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Towards Morphological And Syntactic Analyses
For The Khmer Language∗

Hour Kaing

Abstract

Language is a structural system that humans use for communication. Hu-
mans analyze structures of sentences to understand meanings and to generate
grammatical sentences. In natural language processing (NLP), the same struc-
tural analysis is necessary to enhance computers’ understanding and generation
of natural language sentences. Its usefulness has been demonstrated for many
downstream systems, e.g., language model, machine translation, text summariza-
tion. Even though the structural analysis for computers has been studied for a
long time, many languages have not yet been investigated because of their re-
source scarcity and a requirement of language-specific knowledge. This problem
is crucial, particularly in this multilingual NLP era. This thesis concerns morpho-
logical and syntactic analyses for a low-resource language—Khmer. We organize
our contributions into two parts.

Part one is about morphological analysis, the most fundamental task in NLP.
The Khmer language is highly analytic and has no word boundary indicators.
Previously, tokenization and part-of-speech (POS) tagging have been studied for
words and considered two separate tasks. For the Khmer language, the definition
of tokens and the classification of the POS is intrinsically ambiguous, which makes
the tasks challenging. This thesis focuses on morphology to investigate joint pro-
cessing for tokenization and POS-tagging. Our contributions are a preparation of
the largest tokenized and POS-tagged corpus that contains annotation for more
linguistic phenomena than a previous corpus, and an investigation of the auto-
matic processing of tokenization and POS tagging on this corpus using various
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state-of-the-art approaches. We present analyses and discussions based on our
experimental results to show the achievements and limitations of the data and
approaches.

Part two is about syntactic analysis for Khmer. We focus on constituency pars-
ing, which is another core NLP task. Because the development of constituency
treebank is costly, we investigate cross-lingual transfer learning techniques for con-
stituency parsing in this thesis. We conduct two experiments for many diverse
languages in addition to Khmer. The first experiment discusses the single-source
transfer performance of a POS-based delexicalized model and the effectiveness of
various source-language selection techniques. Then, the second experiment ex-
amines a multi-source transfer using a pretrained multilingual language model as
a cross-lingual channel. Because a multilingual constituency treebank consists of
diverse structures and label sets, we propose a treebank preprocessing step and
typological features integration with smooth sampling and dropout to improve
the cross-lingual performance.

Keywords:

Natural Language Processing, Morphology, Tokenization, Part-of-Speech, Con-
stituency Parsing, Under-Studied, Low-Resource, Cross-Lingual Transfer
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Chapter 1

Introduction
Language is a structural system that humans use to communicate and express
thoughts. Humans use language as a set of constraints that connect symbols
to represent meanings. In linguistics, the term syntax or grammar is used to
describe such structural constraints on how speakers or writers compose clauses,
phrases, and words. Grammars of a natural language are used as a convention
to describe the grammatical correctness of the language. For language learners,
the grammars are also used as an explicit instruction to analyze and construct a
sentence of the language.

Natural language processing (NLP) is a study hoping that computers can un-
derstand and generate natural language texts like humans. It allows the in-
teraction between humans–and–computers or humans–and–humans (e.g., across
languages) to be more natural and efficient than before. For many decades,
many tasks have been created for various purposes. Some tasks have their direct
real-world applications, e.g., text summarization, grammatical error correction,
machine translation, question answering. Some other tasks are sub-tasks that
support the larger tasks, e.g., morphological analysis, syntactic analysis, seman-
tic analysis. The sub-tasks are extremely important for NLP, especially those that
analyze the structures of the texts, because a natural language text in computers
is just a sequence of characters. Those structural analyses allow the computers
to capture syntactically and semantically useful information from the plain texts
or to process language more naturally.

The morphological and syntactic analyses are considered as the two fundamen-
tal steps in NLP as humans generally analyze structures of words and sentences.
The morphological analysis describes how a word is formed and simultaneously
looks at the linguistic categories of its elements (morphemes) as well as itself.
Words in English are easily detected by the computers because spaces are used
to separate words. However, it may not be the case for other languages, e.g.,
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Chinese, Japanese, Khmer, because spaces are used for various purposes depend-
ing on the nature of each language. Subsequently, the morphological analysis of
those languages has been modeled jointly with word tokenization as a cutting-
and-tagging task in terms of engineering [1, 2]. For the other NLP tasks, the
tokenization is required as the earliest step, and the POS information is ex-
tremely valuable for the improvement, e.g., machine translation [3–7], question
answering [8], dialog system [9]. In addition to the analysis of words, the syn-
tactic analysis, which is a process to analyze the structure of a sentence, is also
regarded as a core NLP task because sentences meanings are more than the sum
of the meanings of their words rather the internal structures of the sentences.
To the larger tasks, the syntactic structures can be beneficial, e.g., for language
model [10], machine translation [5, 7, 11–15], text summarization system [16].

