
Doctoral Dissertation

Understanding Third-party Library Discussions
Through Question-and-Answer Sites

Syful Islam
Program of Information Science and Engineering

Graduate School of Science and Technology
Nara Institute of Science and Technology

Supervisor: Kenichi Matsumoto
Software Engineering Lab. (Division of Information Science)

Submitted on March 15, 2022

A Doctoral Dissertation
submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of Engineering

Syful Islam

Thesis Committee:
Supervisor Kenichi Matsumoto

(Professor, Division of Information Science)
Hajimu Iida
(Professor, Division of Information Science)
Takashi Ishio
(Associate Professor, Division of Information Science)
Raula Gaikovina Kula
(Assistant Professor, Division of Information Science)
Mohammed Humayun Kabir
(Professor, Noakhali Science and Technology University)

Understanding Third-party Library Discussions
Through Question-and-Answer Sites∗

Syful Islam

Abstract

Third-party libraries have become an integral part of modern software devel-
opment, as developers have access to many useful libraries through the software
packaging ecosystems. Managing third-party libraries is one of the major chal-
lenges of the software ecosystem due to its high degree of interdependence. In
addition, it is difficult for developers to understand the challenges and infor-
mation needs of using third-party libraries from different ecosystems during the
software development process. Question-and-answer sites are a popular source of
knowledge for communicating developer challenges.

This thesis investigates third-party package (i.e., library) related discussions
through a popular question-and-answer site such as Stack Overflow to understand
the developer’s experience (i.e., the challenges and information needs) of using
third-party packages from different software packaging ecosystems. The main
contributions of this thesis are divided into two parts. In the first part, developer’s
experience in package management is investigated, and found that discussion
topics vary by packaging ecosystem. The results also indicate that certain features
(e.g., dependency tree, environment, etc.) of package management correlate with
the developer’s experience. In the second part of the thesis, the investigation into
package usage reveals that developers encounter different types of errors while
maintaining third-party packages. Furthermore, popular packages are less likely
to be discussed on Stack Overflow, indicating fewer issues relating to their usage.
Finally, analyzing accepted answers shows that the answers, which include usage
examples and execution commands, help resolve errors related to package usage.

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
and Technology, March 15, 2022.

i

In summary, the results of this thesis highlight the challenges and informa-
tion needs associated with using third-party packages from software packaging
ecosystem for developers, package manager designers and researchers.

Keywords:

Third-party Library, Software Ecosystem, Package Management, Package Usage,
Question-and-Answer site, Developers Experience

ii

Acknowledgements

First of all, I would like to thank Almighty Allah for giving me the opportunity,
determination and strength in my PhD study. His constant grace and mercy has
been with me throughout my life.

Secondly, I would like to express my sincere gratitude to Professor Michiko
Inoue for accepting me as a PhD student of NAIST. I sincerely thank her for
everything she had done for me. Thirdly, sincere gratitude to my PhD supervisor
Professor Kenichi Matsumoto for giving me opportunities to study in his
laboratory as a PhD student. His guidance and motivation helped me a lot
in my research and writing of this thesis. This thesis would never have been
accomplished without his generous support. I believe, my supervisor did for me
what the best supervisors always do for his/her students to make them successful
in life.

To my thesis committee, I would like to thank Professor Hajimu Iida, Asso-
ciate Professor Takashi Ishio, and Professor Mohammed Humayun Kabir for their
valuable comments and discussion to improve my thesis.

My special thanks goes to Assistant Professor Raula Gaikovina Kula for his
continual support and guidance. His guidance and support from the initial to
final level helped to develop a good understanding in my research area. He has
literally taught me how to do research and motivated with great insights and
innovative ideas. He has guided me the ways to visualize the problem with all
possible angles and to get a deep insight into the topic. His presence always
helped me to work harder and be simple.

Also special thanks goes to Senior Lecturer Christoph Treude (University of
Melbourne), who motivated me with great insights and innovative ideas during
my PhD study.

I would like to thank my lab mates in software engineering lab for great help,
support, and encouragement from the beginning to the end.

Last but not least, I would like to thank my family for their love, and encour-
agement to study until now. Without them, I would not have a chance to pursue
my dream in Japan. Finally, I would like to express my most sincere appreciation
to MEXT and NAIST international affair division for all kind of supports.

iii

List of Publications

• An Exploration of npm Package Co-Usage Examples from Stack
Overflow: A Case Study
Syful Islam, Dong Wang, Raula Gaikovina Kula, Takashi Ishio, and Kenichi
Matsumoto. IEICE Transactions on Information and Systems, Special Sec-
tion on Empirical Software Engineering, Volume and Number: Vol.E105-D
,No.1, pp.11-18, Jan. 2022.

• Contrasting Third-Party Package Management User Experience
Syful Islam, Raula Gaikovina Kula, Christoph Treude, Bodin Chinthanet,
Takashi Ishio, Kenichi Matsumoto. International Conference on Software
Maintenance and Evolution , IEEE, pp. 664-668, 27 Sep. 2021.

• Choice Matters: Contrasting Package Manager User Experience
Raula Gaikovina Kula, Syful Islam, Bodin Chinthanet, Christoph Treude,
Takashi Ishio, Kenichi Matsumoto. 4th International Workshop on Software
Health in Projects, Ecosystems and Communities, May 29th, 2021.

iv

Contents

Abstract ii

Acknowledgements iii

List of publications iv

Contents iv

List of Figures viii

List of Tables x

1 Introduction 1
1 Scope of this Thesis . 2
2 Contributions . 4

2.1 Package management . 4
2.2 Package usage . 5

3 Organization of Thesis . 6

2 Background 8
1 Third-party Package Usage in Modern Software Development . . . 8

1.1 Usefulness of third-party packages 9
1.2 Drawback of third-party packages 10

2 Third-party Package Management 11
2.1 Basic Functions of Package Manager 12

3 Software Packaging Ecosystem . 12

v

3.1 Evolution of Software Packaging Ecosystems 12
4 Developers Discussion on Question-and Answering Site 16

4.1 Stack Overflow: A Popular Q&A Site Among Developers . 16
Question . 17
Answer . 17
Comments . 19

5 Definition of Developers Experience 19
6 Related Works . 19

3 Package Management 24
1 Introduction . 24
2 Contrasting Developers Experience in Package Management . . . 25

2.1 Selecting package ecosystems and their features 26
2.2 Building third-party package related question-and-answer

dataset . 27
2.3 Question Topic Modeling 28
2.4 Contrasting developer discussion topics relating to different

ecosystems . 34
A. Contrasts in Responses: Popularity and Difficult 34
B. Contrasts in Features: Topics and Features 39

3 Investigating Root Cause of Package Management Discussion and
Their Kinds of Questions . 43
3.1 What kind of questions do developers ask about third-party

package management? . 44
3.2 What are the underlying causes of questions related to

third-party package management? 47
4 Implications . 51
5 Threats to Validity . 52
6 Summary and Future Works . 53

4 Package Usage 55
1 Introduction . 55
2 Motivating Example . 56
3 Data Preparation . 59

vi

4 Data Analysis . 60
4.1 Approach for RQ1: Package usage issues 60
4.2 Approach for RQ2: Developers practices to solve package

usage issues . 61
5 Results . 63

5.1 Answering RQ1: Package usage issues 63
5.2 Answering RQ2: Developers practices to solve package us-

age issues . 68
6 Discussion . 68
7 Threats to validity . 69
8 Summary and Future Works . 70

5 Conclusion 72
1 Implications and Suggestions . 73
2 Opportunities for Future Research 74

vii

List of Figures

1.1 Area of thesis. 3
1.2 An overview of the structure of this thesis. 6

2.1 The package usage scenario to develop pandas package and their
different dependency types. According to the figure, pandas pack-
age has three main dependencies (i.e., numpy, python-dateutil, and
pytz), and the rest dependencies are optional. 9

2.2 Typical workflow of third-party package management. It illustrates
the workflow of python package manager pip to install the pandas
packages from PyPI package repository. 11

2.3 Overview of the evolution of thirteen third-party package ecosys-
tems of top programming languages according to TIOBE index
https://www.tiobe.com/tiobe-index/ 13

2.4 Example of Stack Overflow question (Id: 898782) where a devel-
oper ask for the solution of CPAN dependency management. . . . 17

2.5 Example of Stack Overflow answers of a question (Id: 898782)
where other Stack Overflow users propose solution for the CPAN
dependency management. 18

3.1 An overview of contrasting developers experience in third-party
package management on 13 selected package ecosystems from top
20 programming languages. 26

3.2 Distribution of third-party package related discussion topics and
their higher level theme (in percentage). 31

viii

https://www.tiobe.com/tiobe-index/

3.3 Package ecosystem vs. topic, where developers of different package
ecosystems ask different questions. 41

3.4 Package ecosystem vs. topic themes, where most developers of
package ecosystems ask questions on package management except
Go and Meteor . 41

3.5 Language feature heatmap shows that different package ecosystems
in different languages provide different developers experiences. . . 42

3.6 Environment feature heatmap shows that different package ecosys-
tems in different environments provide different developers experi-
ences. 42

3.7 Dependency tree feature heatmap shows that dependency tree cor-
relates with developers experiences (i.e., package ecosystems with
a nested dependency face package usage issues, while flat depen-
dency trees face questions related to dependencies) 43

3.8 Percentage of third-party package posts by question coding com-
pared to Treude et al. [91]. Result shows that ‘How-to’ and
‘Error’ messages are the most dominant questions asked. 46

3.9 Post (Id: 50262939) that discuss issues related to specific migration 48
3.10 Post (Id: 4811870) that discuss issues related to package manage-

ment tool usage . 49
3.11 Post (Id: 30571) that discuss issues related to general idea of de-

pendency practice. 49
3.12 Percentage of third-party package posts by their underlying cause.

I find that ‘Package management tool usage’ is the most dominant
underlying cause. 50

4.1 A motivating example of npm package co-usage in Stack Over-
flow. The example shows that a developer encounters a issue
when installing all node_modules, due to two dependent packages
babel-loader and webpack. 57

4.2 An overview of the methodology of our study. 58
4.3 Word cloud generated from Stack Overflow npm posts title that

contains package usage information. The word cloud shows that
npm posts are primarily related to various types of errors. 62

ix

4.4 An example that motivates to classify developers response. In
the answer I observe that, it contains usage examples, execute
command, and step by step instruction. 64

4.5 Analysis of accepted answers posted in response to questions that
include package usage information. Result shows that 37.76% ac-
cepted answers contain usage example followed by execute command
19.58%. 69

x

List of Tables

3.1 Summary of each package ecosystem and their features. 27
3.2 List of the 28 manually validated tags discovered from Step 2 of

the data preparation. 29
3.3 Topics and their top ten keywords extracted from third-party pack-

age related question posts. The topics are categorized into three
themes. 35

3.4 Popularity of third-party package discussion topics. All the metrics
are represented in median value. The median value of favourite
count for all topics are zero. Result shows that error and testing
related issues are most popular among developers. 37

3.5 Difficulty of third-party package discussion topics. The answer
count metric is represented in median value and the accepted an-
swer count and PD score are represented in percentage (%). Result
shows that error topic questions are most difficult to answer while
package usage issues are easiest to answer by other stack overflow
users. 38

4.1 Summary of dataset used in the study. 59
4.2 Top-15 npm packages extracted from Stack Overflow posts with

their proportion and rank in the latest npm projects. Result shows
that Only three out of top-10 npm packages are mostly discussed
in Stack Overflow. 65

xi

4.3 Top-15 package usage extracted from the latest npm projects with
their proportion and rank in the Stack Overflow posts. The top
package usage patterns from npm projects shows that application
developers top usage packages are different from Stack Overflow. . 66

4.4 Top-15 package co-usage extracted from Stack Overflow posts ex-
cept angular since rest of the top co-usage are related to angular.
The top co-usage patterns and their rank in Stack Overflow indi-
cate that developers discuss most package dependency issues re-
lated to angular followed by (‘typescript’, ‘zone.js’). . . . 67

xii

1 | Introduction

Third-party libraries have become an integral part of modern software devel-
opment, as many useful libraries for different programming languages are read-
ily available to developers through the library distribution systems. These li-
brary distribution systems are popularly known as software packaging ecosystem,
consisting of a large set of library components developed, shared, and evolved
on common technology platforms to deliver numerous software services or solu-
tions [25, 51, 57]. Due to the increasing popularity of third-party library usage,
the software ecosystems tend to grow rapidly containing millions of libraries for
developers. For instance, the npm packaging ecosystem has provided over 800,000
free and reusable software packages and is trusted by over 11 million developers
around the world1. For the rest of this thesis, the term package is used instead
of library because the software ecosystem introduces the library as a package
containing code module binaries, configuration files, and their dependencies.

Managing third-party packages is one of the major challenges in software
ecosystems, since they are highly interdependent [4, 17, 18]. As the number of
dependencies grows (i.e., forming a large tree of interdependent packages) within
the application, so do the chances of incompatibility between dependencies. Sev-
eral studies reported the negative impact of third-party package overuse including
increased maintenance cost [72, 87], security vulnerability and backward incom-
patibility issues [24, 29, 40, 71]. For example, in a recent incident of a npm
package called left-pad, which was used by Babel, caused interruptions to the
popularly used internet websites, e.g., Facebook and Netflix 2. To address such

1https://www.npmjs.com/
2https://www.sciencealert.com/how-a-programmer-almost-broke-the-internet-by-deleting-

11-lines-of-code

1

problems, the package managers act as intermediary brokers between an appli-
cation and a package dependency to ensure that a verified package is correctly
installed, configured, or removed from an application. They solve the ‘depen-
dency hell’3 dilemma,i.e., to avoid compatibility and build issues that arise when
an application adopts numerous dependencies.

Diversity in technology stacks and programming languages has led to a va-
riety of managers that cover different software packaging ecosystems. For in-
stance, npm brokers packages that run in the Node.js environment and are writ-
ten in JavaScript, while the PyPI package ecosystem is built specifically to handle
Python package dependencies. Recent studies have investigated ecosystem tooling
polities, dependency management from the perspectives of updates (i.e., update
an existing dependency to a more recent version) and migration (i.e., replace,
remove, or add a new dependency) [17, 18, 27, 28, 30, 41, 45]. For example, Bog-
art et al. [17, 18], performed multiple case study on a set of package ecosystems
with different tooling policies. They found that “developers practices differ sig-
nificantly between ecosystems and all ecosystems share values such as stability
and compatibility, but differ in other values”.

Selecting an appropriate software packaging ecosystem is crucial for devel-
opers, specially when building mobile and web applications. In addition, it is
difficult for developers to understand the challenges and information needs of us-
ing third-party packages from different ecosystems. The purpose of this thesis
is to investigate the developers experience (i.e., the challenges and information
needs) in different software packaging ecosystems on (1) package management and
(2) package usage. To the best of my knowledge, no research has been done on
the developer’s experience in using third-party packages from different software
packaging ecosystems.

1 Scope of this Thesis

This section presents the scope of this thesis in terms of developers experience as
illustrated in Figure 1.1.

3A term made popular by this blog https://web.archive.org/web/20150708101023/
http://archive09.linux.com/feature/155922

2

https://web.archive.org/web/20150708101023/http://archive09.linux.com/feature/155922
https://web.archive.org/web/20150708101023/http://archive09.linux.com/feature/155922

Software ecosystems

Discussions

Question-and-Answer site

Understanding Third-party Library Discussions by Developers

Figure 1.1: Area of thesis.

Community based Question-and-answering (Q&A) sites such as Stack Over-
flow has gained huge popularity as crowd-sourced knowledge for software develop-
ers to solicit solutions to their challenges and information needs. Previous studies
by Gupta and Reddy [36], Storey et al. [83] reported that querying information
needs from Stack Overflow is a regular activity by many software developers. A
systematic study by Meldrum et al. [62] has shown that Stack Overflow attracted
increasing research interest over the years, with topics relating to community
dynamics, technical issues of developers, and human factors.

In this thesis, I hypothesized that “Question-and-answering discussions
can provide valuable insights into the challenges and information needs
associated with using third-party package from software packaging
ecosystems.”

