a subtype of de-

pression known for greater severity. In our pursuit of MDD biomarkers, we find

distinctive neurodynamics of melancholic depression, enriching our understand-

ing of depression heterogeneity and ways to confront it.

Keywords:

depression, melancholia, energy landscape analysis, resting state fMRI, functional

brain network, neurodynamics
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1 Introduction

Depression is a universal human experience that has changed its meaning through-

out history [1–4]. The earliest reference to depression roots back to the fourth

century BC, when it was regarded by Hippocrates as melancholia — a mental

disorder caused by an excess of black (melan) bile (cholē) that disrupts the hu-

moral balance needed to maintain good health [1–5]. This humor-based concept

of melancholia was adapted in the first century AD by physician Galen of Perga-

mum, who explained how the black bile might affect different parts of the body

(such as the hypochondrium and the brain) and how this would lead to different

subtypes of melancholia [4, 6].

By the onset of the 20th century, the term melancholia has evolved to denote

a depressive state occurring in manic depression [1–4, 7]. Kraepelin, who has

classified psychosis into either manic depression (bipolar disorder) or dementia

praecox (schizophrenia), pioneered the systematic classification of mental disor-

ders. At the same time, Freud has taken a psychological approach to analyze

depression [1–4]. In Mourning and Melancholia, Freud compared depression and

grief as a response to loss. Grief was a natural reaction to losing a loved one. In

contrast, depression involved an idealized form of loss unknown to the person [8].

The myriads of theories on melancholia and depression called for standardiza-

tion and uniformity. Meyer proposed depression as the official term to be used

in the medical vocabulary, shunning the term melancholia as it has been afflicted

with different meanings [9]. This proposal influenced the creation of the Diagnos-

tic and Statistical Manual of Mental Disorders (DSM), which thoroughly details

our modern concept of depression as a mental disorder [3, 4].

DSM has set the standard for the clinical diagnosis of psychiatric disorders.

Its latest edition, DSM-V, lists at least six different types of depressive disorder,

the most common of which is major depressive disorder (MDD) [10]. Currently,
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Table 1.1: Major depressive disorder symptoms, DSM-V

(1) Depressed mood most of the day (e.g., feels sad, empty, hopeless)*

(2) Markedly diminished interest or pleasure in activities most of the day*

(3) Significant weight loss when not dieting, or weight gain, or decrease

or increase in appetite

(4) Insomnia or hypersomnia

(5) Psychomotor agitation or retardation

(6) Fatigue or loss of energy

(7) Feelings of worthlessness or excessive or inappropriate guilt

(8) Diminished ability to think or concentrate, or indecisiveness

(9) Recurrent thoughts of death (not just fear of dying), suicidal ideation

without a specific plan, a suicide attempt or a specific plan for

committing suicide

* must have either of these

a person is diagnosed with MDD if they experience at least five out of nine symp-

toms determined by DSM-V within two weeks (Table 1.1). Diagnosis is typically

made by interviewing the patient, in which the patient answers an itemized ques-

tionnaire, with each item corresponding to specific symptoms. Questionnaires

vary from assessing depression severity (Beck Depression Inventory, or BDI-II

[11]), to evaluating comorbidity of psychiatric disorders (Mini-International Neu-

ropsychiatric Interview, or MINI [12]).

1.1 Finding biomarkers for depression

The primary purpose of diagnosis is to provide proper treatment. Thus, it is

equally important to correctly detect the presence of depression and predict the

degree of severity to administer the right amount of treatment. In this regard,

symptoms-based diagnostic tools such as DSM-V may tend to overgeneralize de-

pression [13, 14]. DSM-V classifies disorders in symptoms expression, comorbid-

ity, and familial patterns [15]. When assessing depression severity, the patient’s

interview scores for each symptom are summed and evaluated using a severity

2



Table 1.2: Depression severity scale, BDI-II

0-13 Healthy / minimal depression

14-19 Mild depression

20-28 Moderate depression

29-63 Severe depression

scale such as BDI-II depression rating (Table 1.2) [11]. However, this approach

only works if the symptoms are equally good indicators of severity, which is not

the case for depression due to its heterogeneous nature [13, 14].

Depression heterogeneity is a major stumbling block to progress in depres-

sion research [14, 16–21]. This problem is partly due to the symptoms-based

approach to classifying depression, which evaluates patients having contrasting

symptoms with the same diagnosis. For example, DSM-V criteria for depression

unequivocally classify a person with insomnia and losing weight and a person with

hypersomnia but gaining weight as both having MDD. This scenario is a problem

since the treatment for each should differ, yet DSM-V may fail to capture such

information [18].

Depression biomarkers can help solve this heterogeneity problem by reveal-

ing the underlying mechanisms that give rise to the heterogeneous aspects of

depression [16, 21]. These biomarkers can clarify the neurobiological substrates

for depression [16], which can be used to define MDD subtypes [16, 19], and to

predict clinical outcomes of various treatments [17, 20].

The importance of depression biomarkers clearly cannot be overstated. How-

ever, the complete characterization of biomarkers for clinical application is a con-

scientious process that requires rigorous cross-testing for preclinical sensitivity,

specificity, reproducibility [22]. Thus, the scope of this study is limited to qual-

ifying exploration biomarkers for MDD, where we perform our analyses without

necessarily seeking pieces of evidence for clinical outcomes (Figure 1.1).

3



Figure 1.1: Stages of the biomarker development process [22]

The following section will discuss the existing analysis tools for depression

biomarker discovery. Afterward, we will identify the gaps in this research field

and propose our solution to bridging these gaps.

1.2 Existing approaches

Recent progress on depression biomarker research has shown promising results

[20]. These biomarkers were derived from various sources such as inflammatory

proteins [23], growth factors [24], metabolic factors [25], neurotransmitters [26],

and neuroimaging data [16, 17, 19]. The challenge is consistency in findings since

each source focuses on a unique facet of information when inspected.

Neuroimaging studies have provided shreds of evidence, both in structural

and functional capacity, for the biological bases of MDD [19, 21]. Several meta-

analyses have demonstrated consistent results across multiple independent neu-

roimaging studies [21], suggesting that data-driven neuroimaging models can be

developed robustly against heterogeneous depression data [19].
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Most neuroimaging studies utilize electroencephalography (EEG) or func-

tional magnetic resonance imaging (fMRI) devices. EEG has the benefit of high

temporal resolution that is useful for studying dynamic brain processes but has

limited spatial resolution required for understanding the neural sources of these

processes [27]. On the other hand, fMRI takes significantly longer time windows

than EEG, which might miss the rapid neural activities involved in cognitive and

perceptual processes. However, its highly localized spatial resolution can detect

activations of specific brain regions in orders of magnitude higher than EEG [27].

Nevertheless, neuronal activations caused by cognitive tasks or stimuli are re-

flected as changes in blood oxygen level-dependent (BOLD) signals, which can

then be detected by fMRI [28].

Much research towards analyzing neuroimaging biomarkers for MDD focused

on building functional connectivity (FC) models of brain regions [29–35]. Seed-

based functional connectivity analysis (which we will refer to as FCA) seeks tem-

poral correlations between pairs of simultaneously activated brain regions, one of

which is the seed [30, 32, 33]. Contrary to structural connectivity analysis (SCA),

which reports actual anatomical connectivity of brain networks, FCA finds inter-

actions between regions that may not be directly connected [30, 32, 33]. Despite

their technical differences, several studies have demonstrated a connection be-

tween functional and structural alterations in MDD [30].

With the growing body of knowledge derived from FCA studies, we obtained

a broader albeit muddled picture of MDD. First, these studies informed us about

relevant brain regions associated with depression. Alterations in FC of brain

regions such as default mode network (DMN) [30, 31, 34, 35], salience network

(SN) [30, 31, 34, 36], and executive control network (ECN) [29–31, 34] were

consistently reported.

Second, we also learned about MDD-related dynamic changes in the brain

during task trials or at rest. The results varied depending on the task (e.g., cog-

nitive, emotional, perceptive) and the regions of interest (ROIs) being analyzed

[30, 32]. However, these studies have consistently shown decreased brain activ-

ity of MDD patients during task-based experiments compared to resting-state
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scenarios [30], supporting the claim that MDD is a product of cognitive and emo-

tional dysfunctionality [30, 34]Therefore, analyzing resting-state FC—commonly

via resting-state fMRI (rsFMRI)—would eliminate the external stimuli factors

that may otherwise be of little consequence to depressive processes such as intro-

spection, rumination, and negative thinking.

Although there has been considerable development on FCA for discovering

depression biomarkers, still, there are spaces for us to fill. The ability of FCA to

reveal functional connections involved in specific cognitive processes is grounded

on the assumption that pairwise interactions between the brain regions are in-

dependent [37, 38]. This assumption limits the capacity of FC-based models

to capture global activity patterns involving multiple regions that are activated

simultaneously [37, 38]. An alternative to seed-based FCA is independent com-

ponent analysis (ICA) which captures large-scale network patterns but does not

reveal connectivity patterns between networks [38]. For this reason, we developed

a Pairwise Maximum Entropy Model (P-MEM) for MDD.

1.3 Our approach

P-MEM has been shown to accurately detect large-scale brain activities that are

often overlooked by FCA [37]. At the same time, P-MEM estimates both indi-

vidual activities and pairwise interactions of the ROIs being analyzed, allowing a

closer inspection of the local, regional interactions that may otherwise be hidden

from a global perspective [37, 39, 40]. Another advantage of P-MEM over FCA

is the avoidance of seed selection. FCA is highly dependent on the seed ROI

determined a priori, so changing the seed ROI would affect the results, which

makes the analysis prone to bias [33]. P-MEM evades this problem by using a

data-driven approach, something similar to ICA, where every possible pair of ROI

are analyzed without a priori assumptions [33]. We use P-MEM as the primary

model framework in this study for such reasons.

The second aspect of our modeling framework involves resting-state neu-
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roimaging data. There are several benefits of using resting-state instead of task-

induced data for modeling MDD. First, resting-state networks may be linked

to non-stimulus-driven brain activities such as introspection and self-referential

processing [30]. Second, although it may be counter-intuitive as the resting term

implies, resting-state networks have been able to represent MDD-related dynamic

brain patterns such as rumination [31], emotion dysregulation [32], and decreased

reward anticipation [36] in cortical and subcortical regions. This representa-

tion power of resting-state networks is practically essential since the collection

of resting-state data (such as rs-fMRI) is relatively easier to implement than

task-based experiments and is more applicable across different age, gender, and

culture groups. Moreover, P-MEM can approximate resting-state brain networks

with high accuracy [37].

For the third and core aspect of our approach towards depression biomarker

discovery, we introduce energy landscape analysis (ELA) — a computational

model that borrows concepts from statistical physics, thermodynamics, and in-

formation theory [41–45]. In ELA, the brain is characterized as a dynamic system

that switches between multiple stable states [46]. Each state is defined with en-

ergy; the higher the probability of a state to occur, the lower its energy will be.

Due to the principle of minimal energy, the brain will tend to visit states with

the lowest energy. Thus, these states are defined as stable states since they serve

as equilibrium goalposts for the brain to achieve. They are also called basins on

a similar tone, portraying the lowest points to which any object would reach in a

landscape.

To date, ELA has not yet been used to model MDD, nor any of its subtypes,

which is quite surprising since the visual connotation of energy landscape fits

well with specific illustrations of depressive states such as being stuck in a state

of negativity [2, 47, 48] or tottering on the edge of instability [2, 47, 49]. Our

priority in this study is to find neurodynamic features that would serve as accurate

biomarkers and explain the brain processes involved in depression. Thus, ELA is

an appropriate approach to building an interpretable model for MDD.

We discuss the topics of energy landscapes, resting-state networks, and the

7



pairwise interaction model in Chapter 2 - Materials and Methods. Then, we report

our initial findings in Chapter 3 - Singular Model for Depression Biomarker.

Here, we also discuss the challenges with our initial model and our decision to

explore a different but related problem. Chapter 4 - Separate Model for Major

Depression and Chapter 5 - Segregated Model for Melancholic Depression examine

these new frameworks and highlight the novel results. In Chapter 6 - Discussions

and Limitations we follow through with a discussion of the results, the connections

with depressive symptoms, and the limitations of our current model. Finally,

in Chapter 7 - Conclusion, we trace our steps to our original goal of finding

depression biomarkers and share our plans to achieve this further.
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2 Materials and Methods

The human brain is a multistable system where, even at rest, it transitions be-

tween multiple stable states [46]. Our goal then is to unravel the transitional

dynamics of the depressed brain—how it moves along these stable stables—to

develop biomarkers for MDD. This section lays out the materials and methods

we used to obtain this goal.

2.1 Study participants

Neuroimaging data were collected from healthy and depressed volunteers re-

cruited since 2012 in four medical institutions in Hiroshima, Japan [50]. Be-

fore administering any experimental procedure, written informed consent was

obtained from all participants. The experiments were carried out under relevant

guidelines and regulations, and all experimental protocols were approved by the

Ethics Committee of Hiroshima University. The mental condition of the volun-

teers was evaluated using Mini International Neuropsychiatric Interview (MINI)

according to the Diagnostic and Statistical Manual of Mental Disorders, 4th ed.

(DSM-IV) criteria [51]. InitialInitial screening resulted in 281 healthy partici-

pants with no history of mental or neurological disorder and 281 diagnosed with

major depressive disorder (MDD). Among the healthy participants, some were

reported as having potential mental disorder symptoms during the MINI inter-

view (see Table A.1). However, we confirmed that they did not have psychiatric

problems when further examined by psychiatrists.

Additional screening of participants was performed to emphasize the boundary

between groups in the data set. First, the participants were screened based on

their Beck Depression Inventory-II scores (BDI-II; healthy ≤ 13; depressed ≥ 20,

9



Table 2.1: Demographic data of healthy and depressed participants

Healthy Depressed P-value

No. of participants 142 120

Sex (female / male)1 71 / 71 60 / 60

Age (years)2 42.62 ± 14.33 42.88 ± 11.12

BDI-II2 5.34 ± 3.76 31.58 ± 7.57 (∗∗∗)

Anhedonia (SHAPS)2 23.27 ± 6.20 36.85 ± 6.17 (∗∗∗)

IQ (JART)2 110.92 ± 8.81 112.25 ± 9.39

Site participants (HUH/HRC/HKH/COI)1 44 / 32 / 20 / 46 58 / 13 / 20 / 29 (∗∗)

Time samples per participant 161.90 ± 45.51 155.73 ± 43.31

BDI-II, Beck Depression Inventory-II; SHAPS, Snaith-Hamilton Pleasure Scale; JART, Japanese Adult
Reading Test

Recruitment sites: Hiroshima University Hospital (HUH), Hiroshima Rehabilitation Center (HRC), Hiroshima
Kajikawa Hospital (HKH), Center of Innovation in Hiroshima University (COI)

1 Pairwise Chi-squared test; 2 Wilcoxon-Mann-Whitney test; (∗∗) p < 0.01; (∗∗∗) p < 0.005

see Table 1.2) [11]. Second, participants were removed if they had incomplete

data during the interview or excessive head movements during fMRI recording.

Third, healthy female participants were randomly sampled to match the number

of healthy males. The number of depressed male and female participants was

already equal and need not be sampled randomly.