The morphological and syntactic analyses are still under-studied and under-
developed for many languages. In the traditional NLP, these analyzers were
developed based on a collection of predefined human rules, which is hard to
be developed and not applicable for texts in the real world. Until the computers
turn powerful, data-driven approaches became more practical solutions for almost
every NLP task where those rules can be learned from a large amount of human-
annotated data. Remarkably, data resources are gradually available for more and
more languages by the contributors from various nations, e.g., more than 100
languages in the Universal Dependency project [17]. However, there are more
than 6, 000 languages in the world, and we do hope that the computers will be
able to analyze all the languages. Even though the resources for a wide range of
languages have been developed, the data quantity and quality for many languages
are still very low, especially the Southeast Asian languages, e.g., Khmer, Thai,
Lao, Burmese, which is hard to achieve a desired performance. In addition, NLP
for those languages is not well studied in the past; even their word tokenization
is still under development. Certainly, more contributions are required to solve
language-specific problems and to enlarge the language diversity of the resources.

The Khmer language, which is the official language of the Kingdom of Cam-
bodia, is studied in this thesis because developments of the morphological and
syntactic analyses for this language were rare in the past. The fundamental pro-
cessing for this language remains challenging and restricted studies of the other

2



NLP tasks. Previously, there exist several studies on the word tokenization and
POS tagging, but most of them are not extendable because the data were mostly
closed. For Khmer NLP communities, more data and studies regarding the fun-
damental processing are required to support the other NLP tasks.

Data development that is based on human annotation can be very costly, de-
pending on the complexity of the tasks. For example, syntactic structure annota-
tion requires linguists to understand the exact meaning of the sentence and then
combine or connect words to form a structure to match the sentence’s meaning;
this process takes a lot of human-annotation efforts and times, especially for long
and complex sentences. In practice, pseudo annotations are used to reduce the
annotation process such that linguists can simply focus on the checking and edit-
ing process. Generally, the pseudo annotations could be produced using either
a cross-domain, cross-lingual, or fully unsupervised model. These models could
also be used for parameter initialization to obtain high performance with less
training data.

This thesis aims to develop the morphological and syntactic analyzers for the
Khmer language. Since data are the most important part of the development, we
attempt to create and release data to the public together with empirical analyses
and discussions on the data for future developments of the analyzers. We also
investigate cross-lingual transfer approaches to facilitate data development and
model training with less data.

The cross-lingual transfer assumes that there exist projectable semantic units
between two languages, and the task to transfer is applicable for the low-resource
languages. As a consequence, the cross-lingual transfer is very hard for the mor-
phological analysis because it is nearly impossible to project the morphemes or
characters across languages even though the words are translated across language,
especially when their scripts do not overlap. As a result, the morphological anal-
ysis is regarded as language-specific, where the human annotation is necessary for
its development. On the other hand, the cross-lingual transfer is applicable for
the syntactic analysis for two reasons. First, meaningful words of one language
can generally be translated to the other languages. Second, it is easy to find two
languages with the same words order, e.g., subject-verb-object. In such case, if two
languages are isomorphic, the syntactic structures of their mutually translated

3



ក្រសួង : department ការពារ : to protect ជាតិ : nationរដ្ឋ : nation មន្ត្រី : official

ក្រសួងការពារជាតិ : ministry of defenseរដ្ឋមន្ត្រី : minister

រដ្ឋមន្ត្រីក្រសួងការពារជាតិ : minister of defense

Figure 1.1: Formation of “minister of defense” in Khmer. The expression can
be decomposed into five morphemes in the upper rank. The first two
morphemes, “nation” and “official,” are borrowed from Sanskrit/Pali.
They form the expression “minister” in a head-final manner. The
second half of “ministry of defense” is formed by Khmer native mor-
phemes in head-initial order, that is, the department that protects
the nation. The entire expression is also formed head-initially, the
predominant order in Khmer. Note that the expression “ministry of
defense” can also be analyzed as the clause “the department protects
the nation” as there is no grammatical declension nor conjugation
paradigm in Khmer.

sentences are likely similar. However, the cross-lingual transfer assumes that the
words can be detected or the morphological analysis exists for each language. For
this reason, we discuss the development of the morphological analysis first then
explore the cross-lingual transfer for the syntactic analysis after. To conclude,
this thesis is organized into two parts, first part presents the data development
and discussion towards the morphological analysis for Khmer; the second part
explores the cross-lingual transfer for the syntactic analysis for a wide range of
low-resource languages in addition to Khmer.