To validate my thesis statement, I utilized Stack Overflow as shown in Fig-
ure 1.1 to understand third-party package related discussions by developers. As
far as I know, there was no prior work that conducted study on third-party
package discussions from Stack Overflow. To investigate developers experience
in different third-party package ecosystems, I collected relevant Q&A posts from
Stack Overflow and perform a series of empirical studies. I believe that this thesis
sheds the spot light on the challenges and information needs associated with using
third-party packages from software packaging ecosystem for developers, package
manager designers and researchers.

3

2 Contributions

To better understand the developer experience with using third-party packages
from different software packaging ecosystems, this thesis has conducted a series
of empirical studies. The contributions of this thesis are mainly divided into two
fold; developers experience in (i) package management, and (ii) package usage.
In the following, I have summarized the main results.

2.1 Package management

This chapter investigates developers experience on third-party package manage-
ment in different software packaging ecosystems. To accomplish the goal, this
chapter departs with two consecutive studies. At first, I performed a quantita-
tive study on 497,249 Stack Overflow Q&A posts from 13 packaging ecosystems
to contrast developers experience of package management. Second, I conducted
a qualitative study on 1131 third-party package question posts from 3 packag-
ing ecosystems to get deeper understanding of the questions asking and their
underlying causes.

Among the main findings, the quantitative study identifies 10 topics that
developers are discussing on third-party packages which are further categorized
under three major themes: (i) Package management, (ii) Input/Output, and
(iii) Package. Contrasting developers response in terms of topic popularity and
difficulty, I find that third-party package posts that relate to error and testing
topics are most popular and also most difficult for developers to solve. In addi-
tion, contrasting developers experience based on package management features, I
observe that developers experience is different, depending on the choice of pack-
aging ecosystem. After combining the results of quantitative study, I speculate
that developers using Go and Meteor package ecosystems have relatively easier
time finding answers to their questions on Stack Overflow compared to developers
using other package ecosystems.

Again, the qualitative study identifies that third-party package related ques-
tions arise due to lack of instructions (i.e., around 31 to 42% of question samples)
and error messages (i.e., around 27% to 37% of questions). Further investigation
on third-party package posts shows that the underlying causes can be catego-

4

rized into package management tool usage, general dependency practices, specific
migration, and others. An analysis of the underlying causes in 3 packaging ecosys-
tems reveals that most questions related to third-party packages by developers
are due to lack of knowledge on package management tool usage, rather than
specific migration.

2.2 Package usage

In this chapter, an exploratory study on package usage information from Stack
Overflow is performed in term of co-usage relationship. The rationale behind
refining the co-usage relationship is to study problems caused by npm packages.
In particular we investigate (i) whether we can detect package usage (i.e., co-
usage) information from Stack Overflow and (ii) what the developers are looking
for to solve problems related to the package. To address these, we study over 2,100
Stack Overflow Q&A posts and matched them to 217,934 npm library packages.
I reveal the following valuable lessons along the way:

• Lesson 1: I find that only three out of the top ten of the most used npm
libraries are mentioned in Stack Overflow. The top-3 discussed npm li-
braries are react, typescript, and webpack. Again, the top-5 libraries
that are less frequently discussed in Stack Overflow are mocha, eslint,
chai, babel-core, and lodash. One possible reason is that, well-known
libraries are well documented and may have their own forum, chat tools,
etc. For this reason, there is no need to discuss them in Stack Overflow.
Furthermore, we find that 87.95% of package co-usage mined from Stack
Overflow exist in the latest npm package release.

• Lesson 2: Developers post answers provided with usage example or execute
command. Results do indicate the potential for a recommendation system,
especially with the available execute commands and examples. Although
Stack Overflow has been a useful resource for finding answers to questions,
I find that popular and highly used libraries are not discussed as often.
However, the accepted answers may prove useful, as I believe that the usage
examples and executable commands could be reused for tool support.

5

In
tr

o
d

u
c
ti

o
n

C
h

a
p

te
r

1

B
a
c
k
g

ro
u

n
d

C
h

a
p

te
r

2
Understanding Third-party Library Discussions

C
o

n
c
lu

s
io

n

C
h

a
p

te
r

5

Package management (PM)

Chapter 3

Package usage

Chapter 4

Contrast developers

experience in PM

Investigate root cause

of PM discussion and

their kinds of question

Investigate

package usage

issues

Investigate developers

practices to solve

package usage issues

Figure 1.2: An overview of the structure of this thesis.

3 Organization of Thesis

In this section, I provide an organization of this thesis. Figure 1.2 illustrates the
organization of the thesis. The details of this thesis is structured as follows:

Chapter 2 presents the background of this thesis which includes details of
package ecosystem, Q&A website, the key term developers experience, and re-
lated works. In detail, Section 1 defines third-party package usage along with its
usefulness and limitations. Section 2 defines package management system and its
functions in detail. Section 3 defines third-party package ecosystem and describe
their evolution. Section 4 introduces the detail of a question-answering discus-
sion by taking Stack Overflow as a case study. Section 5 defines the key term
‘Developers Experience’ which is used throughout this thesis. Finally, Section 6
discusses the related works of this thesis.

Chapter 3 investigates developers experience on third-party package manage-
ment in different software packaging ecosystems. Section 2, presents quantita-
tive study to contrast developers experience in package management. Section 3
presents the qualitative study to investigate the root causes of package manage-
ment discussion and their kinds of questions. Section 4 discusses the implications
of this chapter. Section 5 presents the possible threats to validity of results.
Finally, in Section 6, I summarize the results.

Chapter 4, investigates the package usage information from Stack Overflow in
term of co-usage relationship. In detail, Section 2 presents motivating example
and research questions. Section 3 describes the data preparation. Section 4

6

presents the analysis approach. Section 5 reports the results for each research
question. Section 6, discusses the implications from this study. Section 7 discloses
the threats to validity of our study. Finally, I summarize this chapter in section 8.

Finally, Chapter 5 concludes the thesis.

7

2 | Background

The purpose of this Chapter is to describe background of this thesis which includes
details of package ecosystem, Q&A website, the key term developers experience,
and related works. In detail, Section 1 defines third-party package usage along
with its usefulness and limitations. Section 2 defines package management system
and its functions in detail. Section 3 defines third-party package ecosystem and
describe their evolution. Section 4 introduces the detail of a question-answering
discussion by taking Stack Overflow as a case study. Section 5 defines the key term
‘Developers Experience’ which is used throughout this thesis. Finally, Section 6
discusses the related works of this thesis.

1 Third-party Package Usage in Modern Software
Development

Third-party packages are reusable software components developed to be freely
distributed or sold by entities other than original vendor of the development plat-
form. These packages typically contain information about code module binaries,
configuration files, and their dependencies [76]. The usage of third-party packages
have become an integral part in modern software development as it facilitates to
integrate a functionality without writing code from scratch [14, 47, 69, 74, 75, 88].
Figure 2.1 shows the package usage scenario to develop pandas software pack-
age. According to the figure, pandas package has three main dependencies (i.e.,
numpy, python-dateutil, and pytz), and the rest dependencies are optional. Be-
low, I explain the usefulness and drawback of third-party package usage in modern
software development.

8

Dependencies

Optional

Dependencies

Figure 2.1: The package usage scenario to develop pandas package and their dif-
ferent dependency types. According to the figure, pandas package has three main
dependencies (i.e., numpy, python-dateutil, and pytz), and the rest dependencies
are optional.

1.1 Usefulness of third-party packages

There are several benefits of third-party package usage in software development1.
These are-

• Save effort and time. One of the main advantage of using third-party
packages is that, it saves developers time and effort during software software
development. Developers do not need to implement functions from scratch,
instead they can focus on main business logic of the developing applications.

• Use pre-tested code. In term of testing, a big advantage of third-party
package is the use of pre-tested code. Generally, popular packages are used

1https://www.scalablepath.com/blog/third-party-libraries/

9

extensively in developing software by many developers. In this way, the
packages receive many feedback on bug, and feature improvement requests.
Therefore, using such pre-tested third-party packages guarantees the quality
and stability of an application.

• Use modular code. Another advantage of third-party package usage
is that, it facilitates developers to work with modular code. The package
code is isolated from the rest of the application under development and
communicates via a well-defined API to ensure the required functionality.

1.2 Drawback of third-party packages

Along with huge benefits of third-party packages, there are also several drawbacks.
These are-

• Dependency. One of the major drawbacks of third-party package usage
is dependency. Utilizing a package in developing application means that
the code is coupled with that packages and its dependencies. Later, if a
developer want to change the packages, he might have to perform significant
changes to adopt new packages.

• Lack of support. Another potential risk is that the developer may not be
able to maintain the package properly. A package need continuous mainte-
nance to improve its features, soling bugs, and ensure compatibility. If the
packages are not properly maintained, it will eventually face compatibility
issues and may not perform optimally in new applications.,

• Overuse. The overuse of third-party packages in software development
may cause dependency conflict and other related incompatibility issues
which are difficult and time consuming to fix. In addition, overuse of pack-
ages will eventually result in increased memory space consumption and
lower performance.

• Security issues. Another potential risk of third-party package usage is
the possibility of affecting an application with security vulnerabilities.

10

User requests

Installation of package

PMs fetch all needed

Packages from repository

1

2

3

4

5

> pip install pandas

Anaconda Prompt

PMs install, configure, recommends

any manual action if necessary

Ready to use the desired

Packages

Figure 2.2: Typical workflow of third-party package management. It illustrates
the workflow of python package manager pip to install the pandas packages from
PyPI package repository.

2 Third-party Package Management

Package management is crucial to most technology stack in software development
specially when building mobile and web applications. The package management
system (i.e., package manager) is a tool that automates the process of installing,
upgrading, configuring and removing of third-party packages from an application
in a consistent manner [1, 76, 82]. The workflow begins with the user requesting
the desired package using the package manager available on the system. Then
the Package manager finds the requested package and its dependencies from the
dedicated package ecosystem and downloads it. Finally, the package manager
installs the desired package and advises on any manual actions that it finds nec-
essary for successful installation [76]. Figure 2.2 shows the typical workflow of
python package manager pip to install the pandas packages from PyPI package
repository.

11

2.1 Basic Functions of Package Manager

The basic functions of third-party package manager are as follows:

• Act as a broker of package broker to extract desired package archives. The
package managers serve over 5 million open source package to developers.

• Ensure package integrity and authenticity through Validating digital cer-
tificates and check-sums.

• Find, download, install, or update existing software packages from the au-
thenticated package repository or app store.

• Group packages by feature/function to reduce developers confusion.

• Manage dependencies to ensure that packages are installed with all required
packages and avoid dependency hell.

3 Software Packaging Ecosystem

The software packaging ecosystem is a collection of software components devel-
oped, shared, and evolved on a common technology platform, delivering numerous
software services or solutions to meet consumer demand [25, 51, 57]. Due to the
popularity of third-party package usage in modern software development, pack-
age ecosystems tend to be growing large that contain millions of packages [28].
For instance, npm (JavaScript language), PyPI (python language), maven (Java
language) are popularly know package ecosystem among software developers.

3.1 Evolution of Software Packaging Ecosystems

Almost every programming language has come-up with a package ecosystem.
Diversity of technology stacks and programming languages has led to variety of
package ecosystems. For instance, npm brokers packages that run in the Node.js
environment and are written in JavaScript, while the PyPI package ecosystem is
built specifically to handle Python package dependencies. Figure 2.3 shows the
overview of the evolution of thirteen third-party package ecosystems of top twenty

12

1990

1993

1996

1999

2002

2005

2008

2011

Perl

Java

GOlang

maven

CPAN
cpan.org

GO
pkg.go.dev

maven.org

rank: 15

Python

R

PIP

Packrat

Conda

cran.r-project.org

pypi.org

anaconda.org

rank: 2

rank: 14

PHP

Composer
packagist.org

rank: 8
rank: 3

Puppet

Ruby

RubyGems

forge.puppet.com

rubygems.org

rank: 13

rank: 20

VB

NuGet
nuget.org

C#
rank: 5

rank: 6

JavaScript

Bower Meteor

npm
bower.io atmospherejs.com

rank: 7

npmjs.com

1987

2014

2017

Figure 2.3: Overview of the evolution of thirteen third-party package ecosystems
of top programming languages according to TIOBE index https://www.tiobe.
com/tiobe-index/

programming languages. In the following, I will introduce different popularly
known package ecosystems.

• Maven. (maven.org) is a popular package ecosystem that serve third-party
packages written in Java programming language to developers since 2004.
The maven package ecosystem was created by Jason van Zyl and started
as a sub-project of Apache Turbine in 2002. In 2003, it was accepted as a
Apache Software Foundation project. Then, in July 2004, Maven’s was first
released its v1.0. Later, Maven declared release of v2.0 in October 2005.
In October 2010, Maven v3.0 which was backwards compatible with Maven
v2. Currently, this packages ecosystem supports over 417,669 packages for
developers.

• CPAN. (metacpan.org) The comprehensive perl archive network is con-
sidered as the oldest package ecosystem. This CPAN package ecosystem

13

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
maven.org
metacpan.org

was developed in 1993 and has been active online to serve developers since
October 1995. Currently, CPAN support over 38,459 packages to serve perl
programming language based developers.

• CRAN. (cran.r-project.org) The comprehensive R archive network is
considered as the second oldest package ecosystem. In 1997, CRAN was
created by Kurt Hornik and Friedrich Leisch. The CRAN archive contains
all versions of the R distributions, its documentation, and the contributed
R packages. For different operating system support like Windows and ma-
cOS, it includes both the source packages and pre-compiled binary files.
CRAN support over 20,324 packages for serving statistical computation in
R environment.

• npm. (npmjs.com) The Node Package Management (that is, npm) is the
fastest growing package ecosystem, delivering 186,6208 JavaScript packages
to 11 million developers. The npm is committed to making JavaScript de-
velopment elegant, productive and secure 2. It consists of three different
components: the website, the command line interface (CLI), and the reg-
istry. In 2010, the npm started its official package registry for JavaScript
developers.

• Packagist. (packagist.org) is the main package repository for composer.
The packagist ecosystem aggregates public packages which are written in
PhP language and are install-able with Composer. In 2012, the packagist
started its activity online to serve PhP developers. Currently, it serve over
316,855 packages to developers.

• NuGet. (nuget.org) is the official package repository developed by Mi-
crosoft organization for the .NET developer. NuGet package ecosystem is
also popularly known as NuPack. Nuget starts its activity October, 2010.
Currently, it supports over 264,221 packages for the .NET development
platforms.

• RubyGems. (rubygems.org) is the largest collection of packages written
in Ruby programming language. The RubyGems development was started

2https://www.npmjs.com/

14

cran.r-project.org
npmjs.com
packagist.org
nuget.org
rubygems.org

in 2003 and was released to the public in early 2004. It support over 173,603
packages to serve Ruby developers.

• PyPI. (pypi.org) The python package index is the official third-party
package repository for python. In 2003, the PyPI package ecosystem started
its activity online to support python developers. According to libraries.io,
it support over 372,334 python packages.

• Go. (pkg.go.dev) is the package ecosystem for golang programming lan-
guage introduced by google. Golang is efficient, clean and expressive. The
Go code modules facilitate concurrency mechanisms for multicore and net-
worked machines, while its novel type system enables flexible and modular
code construction 3. Although golang was first introduced in 2009, the
package management system of Go was one of our major focuses in 2018 4.
According to libraries.io, the go package ecosystem contain 390,438 pack-
ages to support developers.

• meteor. (atmospherejs.com) is the package ecosystem dedicated for open-
source isomorphic JavaScript web framework. It facilitates full-stack tech-
nology JavaScript language for developing complete web and mobile ap-
plications. Moreover, meteor includes a set of key technologies to build
connected-client reactive applications, build tool, and a selected set of pack-
ages from the npm package ecosystem community 5. In December 2011, the
meteor was initially released under the name Skybreak. Finally, in April
2012, this framework was renamed as Meteor and officially active online.
According to libraries.io, the meteor package ecosystem currently contain
13410 packages to support full-stack JavaScript developers.

• Conda. (anaconda.org) is a package ecosystem of python and R pro-
gramming language to perform scientific computing. In july 2012, conda
was developed by Anaconda, Inc..According to libraries.io, this package
ecosystem contain 12,763 packages to serve scientific computing.