In the end, a total of 142 healthy (71 F / 71 M) and 120 depressed (60 F

/ 60 M) participants were screened and selected for analysis. After testing for

statistical differences in age, sex, and other factors, significant differences were

found in depression severity (BDI-II) and anhedonia (SHAPS) scores between the

two groups. The distribution of participants across the four fMRI recording sites

was significantly different as well. Details on the demographic data of participants

are summarized in Table 2.1.

2.2 Resting-state fMRI data

The activation of neurons is driven by a process called the hemodynamic re-

sponse, which supplies oxygen and increases the blood flow in the neuronal re-

10



gion. This process results in a difference in oxyhemoglobin and deoxyhemoglobin

levels, which MRI can detect based on their magnetic susceptibilities. Thus, MRI

is also called blood-oxygen-level-dependent (BOLD) contrast imaging [33]. Func-

tional MRI utilizes the fluctuations in BOLD signals by mapping different—and

not necessarily adjacent—brain regions based on their activation during specific

tasks or reactions to particular stimuli. These fluctuations usually have a low fre-

quency (0.01–0.1Hz) and are different from neural firings with higher frequency

[33]. Nevertheless, fMRI has been widely used in neuropsychiatric studies due to

its ability to detect synchronous activities of multiple brain regions [33, 52].

Despite initially being associated with a task- or stimulus-based paradigm,

fMRI data can also be acquired without a task or stimulus. Known as resting-

state fMRI (rs-fMRI), this type of fMRI data has been shown to have a good

signal-to-noise ratio, can be administered to patients with physical disabilities,

and translates well to clinical applications [33, 53, 54]. In this study, the rs-fMRI

data of the participants were recorded using gradient echo-planar imaging (EPI)

sequences. The imaging device and parameters differ depending on the recording

site [50]. During recording, participants were instructed to focus on a cross mark

displayed on a monitor and avoid thinking of anything or falling asleep. The fMRI

recording lasted 5 to 10 minutes, depending on the recording site (Table 2.2).

Data preprocessing for the rs-fMRI data was performed using SPM8 (Well-

come Trust Centre for Neuroimaging, University College London, UK) on Matlab

(Mathworks inc., USA). The preprocessing procedure included band-pass filtering

(0.008–0.1 Hz), slice-timing correction, mean image realignment, normalization

and resampling through segmentation of structural image aligned with the mean

functional image, and smoothing with an isotropic 6mm full-width half-maximum

Gaussian kernel [50, 55]. The potential confounding effects such as temporal

fluctuations of white matter and cerebrospinal fluid, global signal, and six head

motion parameters were linearly regressed out from the fMRI time series to re-

move the physiological noise and motion artifacts [56, 57]. These components

were determined by the T1 images, which were simultaneously recorded with the

rs-fMRI data. Finally, head motion artifacts were scrubbed from the functional

mages based on the relative changes (i.e., translational displacements along X,

11



Table 2.2: Imaging protocols for different fMRI recording sites in Hiroshima

HUH HRC HKH COI

MRI scanner GE Signa
HDxt

GE Signa
HDxt

Siemens
Spectra

Siemens Verio

Magnetic field strength (T) 3.0 3.0 3.0 3.0
Channels per coil 8 8 12 12

Field of view (mm) 256 x 256 256 x 256 192 x 192 212 x 212
Matrix 64 x 64 64 x 64 64 x 64 64 x 64

Number of slices 32 32 38 40
Number of volumes 143 143 107 240

In-plane resolution (mm) 4.0 x 4.0 4.0 x 4.0 3.0 x 3.0 3.3125 x 3.3125
Slice thickness (mm) 4.0 4.0 3.0 3.2

Slice gap (mm) 0.0 0.0 0.0 0.8
TR (ms) 2.0 2.0 2.7 2.5
TE (ms) 27.0 27.0 31.0 30.0

Total scan time (min) 5 5 5 10
Flip angle (deg) 90 90 90 80

Slice acquisition order Ascending
(interleaved)

Ascending
(interleaved)

Ascending
(interleaved)

Ascending

Recruitment sites: Hiroshima University Hospital (HUH), Hiroshima Rehabilitation Center (HRC), Hiroshima
Kajikawa Hospital (HKH), Center of Innovation in Hiroshima University (COI).

Y, and Z axes, and rotational displacements of pitch, yaw, and roll) between

the image frames through time, with a frame-wise displacement (FD) threshold

= 0.5mm [58].

2.3 Functional brain networks

When selecting the ROIs for analysis, we considered functional brain networks

associated with depression. Time-series data were extracted from 74 ROIs ac-

cording to the 90-ROI Shirer Brain Atlas (Figure 2.1) [59], which includes brain

networks such as default mode, executive control, and salience networks that

have been linked to functional brain network analyses on depressive symptoms

[29–32, 34–36]. Sixteen (16) ROIs were excluded due to either unreliable images

during recording (e.g., in cerebellum area) [60], or an insufficient number of ROIs

of corresponding functional networks (e.g., primary and higher visual networks).

When extracting the time series data, the global mean and confounding effects

of both cerebrospinal fluid (CSF) and white matter were linearly regressed out
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Figure 2.1: Shirer atlas functional brain networks [59]

as part of the preprocessing step.

A total of 12 distinct functional brain networks were analyzed in this study.

Most of the highlighted results were from three networks: basal ganglia network

(BGN), dorsal default mode network (DDMN), and left executive control network

(LECN). As for the rest of the results, these are included in the appendices. The

list of anatomical ROIs for all of the analyzed networks is summarized in Table

A.2.

2.4 Pairwise maximum entropy model

To compare the brain dynamics of healthy and depressed participants, we im-

plemented the Energy Landscape Analysis (ELA) method, which utilizes the

P-MEM (Figure 2.2) [42]. In this study, ELA was conducted separately for each

of the 12 distinct functional networks (see Table A.2).

In ELA, we began by combining the rs-fMRI data of all participants in the

designated group (healthy and depressed) to create a group-level dynamics model.
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Figure 2.2: Methodology for energy landscape analysis

(a) Selection of ROI based on functional brain networks associated with depression. (b1) Extraction of

fMRI BOLD signals from each ROI. (b2) All signals from participants in the designated group/s were

combined. (c) Binarization of each signal using the mean BOLD value for each ROI. (d) Estimation

of the state energy based on the emprical state frequency/probability. (e) Energy landscape analysis,

including analyses of state energy levels, basin state landscape, and state transition dynamics. Note

that as the energy of a state increases, its probability of occurrence decreases.

In the combined group, the concatenated time series data were extracted from the

corresponding ROIs of the chosen functional network (Figure 2.2-a,b). ThenThen,

the time series data were converted to binarized signals, using the average BOLD

signal value through the entire timecourse data as the threshold (Figure 2.2-c).

At any time point, binarized signals were either 1 (active, higher than or equal

to the threshold) or 0 (inactive∗, lower than the threshold). The threshold value

∗The term inactive may be a misnomer since BOLD signals below the threshold do not

necessarily imply inactivity. However, we are keeping this term to be consistent with previous

studies.
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was computed for each ROI across the combined data of the group participants.

Despite the potential loss of information from converting a continuous time series

into a binarized form, it has been shown that binarization does not eliminate

important information on the functional interactions of brain regions [37, 45].

This binarization process is also performed to reduce the risk of overfitting the

model [61].

Binarizing the signals allowed us to encode the time signals into brain state

sequences, wherein a brain state was defined by the activity pattern, i.e., active

and inactive ROIs, at a given time (Figure 2.2-c,d). An active ROI corresponds

to the hemodynamic response correlated to the transient response of local field

potentials (LFPs) at the said region [62, 63]. Given brain network with n ROIs,

there are 2n possible states. For each brain state σ, we computed the empirical

probability p(σ),

p(σ) =
nσ
T

(2.1)

where nσ is the number of occurrences in which the state σ appeared in the time

series, and T is the total length of the time series (Figure 2.2-d).

From the brain state probabilities, we defined the state energy using Boltz-

mann distribution [64]

P (σ|h, J) =
exp[−E(σ|h, J)]∑
σ′ [−E(σ′|h, J)]

(2.2)

where the sum in denominator is taken over all 2n possible states (each state is

denoted by σ′). In P-MEM, the state energy E(σ) in Equation 2.2 was restricted

in the quadratic form, and expressed as:

E(σ|h, J) = −
n∑
i=1

hiσi −
1

2

n∑
i=1

n∑
j=1
j 6=i

Ji,jσiσj (2.3)

with h = [hi]
n
i=1 and J = [Ji,j]

n
i,j=1 corresponding to the individual ROI activity

and the pairwise ROI interaction, respectively. As implied by these equations,

more active ROIs correspond to higher h and J , which leads to lower (more

negative) energy (Equation 2.3), and higher occurrence probability (Equation

2.2) [42].
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We then built the P-MEM from the model parameters h & J by maximizing

their likelihood, as defined by:

(h, J) = arg max
h,J

L(h, J) (2.4)

L(h, J) =
T∏
t=1

P (σ(t)|h, J) (2.5)

for the entire time series of length T .

Gradient ascent algorithm was performed to maximize the likelihood,

hnewi − holdi =
ε

T

∂

∂hi
logL(h, J) = ε(〈σi〉e − 〈σi〉m) (2.6)

Jnewi,j − Joldi,j =
ε

T

∂

∂Ji,j
logL(h, J) = ε(〈σiσj〉e − 〈σiσj〉m) (2.7)

where ε is the step size constant. The mean 〈σi〉e and pairwise correlation 〈σiσj〉e
of the empirical data are computed as:

〈σi〉e =
1

T

T∑
σi(t) (2.8)

〈σiσj〉e =
1

T

T∑
σi(t)σj(t) (2.9)

while the mean 〈σi〉m and pairwise correlation 〈σiσj〉m of the model are computed

as:

〈σi〉m =
2n∑
k=1

σiP (σk) (2.10)

〈σiσj〉m =
2n∑
k=1

σiσjP (σk) (2.11)

for all k = 2n states. Note that in Equations 2.8-2.9, σi(t) denotes the ith ROI

of the state at time t, while in Equations 2.10-2.11, σk denotes the state k [42,

43]. By using 〈σi〉e and 〈σiσj〉e as constraints, maximizing the entropy derives

the state probability as a Boltzmann distribution (Equation 2.2) [46].
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2.5 Energy landscape analysis

This study hypothesized that the depressive brain network operates differently

than a healthy network and that ELA can capture such dynamics. With a singular

pairwise model for healthy and depressed groups, we analyzed group-level energy

landscape features, as well as individual-level transition dynamics (Figure 2.2-e).

On the group level, we identified the basin states for each network. Basins are

the core unit of ELA. By defining basins as states with local minimum energy

[65], we can observe how the brain system transitions among these relatively

stable states [45]. These dynamics may be in terms of network stability (basin

occurrence frequency), network efficiency (traveling/ease-of-transition score [43]),

or network concentration (lingering score). The ELA features analyzed in this

study are summarized in Table 2.3.

At the beginning of ELA, basin state dendrograms were constructed by finding

the basin states and their clusters. Basin states (or basins) have the lowest energy

relative to their neighboring states. States are neighbors if they differ in only

one active/inactive region. If neighboring states have lower energy barriers than

other states, they become part of the closest basin cluster [43]. Basins are the

core of energy landscapes since these states are presumed to be the most stable.

Djikstra’s algorithm was performed to search for the basins and construct the

leaves (basins) and branches (energy barriers) of the dendrogram. Figure 2.2-e:

Energy Barriers highlights the energy barrier between states a and b (red: a→ b;

blue: b→ a). Here, a→ b has a higher barrier, and thus has a lower probability

of occurring [43].

Energy landscapes were then constructed to depict the basins’ energy level and

cluster size. In Figure 2.2-e: Energy Landscape Analysis, a 3D schematic diagram

depicts the basins in arbitrary state space. Here, basin clusters are plotted as

concentric circles, where the basin is at the center, and neighboring states are on

circles with a radius equivalent to their distance to the basin (i.e., a state that

differs in one region with the basin has a distance of 1, state the differs in two

regions has a distance of 2, and so on). Thus each circle represented the states
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Table 2.3: Energy landscape features

Level Feature Description

Group

Basin States with the lowest
energy relative to
neighbors

Fig. 3.3, Fig. 5.2,
Fig. 3.2, Fig. 4.2,
Fig. 5.3

Major basin Two basins with the
lowest energy

Fig. 3.3, Fig. 5.2,
Table B.2, Table C.2,
Table D.2

Minor basin Non-major basin Fig. 3.3, Fig. 5.2,
Table B.2, Table C.2,
Table D.2

Basin size Number of neighboring
states clustered to a basin

Fig. 3.2, Fig. 4.2,
Fig. 5.3, Table B.2,
Table C.2, Table D.2

Basin energy Energy level of a basin Eq. 2.3, Fig. 3.3,
Fig. 5.2, Table B.2,
Table C.2, Table D.2

Individual

Basin occurrence
frequency

Number of times the
basin occurred in an
individual participant’s
fMRI time series data

Fig. 3.4, Fig. 4.3,
Fig. 5.4, Table B.1,
Table C.1, Table D.1

Traveling score Rate of successful
transition from one major
basin to another

Eq. 2.16, Fig. 3.5,
Fig. 4.4, Fig. 5.5,
Table B.3, Table C.3,
Table D.3

Lingering score Rate of staying within
each of the major basins,
or their peripheral
(clustered) states

Eq. 2.17, Fig. 3.5,
Fig. 4.4, Fig. 5.5,
Table B.3, Table C.3,
Table D.3

that were equidistant to the basin. Then for each circle (including the center), its

depth was equivalent to the state’s energy with the lowest energy (Equation 2.3)

in that circle.

Since energy landscapes modeled only the group-level brain dynamics, we also

analyzed the brain dynamics of individual participants by computing the occur-

rence frequency of basins f(A) on individual fMRI time series. The occurrence

frequencies of all basins (major and minor) are then summed for each group and

each network.

For each network, we selected two major basins, A1 and A2, as the basins
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having the lowest energy, with P1 as clustered states for A1, P2 for A2. Then we

computed the following participant-level transition rates,

TR(A→ A′) =
n(A1 → A2) + n(A2 → A1)

T
(2.12)

TR(P → P ′) =
n(P1 → P2) + n(P2 → P1)

T
(2.13)

where n(U → V ) is the number of times the participant’s time series entered

state U and arrived at state V ; TR(A → A′) is the major transition rate for

major basins; TR(P → P ′) is the peripheral transition rate for clusters of major

basins. Moreover, we computed the staying rates of the states,

SR(A→ A′) =
n(A1 → A1) + n(A2 → A2)

T
(2.14)

SR(P → P ′) =
n(P1 → P1) + n(P2 → P2)

T
(2.15)

where this time we counted the number of times the participant’s brain activity

stayed on the major basins (SR(A → A′)), or the periphery (SR(P → P ′)).

