
Doctoral Dissertation

Efficient Implementations of Neural Network

Powered by Spike Coding and Scalable

Bisection Spanning

Man Wu

March 16, 2022

Graduate School of Science and Technology

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Man Wu

Thesis Committee:

Professor Yasuhiko Nakashima (Supervisor)

Professor Yuichi Hayashi (Co-supervisor)

Associate Professor Renyuan Zhang (Co-supervisor)

Efficient Implementations of Neural Network

Powered by Spike Coding and Scalable

Bisection Spanning∗

Man Wu

Abstract

Deep neural networks (DNNs) have demonstrated state-of-the-art performances

in the broad field of AI applications. However, these algorithms have intensive

computational and colossal memory, making it challenging to develop on hard-

ware platforms with limited computational resources. To address this challenge,

this dissertation focuses on constructing efficient elastic neural networks (NNs)

with spike coding and scalable bisection spanning to make NN inference less

complicated, less redundancy, and more efficient to support the fully parallel

reconfigurable NN platforms.

We present directly-trained spiking neural networks (SNNs) with ternary

weight to achieve a good trade-off between complexity, latency, and performance

to improve capacity extension of fully parallel and reconfigurable NN platforms

by reducing its parameter computation and time steps. The proposed approach

achieves 98.43%, 89.07%, 65.24% accuracy on N-MNIST, CIFAR-10, and CIFAR-

100 with 4 time steps, respectively, and achieved up to 16x model compression.

On the other hand, we develop and evolve a spatially scalable bisection NN ar-

chitecture for fully parallel and reconfigurable NN platforms by improving the

efficiency during the reconfiguration, which also supports on-demand array parti-

tioned and reconfiguring (seen as ”DiaNet”), and processes multiple applications

in fully parallel through multi-grained reconfigurable architecture (MGRA). A

byproduct of the model bisection paradigm, the proposed scalable bisection NN

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science

and Technology, March 16, 2022.

i

minimizes computation and memory costs by reducing the number of operations

and model size. This proposed DiaNet can achieve 90.8% parameters reduction

with no loss of accuracy on MNIST. Moreover, we demonstrate that MGRA can

process multiple applications in parallel and achieve a 10.8% power reduction

simultaneously. Finally, we introduce the spike coding into spatially scalable

bisection NN architecture to achieve temporal-spatial combined bisection NN ar-

chitecture. The combined NN takes full advantage of the robustness and low

power of SNN and ultra-sparse and multi-grained reconfigurable of DiaNet. In

this sense, the model becomes linearly separable while processing information

in temporal and spatial domains, better yet, reducing the computational and

memory costs. Finally, the model achieves 96.10% accuracy with a 90.86% com-

pression ratio with 8 time steps on MNIST and 98.15% accuracy with 69.38%

parameters reduction with 6 time steps on N-MNIST.

Keywords:

DiaNet, sparse neural network, spiking neural network, multi-grained re-configurable,

low complexity

ii

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Outline of the Dissertation . 6

2 Background 8

2.1 Neural Networks . 8

2.1.1 Artificial Neural Network 9

2.1.2 Spiking Neural Network 11

2.2 Efficient and Compact Neural Network 13

2.3 Efficient and Compact Spiking Neural Network 14

2.4 DiaNet Topology . 15

3 Ternarizing Spiking Neural Network 18

3.1 Ternarizing Spiking Neural Network 18

3.1.1 Parametric Integrate-and-Fire Neuron Model with Learn-

able Threshold . 18

3.1.2 Ternarizing Spiking Neural Networks 20

3.1.3 Spiking ResNet Structure to Improve accuracy 22

3.1.4 Overall Training Implementation 22

3.2 Experiments and Results . 24

3.2.1 Datasets and Implementation 24

3.2.2 Experimental Results . 24

3.2.3 Accuracy Evaluation on Spiking ResNet Structure 27

3.3 Comparisons with State-of-the-art Works 28

3.4 Conclusion . 30

4 DiaNet: An Elastic Neural Network for Effectively Re-configurable

Implementation 31

4.1 DiaNet for Neural Network Applications 31

4.2 Evolution of DiaNet Topology . 35

4.2.1 I/O Layer Integration . 35

4.2.2 Skip Connections . 38

iii

4.3 Experimental Results . 39

4.3.1 Datasets and Implementation 39

4.3.2 Experimental Results of DiaNet1.0 40

4.3.3 Experimental Results of Evolutionary DiaNet 41

4.3.4 Comparison Results . 44

4.4 Discussion on How to Co-design of Algorithm and Hardware for

DiaNet . 46

4.5 Towards Hardware Implementation of DiaNet 49

4.6 Conclusion . 52

5 Temporal-spatial Combined Bisection Neural Network 53

5.1 Exploration of Temporal-spatial Combined Bisection Neural Network 54

5.1.1 Iterative Leaky Integrate-And-Fire Model in DiaNet 54

5.1.2 Combined Bisection Neural Network Architecture 56

5.1.3 Overall Training Framework 58

5.2 Overall Estimation of Performance 59

5.2.1 Datasets and Implementation 59

5.2.2 Experimental Results . 60

5.3 Conclusion . 62

6 Conclusion and Future Work 64

6.1 Conclusion . 64

6.2 Future work . 66

Acknowledgements 67

References 68

iv

List of Figures

1 We exploit sparsity to improve the efficiency of NNs from multiple

perspective . 6

2 Schematic representation of a biological neuron and artificial neuron 9

3 Architecture of LeNet-5 [41] . 10

4 Architecture of VGG-16 [8] . 10

5 Architecture of residual unit [43] 11

6 Schematic representation of spiking neural networks with multi-

ple cascaded layers. (a) represents a binary spike of inputs; (b)

describes the accumulation of spikes and synaptic weight; (c) illus-

trates the firing and resetting mechanism of a neuron. 12

7 Illustration of pruning a neural network [64] 13

8 Topology of proposed BNN [38] 16

9 DiaNet topology: a large scale BNNs are symmetrically imple-

mented in a large scale of network-on-chip; entire network can be

re-configured and partitioned into multiple DiaNets [38]. 17

10 Topology of TSNN: (a) TSNN topology; (b) TSNN with one-skip

layer spiking ResNet structure to further minimize the accuracy

degradation . 20

11 Validation accuracy curves of full precision SNNs and TSNNs with

different timesteps over N-MNIST, CIFAR-10 and CIFAR-100 datasets 25

12 Validation accuracy curves of PIF v.s. IF over CIFAR-10 and

CIFAR-100 datasets . 27

13 Update process of the first layer Vth during training over CIFAR-10

and CIFAR-100 datasets . 27

14 The redundancy comparisons of different NN topology; (a) parti-

tioning two sets of FC-NNs; (b) partitioning two sets of BNNs. . . 32

15 The layout of PE array with DiaNet topology: a large scale PE ar-

rays can be re-configured and partitioned into various tasks, which

are executed in independent DiaNets parallelly. 32

16 Layout of DiaNet 2.0 topology with adjacency matrices 35

v

17 The layout of different DiaNet typologies for Wine dataset: (a)

the DiaNet1.0 topology with 14 layers; (b) the DiaNet2.0 topology

with 6 layers, which towards depth reduction. 37

18 The layout of different DiaNet typologies for Wine dataset: (a)

the DiaNet2.0 topology; (b) the DiaNet3.0 topology towards per-

formance improvement by adding skip connections. 39

19 Comparison of MNIST classification accuracy as a function of dif-

ferent optimized schemes . 42

20 Validation accuracy during training phase on the MNIST dataset,

for various activation functions. 42

21 Validation accuracy curves of DiaNet over Fashion-MNIST and

CIFAR-10 datasets . 43

22 Software-hardware co-design framework for proposed DiaNet . . . 47

23 Error rate over various bit-length for two datasets from the UCI

database . 49

24 Histograms of absolute values of each PE output over two datasets

from UCI database . 49

25 Architecture overview . 50

26 Illustration of the spatial-temporal characteristic of DiaNet1.0 with

LIF neuron . 55

27 Illustration of accumulated spikes in temporal-spatial combined

NN architecture . 57

28 Influence of simulation timesteps on MNIST 60

29 Influence of simulation timesteps on N-MNIST 60

30 Summary of the thesis . 64

vi

List of Tables

1 Comparison between the TSNN and TSNN with spiking ResNet

structure. 28

2 Network structures and training methods used for accuracy per-

formance on various datasets . 29

3 Performance comparison between the proposed method and the

state-of-the-art quantization methods on various datasets. 30

4 Performance of DiaNet prototype over five datasets 40

5 The network architecture of Fashion-MNIST and CIFAR-10 datasets

43

6 Performance comparison of different NN topologies on Wine dataset 45

7 Comparison with other sparse neural network topologies on MNIST

dataset . 45

8 Performance comparison between DiaNet3.0 topology and other

models over two datasets from the UCI database 48

9 Accuracy and bit-width comparison among various strategies for

FPGA simulation over two datasets 51

10 Power and resource utilization comparison among various strate-

gies for FPGA simulation over two datasets 52

11 The network architecture and hyper-parameters of MNIST and

N-MNIST . 60

12 Performance comparison of DiaNet3.0 and DiaNet4.0 models on

MNIST . 61

13 Network structures and training methods of various compressed

SNN methods . 62

14 Performance comparison between DiaNet4.0 topology with other

compressed SNN models . 62

vii

1 Introduction

Recently, deep neural networks (DNNs) have demonstrated state-of-the-art per-

formances in the broad field of AI applications including but not limited to image

classification [1], speech recognition [2][3], computer vision [4] and natural lan-

guage processing [5]. For example, AlphaGo [6] defeated world champion Lee

Sedol in the Go game in 2016 and Hassan [7] appeared potential comparable

performance to human brains in Chinese-to-English translation application in

2018. The high quality of service (QoS) of DNNs is always powered by employ-

ing massive computations. For instance, a widely applied VGG-16 model with

138 million parameters improves accuracy by 71% [8], the ResNet50 model re-

quires 4 giga floating-point operations (FLOPs) during inference phases [9]. The

implementation of such heavy computations is challenging for hardware platform.

In order to implement such intensive computations and colossal memory at the

application end, efficient deep learning hardware has developed rapidly in recent

years. The noticeable trend is to implement large-scale neural networks (NNs) on

the Von Neumann processors with massively parallel and reconfigurable design,

such as general-purpose graphics processing units (GPGPUs) [10] and tensor pro-

cessing units (TPUs) [11]. However, these processors suffer from expensive over-

head. A general trade-off between performances and costs lies in the parallelism

of accelerations. By employing the feasibly massive computational cores, the cal-

culations for NNs are allocated to a set of corresponding cores in a specific time-

and space-division. This strategy, known as partially parallel, helps to improve

processing speed with limited hardware resources. Along with the scaling down of

VLSI technologies, the processing capacity of the computing platform greatly in-

creases. Several domain-specified accelerators (DSAs) with tailored architecture

are developed to DNN, which achieves higher energy efficiency compared with

GPUs [12][13]. Unfortunately, the specified application domain leads to a narrow

and inflexible scope of those parallel DSAs. Additionally, the field-programmable

gate arrays (FPGAs) appear promising regarding system-on-chip (SoC) due to

fine-grained reconfigurable architecture, which suffers from compilation time, and

reprogramming overheads [14]. In order to further improve the energy efficiency,

the dataflow–based coarse-grained reconfigurable architecture (CGRA) is used

1

for accelerating multiply-accumulate calculations (MACs) computations of DNN

[15][16][17]. However, these CGRA–based processors require more efficient pro-

cessing units to achieve a good trade-off between flexibility and implementation

costs. The NN–based approximate computing technologies are employed to con-

struct efficient processing units with slight performance loss [18][19][20]. Further-

more, Since Von Neumann’s architecture suffers from the ”memory wall,” the

architecture alone cannot solve the problem of intensive computing and colos-

sal memory of NN hardware [21]. In this sense, the ideal hardware platform

of NN implementations is expected to be fully parallel (for high speed) and re-

configurable (for application-flexibility) simultaneously to support various NN

models and applications.

TrueNorth of IBM [22] and Loihi by Intel [23] provided massively parallel

and higher energy efficiency inference engines by building millions of neurons and

synapses in pre-silicon with a maximum estimation of utilization scale. Those pro-

cessors are implemented based on spiking neural network (SNN) model, which is

positioned for temporal coding information processing and low-power hardware

evaluation [24]. In general, the fully parallel and re-configurable NN platforms

meet two challenges for the capacity extension, which lies in reducing the pa-

rameters/computations for ubiquitous NNs and improving the efficiency during

reconfiguration.

Addressing the former, a promising solution is to explore energy-efficient NN

hardware by the algorithm co-design. Recent works have shown that the DNN

models can be compressed and re-designed before developing on hardware to-

wards maximizing the performance while minimizing the hardware cost [25] [26]

[27] [28]. We found that the co-design approaches can be divided into reducing

operations precision, and reducing the model size and the number of operations.

For the former, it minimizes the bit-width by going from the float-point to the

fixed point; furthermore, it eliminates the multiplication by ternarized/ bina-

rized network [29][30][31]. In this sense, the efficient and compact DNN models

could optimize the computation-intensive and memory-intensive issues from the

unit- and topology levels. For the latter, it introduces the sparsity of the model to

avoid a large number of multiplications, and memory requirements [32][33][34][35].

Nevertheless, the pruning method obtains a compressed topology at the cost of

2

irregularities in the DNN model. Still, it requires additional index memory to

address the non-zero weights, which increases the memory footprint, latency, and

energy consumption [36]. Besides, the existing compressed method only focuses

on optimizing DNN; it has yet to be well studied in SNN domain. Therefore,

we need to construct efficient and compact SNN model to improve the capacity

extension of parallelism and reconfigurability

On the other hand, the hardware resource for inactivated synapses/neurons

still remains. since the processing elements (PEs) and interconnections are ar-

ranged in pre-silicon, noticeable parts of PEs and wire connections might be inac-

tivated when the NN is reconfigured, leading to remarkable redundancy. Namely,

while the platforms are reconfigured toward various tasks, a notable amount

of hardware remains redundant, damaging the efficiency, even parallelism, and

pipeline of the entire system. Therefore, the unit-, architecture- level and the

topology of NN should be reconsidered to maximize the parallelism and reconfig-

uration while minimizing the cost. In our early study, a bisection topology of NN

named DiaNet has been proven feasible and efficient [38]. By partitioning this

symmetrical bisection network into diamond-shaped pieces, the reconfiguration

is achieved without redundancy. However, the prototype of DiaNet can hardly

be applied for NNs with large scales due to depth explosion. We therefore need

to optimize the DiaNet for improving the efficiency during reconfiguration

This dissertation focuses on constructing efficient elastic neural network archi-

tectures with spike coding and scalable bisection spanning to improve the capacity

scaling of NN platform. We aim to break the boundaries between algorithms and

hardware stacks to provide a larger design space for the ideal NN hardware plat-

form. Furthermore, a byproduct of our proposal, the proposed NN architecture

minimizes computation and memory costs by reducing multiplication operations

and the number of weights.

We investigate how to compress SNNs to achieve a good trade-off between

complexity, latency, and performance from the temporal perspective. We aggres-

sively compressed the SNNs by up to 16× with 4 timesteps (inference latency) and

no accuracy loss on N-MNIST, CIFAR-10, and CIFAR-100. Moreover, we elim-

inate the multiplication operands of synaptic weight during the inference stage.

On the other hand, from the spatial perspective, we develop and evolve spatially

3

expanded bisection NN architecture, which supports on-demand array portioning

and reconfiguring for parallel processing of different applications through multi-

grained reconfigurable architecture (MGRA). A byproduct of the model bisec-

tion paradigm, the proposed spatial NN architecture minimizes computation and

memory costs by reducing multiplication operations and the model’s size. This

spatial NN architecture can achieve 90.86% parameters reduction with no loss of

accuracy on MNIST. Moreover, we demonstrate that MGRA can process multiple

applications in parallel and achieve a 10.8% power reduction simultaneously [37].

To efficiently utilize the benefit of spike coding and scalable bisection spanning, we

introduce the low-power spiking paradigm into spatially expanded bisection NN

architecture to achieve a temporal-spatial combined NN structure. Specifically,

we integrate both spatially expanded-based topology and temporal dynamical-

based SNN model so that the network becomes linearly separable while process-

ing information in temporal and spatial domains, better yet, reducing hardware

overhead.

1.1 Motivation

The philosophy of this dissertation is to construct elastic neural network with

spike coding and scalable bisection spanning to make NN inference less compli-

cated, less redundancy and make it more efficient, to support the fully parallel

and re-configurable NN platforms.

Motivation for Ternarized Spiking Neural Networks: As the third gen-

eration NN, SNNs have shown promising towards enabling low-power AI hardware

thanks to their event-driven sparsity. Time flexibility of SNN is mainly man-

ifested in time-based coding and time-based neuron dynamics, and time-based

adjustable precision. Whereas the massive amount of floating-point parameters

in SNNs still takes away considerable energy efficiency. Furthermore, the large

time step of the SNN model leads to high computational cost and significant la-

tency. In a nutshell, a ternarized SNN model is proposed to maximize accuracy

while minimizing energy consumption and latency.