3https://golang.org/doc/
4https://go.dev/blog/modules2019
5https://docs.meteor.com/

15

pypi.org
pkg.go.dev
atmospherejs.com
anaconda.org

4 Developers Discussion on Question-and Answer-
ing Site

Community based Question-and-Answer (Q&A) sites has become a new popular
venue of searching and sharing knowledge. In the Q&A site, a user can ask/answer
questions, and also provide feedback by commenting or voting to these questions
and answers. Millions of users around the world utilize the Q&A sites to seek
for the solution of their information needs [42, 49, 67, 102]. For example, Yahoo!
Answers, Quora, Stack overflow, Stack Exchange are popularly known Q&A sites.
Below, I introduce Stack Overflow, one of the most popular Q&A sites among
developers.

4.1 Stack Overflow: A Popular Q&A Site Among Develop-
ers

Stack Overflow is a popularly known Q&A site among developers around the
world to share programming related knowledge through asking a question, an-
swering questions and participating in the discussions through commenting. Such
Q&A process on the Stack Overflow platform eventually creates a crowd-sourced
knowledge that helps developers around the world to build and improve their
knowledge on programming and its related technologies. Previous studies by Gupta
and Reddy [36], Storey et al. [83] reported that querying information from Stack
Overflow is a regular activity by many developers. The Stack Overflow website
consists of three main parts (i.e., question, answer, and comments). The success
of this popular Q&A platform is evident through the fact that 92% of questions
asked by users are getting answered, with median answering time of 11 min-
utes [55]. Parnin and Treude [70] reported that 84.4% of web searches for issues
related to the jQuery API resulted in at least one Stack Overflow post on the
first page indicating that programmers can access Stack Overflow for questions
that have already been asked.

16

Title

BodyTag

S
c
o
re

Asker

Figure 2.4: Example of Stack Overflow question (Id: 898782) where a developer
ask for the solution of CPAN dependency management.

Question

The Stack Overflow question-and-answer process starts with a user posting a
question that related to programming or other related issues. A question is
posted in Stack overflow to describe problem faced by a user. A question body
may contain different code snippets, log files, command line scripts, software
screenshot etc. The main goal of posting a question is to request for information
needs and solution from the community. Figure 2.4 shows an example of question
asked by a user on a issue related to installation of CPAN dependencies.

Answer

An answer of a question is the solution or a set of instruction that help the
users to solve specific problems. The answer provided by other users can be

17

A
c
c
e

p
te

d
 a

n
s
w

e
r

Comment

Answerer

Figure 2.5: Example of Stack Overflow answers of a question (Id: 898782) where
other Stack Overflow users propose solution for the CPAN dependency manage-
ment.

example source code, command line scripts, external tutorial or document links,
plain text, step by step instructions, etc. Sometimes, one question can receive
multiple answer proposal from different users. If a proposed answer can satisfy
requirements to solve the specific problem, then the user who ask the question may
mark the answer as accepted answer. Once a question receive its accepted answer,
other users of Stack Overflow can still contribute to the question by proposing
alternative answers or by editing other existing answers. Figure 2.5 shows the
answers of a question, where other Stack Overflow users propose solution for the
CPAN dependency management.

18

Comments

The comments are feedback and discussion by Stack Overflow users within ques-
tions and answers. In question, comments are used to ask for further information,
suggest similar questions, and suggest improvement of questions, etc. Again, in
answers, users participate in more explanation of answers, or better alternative
solutions.

5 Definition of Developers Experience

In contemporary software development, the usage of third-party has become a
common practice due to its huge benefits. However, managing third-party pack-
ages is important for most technology stacks in software development. Developers
often face various issues (like installation, configuration, testing, etc) when they
use third-party package in software development. In this thesis, the term devel-
opers experience means the type of challenges faced and information needs by
developers during third-party package usage from different software ecosystems.
For instance, Figure 2.4 shows that a developer experiences problem related to
installing CPAN package dependencies.

6 Related Works

Complementary related works are presented throughout the thesis. This section
describes some additional related works.

Dependency management studies. Prior studies on third-party package
management showed that developers struggled to manage their software depen-
dency [3, 17, 18, 26, 28, 35, 41, 52, 72, 87]. In detail, Bogart et al. [17, 18],
performed multiple case study on a set of software ecosystems with different
tooling policies. They found that developer practices differ significantly between
ecosystems. All ecosystems share values such as stability and compatibility, but
others are different. In addition, all communities are interested to invest in tool-
ing to facilitate dependencies maintenance. Kikas et al. [41], analyzed dependency
network of three software ecosystems (i.e., JavaScript, Ruby, and Rust). They

19

reported that there exist significant difference in dependency network structure
across language ecosystems. Decan et al. [26, 28] studied several software ecosys-
tem and report that dependency network tend to grow over time in term of size
and number of packages. In addition, they observed that a minority of packages
are mostly responsible for the package updates. Abate et al. [3] studied state-of-art
package managers to investigate dependency solving capacity. They reported that
solving dependency problem is challenging. German et al. [35] and Lungu et al.
[52] investigated issues related to dependency graphs and dependency manage-
ment specifications. They reported that dependencies also exist between projects
in a software ecosystem. Raemaekers et al. [72] and Teyton et al. [87], have shown
that dependency management involves making cost-benefit decisions related to
keeping package dependencies up to date.

Some studies reported that usage of outdated dependency in software can
have security vulnerability and backward incompatibility issues [24, 29, 40, 71].
In detail, Cox et al. [24] reported increased security and backward compatibility
risks when relying on older packages. They found that systems using old de-
pendencies were four times more likely to have security issues than systems with
updated dependencies. Jafari et al. [40] examine the npm ecosystem for evidence
of recurring dependency management issues that cause many problems, including
security threats, bugs, dependency breakage, runtime errors, and other mainte-
nance issues. Derr et al. [29] conducted a survey on 200 application developers to
investigate the impact of outdated package usage. They reported that most apps
are using older packages, and nearly 98% are actively using package versions that
are affected by known security vulnerabilities. Pashchenko et al. [71] conducted
a survey on software developers to shows the highlight developers effort to mit-
igate vulnerabilities. They reported that bundling security fixes with functional
changes could hinder adoption due to lack of resources to fix critical changes.

Moreover, other studies [15, 73, 79] show dependency updates at the API
level is slow and lagging. Robbes et al. [73] studied deprecation’s of API that
led to ripple effects through the entire ecosystem. They report that deprecation
of APIs can have a significant impact on the entire ecosystem in terms of broken
dependency. Bavota et al. [15], studied 147 Java Apache projects to understand
the changes that trigger dependency upgrades (bug fixes trigger upgrades, but

20

changing interfaces makes them less likely to upgrade). They report that when
a new release of a project is published, an upgrade will be triggered if the new
release contains major changes (such as new features / services) and a large
number of bug fixes. Instead, developers hesitate to perform an upgrade when
some APIs are removed. Sawant et al. [79], conducted a study on API deprecation
mechanism by considering 25,000 clients of five popular Java APIs on GitHub.
They highlighted the surprising similarities between how API clients are updated
and how Smalltalk and Java react.

Other studies mined and identified patterns in the migration of third-party
packages [27, 30, 43, 44, 45, 63], not only between client applications and li-
braries, but their effect at the ecosystem level. Kula et al. [45], mined developer
responsiveness to existing security awareness mechanisms on 850K library de-
pendency migrations from 4,659 GitHub projects. They found that developers
were particularly reluctant to update third-party libraries to fix vulnerabilities.
Decan et al. [27], mined 400 security reports over 6 years on an npm dependency
network containing over 610k JavaScript packages. They report findings and
provide guidelines for package maintainers and tool developers to improve the
process of addressing security issues. Mirhosseini and Parnin [63], mined 7,470
GitHub projects that use notification mechanisms to identify changes in upgrade
behavior. On average, projects with pull request notifications were upgraded
1.6 times more often than non-tool projects, according to their results. Dietrich
et al. [30] studied seventeen different package ecosystems. Their findings reveal
that developers struggle to find a sweet spot between fixed version dependency
predictability and flexible dependency agility.

While these studies have shown that developers struggle to migrate their de-
pendent packages, the common assumption is that Package management sys-
tems broker package dependencies without any issues. This thesis investigates
the issues confronted when using the third-party package from different software
packaging ecosystems.

Software build and configuration studies. Build systems are indispens-
able part of software evolution, which has gained attention in recent times. There
have been several studies on software build systems [6, 22, 53, 59, 60, 61]. McIn-
tosh et al. [61], studied low-level abstraction-based framework-driven build tech-

21

nology and tools to automatically manage external dependencies. According to
their research, the latest framework-driven build technologies need to be main-
tained more often, and these build changes are tightly coupled with the source
code than low-level or abstract-based ones. Again Adams et al. [6] found that
support for both reverse and re-engineering techniques are needed to maintain
build system evolution. McIntosh et al. [60] analyzed the overhead that build
maintenance imposes on developers, finding that build maintenance is costly.
McIntosh et al. [59] also evolution of java build systems based on static and
dynamic perspective. They studied build system specification complexity using
software metrics. They also examined the complexity and coverage of represen-
tative build runs. Again, Macho et al. [53] studied the the detailed reasons
for the dependency-related build breakage and then propose automatically repair
the build. Chernikova and Shalaev [22] proposed an approach that combines a di-
rected acyclic graph model of package dependencies management and task queue
system. The experimental results have confirmed that the use of the proposed
distributed build system reduces build time significantly.

Stack Overflow Studies. Q&A platform like Stack Overflow has gained
huge research interest, with topics relating to community dynamics, technical
issues of programmers and human factors [62]. Several empirical case studies were
performed using Stack Overflow data such as improving API documentation and
usage scenarios [68, 93, 95], new programming language (Go, Rust, and Swift)
related discussion [19], privacy [84], assess technical debt in software project [33],
Docker development [38], IOT [94], code weakness [105], programming errors [20],
mobile platforms [99], code reuse [100], deep learning framework [37], etc. Some
studies were done on human factors like IT skill [64], programmers expertise [31],
etc.

Several tool supports and recommendation models were developed using Stack
Overflow data resources such as PostFinder [78], bug severity prediction model [85],
code2Que [34], sc++ [10], SONAS [98], CAPS [8], IEA [97], idev [32], Icsd [103],
etc. These studies reported that Stack Overflow data resources are useful to solve
developers challenges.

In this thesis, the same data source (i.e, Stack Overflow) is used but different
from the above mentioned empirical studies. To the best of my knowledge, there

22

is no prior work that conducted study on third-party package discussions from
Stack Overflow. I extracted third-party package Q&A posts from Stack Overflow
and perform a series of empirical studies. I believe that this studies highlight
the challenges and information needs associated with using third-party packages
from software packaging ecosystem for developers, package manager designers
and researchers.

23

3 | Package Management

1 Introduction

The purpose of this Chapter is to investigate developers experience (i.e., chal-
lenges) on third-party package management in different software packaging ecosys-
tems. To accomplish the goal, this chapter departs with two consecutive studies.
At first, I performed a quantitative study on 497,249 Stack Overflow Q&A posts
from 13 packaging ecosystems to contrast developers experience of package man-
agement. Second, I conducted a qualitative study on 1131 third-party package
question posts from 3 packaging ecosystems to get deeper understanding of the
questions asking and their underlying causes.

Among the main findings, the quantitative study identifies 10 topics that
developers are discussing on third-party packages which are further categorized
under three major themes: (i) Package management, (ii) Input/Output, and
(iii) Package. Contrasting developers response in terms of topic popularity and
difficulty, I find that third-party package posts that relate to error and testing
topics are most popular and also most difficult for developers to solve. In addi-
tion, contrasting developers experience based on package management features, I
observe that developers experience is different, depending on the choice of pack-
aging ecosystem. After combining the results of quantitative study, I speculate
that developers using Go and Meteor package ecosystems have relatively easier
time finding answers to their questions on Stack Overflow compared to developers
using other package ecosystems.

Again, the qualitative study identifies that third-party package related ques-
tions arise due to lack of instructions (i.e., around 31 to 42% of question samples)

24

and error messages (i.e., around 27% to 37% of questions). Further investigation
on third-party package posts shows that the underlying causes can be catego-
rized into package management tool usage, general dependency practices, specific
migration, and others. An analysis of the underlying causes in 3 packaging ecosys-
tems reveals that most questions related to third-party packages by developers
are due to lack of knowledge on package management tool usage, rather than
specific migration.

The rest of this chapter is organized as follows. Section 2, presents quantita-
tive study to contrast developers experience in package management. Section 3
presents the qualitative study to investigate the root causes of package manage-
ment discussion and their kinds of questions. Section 4 discusses the implications
of this chapter. Section 5 presents the possible threats to validity of results.
Finally, in Section 6, I summarize the results.

2 Contrasting Developers Experience in Package
Management

In this section, I quantitatively examined developers experience on third-party
package management in different packaging ecosystems. To achieve this goal, I
analyzed the third-party package related discussion on Stack Overflow since it
provides a rich dataset and also been used by similar studies in other domains,
such as Chatbot [5], Docker [38], Mobile [77], etc. This quantitative study was
accomplished by (I) Selecting package ecosystems and their features, (II) Building
third-party package related discussion dataset, (III) Question Topic Modeling,
and (IV) Contrasting developer discussion topics relating to different ecosystems
from the two perspectives. Figure 3.1 illustrates the overview of contrasting
developers experience in third-party package management on 13 selected package
ecosystems from top 20 programming languages. In the following, I explained
each of them in detail.

25

Topic Modeling and

annotation task by

authors

10 Topics

under 3

Theme

Stack

Overflow

TIOBE top

20 Lang.

Selected 13 package ecosystem (PE)

T
o

p
ic

s
/ T

h
e

m
e

PE/ Features
Building third-party package discussion dataset

Filter posts using tag

#package-managers

Discover

Relevant

tags

Collect

relevant

posts

1 2 3

Figure 3.1: An overview of contrasting developers experience in third-party pack-
age management on 13 selected package ecosystems from top 20 programming
languages.

2.1 Selecting package ecosystems and their features

To explore the most popular third-party package ecosystems, I started from the
top twenty programming languages from tiobe.com1 as of June, 2021. To extract
the package ecosystems for each language, I used libraries.io2 to gather the
package ecosystems that are related to these programming languages. Note that
some of the package ecosystems do not have a dedicated package manager, and
that there can be several package ecosystems that are written in one programming
language. Other features include the dependency tree3 and environment.

Table 3.1 shows a summary of features that are specific to each of our package
ecosystems. In detail, I find that nine of our package ecosystems support a specific
programming language (i.e., Maven for Java, npm and Bower for JavaScript, Go
for GoLang, RubyGems for Ruby, PyPI for Python, CPAN for perl, CRAN for R,
Packagist for PHP). The other package ecosystems support multiple programming
languages. As shown, a package ecosystem serves from 6,900 to over 1.8 million

1Details of the dataset are available at https://www.tiobe.com/tiobe-index/
2https://libraries.io/
3An example of differences in dependency trees is described at https://npm.github.io/

how-npm-works-docs/npm3/how-npm3-works.html

26

https://www.tiobe.com/tiobe-index/
https://npm.github.io/how-npm-works-docs/npm3/how-npm3-works.html
https://npm.github.io/how-npm-works-docs/npm3/how-npm3-works.html

Table 3.1: Summary of each package ecosystem and their features.

Package
Ecosystem

Programming
Language

Tiobe Rank Environment
Dependency
Tree

Package
Archive link

of packages
in ecosystem

PyPI Python 2 Python Flat pypi.org 372,334
Maven Java 3 JVM Flat Maven.org 417,669
Bower JavaScript 7 Node.js Flat bower.io 69,625
Meteor JavaScript 7 Node.js Nested atmospherejs.com 13,410
npm JavaScript 7 Node.js Nested (v2) npmjs.com 1,866,208
Packagist PHP 8 PHP Flat packagist.org 316,855
Puppet Ruby 13 Ruby MRI Flat forge.puppet.com 6,923
RubyGems Ruby 13 Ruby MRI Flat rubygems.org 173,603
CRAN R 14 RStudio Flat cran.r-project.org 20,324
CPAN Perl 15 Perl Flat metacpan.org 38,459
GO Golang 20 Go Flat pkg.go.dev 390,438
NuGet C#, VB 5, 6 .NET Flat nuget.org 264,221
Anaconda Python, R, C# 2, 14, 5 Anaconda Flat anaconda.org 12,763

packages.