The transition rates were used to define the Traveling Score, which measured the

amount of times the brain successfully traveled from one major basin to another

(Equation 2.16, Figure 3.5-a). Similarly, the staying rates were used to define

the Lingering Score, which measured the amount of times the brain lingered on

a basin or along its periphery (Equation 2.17, Figure 3.5-a),

Traveling Score =
TR(A→ A′)

TR(P → P ′)
(2.16)

Lingering Score = SR(A→ A′) + SR(P → P ′) (2.17)

Note that the traveling score (Equation 2.16) is also known as efficiency score,

based on the ease of transitions index [43].

2.6 Statistical tests

Wilcoxon-Mann-Whitney was performed to find significant group differences (healthy

vs. group) in participants’ age, IQ, BDI-II, and SHAPS (Snaith-Hamilton Plea-

sure Scale) scores. Similarly, Chi-squared test was performed for group differences
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in sex. Group differences are presumed to be statistically significant at p < 0.05

for both types of statistical analyses. One-way ANOVA with Bonferroni cor-

rection was applied to test for statistical significance of results when comparing

individual- and group-level differences in energy landscape characteristics such as

major basin frequency and transition rates. These results were also verified by

Kruskal-Wallis test to cope with non-normally distributed data.
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3 Singular Model for Depression

Biomarker

The characterization of neural dynamics can uncover good candidates for depres-

sion biomarkers. Several studies have proven that MDD results from dysfunc-

tional brain processes [2, 16, 17, 19–21, 30–32, 34]. These processes include (but

are not limited to): mood regulation [19–21, 30, 32], emotional processing [16,

17, 30–32, 34], reward anticipation [16, 17, 32], pain recognition [17, 30], self-

referential thoughts [30–32, 34], and attention control [30–32, 34]. Moreover, a

recurring theme among depression studies paints MDD as a stuck state [2, 47,

48]. This evidence highly suggests that impairment in neural circuitry prevents

the depressed brain from functioning normally. Moreover, we analyzed the neural

dynamics of depressed patients using the ELA framework for these reasons.

3.1 Conceptual framework

When designing the model framework, one crucial consideration has been build-

ing a singular model for healthy and depressed groups. Ideally, a singular model

would approximate the “general” individual, an individual who—regardless of

age, sex, and even IQ—may or may not have MDD. This model can then com-

pare the actual healthy and depressed individuals, measure their differences, and

classify one from another (Figure 3.1).

In contrast, a separate model framework would build different models out of

the two groups. These models can be compared directly, without the additional

process of applying the model to individual data. Having a separate model for

depression, specifically MDD, would be beneficial in the long run if we consider

using the same framework to develop models for other mental disorders. Such a
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Figure 3.1: Singular model: Energy landscape framework
Data from healthy and depressed participants are combined to create a singular model. This model is used to
distinguish between healthy and depressed individuals, which may be used as potential biomarker for depression.

collection of mental disorder models may help demarcate the boundaries between

each mental disorder, thus improving diagnosis and specialized treatment.

Nevertheless, our decision to build a singular model is influenced by our pri-

mary goal of discovering biomarkers. Biomarkers are objective measurements of

biological, pathogenic, or pharmacological processes that indicate the presence

of a disease or disorder [66]. Substitution to a clinical endpoint is a mark of a

successful biomarker [66]. Thus, it is essential to note that the role of a biomarker

is to measure the effects of treatment primarily and only to help understand the

disorder secondarily. With a singular model, we can create a baseline for the

“general” individual, which acts as a measuring tool for evaluating the neural ac-

tivity features of MDD. These features can then be correlated with certain types

and degrees of treatment. On the other hand, a separate model framework re-

places this baseline with the healthy group model, which may be riddled with bias

depending on the selection criteria used for determining a “healthy” individual.

We conducted two levels of analysis in this study (Table 2.3). On the group
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Figure 3.2: Separate model: Energy landscapes

3D visualization of the energy landscapes from combined data of healthy and depressed groups on

BGN, DDMN, and LECN. Major basin states on each network are indicated.

level, features such as basins (major and minor), basin size, and basin energy were

shared by individuals in the model. On the individual level, specific neurodynamic

features of individuals such as basin occurrence frequency, dynamic traveling, and

lingering scores were measured.

3.2 Energy landscape

From the combined data of healthy and depressed individuals, we constructed the

energy landscapes for each functional brain network, as previewed in Figure 3.2.

These energy landscapes confirmed that the brain at rest is a multi-stable state

system [46]. The basin characteristics of the energy landscapes on all networks

are summarized in Table B.2 and visualized in Figure B.1. Some networks such

as DDMN have prominent major basins (i.e., major basins with high energy

barrier/difference compared to minor basins). In contrast, other networks such

as PSN seem to have less prominent major basins. Moreover, the number of

basins may be attributed to the number of ROIs in the network, with AN having

the least number of basins (2 basins, 3 ROIs) and PSN having the most basins

(11 basins, 10 ROIs). This pattern is not consistent, though, as PN (6 basins, 4

ROIs) has more basins than LECN (4 basins, 5 ROIs) despite having fewer ROIs.
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Figure 3.3: Singular model: Major and minor basins
Major basin states (purple) and minor basin states (green) from combined healthy and depressed
groups on BGN, DDMN, and LECN. For each state, colored boxes correspond to activated regions,
and white boxes to inactive regions.

3.3 Basins and activated regions

One of the novelties of our model is its capability to show network-wide interac-

tions of all regions, whereas FCA-based models are limited to pairwise interactions

only. In Figure 3.3, we can observe which regions had synchronous activations

based on the model’s stable states (major and minor basins). We define syn-

chronous activity patterns between ROIs as being activated together in a major

basin state [43]. The synchronous activity of different brain regions may be asso-

ciated with coherent oscillations, suggesting high functional connectivity in them

[67]. On the other hand, anti-synchronicity, in the context of our analysis, could

reveal either functional disconnectivity (i.e., regions do not activate together) or

negative functional connectivity (i.e., regions activate contrarily) [68].

The first observable pattern from these results was the synchronized activities
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of left and right regions within the same network. In BGN, all stable states

(major and minor basins) had synchronous activation/inactivation of the left and

right thalamus regions; and similarly in the left and right inferior frontal gyrus

(LIFG, RIFG) over the major basins. In DDMN, the left and right hippocampus

were synchronized across all basins, while the left and right angular gyrus (LAG,

RAG) were synchronized over the major basins. These patterns may suggest a

strong coupling in super regions (e.g., thalamus and hippocampus) that have been

separated into left and right subregions by the ROI selection method performed

beforehand (see Section 2.3).

Another recurring pattern across networks was the anti-synchronicity of major

basins. Major basins were selected based on the energy level of each state (see

Section 2.5) and, in principle, describe the most probable states that the brain

will enter at rest. In Figure 3.3, under BGN, we can see two major basins,

one with regions LIFG and RIFG activated and another with the left and right

thalamus, caudate, putamen, and pons regions activated. These two states have

opposing activations, which suggests that the brain at rest alternates in switching

these functionally-correlated regions on and off. This pattern of anti-synchronous

major basins was also present in DDMN, LECN (Figure 3.3), and the rest of the

networks analyzed in this study (Table B.2).

3.4 Transition dynamics

We applied the model to individual participant data to analyze the brain dynam-

ics patterns between healthy and depressed groups. First, we investigated the

occurrence frequency of major basins for each group across the 12 networks (Fig-

ure 3.4, Table B.1). In ASN, the healthy group had a slightly higher visiting occur-

rence of the major basins than the depressed group (f̄Healthy = 0.2819, f̄Depressed =

0.2798). The opposite was true for other regions such as AN (f̄Healthy = 0.6352,

f̄Depressed = 0.6409) and SMN (f̄Healthy = 0.43819, f̄Depressed = 0.4448). However,

upon testing for group differences using one-way ANOVA, none of the results

were statistically significant.
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Figure 3.4: Singular model: Basin occurrence frequency
Occurrence frequency of basins for healthy and depressed groups on various brain networks. No signif-
icant differences were found between groups using one-way ANOVA (see Table B.1).

Next, we investigated individual transition dynamics based on two dynamics

scores. The traveling score captures the brain’s attraction to oscillate between the

two major basins. It measures the ease of transition in neural dynamics necessary

for executive processes, which correlates to performance scores on neuropsycho-

logical tests for verbal and non-verbal executive functions [43]. In both healthy

and depressed groups, there were higher traveling scores (Traveling Score > 0.5)

on AN, BGN, and PN; as compared to low-scoring networks such as DDMN, LN,

LECN, PSN, VDMN and VSPN (Figure 3.5, Table B.3).

On the other hand, higher lingering scores (Lingering Score > 0.5) were

observed in DDMN, LECN, and SMN, whereas BGN, PSN and VSPN scored

low. While traveling score attempted to measure the dynamic activity of the

brain, the lingering score was formulated to measure the concentrated neural

activity, which may shed light on repeating though patterns such as rumination.

Unfortunately, similar to the results on major basin frequency, there were no

significant differences between the healthy and depressed groups on individuals’

traveling and lingering scores.

These underwhelming results led us to rethink our model framework. In the

next section, we discuss the changes we made and their implications in detail.

26



Figure 3.5: Singular model: Transition dynamics
(a) Schematic diagram illustrating the transition dynamics for traveling score (basin-to-basin; Equation
2.16) and lingering score (within-basin or within-peripheral; Equation 2.17). (b) Traveling and lingering
scores for healthy and depressed groups on BGN, DDMN, and LECN.
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4 Separate Model for

Major Depression

In our initial efforts to discover biomarkers for depression, we developed an en-

ergy landscape model to analyze the brain dynamics of individuals diagnosed

with MDD. However, the results have been inconclusive. One possible culprit

is heterogeneity in the data [14, 16–21]. As we discussed in Section 1.1, depres-

sion biomarkers are potential solutions to the confounding effects of heterogeneity

partly caused by the symptoms-based classification of MDD. Since our partici-

pants were diagnosed using the system mentioned above, the heterogeneous as-

pects of the data may have been absorbed by the model as well. Counter to

this point, some of the individual-level analyses results seem to suggest that the

depressed group is “less heterogeneous” (or more homogeneous) than the healthy

group since there was lower variance among the depressed individuals (see Fig-

ures 3.4 and 3.5).

Our model framework itself may be another possible cause for failing to re-

veal characterizing neurodynamic features of MDD. In the past, P-MEM and

ELA have been successfully used to differentiate network-scale dynamical changes

across different age groups [43] and individuals with autism spectrum disorder

(ASD) [61]. In both studies, separate ELA models were built for each group

(young vs. old [44]; typically developing vs. ASD [61]). These contrast our initial

singular model framework.

4.1 Separate framework

From what we have learned in the previous chapter, discovering biomarkers for

MDD using our initial model framework was more challenging than anticipated.
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Figure 4.1: Separate model: Conceptual framework
Two separate models were created from healthy and depressed groups. With these models, group-level and
individual/participant-level comparisons can distinguish between the groups.

In response, we designed a new framework that is more grounded on existing

literature [42, 43, 45, 46, 61]. With our new framework (Figure 4.1), we fitted

separate pairwise MEMs on the healthy and depressed groups. In turn, this

framework allowed us to compare the groups on the individual and group levels.

4.2 Energy landscapes

Two energy landscapes were constructed from the separate model framework. In

some networks, there was a stark difference in these landscapes. For example,

in DDMN, the singular model found six basins, while the separate model found

five basins for the healthy and seven basins for the depressed group, as shown in

Figure 4.2. However, the major basins (S232, S279) remained the same for both

models and groups. In other networks, the energy landscapes were similar across

models and groups. This pattern was evident in BGN, where the basins were con-
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Figure 4.2: Separate model: Energy landscapes

Comparison of energy landscapes for singular and separate models for healthy and depressed groups

on DDMN. (Table C.2).

sistent (major: S6, S25; minor: S3, S5, S26, S28). However, the energy and size of

these basins differed (e.g., singular: E(S6) = −1.96, size(S6) = 25.00%, healthy:

E(S6) = −1.92, size(S6) = 25.00%, depressed: E(S6) = −2.01, size(S6) =

28.12%). For a full comparison, see Tables B.2 and C.2.

4.3 Basin frequency

We then tested for statistical group differences in the major basin frequencies of

individual participants in the healthy and depressed groups. With the separate

model framework, we were able to find significant differences across all networks

using one-way ANOVA and Kruskal-Wallis test (see Table C.1). We can observe

such differences in Figure 4.3, where the healthy group operated on a different

frequency than the depressed group in each network. Compared to the single

model results in Figure 3.4, constructing separate models can have more discrim-
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Figure 4.3: Separate model: Major basin frequency

Occurrence frequency of basins for healthy and depressed groups on various brain networks.

(∗∗∗) p < 0.005; between-group comparison of basin frequencies using one-way ANOVA and Kruskal-

Wallis test (except for PSN, which had no significant difference in Kruskal-Wallis test).

inative power over healthy and depressed groups. See Table C.1 for the complete

results.

4.4 Transition dynamics

More significant differences were found in the separate model framework when

we analyzed the transition dynamics of both groups. In terms of lingering scores,

there were group differences on networks such as DDMN and LECN (as shown in

Figure 4.4), LN, RECN, VDMN, and VSPN. As for traveling scores, only RECN

also showed a significant difference. There were other significant results found

in traveling rates for basin clusters (TR(P ) : DDMN, LN, LECN, PSN, RECN,

VDMN, VSPN), staying rates for major basin (SR(A) : ASN, PSN, SMN), and

staying rates for basin clusters (SR(P ) : ASN, DDMN, LN, LECN, PN, RECN,

SMN, VDMN, VSPN). Among the networks, AN and BGN had no significant

results in transition dynamics metrics (Table C.3). Nevertheless, such differences

were not present in the single model, as shown in Figure 3.5.

We achieved significant results that answered our question, “does the depres-
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Figure 4.4: Separate model: Transition dynamics

(a) Schematic diagram illustrating the transition dynamics for traveling score (basin-to-basin; Equation

2.16) and lingering score (within-basin or within-peripheral; Equation 2.17). (b) Traveling and lingering

scores for healthy and depressed groups on BGN, DDMN, and LECN.

(∗∗∗) p < 0.005; traveling/lingering scores group comparison using one-way ANOVA.

sive brain network have distinct brain dynamics?” However, this led us to another

question, “if major depression is heterogeneous in nature, would its homogeneous

subgroups have distinct energy landscapes as well?”. In the next section, we dis-

cuss our investigative efforts towards analyzing the energy landscapes of a par-

ticular subtype of major depressive disorder known as melancholic depression.
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5 Segregated Model for

Melancholic Depression

Depression and melancholia are synonymous terms in ordinary speech but have

different technical meanings in psychiatry [69]. Chapter 1 gives an overview of

how the term depression evolved and detached from melancholia in the clinical

sense. While depression is associated with “deepened or prolonged sadness in ev-

eryday life,” melancholia is predominantly marked by “loss of pleasure or interest”

(or anhedonia), along with many other depressive symptoms [69, 70]. In DSM-V,

melancholia is regarded as a feature for depression and other mental disorders

[10]. Despite the pressing evidence for melancholic depression to be considered

a distinct subtype of depression, it has unfortunately been overshadowed by the

focus of most research on major depression [70–72].