1.1. Morphological Analysis
The Khmer language, as a typical Austroasiatic language, is extremely analytic;
syntactic information is overwhelmingly afforded by word order with abundant
grammaticalization phenomena. Therefore, the resolution of morphological and
syntactic ambiguities is contextually dependent. Figure 1.1 illustrates basic mor-
phological features of the Khmer language and also the Khmer scripts used to

4



record the Khmer language. The specific writing system has a certain redundancy
regarding the phonetic inventory, and the orthography is largely etymologically
based. Because of the redundant writing system and highly analytic grammatical
features, Khmer is not difficult to read, even without using separators to segment
local meaning units in writing. Spaces are generally used as a comma or following
the sentence-ending mark. As aforementioned that the morphological analysis can
be regarded as the cutting-and-tagging task, the definition of tokens for cutting
and the classification of the part-of-speech (POS) for tagging is intrinsically am-
biguous, which makes the task challenging. Tokenization (or referred to as word
segmentation) for Khmer has been studied by several researchers [18–20]. To ac-
commodate the ambiguity of tokens, Chea et al. [19] defined several boundaries
of tokens, that is, the boundary between words and boundaries between gram-
maticalized affixes and free morphemes. As the grammatical analysis of Khmer
is heavily contextually dependent, a fundamental solution is to realize ultimate
joint processing for the grammatical category identification of different granular-
ities. In this study, we focus on morphology to investigate joint processing for
tokenization and POS-tagging.

This work is one component of the Asian Language Treebank (ALT) project [21],
and a part of our contribution is a preparation of a systematically annotated
20, 000-sentence Khmer corpus with tokenization and POS-tagging information.
Compared with a previous corpus by Ye et al. [22]∗, which was the only Khmer
POS-tagged corpus publicly available, our corpus is superior in terms of the scale
and also contains annotation for more linguistic phenomena such as grammatical-
ization and compounding. Specifically, we used the nova annotation scheme [23]
that is designed to focus on the highly analytic languages, especially of the South-
east Asian languages. Our manual annotation enjoyed its features, that is, a
compact tagset with only four basic and three auxiliary tags, and its concept of
functional tags for the grammaticalization phenomena. At the same time, we can
annotate POS tags for words and their morphemes within a single corpus using
the nova’s combination tags—a pair of brackets “[” and “]”, e.g., a word “going”
is annotated as go_v[v ing_o-]v where v is a verb and o- is a tense marker.
For the research community, our corpus has been released under a CC BY-NC-SA

∗This corpus contains 12, 000 POS-tagged full-sentences and people-names.

5



I saw the girl with the telescope

NP

PP

NP

VP

S

I saw the girl with the telescope

nsubj
obj

obl

det
case

det

Constituency Dependency

Figure 1.2: Examples of constituency and dependency structures.

license [24].
Facilitated by the released data, we conducted experiments on four represen-

tative machine learning approaches to build a comprehensive benchmark for the
automatic processing of Khmer at the morphological level. Specifically, the ap-
proaches are (1) a point-wise classifier by support vector machine (SVM), which
is a light-weight and fast solution, (2) conditional random field (CRF), as a stan-
dard baseline for sequence labeling tasks, (3) an end-to-end solution by a recurrent
neural network (RNN) utilizing long short-term memory (LSTM) units, and (4)
an integrated LSTM-CRF model as a state-of-the-art framework. We present
analysis and discussions based on the experimental results to show the achieve-
ments and limitations of the data and approaches. As the Khmer language is
the most important member in the Austroasiatic (Mon-Khmer) languages [25],
this work can be a reference for the development of low-resource languages with
similar features widely used in Southeast Asia.

1.2. Syntactic Analysis
There are two widely used syntactic structures, that is, constituency and depen-
dency. A constituency structure or phrase structure describes how words in a
sentence are combined while a dependency structure represents the relationship
of words. In other words, the dependency structure is one-to-one word corre-
spondence while the constituency structure is hierarchical relations as in Fig. 1.2.
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The automatic processing of the syntactic analysis is known as parsing, which is
commonly data-driven that a parsing model is learned based on a treebank.