2.2 Building third-party package related question-and-answer
dataset

First, I downloaded the Stack Overflow data dump published on SOTorrent [13].
The data dump contains all question-and-answer including post metadata such
as creation date, view count, favourite count, score, etc. After parsing the Stack
Overflow data dump, the initial dataset had 39.83% (18,699,426) question posts,
and 60.17% (28,248,207) answer posts from July 2008 to December 2019. Since
Stack Overflow does not provide any fine grained dataset, I needed a way to iden-
tify third-party package related posts for the target ecosystems. To accomplish
this goal, I utilized tag-based question post filtering which was also used by prior
studies [5, 77]. In detail, the third-party package related question-and-answer
dataset building was performed through three distinct steps:

• Step 1: Filter using #package-managers tag. In Step 1, my intention was
to filter posts that are only related to selected 13 package ecosystems. To
accomplish this, I started with collecting question posts that were tagged

27

with the keyword #package-managers, which is described in Stack Over-
flow, as software that allows administrators (and in some cases also users)
to control the installation and upgrade process of packages on their systems.
The output of Step 1 was 806 question posts.

• Step 2: Discover relevant tags. In Step 2, I extracted a list of further relevant
tags from the 806 question posts (Step 1). A potential risk of expanding
the list of tags was the possibility of introducing noise. For example, “NPM
search remote packages” is a relevant post that contains broad tags such
as javascript and node.js. I used a semi-automatic method to mitigate
this issue and manually removed tags that are too broad. I along with
another authors manually checked 626 unique tags. We observed that some
tags—although having low frequency (i.e., occur only one time) in the initial
posts dataset—were highly related to our 13 package ecosystems as shown
in Table 3.1. For instance, maven-2 is a tag that occurs only one time as
a co-existing tag in the initial package ecosystems post dataset, but the
tag itself is associated with many more posts (5,568 question posts). The
output of Step 2 was a list of 28 relevant tags for the selected 13 package
ecosystems as shown in Table 3.2.

• Step 3: Collect relevant posts. In Step 3, I used the list of relevant tags
from Step 2 to collect final posts. The output of Step 3 was a cleaned
third-party package related question-and-answer dataset with 497,249 posts,
where 214,609 were questions and 282,640 were answer posts.

2.3 Question Topic Modeling

To explore topics from third-party package posts dataset, I applied the popular
Latent Dirichlet allocation (LDA) topic modeling technique on posts title. This
process was accomplished through three distinct steps.

• Step 1: Extract post title and preprocess. In step 1, I applied a filtering
technique to remove irrelevant information. In topic modeling, I focused
only on the title of the question post, as the body of the post could add

28

Table 3.2: List of the 28 manually validated tags discovered from Step 2 of the
data preparation.

Initial tag Identified relevant tags
package-managers npm, nuget, bower, conda, nuget-package, anaconda,

go, maven, rubygems, bower-install, npm-install,
packagist, pypi, miniconda, npm-scripts, cran, me-
teor, npmignore, pnpm, npm-shrinkwrap, godeps, go-
modules, meteorite, nuget-package-restore, cpan, pup-
pet, maven-2

noise to the analysis. A similar approach to the previous study [77] was
used to extract the title of the post and preprocess the data. This includes
removing email, newline characters, and stop words using regular expres-
sion4 and python NLTK.5 Then I used Gensim to create a bigram model6

and lemmatize the words to map the original words. The output of this
step was the third-party package related question post title corpus used as
input for the LDA model.

• Step 2: Identify third-party package discussion topic using LDA modeling.
In step 2, I used the post-title corpus obtained in step 1 to identify third-
party package discussion topics. To obtain the topic names, I utilized the
LDA model [16], which was also used by previous studies [23, 50, 77, 104].
In this study, the Mallet model of LDA was adopted [58] to create group
of posts based on the keywords exists in the post-title corpus. To obtain
the optimal topics number k, I repeatedly run the model through several
iterations. In detail, first, I run the LDA model for a specific range (0-50)
with 3 step size increment. Second, I selected the next sub-optimal range
(12-25) based on the coherence score [77]. Third, I again run the same
model for the selected range (12-25) with 1 step size increment and thus
come-up with 15 topics. Finally, I run the model with topic number k = 15

4Regular expression: https://docs.python.org/3/library/re.html
5Python NLTK: https://www.nltk.org/
6Gensim model: https://radimrehurek.com/gensim/

29

https://docs.python.org/3/library/re.html
https://www.nltk.org/
https://radimrehurek.com/gensim/

to get 15 third-party package discussion topics with related keywords (10
keywords per topic).

• Step 3: Label and merge third-party package discussion topics. In Step 3,
I sorted posts based on topic prediction contribution. Then I along with
two independent authors manually inspected the top 10 keywords from
each topic by following instruction from Agrawal et al. [7]. This includes
reading most relevant 15 posts (based on higher topic prediction score)
for each topic to identify a topic name that best explain keywords and
question posts of the topic. In addition, we manually inspected 10 randomly
selected posts from each topic to see if the selected topic name fits the posts
properly. After completing the naming process, we observed some topic
can be merged since they were very closely related. Therefore, through a
round-table discussion, we merged similar topics into one topic name that
were closely related. Thus, we obtained 10 third-party package discussion
topics from 15 suggested topics by LDA topic modeling process. Finally,
we grouped the third-party package discussion topic into 3 major themes.
The output of Step 3 was 10 unique third-party package discussion topics
mapped under 3 major themes. Table 3.3 and Figure 3.2 illustrate the 10
third-party package discussion topics, major themes and their associated
keywords. From the Figure 3.2, it is clear that most software developers ask
questions about package management. In detail, developers ask questions
on dependency, build, configuration, error, testing where all of these topics
have a higher percentage value than the average value for topics (10.00%).
All of these 10 third-party package discussion topics are grouped together
under 3 main themes (i.e., Package Management, I/O, and Package). In the
following, I discussed each themes along with their topics, sample question
posts from Stack overflow for clear explanation.

– Package management. The package management process consists
of installing, configuring, updating, removing a verified third-party
package from an application in a consistent manner. It is the largest
theme (62.61%) among the three themes related to third-party pack-
ages discussed by developers on stack overflow. The results indicate

30

S
ta

ck
 O

ve
rf

lo
w

 q
ue

st
io

n
po

st
s Package management (62.61%)

I/O (18.46%) Package (18.93%)

Figure 3.2: Distribution of third-party package related discussion topics and their
higher level theme (in percentage).

that developers are struggling with package management while using
packages from different software packaging ecosystems. This concern
is more strengthened by [3, 17, 18, 72, 87]. These studies investi-
gated software packaging ecosystem policies, cost-benefit tradeoffs in
package management and reported that solving package management
issues are hard for developers. The topics obtained under this theme
are, dependency, configuration, software build, testing, and errors. In
the following, I have explained each topics under this theme.

∗ Dependency. In this topic developers ask questions related to
dependency migration like package version upgrade, downgrade,
replacing existing package with another new package, and other
related issues. Under package management theme, dependency
is the most talked topic by developers. This finding is consistent
with previous studies [30, 45] that showed that developers struggle
to smoothly migrate their package dependencies. For instance,
this post (id:10507335, title: Maven requires manual dependency
update?) is related to dependency update.

∗ Build. In this topic developers ask question related to software
build process like jar file generation, make file, compiling projects,

31

and related failure scenarios. Under package management theme,
build is the second largest topic discussed by developers. Suc-
cessful build is indispensable part of package management. Prior
studies also concern with build problems [48, 80], build mainte-
nance efforts [53, 60]. For instance, this post (id:264120, title:
How to move build task into parent POM) is related build task.

∗ Configuration. In this topic developers ask questions related
package configuration, setting up installation environment, and
other related issues. Under package management theme, config-
uration is the third largest topic discussed by developers. Sev-
eral studies discussed about complexity of install/uninstall prob-
lem [11, 92], system configuration smell [81], etc. For instance,
this post (id:103918, title: Automate a Ruby Gem install that has
input) is related to configuration topic.

∗ Error. In this topic developers ask questions related to vari-
ous errors and exceptions raised during third-party package based
software development. Under package management theme, error
is the fourth largest topic discussed by developers. Several stud-
ies reported that while managing third-party package developers
often face errors and backward incompatibility issues [24, 40]. For
instance, this post (id: 577377 , title: “Missing artifact” errors
with company repository) is related to error topic.

∗ Testing. In this topic developers ask question related to testing
process of software projects, integration, and other related failure
scenarios. Under the package management theme, testing is the
least asked topics by developers. Previous studies [65, 86] shows
the importance of testing in survival analysis of package and iden-
tifying the breaking updates. For instance, this post (id:2272239,
title: Testing running over an half hour) is related to unit testing
of maven-2.

– Package. The package consists of code modules, configuration
files, and information about its dependencies. It is the second largest
(18.93%) theme in our third-party package related posts. Previous

32

studies [14, 75] discussed the increasing popularity of third-party pack-
ages in modern software development. The topics obtained under this
theme are, package usage and package functions. In the following, I
explained each topics under this theme.

∗ Package usage. In this topic developers ask question about the
usage scenarios of third-party packages, tutorials, usage documen-
tation, etc. Under the package theme, the package usage is the
largest topic discussed by developers. This finding is further ver-
ified by this study [46] discussed that the importance of pack-
age usage information, including tutorials, usage documentation,
and real life code examples, along with Q&A websites like Stack
Overflow for developers. For instance, this post (id:4461344, title:
Looking for the documentation of the maven-glassfish-plugin) is
asking for reference documentation.

∗ Package function. In this topic developers ask question about
the basic functionalities of a third-party package and implemen-
tation of a new module or method, passing arguments to a func-
tion, and other related issues. Under this theme, package function
is the least asked topics by developers. For instance, this post
(id:5926003, title: How do I hold onto a factory function in Go?)
is related to package function.

– Input/Output. The Input/output refers to services that helps users
to all input output operations. It is the smallest (18.46%) theme in
our third-party package related posts. The topics obtained under this
theme are, application deployment services, client-server communica-
tion, and interfacing issues. In the following, I explained each topics
under this theme.

∗ Service. In this topic developers ask question about different ap-
plications development and deployment related issues. Under the
Input/Output theme, service is the second largest topic discussed
by developers. For instance, this post (id:602511, title: Maven:
How to deploy with deploy-file and custom wagon) is related to
deploying a service of maven.

33

∗ Server-client. In this topic developers ask question related to
client-server connectivity, user question and response, message
transmission, user permission, etc. Under the Input/Output theme,
server-client is the largest topic discussed by developers. For in-
stance, this post (id:781527, title: Maven server authentication as
profile properties) related to sever authentication.

∗ Interface. In this topic developers ask question related to in-
terfacing like read-write operation, file processing, accessing chan-
nel, etc. Under the Input/Output theme, interface is the least
asked topics by developers. For instance, this post (id:3398490,
title:Checking if a channel has a ready-to-read value, using Go) is
related to interfacing issue of Go package ecosystem.

Takeaway 1: Developers questions related to third-party package can be
clustered into ten different topics including dependency, build, configura-
tion, error, testing, service, server-client, interface, package usage and pack-
age functions, etc. These topics can be further grouped into three major
themes as package management, input/output, and package.

2.4 Contrasting developer discussion topics relating to dif-
ferent ecosystems

Here, I contrasted the developer discussion topics associated with using pack-
ages in software ecosystems from two different perspectives. These are (a) Topic
popularity and difficulty, and (b) package management features.

A. Contrasts in Responses: Popularity and Difficult

Approach To characterize third-party package discussion topics in terms of their
popularity and difficulty, I adopted metrics as defined by Yang et al. [101]. I used
the post score, views count, favourite count to measure the popularity of topics.
On the other hand, answer count, percentage of accepted answer count, comments
count and PD score were used to measure the difficulty of a topic. These metrics

34

Table 3.3: Topics and their top ten keywords extracted from third-party package
related question posts. The topics are categorized into three themes.

Theme Topic
Id

Topic Name Sample Keywords

0,1 Dependency dependency, version, specific, re-
lease, artifact, resolve, late, update,
change, repository

6, 8 Build (2) build, project, create, generate,
make, jar, war, compile, failure, re-
source

Package Man-
agement

3, 11 Configuration
(2)

package, add, reference, install,
set, environment, variable, import,
module, library

7 Testing run, test, command, fail, execute,
integration, unit, report, clean,
surefire

9, 14 Error (2) error, throw, give, exception, load,
unable, fix, issue, work, problem

10 Services application, deploy, web, spring,
app, tomcat, deployment, service,
engine, boot

Input-Output 5 Server-client server, client, user, request, http,
connection, access, response, mes-
sage, proxy

2 Interface file, time, read, write, image, out-
put, channel, log, process, multiple

13 Package func-
tion

type, function, struct, string, vari-
able, interface, slice, method, argu-
ment, pass

Package 4, 12 Package usage
(2)

template, react, collection, event,
render, helper, database, compo-
nent, field, document

35

are all well-known and also used in previous papers [5, 77]. I utilized median value
of each metric to investigate popularity and difficulty of package ecosystem topics.
In the following, I used the stack overflow tour 7 to define the topic popularity
and difficulty metrics.

• The score count per post indicates the usefulness of a post to the community.
According to Stack Overflow tour, members are allowed to up-vote posts
that are considered useful to developers. This vote is summarized as a score.
I used this score as one of the metrics to measure the usefulness of topics.

• The views count per post indicates community interest. If a post is highly
views by both registered and unregistered users, then the post can be in-
ferred as a popular post among developers. Therefore, this metric shows
the interest/popularity of the topics.

• The favourite count per post indicates problem and solutions that develop-
ers found helpful. The average post score is interpreted as usefulness to the
developer.

• The answer count per question post indicates the difficulty to answer a
question by the other Stack Overflow users.

• The accepted answer count indicates whether an answer satisfy to solve
users problem. Among the answers of a question post, the original author
of the question can mark an accepted answer if the answer has its merit to
solve his problem.

• The PD score indicates the difficulty to answer a question in a specific
topic. To calculate the PD score, I follow the same procedure as defined
by Yang et. al. [101]. First, I extract the answer count and the view count
per questions of each topic. Then, I calculate the median answer count and
view count to find the PD score as formulated below:

PD score =
Answer count (median)

V iew count (median)
× 100% (3.1)

7stack overflow tour: https://stackoverflow.com/tour

36

https://stackoverflow.com/tour

Table 3.4: Popularity of third-party package discussion topics. All the metrics are
represented in median value. The median value of favourite count for all topics
are zero. Result shows that error and testing related issues are most popular
among developers.

Theme Topics
Score
count

Views
count

Dependency 1 420
Build 1 409

Package Management Configuration 1 348
Error 1 447
Testing 1 440.5

Server-Client 1 319
Input-Output Interface 1 277

Service 0 405

Package Package usage 0 216
Package function 1 284

In general, a low number of answers and a large number of views for unan-
swered questions indicates that only a few users of Stack Overflow can an-
swer the questions. Therefore, I used PD scores to measure the difficulty of
the questions answered in a particular third-party package discussion topic.
The lower the PD score, the harder it is for other Stack Overflow users to
answer the question.

Results. Table 3.4 and 3.5 show the popularity and difficulty of third-party
package discussion topics. I observe that popular topics are also difficult to answer
by other Stack Overflow users. According to the Table 3.4, I find that overall error
and testing related issues are most popular among developers. Again, according
to Table 3.5, I find that error topic related issues are most difficult to answer while
package usage issues are easiest to answer by other stack overflow users. In detail,
among the topics under package management theme, error (median views count
447) is the most popular topic followed by testing (median views count 440.50)

37

Table 3.5: Difficulty of third-party package discussion topics. The answer count
metric is represented in median value and the accepted answer count and PD
score are represented in percentage (%). Result shows that error topic questions
are most difficult to answer while package usage issues are easiest to answer by
other stack overflow users.