Nevertheless, there has been a significant thrust on classifying melancholic

depression, as this subtype of depression has been deemed to be more severe

than its non-melancholic counterpart [73–75]. Researchers have focused on dis-

tinguishing the two because of the overlapping symptoms between depression and

melancholia. This distinction is essential for both diagnosis and treatment since

melancholic patients (i.e., MDD with melancholic features) may have different

responses to treatment [70]. For example, they respond better to tricyclic antide-

pressants (TCAs) than to selective serotonin reuptake inhibitors (SSRIs) [76]. On

the contrary, they do not respond well with psychotherapy and placebo compared

to non-melancholic patients [77]. Thus clearly, a correct diagnosis of melancholic

depression is the next step towards better treatment.
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Figure 5.1: Segregated model: Conceptual framework
Three separate models were created from each group: healthy, melancholic, and non-melancholic. With these
models, group-level and individual/participant-level comparisons can distinguish melancholic depression from
the other groups.

5.1 Segregated framework

We adapted our separate model framework in the previous section to explore

the energy landscapes of the melancholic depression subtype. Our new frame-

work comprised segregated models for three groups: healthy, non-melancholic,

and melancholic depression. As depicted in Figure 5.1, this framework allowed

the group and individual levels to be analyzed. We hypothesized that, due to

depression heterogeneity, the energy landscapes of the melancholic group would

be different not only to the healthy group but also to the non-melancholic group.

The latter distinction would solidify our presumption that the original framework

failed because of heterogeneity in the depression data.
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Table 5.1: Updated demographic data for melancholic and non-melancholic subgroups

Depressed

Healthy Non-Melancholic Melancholic P-value

No. of participants 142 31 89
Sex (female / male)1 71 / 71 16 / 15 44 / 45

Age (years)2 42.62 ± 14.33 41.48 ± 9.46 43.37 ± 11.65
BDI-II2 5.34 ± 3.76 29.13 ± 6.08 32.40 ± 7.88 (∗)(∗∗∗)

Anhedonia (SHAPS)2 23.27 ± 6.20 34.21 ± 5.30 37.72 ± 6.22 (∗)(∗∗∗)
IQ (JART)2 110.92 ± 8.813 114.09 ± 9.57 111.61 ± 9.30

Site participants

(HUH/HRC/HKH/COI)1
44 / 32 / 20 / 46 10 / 6 / 7 / 8 48 / 7 / 13 / 21 (∗∗)

Time samples per participant 161.90 ± 45.51 156.68 ± 50.34 155.39 ± 40.89

BDI-II, Beck Depression Inventory-II; SHAPS, Snaith-Hamilton Pleasure Scale; JART, Japanese Adult Reading Test
Recruitment sites: Hiroshima University Hospital (HUH), Hiroshima Rehabilitation Center (HRC), Hiroshima
Kajikawa Hospital (HKH), Center of Innovation in Hiroshima University (COI)

1 Multiple group comparison using pairwise Chi-squared tests
2 Multiple group comparison using one-way ANOVA with Bonferroni correction

(∗) p < 0.05 between non-melancholic and melancholic groups
(∗∗) p < 0.01 between healthy and melancholic groups
(∗∗∗) p < 0.005 between healthy and non-melancholic groups, and between healthy and melancholic groups

With the new framework, depressed participants were categorized into the

melancholic group if they exhibited melancholic features based on the MINI in-

terview (DSM-IV criteria) [51]. Otherwise, they are categorized into the non-

melancholic group. As a result, there were 89 melancholic (44 F / 45 M) and 31

non-melancholic (16 F / 15 M) participants. Table 5.1 reflects the updated data

set. The distribution of participants across sex, age, and IQ remained insignif-

icant (p > 0.05, healthy(H) vs. non − melancholic(N) vs. melancholic(M),

multiple comparison tests). Similarly, there were significant differences in BDI-II

and SHAPS scores (p < 0.005, H vs. N , H vs. M), as well as distribution of par-

ticipants across fMRI recording sites (p < 0.01, H vs. M). It is also important to

note that the melancholic group scored significantly higher in depression severity

(BDI-II) and anhedonia (SHAPS) than the non-melancholic group (p < 0.05, N

vs. M).

5.2 Basins and energy levels

The basin dendrograms of each group across networks revealed differences in

major basins and energy levels, as shown in Figure 5.2. In both BGN and LECN,
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Figure 5.2: Segregated model: Major and minor basins

Major basin states (purple) and minor basin states (green) for healthy, non-melancholic, and melan-

cholic groups on BGN, DDMN, and LECN. For each state, colored boxes correspond to active regions,

and white boxes to inactive regions. Energies of the deepest major basins for each group are also

indicated (see Table D.2 for summary of all major basin energies).

the non-melancholic and melancholic groups had deeper (i.e., lower energy) major

basins than the healthy group. Remarkably, a different pattern can be observed in

the DDMN, where the major basins of the non-melancholic group were shallower

(i.e., higher energy) than those of the healthy and melancholic groups.

Furthermore, some major basins were unique to specific groups. For example,

the non-melancholic group had a unique major basin in DDMN, where the left and

right angular gyri (LAG, RAG), posterior cingulate cortex (PCC), and precuneus

regions were activated. Similarly, on LECN, the non-melancholic group also had

a unique major basin, where the left inferior frontal gyrus (LIFG), orbitofrontal

gyrus (OFG), left inferior temporal gyrus (LITG), middle temporal gyrus (MTG),

and left thalamus regions were activated. Complete results for basins and their

energy levels are reported in Table D.2.
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Figure 5.3: Segregated model: Energy landscapes

3D visualization of energy landscapes for healthy, non-melancholic, and nelancholic groups on DDMN.

States are clustered to the their nearest basin state (Section 2.5). States S279 and S232 are the common

major basins among the groups, while S340 and S419 are the common minor basins (Table D.2).

5.3 Energy landscapes

Energy landscapes were then constructed based on the basin information. As

shown in Figure 5.3, each group had unique energy landscapes for DDMN. The

melancholic group had the most number of basins (n = 6), followed by the

healthy group (n = 5), then the non-melancholic group (n = 4). Among the

energy landscapes for the 12 networks, DDMN had the only instance where the

melancholic group had more basins than the other groups. Having more basins

may suggest a busier network. On the other hand, the non-melancholic group

had relatively larger major basins (sizeA1,A2 = 98.6%), compared to the healthy

(sizeA1,A2 = 92.0%) and melancholic groups (sizeA1,A2 = 89.4%). This result is

natural for having fewer basins. Although a lower basin count may imply higher

network stability, the hill cluster (B2) of the non-melancholic group would suggest

otherwise (see Table D.2 and Figure D.1 for summary of basin sizes).
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Figure 5.4: Segregated model: Major basin frequency

Occurrence frequency of basins for healthy, non-melancholic, and melancholic groups on various brain

networks. (∗∗∗) p < 0.005; between-group, pairwise comparison of basin frequencies using one-way

ANOVA with Bonferroni correction

5.4 Basin frequency

Unlike the results in our previous framework, significant group differences were

found on the individual basin frequencies when analyzed for all networks. The

most notable results are summarized in Figure 5.4. There was a natural decreas-

ing trend from healthy to melancholic groups in some networks (e.g., p < 0.005;

H vs. M, N vs. M ; Auditory Network). An opposite, increasing trend appeared

in other networks (e.g., p < 0.005; H vs. N, H vs. M, N vs. M ; Anterior Salience

Network, DDMN ). Finally, for the rest, the non-melancholic group had either the

lowest (e.g., p < 0.005; H vs. N, H vs. M, N vs. M ; BGN, LECN ) or highest

frequency (e.g., p < 0.005; H vs. N, H vs. M, N vs. M ; Posterior Salience

Network). Similar results for the other functional networks are listed in Table

D.1.
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Figure 5.5: Segregated model: Transition dynamics

(a) Schematic diagram illustrating the transition dynamics for traveling score (basin-to-basin; Equation

2.16) and lingering score (within-basin or within-peripheral; Equation 2.17). (b) Traveling and lingering

scores for healthy, non-melancholic, and melancholic groups on BGN, DDMN, and LECN.

(∗) p < 0.05; (∗∗) p < 0.01; (∗∗∗) p < 0.005; between-group, pairwise comparison of traveling/lingering

scores using one-way ANOVA with Bonferroni correction.

5.5 Transition dynamics

Depression heterogeneity was also evident when comparing the transition dynam-

ics in some networks. As shown in Figure 5.5-b, there were significant differences

between non-melancholic and melancholic groups in traveling scores (p < 0.05;

N vs. M ; DDMN ), and lingering scores (p < 0.01; N vs. M ; DDMN, LECN ) of

individual participants. There were also significant group differences in the lin-
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gering scores between healthy and non-melancholic(p < 0.01; H vs. N ; DDMN )

and healthy and melancholic groups (p < 0.01; H vs. M ; DDMN, LECN ). Fur-

thermore, there is significant increase in lingering scores of melancholic group in

LECN (Lingering = 0.61± 0.06) as compared to non-melancholic (Lingering =

0.55± 0.06; p < 0.005) and healthy groups (Lingering = 0.53± 0.06; p < 0.005).

Results for other functional networks are listed in Table D.3.

5.6 Minor changes between model frameworks

The materials and methods discussed in Section 2 mainly applied to our singular

and separate models for the healthy and the depressed groups, as discussed further

in Chapter 3 - Singular Model for Depression Biomarker and Chapter 4 - Separate

Model for Major Depression. However, as we explored the new model discussed

in this section, the following minor changes were made:

• In terms of data, we split the depressed group into melancholic and non-

melancholic subgroups based on the melancholic criteria in the MINI inter-

view [51].

• Instead of a singular P-MEM, we generated a P-MEM for the healthy,

non-melancholic, and melancholic groups, similar to the separate model

framework (Figure 4.1).

• Consequently, group-level features such as basin energy and basin size were

compared across groups.

• While individual-level features such as basin occurrence and transition dy-

namics scores were computed on the parameters of the P-MEM correspond-

ing to the participants’ group.

• One-One-way Analysis of Variance (ANOVA) was performed to find sig-

nificant group differences (healthy vs. non-melancholic vs. melancholic) in

participants’ age, IQ, BDI-II, and SHAPS (Snaith-Hamilton Pleasure Scale)

scores. Bonferroni correction was applied to compensate for multiple group

comparisons.
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• Finally, we also investigated the correlation between depressive symptoms

(BDI-II, SHAPS) and basin characteristics (basin occurrence frequency).

Multivariate linear regression models were fitted on the data, with p < 0.05

deemed a statistically significant relationship between the variables.
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6 Discussions and Limitations

DSM-V classifies melancholic depression under “major depressive disorder with

melancholic features”. While we used the term subtype throughout this dis-

sertation, according to DSM-V, melancholia is technically called a specifier for

depression [10]. Whereas a subtype is unique and exclusive (there are currently

no subtypes for MDD), a specifier is more inclusive and may coexist with other

specifiers. However, this dissertation’s consistent use of the term subtype when

referring to melancholic depression was intentional. Treating melancholic de-

pression this way homogenizes a subgroup of MDD—as opposed to melancholia

merely being one of the “add-on” flavors, so to speak—, and it respects several

accounts of melancholic depression as distinct to non-melancholic, atypical, and

other subtypes of MDD [25, 73, 74, 78].

6.1 Depression heterogeneity

Depression heterogeneity has plagued research advancement on the diagnosis and

treatment of the disorder [14, 79, 80]. Considerable efforts have been made to-

wards drawing boundaries within the currently accepted definition of major de-

pressive disorder [79, 80], suggesting that investigations on depressive symptoms

and their interactions may lead to discoveries [14]. In this study, one of our goals

was to show heterogeneity in the depressed participants. Our analysis results

have confirmed the heterogeneous aspects of the depression data, as observed

from significant differences between melancholic and non-melancholic groups in

BDI-II and anhedonia scores (Table 2.1); basin frequencies across 12 networks

(Table D.1); and transition dynamics scores in DDMN, LECN, PSN, RECN,

VDMN, and VSPN (Table D.3).
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6.2 Melancholia and depression severity

Melancholic depression is associated with greater symptom severity than depres-

sion with non-melancholic features [73–75]. This association was evident in our

individual-level analysis of BDI-II scores, where the melancholic group scored

significantly higher than the other groups (Table 2.1).

Readers may wonder if energy landscape features can be a proxy for evaluating

some symptoms associated with melancholic features. We performed regression

analysis on basin frequencies and depression severity score (BDI-II) to check

this possibility. However, despite having clear boundaries among the groups, no

significant correlation was found in any network (e.g., DDMN in Figure 6.1-a).

The order of increasing severity from healthy, to non-melancholic, to melan-

cholic depression, may seem intuitive. However, some studies argue against the

severity-based categorization of melancholic depression [81, 82] and do not iden-

tify melancholia as a “more severe” form of depression [82]. This pattern is

evident in Figure 6.1-a, where the BDI-II scores for non-melancholic and melan-

cholic groups coincide. We can further argue that the basin frequency of our

energy landscape model was more effective than the depressive scores (BDI-II

and SHAPS) in discriminating melancholic depression.

6.3 Melancholia and anhedonia

Following depression severity, we then tested if the correlation with basin fre-

quency would also hold for anhedonia. Anhedonia is one of the overlapping

symptoms of melancholia and depression [70, 73]. This effect was apparent in the

participants’ demographic data, where the melancholic group had a significantly

higher SHAPS score (Table 2.1).

Similar to BDI-II scores, there was no significant correlation between SHAPS

scores and basin frequencies (Figure 6.1-b). However, a closer inspection of results
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Figure 6.1: Correlation of basin frequencies to depressive symptoms

Correlation between average basin frequency and depressive symptom (a. depression severity; b. an-

hedonia) on DDMN.

Dotted lines correspond to multivariate linear regression model y = α1z1+α2z2+βx; y: basin frequency,

x: symptom score; z1: dummy variable for non-melancholic; z2: dummy variable for melancholic; α, β:

regression coefficients. No significant correlations between basin frequency and depression symptom

(regression t-test pBDI = 0.7910, pAnhedonia = 0.3339).

Boxes delineate the range of data points for each group (yellow: healthy; green: non-melancholic; pur-

ple: melancholic).

in the DDMN revealed an apparent connection between these features. Stud-

ies report that the decrease in functional connectivity of dorsomedial prefrontal

cortex (dmPFC ) with posterior cingulate cortex/precuneus (PCC/PCUN ) is

related to depression severity and anhedonia [35, 83]. Looking at the major

basins found by our model in DDMN (Figure 5.2), the major basin pairs for all

groups had anti-synchronized activations of mPFC and PCUN (S279 : {mPFC =

1, PCC/PCUN = 0}, H, N, M; S232 : {mPFC = 0, PCC/PCUN = 1}, H, M;

S168 : {mPFC = 1, PCC/PCUN = 0}, N). This decoupling between mPFC

and PCC/PCUN may be attributed to impaired reward anticipation, a key an-

hedonia feature [83]. Although current research has not established the direct
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connection between dynamic functional connectivity and the energy landscape

model [43], our results may provide insight into the potential connection between

these models.

6.4 Melancholia and rumination

Lastly, we investigated the possible presence of ruminative states in the energy

landscapes. Rumination tends to dwell on the same—usually negative—thoughts

for prolonged periods. Since studies have shown a significant correlation of rumi-

nation to both melancholia [84] and depression [85], we explored the energy land-

scape characteristics to provide more evidence on this correlation. Ruminative

thinking is marked by increased connectivity in DMN [86] and decreased activity

in the left dorsolateral prefrontal cortex (left dlPFC ; equivalent to LECN ) [87].