Motivation for Elastic Neural Networks with Scalable Bisection

Spanning: In order to explore the ideal energy-efficient hardware platform for

various NN applications, spatially expanded bisection NN architecture is devel-

4

oped for efficiently multi-grained reconfigurable on-chip in our early feasibility

studies [38]. Instead of full connection between the adjacent layers, the architec-

ture is designed with a symmetrical bisection connection paradigm to avoid global

inter-communication. In this sense, a large scale of elastic bisection neural net-

work (BNN) is expected to be symmetrically implemented by the computational

hardware on-chip, which supports on-demand array partitioning and reconfigur-

ing for any application without redundancy (seen as “DiaNet”). Specifically, the

behaviors of synapse and neurons in entire network can be reconfigured for differ-

ent DiaNet (seen as “fine-grained”); the organization of synapse and neurons in

entire network can be reshaped for various applications (“see as mid-grained”);

the organization of multi DiaNet for specific applications (“seen as coarse–grained

”). To verify the feasibility of BNN and multi-grained reconfigurable architec-

ture (MGRA), a series of simple BNN-based approximate functions (1- and 2-

operands) and its PE hardware implementation have been implemented. How-

ever, the simple approximate function of BNN is not enough to support various

NN applications, which is inflexible in NN hardware platform. Furthermore, by

directly applying DiaNet for complex pattern recognition applications, all the fea-

tures are fed into the input layer leading to the remarkable depth of the structure,

resulting in vanishing gradient or explosion problem.

Motivation for Temporal-spatial Combined Bisection Neural Net-

works: DiaNet topology minimizes the computation cost by reducing the num-

ber of multiplication operations and the model’s size. Moreover, the DiaNet takes

full advantage of network-on-chip (NoC) resources for highly parallel and efficient

dynamically composable to improve energy efficiency further. However, it still

suffers from the overhead of floating-point operands and poor robustness perfor-

mance (e.g., hardware variation). Simultaneously, SNNs have great promise in

continuous spatial-temporal information processing with lower energy consump-

tion and better robustness. Therefore, to efficiently utilize the benefit of temporal

and spatial architecture, we introduce the low-power spiking paradigm into spa-

tially expanded bisection NN architecture to achieve a temporal-spatial combined

NN structure.

5

Chapter 4

Sparsity

Chapter 3

Chapter 5

Activation sparsity: Ternarized

SNN with spike coding

Synaptic weight sparsity: Multi-

grained reconfigurable DiaNet with

scalable bisection spanning

Activation+ synaptic weight sparsity:

Temporal-spatial combined NN with Spike

coding and scalable bisection spanning

Figure 1. We exploit sparsity to improve the efficiency of NNs from multiple

perspective

1.2 Outline of the Dissertation

All of these techniques revolve around exploiting the sparsity of neural networks

to improve the efficiency for NN parallel hardware implementation, as shown in

Fig. 1. The remaining chapters of the dissertation are summarized as follows:

Chapter 2. This chapter introduces the learning rules, architectures, and

applications of application-oriented artificial neural networks and neuroscience-

oriented spiking neural networks. We also survey the related work on sparse neu-

ral networks, efficient and compact spiking neural networks, and DiaNet topology.

Chapter 3. The feasibility of ternarizing spiking neural networks is stud-

ied in this chapter toward trading a slight accuracy for significantly reducing

computation complexity and memory costs. We also introduce a spiking ResNet

structure to mitigate the accuracy gap. The method described in this chapters

will also be used for chapter 5.

Chapter 4. This chapter discusses the DiaNet topology toward a multi-

grained reconfigurable architecture for NN applications. We also propose a series

of evolutionary techniques of DiaNet topology, including I/O layer integration and

skip connections, to prevent the depth explosion and gradient vanishing problem.

Then, the sensitivity to the decline of computational precision and bit-width

is investigated to suggest the guideline for efficient hardware implementations.

Finally, the effectiveness of DiaNet is verified by the proposed multi-grained re-

configurable architecture on FPGA. The method described in this chapters will

6

also be used for chapter 5.

Chapter 5. Previous chapters discuss how to compress the temporal net-

work and how to optimize the spatial network efficiently. This chapter explores

the temporal-spatial combined bisection neural network for further reducing the

computation complexity and memory costs of DiaNet topology, and to provide

flexible and powerful implementation framework for various NN applications.

Chapter6. This chapter summarizes the dissertation and discuss remaining

challenges and future works for temporal-spatial combined NN architecture.

7

2 Background

This chapter presents the background material and related work to facilitate

understanding of the remaining chapters. Firstly, we survey the learning rule,

architecture, and application of neural networks, both conventional and spiking.

Then, we describe related work about efficient and compact neural networks,

including sparse NN and compressed SNN. Finally, we describe DiaNet topology,

how it works, its application, and its limitation.

2.1 Neural Networks

Neural networks are inspired by the intelligence of biological brain and are com-

posed of many synapses and neurons. A schematic representation of a biological

neuron and its neural network counterpart is shown in Fig .2. Dendrite ac-

cumulates inputs x via its corresponding synaptic weights w. After dendrites

operation, the soma integrates accumulation results and transmits them to the

output. Hence, the neuron can be described as:

y = σ(
∑
i

wi,j × xi + bi) (1)

where the b is bias, and σ is the activation function. The neurons are organized

into layers, and the cascade of these layers is connected for a NN model. If the

number of layers between input neurons and output neurons is large, it is called

a deep neural network. Modern DNNs usually have hundreds of layers. As well

known, the modern DNN models can approximate any objective function based

on Eq. (1).

To some extent, the NN models can be loosely grouped into two categories

[39]:

• Application-oriented artificial neural networks (ANNs). ANN integrates the

spatial complexity through nonlinear activation functions and uses continuous

analog signals for inter-neuron communication.

• Neuroscience-oriented spiking neural networks. SNN integrates temporal in-

formation through neuronal dynamics, and uses binary spikes for communication

between spiking neurons.

8

(a) Biological neuron [24]

W1,j

Wn,j

...

x1

xn

Inputs Weights

Soma

Activation

function

∑

Output

y

(b) Neuron in neural network

Figure 2. Schematic representation of a biological neuron and artificial neuron

2.1.1 Artificial Neural Network

Artificial Neural Networks have gained tremendous success in the broad field of

AI applications. According to topology and application, ANN can be roughly

divided into three types: (1) multi-layer perceptron (MLP); (2) convolutional

neural network (CNN); (3) recurrent neural network (RNN). In MLP, each neu-

ron from the previous layer is connected to the post layer, and the matrix-vector

multiplication is computation-intensive due to the straight forward full connec-

tion (FC) fashion. In that vein, MLP calculations account for more than 61% of

Google’s TPU workload [11]. Empirically, MLP has plenty of room to explore a

good trade-off between the complexity of the model and its performance. CNN

makes full use of the shared weights to significantly reduce the number of weights.

Specifically, CNN takes advantage of the spatial locality of the input images to

share the weights in the space domain. RNN is good at processing sequential

data by capturing temporal information through dynamic architecture. In this

dissertation, we focus on the optimization of CNN and MLP architecture. Herein,

MLP and CNN models used well-known gradient descent and backpropagation

algorithm for training [40]. LetNet-5 [41] was proposed in 1998 for the handwrit-

ten digit recognition dataset (MNIST), which consists of two convolutional layers

and two FC layers (as shown in Fig. 3). VGGNet [8] has strong generalization

ability due to 138 million parameters across 13 convolutional layers and 2 FC

layers. As shown in Fig. 4, each convolutional layer has the same kernel size,

which is 3× 3.

9

Figure 3. Architecture of LeNet-5 [41]

Figure 4. Architecture of VGG-16 [8]

Additionally, ResNet [42] proposed a deep residual learning framework with

residual units to address the degradation problem of a very deep NN model,

showing compelling performance in terms of accuracy and convergence. Each

“Residual Units” can be described as:

yl = h (xl) + F (xl,Wl)

xl+1 = f (yl)
(2)

where xl and xl+1 are input and output of the residual unit, h(xl) represents iden-

tity mappings, which implement by shortcut connections. In addition, F (xl),Wl

denotes the residual mapping to be learned, and f is activation function. Besides,

a series ReNet variants are implemented in [43]. The above NN architectures are

used in the subsequent chapter.

10

Figure 5. Architecture of residual unit [43]

2.1.2 Spiking Neural Network

Spiking neural network imitates how the cerebral cortex represents, processes and

learns spatial-temporal information, as well as spike coding schemes and various

learning rules [44] [45]. The schematic representation of SNN with multiple cas-

caded layers is shown in Fig. 6, in which neurons integrate the binary input

spikes via synaptic weights and in turn generate spikes to post-layer when the

membrane potential exceeds the threshold potential. Thus, SNNs have shown

promising towards enabling ultra-low power AI hardware thanks to their event-

driven sparsity [46] [47] [48]. Moreover, by accumulating spatial and temporal

information, SNNs demonstrated great potential in robustness compared to con-

ventional ANNs [49] [50]. Nevertheless, the training algorithms of SNNs still

remain challenging. Specifically, the learning algorithm of conventional NN (such

as backpropagation) cannot be directly used in SNNs due to the complex neu-

ronal dynamics and non-differentiable characteristics of the activation function

(e.g. Leaky-integrate-and-fire (LIF), and integrate-and-fire (IF) neuron model).

11

...

x1

x2

xn

0
1

...
...

Wn,j

Input layer Hidden layer Output layer

0

Threshold

t

t

t

t

t

t

(a)
(b) (c)

...

Figure 6. Schematic representation of spiking neural networks with multiple

cascaded layers. (a) represents a binary spike of inputs; (b) describes the ac-

cumulation of spikes and synaptic weight; (c) illustrates the firing and resetting

mechanism of a neuron.

The learning algorithm of SNN can be divided into three categories: (1) un-

supervised learning algorithms; (2) direct supervised learning approaches; (3)

indirect supervised learning methods. Spike-timing-dependent plasticity (STDP)

is a well-known unsupervised learning algorithm of SNNs that updates the synap-

tic weights based on the correlation between the firing activities of pre-neuron

and post neuron [51] [52]. Yet STDP still performs poorly due to local neuronal

activity, rather than a global supervisor. More recently, the supervised learn-

ing algorithms of SNN, including ANN to SNN conversion (ANN2SNN) [53] and

directly-trained methods [54], break through the limitation of traditional STDP

that can only be applied to simple tasks, even reaching closed to DNN perfor-

mance. The ANN2SNN refers to trained by ANN model then converts trained

ANN model to SNN, which achieves near DNN accuracies on non-trivial datasets

with thousands or hundreds of time steps [55]. The ”time steps” refers to re-

peating the inference process t times to accumulate the final membrane potential

of the output layer, which is also inference latency. The major drawback of this

method is high accuracy at the cost of high inference latency because the absence

12

of the timing information and the firing threshold is the maximum pre-activation

of the IF neuron. By contrast, directly-trained SNN was proposed based on sur-

rogate gradient backpropagation through time (BPTT) [56] [57], which achieves

satisfactory performance with fewer time steps through the comprehensive utiliza-

tion of spatial-temporal information [58]. In that vein, Yujie Wu et al. [59] [60]

proposed a spatio-temporal backpropagation (STBP) and developed efficient pro-

gramming frameworks for directly training SNNs with high performance. Based

on the STBP learning rule, Nitin Rathi et al. [61] proposed a hybrid training

methodology including ANN2SNN for initialization and spike-timing-dependent

backpropagation (STDB) for retaining progress, which achieves 10x faster com-

pared to ANN2SNN with similar accuracy.

2.2 Efficient and Compact Neural Network

Although the DNN has gained tremendous success in many AI applications, the

DNN model is usually over-parameterized, computationally intensive, and has

colossal memory, resulting in higher computational and storage overhead [62].

Several different approaches have been proposed to address these challenges, in-

cluding reducing the model size, reducing the number of operations, and reducing

the precision of the operations. For instance, the quantization technology is in-

troduced to reduce the bit-width of operation [29], ternarized/ binarized NN is

proposed to eliminate the multiplications [30] [31][63], and the Knowledge distil-

lation is proposed to reduce the model size [35].

Figure 7. Illustration of pruning a neural network [64]

13

Besides, network pruning technology is a popular and universal solution that

pruning the original NN topology into a sparse NN, as shown in Fig. 7. By

removing the parts of parameters (e.g., synapses or biases), the computational

complexity of NN can be greatly reduced. Song Han et al. [64] proposed a

seminal work that prunes redundant connections in an iterative fashion, which

can achieve 92% parameters reduction with no loss of accuracy on the ImageNet

dataset. After that, pruning technology is one of the popular approaches to

reduce the complexity of the ANN model [33][34][65]. These methods are all

pruning during or after training, which means that the NN model must be pre-

trained before pruning. By contrast, the NNs can be sparsified in the training

phase by the pre-defined training technology in recent reports [66]. For example,

Sourya Dey et al. [67] proposed pre-defined sparse NN reduce the complexity of

training and inference stages. Souvik Kundu et al. [68] reported a pre-defined

sparsity for CNN for low complexity, which achieves 83.3% parameter reduction

on Tiny ImageNet dataset with 2.1% accuracy loss. However, these sparse NN

models obtain a compressed topology at the cost of irregularities in the DNN

model. Still, it requires additional index memory to address the non-zero weights,

which increases the memory footprint, latency, and energy consumption [36][69].

Besides, Ryan Robinett et al. [70] reported structured sparse matrices for the

DNN model. Guotian Xie et al. [71] proposed an interleaved structured sparse

convolution block to eliminate the redundancy in convolution kernels.

2.3 Efficient and Compact Spiking Neural Network

As aforementioned, SNNs have shown promising for real-time embedded AI sys-

tems and edge devices as the third generation of neural networks. Whereas the

massive amount of floating-point parameters in SNNs still take away considerable

computation efficiency and memory footprint. Similar to conventional ANN, SNN

also exits two directions to reduce the storage and computational requirements:

reducing the number of parameters and reducing the precision of parameters

(such as synaptic weight). Besides, the number of timesteps is also one of the

factors that affect the computation overhead. To this end, a few recent works

have tried to compress the SNN model through the mentioned approach. Steven

K. Esser et al. [72] converted the ANN model with a ternary weight and binary

14

activation into SNN with ternary weight, and in turn, developed them on the

TrueNorth chip. Nitin Rathi et al. [73] presented a sparse SNN topology based

on the STDP learning rule, which achieves 91.5% accuracy on MNIST when both

pruning and quantization techniques were employed. Yuhua Shi et al. [74] re-

ported a soft-pruning method on SNN, which maintained 90% accuracy on the

MNIST with 75% weight reduction. Ruizhi Chen et al. [75] proposed a novel

deep multi-strength SNN architecture to maintain the low-power benefit of SNN,

which reduces the computational operation by 85% with slight accuracy loss. At

the same time, these works are suffering from large timesteps. Lei Deng et al.

[76] realized a comprehensive SNN compression method with fewer timesteps by

introducing the alternating direction method of multipliers (ADMM), which is

validated in NMNIST, CIFAR-100 datasets. However, their compressed SNN

still can not escape from the FC manner of the first and last layers.

On the other hand, several works explored the SNN with binary weight, which

is able to implement neuromorphic or “In memory” hardware with extremely low

power consumption, thereby overcoming the memory bottleneck. Sen Lu et al.

[77] converted binary neural networks (BNNs) to binary spiking neural networks

(BSNNs), which demonstrated near full precision SNN accuracies on CIFAR-100

and ImageNet datasets with hundreds of timesteps. But at the same time, a sig-

nificant latency and computational cost are caused by its large timesteps. Hong-

Han Lien et al. [78] directly trained BSNNs based on the spatio-temporal back-

propagation (STBP) learning rule, which can significantly reduce the timesteps.

Yixuan Wang et al. [79] proposed a weights-threshold balance conversion method

to binarize the weights for object recognition. Saeed Reza Kheradpisheh et al.

[80] binarized SNN with temporal coding based on a directly supervised training

algorithm and validated the proposal on MNIST and Fashion MNIST. The main

drawbacks of these works are restricted to the small-scale dataset and oversize

network architecture.

2.4 DiaNet Topology

To configure the computing unit on the chip without any redundancy, a hardware

friendly bisection neural network (BNN) is developed instead of traditional full

connection neural networks (FC-NNs) [38]. The topology of BNN is described in

15

Fig.8. Instead of conventional full connection topology, the entire neural network

is organized by the connection of bisection structure. Each neuron communicates

to two pre-synapses and two post-synapses in adjacent. Then, the feedforward

propagation of BNN can be described as:

zl+1 = σ(wl+1
i−1a

l
i−1 + wl+1

i ali + b) (3)

where the b is bias and w is weight. For a and b subscript denotes the layer

number and superscript denotes the particular neuron in a layer. For example,

the wl+1
i−1 denotes the weight of neuron (i− 1) in (l + 1)th layer. The σ indicates

activation function, i.e., sigmoid and ReLU can be formulated as:

sigmoid(x) =
1

1 + e−x
(4)

ReLU(x) = max(0, x) (5)

Figure 8. Topology of proposed BNN [38]

The reasonable combinations of neurons perform as the diamond-shaped NNs

for specific applications such as regression for the approximate non-linear func-

tion. Thus, the structure of this NN is known as DiaNet. A large scale of BNN is

expected to be symmetrically implemented by the computational hardware, which

supports on-demand array partitioning and re-configuring for parallel processing

16

of different applications. Figure 9 schematically illustrates that the entire network

can be effectively partitioned into multiple DiaNets through multi-grained recon-

figurable (MuGR), where two synapses and one neuron with activation function

as packaged as a processing element (PE). Herein, the hardware implementations

of DiaNets are fine-grained reconfigurable by applying various weights inside PEs;

mid-grained reconfigurable by applying various DiaNet shapes for different tasks;

coarse-grained reconfigurable by organizing massive DiaNets in any scheme.

Figure 9. DiaNet topology: a large scale BNNs are symmetrically implemented

in a large scale of network-on-chip; entire network can be re-configured and par-

titioned into multiple DiaNets [38].