Theme Topics
Answer
Count

Accepted
answer

count (%)

PD
Score (%)

Dependency 1 48 0.24
Build 1 46 0.24

Package Management Configuration 1 45 0.29
Error 1 44 0.22
Testing 1 45 0.23

Server-Client 1 48 0.31
Input-Output Interface 1 53 0.36

Service 1 43 0.25

Package Package usage 1 53 0.46
Package function 1 64 0.35

and dependency (median views count 420). In term of difficulty, error (PD score
0.22) topic related issues are most difficult to answer followed by testing (PD
score 0.23) and build (PD score 0.24) in the package management theme. In the
input/output theme, service is the popular (median views 405) and also difficult
(PD score 0.25) to answer followed by server-client and interface topics. In the
package theme, package function is the most popular (median views count 284)
and also difficult (PD score 0.35) to answer followed by package usage.

Takeaway 2: Different topics imply different degrees of difficulty. Error
and testing topic related issues are most popular among developers and
also most difficult to answer by others. In addition, I find that, package
usage topic related issues are least difficult to answer.

38

B. Contrasts in Features: Topics and Features

Approach. To understand whether the package management features of pack-
age ecosystems have correlation with developers challenges/experiences, I utilized
heatmap colored cells to show a two-dimensional matrix between the topics and
the features of the package ecosystems. In detail, first I performed mapping
of each package ecosystem related posts obtained in Step 3 of question model-
ing 2.3 based on the package ecosystem name, and their technology stack like
programming language, environment, supported dependency tree, etc. For in-
stance, a package ecosystem post tagged with npm is identified as a post related
to npm package ecosystem, and its technology stack is (JavaScript, node.js, and
nested dependency tree). In the same way, I characterized each Stack Overflow
post by package ecosystem name and their technology stacks. Afterward, I used
heatmap visualizations to compare the differences between the features of a pack-
age ecosystem and the kinds of topics that developers ask on Stack Overflow. In
the heatmap, I reported the frequency counts of each dimension that is reflected
in the colored cells.

Results. Figure 3.3, 3.4, 3.5, 3.6, 3.7 illustrate the results of package ecosystem
and its features correlation with developers experience. I observe that developers
from different package ecosystem report different issues. In addition, analysis
results indicate that specific feature of a package ecosystem has correlation with
developers experience. The analysis results are explained into two fold: (i) Con-
trasting package ecosystem and topics, and (ii) Contrasting package ecosystem
features and topics.

• (i) Contrasting package ecosystem and topics. Figure 3.3 shows that
the topics related to each package ecosystem differ. For example, package
ecosystems like CRAN, CPAN, and Conda tend to attract configuration
related questions, while Go and Meteor have their developers ask questions
related to the package function and usage. Under the broader themes, the
results are consistent with the results of Table 3.5 and Figure 3.4, as most
topics are related to package management. This evidence suggests that de-
velopers using Go and Meteor package ecosystems may face different types
of issues when compared to developers using other package ecosystems.

39

Takeaway 3: Developers from different package ecosystems report
different issues. Findings indicate that RubyGem developers report
errors, while NuGet developers report configuration issues. Combin-
ing with takeaway 2, developers using the Go and Meteor package
ecosystems face relatively easy experience.

• (ii) Contrasting package ecosystem features and topics. Taking a deeper
look at the features, I can see that developers using package ecosystems
built for JavaScript technologies and environments tend to encounter dif-
ferent types of issues, whereas developers using package ecosystems built
for the Python, R and Perl languages and related environments tend to fo-
cus on configuration issues (cf. Figure 3.5 and Figure 3.6). In terms of the
dependency tree, Figure 3.7 shows that flat dependencies tend to attract de-
pendency related issues, while package ecosystems with nested dependency
trees encounter package usage related issues. One possible explanation is
that nested dependencies are a solution to ‘dependency hell’, thus removing
dependency related issues for package ecosystems with nested dependency
trees8.

Takeaway 4: Developers from different programming languages re-
port different kinds of issues. I find that applications that are devel-
oped using the Python language reported more configuration issues,
when compared to Ruby developers who report errors.

8This issue is discussed by this npm blog post at https://npm.github.io/
how-npm-works-docs/theory-and-design/dependency-hell.html

40

https://npm.github.io/how-npm-works-docs/theory-and-design/dependency-hell.html
https://npm.github.io/how-npm-works-docs/theory-and-design/dependency-hell.html

Figure 3.3: Package ecosystem vs. topic, where developers of different package
ecosystems ask different questions.

Figure 3.4: Package ecosystem vs. topic themes, where most developers of pack-
age ecosystems ask questions on package management except Go and Meteor

41

Figure 3.5: Language feature heatmap shows that different package ecosystems
in different languages provide different developers experiences.

Figure 3.6: Environment feature heatmap shows that different package ecosys-
tems in different environments provide different developers experiences.

42

Figure 3.7: Dependency tree feature heatmap shows that dependency tree cor-
relates with developers experiences (i.e., package ecosystems with a nested de-
pendency face package usage issues, while flat dependency trees face questions
related to dependencies)

3 Investigating Root Cause of Package Manage-
ment Discussion and Their Kinds of Questions

In this section, I conducted a qualitative study of third-party package discussion
on three package ecosystems to get deeper understanding of the questions asking
and their underlying causes. From the curated 13 package ecosystem, I selected
three popularly known package ecosystems npm, maven, and nuGet, etc.

Initially I was able to collect a total of 114,834 (i.e., maven:74,657 , npm:30,136
, and NuGet:10,041 question posts) stack overflow questions for these three pack-
age ecosystems. Afterward, I created representative sample, maintaining 95%
confidence level and a confidence interval of 5 for each package ecosystem. This
resulted in a total of 1131 question samples from three package ecosystem (i.e.,
maven:382, npm:379, and NuGet:370 posts). Once I obtained the question sam-
ples, I manually analyzed them to identify the question asking about and under-
lying causes of asking a package ecosystem question. To accomplish the goals,

43

I formulated two research questions. In the following, I explained each research
question, motivation, approach, and the results.

3.1 What kind of questions do developers ask about third-
party package management?

Motivation. After detail examination of the third-party package discussion
topics, I aim to investigate the kind of questions developers asking. This analy-
sis is important because it helps identify the nature of the challenges that arise
during package management. In addition, question-type analysis helps software
developers better understand the role of Stack Overflow.

Approach. Our approach to answer RQ 3.1 is a classification of question posts
based on the coding scheme proposed by Treude et al. [91]. Details of the question
coding scheme are described below:

• How-to: Posts that ask for instructions. For example: “Title: How to
get latest version number of an artifact and replace it in target file? (Id:
26223226)” is a how-to type question asking for instruction to get latest
version number of an artifact and replace it in target file.

• Discrepancy : Some unexpected behavior that the person asking on the
third-party package post wants explained. For example: “Title: Spring
Boot JPA & H2 Records Not Persisted (Id: 27843682)” is a discrepancy
question asked for solution on persistence issues between spring boot JPA
& H2 records.

• Environment : Posts about the environment either during development or
after deployment. For example, “NPMWindows Path Problems (Id: 25120982)”
is a question related to package management environment setting.

• Error : Posts that include a specific error message. For example: “Title: Er-
ror running Google App Engine quick start : POM for com.google.app en-
gine:app engine-maven-plugin:jar:1.9.24 is missing (Id: 31576681)” is ques-
tion asking for solution of a general error message related to google app
engine.

44

• Decision help: Asking for an opinion. For example: “Can I invoke a local
bean into a ear file from a Javax-WS into a war file- apache-tomee-plus-1.7.4
(Id: 51072906)” is question related to decision help.

• Conceptual : Posts that are abstract and do not have a concrete use case.
For example: “Difference between mvn appengine:update and mvn ap-
pengine:deploy in Google App Engine (Id: 40094090)” is a conceptual ques-
tion.

• Review : Posts that are either implicitly or explicitly asking for a review.
For example: “Is there any possibility of deleting libraries stored maven
central? (Id: 25133985)” is a question where developer asked for a review
on the possibility of deleting libraries stored maven central.

• Non-functional : Third-party package posts about non-functional require-
ments such as performance or memory usage. For example: “Java project
runs slow from JAR but fast from IDE (Id: 41861330)” is a question asked
for solution on performance of Java project.

• Novice: Often explicitly states that the person belong third-party package
posts is a novice. For example: “The mssing package org.spring frame-
work.web (Id: 12603723)” is a novice question according to the description
in the question body.

• Novice/How to: Posts that belong to a novice asking for step by step tu-
torials. For example: “Maven2 - POM configure issue in Windows (Id:
5087296)” is novice/how-to question according to the description of the
question body.

To ensure a systematic method and reduce bias in the classification, I per-
formed a Kappa agreement check using 30 random samples among three authors.
Using the Kappa score calculator [96], I checked the agreement level and find
score 86.67%, which was almost perfect. Confident with the agreement, two au-
thors then continued to classify all samples through manual analysis of question
title and body.

45

Stack Overflow questions (%)

Q
ue

st
io

n
ty

pe

Figure 3.8: Percentage of third-party package posts by question coding compared
to Treude et al. [91]. Result shows that ‘How-to’ and ‘Error’ messages are the
most dominant questions asked.

46

Results. Figure 3.8, shows that most of the third-party package posts belong
to How-to followed by Error message for three package ecosystems, confirming
that developers are suffering from lack of instructions and intuitive error messages
during third-party package management. In Maven, I find that How-to (39.01%)
question is most dominant, followed by Error (26.96%) and Review (14.40%).
Similar trend is also shared by NuGet, where How-to (42.16%) question is most
dominant, followed by Error (30.54%) and Decision help (7.30%). On the other
hand, in npm I find that Error (36.94%) message question is most dominant,
followed by How-to (30.87%) and Review (9.76%).

In comparison of package ecosystem posts with the most generic results of
Treude et al. [91], as shown in Figure 3.8, I find that How-to question is most
dominant while Error message question is ranked as being the top type of ques-
tion asked for developers of the npm ecosystem.

Takeaway 5: Third-party package related discussions are likely to arise
from lack of instructions (i.e., around 31 to 42% of question samples) and
error messages (i.e., around 27% to 37% of questions).

3.2 What are the underlying causes of questions related to
third-party package management?

Motivation. Previous research showed that developers struggle to manage
third-party package dependencies. However little is known of the underlying chal-
lenges related to using third-party packages from different packaging ecosystems.
The target of this research questions is to deeper investigation of third-party
package question posts. This analysis helps us to identify the underlying chal-
lenges faced by developers while using packages from different ecosystems.

Approach. Our approach to answer RQ 3.2 is to conduct a qualitative coding
of the underlying causes of developers challenge faced while using a package from
software packaging ecosystem. Similar to other work in software engineering by
Hata et al. [39], I adopted an open coding strategy. First, I along with two authors
independently sampled 30 questions to establish an initial set of causes. We then

47

added another 30 samples to make sure that no new causes appeared. To measure
author agreement, I used the Kappa score [96]. After two rounds manual coding
of 30 samples with three authors, we ended up with a Kappa score of 95.56%
(almost perfect). Two author then coded the rest of the classification of third-
party package posts. The four distinct underlying causes for third-party package
posts are summarized below:

• Specific migration: Question posts related to dependency updates like an
upgrade or downgrade to a specific version of the package, moving to new
environment (language/OS/etc), incompatibility of a packages and other
associated issues. Figure 3.9 shows that a developer struggle with an issues
to migrate his project written in Java8 to Java9.

Specific migration

Figure 3.9: Post (Id: 50262939) that discuss issues related to specific migration

• Package management tool usage: Question posts related to technical details
on package management systems such as installation, configuration of tools,
and their associated costs. Figure 3.10 shows that a developer discuss about
configuring the maven build tool to run his multi-module project in a custom
way.

48

Package management tool usage

Figure 3.10: Post (Id: 4811870) that discuss issues related to package manage-
ment tool usage

• General dependency practices : Question posts related to lack of technical
knowledge on general dependency management practice, bugs, efficiency,
etc. Figure 3.11 shows that, developers ask a question on the general ideas
of maven packages dependency management.

General ideas of dependency practice

Figure 3.11: Post (Id: 30571) that discuss issues related to general idea of depen-
dency practice.

• Others : Posts that are tagged with a package ecosystem but do not fall in

49

the above three categories.

Results. Figure 3.12 shows that Package management tool usage is the
most dominant underlying cause for all three package ecosystems, confirming
that developers tend to report technical issues on Package management tool us-
age and not on specific migrations of dependencies. This finding is consistent
with previous studies [2, 11, 26, 56, 66]. They reported that the complexity of
software tools [66], installability of tools and packages [2, 11, 26, 56] are the
root causes of the developers struggle during application development and main-
tenance. In detail, I find that Package management tool usage (72.25%) is
most dominant underlying cause for Maven, followed by General dependency
practices (10.73%). In npm, Package management tool usage (70.71%) is
most dominant underlying cause, followed by General dependency practices
(5.80%). In NuGet, Package management tool usage (63.51%) is most dom-
inant underlying cause, followed by General dependency practices (18.65%)
and Specific migration (13.51%).

Stack Overflow Questions (%)

Figure 3.12: Percentage of third-party package posts by their underlying cause.
I find that ‘Package management tool usage’ is the most dominant underlying
cause.

50

Takeaway 6: The underlying causes of third-party package question
posts can be categorized into package management tool usage, general de-
pendency practices, specific migration, and others. Developers tend to
ask questions that relate to package management tool usage, and not
specific migration.

4 Implications

I now discuss implications of our work applicable to developers, and package
manager designers:

Developers Developers should be conscious that their choice of a package
ecosystem will impact their user experience – not all package ecosystems are
the same as design choices such as hierarchy structure and language support are
correlated with what questions developers are likely to encounter. When start-
ing a new project, developers might be able to choose an ecosystem based on
our insights. In other cases it might be too late to switch ecosystems, but de-
velopers might still be able to consider the benefits of (somewhat) compatible
package ecosystems, such as npm and Meteor. Furthermore, as applications such
as mobile apps require support for multiple technology stacks, developers should
be aware of the trade-offs when switching technologies, i.e., when porting a Java
application (Maven) to the web as a JavaScript application (npm). Developers
can use our findings to better understand what technical background knowledge
they should have regarding package ecosystems.

Package manager designers Designers need to be aware of the impact of
package ecosystem design features on the problems that developers may encounter
as some design choices are correlated with more questions on certain topics raised
on Stack Overflow. Designers should be proactive about issues frequently encoun-
tered by package ecosystem users, by providing thorough documentation and/or
improving package ecosystems where possible. Designers should also make it easy
for developers to find the information they need to resolve issues, e.g., by pro-

51

viding good error messages, while other package ecosystems may require better
documentation for package manager configuration.

5 Threats to Validity

This section describes the internal, external, and construct validity threats of this
study.
Internal Validity - Threats to internal validity relate to experimental bias and
error in conducting the analysis. The first threat is the accuracy of the methods
used in this study. Especially choosing the appropriate number of topics (k=15)
for LDA model is considered as a potential threat. Labeling the topic based on
keywords is another threat to the validity. To mitigate the threat, I and other
two authors did a round-table style discussion and labelling of topics by manually
reading top 30 posts of each topic and associated 20 keywords. This approach
was also used by previous studies [5, 77]. Second, I perform manual analysis
on random sample since the dataset size is large. To mitigate this challenge, I
prepare representative samples for three package ecosystems, with a confidence
level of 95% and a interval of 5. Thus, I believe that experimental bias and error
in conducting the analysis were reduced.

External Validity - Threats to external validity relate to the generalizability
of findings. In my study, I focused only on Stack Overflow which is the largest
and most popular question-and-answer platform among developers. The findings
of my study may not generalize to other question-and-answer platforms. How-
ever, my study is consistent with previous works that also utilized Stack Overflow
data [5, 20, 77, 106, 107].

Construct Validity - Threats to construct validity are related to potential
errors that can occur when extracting data about third-party packages related
discussions for different software packaging ecosystems. The first construct threat
is the validity of the collected data. I used Stack Overflow tags to identify posts
related to the third-party package, but some posts may be incorrectly labeled
(i.e., missing tags or incorrect tags). To reduce this threat, I created the list of

52

tags by following state-of-the-art approaches [5, 77].
The construct validity threats also relate to differences in theory, observations,

and results. In the quantitative analysis, I compared developers topic of discussion
on third-party packages for 13 packaging ecosystems where each ecosystem has
different number of posts. For example, CRAN packaging ecosystem had small
number of posts compared to other ecosystems. Such comparison may affect
observations from the study results. However, our study is consistent with other
previous works [9, 77, 100] that also compared different platforms with different
number of posts.