In terms of our energy landscape model, we defined dynamic activity as transi-

tioning from one basin to another. This activity was in contrast to static activity,

which stays at the same basin. We derived two measures for brain activity: trav-

eling score (Equation 2.16) for dynamic activity, and lingering score (Equation

2.17) for static activity. Thus, a high traveling score and a low lingering score

would imply a more active network.

The significant increase of lingering scores of the melancholic group in LECN

(Figure 5.5) may imply that the melancholic group had a greater tendency to

be ”stuck” in a basin or within its cluster. This pattern may also be related

to the decreased activity in the left dlPFC found in rumination [87]. On the

contrary, in the dorsal part of DMN (DDMN), the lingering scores of melan-

cholic group (Lingering = 0.55 ± 0.07) were significantly lower than healthy

(Lingering = 0.58 ± 0.06; p < 0.01) and non-melancholic groups (Lingering =

0.63 ± 0.05; p < 0.005). Although this may support previous studies showing

increased connectivity in DMN during ruminative thinking, analyzing the lin-

gering scores in the ventral part of DMN (VDMN ) led to contradicting results

[86]. Nevertheless, the traveling scores in DDMN were significantly higher in

melancholic group (Traveling = 0.10 ± 0.09) than in non-melancholic group
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(Traveling = 0.05 ± 0.06; p < 0.05). For LECN and VDMN, there were no

significant differences in traveling scores between groups.

6.5 Limitations

Unlike typical functional connectivity (FC) models that are based on the corre-

lation between two regions (i.e., using Pearson’s correlation coefficient), the ELA

model does not assume that pairwise interactions of regions are independent of

each other [37]. This freedom from assumption allowed our model to more accu-

rately capture the global activity patterns that may be overlooked by FC-based

models [37]. Some FC-based studies tried to work around this limitation by us-

ing a different FC metric (such as precision matrix) or by introducing a sliding

window in the analysis (also known as dynamic FCA) [88].

Hidden Markov Model (HMM) is another standard brain dynamics model for

resting-state fMRI. Compared to ELA, which utilizes pairwise MEM, HMM is

more complex and maybe more expressive [89]. Thus, our ELA results may serve

as a baseline for future analysis on brain dynamics of melancholic depression using

models such as HMM.

Furthermore, our present study has other limitations. ELA assumes a mem-

oryless process, such that predicting the next state only depends on the current

state and not the past states [43]. This memorylessness saves us memory space

and processing time [90], but this only works on systems at equilibrium, which

typically requires a considerable amount of data [44]. We decided to use resting-

state fMRI data to address this problem since these are expected as equilibrium

states [91]. Then, we combined the fMRI time signals of all group participants to

produce “long” temporal data. Since there are substantially more healthy partic-

ipants, the model for the healthy group may have converged closer to equilibrium

than the two depressed subgroups.

Although concatenation of individual fMRI data should only have minimal

effect on our analysis due to the “memorylessness” aspect of ELA [45], it should
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be noted that combining participants’ fMRI data could still potentially intro-

duce bias due to BOLD signal differences across participants. We addressed this

by using individual participants’ mean fMRI BOLD signals as the threshold for

binarizing the signals. However, it is recommended to investigate further the

implications of data concatenation and mitigate the intensity differences in indi-

vidual fMRI.

We must also reconsider the effects of each data preprocessing technique on

the analysis outcome. For example, global signal regression may significantly

impact resting-state connectivity results, especially when comparing groups with

different signal characteristics [43, 92]. The frequency band for band-pass filter-

ing may exclude important information such as the amplitude of low-frequency

fluctuations (ALFF) during rumination [93]. The filtering of middle-ground indi-

viduals (i.e., healthy participants with relatively high BDI scores and depressed

participants with low BDI scores) certainly affects analysis results related to de-

pression severity. Even the binarization of signals should be reexamined in the

context of depressive symptoms, despite being shown to preserve signal LFP and

topological brain data [45].

Our selection of ROIs relies on the parcellation method (Shirer Atlas [59])

and data availability. As such, we removed some ROIs due to unreliable or

insufficient data. The inclusion of these ROIs might affect the results. Choosing

a different parcellation method might also produce different results. It is also

possible to study a more extensive scale of networks that are not constrained to

the functional mapping of the ROIs used in this study [44, 46, 61, 65]. Thus,

testing the robustness and consistency of our model on different sets of ROIs or

with different parcellation methods would be a reasonable step moving forward.

It is often pointed out that the site difference could be a potential confounding

factor for the observed BOLD signals [94]. When we applied two-way ANOVA

considering two factors of participant groups and site ID to basin frequencies,

all main effects, and their interaction were statistically significant (Table D.1).

While this still supports that basin frequencies across different networks could

differentiate participants suffering from melancholic and non-melancholic MDD
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at a population level, its reliability as a biomarker for personalized medicine

should never be overestimated. Thus, the potential site bias is a limitation in the

present study, and we should address the issue in our future work.

Even though we hypothesized a priori that the energy landscape of melan-

cholic depression will be different from non-melancholic due to depression hetero-

geneity, our analyses and interpretations of the results were made post-hoc. For

statistical analyses, we applied Bonferroni correction to compensate for multiple

comparison tests that would increase the risk of Type 1 error [95].

Our discussion on the relation between melancholia and rumination is more

suggestive than conclusive since we lack rumination quantifiers to analyze with

our models. In the future, it would be crucial to record the ruminative tendencies

of participants using standardized measures such as the Ruminative Response

Scale (RRS) [96].

It is important to remember that melancholia, in itself, is also heterogeneous

[97]. Multiple symptoms characterize it, and thus its severity and symptoms

may vary from one person to another. Current biomarker models focus on the

distinguishing features of melancholic depression on a group level [98–100]. Al-

though ELA allows us to study the group-wide brain dynamics of melancholic

depression and the individual nuances in brain states and functional region inter-

actions, focusing more on these individual differences would allow us to confront

heterogeneity directly.

6.6 Recommendations for future work

Finally, the results discussed in this study opened several theoretical and prac-

tical avenues that would require more time and effort to inspect further. We

want to close this discussion with our recommended research directions for future

extensions of this study.
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6.6.1 Energy landscape analysis and statistical tools

In this study, we have taken a by-the-book approach concerning our methodology

for energy landscape analysis. In order to achieve more novel results, these are the

questions that might be of interest: What would happen if we do not distinguish

between major and minor basins? How about if we analyze one basin at a time?

What other metrics can we use to measure brain dynamics from the model? How

can we test for noise and other effects in the energy landscape features? Moreover,

there are more modern tools for inferring statistical differences than the tools used

in this study. Applying these tools would help validate our results and uncover

new ones.

6.6.2 Psychophysiological interpretation of the model

Interpretability is one of our main reasons for choosing the energy landscape

model. However, ELA has not been applied to depression studies by other

researchers during this writing. Thus, our interpretations of the possible psy-

chophysiological mechanisms behind the analysis results must be cross-checked.

These interpretations include the basins: What are the neurological basis for

basins? How are anti-synchronous basins related to cognitive functions? ; trav-

eling/efficiency scores: Does a healthy brain always have an efficient network?

Is there a traveling score threshold for depression; lingering scores: How do lin-

gering scores reflect network activity in the context of rumination? Would other

concentrated cognitive tasks such as focused thinking reflect high lingering scores

as well?. Aside from probing these questions, it may also be helpful to conduct

replicability studies (if possible, on the same individuals) to check if the model is

robust to resting-state data.
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6.6.3 Correlation of model and clinical features

Lastly, the end goal of this study is to improve the clinical diagnosis of depression.

We need to find the relationship between the model features and clinical features

for depression to achieve this goal. On the modeling aspect, we recommend ap-

plying more powerful tools such as multivariate analysis and machine learning

methods in building the correlation/classifier model. On the clinical side, adding

more features such as ruminative scores (RRS) can account for the other inherent

variances in the heterogeneous major depressive disorder. In our current dataset,

some patients had comorbid symptoms such as suicidality, alcohol abuse, and

anxiety disorder (see Table A.1). Thus, it is also essential to look into the his-

tory of depressed individuals to develop a more comprehensive energy landscape

model for depression, which covers various comorbidities, treatment responses,

and recurrences.
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7 Conclusion

There were two goals in this study. Initially, we wanted to discover biomarkers

for MDD based on neurodynamic features from the energy landscape model.

Later on, we wanted to characterize the distinguishing neurodynamic features of

melancholic depression. Both of these goals were connected to the core problem

of depression heterogeneity.

7.1 Research contributions

With our separate model framework for melancholic depression, we found dis-

tinguishing energy landscape features of melancholic depression, which included

major basin energy barriers, basin frequency, and state transition dynamics. Sta-

tistical results were consistent across our analyses on 12 functional brain net-

works, indicating our model’s robustness. Moreover, these results agree with

existing studies on melancholic features, such as depression severity [35, 74, 75],

anhedonia [35, 83], and rumination [84, 87]. These results, when taken together,

provide strong evidence that melancholic depression is a distinct disorder with

recognizable neurodynamic patterns that explain mental processes.

7.2 Finding biomarkers for depression

Finally, we have not given up on our pursuit of biomarkers for depression. Our

initial attempts gave us first-hand experience of the challenges researchers face

when studying MDD. Moving forward, we recommend that researchers shift their

focus to depression subtypes, as our current notion of major depressive disorder
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may be counterproductive to giving the proper treatment to patients. After

all, the entirety of this study will be for naught if depressed people will not be

provided with the opportunity to live normal lives.
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A Data Set and ROI

Table A.1: Demographic data and MINI symptoms of subjects

Depressed

Healthy Non-Melancholic Melancholic P-value

No. of participants 142 31 89

Sex (female / male)1 71 / 71 16 / 15 44 / 45

Age (years)2 42.62 ± 14.33 41.48 ± 9.46 43.37 ± 11.65

BDI-II2 5.34 ± 3.76 29.13 ± 6.08 32.40 ± 7.88 (∗)(∗∗∗)
Anhedonia (SHAPS)2 23.27 ± 6.20 34.21 ± 5.30 37.72 ± 6.22 (∗)(∗∗∗)

IQ (JART)2 110.92 ± 8.813 114.09 ± 9.57 111.61 ± 9.30

Site participants

(HUH/HRC/HKH/COI)1
44 / 32 / 20 / 46 10 / 6 / 7 / 8 48 / 7 / 13 / 21 (∗∗)

Time samples per participant 161.90 ± 45.51 156.68 ± 50.34 155.39 ± 40.89

MINI symptoms

Major depressive disorder 0 89 31

Dysthymic disorder 0 0 0

Suicidality 9 47 21

Mania 3 9 1

Panic disorder 0 3 2

Agoraphobia 2 10 2

Social phobia 0 17 5

Obsessive-compulsive disorder 0 3 0

Post-traumatic stress disorder 0 0 0

Alcohol abuse 0 8 3

Drug dependence / abuse 0 0 0

Psychotic disorder 0 2 0

Anorexia nervosa 0 3 0

Bulimia 0 1 0

Generalized anxiety disorder 0 4 0

Antisocial personality disorder 0 0 0

BDI-II, Beck Depression Inventory-II; SHAPS, Snaith-Hamilton Pleasure Scale; JART, Japanese Adult Reading Test
Recruitment sites: Hiroshima University Hospital (HUH), Hiroshima Rehabilitation Center (HRC), Hiroshima
Kajikawa Hospital (HKH), Center of Innovation in Hiroshima University (COI)

1 Multiple group comparison using pairwise Chi-squared tests
2 Multiple group comparison using one-way ANOVA with Bonferroni correction

(∗) p < 0.05 between non-melancholic and melancholic groups
(∗∗) p < 0.01 between healthy and melancholic groups
(∗∗∗) p < 0.005 between healthy and non-melancholic groups, and between healthy and melancholic groups
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The functional networks analyzed in this study are summarized in Table A.2. Here, the anatomical

regions are listed for each ROI. Note that the ordering is important for defining the brain states, such

that given ROIs [ R1 R2 R3 ], the state S1 corresponds to activated regions [ 0 0 1 ]. In other words, the

state index is equivalent to the binary representation of the activated regions in the state (index10 =

activation2).

Table A.2: Complete list of functional brain networks and ROIs

Network Anatomical Locations of Functional ROIs

Auditory
Network
(AN)

(1) Left Superior Temporal Gyrus, Heschl’s Gyrus

(2) Right Superior Temporal Gyrus

(3) Right Thalamus

Anterior
Salience
Network
(ASN)

(1) Left Middle Frontal Gyrus

(2) Left Insula

(3) Anterior Cingulate Cortex, Medial Prefrontal Cortex, Supplementary Motor Area

(4) Right Middle Frontal Gyrus

(5) Right Insula

Basal
Ganglia
Network
(BGN)

(1) Left Thalamus, Caudate

(2) Right Thalamus, Putamen

(3) Left Inferior Frontal Gyrus

(4) Right Inferior Frontal Gyrus

(5) Pons

Dorsal
Default
Mode
Network
(DDMN)

(1) Medial Prefrontal Cortex, Anterior Cingulate Cortex, Orbitofrontal Cortex

(2) Left Angular Gyrus

(3) Right Superior Frontal Gyrus

(4) Posterior Cingulate Cortex, Precuneus

(5) Midcingulate Cortex

(6) Right Angular Gyrus

(7) Left and Right Thalamus

(8) Left Hippocampus

(9) Right Hippocampus

Language
Network
(LN)

(1) Inferior Frontal Gyrus

(2) Left Middle Temporal Gyrus

(3) Left Middle Temporal Gyrus, Angular Gyrus

(4) Left Middle Temporal Gyrus, Superior Temporal Gyrus, Supramarginal Gyrus, Angular Gyrus

(5) Right Inferior Frontal Gyrus

(6) Right Supramarginal Gyrus, Superior Temporal Gyrus, Middle Temporal Gyrus
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Table A.2: Complete list of functional brain networks and ROIs (continued)
Network Anatomical Locations of Functional ROIs

Left

Executive

Control

Network

(LECN /

L-DLPFC)

(1) Left Middle Frontal Gyrus, Superior Frontal Gyrus

(2) Left Inferior Frontal Gyrus, Orbitofrontal Gyrus

(3) Left Superior Parietal Gyrus, Inferior Parietal Gyrus, Precuneus, Angular Gyrus

(4) Left Inferior Temporal Gyrus, Middle Temporal Gyrus

(5) Left Thalamus

Precuneus

Network

(PN)

(1) Midcingulate Cortex, Posterior Cingulate Cortex

(2) Precuneus

(3) Left Angular Gyrus

(4) Right Angular Gyrus

Posterior

Salience

Network

(PSN)

(1) Left Middle Frontal Gyrus

(2) Left Supramarginal Gyrus, Inferior Parietal Gyrus

(3) Left Precuneus

(4) Right Midcingulate Cortex

(5) Right Superior Parietal Gyrus, Precuneus

(6) Right Supramarginal Gyrus, Inferior Parietal Gyrus

(7) Left Thalamus

(8) Left Posterior Insula, Putamen

(9) Right Thalamus

(10) Right Posterior Insula

Right

Executive

Control

Network

(RECN /

R-DLPFC)

(1) Right Middle Frontal Gyrus, Right Superior Frontal Gyrus

(2) Right Middle Frontal Gyrus

(3) Right Inferior Parietal Gyrus, Supramarginal Gyrus, Angular Gyrus

(4) Right Superior Frontal Gyrus

(5) Right Caudate

Sensorimotor

Network

(SMN)

(1) Left Precentral Gyrus, Postcentral Gyrus

(2) Right Precentral Gyrus, Postcentral Gyrus

(3) Right Supplementary Motor Area

(4) Left Thalamus

(5) Right Thalamus

Ventral

Default

Mode

Network

(VDMN)

(1) Left Retrosplenial Cortex, Posterior Cingulate Cortex

(2) Left Middle Frontal Gyrus

(3) Left Parahippocampal Gyrus

(4) Left Middle Occipital Gyrus

(5) Right Retrosplenial Cortex, Posterior Cingulate Cortex

(6) Precuneus

(7) Right Superior Frontal Gyrus, Middle Frontal Gyrus

(8) Right Parahippocampal Gyrus

(9) Right Angular Gyrus, Middle Occipital Gyrus

Visuospatial

Network

(VSPN)

(1) Left Middle Frontal Gyrus, Superior Frontal Gyrus, Precentral Gyrus

(2) Left Inferior Parietal Sulcus

(3) Left Frontal Operculum, Inferior Frontal Gyrus

(4) Left Inferior Temporal Gyrus

(5) Right Middle Frontal Gyrus

(6) Right Inferior Parietal Lobule

(7) Right Frontal Operculum, Inferior Frontal Gyrus

(8) Right Middle Temporal Gyrus
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B Singular Model Results

Complete results of energy landscape analyses for the singular model framework (Section 3) are pre-

sented here. Analyses were conducted on the combined data of healthy and depressed groups, and on

each functional network (Table A.2).