17

3 Ternarizing Spiking Neural Network

Spiking neural networks show great potential in continuous spatial-temporal in-

formation processing with lower energy consumption, and yet, existing approaches

usually introduce hyper-parameters and large latency that taking away significant

computation efficiency and latency. Alternatively, we present directly-trained

SNN with ternary weight to achieve a good trade-off between complexity, latency

and performance. By leveraging a parametric integrate-and-fire (PIF) neuron

with learnable threshold and STDB learning rule, the ternary spiking neural net-

works (TSNNs) enable directly trained with low latency and negligible loss of

accuracy. Subsequently, a paradigm for binary-ternary dot-product operation

is realized during the inference; therefore, the TSNNs achieve up to 16x model

compression in contrast to the full precision SNNs. Moreover, to mitigate the

accuracy gap, an optimized TSNN with a spiking ResNet structure is introduced

into TSNN. In a nutshell, temporal-based SNN with ternary weight is discussed

in this chapter.

3.1 Ternarizing Spiking Neural Network

In this section, we first propose the PIF neuron model to define the internal state

of SNNs. Secondly, we propose TSNNs and implement binary-ternary dot prod-

uct operation during the inference. Then, we introduce a one-layer-skip spiking

ResNet structure to TSNN for compensating the accuracy loss. Finally, based on

the STDB learning rule, the whole training process of TSNN is presented.

3.1.1 Parametric Integrate-and-Fire Neuron Model with Learnable

Threshold

Compared with the LIF neuron, the IF neuron without leak parameters is more

superficial in calculation and easier to implement in hardware with lower compu-

tational complexity. However, the IF neuron has worse adaptability for different

tasks. To this end, we proposed PIF neuron model with a learnable threshold to

increase heterogeneity, adaptability, and the expressiveness of neurons while keep-

ing lower computational costs. The dynamic behavior of PIF neuronal activities

18

can be formulated as:

uli(t+ 1) = uli(t) +
∑
j

W l−1
ij · ol−1

j (t+ 1)− Vtholi(t) (6)

oli(t) =

{
1, if uli(t) > Vth

0, otherwise
(7)

where uli(t) represents the membrane potential of i− th neuron in l− th layer at

time t, W l−1
ij denotes the synaptic weight between pre-neuron j− th in (l−1)− th

layer and post-neuron i− th in l− th layer, ol−1
j is binary spike output. Crucially,

Vth is a learnable firing threshold potential rather than fixed hyperparameters.

It is adaptively optimized during the training phase of the whole model, and its

initial value is 1.0. Additionally, the threshold Vth is shared by all channels of one

layer, which conforms to the similar characteristics of neighboring neurons in the

biological. In this sense, PIF introduces a tiny number of extra parameters com-

pared with the total number of parameters, which do not lead to the additional

risk of overfitting.

In addition, the first term on the right side in Eq. (6) is membrane potential

inherited from the previous timestep, the second term accumulates membrane

potential from the last layer, and the third term defines soft resetting mechanism.

Concretely, if the neuron generates a spike at (t−1), the uli(t) at t will be lowered

by Vth; on the contrary, the membrane potential will remain its value, seen as soft

resetting mechanism. The soft resetting mechanism minimizes information loss

during forwarding propagation. Equation (6)-(7) reveal that the firing mechanism

of the PIF neuron, which emits spikes when the membrane potential uli(t + 1)

greater than the Vth, and vice versa. The firing mechanism also reveals that

the deeper SNNs are easier to trigger notorious vanishing/exploding gradient

problems. Additionally, the output layer of the PIF model only accumulates the

inputs with synaptic weight overall timesteps but do not emits the output spike,

which can be formulated as:

uli(t) = uli(t− 1) +
∑
j

wij · olj(t) (8)

where, Eq. (8) reduces the information loss caused by the firing mechanism of

the last layer.

19

Conv1 BN1 PIF1 Conv2 BN2 PIF2

Conv1 BN1 PIF1 Conv2 BN2 PIF2

o
l-2

o
l

o
l-2

o
lo

l-1

o
l-1

… PIF n FC

… PIF n FC

(a) Original network of TSNN

(b) TSNN with spiking ResNet structure

Figure 10. Topology of TSNN: (a) TSNN topology; (b) TSNN with one-skip layer

spiking ResNet structure to further minimize the accuracy degradation

3.1.2 Ternarizing Spiking Neural Networks

Following the ternary weight network (TWN) [63], we employ a similar paradigm

to train ternary weight for SNNs. Specifically, using ternary weight T ∈ {−1, 0, 1}
and a scaling factor α to approximate full precision weight during the forward

and backward propagations, which can be formulated as:

Wl = αWl
T (9)

where Wl and Wl
T represent full precision weight and ternary weight of SNN,

respectively. Afterward, the approximated optimal solution was proposed to solve

the problem of minimizing the L2 distance between Wl and WT
l , which can be

described as:

W l
T =


+1 ∗ α, if W l > ∆

0, if W l ≤ ∆

−1 ∗ α, if W l < −∆

(10)

Here, ∆ is a adjustable threshold parameters, which is calculated as follows:

∆ = 0.7× E
(
W l
)

(11)

Thus, as depicted in Fig. 10(a), TSNN uses spiking convolution layer (Conv),

batch normalization (BN), and PIF neuron to construct our TSNN model. Note

that, we ternarize the SNN model from scratch, including the first layer and last

layer.

Binary-ternary dot product of TSNN. Once we obtain the SNN with

ternary weights, achieving an effective binary-ternary dot-product operation is

20

our next goal. Firstly, we employ batch normalization (BN) fusion to remove its

multiply operation during the inference phase [81], thereby keeping the event-

driven paradigm. Secondly, the dot-product operations of SNN with ternary

weights can be expressed as:

ol−1
j (t+ 1) ·W l

T = ol−1
j (t+ 1) · (αT) = α

(
ol−1
j (t+ 1) · T

)
(12)

Thus, to accelerate the dot product with binary activation and ternary weight,

Eq. (6) can be reformulated as:

ul
′

i (t+ 1) = ul
′

i (t) +
∑
j

(
ol−1
j (t+ 1) · T

)
− Vth

α
oli(t) (13)

where, the second and third term of right side in Eq. (13) can be easily obtained.

While the first term, the membrane potential ul
′
i (t) is accumulated by:

ul
′

i (t) =
t−1∑
t=0

(α
∑
j

(
ol−1
j (t) · T

)
− Vtholi(t)) (14)

By incorporating the Eq. (12)-(14), we can reformulated Eq. (6) with binary-

ternary dot product operation as below:

ul
′

i (t+ 1) =
uli(t+ 1)

α
=

t∑
t=0

(
∑
j

(
ol−1
j (t) · T

)
− Vth

α
oli(t)) (15)

Subsequently, the uli(t + 1) compares with Vth
α

rather than Vth, Eq. (7) is refor-

mulated as:

oli(t) =

{
1, if uli(t) > Vth

α

0, otherwise
(16)

where, the α and Vth are the fixed parameters in the inference phase. So, the dot

product between T ∈ {−1, 0, 1} and ol−1
j (t) ∈ {0, 1} are able to implement by

fewer simple logic operations in contrast to full precision spiking neural networks

(FPSNNs). Additionally, the bias is a constant in the inference stage, which can

be formulated as:

ul
′

i (t+ 1) =
uli(t+ 1)

α
=

t∑
t=0

(
∑
j

(
ol−1
j (t) · T

)
− Vth

α
oli(t)) +

b

α
(17)

21

3.1.3 Spiking ResNet Structure to Improve accuracy

Due to the gradient vanishing and internal covariate shift issue, it is challenging

to directly train deep SNN, thereby restricting the directly-trained method of

SNN to the shallow architecture and small-scale datasets. Inspired by the su-

perior performance of ResNet in very deep structures, a few works explored the

spiking ResNet structure. Hanle Zheng et al. [58] proposed a threshold depen-

dent BN method to replace native BN and applied it to the deep residual spiking

network. Wei Fang et al. [82] introduced the spiking ResNet structure into SNN,

which achieved higher performance on the ImageNet dataset by directly train-

ing 100 layers of SNN. However, these works are implemented with FC fashion.

Empirically, TSNNs also suffer accuracy degradation by aggressive compression.

To this end, we introduced one-layer-skip residual units into TSNN analogous

to SNN with ResNet structures to avoid accuracy degradation. As illustrated in

Fig. 10(b), the residual spiking units can be formulated as:

ol(t) = PIF

(
Fs

(
(ol−2(t) + ol−1(t)),W T

l

))
+ ol−1(t) (18)

Here, Fs is spiking residual function, which is described by Eq. (6) and Eq. (7).

On the one hand, our structure is similar to ResNet with ReLU before addition

structure. On the other hand, different from ResNet, the internal state of Fs not

only depends on the input ol−1(t), identity mapping ol−2(t) and W T
l , but also

depends on the membrane potential of previous timesteps and Vth. Additionally,

PIF is explained by Eq. (7), which follows the firing mechanism.

3.1.4 Overall Training Implementation

To compute gradients by leveraging the temporal and spatial information, we

employ STDB learning rule and cross-entropy loss function L to directly train

the overall TSNN model. The weight and threshold update is computed as:

∆W l
ij =

∑ ∂L

∂W l
ij

=
∑ ∂L

∂oli(t)

∂oli(t)

∂uli(t)

∂uli(t)

∂wlij
(19)

∆V l
th =

∑ ∂L

∂V l
th

=
∑ ∂L

∂oli(t)

∂oli(t)

∂uli(t)

∂uli(t)

∂V l
th

(20)

22

wherein, we introduce the surrogate gradient to approximate real gradient [57],

which is described as below:

∂oli(t)

∂uli(t)
= 0.3 ∗max

{
0, 1−

∣∣∣uli(t)∣∣∣} (21)

Therefore, We present an informal programmatic construction for implementing

the overall training of proposed TSNNs, as shown in algorithm 2.

Algorithm 1 Overall Training Algorithm

Input: Minibatch of inputs (X) and labels (Y), initial parameters: weight (Wl),

membrane threshold Vth, membrane ul(t), times step(T), learning rate η

Output: updated parameters W T
l ,Vth

1: Forward propagation:

2: for t = 1 to T do

3: for l = 1 to L− 1 do

4: Obtain the weight threshold ∆ by initial weight(Wl) and (11)

5: Compute the ternary weight W T
l based on (10)

6: Obtain the scaling factor αl and T by (9)

7: Calculate the membrane potential uli(t) with αl and T by (15)

8: Generate the spike by (16) through pre-trained Vth

9: end for

10: for l = L− 1 to L do

11: Obtain the scaling factor αl and T by (9) (11)

12: Calculate the membrane potential uLi (t) by (15) and do not generate

spike

13: Compute the loss L

14: end for

15: end for

16: Backward propagation:

17: Wl update: Wl ← Wl − η∆W l based on (19)

18: Vth update: Vth ← Vth − η∆Vth based on (20)

19: return Wl, Vth

23

3.2 Experiments and Results

3.2.1 Datasets and Implementation

For proof of feasibility, we evaluate our TSNN on two public static datasets, in-

cluding CIFAR-10 and CIFAR-100, and one neuromorphic dataset like N-MNIST

[83]. CIFAR-10 comprises ten categories and 60000 colored images (includ-

ing 50000 training images and 10000 testing images), whose sizes are 32 × 32.

CIFAR-100 has the same configuration as CIFAR-10 but contains 100 categories.

N-MNIST dataset is a spiking version of the original MNIST, whose size is 34 ×
34, and the training-testing ratio is the same as CIFAR-10. We use normalization

technology to pre-process input images and L2 weight decay of 0.00001 for reg-

ularization. In training, we employ the SGD optimizer with default parameters

and the dropout technique with 0.2 probabilities. The learning rate is set to 0.1

at the beginning and is lowered by 0.5× at epoch 50. N-MNIST experiments are

trained for 70 epochs with a batch size of 128, and CIFAR-10/100 experiments

are trained for 200 epochs with a batch size of 64. Note that, due to straightfor-

ward terinarization operation of weight, we employ a direct encoding scheme [84]

in this work to make the input features are the same in each timestep during the

ternarized process. Furthermore, we use max-pooling technology in our TSNN

model to maintain the binary output of each neuron. Additionally, all analysis

experiments are implemented in the Pytorch framework [85].

3.2.2 Experimental Results

Firstly, we investigate the performance gap between full precision SNNs and

TSNNs. Then, we compare the performance between IF neuron with a fixed

Vth and PIF neuron.

Comparison between TSNN and full precision SNN. Empirically, the

performance of full precision SNNs is the upper-bound performance of any com-

pressed SNNs. The directly-trained compressed SNNs have two factors that affect

performance: on the one hand, the performance degradation (including accuracy

and latency) caused by model compression; on the other hand, the unique nature

of SNN makes them more challenging to train than the DNNs. To allow a fair

comparison, FPSNN and TSNN models perform the same task in the same topol-

24

0 10 20 30 40 50 60 70
Epoch

30

40

50

60

70

80

90

100

V
al

id
at

io
n

A
cc

ur
ac

y(
%

)

N-MNIST

FPSNN with T=4
TSNN with T=4
TSNN with T=2
TSNN with T=1

(a) N-MNIST

0 50 100 150 200
Epoch

30

40

50

60

70

80

90

Va
lid

at
io

n
Ac

cu
ra

cy
(%

)

CIFAR-10
FPSNN with T=4
TSNN with T=4
TSNN with T=2
TSNN with T=1

(b) CIFAR-10

0 50 100 150 200
Epoch

0

10

20

30

40

50

60

70

Va
lid

at
io

n
Ac

cu
ra

cy
(%

)

CIFAR-100
FPSNN with T=4
TSNN with T=4
TSNN with T=2
TSNN with T=1

(c) CIFAR-100

Figure 11. Validation accuracy curves of full precision SNNs and TSNNs with

different timesteps over N-MNIST, CIFAR-10 and CIFAR-100 datasets

ogy with the same configuration. Fig. 11 depicts the validation accuracy curves

of FPSNNs and TSNNs with different timesteps on N-MNIST, CIFAR-10, and

CIFAR-100 datasets, where T represents timestep. As illustrated in Fig. 11(a),

with 4 time steps, the N-MNIST with ternary weight achieves almost the same

performance as FPSNN, which are superior to TSNN with 1 timestep. Indeed,

the full precision SNN converges faster, but the TSNN achieves similar perfor-

mance within 20 epochs. Additionally, as shown in Fig. 11(b), the FPSNN and

25

TSNN achieve 91.02% and 89.07% classification accuracy with just 4 timesteps

over CIFAR-10, respectively. The TSNN can also get acceptable accuracy with

extreme 1 timestep due to the direct encoding and VGG7-128 topology. However,

as shown in Fig. 11(c), when processing a larger-scale of CIFAR-100, the accu-

racy of TSNN with 4 timesteps is increased by 8.56% compared with TSNN with

a 1 timestep; compared with FPSNN, there is still a 2.26% accuracy gap. As a

result, although longer timesteps lead to better accuracy, our TSNNs can achieve

near full precision performance with only 4 timesteps and have a 16x compression

rate compared to FPSNN counterparts.

Comparison between PIF and IF neuron. Since N-MNIST is easy to

implement on the directly-trained SNN, the performance comparison of PIF and

IF neurons are difficult to reflect on this dataset. Thus, we compare the val-

idation accuracy of PIF neurons and IF neurons in TSNN on CIFAR-10 and

CIFAR-100. The threshold potential Vth used to balance the membrane potential

ensures the firing rate of the SNN, which also guarantees the performance of the

model. Specifically, if the Vth is too small, the neuron emits spikes all the time,

thereby the neuron insensitive to the feature. On the other hand, if the Vth is too

large, the neuron is challenging to exceed the Vth for generating spikes, thereby

leading to vanishing spike propagation. As a rule of thumb, we use 0.6&1.0 and

0.8&1.0 as Vth for CIFAR-10 and CIFAR-100, respectively. Fig. 12(a) shows

the validation accuracy of mentioned experiments on CIFAR-10; the PIF neuron

outperforms the IF neuron with a 1.05% accuracy gap. In addition, the com-

prehensive performance of PLF neuron on CIFAR-100 is better than that of IF

neuron, such as 3.13% accuracy gap and convergence speed, as shown in the Fig.

12(b). In this sense, PIF has more prominent advantages for deeper SNN models.

Moreover, we take Vth update process of the first layer as an example to analyze

its self-optimization process, as shown in Fig. 13. The Vth update is consistent

with Eq. (19) and backpropagation. Furthermore, the result in Fig. 12 and Fig.

13 demonstrate that PIF improves the performance of the SNN model without

any extra computational cost.

26

0 50 100 150 200
Epoch

30

40

50

60

70

80

90

Va
lid

at
io

n
Ac

cu
ra

cy
(%

)

CIFAR-10

PIF neuron
IF neuron with Vth = 0.6
IF neuron with Vth = 1.0

(a) CIFAR-10

0 50 100 150 200
Epoch

10

20

30

40

50

60

Va
lid

at
io

n
Ac

cu
ra

cy
(%

)

CIFAR-100

PIF neuron
IF neuron with Vth = 0.8
IF neuron with Vth = 1.0

(b) CIFAR-100

Figure 12. Validation accuracy curves of PIF v.s. IF over CIFAR-10 and CIFAR-

100 datasets

0 50 100 150 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Th
re

sh
ol

d
V t

h

CIFAR-10
CIFAR-100

Figure 13. Update process of the first layer Vth during training over CIFAR-10

and CIFAR-100 datasets

3.2.3 Accuracy Evaluation on Spiking ResNet Structure

As aforementioned, we introduce the spiking ResNet structure into TSNN model

to improve the accuracy, which can still benefit from the computation reduction

27

and memory savings. To verify the spiking ResNet structure that can effectively

compensate for the accuracy loss caused by the ternarization, we perform the

experiments in a similar configuration on CIFAR-10 and CIFAR-100. On the basis

of the TSNN prototype, the optimized TSNN with spiking ResNet improved by

0.84% and 0.51% on the CIFAR-10 and CIFAR-100, respectively, due to the one-

layer-skip identity mappings. All configurations and experimental comparison

results of TSNN and optimized TSNN are listed in Tab. 1. Indeed, the inputs of

each neuron are changed, which provide a trade-off between the computational

costs and accuracy.