In my qualitative analysis of classifying question types and underlying causes,
the questions may be miscoded due to the subjective nature of our coding ap-
proach. To mitigate this threat, I took a systematic approach to validate the
taxonomy and the comprehension understanding by the three authors in several
rounds. Only until the Kappa score reaches 0.87 and 0.96, indicating that the
agreement is almost perfect (0.81-1.00), we were able to complete the rest of the
sample dataset.

6 Summary and Future Works

In this Chapter, I explore third-party package related discussion for thirteen pack-
age ecosystems to understand whether developers package management experi-
ence varies. The results show that developers questions related to third-party
package can be clustered into ten different topics, which can be further grouped
into three themes, and that different topics are prevalent for different ecosystems.
In addition, I observe that most third-party package related questions arise from
the lack of understanding different package management tool usage information
rather than specific migration and general dependency practices.

The next logical step is further exploratory study to investigate the trade-
offs between benefits and drawbacks of each package ecosystem will help piece
together what the ideal package ecosystem should look like. Researchers could use
our findings to prioritise research efforts, as our work is the first to acknowledge
that developers encounter issues when using package ecosystems.

Future work is needed in particular in teasing apart the effects of different fea-

53

tures of package ecosystems and their interplay. While some features of a package
ecosystem are given (e.g., the programming language), others provide more free-
dom to designers (e.g., dependency trees). In addition, interviewing, observing,
and/or surveying software developers would further allow for triangulation of the
findings to understand the impact of ecosystem features on developers’ decision
processes.

54

4 | Package Usage

1 Introduction

The purpose of this Chapter is to investigate developers experience (i.e., infor-
mation needs) on package usage during software development. To accomplish
this goal, I performed an exploratory study on package usage information from
Stack Overflow in term of co-usage relationship. As defined by Todorov et. al
[89], co-usage is the pattern of package dependencies that are used together. The
rationale behind refining the co-usage relationship is to study problems caused
by npm packages. In particular I investigate (i) whether I can detect package
usage (i.e., co-usage) information from Stack Overflow and (ii) what the develop-
ers are looking for to solve problems related to the package. To address these, I
study 2,100 Stack Overflow Q&A posts and matched them to 217,934 npm library
packages. I reveal the following valuable lessons along the way:

• Lesson 1: I find that only three out of the top ten of the most used npm
libraries are mentioned in Stack Overflow. The top-3 discussed npm li-
braries are react, typescript, and webpack. Again, the top-5 libraries
that are less frequently discussed in Stack Overflow are mocha, eslint,
chai, babel-core, and lodash. One possible reason is that, well-known
libraries are well documented and may have their own forum, chat tools, etc.
For this reason, there is no need to discuss them in Stack Overflow. Further-
more, I find that 87.95% of package co-usage mined from Stack Overflow
exist in the latest npm package release.

• Lesson 2: Developers post answers provided with usage example or execute

55

command. Results do indicate the potential for a recommendation system,
especially with the available execute commands and examples. Although
Stack Overflow has been a useful resource for finding answers to questions,
I find that popular and highly used libraries are not discussed as often.
However, the accepted answers may prove useful, as I believe that the usage
examples and executable commands could be reused for tool support.

The main contributions of this chapter are summarized as follows: (i) a quan-
titative study on the library usage information mined from Stack Overflow, and
npm packages. (ii) a qualitative study on accepted answer posts of Stack Overflow
to uncover developers useful responses to solve library usage issues.

The remainder of the chapter is organized as follows. Section 2 presents moti-
vating example and research questions. Section 3 describes the data preparation.
Section 4 presents the analysis approach. Section 5 reports the results for each
research question. Section 6, discusses the implications from this study. Section 7
discloses the threats to validity of our study. Finally, I summarize this chapter
in section 8 .

2 Motivating Example

Recent studies point out that Stack Overflow is a useful question-answering site
among developers to communicate various issues [21, 54, 78, 90, 93]. In this
paper, my motivation is to investigate the following assumptions:

• Package usage information mined from Stack Overflow is useful to solve
developers issues while using libraries.

• Developer responses to package usage information in Stack Overflow follow
some useful patterns that might be reused by the recommendation tools.

Figure 4.1 shows an example of a package co-usage related question post from
Stack Overflow.1 As shown in the figure, a developer posts a question on the
error issue of node_module installation, resulting from two dependent packages

1https://stackoverflow.com/questions/46742824

56

https://stackoverflow.com/questions/46742824

Package co-usage

example

Throws Error

Question

Accepted Answer

Figure 4.1: A motivating example of npm package co-usage in Stack Over-
flow. The example shows that a developer encounters a issue when installing
all node_modules, due to two dependent packages babel-loader and webpack.

57

Projects (D2)

Post

Dataset (D1)

package usage

Proportion
package

usage information

npm package

usage information

Calculate proportion of

Popular package usage

Manual analysis to

classify accepted

answer

Question

posts

Accepted

Answer posts

Sample

accepted

answer posts

Useful answer to

solve package

usage issues

𝑅𝑄1

𝑅𝑄2

Calculate co-usage

information related to

Npm packages

Figure 4.2: An overview of the methodology of our study.

babel-loader and webpack. A closer look into the question description, I ob-
serve that the successful installation of babel-loader@7.1.2 requires the package
dependency of webpack@2||3. This issue is solved by a simple installation com-
mand (i.e., npm install webpack -g) mentioned in the accepted answer of the
question. Such a motivating example suggests that package usage information
mined from question answering sites may help solve package-related issues.

Research Questions: Our goal in this chapter is to investigate whether package
usage information mined from Stack Overflow can help maintain the packages. I
formulate two research questions to guide this study.

• RQ1: Package usage issues- What proportion of package usage informa-
tion mined from Stack Overflow exist in npm packages?
Motivation. Developers often share package usage information to communi-
cate various software development issues through Stack Overflow. I would
like to understand what is the difference in the package usage information
between Stack Overflow and npm projects.

• RQ2: Developers practices to solve package usage issues- What
kinds of answers are posted in response to questions that include package
usage information?
Motivation. This research question investigates the developer’s response to

58

Table 4.1: Summary of dataset used in the study.

Data Source Initial dataset Final dataset

D1: Stack Overflow (npm question posts) 30,136 2,100
D2: libraries.io (npm projects) 100,5955 217,934

package usage information discussed in Stack Overflow posts. I argue that
a closer look at the answers may reveal practical insights to improve real
developers’ experience dealing with package co-usage issues.

3 Data Preparation

This study exclusively examines the npm package usage information from Stack
Overflow. Stack Overflow is the largest and most popular question-answering site
among developers, which allows them to ask developers and experts for develop-
ment related questions. In addition, to compare with the package usage from
the reality, I collect another dataset from the libraries.io.2 libraries.io is
popularly known to monitor package releases. Below, I describe the details of two
studied datasets.

(D1) from Stack Overflow posts : I rely on the SOTorrent [12] to download
the Stack Overflow data dump. The collection of npm related question posts was
performed using a semi-automatic method similar to previous studies [77]. To
do so, I first extract all tags from the question posts, and then I manually check
whether or not the tags are directly related to the npm packages. After the
examination, a list of eight tags that reflect npm packages posts are generated,
i.e., ‘npm’, ‘npm-install’, ‘npm-script’, ‘npm-ignore’, ‘pnpm’, ‘npm-shrinkwrap’,
‘npm-start’, ‘npm-build’. I automatically identify all question posts using the
defined tag list, resulting in 30,136 questions related to npm packages.

Next I further extract the npm related questions that contain the package
usage information. I observed that several package names are as common as the
natural language, i.e., i, moment, should, express, etc.). Thus, to reduce the
bias, I only take those question posts that contain package.json files, resulting

2https://libraries.io/

59

https://libraries.io/

in 2,805 question posts. As I focus on the relatively popular libraries, I extract
all packages from these question posts and sort out 628 npm packages whose
frequency are greater than ten.

To ensure that the sample dataset contains most npm libraries, I use the
cumulative sampling method to assure that question posts are saturated to cover
all 628 npm packages. Finally, the Stack Overflow npm package usage dataset
consists of 2,100 question posts, as shown in Table 4.1.

(D2) from npm packages : To compare the package usage information
with Stack Overflow ones, I construct a dataset consisting of npm packages
from libraries.io. To do so, I first downloaded the latest history data dump,
which is available at https://libraries.io/data, resulting in a total number
of 1,005,955 npm project release history.

Similar to the (D1), I extract the libraries from these 1,005,955 projects and
sort out 23,870 npm packages whose frequency are greater than ten. In the end,
our libraries.io npm package usage dataset consists of 217,934 npm projects using
the cumulative sampling method, as shown in Table 4.1.

4 Data Analysis

In this section, as shown in Fig. 2, I describe in detail the approaches used to
answer two research questions.

4.1 Approach for RQ1: Package usage issues

I perform an exploratory study to understand to which extents do developers
discuss the package usage information from Stack Overflow. Below, I describe
the approach in detail.

Proportion of popular package usage: To analyze the proportion of pack-
age usage in Stack Overflow and npm projects, I extracted libraries from Stack
Overflow posts obtained in datasets D1 and D2, separately. Afterward, I count
and sort these packages based on the frequency.

Co-usage information related to npm package: To analyze the fre-
quency of package usage information, I first need to identify npm package co-
usage. To do so, I follow the two steps: (I) extract all the target packages

60

appearing in the code snippets from 2,100 Stack Overflow post related to npm
package obtained in Section 3 (D1). Then, generate all possible binary combi-
nations for co-usage of npm packages. For example, if a project contain three
package dependencies (A, B, C), then the generated list of binary package co-
usage will be: (A, B), (A, C), (B, C). After this step, I was able to retrieve 68,750
npm package co-usage information from Stack Overflow. (II) then I extract the
npm package co-usage information based on the latest release, referring to 217,934
npm projects in Section 3 (D2). Finally, I check the occurrences of Stack Over-
flow npm package co-usage information in the generated package co-usage from
latest npm projects using the following formula: α

β
× 100 where α=Number of

Stack Overflow npm package co-usage found in the latest npm project release,
and β=Total npm package co-usage extracted from Stack Overflow.

In addition, to understand the issues raised by package related question, I
extract the title information from 2,100 Stack Overflow posts obtained in D1
and automatically extracted the keywords using traditional Nature Language
Processing (NLP) , including stop word removals. The output is a corpus of title
keywords.

To visually understand the package related issues asked in the SO, I generate
a word cloud based on the constructed title corpus.

Observation 1- The npm post that discuss package usage informa-
tion are mostly relate to different type of errors. Figure. 4.3 shows the
Word cloud based on Stack Overflow posts titles. The word cloud shows that
npm posts regarding package usage information are primarily related to various
types of errors like installation error, build failure, etc.

4.2 Approach for RQ2: Developers practices to solve pack-
age usage issues

I conduct a qualitative analysis to investigate the accepted answer post from Stack
Overflow. I analyze the accepted answer since these answers are solutions that
work for developers.3 Below I describe the representative sample construction
and the manual coding process.

3https://stackoverflow.com/tour

61

https://stackoverflow.com/tour

Figure 4.3: Word cloud generated from Stack Overflow npm posts title that
contains package usage information. The word cloud shows that npm posts are
primarily related to various types of errors.

Representative sample construction: As the full set of the constructed
data is too large to manually examine their accepted answers, I draw a statisti-
cally representative sample. The representative sample consists of 286 randomly
selected accepted answer, with a confidence level of 95% and a interval of 5. 4

Manual coding: I adopt three rounds to do the manual coding. First, the
three authors independently sampled 25 random questions and conducted an open
discussion to establish an initial code taxonomy. Hence, the following three codes
emerged from our manual analysis in the first round.

• Execute command : The accepted answer explicitly mentions executing com-
mands. In definition, execute commands describe the process of running a

4https://www.surveysystem.com/sscalc.htm

62

https://www.surveysystem.com/sscalc.htm

computer software program, script, or command. As shown in Fig. 4.4, npm
install -g @angular/cli is an execute command to install ‘angular/cli’.

• Step by step Instruction: The accepted answer contains step by step in-
formation to get the solution. In definition, instructions are detailed (i.e.,
step by step) information about how something should be done or operated.
As shown in Fig. 4.4, the accepted answer contains three distinct step to
solve the library usage issue (i.e., Angular CLI installation, generating and
serving an Angular project, and open local host page in the browser.)

• Usage Example: The accepted answer explicitly mentions examples, re-
ferred to external links, source code, configuration files, etc. In definition,
usage examples are defined as models, or typical cases (like external links,
source code, etc.) used to solve a problem. As shown in Fig. 4.4, the
external link mention in the beginning of the answer is usage example.

In the second round, to assure that there is no new cases, the three authors
coded another 25 samples and I found that the initialized codes can totally fit.
In the third round, to test the comprehension understanding, I coded another 20
samples and used the Kappa score to measure the agreement. The score is 0.82,
which is implied as nearly perfect [96]. Based on this encouraging result, the first
author then coded the rest of the representative sample independently.

5 Results

In this section, the results for each research question are described. First, I
describe the result analysis, and then highlight our findings and answer each
question.

5.1 Answering RQ1: Package usage issues

To show the proportion of popular package usage, I depict tables to statistically
show the package usage between Stack Overflow and npm projects. Then, to
analyze the frequency of Stack Overflow npm package co-usage in the latest npm

63

Execute

command

Step by step

instruction

Usage

examples

Figure 4.4: An example that motivates to classify developers response. In the
answer I observe that, it contains usage examples, execute command, and step
by step instruction.

64

Table 4.2: Top-15 npm packages extracted from Stack Overflow posts with their
proportion and rank in the latest npm projects. Result shows that Only three
out of top-10 npm packages are mostly discussed in Stack Overflow.

npm packages
Count

(Stack Overflow)

Count
(npm

projects)

Rank
(Stack Overflow)

Rank
(npm

projects)

react 586 42, 591 1 9
typescript 548 57,864 2 4
webpack 489 52,453 3 5
rxjs 471 12,339 4 69
zone.js 462 8,570 5 119
react-dom 461 32,941 6 16
@angular/core 434 10,050 7 95
@angular/common 434 9,406 8 103
@angular/compiler 426 9,170 9 110
@angular/platform-browser 424 8,482 10 120
@angular/platform-browser-dynamic 419 7,634 11 132
jquery 413 9,263 12 108
@angular/forms 401 6,608 13 147
@angular/http 388 5,433 14 169
@angular/router 380 5,583 15 166

projects, I calculated the ratio using formula (i.e., α
β
× 100) discussed in the

approach.
Observation 2- Only three out of top-10 npm packages are mostly

discussed in Stack Overflow. Table 4.2 shows the top-15 packages discussed
in Stack Overflow with their proportion and ranks in the latest npm projects.
The top-3 discussed npm packages are react, typescript, and webpack. Again,
Table 4.3 shows the top-15 package usage extracted from the latest npm projects.
I observe that, the top-5 packages in the latest npm projects which are less fre-
quently discussed in Stack Overflow are mocha, eslint, chai, babel-core,
and lodash. One possible reason is that, such well-known libraries are well doc-
umented and may have their own forum, chat tools, etc. For this reason, there is
no need to discuss them in Stack Overflow.

Observation 3- 87.95% of the Stack Overflow package co-usage in-
formation exist in the latest npm project release. Furthermore, Table 4.4
shows the top-15 Stack Overflow package co-usage mentioned by developers. I

65

Table 4.3: Top-15 package usage extracted from the latest npm projects with
their proportion and rank in the Stack Overflow posts. The top package usage
patterns from npm projects shows that application developers top usage packages
are different from Stack Overflow.

npm package
Count

(npm projects)
Count

(Stack Overflow)
Rank

(npm projects)
Rank

(Stack Overflow)

mocha 101898 126 1 65
eslint 81767 199 2 45
chai 58368 114 3 78
typescript 57864 548 4 2
webpack 52453 489 5 3
babel-core 51351 309 6 26
lodash 45618 348 7 19
babel-loader 44398 340 8 22
react 42591 586 9 1
jest 41188 115 10 76
babel-eslint 39336 134 11 68
babel-cli 38038 102 12 83
eslint-plugin-import 36019 94 13 90
@types/node 35197 320 14 24
rimraf 34466 139 15 63

observed that most of the package co-usage mentioned by developers are related
to angular followed by (‘typescript’, ‘zone.js’). The top co-usage pat-
terns from Stack Overflow and their rank hints that developers face most error
type issues when they use angular packages.