Table B.1: Singular model: Basin occurrence frequency

Network Healthy Depressed

AN 0.6352 ± 0.03 0.6409 ± 0.03

ASN 0.2819 ± 0.01 0.2798 ± 0.01

BGN 0.5925 ± 0.02 0.5958 ± 0.02

DDMN 0.0476 ± 0.00 0.0476 ± 0.01

LN 0.2279 ± 0.01 0.2257 ± 0.01

LECN 0.2373 ± 0.02 0.2395 ± 0.02

Network Healthy Depressed

PN 0.6878 ± 0.01 0.6893 ± 0.01

PSN 0.0752 ± 0.01 0.0757 ± 0.01

RECN 0.4114 ± 0.01 0.4109 ± 0.01

SMN 0.4381 ± 0.04 0.4448 ± 0.03

VDMN 0.0994 ± 0.01 0.0982 ± 0.01

VSPN 0.1339 ± 0.01 0.1349 ± 0.01
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Table B.2: Singular model: Basin characteristics

Network B E Size

AN
1 -3.01 50.00 %

6 -2.98 50.00 %

ASN
9 -1.84 43.75 %

22 -1.82 43.75 %

3 -0.87 6.25 %

28 -0.85 6.25 %

BGN
6 -1.96 25.00 %

25 -1.96 25.00 %

26 -1.52 15.62 %

5 -1.49 15.62 %

28 -1.45 9.38 %

3 -1.43 9.38 %

DDMN
279 -3.31 45.31 %

232 -3.27 44.92 %

340 -1.69 4.30 %

171 -1.64 4.30 %

419 -1.26 0.59 %

92 -1.23 0.59 %

LN
34 -1.51 37.50 %

29 -1.51 37.50 %

56 -1.17 10.94 %

7 -1.16 10.94 %

19 -0.92 1.56 %

44 -0.90 1.56 %

LECN
28 -1.06 46.88 %

3 -1.05 46.88 %

5 -0.67 3.12 %

26 -0.65 3.12 %

PN
12 -1.46 37.50 %

3 -1.43 37.50 %

10 -0.85 6.25 %

5 -0.79 6.25 %

9 -0.61 6.25 %

6 -0.59 6.25 %

Network B E Size

PSN
789 -2.89 14.45 %

234 -2.88 14.36 %

527 -2.83 15.62 %

496 -2.77 15.92 %

79 -2.65 7.42 %

794 -2.57 9.96 %

229 -2.56 9.67 %

944 -2.56 7.42 %

287 -2.21 2.15 %

736 -2.18 2.34 %

117 -1.78 0.68 %

RECN
28 -1.08 40.62 %

3 -1.07 34.38 %

10 -0.96 6.25 %

9 -0.95 6.25 %

22 -0.93 6.25 %

21 -0.93 6.25 %

SMN
3 -2.06 50.00 %

28 -2.02 50.00 %

VDMN
165 -2.81 21.48 %

346 -2.80 21.88 %

206 -2.79 23.05 %

305 -2.75 20.90 %

99 -1.81 5.66 %

404 -1.78 7.03 %

VSPN
85 -2.80 22.27 %

170 -2.76 21.09 %

51 -2.16 21.09 %

204 -2.16 19.92 %

102 -1.77 6.25 %

153 -1.75 6.25 %

240 -1.19 1.56 %

15 -1.16 1.56 %

Basin states, their energy and cluster size. See Section A for details on state indexing.

Major basins are listed on first two rows (highlighted in purple) for each group and network. Unique

basins are shaded in light purple. For each group, basins are sorted from lowest energy, and then from

largest size.
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Table B.3: Singular model: Major basins transition dynamics

Network Score Healthy Depressed

AN
Traveling 0.91 ± 0.37 0.89 ± 0.31

Lingering 0.48 ± 0.06 0.48 ± 0.06

TR(A) 0.15 ± 0.04 0.15 ± 0.03

TR(P) 0.18 ± 0.04 0.18 ± 0.04

SR(A) 0.31 ± 0.09 0.31 ± 0.08

SR(P) 0.17 ± 0.07 0.17 ± 0.07

ASN
Traveling 0.38 ± 0.23 0.37 ± 0.18

Lingering 0.40 ± 0.07 0.40 ± 0.07

TR(A) 0.08 ± 0.04 0.08 ± 0.03

TR(P) 0.21 ± 0.04 0.21 ± 0.04

SR(A) 0.09 ± 0.06 0.09 ± 0.06

SR(P) 0.32 ± 0.10 0.31 ± 0.08

BGN
Traveling 0.78 ± 0.42 0.76 ± 0.33

Lingering 0.19 ± 0.08 0.18 ± 0.07

TR(A) 0.08 ± 0.03 0.07 ± 0.03

TR(P) 0.11 ± 0.03 0.10 ± 0.03

SR(A) 0.11 ± 0.07 0.10 ± 0.05

SR(P) 0.08 ± 0.03 0.08 ± 0.03

DDMN
Traveling 0.09 ± 0.08 0.08 ± 0.08

Lingering 0.56 ± 0.06 0.57 ± 0.06

TR(A) 0.02 ± 0.02 0.02 ± 0.02

TR(P) 0.23 ± 0.04 0.23 ± 0.04

SR(A) 0.02 ± 0.02 0.01 ± 0.02

SR(P) 0.55 ± 0.07 0.55 ± 0.06

LN
Traveling 0.17 ± 0.11 0.17 ± 0.09

Lingering 0.38 ± 0.07 0.38 ± 0.06

TR(A) 0.03 ± 0.02 0.03 ± 0.02

TR(P) 0.20 ± 0.04 0.20 ± 0.04

SR(A) 0.03 ± 0.02 0.03 ± 0.02

SR(P) 0.35 ± 0.07 0.35 ± 0.06

LECN
Traveling 0.17 ± 0.09 0.17 ± 0.09

Lingering 0.53 ± 0.06 0.53 ± 0.06

TR(A) 0.04 ± 0.02 0.04 ± 0.02

TR(P) 0.24 ± 0.03 0.24 ± 0.03

SR(A) 0.04 ± 0.03 0.04 ± 0.03

SR(P) 0.49 ± 0.07 0.49 ± 0.07

Network Score Healthy Depressed

PN
Traveling 0.83 ± 0.31 0.82 ± 0.27

Lingering 0.29 ± 0.07 0.29 ± 0.06

TR(A) 0.10 ± 0.03 0.10 ± 0.03

TR(P) 0.12 ± 0.03 0.12 ± 0.03

SR(A) 0.18 ± 0.07 0.18 ± 0.07

SR(P) 0.11 ± 0.04 0.11 ± 0.03

PSN
Traveling 0.05 ± 0.08 0.05 ± 0.07

Lingering 0.10 ± 0.05 0.10 ± 0.04

TR(A) 0.00 ± 0.01 0.00 ± 0.01

TR(P) 0.09 ± 0.02 0.09 ± 0.02

SR(A) 0.00 ± 0.01 0.00 ± 0.01

SR(P) 0.10 ± 0.05 0.10 ± 0.04

RECN
Traveling 0.28 ± 0.14 0.27 ± 0.13

Lingering 0.28 ± 0.07 0.28 ± 0.06

TR(A) 0.04 ± 0.02 0.04 ± 0.02

TR(P) 0.16 ± 0.04 0.16 ± 0.04

SR(A) 0.04 ± 0.03 0.04 ± 0.02

SR(P) 0.25 ± 0.06 0.24 ± 0.06

SMN
Traveling 0.37 ± 0.15 0.37 ± 0.15

Lingering 0.50 ± 0.06 0.49 ± 0.06

TR(A) 0.09 ± 0.03 0.09 ± 0.03

TR(P) 0.25 ± 0.04 0.25 ± 0.05

SR(A) 0.13 ± 0.07 0.13 ± 0.07

SR(P) 0.36 ± 0.09 0.36 ± 0.09

VDMN
Traveling 0.08 ± 0.11 0.07 ± 0.10

Lingering 0.22 ± 0.06 0.21 ± 0.06

TR(A) 0.01 ± 0.01 0.01 ± 0.01

TR(P) 0.13 ± 0.03 0.13 ± 0.03

SR(A) 0.01 ± 0.01 0.01 ± 0.01

SR(P) 0.21 ± 0.06 0.21 ± 0.06

VSPN
Traveling 0.19 ± 0.13 0.18 ± 0.14

Lingering 0.17 ± 0.07 0.17 ± 0.06

TR(A) 0.02 ± 0.02 0.02 ± 0.02

TR(P) 0.12 ± 0.03 0.12 ± 0.03

SR(A) 0.02 ± 0.03 0.02 ± 0.03

SR(P) 0.15 ± 0.06 0.15 ± 0.05

60



Figure B.1: Singular model: Energy landscapes

3D representations of energy landscapes across groups and networks. Basins and clusters are plotted on

arbitrary state space; i.e. x- and y-locations are arbitrary. Basin sizes are proportional to the number

of neighboring states clustered (Section 2.5). See Supplementary Table B.2 for detailed information on

individual basins.
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C Separate Model Results

Complete results of energy landscape analyses for the separate model framework (Section 4) are pre-

sented here. Analyses were conducted separately for healthy and depressed groups, and on each func-

tional network (Table A.2).

Table C.1: Separate model: Basin occurrence frequency

Basin frequency p-value

Network Healthy Depressed ANOVA KW

AN 0.6352 ± 0.03 0.5976 ± 0.03 ∗∗∗ ∗∗∗
ASN 0.2819 ± 0.01 0.3910 ± 0.04 ∗∗∗ ∗∗∗
BGN 0.5925 ± 0.02 0.6335 ± 0.01 ∗∗∗ ∗∗∗

DDMN 0.0462 ± 0.00 0.1333 ± 0.01 ∗∗∗ ∗∗∗
LN 0.2279 ± 0.01 0.1995 ± 0.01 ∗∗∗ ∗∗∗

LECN 0.2373 ± 0.02 0.1869 ± 0.03 ∗∗∗ ∗∗∗
PN 0.6878 ± 0.01 0.6500 ± 0.03 ∗∗∗ ∗∗∗

PSN 0.0870 ± 0.01 0.0925 ± 0.01 ∗∗∗
RECN 0.4114 ± 0.01 0.3208 ± 0.03 ∗∗∗ ∗∗∗
SMN 0.4381 ± 0.04 0.3046 ± 0.02 ∗∗∗ ∗∗∗

VDMN 0.0601 ± 0.02 0.0850 ± 0.01 ∗∗∗ ∗∗∗
VSPN 0.1339 ± 0.01 0.2049 ± 0.00 ∗∗∗ ∗∗∗

Occurrence frequency (mean ± std) of basins on individual participants’ fMRI time signals.

(∗∗∗) p < 0.005; between-group comparison of basin frequencies using one-way ANOVA and

Kruskal-Wallis test
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Table C.2: Separate model: Basin characteristics

Healthy Depressed

Network B E Size B E Size

AN
1 -3.00 50.00 % 1 -3.02 50.00 %

6 -2.97 50.00 % 6 -2.99 50.00 %

ASN
9 -1.78 43.75 % 9 -1.91 43.75 %

22 -1.74 43.75 % 22 -1.90 43.75 %

3 -0.85 6.25 % 3 -0.90 6.25 %

28 -0.83 6.25 % 28 -0.87 6.25 %

BGN
6 -1.92 25.00 % 6 -2.01 28.12 %

25 -1.92 25.00 % 25 -2.01 28.12 %

26 -1.51 15.62 % 26 -1.54 12.50 %

28 -1.48 9.38 % 5 -1.52 12.50 %

3 -1.47 15.62 % 28 -1.41 9.38 %

5 -1.47 9.38 % 3 -1.38 9.38 %

DDMN
279 -3.32 45.70 % 279 -3.30 44.53 %

232 -3.29 46.29 % 232 -3.25 44.14 %

340 -1.68 3.71 % 340 -1.71 4.69 %

171 -1.63 3.71 % 171 -1.67 5.08 %

419 -1.29 0.59 % 419 -1.24 0.59 %

92 -1.18 0.59 %

404 -1.14 0.39 %

LN
29 -1.51 37.50 % 34 -1.51 43.75 %

34 -1.51 37.50 % 29 -1.50 43.75 %

56 -1.19 10.94 % 56 -1.15 6.25 %

7 -1.19 10.94 % 7 -1.13 6.25 %

19 -0.95 1.56 %

44 -0.93 1.56 %

LECN
28 -1.03 46.88 % 28 -1.11 50.00 %

3 -1.03 46.88 % 3 -1.09 50.00 %

5 -0.68 3.12 %

26 -0.68 3.12 %

Basin states, their energy and cluster size. See Section A for details on state indexing.

Major basins are listed on first two rows (highlighted in purple) for each group and network. Unique

basins are shaded in light purple. For each group, basins are sorted from lowest energy, and then from

largest size.