Table 1. Comparison between the TSNN and TSNN with spiking ResNet struc-

ture.

Case Weights Inputs∗ CIFAR-10 CIFAR-100

TSNN (-1,0,1) (0,1) 89.07% 65.24%

TSNN with
(-1,0,1) (0,1,2) +0.84% +0.51%

Spiking ResNet

∗ Here the inputs represent the input of each neuron.

3.3 Comparisons with State-of-the-art Works

We compare the proposed TSNNs with the state-of-the-art works on several

benchmark datasets regarding the accuracy, timesteps, and compression rate. As

illustrated in Tab. 2 and Tab. 3, our directly-trained TSNN not only compresses

SNNs but also achieves high performance even on more complicated datasets.

For neuromorphic N-MNIST dataset, compared to [60], this work performs a 16x

compression rate with a slight accuracy loss and fewer time steps. Additionally,

compared with BSNNs based on ANN2SNN [77] and [79], TSNNs improve ac-

curacy and reduce the timesteps by 25× on CIFAR-10; moreover, our TSNNs

achieve 3.17% 5.02% accuracy improvement and 26.25× 75× timestep reduction

by sacrificing the compression rate of the model. The performance of TSNN is

lower than BSNNs based on a directly-trained method with oversize architecture

[78] because the model size has a significant impact on the compressed network.

28

However, our TSNN has a large model capacity compared to directly-trained

BSNN. As a result, our TSNNs can compress parameters by 16x in various appli-

cations while maintaining close to full precision accuracy and low latency, thereby

significantly reducing computational and memory costs.

Table 2. Network structures and training methods used for accuracy performance

on various datasets

Dataset Training Method Architecture

AAAI’2019 [60]∗ N-MNIST Directly-trained 128C3*2

This work N-MNIST Directly-trained 16C3*3

TCDS’2020 [79] CIFAR-10 ANN2SNN VGG9-128

ISCAS’2021 [78] CIFAR-10 Directly-trained VGG13-128

This work CIFAR-10 Directly-trained VGG7-128

This work with
CIFAR-10 Directly-trained ResNet9-128

spiking ResNet

TCDS’2020 [79] CIFAR-100 ANN2SNN VGG8-128

Front. Neurosci’2020 [77] CIFAR-100 ANN2SNN VGG16-64

This work CIFAR-100 Directly-trained VGG11

This work witht
CIFAR-100 Directly-trained ResNet11-128

spiking ResNet

* ∗ This model employs average-pooling in SNNs, which results in the activation output being

float point rather than binary output.

29

Table 3. Performance comparison between the proposed method and the state-

of-the-art quantization methods on various datasets.

Dataset Time Precision Accuracy Compression

steps of weight rate

AAAI’2019 [60]∗ N-MNIST 10 Full precision 99.53% 1x

This work N-MNIST 4 Ternary 98.43% 16x

TCDS’2020 [79] CIFAR-10 100 Binary 90.19% 32x

ISCAS’2021 [78] CIFAR-10 8 Binary 90.28% 32x

This work CIFAR-10 4 Ternary 89.07% 16x

This work with
CIFAR-10 4 Ternary 89.91% 16x

spiking ResNet

TCDS’2020 [79] CIFAR-100 300 Binary 60.22% 32x

Front. Neurosci’2020 [77] VGG16-64 105 Binary 62.07% 32x

This work CIFAR-100 4 Ternary 65.24% 16x

This work witht
CIFAR-100 4 Ternary 65.75% 16x

spiking ResNet

3.4 Conclusion

This section develops directly-trained TSNNs based on PIF neurons to achieve a

good trade-off between complexity, latency, and accuracy by reducing computa-

tional and memory costs with low latency and slight accuracy loss. The proposed

TSNN is evaluated on N-MNIST, CIFAR-10, CIFAR-100, which achieved 98.43%,

89.07%, 65.24% accuracy with 4 timesteps, respectively, and achieved up to 16x

model compression. Furthermore, we introduce spiking ResNet structure into

TSNNs to mitigate the accuracy gap. Based on this prototype, the optimized

TSNN improves by 0.84% and 0.51% over CIFAR-10 and CIFAR-100 datasets,

respectively. Besides, a paradigm for binary-ternary dot-product operation is

proposed to eliminate MAC operation in the inference stage.

30

4 DiaNet: An Elastic Neural Network for Ef-

fectively Re-configurable Implementation

Since the PE and interconnection are arranged in pre-silicon, the noticeable PE

and wire connections might be inactivated when the FC-NN is reconfigurable,

leading to remarkable redundancy. It has been shown that the spatially expanded-

based DiaNet behave as massive approximate calculation units (few operands) in

fully parallel with rich flexibility and ultra-low cost [38]. Considering the global-

grained re-configurability, it is expected to migrate more complex tasks (pattern

recognition and complex vector regression for instance) onto DiaNet. In Chapter

4, we raised a key question:

It is possible to implement complex applications on the DiaNet topology with

ultra-low sparse connections to achieve the same performance as FC-NN?

We answer this question in Chapter 4. In this chapter, we will implement the

complex application by the improved and optimized scheme of DiaNet. Moreover,

a series evolutionary technique of DiaNets topology is proposed to optimize the

prototype.

4.1 DiaNet for Neural Network Applications

Compared to reconfigurable FC-NN in parallel, such as Loihi [23] or TrueNorth

[22], the re-configuration of DiaNet avoids the enormous redundancy of synapses

during the configurations. The efficiency of structure re-configuration, as shown

in Fig. 14, has been investigated. Here, since the application is unpredictable,

neuron and local connections should be planned on-chip. When the entire network

is partitioned into two sets, (n1 + n2) × (m1 + m2) synapses are utilized and

m1n2 + m2n1 synapses are inactive during reconfiguration in the FC-NNs. In

contrast, reconfiguration in the DiaNets only requires 2× (n1 +n2) synapses and

wastes only 2 synapses. It shows that the bisection topology can avoid numerous

redundancy during reconfiguration as that in the conventional FC-NNs.

31

1 n1 k N

1 m1 p M

n1 n2

m1 m2

1 n1 k N

1 m1 p M

n1 n2

m1
m2Chip a Chip b

(a) (b)

Figure 14. The redundancy comparisons of different NN topology; (a) partitioning

two sets of FC-NNs; (b) partitioning two sets of BNNs.

Processing

Element

Pattern
Recognition

…

…

Inputs

Outputs

w1 w2

…

...

…

…

…

…

…

…

A

B

C

A

Input:

Output:

≈

...

...A

C

B

b

Figure 15. The layout of PE array with DiaNet topology: a large scale PE arrays

can be re-configured and partitioned into various tasks, which are executed in

independent DiaNets parallelly.

In this sense, the entire network with bisection mesh structure on hardware can

be efficiently partitioned into arbitrary DiaNet for various application rather than

simple regression with few operands with any redundancy. Figure 15 schemati-

cally illustrates that the entire network can be effectively partitioned into mul-

tiple DiaNets to support various tasks, which are configured by MuRA. Besides,

global-grained re-configurable by directly mapping a complex NN inference task

to a large scale of DiaNet. Herein, global-grained re-configurable is a direct map-

ping of complex NN inference task to a large scale of DiaNet, which is regarded

as a complement to MuRA. Specifically, By configuring the entire network into

pieces of DiaNets, three types of behaviors and computations can be carried out.

32

Type-A performs the operation of non-linear functions with few operands by small

DiaNets; type-B is used to retrieve vector calculations; and type-C migrates the

behaviors of complex full connection neural networks. In the real-world applica-

tions, computer vision for instance, type-A and B are expected to speed up the

pre-processing and convolutions, and type-C helps to construct a full connection

NN-based classifier in fully parallel.

As aforementioned, a reasonable connections of BNNs perform as DiaNet

topology for specific applications. BNNs are essentially sparse NN with a fixed

degree and fixed path-connection properties. How to ensure the effectiveness

of the DiaNet network with extremely sparse properties? Interestingly, several

works have proposed the necessary condition for sparse NN model with good rep-

resentation ability, that is, sufficient information flows through the entire network

[66] [86]. Namely, each output should be sensitive to all input features. Here, we

provide the following three guidelines on designing DiaNet topology:

1. Recognition applications. When output node m greater than 1, to ensure

that each output node depends upon all n input nodes, the DiaNet topology

is composed of at least (n + m − 2) hidden layers, wherein the upper part

of DiaNet are expanded layers le, which require (m − 1) layers. Hence, its

lower part requires (n− 1) layers, which are shrinkage layer ls.

2. Regression application with n input greater than 3. On the premise of the

necessary condition, the DiaNet topology is also composed of (n + m − 2)

layers, which presents inverted triangle-shaped and only has shrinkage layer

ls.

3. Regression application with n input less than 3. These DiaNet topologies

are special diamond-shape [38].

Thus, as motivated by the above guidelines, an informal programmatic construc-

tion is described in the algorithm 2. Wherein l and i denote the number of layers

and neurons, respectively. However, by directly applying DiaNet for complex pat-

tern recognition applications, all the features are fed into the input layer leading

to the remarkable depth of the structure. In that vein, the very deep DiaNets

result in vanishing gradient problem [87], which leads to the network unable to

converge.

33

Algorithm 2 Generating DiaNet1.0 Topology

Input: n inputs and m outputs

Output: DiaNet Topology

1: if m = 1→ regression applications (n ≥ 3) then

2: // DiaNet topology only has ls

3: for l = 0, l ≤ n+m− 2, l + + do

4: for i = 1, i ≤ n+ l, i+ + do

5: create neuron (l, i)

6: connect (l − 1, i) and (l, i)

7: connect (l, i) and (l − 1, i+ 1)

8: end for

9: end for

10: return DiaNet Topology

11: else m ≥ 2→ recognition applications

12: // DiaNet topology has ls and le

13: for l = 0, l ≤ n+m− 2, l + + do

14: if l ≤ m− 1 then

15: // Constructing le

16: for i = 1, i ≤ n+ l, i+ + do

17: create neuron (l, i)

18: connect (l − 1, i− 1) and (l, i)

19: connect (l, i) and (l − 1, i)

20: end for

21: else

22: // Constructing ls

23: for i = 1, i ≤ n+m+ 1− i, i+ + do

24: create neuron (l, i)

25: connect (l − 1, i) and (l, i)

26: connect (l, i) and (l − 1, i+ 1)

27: end for

28: end if

29: end for

30: return DiaNet Topology

31: end if

34

4.2 Evolution of DiaNet Topology

In this subsection, we address the remarkable depth problem in the structure

of DiaNet topology by introducing I/O layer integration and skip connection

techniques.

4.2.1 I/O Layer Integration

Instead of feeding all features into the input layer, they are suggested to feed

into neurons in the hidden layer of the DiaNet prototype. Hence, developing the

structure of I/O layer integration based on the DiaNet1.0 topology, which knows

as DiaNet2.0. The adjacent matrices (Adl ∈ R) between lth and (l+ 1)th layer of

SNN can be described as [66]:

Adl[i][j] =

1, if(i, j) ∈ El
0, otherwise

(22)

where, (i, j) denotes the connection between ith neuron in the lth layer and jth

neuron in the (l + 1)th layer. El indicates the connections between consecutive

layers; zero denotes absence of connections. Thus, the weight matrix of DiaNet2.0

topology is described in Fig. 16.

le

ls

 
 
 
 
 
 
 
 
 
 
 

1 1 0 0 0 0

0 1 1 0 0 0

0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0

0 0 0 1 1 0

0 0 0 0 1 1

1

1

Edge Matrix of size 7×6

n1
n2
n3
n4
n5
n6
n7

m1 m2 m3

n8 n9

n10

Figure 16. Layout of DiaNet 2.0 topology with adjacency matrices

The (l+1)th layer of DiaNet2.0 topology receives the information from preced-

ing layer (lth layer) and an additional feature xi (xi ∈ ni). Then the feedforward

35

can be formulated as:

zl+1 =

σ(wl+1
i−1a

l
i−1 + wl+1

i ali + wl+1xi + b), l ∈ le
σ(wl+1

i−1a
l
i+1 + wl+1

i ali + wl+1xi + b), l ∈ ls
(23)

Crucially, DiaNet2.0 topology has to satisfy the necessary condition of con-

structing DiaNet. We explore the effectiveness of DiaNets2.0 by designing an

“isosceles triangle” structure that accepts input features. Namely, neurons inside

the “isosceles triangle” structure based on the DiaNet1.0 topology can directly

receive input features that ensure each output depends upon all input features.

In this manner, the number of features in the input layer (denoted as n0) are

reconsidered and can be formulated as:{
n0 + (n0 − 1) + (n0 − 2) + ...+ 2 + 1 ≥ ntotal

n0 ≥ 3
(24)

where ntotal denotes the total number of the inputs, and (n0 − 1) indicates the

number of neurons in the first hidden layer that can accept input features.

Algorithm 3 Generating DiaNet2.0 Topology

Input: n inputs and m outputs

Output: DiaNet2.0 Topology

1: // Calculate the minimum value of n0 based on equation. 24

2: // Call algorithm1 function to construct DiaNet1.0 topology with n0 inputs

and m outputs. Thus, total number of layers are n0 + m − 2; k = n − n0

features are suggested to feed into neurons inside the “isosceles triangle”

3: if k>0 then

4: // Constructing “isosceles triangle”

5: for l = 0, l ≤ ln0−1, l + + do

6: for i = n0 + 1, i ≤ (n− n0), i+ + do

7: Add additional input feature xi

8: end for

9: end for

10: else k = 0

11: return DiaNet1.0 Topology

12: end if

36

Analogously, with the number of hidden layers increases, the neuron that

receives features decrease until reach the vertex layer ln0 of “isosceles triangle”.

Thus, we present an efficient algorithm that generates DiaNet2.0 topology (see

informal Algorithmic program 3).

n1 n2 n3 n12 n13……

……

……

m1 m2 m3

n1
n2
n3
n4 n5

n6
n7 n9

n11

n8

n12

n13

n10

m1 m2 m3

(a) (b)

DiaNet1.0 DiaNet2.0

w2
b

niw2

b
w3

w1w1

Figure 17. The layout of different DiaNet typologies for Wine dataset: (a) the

DiaNet1.0 topology with 14 layers; (b) the DiaNet2.0 topology with 6 layers,

which towards depth reduction.

Figure 17 illustrates the DiaNet1.0 and DiaNet2.0 topology of the Wine

dataset with 13 attributes and three labels. Evolving from DiaNet1.0 to DiaNet

2.0 topology, the accuracy is increased from 88.89% to 98.15% and the number

of layers towards depth reduction. The depth is one of the greatest problems

causing the decay on inference quality of DiaNets. Assuming N inputs are fed

into DiaNet1.0, the depth increases in O(N) for fanning the contribution of all

inputs out to end as output. By DiaNet2.0, the depth grows in O(
√
N) since the

inputs are integrated to even the inner PEs. As a result, the theoretically nec-

essary depth of DiaNet2.0 is smaller than the prototype along with N increases.

In this manner, the inference quality for complex tasks is improved. Although

the depth problem is alleviated and the accuracy is improved, the performance is

still unstable and even crash on some complex tasks. For instance, to realize the

recognition of MNIST, the construction of DiaNet topology requires at least 36

layers of BNN (according to Algorithm 2), and the accuracy is still about 20%

because of the vanishing gradients. Fortunately, this problem has been largely

addressed by additional techniques, including initial normalization [88] [89] and

37

batch normalization [90]. However, these additional optimization mechanisms

not only suffer from expensive computation but also show case-by-case behaviors

that even damage the original topology.

4.2.2 Skip Connections

Skip connections are additional connections between nodes in non-consecutive

layers of NN that skip one or more layers. Several works have recently demon-

strated that skip connection has substantially improved the degradation problem

of the extremely deep neural network [42] [91]. Moreover, other works have pro-

posed novel explanations for skip connections: the introduction of short-circuit

skip-connection can avoid the vanishing gradient problem and eliminate the lin-

ear dependence of singularities in the network[92] [93]. Inspired by these benefits,

skip connection is introduced to address the vanishing gradient without destroy-

ing the original topology structure. Based on DiaNet2.0 topology, the evolution

of DiaNet topology is constructed by adding a skip two-layer connection between

each layer (note that skip connections are not allowed in the input layer), as

shown in Fig. 18. This structure is called as DiaNet3.0 topology. In this sense,

the Eq. (23) can be modified to Eq. (25), which describes the feedforward of

DiaNet3.0 topology.

zl+1 =

σ(wl+1
i−1a

l
i−1 + wl+1

i ali + wl+1xi + b) + zl−1, l ∈ le
σ(wl+1

i−1a
l
i+1 + wl+1

i ali + wl+1xi + b) + zl−1, l ∈ ls
(25)

where, Eq. (9) indicates the skip connectivity between (l + 1)th layer and (l − 1)th

layer. The zl−1 denotes the identity matrix of (l − 1)th layer. Detailed real-world

experiments in Section 4.3 are supported by these architecture.

38

n1
n2
n3
n4 n5

n6 n7 n9

n11

n8

n12

n13

n10

m1 m2 m3

(a)

n1
n2
n3
n4 n5

n6 n7 n9

n11

n8

n12

n13

n10

m1 m2 m3

(b)

DiaNet2.0 DiaNet3.0

ni

w1

w2

b
w3

ni
w2

b
w3

w1

Without w

Zl-1

Figure 18. The layout of different DiaNet typologies for Wine dataset: (a) the Di-

aNet2.0 topology; (b) the DiaNet3.0 topology towards performance improvement

by adding skip connections.