RQ1 Summary: Analysis result shows that, only three out of top-10 npm
packages are mostly discussed in Stack Overflow. In addition, 87.95% of
the Stack Overflow npm package co-usage information exist in the latest
npm project release.

66

Table 4.4: Top-15 package co-usage extracted from Stack Overflow posts except
angular since rest of the top co-usage are related to angular. The top co-
usage patterns and their rank in Stack Overflow indicate that developers discuss
most package dependency issues related to angular followed by (‘typescript’,
‘zone.js’).

Package Co-usage Rank Count

(‘typescript’, ‘zone.js’) 9 317
(‘zone.js’, ‘rxjs’) 15 290
(‘react-dom’, ‘react’) 17 288
(‘typescript’, ‘rxjs’) 21 283
(‘karma’, ‘karma-jasmine’) 31 258
(‘zone.js’, ‘core-js’) 33 251
(‘core-js’, ‘rxjs’) 39 233
(‘webpack’, ‘babel-loader’) 40 230
(‘typescript’, ‘core-js’) 40 230
(‘jasmine-core’, ‘karma-jasmine’) 43 225
(‘karma-jasmine’, ‘karma-chrome-launcher’) 44 223
(‘babel-core’, ‘babel-loader’) 45 220
(‘typescript’, ‘tslint’) 46 216
(‘typescript’, ‘karma’) 47 210
(‘typescript’, ‘karma-jasmine’) 48 209

67

5.2 Answering RQ2: Developers practices to solve package
usage issues

To show the useful accepted answer attributes pattern in response to the package
usage question by developers, I prepare all possible combinations for three man-
ually curated attributes: Execute command, Step by step instruction, and Usage
example, respectively. Thus, I obtain eight distinct combinations (i.e., subsets),
including the others (i.e., empty set). Finally, I calculate the percentage of each
variety in the manually analyzed representative sample.

Observation 4- Our results show that, accepted answers posted by
developers in response to questions that include package usage informa-
tion mostly contain usage examples (i.e., includes real-life examples,
external links, source code, build configuration files, etc.). Figure 4.5
shows the analysis result of accepted answers posted by developers in response to
questions that include package usage information. I observe that usage example
(36.76%) is most dominant attribute in accepted answer, followed by execute
command (19.58%). The third most frequent (15.03%) attribute combination in
the accepted answer is execute command and usage example. These findings
hint that application developers are suffering from a lack of technical depth in
managing third-party libraries in their applications.

RQ2 Summary: Result shows that 37.76% accepted answers posted by
developers in response to questions that include package usage information
contain usage example followed by execute command 19.58%.

6 Discussion

In order to aid application developers faced with package usage issues, I conducted
an empirical study to understand the usefulness of package usage information
mined from Stack Overflow. I learned two lessons along the way:

Lesson 1- Many of the library usage information on Stack Overflow is not
from the popular npm package. I find that only three out of the top ten of the

68

Figure 4.5: Analysis of accepted answers posted in response to questions that
include package usage information. Result shows that 37.76% accepted answers
contain usage example followed by execute command 19.58%.

most used npm libraries are mentioned in Stack Overflow. The top-3 discussed
npm packages are react, typescript, and webpack. Again, the top-5 libraries
that are less frequently discussed in Stack Overflow are mocha, eslint, chai,
babel-core, and lodash. Furthermore, I find that 87.95% package co-usage
mined from Stack Overflow exist in the latest npm package release. The npm
post that discuss package usage information are mostly relate to different type of
errors.

Lesson 2- Developers tend to post answers that are usage example or execute
command. The good news is that maybe the answers can be useful for any npm
developer that suffers from similar issues. There is potential for a recommendation
system, especially with the available execute commands and examples available.

7 Threats to validity

This section describes the threats to validity that may affect our research.

69

Internal Validity: Threats to internal validity refer to experimental bias. In
this study, I found two major internal threads that could affect the results. First,
is the pre-processing of the dataset I decide the number of posts (2100) and npm
packages (217,934) based on cumulative extraction of npm libraries and the gen-
erated co-usages. I continue the cumulative extraction until all the libraries and
the co-usage cover. Second, in RQ2 I perform manual analysis on random sample
since the dataset size is large. To mitigate this challenge, I prepare representative
sample consists of 286 randomly selected accepted answer, with a confidence level
of 95% and a interval of 5.

External validity: Threats to external validity refer to the generalizability of
our findings. My datasets consist of npm packages from libraries.io and Stack
Overflow posts. Stack Overflow is a popular platform for question and answers
from developers with various domains and experts. Hence, our observations and
results can not be generalized for other package managers like Maven, NuGet,
and others. Besides, I consider only those Stack Overflow posts that contain
package.json file. Selecting more question posts may cause variation of top
package co-usage results.

Construct validity: Threats to construct validity refers to the suitability of my
evaluation measure. In my qualitative analysis of classifying accepted answers
(RQ2), the answer patterns may be miscoded due to the subjective nature of
our coding approach. To mitigate this threat, I took a systematic approach to
validate the taxonomy and the comprehension understanding by the three authors
in several rounds. Only until the Kappa score reaches 0.82, indicating that the
agreement is almost perfect (0.81-1.00), we were able to complete the rest of the
sample dataset.

8 Summary and Future Works

In this Chapter, I examine the usefulness of package usage information mined
from Stack Overflow. I perform a case study on npm package co-usage information
from Stack Overflow question posts (2100) and libraries.io (217,934 npm projects)

70

dataset. Although Stack Overflow has been a useful resource for finding answers
to questions, I find that popular and highly used packages are not discussed
as often. However, I can see that the accepted answers may prove useful, as I
believe that the usage examples and executable commands could be reused or be
used for tool support. In my future work, I will develop tool support that will
utilize Stack Overflow usage examples and executable commands extracted from
accepted answers to assist npm application developers.

71

5 | Conclusion

To understand the developer’s experience (i.e., the challenges and information
needs) of using third-party package from software packaging ecosystems, in this
thesis I have investigated third-party package related discussions through popular
question-and-answer site such as Stack Overflow. The main contributions of
this thesis are divided into two parts. These are (i) package management and
(ii) package usage. In the following, I summaries the results, implications, and
possible future scopes of this thesis:

• Developers experience in package management. In this work, I explore
third-party package related discussions to understand whether developers
experience of package management varies in different software packaging
ecosystems. The results show that developers questions related to third-
party package can be clustered into ten different topics, which can be fur-
ther grouped into three themes, and that different topics are prevalent for
different ecosystems. In addition, I observe that most third-party pack-
age related questions arise from the lack of understanding package man-
agement tool usage information rather than specific migration and general
dependency practice.

• Developers experience in package usage. In this work, I examine the use-
fulness of package usage information mined from Stack Overflow. Although
Stack Overflow has been a useful resource for finding answers to questions,
I find that popular and highly used packages are not discussed as often.
However, I can see that the accepted answers may prove useful, as I believe
that the usage examples and executable commands could be reused or be
used for tool support.

72

In summary, the results of this thesis highlight the challenges and informa-
tion needs associated with using third-party packages from software packaging
ecosystem for developers, package manager designers and researchers.

1 Implications and Suggestions

The main goal of this thesis is to help developers and package manager designers
in (I) identifying the challenges of using third-party packages from software pack-
aging ecosystems and (II) understanding the information needs to solve package
usage challenges. Thus, the empirical findings from this thesis are valuable both
to developers, and package manager designers. Below, I summarize the sugges-
tions for developers and package manager designers:

• Developers: The developers should consider the package management fea-
ture before choosing a software packing ecosystem because the findings of
my study shows that specific features of package management has corre-
lation with developers experience. They can optimize technology stack
selection in software development where possible. For instance, Meteor fa-
cilitate complete software development with single programming language.
In addition, it ensure development activity with less code, and easy to learn
than npm. Moreover, developers should use popular packages in software
development if there exist alternative choice. My study finding shows that
popular packages have less issues and also have better chance to get sup-
ports from question-answering discussion sites.

• Package manager designers: The package manager designers should con-
duct online survey or face to face interview to understand how package
management features impact developers decision process because not all
packaging ecosystems have same language, environment and dependency
tree structure. In addition, they should ensure that package management
tools are easy to use for developers.

73

2 Opportunities for Future Research

There are still a lot of research aspect that can be done in order to help devel-
opers towards improving experience of using packages from software packaging
ecosystems. Following are the research opportunities I see for the immediate
future.

Researchers can perform an exploratory study to investigate the trade-offs
between benefits and drawbacks of each package ecosystem that will help piece
together what the ideal package ecosystem should look like. They can use our
findings to prioritise research efforts, as our work is the first to acknowledge that
developers encounter issues when using package ecosystems. Future work is also
needed in particular in teasing apart the effects of different features of pack-
age ecosystems and their interplay. While some features of a package ecosystem
are given (e.g., the programming language), others provide more freedom to de-
signers (e.g., dependency trees). In addition, interviewing or surveying software
developers would further allow for triangulation of the findings to understand
the impact of ecosystem features on developers’ decision processes. Researchers
are also encouraged to investigate both positive and negative posts from social
media such as Twitter and Facebook in order to gain a better understanding of
developers’ experiences with using third-party packages from different software
packaging ecosystems. Additionally, developing recommendation tools (such as
suggesting possible solutions, domain-specific experts, etc.) using resources from
Stack Overflow and social media platforms may prove useful to developers in
dealing with package usage challenges.

74

References

[1] Pietro Abate, Roberto DiCosmo, Ralf Treinen, and Stefano Zacchiroli. Mpm: a
modular package manager. In Proceedings of the 14th international ACM Sigsoft
symposium on Component based software engineering, pages 179–188, 2011.

[2] Pietro Abate, Roberto Di Cosmo, Louis Gesbert, Fabrice Le Fessant, Ralf Treinen,
and Stefano Zacchiroli. Mining component repositories for installability issues.
In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pages 24–33. IEEE, 2015.

[3] Pietro Abate, Roberto Di Cosmo, Georgios Gousios, and Stefano Zacchiroli. De-
pendency solving is still hard, but we are getting better at it. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 547–551. IEEE, 2020.

[4] Rabe Abdalkareem. Reasons and drawbacks of using trivial npm packages:
The developers’ perspective. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, page 1062–1064,
New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450351058. doi: 10.1145/3106237.3121278. URL https://doi.org/10.

1145/3106237.3121278.

[5] Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalkareem, and
Emad Shihab. Challenges in chatbot development: A study of stack overflow
posts. In Proceedings of the 17th International Conference on Mining Software
Repositories, pages 174–185, 2020.

[6] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. De-
sign recovery and maintenance of build systems. In 2007 IEEE International
Conference on Software Maintenance, pages 114–123. IEEE, 2007.

75

https://doi.org/10.1145/3106237.3121278
https://doi.org/10.1145/3106237.3121278

[7] Amritanshu Agrawal, Wei Fu, and Tim Menzies. What is wrong with topic mod-
eling? and how to fix it using search-based software engineering. Information and
Software Technology, 98:74–88, 2018.

[8] Md Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K Roy, and Kevin A
Schneider. Caps: a supervised technique for classifying stack overflow posts con-
cerning api issues. Empirical Software Engineering, 25(2):1493–1532, 2020.

[9] Miltiadis Allamanis and Charles Sutton. Why, when, and what: analyzing stack
overflow questions by topic, type, and code. In 2013 10th Working Conference on
Mining Software Repositories (MSR), pages 53–56. IEEE, 2013.

[10] Kamel Alrashedy, Dhanush Dharmaretnam, Daniel M German, Venkatesh Srini-
vasan, and T Aaron Gulliver. Scc++: predicting the programming language of
questions and snippets of stack overflow. Journal of Systems and Software, 162:
110505, 2020.

[11] Josep Argelich and Inês Lynce. Cnf instances from the software package installa-
tion problem. In RCRA, 2008.

[12] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. Sotor-
rent: reconstructing and analyzing the evolution of stack overflow posts. In Andy
Zaidman, Yasutaka Kamei, and Emily Hill, editors, Proceedings of the 15th
International Conference on Mining Software Repositories (MSR) 2018, pages
319–330. ACM, 2018. doi: 10.1145/3196398.3196430.

[13] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. So-
torrent: reconstructing and analyzing the evolution of stack overflow posts.
In Andy Zaidman, Yasutaka Kamei, and Emily Hill, editors, Proceedings of
the 15th International Conference on Mining Software Repositories, MSR 2018,
Gothenburg, Sweden, May 28-29, 2018, pages 319–330. ACM, 2018.

[14] Veronika Bauer, Lars Heinemann, and Florian Deissenboeck. A structured ap-
proach to assess third-party library usage. In 2012 28th IEEE International
Conference on Software Maintenance (ICSM), pages 483–492. IEEE, 2012.

[15] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. How the apache community upgrades dependencies: an
evolutionary study. Empirical Software Engineering, 20(5):1275–1317, 2015.

76

[16] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[17] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. When
and how to make breaking changes: Policies and practices in 18 open source soft-
ware ecosystems. ACM Transactions on Software Engineering and Methodology
(TOSEM), 30(4):1–56, 2021.

[18] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How
to break an api: cost negotiation and community values in three software ecosys-
tems. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 109–120, 2016.

[19] Partha Chakraborty, Rifat Shahriyar, Anindya Iqbal, and Gias Uddin. How do
developers discuss and support new programming languages in technical q&a
site? an empirical study of go, swift, and rust in stack overflow. Information and
Software Technology, 137:106603, 2021.

[20] Preetha Chatterjee, Minji Kong, and Lori Pollock. Finding help with program-
ming errors: An exploratory study of novice software engineers’ focus in stack
overflow posts. Journal of Systems and Software, 159:110454, 2020.

[21] Chunyang Chen and Zhenchang Xing. Similartech: automatically recommend
analogical libraries across different programming languages. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering,
pages 834–839, 2016.

[22] Elena A Chernikova and Mikhail A Shalaev. Distributed linux build system for
elbrus hardware platform. In 2020 IEEE Conference of Russian Young Researchers
in Electrical and Electronic Engineering (EIConRus), pages 256–258. IEEE, 2020.

[23] Soyoung Choi and JooYoung Seo. An exploratory study of the research on care-
giver depression: Using bibliometrics and lda topic modeling. Issues in Mental
Health Nursing, pages 1–10, 2020.

[24] J. Cox, E. Bouwers, M. Eekelen, and J. Visser. Measuring dependency freshness
in software systems. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering (ICSE), pages 109–118, 2015.

77

[25] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding
in github: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on computer supported cooperative
work, pages 1277–1286, 2012.

[26] Alexandre Decan, Tom Mens, and Maëlick Claes. An empirical comparison of
dependency issues in oss packaging ecosystems. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
2–12. IEEE, 2017.

[27] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact of security
vulnerabilities in the npm package dependency network. In Proceedings of the
15th International Conference on Mining Software Repositories, pages 181–191,
2018.

[28] Alexandre Decan, Tom Mens, and Philippe Grosjean. An empirical comparison of
dependency network evolution in seven software packaging ecosystems. Empirical
Software Engineering, 24(1):381–416, 2019.

[29] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. Keep
me updated: An empirical study of third-party library updatability on an-
droid. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2187–2200, 2017.

[30] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe.
Dependency versioning in the wild. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pages 349–359. IEEE, 2019.

[31] Ahmad Diyanati, Behrooz Shahi Sheykhahmadloo, Seyed Mostafa Fakhrahmad,
Mohammad Hadi Sadredini, and Mohammad Hassan Diyanati. A proposed ap-
proach to determining expertise level of stackoverflow programmers based on min-
ing of user comments. Journal of Computer Languages, 61:101000, 2020.

[32] Yujie Fan, Yiming Zhang, Shifu Hou, Lingwei Chen, Yanfang Ye, Chuan Shi,
Liang Zhao, and Shouhuai Xu. idev: Enhancing social coding security by
cross-platform user identification between github and stack overflow. In 28th
International Joint Conference on Artificial Intelligence (IJCAI), 2019, 2019.