63



Table C.2: Separate model: Basin characteristics (continued)

Healthy Depressed

Network B E Size B E Size

PN
12 -1.49 37.50 % 12 -1.43 37.50 %

3 -1.43 37.50 % 3 -1.41 37.50 %

10 -0.87 6.25 % 10 -0.82 6.25 %

5 -0.81 6.25 % 5 -0.77 6.25 %

6 -0.62 6.25 % 9 -0.59 6.25 %

9 -0.61 6.25 % 6 -0.56 6.25 %

PSN
527 -3.00 18.16 % 234 -2.93 14.65 %

496 -2.95 17.09 % 789 -2.91 17.58 %

789 -2.88 10.55 % 527 -2.62 15.23 %

234 -2.85 11.72 % 79 -2.61 7.32 %

79 -2.70 7.03 % 496 -2.54 15.04 %

229 -2.66 8.59 % 944 -2.51 4.59 %

794 -2.65 10.74 % 794 -2.47 8.79 %

944 -2.62 6.74 % 229 -2.46 8.11 %

287 -2.23 2.15 % 287 -2.20 2.54 %

736 -2.20 2.34 % 736 -2.17 2.54 %

341 -2.09 2.83 % 906 -1.72 0.68 %

117 -1.85 2.05 % 117 -1.72 0.68 %

378 -1.64 1.07 %

645 -1.63 1.17 %

RECN
28 -1.05 31.25 % 3 -1.12 37.50 %

3 -1.03 28.12 % 28 -1.11 37.50 %

9 -0.99 12.50 % 10 -0.96 6.25 %

22 -0.99 12.50 % 9 -0.90 6.25 %

21 -0.96 9.38 % 21 -0.89 6.25 %

10 -0.96 6.25 % 22 -0.87 6.25 %

Basin states, their energy and cluster size. See Section A for details on state indexing.

Major basins are listed on first two rows (highlighted in purple) for each group and network. Unique

basins are shaded in light purple. For each group, basins are sorted from lowest energy, and then from

largest size.
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Table C.2: Separate model: Basin characteristics (continued)

Healthy Depressed

Network B E Size B E Size

SMN
3 -2.12 50.00 % 3 -1.99 50.00 %

28 -2.09 50.00 % 28 -1.95 50.00 %

VDMN
206 -2.82 20.31 % 165 -2.94 23.44 %

305 -2.75 19.73 % 346 -2.92 24.02 %

338 -2.72 21.29 % 206 -2.75 20.90 %

165 -2.72 21.68 % 305 -2.74 20.90 %

99 -1.85 8.59 % 99 -1.77 5.08 %

404 -1.83 8.40 % 404 -1.73 5.66 %

VSPN
85 -2.80 21.09 % 85 -2.81 26.17 %

170 -2.76 21.09 % 170 -2.77 23.44 %

204 -2.20 20.70 % 51 -2.12 17.19 %

51 -2.19 20.70 % 204 -2.11 16.41 %

102 -1.75 6.25 % 102 -1.80 6.25 %

153 -1.74 6.25 % 153 -1.77 6.25 %

15 -1.26 1.95 % 232 -1.71 2.73 %

240 -1.24 1.95 % 240 -1.14 1.56 %

Basin states, their energy and cluster size. See Section A for details on state indexing.

Major basins are listed on first two rows (highlighted in purple) for each group and network. Unique

basins are shaded in light purple. For each group, basins are sorted from lowest energy, and then from

largest size.
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Table C.3: Separate model: Major basins transition dynamics

Network Score Healthy Depressed p-value

AN
Traveling 0.91 ± 0.37 0.90 ± 0.39
Lingering 0.48 ± 0.06 0.49 ± 0.06

TR(A) 0.15 ± 0.04 0.15 ± 0.04
TR(P) 0.18 ± 0.04 0.18 ± 0.04
SR(A) 0.31 ± 0.09 0.31 ± 0.09
SR(P) 0.17 ± 0.07 0.17 ± 0.07

ASN
Traveling 0.38 ± 0.23 0.40 ± 0.18
Lingering 0.41 ± 0.07 0.40 ± 0.08

TR(A) 0.08 ± 0.04 0.08 ± 0.03
TR(P) 0.21 ± 0.04 0.21 ± 0.04
SR(A) 0.09 ± 0.06 0.10 ± 0.06 ∗
SR(P) 0.32 ± 0.10 0.29 ± 0.10 ∗

BGN
Traveling 0.78 ± 0.42 0.77 ± 0.34
Lingering 0.19 ± 0.08 0.21 ± 0.09

TR(A) 0.08 ± 0.03 0.08 ± 0.03
TR(P) 0.11 ± 0.03 0.11 ± 0.03
SR(A) 0.11 ± 0.07 0.12 ± 0.08
SR(P) 0.08 ± 0.03 0.09 ± 0.04

DDMN
Traveling 0.09 ± 0.08 0.09 ± 0.09
Lingering 0.58 ± 0.06 0.54 ± 0.07 ∗∗∗

TR(A) 0.02 ± 0.02 0.02 ± 0.02
TR(P) 0.24 ± 0.04 0.23 ± 0.04 ∗
SR(A) 0.02 ± 0.02 0.02 ± 0.02
SR(P) 0.56 ± 0.07 0.53 ± 0.07 ∗∗∗

LN
Traveling 0.17 ± 0.11 0.15 ± 0.10
Lingering 0.38 ± 0.07 0.47 ± 0.08 ∗∗∗

TR(A) 0.03 ± 0.02 0.03 ± 0.02
TR(P) 0.20 ± 0.04 0.23 ± 0.05 ∗∗∗
SR(A) 0.03 ± 0.02 0.03 ± 0.03
SR(P) 0.35 ± 0.07 0.44 ± 0.08 ∗∗∗

LECN
Traveling 0.17 ± 0.09 0.16 ± 0.08
Lingering 0.53 ± 0.06 0.59 ± 0.05 ∗∗∗

TR(A) 0.04 ± 0.02 0.04 ± 0.02
TR(P) 0.24 ± 0.03 0.27 ± 0.04 ∗∗∗
SR(A) 0.04 ± 0.03 0.04 ± 0.03
SR(P) 0.49 ± 0.07 0.55 ± 0.07 ∗∗∗

Traveling scores (Equation 2.16) and Lingering scores (Equation 2.17) of individual participants on each group.
Traveling score is based on the traveling rates between major basins (TR(P )) and their peripherals (TR(A)).
Lingering score is based on the staying rates within major basins (SR(A)) and their peripherals (SR(P )).

(∗) p < 0.05; (∗∗) p < 0.01; (∗∗∗) p < 0.005; between-group, pairwise comparison of traveling/lingering scores using
one-way ANOVA
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Table C.3: Separate model: Major basins transition dynamics (continued)

Network Score Healthy Depressed p-value

PN
Traveling 0.83 ± 0.31 0.79 ± 0.28
Lingering 0.29 ± 0.07 0.29 ± 0.07

TR(A) 0.10 ± 0.03 0.09 ± 0.02
TR(P) 0.12 ± 0.03 0.13 ± 0.03
SR(A) 0.18 ± 0.07 0.17 ± 0.08
SR(P) 0.11 ± 0.04 0.12 ± 0.04 ∗∗∗

PSN
Traveling 0.05 ± 0.07 0.06 ± 0.09
Lingering 0.14 ± 0.06 0.13 ± 0.06

TR(A) 0.01 ± 0.01 0.01 ± 0.01
TR(P) 0.12 ± 0.04 0.09 ± 0.03 ∗∗∗
SR(A) 0.00 ± 0.00 0.00 ± 0.01 ∗∗∗
SR(P) 0.14 ± 0.06 0.13 ± 0.06

RECN
Traveling 0.35 ± 0.18 0.30 ± 0.15 ∗∗
Lingering 0.18 ± 0.06 0.30 ± 0.08 ∗∗∗

TR(A) 0.04 ± 0.02 0.04 ± 0.02
TR(P) 0.13 ± 0.03 0.15 ± 0.03 ∗∗∗
SR(A) 0.04 ± 0.03 0.04 ± 0.03
SR(P) 0.14 ± 0.05 0.26 ± 0.07 ∗∗∗

SMN
Traveling 0.37 ± 0.15 0.34 ± 0.14
Lingering 0.50 ± 0.06 0.50 ± 0.05

TR(A) 0.09 ± 0.03 0.08 ± 0.03
TR(P) 0.25 ± 0.04 0.26 ± 0.04
SR(A) 0.13 ± 0.07 0.11 ± 0.06 ∗
SR(P) 0.36 ± 0.09 0.39 ± 0.08 ∗

VDMN
Traveling 0.08 ± 0.09 0.08 ± 0.10
Lingering 0.16 ± 0.06 0.24 ± 0.07 ∗∗∗

TR(A) 0.01 ± 0.01 0.01 ± 0.01
TR(P) 0.12 ± 0.03 0.13 ± 0.03 ∗∗∗
SR(A) 0.01 ± 0.01 0.01 ± 0.02
SR(P) 0.15 ± 0.06 0.23 ± 0.07 ∗∗∗

VSPN
Traveling 0.20 ± 0.14 0.17 ± 0.14
Lingering 0.17 ± 0.07 0.22 ± 0.07 ∗∗∗

TR(A) 0.02 ± 0.02 0.02 ± 0.02
TR(P) 0.12 ± 0.03 0.13 ± 0.03 ∗∗∗
SR(A) 0.02 ± 0.03 0.02 ± 0.03
SR(P) 0.14 ± 0.05 0.20 ± 0.06 ∗∗∗

Traveling scores (Equation 2.16) and Lingering scores (Equation 2.17) of individual participants on each group.
Traveling score is based on the traveling rates between major basins (TR(P )) and their peripherals (TR(A)).
Lingering score is based on the staying rates within major basins (SR(A)) and their peripherals (SR(P )).

(∗) p < 0.05; (∗∗) p < 0.01; (∗∗∗) p < 0.005; between-group, pairwise comparison of traveling/lingering scores using
one-way ANOVA
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Figure C.1: Separate model: Energy landscapes

3D representations of energy landscapes across groups and networks. Basins and clusters are plotted on

arbitrary state space; i.e. x- and y-locations are arbitrary. Basin sizes are proportional to the number

of neighboring states clustered (Section 2.5). See Supplementary Table C.2 for detailed information on

individual basins.
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Figure C.1: Separate model: Energy landscapes (continued)

3D representations of energy landscapes across groups and networks. Basins and clusters are plotted on

arbitrary state space; i.e. x- and y-locations are arbitrary. Basin sizes are proportional to the number

of neighboring states clustered (Section 2.5). See Supplementary Table D.2 for detailed information on

individual basins.
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Figure C.1: Separate model: Energy landscapes (continued)

3D representations of energy landscapes across groups and networks. Basins and clusters are plotted on

arbitrary state space; i.e. x- and y-locations are arbitrary. Basin sizes are proportional to the number

of neighboring states clustered (Section 2.5). See Supplementary Table D.2 for detailed information on

individual basins.
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Figure C.1: Separate model: Energy landscapes (continued)

3D representations of energy landscapes across groups and networks. Basins and clusters are plotted on

arbitrary state space; i.e. x- and y-locations are arbitrary. Basin sizes are proportional to the number

of neighboring states clustered (Section 2.5). See Supplementary Table D.2 for detailed information on

individual basins.
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D Segregated Model Results

Complete results of energy landscape analyses for the segregated model framework (Section 5) are

presented here. Analyses were conducted separately for each group (healthy, non-melancholic, and

melancholic) and on each functional network (Table A.2).

Table D.1: Segregated model: Basin occurrence frequency

Basin frequency p-value

Network Healthy Non-melancholic Melancholic (H,N) (H,M) (N,M) KW1 Site2 G×S3

AN 0.64 ± 0.03 0.62 ± 0.02 0.60 ± 0.03 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
ASN 0.28 ± 0.01 0.31 ± 0.03 0.39 ± 0.04 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
BGN 0.59 ± 0.02 0.54 ± 0.02 0.63 ± 0.01 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

DDMN 0.05 ± 0.00 0.07 ± 0.01 0.11 ± 0.01 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
LN 0.23 ± 0.01 0.25 ± 0.01 0.20 ± 0.01 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

LECN 0.24 ± 0.02 0.15 ± 0.01 0.19 ± 0.03 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
PN 0.69 ± 0.01 0.63 ± 0.01 0.65 ± 0.03 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

PSN 0.09 ± 0.01 0.21 ± 0.04 0.10 ± 0.01 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
RECN 0.41 ± 0.01 0.34 ± 0.00 0.38 ± 0.01 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
SMN 0.44 ± 0.04 0.43 ± 0.02 0.30 ± 0.02 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

VDMN 0.06 ± 0.02 0.14 ± 0.01 0.09 ± 0.01 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
VSPN 0.13 ± 0.01 0.20 ± 0.01 0.20 ± 0.00 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Occurrence frequency (mean ± std) of basins on individual participants’ fMRI time signals.

(∗∗∗) p < 0.005; between-group, pairwise comparison of basin frequencies using one-way ANOVA with

Bonferroni correction

1 Kruskal-Wallis test for non-normal distribution
2 Two-way ANOVA test for significant differences across fMRI recording sites
3 Two-way ANOVA test for significant interaction between group (H,N,M) and site (HUH, HRC,

HKH, COI)
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Table D.2: Segregated model: Basin characteristics

Healthy Non-melancholic Melancholic

Network B E Size B E Size B E Size

AN
1 -3.00 50.00 % 1 -3.03 50.00 % 1 -3.02 50.00 %

6 -2.97 50.00 % 6 -2.99 50.00 % 6 -2.99 50.00 %

ASN
9 -1.78 43.75 % 9 -1.94 43.75 % 9 -1.91 43.75 %

22 -1.74 43.75 % 22 -1.90 43.75 % 22 -1.91 43.75 %

3 -0.85 6.25 % 3 -0.79 6.25 % 3 -0.94 6.25 %

28 -0.83 6.25 % 28 -0.74 6.25 % 28 -0.92 6.25 %

BGN
6 -1.92 25.00 % 6 -2.03 28.12 % 6 -2.01 28.12 %

25 -1.92 25.00 % 25 -2.00 28.12 % 25 -2.01 28.12 %

26 -1.51 15.62 % 26 -1.60 12.50 % 26 -1.51 12.50 %

28 -1.48 9.38 % 5 -1.60 12.50 % 5 -1.49 12.50 %

3 -1.47 15.62 % 28 -1.38 9.38 % 28 -1.43 9.38 %

5 -1.47 9.38 % 3 -1.34 9.38 % 3 -1.39 9.38 %

DDMN
279 -3.32 45.70 % 279 -3.15 50.59 % 279 -3.35 44.53 %

232 -3.29 46.29 % 168 -3.13 48.05 % 232 -3.30 44.92 %

340 -1.68 3.71 % 419 -1.20 0.59 % 340 -1.70 4.88 %

171 -1.63 3.71 % 92 -1.08 0.78 % 139 -1.66 4.69 %

419 -1.29 0.59 % 419 -1.25 0.59 %

404 -1.13 0.39 %

LN
29 -1.51 37.50 % 34 -1.71 46.88 % 29 -1.46 43.75 %

34 -1.51 37.50 % 29 -1.65 46.88 % 34 -1.45 43.75 %

56 -1.19 10.94 % 56 -1.19 1.56 % 56 -1.14 6.25 %

7 -1.19 10.94 % 7 -1.18 1.56 % 7 -1.11 6.25 %

19 -0.95 1.56 % 19 -1.08 1.56 %

44 -0.93 1.56 % 44 -1.08 1.56 %

LECN
28 -1.03 46.88 % 28 -1.11 50.00 % 28 -1.11 50.00 %

3 -1.03 46.88 % 11 -1.10 46.88 % 3 -1.09 50.00 %

5 -0.68 3.12 % 5 -0.69 3.12 %

26 -0.68 3.12 %

PN
12 -1.49 37.50 % 3 -1.44 37.50 % 12 -1.44 37.50 %

3 -1.43 37.50 % 12 -1.42 37.50 % 3 -1.41 37.50 %

10 -0.87 6.25 % 10 -0.86 6.25 % 10 -0.81 6.25 %

5 -0.81 6.25 % 5 -0.70 6.25 % 5 -0.80 6.25 %

6 -0.62 6.25 % 6 -0.62 6.25 % 9 -0.60 6.25 %

9 -0.61 6.25 % 9 -0.60 6.25 % 6 -0.54 6.25 %

Basin states, their energy and cluster size. See Section A for details on state indexing.