4.3 Experimental Results

In this subsection, we present experiments to analyze the performance of Di-

aNet topology with its evolution techniques and validate the effectiveness of the

proposed methods.

4.3.1 Datasets and Implementation

Firstly, the UCI database [94] including Haberman’s Survival, Iris, Car Evalu-

ation, Pima India Diabetes, and Wine is employed to verified the recognition

performance of DiaNet1.0. Secondly, we perform the experiments on the MNIST

dataset to understand the typical behavior of series evolutionary technique of

DiaNet. Similar to LeNet5 architecture [41], we setup the MNIST experiment

consists of 2 convolution blocks for extracting features and DiaNet topology for

classification. Each convolution block has convolution layers, max-pooling layer,

ReLU activation function, and batch normalization technique. In this work, we

only study the feasibility of classifier. In this sense, the output from the 2nd

convolution block is flattened into a vector with 400 features. Namely, these 400

features and ten labels are employed to analyze the evolution of DiaNet topol-

ogy. Thirdly, To further verify the performance of DiaNet3.0 , we perform the

experiments on Fashion-MNIST [95] and CIFAR-10 datasets. Similar to MNIST

39

and CIFAR-10, the Fashion-MNIST also consists of ten categories and 28 × 28

gray-scale images.

Additionally, the Wine dataset is employed to compare the performance of

DiaNet prototype and its evolution techniques. Besides, we compare the perfor-

mance between DiaNet and other sparse NNs on MNIST, Fashion MNIST and

CIFAR-10 datasets. Finally, the Ionosphere and Waveform Database Generator

dataset (version 2) from the UCI database are used to verify the feasibility of

multiple independent DiaNets for parallel processing. The Ionosphere dataset

consists of 34 attributes and two classifications. Besides, the Waveform Database

Generator dataset (Waveform dataset) comprises 40 features and three labels.

Our implementation is based on PyTorch library [85].

4.3.2 Experimental Results of DiaNet1.0

By applying the DiaNet topology, the recognition accuracy and the amount of

synapses (see Tab. 4) are similar to the baseline of FC-NN (detailed in the follow-

ing section) for all the examples [96]. However, the straight implementation of Di-

aNet leads to the remarkable depth of network structure. For instance, the Wine

Dataset is performed by the thirteen-feature-three-class classifier, which is carry

out by a DiaNet organized as the scheme of 13-14-15-14-13-12-11-. . . -4-3. The

very deep structure results in the large number of synapses (even though smaller

than FC-NN still) and difficulty on training [97]. In this sense, the complex tasks

such as pattern recognition demand additional optimization technologies on the

basis of DiaNet topology.

Table 4. Performance of DiaNet prototype over five datasets

Dataset] instances] feature] class Accuracy] synapse

Haberman’s Survival 306 3 2 69.57% 16

Iris 150 4 3 97.80% 42

Car.Eval 1728 6 4 95.57% 102

Pima India Diabetes 768 8 3 80.52% 86

Wine 178 13 3 88.89% 156

]: represents the number

40

4.3.3 Experimental Results of Evolutionary DiaNet

For proof of feasibility, we analyze the behavior of DiaNet2.0 and DiaNet3.0

topology through various experiments. First, we explore the effect of evolution

methods based on Section 4.2. Second, we analyze the impact of varying ac-

tivation functions. All analysis experiments are trained for 70 epochs with a

fixed batch size of 128. The learning rate is set to 0.01 initially and is lowered

five times at epoch 10. The L2 weight decay of 10−6 is applied for regularization.

The Adam optimizer [98] with default parameters is employed during the training

phase. Additionally, we use the testing accuracy as a performance metric.

Analysis of optimized DiaNet topology. According to algorithm 2, the

DiaNet1.0 topology requires at least 408 layers for classifying the MNIST dataset.

Meanwhile, according to Algorithm 3, the number of layers of DiaNet2.0 is re-

duced to 8.8% of the DiaNet prototype. In this sense, the problem of remarkable

deep and broad structure can be resolved effectively, thereby reducing the com-

putation complexity and compressing a massive DiaNets into a specific state.

Unfortunately, the accuracy is only about 20% because vanishing gradient de-

scent exists, hampering the convergence from the beginning. As aforementioned,

this problem has been largely addressed by an additional mechanism, such as

a batch normalization technique. The training procedures is shown in the blue

line of Fig. 19. This result demonstrates that the DiaNet2.0 topology with 36

layers can converge, but its learning slow-down and accuracy quickly saturates;

compared to the baseline model, its accuracy loss is about 3%. Moreover, these

additional optimization mechanisms not only suffer from expensive computation

but also damage the original topology. Hence, we perform the MNIST experi-

ments based on DiaNet3.0, and the training procedure is shown in the red line of

Fig. 19. Compared with DiaNet2.0 topology and its optimization scheme using

batch normalization, DiaNet3.0 not only avoids the problem of gradient vanishing

but also solves the problem of learning slow down and degradation. We further

explore the performance of DiaNet3.0 with an optimized batch normalization

scheme. We find that the performance of DiaNet3.0 with the optimized scheme

and DiaNet3.0 topology are almost the same. The DiaNet3.0 reduces batch nor-

malization parameters, which becomes a primary reason to use the DiaNet3.0

topology for performance improvement.

41

0 10 20 30 40 50 60 70
Epochs

60

65

70

75

80

85

90

95

100

Va
lid

at
io

n
Ac

cu
ra

cy
(%

)

DiaNet2.0 with Batch
 normalization
DiaNet3.0
DiaNet3.0 with Batch
 normalization

Figure 19. Comparison of MNIST clas-

sification accuracy as a function of dif-

ferent optimized schemes

0 10 20 30 40 50 60 70
Epochs

95.5

96.0

96.5

97.0

97.5

98.0

98.5

Va
lid

at
io

n
Ac

cu
ra

cy
(%

)

Sigmoid
ReLU
Leaky ReLU at 0.0625
Leaky ReLU at 0.125

Figure 20. Validation accuracy during

training phase on the MNIST dataset,

for various activation functions.

Effect of activation function. Although the parameters of proposed model

are reduced compared to other SNN topologies, the number of neurons has

increased. This means that the effect of activation function and bias on Di-

aNet topology is increased. Thus, we investigate the influence of various acti-

vation functions. Sigmoid and ReLU activation functions are well-known. The

LeakyReLU activation function [99] can be formulated as equation (26):

LeakyReLU(x) =

 x, ifx ≥ 0

negative slope× x, otherwise
(26)

We employ the values 0.125 and 0.0625 for the negative slope of LeakyReLU func-

tions, which are feasible to implement by shifted techniques and comparators in

hardware and incurs negligible hardware costs. Figure 20 shows the validation

accuracy of various activation functions. The LeakyReLU function at 0.125 per-

forms the best, and the sigmoid function performs the worst, in terms of accuracy,

which is due to the LeakyReLU function at 0.125 makes full use of input features

and sigmoid function has saturated neurons problem. While the ReLU function

exacerbates the loss of negative part of the feature information. Besides, the

sigmoid function uses the exponential function, which is inflexible to implement

in hardware. This motivates us to use the LeakyReLU activation function.

42

Table 5. The network architecture of Fashion-MNIST and CIFAR-10 datasets
Datasets Architecture Mark

Fashion-MNIST

16C3-M2-32C5-M2-512-10 F1

16C3-M2-32C5-M2-512-256-10 F2

16C3-M2-32C5-M2-512-DiaNet-10 F3

CIFAR-10

64C3-M2-128C3-M2-256C3*2-M2-

512C3*2-M2-512C3*2-M2-512-10
C1

64C3-M2-128C3-M2-256C3*2-M2-

512C3*2-M2-512C3*2-M2-512-512-512-10
C2

64C3-M2-128C3-M2-256C3*2-M2-

512C3*2-M2-512C3*2-M2-512-DiaNet-10
C3

0 50 100 150 200
Epoch

84

86

88

90

92

Va
lid

at
io

n
Ac

cu
ra

cy
(%

)

Fashion-MNIST
F1
F2
F3

(a) Fashion-MNIST

0 50 100 150 200
Epoch

30

40

50

60

70

80

90

Va
lid

at
io

n
Ac

cu
ra

cy
(%

)

CIFAR-10

F1
F2
F3

(b) CIFAR-10

Figure 21. Validation accuracy curves of DiaNet over Fashion-MNIST and

CIFAR-10 datasets

Application of DiaNet. To further analyze the capacity of DiaNet3.0 with

the LeakyReLU function, we perform the experiments on Fashion-MNIST and

CIFAR-10. Similar to the MNIST experiment, these experiments also use CNN

for feature extraction and DiaNet for classification. We use the following VGG-

like architectures, which is shown in Tab. 5.

These experiments are trained for 200 epochs using the above settings. Espe-

cially, the 0.78 is used for the DiaNet with negative slope of LeakyReLU functions

43

on the CIFAR10 experiment. The training procedure is shown in Fig. 21. The

results demonstrate that the DiaNet can achieve near full connection precision

and capacity. In summary, the DiaNet series has successfully implemented three

types of applications, including non-linear approximate function (regression), con-

volution operations, and classifiers. Namely, the proposed DiaNet can be applied

in image classification (see Fig.21), biomedical classification (see Tab. 4), and

regression. To some extent, since these applications have limited labels, the

corresponding DiaNet architecture with appropriate depth can be generated and

successfully trained. By contrast, the DiaNet model is hard to execute text/video

tasks with one hundred of the label because the optimized scheme only focuses

on input integration.

4.3.4 Comparison Results

The proposed DiaNet topologies are compared to other state-of-the-art works,

including sparse NNs, pruning NNs and pre-defined sparse NNs, in terms of ac-

curacy and computation cost. Table 6 demonstrates the performance comparison

of different DiaNet topologies over the Wine dataset. Along with the evolution

from DiaNet1.0 to DiaNet3.0, the network is deeply compressed but the accu-

racy is improved. From the training algorithms of DiaNets mentioned above, the

essence of our proposed topology is eliminating (almost) all of ineffective synapses

and neurons. Theoretically, DiaNets have a potential to achieve similar even be-

yond accuracy of conventional FC-NNs with compressed parameters. However,

all versions of DiaNets lead to the depth-explosion, which damage the inference

accuracy due to the gradient vanish problem. By integrating the input synapses

(addressing DiaNet2.0) and attaching one additional skip connection to each neu-

ron (addressing DiaNet3.0), the effects of all input can efficiently sink to output.

As a result, the depth of proposed DiaNets is reduced along with the evolution.

On the other hand, we compare the characteristic of DiaNet3.0 topology and

other sparse NNs on the MNIST dataset, including the testing accuracy, the num-

ber of synapses, and the reduction of parameters, as shown in Tab. 7. Compared

with the baseline LeNet5 model, this work can achieve 90.86% parameter reduc-

tions with a negligible loss in accuracy. Moreover, this work achieves favorable

results when compared to the other sparse NN typologies. The proposed topology

44

Table 6. Performance comparison of different NN topologies on Wine dataset

Index FC-NN DiaNet1.0 DiaNet2.0 DiaNet3.0

Synapse 160 156 65 65

Parameters 173 273 96 96

Accuracy 96.30% 88.89% 98.15% 98.15%

Configuration cost N/A → ↗ ↗

Table 7. Comparison with other sparse neural network topologies on MNIST

dataset

Method Accuracy Synapse Parameters
Parameters

reduction (%)

Baseline model (LeNet5) [41] 99.20% 61376 61654 -

Architecture learning [100] 99.04% - 40.9K 33.66%

Pruning [64] 99.23% - 36K 41.61%

Sparsely-connected [34] 96.84% - 8961 85.47%

Sparse NN [33] 99.19% - 18K 70.80%

Pre-defined sparse NN∗[67]
97.2 % 21000 22110 64.14%

93.3% 2000 3110 94.96%

This work 98.41% 4660 5642 90.86%

* The architecture of this pre-defined sparse NN is Nnet = (800, 100, 100, 100, 10), and its

out degree is (20,20,20,10) and (1,2,2,10), respectively.

has additional benefits compared to its counterparts: DiaNet is a sparse neural

network with regularity, symmetry, and predefined properties, which leads to a

decrease of memory complexity.

Upgrade of DiaNet series. The generations of DiaNets can be simply

upgraded by symmetrically attaching additional connections to each PEs. It

is an obvious but endless trade-off between pre-/post-reconfiguration costs and

inference quality. However, the cost-quality balance lies on the principle that

redundancy should be minimized while the entire array is assumed to be fully

partitioned. In this sense, the bisection-based architecture is the best effort to

45

fit above. The I/O integration technology helps to shrink the estate of a specific

DiaNet piece; then, reduce the partitioning edges to evaporate the redundancy

in further. From this aspect, DiaNet2.0 offers the optimal cost-quality balance.

However, the quality-greedy users are able to trade additional hardware resource

for slight improvement on the inference accuracy. DiaNet3.0 indicates a potential

strategy: additional skip-connection without weight (neither parameters nor mul-

tiplier is needed, namely) can be symmetrically attached to each PE. From the

NN theory, the synaptic feedback or skip propagation greatly help to solve linear

inseparable problems. The DiaNet3.0-like upgrading strategy appears higher effi-

ciency than reverting to the FC fashion from bisection fashion. The comparisons

in Tab. 7 show some evidences. The inference accuracy of MNIST by DiaNet3.0

is higher than most of sparse NNs with fewer parameters. The upgrade strategy

by adding skip connections is obviously more efficient than that of reverting to FC

fashion. On the other hand, the exploration of upgrades is still an open challenge

for huge networks and accuracy-greedy applications, which is out of the scope of

this discussion.

4.4 Discussion on How to Co-design of Algorithm and

Hardware for DiaNet

Our goal is to develop an algorithm and hardware co-design framework to im-

prove throughput and energy efficiency. DiaNet topology is an elastic neural net-

work with scalable bisection spanning, supporting multi-grained re-configurable

from the hardware perspective. Figure 22 shows the software-hardware co-design

framework for the proposed DiaNet, which mainly consists of the GPU implemen-

tation part and the Vivado implementation part. Specifically, the framework will

generate the DiaNet topology based on application inputs and labels, and algo-

rithm 3, and obtain a trained DiaNet model along with parameters after training,

which executes on GPU platform (python). From the hardware perspective, the

framework will partition the PE array to the corresponding area according to

the DiaNet topology and reconfigure and allocate the memory and resource to

generate accelerator, which is implemented by system C/ Verilog code. Finally,

the framework will construct the accelerator-based hardware used to accelerate

46

Application

Regression Convolution Classifier

DiaNet topology

construction

Training

Data

inputs

labels

Trained model/

Parameters

Topology-based

partioning

Reconfigurable

PE array

Memory

allocation

Convey HLS &

Xilinx Vivado

Configura

tion

System C/ Verilog

Generate acceleratorGenerate model
ZYNQ-7 ZCU102

Python/ GPU

Bitstream

Figure 22. Software-hardware co-design framework for proposed DiaNet

real-life applications.

As aforementioned, during partitioning and reconfiguration, DiaNet does not

destroy the structure but significantly reduce the resource redundancy. Moreover,

the scale of PE array on-chip can be conveniently and indefinitely extended by

combining multiple chips because of this property. It is obvious that the per-

formance of this multi-grained re-configurable depends on the amount of PEs

in BNN. Fortunately, the ultra-large-scale of BNN is feasible since only local

connections are necessary. Thus, the critical limitation of capacity lies in the

implementation cost of PEs. As the immediate solution of software, the use of

inaccurate calculation units and bit-width consideration is expected to suggest

the guideline for hardware design.

Here, we perform the experiments to analyze the behavior of the Ionosphere

and Waveform datasets with DiaNet3.0 topology, firstly. According to algorithm

3, the DiaNet3.0 topology of Ionosphere and Waveform are built with 44 PEs

and 73 PEs, respectively. Additionally, the remaining PE arrays support other

applications. Theoretically, the PE array can be partitioned into multi-task with

slight redundancy, as shown in Fig. 15. According to task requirements, auto-

matically finding the optimization of PE array partitions will be an interesting

47

Table 8. Performance comparison between DiaNet3.0 topology and other models

over two datasets from the UCI database

Dataset Ionosphere Waveform database generator

Accuracy Parameters
Parameter

reduction (%)
Accuracy Parameters

Parameters

reduction (%)

FC-NN∗ 95.28% 742 - 84.60% 443 -

N2PS[101] 94.9% - - 85.5% - -

This work 95.28% 156 78.98% 85% 245 44.70%

* The optimal baseline of FC-NN

exploring issue. Table 8 demonstrates that DiaNet3.0 topology achieves signifi-

cant parameter reduction without quality loss compared to conventional FC-NN

and N2PS model [101]. Then, the sensitivity to computational precision is in-

vestigated for DiaNets. Assuming the random noise in computation distributes

into each calculates operation in DiaNets such as synapses and neurons, the noise

with various bit-length is formulated as follows:

ynoise =
1

2bit−length
× 1√

2π
× e

x2

−2 (27)

where x is a random value, the expectation and variation of Gaussian distribution

are set as 0 and 1. The error rate of inferences decreases along with the decay

of bit-precision. Figure 23 shows that the impacts of bit-width variations on

calculate precision in pattern recognition. For most of NN implementations, the

synapse-neuron interactions are conducted by a non-linear activation function

outside and a MAC operation inside. The long MACs for conventional FC fashion

result in a large range range of function values. Therefore, simply reducing the

global bit-width is hardly feasibly for shrinking the hardware implementations

of conventional FC-NNs. By using the proposed DiaNet topology, the length of

MAC is reduced to two, three, or four anywhere with a smaller range of MAC

function values. Thus, fewer bits implementation is feasible for greatly reducing

the hardware cost.