78

[33] Eliakim Gama, Sávio Freire, Manoel Mendonça, Rodrigo O Spínola, Matheus
Paixao, and Mariela I Cortés. Using stack overflow to assess technical debt iden-
tification on software projects. In Proceedings of the 34th Brazilian Symposium
on Software Engineering, pages 730–739, 2020.

[34] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Yuan-Fang Li. Code2que: A
tool for improving question titles from mined code snippets in stack overflow. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
1525–1529, 2021.

[35] Daniel M German, Jesus M Gonzalez-Barahona, and Gregorio Robles. A model
to understand the building and running inter-dependencies of software. In 14th
Working Conference on Reverse Engineering (WCRE 2007), pages 140–149. IEEE,
2007.

[36] Rishabh Gupta and P Krishna Reddy. Learning from gurus: Analysis and mod-
eling of reopened questions on stack overflow. In Proceedings of the 3rd IKDD
Conference on Data Science, 2016, pages 1–2, 2016.

[37] Junxiao Han, Emad Shihab, Zhiyuan Wan, Shuiguang Deng, and Xin Xia.
What do programmers discuss about deep learning frameworks. EMPIRICAL
SOFTWARE ENGINEERING, 2020.

[38] Mubin Ul Haque, Leonardo Horn Iwaya, and M Ali Babar. Challenges in docker
development: A large-scale study using stack overflow. In Proceedings of the
14th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 1–11, 2020.

[39] Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio.
9.6 million links in source code comments: Purpose, evolution, and decay. In
Proceedings of the 41st International Conference on Software Engineering, page
1211–1221, 2019.

[40] Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, and
Nikolaos Tsantalis. Dependency smells in javascript projects. IEEE Transactions
on Software Engineering, 2021.

79

[41] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. Structure and
evolution of package dependency networks. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), pages 102–112. IEEE, 2017.

[42] Kanako Komiya, Yuji Abe, Hajime Morita, and Yoshiyuki Kotani. Question
answering system using q & a site corpus query expansion and answer candidate
evaluation. SpringerPlus, 2(1):1–11, 2013.

[43] Raula Gaikovina Kula, Coen De Roover, Daniel M German, Takashi Ishio, and
Katsuro Inoue. Modeling library dependencies and updates in large software
repository universes. arXiv preprint arXiv:1709.04626, 2017.

[44] Raula Gaikovina Kula, Coen De Roover, Daniel M German, Takashi Ishio, and
Katsuro Inoue. A generalized model for visualizing library popularity, adop-
tion, and diffusion within a software ecosystem. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
288–299. IEEE, 2018.

[45] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. Do developers update their library dependencies? Empirical Software
Engineering, 23(1):384–417, 2018.

[46] T.C. Lethbridge, J. Singer, and A. Forward. How software engineers use doc-
umentation: the state of the practice. IEEE Software, 20:35–39, 2003. doi:
10.1109/MS.2003.1241364.

[47] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui
Xue, and Wei Huo. Libd: scalable and precise third-party library detection in
android markets. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pages 335–346. IEEE, 2017.

[48] Henry Lieberman and Christopher Fry. Bridging the gulf between code and be-
havior in programming. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 480–486, 1995.

[49] Qiaoling Liu, Eugene Agichtein, Gideon Dror, Evgeniy Gabrilovich, Yoelle
Maarek, Dan Pelleg, and Idan Szpektor. Predicting web searcher satisfaction
with existing community-based answers. In Proceedings of the 34th international

80

ACM SIGIR conference on Research and development in Information Retrieval,
pages 415–424, 2011.

[50] Shuang Liu, Ru-Yuan Zhang, and Tomoko Kishimoto. Analysis and prospect of
clinical psychology based on topic models: hot research topics and scientific trends
in the latest decades. Psychology, Health & Medicine, pages 1–13, 2020.

[51] Mircea Lungu. Towards reverse engineering software ecosystems. In 2008 IEEE
International Conference on Software Maintenance, pages 428–431. IEEE, 2008.

[52] Mircea Lungu, Romain Robbes, and Michele Lanza. Recovering inter-project
dependencies in software ecosystems. In Proceedings of the IEEE/ACM
international conference on Automated software engineering, pages 309–312, 2010.

[53] Christian Macho, Shane McIntosh, and Martin Pinzger. Automatically repairing
dependency-related build breakage. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 106–117.
IEEE, 2018.

[54] Sonal Mahajan, Negarsadat Abolhassani, and Mukul R Prasad. Recommending
stack overflow posts for fixing runtime exceptions using failure scenario matching.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
1052–1064, 2020.

[55] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hart-
mann. Design lessons from the fastest q&a site in the west. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 2857–2866,
2011.

[56] Serghei Mangul, Thiago Mosqueiro, Richard J Abdill, Dat Duong, Keith Mitchell,
Varuni Sarwal, Brian Hill, Jaqueline Brito, Russell Jared Littman, Benjamin
Statz, et al. Challenges and recommendations to improve the installability and
archival stability of omics computational tools. PLoS biology, 17(6):e3000333,
2019.

[57] Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems–a system-
atic literature review. Journal of Systems and Software, 86(5):1294–1306, 2013.

81

[58] Andrew McCallum. Mallet. 2020.

[59] Shane McIntosh, Bram Adams, and Ahmed E Hassan. The evolution of ant build
systems. In 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010), pages 42–51. IEEE, 2010.

[60] Shane McIntosh, Bram Adams, Thanh HD Nguyen, Yasutaka Kamei, and
Ahmed E Hassan. An empirical study of build maintenance effort. In 2011 33rd
International Conference on Software Engineering (ICSE), pages 141–150. IEEE,
2011.

[61] Shane McIntosh, Meiyappan Nagappan, Bram Adams, Audris Mockus, and
Ahmed E Hassan. A large-scale empirical study of the relationship between build
technology and build maintenance. Empirical Software Engineering, 20(6):1587–
1633, 2015.

[62] Sarah Meldrum, Sherlock A Licorish, and Bastin Tony Roy Savarimuthu. Crowd-
sourced knowledge on stack overflow: A systematic mapping study. In Proceedings
of the 21st International Conference on Evaluation and Assessment in Software
Engineering, pages 180–185, 2017.

[63] Samim Mirhosseini and Chris Parnin. Can automated pull requests encour-
age software developers to upgrade out-of-date dependencies? In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 84–94. IEEE, 2017.

[64] João Eduardo Montandon, Cristiano Politowski, Luciana Lourdes Silva,
Marco Tulio Valente, Fabio Petrillo, and Yann-Gaël Guéhéneuc. What skills
do it companies look for in new developers? a study with stack overflow jobs.
Information and Software Technology, 129:106429, 2021.

[65] Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh. Using
others’ tests to identify breaking updates. In Proceedings of the 17th International
Conference on Mining Software Repositories, MSR ’20, page 466–476, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450375177. doi:
10.1145/3379597.3387476. URL https://doi.org/10.1145/3379597.3387476.

[66] Bhaveet Nagaria and Tracy Hall. How software developers mitigate their errors
when developing code. IEEE Transactions on Software Engineering, 2020.

82

https://doi.org/10.1145/3379597.3387476

[67] Kevin Kyung Nam, Mark S Ackerman, and Lada A Adamic. Questions in, knowl-
edge in? a study of naver’s question answering community. In Proceedings of the
SIGCHI conference on human factors in computing systems, pages 779–788, 2009.

[68] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. What
makes a good code example?: A study of programming q&a in stackoverflow.
In 2012 28th IEEE International Conference on Software Maintenance (ICSM),
pages 25–34. IEEE, 2012.

[69] Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.
Crossrec: Supporting software developers by recommending third-party libraries.
Journal of Systems and Software, 161:110460, 2020.

[70] Chris Parnin and Christoph Treude. Measuring api documentation on the
web. In Proceedings of the 2nd international workshop on Web 2.0 for software
engineering, pages 25–30, 2011.

[71] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. A qualitative study of de-
pendency management and its security implications. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pages
1513–1531, 2020.

[72] Steven Raemaekers, Arie Van Deursen, and Joost Visser. Measuring soft-
ware library stability through historical version analysis. In 2012 28th IEEE
International Conference on Software Maintenance (ICSM), pages 378–387. IEEE,
2012.

[73] Romain Robbes, Mircea Lungu, and David Röthlisberger. How do developers
react to api deprecation? the case of a smalltalk ecosystem. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, pages 1–11, 2012.

[74] Martin Robillard, Robert Walker, and Thomas Zimmermann. Recommendation
systems for software engineering. IEEE software, 27(4):80–86, 2009.

[75] Martin P Robillard and Robert DeLine. A field study of api learning obstacles.
Empirical Software Engineering, 16(6):703–732, 2011.

[76] Chat Room. Package manager. system, 10(23):46, 2020.

83

[77] Christoffer Rosen and Emad Shihab. What are mobile developers asking about?
a large scale study using stack overflow. Empirical Software Engineering, 21(3):
1192–1223, 2016.

[78] Riccardo Rubei, Claudio Di Sipio, Phuong T Nguyen, Juri Di Rocco, and Davide
Di Ruscio. Postfinder: Mining stack overflow posts to support software developers.
Information and Software Technology, 127:106367, 2020.

[79] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. On the reaction to
deprecation of 25,357 clients of 4+ 1 popular java apis. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 400–410.
IEEE, 2016.

[80] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. Programmers’ build errors: a case study (at google). In
Proceedings of the 36th International Conference on Software Engineering, pages
724–734, 2014.

[81] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. Does your configu-
ration code smell? In 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR), pages 189–200. IEEE, 2016.

[82] Diomidis Spinellis. Package management systems. IEEE software, 29(2):84–86,
2012.

[83] Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer, and
Daniel M German. How social and communication channels shape and challenge
a participatory culture in software development. IEEE Transactions on Software
Engineering, 43(2):185–204, 2016.

[84] Mohammad Tahaei, Kami Vaniea, and Naomi Saphra. Understanding privacy-
related questions on stack overflow. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, pages 1–14, 2020.

[85] Youshuai Tan, Sijie Xu, Zhaowei Wang, Tao Zhang, Zhou Xu, and Xiapu Luo. Bug
severity prediction using question-and-answer pairs from stack overflow. Journal
of Systems and Software, 165:110567, 2020.

[86] Mahdi Teimouri. bccp: an r package for life-testing and survival analysis.
Computational Statistics, pages 1–21, 2021.

84

[87] Cedric Teyton, Jean-Remy Falleri, and Xavier Blanc. Mining library migration
graphs. In 2012 19th Working Conference on Reverse Engineering, pages 289–298.
IEEE, 2012.

[88] Ferdian Thung, David Lo, and Julia Lawall. Automated library recommendation.
In 2013 20th Working conference on reverse engineering (WCRE), pages 182–191.
IEEE, 2013.

[89] Boris Todorov, Raula Gaikovina Kula, Takashi Ishio, and Katsuro Inoue. Sol
mantra: Visualizing update opportunities based on library coexistence. In 2017
IEEE Working Conference on Software Visualization (VISSOFT), pages 129–133.
IEEE, 2017.

[90] Christoph Treude and Martin P Robillard. Augmenting api documentation with
insights from stack overflow. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pages 392–403. IEEE, 2016.

[91] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do program-
mers ask and answer questions on the web?(nier track). In Proceedings of the
33rd international conference on software engineering, pages 804–807, 2011.

[92] Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner. Opium: Optimal
package install/uninstall manager. In 29th International Conference on Software
Engineering (ICSE’07), pages 178–188. IEEE, 2007.

[93] Gias Uddin, Foutse Khomh, and Chanchal K Roy. Mining api usage scenarios
from stack overflow. Information and Software Technology, 122:106277, 2020.

[94] Gias Uddin, Fatima Sabir, Yann-Gaël Guéhéneuc, Omar Alam, and Foutse
Khomh. An empirical study of iot topics in iot developer discussions on stack
overflow. Empirical Software Engineering, 26(6):1–45, 2021.

[95] Pradeep K Venkatesh, Shaohua Wang, Feng Zhang, Ying Zou, and Ahmed E Has-
san. What do client developers concern when using web apis? an empirical study
on developer forums and stack overflow. In 2016 IEEE International Conference
on Web Services (ICWS), pages 131–138. IEEE, 2016.

[96] Anthony J Viera, Joanne M Garrett, et al. Understanding interobserver agree-
ment: the kappa statistic. Fam med, 37(5):360–363, 2005.

85

[97] Liting Wang, Li Zhang, and Jing Jiang. Iea: an answerer recommendation ap-
proach on stack overflow. Science China Information Sciences, 62(11):1–19, 2019.

[98] Naixuan Wang, Jian Cao, Qing Qi, Qi Gu, and Shiyou Qian. Sonas: A system to
obtain insights on web apis from stack overflow. In CCF Conference on Computer
Supported Cooperative Work and Social Computing, pages 499–514. Springer,
2020.

[99] Shaowei Wang, David Lo, and Lingxiao Jiang. An empirical study on developer
interactions in stackoverflow. In Proceedings of the 28th Annual ACM Symposium
on Applied Computing, pages 1019–1024, 2013.

[100] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. How do devel-
opers utilize source code from stack overflow? Empirical Software Engineering,
24(2):637–673, 2019.

[101] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. What
security questions do developers ask? a large-scale study of stack overflow posts.
Journal of Computer Science and Technology, 31(5):910–924, 2016.

[102] Yuan Yao, Hanghang Tong, Tao Xie, Leman Akoglu, Feng Xu, and Jian Lu.
Detecting high-quality posts in community question answering sites. Information
Sciences, 302:70–82, 2015.

[103] Yanfang Ye, Shifu Hou, Lingwei Chen, Xin Li, Liang Zhao, Shouhuai Xu, Jiabin
Wang, and Qi Xiong. Icsd: An automatic system for insecure code snippet de-
tection in stack overflow over heterogeneous information network. In Proceedings
of the 34th Annual Computer Security Applications Conference, pages 542–552,
2018.

[104] Haoxiang Zhang, Shaowei Wang, Tse-Hsun Chen, and Ahmed E Hassan. Read-
ing answers on stack overflow: Not enough! IEEE Transactions on Software
Engineering, 2019.

[105] Haoxiang Zhang, Shaowei Wang, Heng Li, Tse-Hsun Peter Chen, and Ahmed E
Hassan. A study of c/c++ code weaknesses on stack overflow. IEEE Transactions
on Software Engineering, 2021.

[106] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. Are code examples on an online q&a forum reliable?: a study of

86

api misuse on stack overflow. In 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE), pages 886–896. IEEE, 2018.

[107] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. An em-
pirical study of common challenges in developing deep learning applications. In
2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE), pages 104–115. IEEE, 2019.

87

	Abstract
	Acknowledgements
	List of publications
	Contents
	List of Figures
	List of Tables
	Introduction
	Scope of this Thesis
	Contributions
	Package management
	Package usage

	Organization of Thesis

	Background
	Third-party Package Usage in Modern Software Development
	Usefulness of third-party packages
	Drawback of third-party packages

	Third-party Package Management
	Basic Functions of Package Manager

	Software Packaging Ecosystem
	Evolution of Software Packaging Ecosystems

	Developers Discussion on Question-and Answering Site
	Stack Overflow: A Popular Q&A Site Among Developers
	Question
	Answer
	Comments

	Definition of Developers Experience
	Related Works

	Package Management
	Introduction
	Contrasting Developers Experience in Package Management
	Selecting package ecosystems and their features
	Building third-party package related question-and-answer dataset
	Question Topic Modeling
	Contrasting developer discussion topics relating to different ecosystems
	A. Contrasts in Responses: Popularity and Difficult
	B. Contrasts in Features: Topics and Features

	Investigating Root Cause of Package Management Discussion and Their Kinds of Questions
	What kind of questions do developers ask about third-party package management?
	What are the underlying causes of questions related to third-party package management?

	Implications
	Threats to Validity
	Summary and Future Works

	Package Usage
	Introduction
	Motivating Example
	Data Preparation
	Data Analysis
	 Approach for RQ1: Package usage issues
	 Approach for RQ2: Developers practices to solve package usage issues

	Results
	Answering RQ1: Package usage issues
	Answering RQ2: Developers practices to solve package usage issues

	Discussion
	Threats to validity
	Summary and Future Works

	Conclusion
	Implications and Suggestions
	Opportunities for Future Research