Major basins are listed on first two rows (highlighted in purple) for each group and network. Unique

basins are shaded in light purple. For each group, basins are sorted from lowest energy, and then from

largest size.
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Table D.2: Segregated model: Basin characteristics (continued)

Healthy Non-melancholic Melancholic

Network B E Size B E Size B E Size

PSN
527 -3.00 18.16 % 789 -2.97 13.38 % 234 -2.93 16.50 %

496 -2.95 17.09 % 234 -2.95 13.38 % 789 -2.90 17.19 %

789 -2.88 10.55 % 79 -2.93 15.23 % 15 -2.64 20.70 %

234 -2.85 11.72 % 944 -2.87 14.55 % 1008 -2.49 20.02 %

79 -2.70 7.03 % 527 -2.81 8.01 % 794 -2.42 8.40 %

229 -2.66 8.59 % 496 -2.77 7.91 % 229 -2.40 7.71 %

794 -2.65 10.74 % 794 -2.68 11.13 % 287 -2.17 2.54 %

944 -2.62 6.74 % 229 -2.68 10.94 % 736 -2.14 3.61 %

287 -2.23 2.15 % 287 -2.35 1.46 % 378 -1.79 1.37 %

736 -2.20 2.34 % 736 -2.32 1.37 % 906 -1.71 0.98 %

341 -2.09 2.83 % 714 -1.98 1.17 % 117 -1.71 0.98 %

117 -1.85 2.05 % 309 -1.95 1.46 %

RECN
28 -1.05 31.25 % 28 -1.13 31.25 % 12 -1.12 37.50 %

3 -1.03 28.12 % 3 -1.13 28.12 % 3 -1.11 37.50 %

9 -0.99 12.50 % 10 -1.12 12.50 % 10 -0.90 6.25 %

22 -0.99 12.50 % 21 -1.00 12.50 % 9 -0.86 6.25 %

21 -0.96 9.38 % 9 -0.99 6.25 % 21 -0.86 6.25 %

10 -0.96 6.25 % 22 -0.97 9.38 % 22 -0.84 6.25 %

SMN
3 -2.12 50.00 % 3 -1.97 53.12 % 3 -2.00 50.00 %

28 -2.09 50.00 % 28 -1.92 46.88 % 28 -1.96 50.00 %

VDMN
206 -2.82 20.31 % 206 -2.91 21.09 % 346 -3.03 25.20 %

305 -2.75 19.73 % 305 -2.82 17.77 % 165 -3.03 24.02 %

338 -2.72 21.29 % 338 -2.66 20.31 % 305 -2.71 19.73 %

165 -2.72 21.68 % 165 -2.66 23.63 % 206 -2.70 21.29 %

99 -1.85 8.59 % 99 -2.01 8.01 % 99 -1.69 5.08 %

404 -1.83 8.40 % 412 -1.95 9.18 % 404 -1.67 4.69 %

VSPN
85 -2.80 21.09 % 170 -2.85 29.30 % 85 -2.79 26.56 %

170 -2.76 21.09 % 85 -2.85 28.12 % 170 -2.74 23.83 %

204 -2.20 20.70 % 51 -2.22 14.06 % 204 -2.10 17.19 %

51 -2.19 20.70 % 204 -2.14 14.06 % 51 -2.09 16.80 %

102 -1.75 6.25 % 102 -1.57 6.25 % 102 -1.88 6.25 %

153 -1.74 6.25 % 153 -1.51 6.25 % 153 -1.86 6.25 %

15 -1.26 1.95 % 240 -1.16 1.56 % 232 -1.76 2.73 %

240 -1.24 1.95 % 15 -1.12 0.39 % 240 -1.13 0.39 %

Basin states, their energy and cluster size. See Section A for details on state indexing.

Major basins are listed on first two rows (highlighted in purple) for each group and network. Unique

basins are shaded in light purple. For each group, basins are sorted from lowest energy, and then from

largest size.
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Table D.3: Segregated model: Major basins transition dynamics

p-value
Network Score Healthy Non-melancholic Melancholic (H,N) (H,M) (N,M) KW

AN
Traveling 0.91 ± 0.37 0.85 ± 0.29 0.92 ± 0.41
Lingering 0.48 ± 0.06 0.47 ± 0.07 0.49 ± 0.06

TR(A) 0.15 ± 0.04 0.15 ± 0.04 0.15 ± 0.04
TR(P) 0.18 ± 0.04 0.19 ± 0.04 0.18 ± 0.04
SR(A) 0.31 ± 0.09 0.31 ± 0.09 0.31 ± 0.09
SR(P) 0.17 ± 0.07 0.16 ± 0.05 0.18 ± 0.08

ASN
Traveling 0.38 ± 0.23 0.41 ± 0.18 0.39 ± 0.18
Lingering 0.41 ± 0.07 0.38 ± 0.08 0.40 ± 0.08

TR(A) 0.08 ± 0.04 0.08 ± 0.04 0.08 ± 0.03
TR(P) 0.21 ± 0.04 0.21 ± 0.04 0.21 ± 0.04
SR(A) 0.09 ± 0.06 0.10 ± 0.06 0.10 ± 0.06 ∗
SR(P) 0.32 ± 0.10 0.28 ± 0.11 0.30 ± 0.10 ∗

BGN
Traveling 0.78 ± 0.42 0.82 ± 0.35 0.75 ± 0.33
Lingering 0.19 ± 0.08 0.19 ± 0.08 0.21 ± 0.09

TR(A) 0.08 ± 0.03 0.09 ± 0.03 0.07 ± 0.03
TR(P) 0.11 ± 0.03 0.11 ± 0.03 0.11 ± 0.03
SR(A) 0.11 ± 0.07 0.12 ± 0.07 0.12 ± 0.08
SR(P) 0.08 ± 0.03 0.08 ± 0.03 0.09 ± 0.04

DDMN
Traveling 0.09 ± 0.08 0.05 ± 0.06 0.10 ± 0.09 ∗ ∗
Lingering 0.58 ± 0.06 0.63 ± 0.05 0.55 ± 0.07 ∗∗∗ ∗∗ ∗∗∗ ∗∗∗

TR(A) 0.02 ± 0.02 0.01 ± 0.01 0.02 ± 0.02
TR(P) 0.24 ± 0.04 0.28 ± 0.05 0.23 ± 0.04 ∗∗∗ ∗∗∗ ∗∗∗
SR(A) 0.02 ± 0.02 0.01 ± 0.01 0.02 ± 0.02
SR(P) 0.56 ± 0.07 0.62 ± 0.05 0.53 ± 0.07 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

LN
Traveling 0.17 ± 0.11 0.15 ± 0.10 0.14 ± 0.09
Lingering 0.38 ± 0.07 0.48 ± 0.08 0.48 ± 0.07 ∗∗∗ ∗∗∗ ∗∗∗

TR(A) 0.03 ± 0.02 0.04 ± 0.02 0.03 ± 0.02
TR(P) 0.20 ± 0.04 0.24 ± 0.05 0.23 ± 0.04 ∗∗∗ ∗∗∗ ∗∗∗
SR(A) 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.03
SR(P) 0.35 ± 0.07 0.46 ± 0.09 0.45 ± 0.08 ∗∗∗ ∗∗∗ ∗∗∗

LECN
Traveling 0.17 ± 0.09 0.14 ± 0.08 0.17 ± 0.08
Lingering 0.53 ± 0.06 0.55 ± 0.06 0.61 ± 0.06 ∗∗∗ ∗∗∗ ∗∗∗

TR(A) 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02
TR(P) 0.24 ± 0.03 0.25 ± 0.04 0.26 ± 0.04 ∗∗∗ ∗∗∗
SR(A) 0.04 ± 0.03 0.04 ± 0.03 0.04 ± 0.03
SR(P) 0.49 ± 0.07 0.51 ± 0.07 0.57 ± 0.07 ∗∗∗ ∗∗∗ ∗∗∗

Traveling scores (Equation 2.16) and Lingering scores (Equation 2.17) of individual participants on each group.
Traveling score is based on the traveling rates between major basins (TR(P )) and their peripherals (TR(A)).
Lingering score is based on the staying rates within major basins (SR(A)) and their peripherals (SR(P )).

(∗) p < 0.05; (∗∗) p < 0.01; (∗∗∗) p < 0.005; between-group, pairwise comparison of traveling/lingering scores using
one-way ANOVA with Bonferroni correction.

(∗) p < 0.05; (∗∗) p < 0.01; (∗∗∗) p < 0.005; Kruskal-Wallis test for non-normal distribution
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Table D.3: Segregated model: Major basins transition dynamics (continued)

p-value
Network Score Healthy Non-melancholic Melancholic (H,N) (H,M) (N,M) KW

PSN
Traveling 0.05 ± 0.07 0.08 ± 0.14 0.05 ± 0.07
Lingering 0.14 ± 0.06 0.09 ± 0.05 0.14 ± 0.07 ∗∗∗ ∗∗∗ ∗∗∗

TR(A) 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.01
TR(P) 0.12 ± 0.04 0.08 ± 0.02 0.10 ± 0.03 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
SR(A) 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.01 ∗∗∗
SR(P) 0.14 ± 0.06 0.09 ± 0.04 0.13 ± 0.06 ∗∗∗ ∗∗∗ ∗∗∗

PN
Traveling 0.83 ± 0.31 0.81 ± 0.29 0.78 ± 0.27
Lingering 0.29 ± 0.07 0.29 ± 0.07 0.30 ± 0.07

TR(A) 0.10 ± 0.03 0.09 ± 0.02 0.09 ± 0.02
TR(P) 0.12 ± 0.03 0.12 ± 0.03 0.13 ± 0.03
SR(A) 0.18 ± 0.07 0.16 ± 0.07 0.17 ± 0.08
SR(P) 0.11 ± 0.04 0.12 ± 0.04 0.12 ± 0.04 ∗ ∗∗

RECN
Traveling 0.35 ± 0.18 0.37 ± 0.18 0.25 ± 0.11 ∗∗∗ ∗∗∗ ∗∗∗
Lingering 0.18 ± 0.06 0.20 ± 0.07 0.31 ± 0.06 ∗∗∗ ∗∗∗ ∗∗∗

TR(A) 0.04 ± 0.02 0.05 ± 0.02 0.04 ± 0.02
TR(P) 0.13 ± 0.03 0.13 ± 0.03 0.15 ± 0.03 ∗∗∗ ∗∗∗ ∗∗∗
SR(A) 0.04 ± 0.03 0.04 ± 0.03 0.05 ± 0.03 ∗ ∗
SR(P) 0.14 ± 0.05 0.16 ± 0.06 0.27 ± 0.05 ∗∗∗ ∗∗∗ ∗∗∗

SMN
Traveling 0.37 ± 0.15 0.35 ± 0.16 0.33 ± 0.13
Lingering 0.50 ± 0.06 0.49 ± 0.06 0.51 ± 0.05

TR(A) 0.09 ± 0.03 0.09 ± 0.03 0.08 ± 0.03
TR(P) 0.25 ± 0.04 0.26 ± 0.04 0.25 ± 0.04
SR(A) 0.13 ± 0.07 0.12 ± 0.07 0.11 ± 0.06
SR(P) 0.36 ± 0.09 0.38 ± 0.10 0.39 ± 0.08 ∗

VDMN
Traveling 0.08 ± 0.09 0.11 ± 0.14 0.09 ± 0.10
Lingering 0.16 ± 0.06 0.15 ± 0.05 0.26 ± 0.07 ∗∗∗ ∗∗∗ ∗∗∗

TR(A) 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
TR(P) 0.12 ± 0.03 0.11 ± 0.03 0.14 ± 0.03 ∗∗∗ ∗∗∗ ∗∗∗
SR(A) 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.02
SR(P) 0.15 ± 0.06 0.14 ± 0.05 0.25 ± 0.07 ∗∗∗ ∗∗∗ ∗∗∗

VSPN
Traveling 0.20 ± 0.14 0.17 ± 0.13 0.17 ± 0.14
Lingering 0.17 ± 0.07 0.26 ± 0.07 0.22 ± 0.07 ∗∗∗ ∗∗∗ ∗ ∗∗∗

TR(A) 0.02 ± 0.02 0.03 ± 0.02 0.02 ± 0.02
TR(P) 0.12 ± 0.03 0.16 ± 0.03 0.13 ± 0.03 ∗∗∗ ∗∗ ∗∗∗ ∗∗∗
SR(A) 0.02 ± 0.03 0.02 ± 0.03 0.02 ± 0.03
SR(P) 0.14 ± 0.05 0.24 ± 0.06 0.20 ± 0.06 ∗∗∗ ∗∗∗ ∗∗ ∗∗∗

Traveling scores (Equation 2.16) and Lingering scores (Equation 2.17) of individual participants on each group.
Traveling score is based on the traveling rates between major basins (TR(P )) and their peripherals (TR(A)).
Lingering score is based on the staying rates within major basins (SR(A)) and their peripherals (SR(P )).

(∗) p < 0.05; (∗∗) p < 0.01; (∗∗∗) p < 0.005; between-group, pairwise comparison of traveling/lingering scores using
one-way ANOVA with Bonferroni correction.

(∗) p < 0.05; (∗∗) p < 0.01; (∗∗∗) p < 0.005; Kruskal-Wallis test for non-normal distribution
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Figure D.1: Segregated model: Energy landscapes

3D representations of energy landscapes across groups and networks. Basins and clusters are plotted on

arbitrary state space; i.e. x- and y-locations are arbitrary. Basin sizes are proportional to the number

of neighboring states clustered (Section 2.5). See Supplementary Table D.2 for detailed information on

individual basins.
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Figure D.1: Segregated model: Energy landscapes (continued)

3D representations of energy landscapes across groups and networks. Basins and clusters are plotted on

arbitrary state space; i.e. x- and y-locations are arbitrary. Basin sizes are proportional to the number

of neighboring states clustered (Section 2.5). See Supplementary Table D.2 for detailed information on

individual basins.
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Figure D.1: Segregated model: Energy landscapes (continued)

3D representations of energy landscapes across groups and networks. Basins and clusters are plotted on

arbitrary state space; i.e. x- and y-locations are arbitrary. Basin sizes are proportional to the number

of neighboring states clustered (Section 2.5). See Supplementary Table D.2 for detailed information on

individual basins.
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