Finally, the bit-width consideration is investigated for optimizing on-chip in-

ference and hardware resource saving. We employ parameter constraint tech-

48

nique (constraint the parameters to [0, 1]) (the performance as shown in Tab.

8) and collect the output of each PE for avoiding the diminishing returns. Ac-

cording to Eq. 25, the absolute value of each PE output is statisticized in Fig

.24, which shows that the minimum and maximum absolute value of the PE of

the Ionosphere are close to 2−8 and 23, respectively; namely, 8 bits and 3 bits

for fractional bits and integer bits, respectively. Similarly, the bit-widths for the

Waveform dataset are 9 bits fractional and 6 bits integer. Combining Fig. 23, the

predicted bit-widths are sufficient to implement DiaNet without additional qual-

ity loss. However, to implement multiple independent DiaNets (relatively small

tasks) on one chip in parallel, the performed tasks must ensure the same bit-

width configuration. In this sense, 16 bits configuration is predicted to execute

two tasks on one chip.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

o
r

ra
te

Bit-width

Ionosphere
Waveform database generator

Figure 23. Error rate over various bit-

length for two datasets from the UCI

database

0 5 10 15 20
Absolute value of each PE output

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

Ionosphere dataset
Waveform database generator dataset

Figure 24. Histograms of absolute

values of each PE output over two

datasets from UCI database

4.5 Towards Hardware Implementation of DiaNet

In this section, we use proposed architecture to verify the effectiveness of DiaNet

topology and the feasibility of multi-core parallel processing.

In spatially expanded in parallel architecture architecture [102], the weight

parameters are stored in synapses and executed synaptic operations without off-

chip accessing [103, 104]. The model of this architecture is an elastic neural

49

...

...

...

... ...

...

External memory

FIFO

FIFO

FIFO

FIFO

…
…

FIFO

FIFO

FIFO

FIFO

Input

channel

Reconfigurable

PE array

Output

channel

Config Scan Chain

Configuration Parameters

PE

…
…

PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

Local

Network

Data

Router

Figure 25. Architecture overview

network model, which enables fully parallel and efficient dynamically compos-

able to improve the energy efficiency [105]. The BNN is mapped to PE on the

hardware instead of time-multiplexed PEs for different synaptic connections, data

flow to output continuously, and parallelly. Inspired by our previous multi-grained

re-configurable accelerator for approximate computing [106], we design a neuro-

morphic architecture with 20 × 20 PE arrays to verify the performance of DiaNet

topology for pattern recognition. The overview of the architecture, as shown in

Fig. 25, is composed of PE arrays, input/output channel, FIFO, config scan chain,

and external memory. Each PE can access FIFOs via input/output channel and

communicate with adjacent PEs through local network. The inference process of

independent DiaNet consists of four steps: first of all, the accelerator loads the

configuration parameters into config scan chain serially to partition and recon-

figure the entire PE array; secondly, all input data are loaded from the external

memory to the configured PE array by the local input controller and data router

mechanism through the input FIFO; thirdly, each PE can start processing as soon

as data arrives instead of proceeding as a systolic array. Finally, the outputs are

written back to external memory via output FIFO to find the label corresponding

to the maximum value (implemented by comparators), thereby realizing pattern

recognition.

As aforementioned, the experiment results show that the proposed DiaNet

topology can achieve 78.98% and 44.70% parameter reduction in the Ionosphere

50

Table 9. Accuracy and bit-width comparison among various strategies for FPGA

simulation over two datasets
Dataset Method Accuracy (%) Bit width

Ionosphere Hierarchical [107]∗ 94.28% 12 bits

Ionosphere This work 93.10% 12 bits

Waveform This work 83.47% 16 bits

Ionosphere
This work Without 16 bits

+ Waveform accuracy loss

and Waveform dataset, respectively. The computational complexity and hard-

ware cost of these topology decreased significantly compared to the conventional

FC-NN model. For proof of feasibility, we perform the Ionosphere and Waveform

dataset with DiaNet3.0 topology on the proposed neuromorphic architecture.

The architecture design is implemented with RTL, which is synthesized in Vi-

vado (v2018.3) based on Xilinx FPGA ZYNQ-7 ZCU102. The 20 × 20 PE arrays

are symmetrically implemented by the FPGA, supporting on-demand array par-

titioning and re-configuring for processing different DiaNets in parallel. In this

manner, 44 PEs and 73 PEs are partitioned to perform the mentioned tasks,

respectively. Additionally, the remaining PE arrays support other DiaNet tasks.

Moreover, according to the Subsection. 4.4, the Ionosphere and Waveform dataset

are executed on FPGA with 12 bit-widths and 16 bit-widths, respectively. The

results are shown in Tab. 10, compared to Hierarchical FPGA implementation,

this work achieves 10.8% power reduction with 1% accuracy loss. Additionally, to

implement these two independent DiaNets on one chip in parallel, the executed

tasks must ensure the same bit-width configuration. Namely, Ionosphere and

Waveform applications are processed paralelly with 16 bits-width on the FPGA.

Table 9 and Tab. 10 show that two independent tasks can run in parallel on the

same PE array without any accuracy loss. Moreover, the proposed multi-grained

re-configurable spatially expanded architecture, which supports multi-core par-

allel processing instead of single-core processing to save multiple configuration

costs and time.

51

Table 10. Power and resource utilization comparison among various strategies for

FPGA simulation over two datasets

Dataset Method
Utilization Frequency Power

Re-configurable
(LUT) (MHz) (W)

Ionosphere Hierarchical [107]∗ 3920 - 0.37 temporal architecture

Ionosphere This work 4342 100 0.33 spatial architecture

Waveform This work 8851 100 0.55 spatial architecture

Ionosphere
This work 14187 100 0.88 spatial architecture

+ Waveform

* This work implemented on Virtex-7 FPGA.

4.6 Conclusion

In this section, an elastic neural network is developed and evolved towards ef-

fectively re-configurable hardware in fully parallel on-chip. We proposed various

evolution techniques of DiaNet to prevent the depth explosion and gradient van-

ishing problem, including I/O layer integration and skip connection. Experiments

proved the effectiveness of our method for various applications. The number of

layers is reduced to 8.8% of the DiaNet prototype for MNIST recognition while

improving accuracy to 98.41%. Moreover, compared with the LeNet5 model as

state-of-art, the evolved DiaNet topology achieves the parameter reduction of

90.86% with the negligible loss of accuracy. As a co-design of algorithm and

hardware, this work investigated inaccuracy tolerance and bit-width considera-

tion to suggest the guideline for efficient hardware implementations. Based on

that, the effectiveness of DiaNet is verified by the proposed re-configurable archi-

tecture on FPGA with the power reduction of 10.8% compared to state-of-the-art

implementations.

52

5 Temporal-spatial Combined Bisection Neural

Network

As aforementioned, the DiaNet topology minimizes computation cost by reducing

the number of multiplication operations and the model’s size. Moreover, the

DiaNet takes full advantage of network-on-chip (NoC) resources for highly parallel

and efficient dynamically composable to improve energy efficiency further [108].

However, it still suffers from the overhead of synaptic weight storage and poor

robustness performance (e.g., hardware variation). Simultaneously, SNNs have

great promise in continuous spatial-temporal information processing with lower

energy consumption and better robustness. To this end, we develop a temporal-

spatial combined bisection neural network architecture based on spatial-temporal

dynamic-based neuron and spatially expanded parallel architecture. Specifically,

a spatial-temporal dynamic-based neuron with bisection connection is developed

instead of a traditional neuron (e.g., ReLU, sigmoid) in spatially expanded-based

DiaNet topology, so that the network becomes linearly separable while processing

information in temporal and spatial domains, better yet, reducing the memory

bandwidth and hardware overhead and improving the robustness. To this end,

the temporal-spatial combined bisection neural network will be explored in the

chapter.

From the architecture point of view, in spatial domain, DiaNet takes advan-

tage of parallel computing resources and spatial complexity to perform various

computations. Besides, in temporal domain, SNN makes full use of temporal in-

formation to perform computation, including time-based spike coding and time-

based neuron dynamics and time-based adjustable precision. In this sense, the

temporal-spatial combination provides a more flexible and powerful implementa-

tion framework for various NN applications. From the model’s complexity point

of view, DiaNet can minimize computational and memory requirements because

of ultra-sparse synaptic connection. SNN may easily enable low-power compu-

tational overhead due to the event-driven computing paradigm. Therefore, the

temporal-spatial combined NN architecture may leads to lower complexity of

model.

Nevertheless, it is challenging to directly train the SNNs with binary spike

53

activity of neurons and ultra-sparse synaptic connection with satisfactory per-

formance. We describe two issues to be solved for directly training ultra-sparse

SNNs:

• Gradient vanishing problem. Because of binary spike activity and the non-

differentiable of spiking neurons, gradient propagation tends to vanish when train-

ing very deep SNN directly [58]. On the other hand, due to the inherent connec-

tion of neurons in DiaNet topology, the depth remains a challenge.

• Information vanishing problem. Due to the firing mechanism of the spiking

neuron, the firing rate depends on the input membrane potential and threshold.

Specifically, when the input potential is smaller than the threshold, its neuron

will not emit a spike, and the neuronal potential remains. This issue can be

addressed by accumulating the membrane potential with large timesteps or more

synaptic connections. Besides, DiaNet has inherent bisection connections, and a

large timestep will cause significant latency and additional computational cost.

5.1 Exploration of Temporal-spatial Combined Bisection

Neural Network

In this section, we discuss the temporal-spatial combined bisection neural net-

work architecture in detail. Firstly, the iterative LIF neurons are introduced into

DiaNet topology. Then, the details of the proposed temporal-spatial combined

NN architecture are presented. Finally, we provide the overall training algorithm.

5.1.1 Iterative Leaky Integrate-And-Fire Model in DiaNet

As aforementioned in section 2.1, the SNN is composed of neurons interconnected

through synapses, which receives the input spikes. The spiking neuron defines

the neuronal dynamics and firing mechanism, and its differential equation can be

formulated as:

τ
du(t)

dt
= −u(t) + I(t) (28)

where u(t) is membrane potential at time t, τ denotes a constant decay parameters

and I(t) represents inputs from synaptic connections from last layer. In order to

take full advantage of spatial-temporal information, the iterative LIF neuron was

54

proposed [59], the Eq. (28) can be reformulated as :

uli(t+ 1) = τuli(t)
(

1− oli(t)
)

+
∑
j

W l−1
ij · ol−1

j (t+ 1) + b (29)

The real firing mechanism is similar to Eq. (7), which can be described as:

oli(t+ 1) = f(uli(t+ 1)− Vth) (30)

where f(x) is step function, which satisfies f(x) = 1 when x > 0, and vice versa.

If neuron emits a spike (oli(t+ 1) = 1) at timestep t+ 1, the membrane potential

will be set to 0 at timestep t+1 via (1−oli(t+1)); on the contrary, the membrane

potential will remain its value.

Subsequently, we introduce the LIF neuron to DiaNet1.0 topology. To this

end, in spatial domain, the LIF neuron only communicates with two synapses

from its previous neurons in adjacent, and fans the data out to two neurons in

the post layer. Besides, in temporal domain, the LIF neuron accumulates the

inputs from previous timesteps. In that vein, the forward propagation of DiaNet

topology with LIF neurons in temporal-spatial domain can be reformulated as:

uli(t+ 1) = τuli(t)
(

1− oli(t)
)

+W l−1
ii · ol−1

i (t+ 1) +W l−1
i(i+1) · o

l−1
i+1(t+ 1) + b (31)

The forward propagation dataflow of DiaNet topology with LIF neurons in

the temporal-spatial domain is shown in Fig. 26. In the spatial field, the forward

propagation in the layer-by-layer like ANN. In addition, each neuron integrates

the membrane potential from previous timesteps by self-feedback in the temporal

domain.

Input LIF

LIF

LIF

LIF

LIF

Output

Output

Spatial domain

Threshold

Time

V
o

lt
a

g
e

Temporal domain

Figure 26. Illustration of the spatial-temporal characteristic of DiaNet1.0 with

LIF neuron

55

However, due to the binary spike activity of LIF neuron and the inherent

bisection connection of DiaNet topology, its neuron takes a long time to accu-

mulate the membrane potential that exceeds the threshold. To some extent, the

firing rate are depend on the input membrane potential and timesteps. Yet large

timesteps not only causes expensive computational costs, but also comes at the

cost of large inference latency. In this section, we reasonably increase the intensity

of the input membrane potential based on the DiaNet paradigm.

5.1.2 Combined Bisection Neural Network Architecture

DiaNet2.0 and DiaNet3.0 typologies are evolved for depth reduction and accu-

racy improvement, respectively. We introduce the SNN paradigm with LIF neu-

ron into DiaNet3.0 topology to construct combined NN architecture for better

accuracy and timesteps, seen as DiaNet4.0 topology. As aforementioned in Eq.

(25) of section 4, the addition operations are processed after activation function,

which is inspired from ResNet with ReLU before addition structure. Thus, By

incorporating the Eq. (29) and Eq. (31), the Eq. (25) can be reformulated as

below:

uli(t+ 1) =



τuli(t)
(

1− oli(t)
)

+W l−1
i−1 ·

(
ol−1
i−1(t+ 1) + ol−2

′

i−1 (t+ 1)

)
+

W l−1
i ·

(
ol−1
i (t+ 1) + ol−2

′

i (t+ 1)

)
+W l−1xi + b, l ∈ le

τuli(t)
(

1− oli(t)
)

+W l−1
i+1

(
ol−1
i+1(t+ 1) + ol−2

′

i+1 (t+ 1)

)
+

W l−1
i ·

(
ol−1
i (t+ 1) + ol−2

′

i (t+ 1)

)
+W l−1xi + b, l ∈ ls

(32)

where le and ls are expanded layers and shrinkage layers of DiaNet topology, re-

spectively. Here, uli(t+ 1) represents the membrane potential of i− th neuron in

l− th layer at time t, x denotes the input spikes after Poisson rate coding, which

are binary spikes. Additionally, the first term on the right side in Eq. (32) is leak-

age in membrane potential, which is inherited from the previous timesteps. The

fourth item directly receives the input features rather than activation outputs.

The first and fourth terms on the right side of the Eq. (32) in the spatial-temporal

NN architecture are easy to obtain and understand. The second and the third

56

×

×

Vth

u

Soma
W1

W3

Input-spikes

t1 t2 t3

Output-spikes

t4 t5 t6

Pre-spikes

Accmulated-

spikes t1 t2 t3 t5t4 t6

Post-spikes

× W2

Figure 27. Illustration of accumulated spikes in temporal-spatial combined NN

architecture

item represent membrane potentials from its previous neurons via two synaptic

connections in the (l − 1)− th layer. Herein, ol−1
i−1(t+ 1) + ol−2

′

i−1 (t+ 1) represents

that the neuron not only has its firing-spike after f(x) step function in (l − 1)th

layer, but also accumulated the spike from (l−2)−th via addition after activation

function. Besides, ol−2
′

i−1 (t + 1) directly inherits the binary spike from the previ-

ous layers through skip connection, which can alleviate the information vanishing

problem and gradient vanishing problem through the spikes accumulation.

DiaNet4.0 topology achieves better timesteps and ultra-sparse connections at

the expense of the event-driven spike communication paradigm but still benefits

from spatial-temporal information processing. In essence, the DiaNet4.0 topol-

ogy enhances the spike signal by adding skip connections (seen as vertical den-

sity) instead of spike accumulation by synaptic connections and more enormous

timesteps. In this sense, DiaNet4.0 can alleviate the information loss caused by

binary activities and ensure sufficient information flows through the entire net-

work. Figure 27 schematically illustrates the flow and accumulation of spikes in

the forward propagation process of the entire network.

Nevertheless, the inputs of each neuron in hidden layer are not events-driven

paradigm, but a multi spike paradigm. Due to one layer of skip connection, the

inputs of each neuron in l − th hidden layer can be formulated as:

ol−2
′

i−1 (t+ 1) =

o
l−2
i−1(t+ 1) + ol−4

i−1(t+ 1) + ...+ o1i−1(t+ 1), lth ∈ Odd
ol−2
i−1(t+ 1) + ol−4

i−1(t+ 1) + ...+ o2i−1(t+ 1), lth ∈ Even
(33)

57

Here, ol−2
′

i−1 (t+1) is a positive integer. When lth ∈ Even, it is smaller than lth
2
−1,

and otherwise smaller than lth−1
2

. To some extent, we quantize the inputs of

each neurons to reduce the computation and memory cost, while maintains the

spatial-temporal information processing. Naturally, if implement the DiaNet4.0

on digital circuit, the unrolled and tiled LUTs can be introduced to implement

our DiaNet4.0 architecture replace the MAC operations.

5.1.3 Overall Training Framework

In this section, we use the Poisson rate coding [109] as a coding scheme to re-

duce the sampling error when converting real-value input to spike x. We employ

the Poisson processes to map the normalized pixel intensity p to the spike in a

stochastic manner and input the spike to the corresponding neuron. Specifically,

at each time-steps of the combined NN forward propagation process, a uniform

stochastic number between 0 and 1 is generated and compared with the pixel in-

tensity p. As described in Eq. (34), if the p is greater or equal than the stochastic

number, the spike will be emitted; otherwise, no spike will be produced. Herein,

the spike always has the same sign as p, and the total number of spikes in t time

steps is proportional to the amplitude |p|.

x =


sign(p), if |p| ≥ s

− sign(p), if |p| ≥ s

0, if |p| < s

(34)

On the other hand, to compute gradients by leveraging the temporal and spa-

tial information, we employ spatio-temporal backpropagation (STBP) learning

rule [59] and cross-entropy loss function L to directly train the overall DiaNet4.0

model. Moreover, in order to reduces the information loss caused by the firing

mechanism of the last layer, the output layer only accumulates the inputs via

synaptic weight and overall timesteps but do not emits the output spike. The

weight and bias update is computed as:

∆W l
ij =

3∑
i=1

∂L

∂W l
ij

=
3∑
i=1

∂L

∂oli(t)

∂oli(t)

∂uli(t)

∂uli(t)

∂wlij
(35)

∆bl =
3∑
i=1

∂L

∂bl
=

3∑
i=1

∂L

∂oli(t)

∂oli(t)

∂uli(t)

∂uli(t)

∂bl
(36)

58

wherein, we introduce the surrogate gradient to approximate real gradient [57],

which is described as below:

∂o

∂u
=

1(√
2aπ)

2
e−

(u−Vth)
2

2a2 (37)

where a is 0.6.

5.2 Overall Estimation of Performance

In this section, we perform the experiments to estimate the overall performance

from three aspects: accuracy, parameters reduction and inference latency.

5.2.1 Datasets and Implementation

The static vision dataset (MNIST) and dynamic vision dataset (N-MNIST) are

employed to evaluate the performance of temporal-spatial combined NN archi-

tecture. MNIST is a handwritten digits image with 50000 training data, 10000

validation data and 10000 testing data. N-MNIST is a frame-based neurromor-

phic dataset, which is captured from a moving sensor viewing MNIST dataset

moving on a computer monitor from two channels. The N-MNIST uses the same

sample and testing-training splits as MNIST.

We perform the experiment on the MNIST and N-MNIST dataset to analyze

the performance of combined NN architecture. Similar to the LeNet5 topology

and DiaNet topology, we setup the experiments consist of spiking convolution

blocks for extracting features and combined NN architecture topology for classifi-

cation. Each spiking convolution block composes of convolution layer, max-pool

layer, batch normalization layer and conventional LIF neuron. The features from

spiking convolution layer are flattened into a 400 vector. Namely, combined NN

architecture classes these 400 features and 10 labels. All experiments are trained

for 100 epochs with 100 batch size. Besides, the learning rate is set to 0.1 ini-

tially and is lower five times at epoch 20 and the Adam optimizer with default

parameters and L2 weight decay of 10−6 are applied for our experiment. To this

end, the network architecture and the hyper parameter for MNIST and N-MNIST

experiments in this work are listed in Tab. 11. In addition, all experiments are

implemented on PyTorch framework.

59

Table 11. The network architecture and hyper-parameters of MNIST and N-

MNIST

Dataset Network architecture Timesteps* Decay constant
Potential

threshold

MNIST
6C3-M2-16C5-M2-

DiaNet
8 0.8 0.3

N-MNIST*
16C5-M2-16C5-

M2-16C5-DiaNet
6 0.95 0.1

5.2.2 Experimental Results

The complexity, accuracy, and inference latency of the model behave as a trade-

off. In this sense, We analyze the results from three aspects: compression ratios of

synaptic connection, time steps, and accuracy. Firstly, we analyze the relationship

between accuracy and time steps. In a temporal-based model, time step T refers

to repeating the inference process T times to accumulate the final membrane

potential of the output layer. In this manner, the computation cost of the entire

network is denoted as O(T). Namely, we can reduce the computational overhead

by minimizing the time steps. As shown in Fig. 28 and Fig. 29, we can achieve

satisfactory accuracy with a few time steps. For example, we can achieve 96.10%

accuracy with 8 time steps on MNIST and 98.15% accuracy with 6 time steps on

N-MNIST.

0 20 40 60 80 100
Epochs

82

84

86

88

90

92

94

96

Va
lid

at
io

n
Ac

cu
ra

cy
(%

)

T=1
T=2
T=4
T=6
T=8

Figure 28. Influence of simulation

timesteps on MNIST

0 20 40 60 80 100
Epochs

40

50

60

70

80

90

100

Va
lid

at
io

n
Ac

cu
ra

cy
(%

)

T=4
T=6
T=8
T=10
T=12

Figure 29. Influence of simulation

timesteps on N-MNIST

60

Table 12. Performance comparison of DiaNet3.0 and DiaNet4.0 models on

MNIST

Method Domain Accuracy
Time

steps
Activation

Towards

hardware

implementation

DiaNet3.0 Spatial 98.10% 1 Float Fully parallel

DiaNet4.0 Temporal+spatial 96.10% 8 4 bits Fully parallel

The temporal-spatial combined NN architecture also takes full advantage of

highly parallel and efficient dynamically composable to improve energy efficiency.

As shown in Tab. 12, compared to spatial-based DiaNet3.0 architecture, Di-

aNet4.0 further reduces the complexity of the model by reducing the precision

of operations with a 1.57% accuracy loss. Moreover, the experimental results on

NMIST demonstrate that the DiaNet4.0 has better capacity and robustness of

the model than the DiaNet3.0 topology.

On the other hand, we analyze the results of compression ratios of parameters,

accuracy, and timesteps and compare the experimental results with other state-of-

the-art compressed SNN models. Table. 13 and Tab. 14 present the current state-

of-the-art results on MNIST and N-MIST. Herein, Lei Deng et al. [76] achieved

96.84% accuracy and 96.83% with 75.00% compression rate and 10 timesteps on

MNIST and NMNIST, respectively. Besides, our model can achieve 96.10% with

a 90.86% compression ratio and 8 timesteps; and we accomplish 98.15% accuracy

with 69.38 parameters reduction with 6 timesteps. In a nutshell, the experimental

results indicated that compared with full precision SNN architecture and DiaNet

prototype, the temporal-spatial combined NN architecture can achieve the lower

complexity with slight accuracy loss.

61

Table 13. Network structures and training methods of various compressed SNN

methods

Dataset Method Architecture

MNIST

IJCNN’18 [75] Multi-strength 32C5-64C5-1024-10 (MP)

Front. Neurosci’19 [74] STDP 784-398-500-10

TNNLS’21 [76]∗ STBP 128C3-128C3-512-10(AP)

Our work STBP 6C5-16C3-DiaNet-10 (MP)

NMNIST
TNNLS’21 [76]∗ STBP 128C3-128C3-512-10(AP)

Our work STBP 16C5-16C5-16C5-DiaNet-10 (MP)

MP and AP represent max-pool and average-pool, respectively

Table 14. Performance comparison between DiaNet4.0 topology with other com-

pressed SNN models

Dataset Accuracy Parameter reductions Time steps

MNIST

IJCNN’18 [75] 94.00% 89.43% 80

Front. Neurosci’19 [74] 97.05% 75.00% 50

TNNLS’21 [76]∗ 96.84% 75.00% 10

Our work 96.10% 90.86% 8

NMNIST
TNNLS’21 [76]∗ 96.83% 75.00% 10

Our work 98.15% 69.36% 6

* The first and last layers are still full connection fashion.

5.3 Conclusion

This chapter explores the temporal-spatial combined bisection neural network

architecture for further reducing the computational and memory cost of spatially

expanded-based DiaNet by introducing a low-power spike coding. We present the

skip-connection and accumulated paradigm to iterative LIF neuron with bisection

synaptic connection and employ surrogate gradient-based learning rule to solve

the problem of gradient vanishing and information vanishing jointly. Finally, the

model is evaluated on both static MNIST and neuromorphic N-MNIS datasets.

62

Finally, the model achieves 96.10% accuracy with a 90.86% compression ratio with

8 time steps on MNIST and 98.15% accuracy with 69.38% parameters reduction

with 6 time steps on N-MNIST. Our work estimate much better performance,

including versatility and complexity of the model, than prior work and spatial-

based NN architecture of this thesis. Besides, the temporal-spatial architecture

takes full advantage of highly parallel and efficient dynamically composable to

improve energy efficiency compared to temporal-based SNN with FC fashion.

63

6 Conclusion and Future Work

6.1 Conclusion

Deep neural networks have demonstrated state-of-the-art performances in the

broad field of AI applications. However, these algorithms have intensive com-

putational and colossal memory, making it challenging to develop on hardware

platforms with limited computational resources. To address this challenge, this

thesis focuses on constructing efficient elastic neural network architectures with

spike coding and scalable bisection spanning to support the fully parallel and

re-configurable NN platforms.

This dissertation focuses on constructing elastic neural network with spike

coding and scalable bisection spanning to make NN inference less complicated,

less redundancy and make it more efficient from from three aspects: spike coding-

based ternary spiking neural network, scalable bisection spanning-based DiaNet

topology, and temporal-spatial combined bisection neural network. All these as-

pects share a common principle: constructing elastic neural network architectures

with low complexity and spatial expansion architecture, as shown in Fig. 30.

Chapter 4

Algorithm

SparsityTemporal:
spike coding

Spatial: scalable
bisection

Temporal-spatial
combined structure

Hardware

Chapter 3

Chapter 5

Future work

Chapter 4

Figure 30. Summary of the thesis

Spike coding-based spiking neural network is expected to develop massively

parallel and higher energy efficient inference engines. Whereas the massive amount

64

of floating-point parameters and larger latency in SNNs still take away signifi-

cant computation efficiency. To this end, we compressed SNNs with ternary

weights to achieve a good trade-off between complexity, latency, and performance

in Chapter 3. We propose a parametric integrate-and-fire neuron (PIF) with a

learnable threshold to reduce the computation cost while maintaining the self-

adaptability and expressiveness of spiking neurons. Subsequently, by introducing

a paradigm similar to the ternary weight network and spike-timing-dependent

backpropagation learning rule, PIF neuron-based TSNNs are directly trained on

large-scale datasets with a few timesteps. Our proposal is evaluated on N-MNIST,

CIFAR-10, CIFAR-100, which achieved 98.43%, 89.07%, 65.24% accuracy with 4

timesteps, respectively, and achieved up to 16x model compressions.

Since the PE and interconnection are arranged in pre-silicon, the noticeable

PE and wire connections might be inactivated when the NN is reconfigurable,

leading to remarkable redundancy. A spatially expanded-based bisection neural

network array was developed for efficiently multi-grained reconfigurable in fully

parallel on-chip. However, the original spatially expanded-based DiaNet topol-

ogy is challenging to implement complex NN applications with its straightforward

architecture. To this end, we proposed I/O layer integration and skipped connec-

tion into DiaNet topology to address the depth explosion and gradient vanishing

problems. Experiments proved the effectiveness of our method for various ap-

plications. The layers are reduced to 8.8% of the DiaNet prototype for MNIST

recognition while improving accuracy to 98.41%. Moreover, compared with the

LeNet5 model as state-of-art, the evolved DiaNet topology achieves the parameter

reduction of 90.86% with no accuracy loss. Besides, the effectiveness of DiaNet

is verified by the proposed reconfigurable architecture on FPGA with the power

reduction of 10.8% compared to state-of-the-art implementations.

DiaNet topology minimizes the computation cost by reducing the number

of multiplication operations and the model’s size. Moreover, the DiaNet takes

full advantage of network-on-chip resources for highly parallel and efficient dy-

namically composable to improve energy efficiency. However, it still suffers from

the overhead of floating-point operands. We explore the temporal-spatial com-

bined bisection neural network architecture for further reducing the complexity of

spatially expanded-based DiaNet by introducing a low power spiking paradigm.

65

We introduced the skip-connection and spike accumulation paradigm to iter-

ative LIF neurons with bisection synaptic connection and employed surrogate

gradient-based learning rule to solve the problem of gradient vanishing and in-

formation vanishing jointly. Finally, the model achieves 96.10% accuracy with

a 90.86% compression ratio with 8 timesteps on MNIST and 98.15% accuracy

with 69.38% parameters reduction with 6 timesteps on N-MNIST. Our work esti-

mate much better performance, including versatility and complexity of the model,

than prior work and spatial-based NN architecture of this thesis. Besides, the

temporal-spatial architecture takes full advantage of highly parallel and efficient

dynamically composable to improve energy efficiency compared to TSNN with

FC fashion.

6.2 Future work

Although this thesis made important progress, there are still many challenges

and potential directions that need to be further explored and expanded.

Spike coding-based TSNN and spatially-based DiaNet architecture provide the

potential to implement neural network platforms in a highly flexible and fully par-

allel manner at the unit-, architecture- and topology level. There is enough space

to explore hardware platforms based on these NN typologies, including compiler,

in-memory computing technology and asynchronous inference engine. Firstly, the

proposed multi-grained architecture can be considered as data flow-based archi-

tecture. In this manner, it is interesting to explore the efficient compilation of

data flow graphs to MURA with acceptable compilation time. Besides, the effi-

cient data-flow mapping from TSNN to pre-silicon neuromorphic hardware also

a interesting challenge. Additionally, spatially expanded architecture reduces

transmission cost by utilizing hierarchical memory, but it still requires signifi-

cant memory cost due to low-level memory. In contrast, in-memory technology

can reduce the transmission cost. Moreover, ”SNN+in-memory” technology is a

promising for addressing the Moore’s low problem. Therefore, we will introduce

the in-memory technique to the DiaNet and TSNN hardware implementation in

the future.

66

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my Ph.D.

supervisor, Prof. Yasuhiko Nakashima. Prof. Nakashima is probably the most

visionary, inspiring, and outstanding supervisor in my heart. I am very fortunate

and grateful to receive his guidance and support in my Ph. D journey. Especially

at every critical moment of my Ph. D career, he gave me visionary advice,

generous support, and the most sincere and constructive feedback. His scientific

rigor and endless enthusiasm for research greatly inspired me to outgrow my

limits.

I would love to express my deep gratitude to associate Prof. Renyuan Zhang

for his tremendous guidance and support. He patiently guided me to become an

independent researcher who could define and solve scientific problems. His innova-

tive research, endless scientific research enthusiasm, and comprehensive expertise

have inspired and encouraged me consistently. I truly appreciate working with

him in the past three years, and what I learn from him is beyond count.

I am sincerely grateful to Prof. Mutsumi Kimura for his tremendous help,

invaluable advice, and recommendation. His scientific rigor, brilliant thinking,

and technical depth have tremendously affected my attitude towards being a

researcher.

Besides, I gave sincere thanks to co-advisor Prof. Yuichi Hayashi for his

patient guidance and valuable advice on academic research and this thesis. I

would also thank Prof. Tran Thi Hong for her encouragement. My sincere thanks

are also extended to all collaborators in Computing Architecture Laboratory for

their support, help, and motivation. It’s a great honor to work alongside them

and make progress together. Thank you all again, and looking forward to future

collaborations.

I would also thanks my friends at NAIST for their encouragement and help.

Additionally, I want to express my sincere appreciation to my master’s mentor

Prof. Guoyong Huang for his invaluable advice when I was in trouble. I also want

to thanks my friends in my life for their encouragement, care, and love.

Last but not least, I would like to express my heartfelt thanks and love to my

parents and family for their endless love and encouragement.

67

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012.

[2] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,

Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. Ese: Efficient speech

recognition engine with sparse lstm on fpga. In Proceedings of the 2017

ACM/SIGDA International Symposium on Field-Programmable Gate Ar-

rays, pages 75–84, 2017.

[3] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman

Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick

Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic model-

ing in speech recognition: The shared views of four research groups. IEEE

Signal processing magazine, 29(6):82–97, 2012.

[4] Raia Hadsell, Pierre Sermanet, Jan Ben, Ayse Erkan, Marco Scoffier, Koray

Kavukcuoglu, Urs Muller, and Yann LeCun. Learning long-range vision

for autonomous off-road driving. Journal of Field Robotics, 26(2):120–144,

2009.

[5] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from

scratch. Journal of machine learning research, 12(ARTICLE):2493–2537,

2011.

[6] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,

Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,

Adrian Bolton, et al. Mastering the game of go without human knowledge.

nature, 550(7676):354–359, 2017.

[7] Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan

Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt,

68

William Lewis, Mu Li, et al. Achieving human parity on automatic chinese

to english news translation. arXiv preprint arXiv:1803.05567, 2018.

[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[9] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer.

Imagenet training in minutes. In Proceedings of the 47th International

Conference on Parallel Processing, pages 1–10, 2018.

[10] Erik Lindholm, Mark J Kilgard, and Henry Moreton. A user-programmable

vertex engine. In Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, pages 149–158, 2001.

[11] Norman P Jouppi, Cliff Young, Al Patil, et al. In-datacenter performance

analysis of a tensor processing unit. In Proceedings of the 44th Annual

International Symposium on Computer Architecture, pages 1–12, 2017.

[12] William J Dally, Yatish Turakhia, and Song Han. Domain-specific hardware

accelerators. Communications of the ACM, 63(7):48–57, 2020.

[13] Shouyi Yin, Peng Ouyang, Shibin Tang, Fengbin Tu, Xiudong Li, Shixuan

Zheng, Tianyi Lu, Jiangyuan Gu, Leibo Liu, and Shaojun Wei. A high

energy efficient reconfigurable hybrid neural network processor for deep

learning applications. IEEE Journal of Solid-State Circuits, 53(4):968–982,

2017.

[14] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji

Chen, and Olivier Temam. Diannao: A small-footprint high-throughput

accelerator for ubiquitous machine-learning. ACM SIGARCH Computer

Architecture News, 42(1):269–284, 2014.

[15] Chris Nicol. A coarse grain reconfigurable array (cgra) for statically sched-

uled data flow computing. Wave Computing White Paper, 2017.

[16] Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie Han,

Shouyi Yin, and Shaojun Wei. A survey of coarse-grained reconfigurable

69

architecture and design: Taxonomy, challenges, and applications. ACM

Computing Surveys (CSUR), 52(6):1–39, 2019.

[17] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A

flexible accelerator for emerging deep neural networks on mobile devices.

IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

9(2):292–308, 2019.

[18] Qian Zhang, Ting Wang, Ye Tian, Feng Yuan, and Qiang Xu. Approxann:

An approximate computing framework for artificial neural network. In 2015

Design, Automation & Test in Europe Conference & Exhibition (DATE),

pages 701–706. IEEE, 2015.

[19] Sparsh Mittal. A survey of techniques for approximate computing. ACM

Computing Surveys (CSUR), 48(4):1–33, 2016.

[20] Fengbin Tu, Shouyi Yin, Peng Ouyang, Leibo Liu, and Shaojun Wei. Re-

configurable architecture for neural approximation in multimedia comput-

ing. IEEE Transactions on Circuits and Systems for Video Technology,

29(3):892–906, 2018.

[21] Wm A Wulf and Sally A McKee. Hitting the memory wall: Implications

of the obvious. ACM SIGARCH computer architecture news, 23(1):20–24,

1995.

[22] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John

Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-

Joon Nam, et al. Truenorth: Design and tool flow of a 65 mw 1 million

neuron programmable neurosynaptic chip. IEEE transactions on computer-

aided design of integrated circuits and systems, 34(10):1537–1557, 2015.

[23] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,

Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil

Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore processor with

on-chip learning. IEEE Micro, 38(1):82–99, 2018.

70

[24] Maxence Bouvier, Alexandre Valentian, Thomas Mesquida, Francois Rum-

mens, Marina Reyboz, Elisa Vianello, and Edith Beigne. Spiking neural

networks hardware implementations and challenges: A survey. ACM Jour-

nal on Emerging Technologies in Computing Systems (JETC), 15(2):1–35,

2019.

[25] Song Han. Efficient methods and hardware for deep learning. PhD thesis,

Stanford University, 2017.

[26] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient

processing of deep neural networks: A tutorial and survey. Proceedings of

the IEEE, 105(12):2295–2329, 2017.

[27] Kota Ando, Kodai Ueyoshi, Kentaro Orimo, Haruyoshi Yonekawa, Shim-

pei Sato, Hiroki Nakahara, Shinya Takamaeda-Yamazaki, Masayuki Ikebe,

Tetsuya Asai, Tadahiro Kuroda, et al. Brein memory: A single-chip bi-

nary/ternary reconfigurable in-memory deep neural network accelerator

achieving 1.4 tops at 0.6 w. IEEE Journal of Solid-State Circuits, 53(4):983–

994, 2017.

[28] Shouyi Yin, Peng Ouyang, Jianxun Yang, Tianyi Lu, Xiudong Li, Leibo Liu,

and Shaojun Wei. An energy-efficient reconfigurable processor for binary-

and ternary-weight neural networks with flexible data bit width. IEEE

Journal of Solid-State Circuits, 54(4):1120–1136, 2018.

[29] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng

Zou. Dorefa-net: Training low bitwidth convolutional neural networks with

low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

[30] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binarycon-

nect: Training deep neural networks with binary weights during propaga-

tions. In Advances in neural information processing systems, pages 3123–

3131, 2015.

[31] Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric Pétrot.

Ternary neural networks for resource-efficient ai applications. In 2017 in-

71

ternational joint conference on neural networks (IJCNN), pages 2547–2554.

IEEE, 2017.

[32] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model

compression and acceleration for deep neural networks. arXiv preprint

arXiv:1710.09282, 2017.

[33] Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training

sparse neural networks. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition Workshops, pages 138–145, 2017.

[34] Arash Ardakani, Carlo Condo, and Warren J Gross. Sparsely-connected

neural networks: towards efficient vlsi implementation of deep neural net-

works. arXiv preprint arXiv:1611.01427, 2016.

[35] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao.

Knowledge distillation: A survey. International Journal of Computer Vi-

sion, 129(6):1789–1819, 2021.

[36] Morteza Hosseini, Nitheesh Kumar Manjunath, Bharat Prakash, Arnab

Mazumder, Vandana Chandrareddy, Houman Homayoun, and Tinoosh

Mohsenin. Cyclic sparsely connected architectures for compact deep con-

volutional neural networks. IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems, 29(10):1757–1770, 2021.

[37] Man Wu, Yirong Kan, Tati Erlina, Renyuan Zhang, and Yasuhiko

Nakashima. Dianet: An elastic neural network for effectively re-configurable

implementation. Neurocomputing, 464:242–251, 2021.

[38] Renyuan Zhang, Yan Chen, Takashi Nakada, and Yasuhiko Nakashima. Di-

anet: An efficient multi-grained re-configurable neural network in silicon. In

2019 32nd IEEE International System-on-Chip Conference (SOCC), pages

132–137. IEEE, 2019.

[39] Filip Ponulak and Andrzej Kasinski. Introduction to spiking neural net-

works: Information processing, learning and applications. Acta neurobiolo-

giae experimentalis, 71(4):409–433, 2011.

72

[40] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In

Neural networks for perception, pages 65–93. Elsevier, 1992.

[41] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity map-

pings in deep residual networks. In European conference on computer vision,

pages 630–645. Springer, 2016.

[44] Wolfgang Maass. Networks of spiking neurons: the third generation of

neural network models. Neural networks, 10(9):1659–1671, 1997.

[45] Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang

Wu, Guanrui Wang, Zhe Zou, Zhenzhi Wu, Wei He, et al. Towards ar-

tificial general intelligence with hybrid tianjic chip architecture. Nature,

572(7767):106–111, 2019.

[46] Giacomo Indiveri, Elisabetta Chicca, and Rodney Douglas. A vlsi array

of low-power spiking neurons and bistable synapses with spike-timing de-

pendent plasticity. IEEE transactions on neural networks, 17(1):211–221,

2006.

[47] Eustace Painkras, Luis A Plana, Jim Garside, Steve Temple, Francesco

Galluppi, Cameron Patterson, David R Lester, Andrew D Brown, and

Steve B Furber. Spinnaker: A 1-w 18-core system-on-chip for massively-

parallel neural network simulation. IEEE Journal of Solid-State Circuits,

48(8):1943–1953, 2013.

[48] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy,

Jun Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo,

Yutaka Nakamura, et al. A million spiking-neuron integrated circuit with a

73

scalable communication network and interface. Science, 345(6197):668–673,

2014.

[49] Evangelos Stromatias, Daniel Neil, Michael Pfeiffer, Francesco Galluppi,

Steve B Furber, and Shih-Chii Liu. Robustness of spiking deep belief net-

works to noise and reduced bit precision of neuro-inspired hardware plat-

forms. Frontiers in neuroscience, 9:222, 2015.

[50] Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and

Arindam Sanyal. Temporal-coded deep spiking neural network with easy

training and robust performance. arXiv preprint arXiv:1909.10837, 2019.

[51] Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian

learning through spike-timing-dependent synaptic plasticity. Nature neuro-

science, 3(9):919–926, 2000.

[52] Teresa Serrano-Gotarredona, Timothée Masquelier, Themistoklis Prodro-

makis, Giacomo Indiveri, and Bernabe Linares-Barranco. Stdp and stdp

variations with memristors for spiking neuromorphic learning systems.

Frontiers in neuroscience, 7:2, 2013.

[53] Peter U Diehl, Guido Zarrella, Andrew Cassidy, Bruno U Pedroni, and

Emre Neftci. Conversion of artificial recurrent neural networks to spiking

neural networks for low-power neuromorphic hardware. In 2016 IEEE In-

ternational Conference on Rebooting Computing (ICRC), pages 1–8. IEEE,

2016.

[54] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking

neural networks using backpropagation. Frontiers in neuroscience, 10:508,

2016.

[55] Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-

yolo: Spiking neural network for energy-efficient object detection. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages

11270–11277, 2020.

[56] Paul J Werbos. Backpropagation through time: what it does and how to

do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

74

[57] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gra-

dient learning in spiking neural networks: Bringing the power of gradient-

based optimization to spiking neural networks. IEEE Signal Processing

Magazine, 36(6):51–63, 2019.

[58] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going

deeper with directly-trained larger spiking neural networks. arXiv preprint

arXiv:2011.05280, 2020.

[59] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Frontiers in neuroscience, 12:331, 2018.

[60] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct

training for spiking neural networks: Faster, larger, better. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 33, pages 1311–

1318, 2019.

[61] Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik

Roy. Enabling deep spiking neural networks with hybrid conversion and

spike timing dependent backpropagation. arXiv preprint arXiv:2005.01807,

2020.

[62] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and

Nando De Freitas. Predicting parameters in deep learning. arXiv preprint

arXiv:1306.0543, 2013.

[63] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint

arXiv:1605.04711, 2016.

[64] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights

and connections for efficient neural network. In Advances in neural infor-

mation processing systems, pages 1135–1143, 2015.

[65] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep

neural networks. arXiv preprint arXiv:1902.09574, 2019.

75

[66] Alfred Bourely, John Patrick Boueri, and Krzysztof Choromonski. Sparse

neural networks topologies. arXiv preprint arXiv:1706.05683, 2017.

[67] Sourya Dey, Kuan-Wen Huang, Peter A Beerel, and Keith M Chugg. Pre-

defined sparse neural networks with hardware acceleration. IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, 9(2):332–345,

2019.

[68] Souvik Kundu, Mahdi Nazemi, Massoud Pedram, Keith M Chugg, and

Peter A Beerel. Pre-defined sparsity for low-complexity convolutional neural

networks. IEEE Transactions on Computers, 69(7):1045–1058, 2020.

[69] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li,

Qi Guo, Tianshi Chen, and Yunji Chen. Cambricon-x: An accelerator for

sparse neural networks. In 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[70] Jeremy Kepner and Ryan Robinett. Radix-net: Structured sparse matri-

ces for deep neural networks. In 2019 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), pages 268–274,

2019.

[71] Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong,

and Guo-Jun Qi. Interleaved structured sparse convolutional neural net-

works. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 8847–8856, 2018.

[72] Steven K Esser, Paul A Merolla, John V Arthur, Andrew S Cassidy, Rathi-

nakumar Appuswamy, Alexander Andreopoulos, David J Berg, Jeffrey L

McKinstry, Timothy Melano, Davis R Barch, et al. Convolutional net-

works for fast, energy-efficient neuromorphic computing. Proceedings of the

national academy of sciences, 113(41):11441–11446, 2016.

[73] Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Stdp-based prun-

ing of connections and weight quantization in spiking neural networks for

energy-efficient recognition. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 38(4):668–677, 2018.

76

[74] Yuhan Shi, Leon Nguyen, Sangheon Oh, Xin Liu, and Duygu Kuzum. A

soft-pruning method applied during training of spiking neural networks for

in-memory computing applications. Frontiers in neuroscience, 13:405, 2019.

[75] Ruizhi Chen, Hong Ma, Shaolin Xie, Peng Guo, Pin Li, and Donglin Wang.

Fast and efficient deep sparse multi-strength spiking neural networks with

dynamic pruning. In 2018 International Joint Conference on Neural Net-

works (IJCNN), pages 1–8. IEEE, 2018.

[76] Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei

Ding, Peng Li, and Yuan Xie. Comprehensive snn compression using admm

optimization and activity regularization. IEEE Transactions on Neural

Networks and Learning Systems, 2021.

[77] Sen Lu and Abhronil Sengupta. Exploring the connection between binary

and spiking neural networks. Frontiers in Neuroscience, 14:535, 2020.

[78] Hong-Han Lien, Chung-Wei Hsu, and Tian-Sheuan Chang. Vsa: Reconfig-

urable vectorwise spiking neural network accelerator. In 2021 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE,

2021.

[79] Yixuan Wang, Yang Xu, Rui Yan, and Huajin Tang. Deep spiking neural

networks with binary weights for object recognition. IEEE Transactions on

Cognitive and Developmental Systems, 2020.

[80] Saeed Reza Kheradpisheh, Maryam Mirsadeghi, and Timothée Masquelier.

Bs4nn: Binarized spiking neural networks with temporal coding and learn-

ing. Neural Processing Letters, pages 1–19, 2021.

[81] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-layer

cnn accelerators. In 2016 49th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[82] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier,

and Yonghong Tian. Deep residual learning in spiking neural networks. In

Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

77

[83] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor.

Converting static image datasets to spiking neuromorphic datasets using

saccades. Frontiers in neuroscience, 9:437, 2015.

[84] Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural

network with direct input encoding and leakage and threshold optimization.

IEEE Transactions on Neural Networks and Learning Systems, 2021.

[85] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, et al. Pytorch: An imperative style, high-performance deep learning

library. Advances in neural information processing systems, 32:8026–8037,

2019.

[86] Ameya Prabhu, Girish Varma, and Anoop Namboodiri. Deep expander

networks: Efficient deep networks from graph theory. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 20–35, 2018.

[87] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the thirteenth inter-

national conference on artificial intelligence and statistics, pages 249–256.

JMLR Workshop and Conference Proceedings, 2010.

[88] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep

into rectifiers: Surpassing human-level performance on imagenet classifi-

cation. In Proceedings of the IEEE international conference on computer

vision, pages 1026–1034, 2015.

[89] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions

to the nonlinear dynamics of learning in deep linear neural networks. arXiv

preprint arXiv:1312.6120, 2013.

[90] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In International

conference on machine learning, pages 448–456. PMLR, 2015.

78

[91] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-

berger. Densely connected convolutional networks. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 4700–

4708, 2017.

[92] A Emin Orhan and Xaq Pitkow. Skip connections eliminate singularities.

arXiv preprint arXiv:1701.09175, 2017.

[93] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks

behave like ensembles of relatively shallow networks. Advances in neural

information processing systems, 29:550–558, 2016.

[94] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[95] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-

age dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747, 2017.

[96] Man Wu, Yan Chen, Yirong Kan, Takeshi Nomura, Renyuan Zhang, and

Yasuhiko Nakashima. An elastic neural network toward multi-grained re-

configurable accelerator. In 2020 18th IEEE International New Circuits

and Systems Conference (NEWCAS), pages 218–221. IEEE, 2020.

[97] Michael A Nielsen. Neural networks and deep learning, volume 25. Deter-

mination press San Francisco, CA, USA:, 2015.

[98] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[99] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlin-

earities improve neural network acoustic models. In Proc. icml, volume 30,

page 3, 2013.

[100] Suraj Srinivas and R Venkatesh Babu. Learning neural network architec-

tures using backpropagation. arXiv preprint arXiv:1511.05497, 2015.

[101] M Gethsiyal Augasta and T Kathirvalavakumar. A novel pruning algorithm

for optimizing feedforward neural network of classification problems. Neural

processing letters, 34(3):241, 2011.

79

[102] Olivier Temam. A defect-tolerant accelerator for emerging high-

performance applications. In 2012 39th Annual International Symposium

on Computer Architecture (ISCA), pages 356–367. IEEE, 2012.

[103] Yu Ji, YouHui Zhang, ShuangChen Li, Ping Chi, CiHang Jiang, Peng Qu,

Yuan Xie, and WenGuang Chen. Neutrams: Neural network transformation

and co-design under neuromorphic hardware constraints. In 2016 49th An-

nual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pages 1–13, 2016.

[104] Jaeyong Chung and Taehwan Shin. Simplifying deep neural networks for

neuromorphic architectures. In 2016 53nd ACM/EDAC/IEEE Design Au-

tomation Conference (DAC), pages 1–6, 2016.

[105] Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou.

A fully pipelined and dynamically composable architecture of cgra. In

2014 IEEE 22nd Annual International Symposium on Field-Programmable

Custom Computing Machines, pages 9–16. IEEE, 2014.

[106] Kan Yirong, Man Wu, Renyuan Zhang, and Yasuhiko Nakashima. A multi-

grained reconfigurable accelerator for approximate computing. In 2020

IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 90–

95. IEEE, 2020.

[107] Hongfei Wang, Jianwen Li, and Kun He. Hierarchical ensemble reduction

and learning for resource-constrained computing. ACM Transactions on

Design Automation of Electronic Systems (TODAES), 25(1):1–21, 2019.

[108] Yirong Kan, Man Wu, Renyuan Zhang, and Yasuhiko Nakashima. Mugra:

A scalable multi-grained reconfigurable accelerator powered by elastic neu-

ral network. IEEE Transactions on Circuits and Systems I: Regular Papers,

2021.

[109] David Heeger et al. Poisson model of spike generation. Handout, University

of Standford, 5(1-13):76, 2000.

80

List of publications

Peer review journal papers

1. Man Wu, Yirong Kan, Tati Erlina, Renyuan Zhang, and Yasuhiko Nakashima.

”DiaNet: An elastic neural network for effectively re-configurable implemen-

tation.” Neurocomputing 464 (2021): 242-251. (Section4)

2. Kan Yirong, Man Wu, Renyuan Zhang, and Yasuhiko Nakashima. ”Mu-

GRA: A Scalable Multi-Grained Reconfigurable Accelerator Powered by

Elastic Neural Network.” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 69, no. 1, pp. 258-271, Jan. (2022)

Peer review conference papers

1. Man Wu, Yan Chen, Yirong Kan, Takeshi Nomura, Renyuan Zhang, and

Yasuhiko Nakashima. ”An Elastic Neural Network Toward Multi-Grained

Re-configurable Accelerator.” In 2020 18th IEEE International New Cir-

cuits and Systems Conference (NEWCAS), pp. 218-221. IEEE, 2020.

(Oral) (Section4)

2. Kan Yirong, Man Wu, Renyuan Zhang, and Yasuhiko Nakashima. ”A

Multi-grained Reconfigurable Accelerator for Approximate Computing.” In

2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp.

90-95. IEEE, 2020. (Oral)

Workshop

1. Man Wu, Yirong Kan, Vantinh Nguyen, Renyuan Zhang, Yasuhiko Nakashima.

”Ternarizing Deep Spiking Neural Network”,In CPSY, 2022 January. (Sec-

tion3)

81