In the multilingual NLP era, the development of multilingual syntactic parsing
models is highly demanded. Therefore, the Universal Dependency Project [17]
has been introduced and has gathered dependency treebanks for more than a hun-
dred languages. On the other hand, the constituency treebanks are available only
for several languages that can be obtained from the Asian Language Treebank
project and the Statistical Parsing of Morphologically Rich Languages (SPMRL)
share task. Even though recent neural-based NLP systems achieve very high per-
formance, the constituency structures remain beneficial, especially for machine
translation [13, 26, 27] for low-resource [11] or zero-resource settings [14]. How-
ever, the experiments of these studies are limited to languages whose constituency
parsing models are available. For the generalization of the syntax-based NLP sys-
tems, the multilingual constituency parsing models are necessary. Because the
treebank development is costly, this thesis aims to study the cross-lingual trans-
fer approach for constituency parsing based on currently existing constituency
treebanks.

The cross-lingual transfer is a promising approach toward low- or zero-resource
problems. Explicitly, a syntactic parsing model for a high-resource (source)
language can be used to parse a sentence of another low-resource (target) lan-
guage through a certain cross-lingual signal. Previous studies mostly investigated
the cross-lingual transfer for dependency parsing [28–30] due to dependency-
treebanks availability for more than 100 languages under the Universal Depen-
dency Project and those treebanks were annotated following the same guideline.
However, there were few studies for the constituency parsing, which could be
because the annotation guidelines of the existing constituency-treebanks are dif-
ferent, especially their syntactic label sets that make cross-lingual transfer and
evaluation difficult. However, there should exist some universal properties of the
constituency structures in the existing treebanks inspired by the Noam Chom-
sky’s universal grammar theory [31].

Therefore, in the latter half of this thesis, we explore the performance of cross-
lingual constituency parsing based on the existing constituency treebanks. We
investigate two variants of the cross-lingual transfer, which are organized into
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two experiments. In our first experiment, we assume the availability of the POS-
tagged corpus for each target language and investigate single-source cross-lingual
constituency parsing based on this resource condition. Specifically, we propose
a cross-lingual constituency parser by delexicalization and investigate the effec-
tiveness of various source-language selection techniques. Even though our re-
sults revealed that this setup by delexicalization outperforms fully-unsupervised
baselines, this approach remains several limitations i.e., parsing ambiguity of the
delexicalized model and limitation of source-language selection. Subsequently, our
second experiment addresses the aforementioned limitations and examines multi-
source cross-lingual constituency parsing using a lexicalized pretrained multilin-
gual language model. Concretely, we combine constituency corpora in multiple
languages and train a single multilingual parser together with a pretrained mul-
tilingual language model. Because the corpora are language-specific and the lan-
guage structures are diverse, we propose a method to preprocess the constituency
treebank and to integrate typological features to universalize the constituency
parser. Based on experimental results, we revealed that the pretrained multi-
lingual language model is highly effective for cross-lingual constituency parsing
together with our preprocessing step and typological integration.

1.3. Contributions
The contributions of this thesis are summarized as follows:

• We develop the largest tokenized-and-POS-tagged Khmer corpus that con-
tains annotation for the linguistic phenomena of the grammaticalization and
compounding; present analysis and discussions to show the achievements
and limitations of the data and the machine learning approaches.

• We propose the cross-lingual constituency parser by delexicalization and
demonstrate the effectiveness of various source-language selection tech-
niques. We show that the model outperforms the fully unsupervised base-
line. Additionally, we analyze and discuss the limitation of the delexicaliza-
tion approach i.e. parsing ambiguity of delexicalized model and limitation
of source-language selection.
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• We examine the multi-source cross-lingual constituency model using lexi-
calized pretrained multilingual language models as cross-lingual signals. We
illustrate that this model preserves parsing performance for the source lan-
guage and improves cross-lingual performance even without any bilingual
information.

• We propose a treebank preprocessing step and typological features integra-
tion to generalize the cross-lingual performance of the multi-source cross-
lingual constituency model.

1.4. Thesis Structure
The remaining parts of this thesis are organized as follows: Chapter 2 reviews the
Khmer language, the background of the sequence labeling, constituency parsing,
and cross-lingual transfer; Chapter 3 describes the development of our two-layer
tokenization and POS tagging corpus and discusses its automatic processing for
the Khmer language; Chapter 4 describes our cross-lingual constituency parsing
by delexicalization; Chapter 5 presents our approach for multi-source cross-lingual
constituency parsing; Finally, we conclude the thesis and discuss future works in
Chapter 6.

9



Chapter 2

Background

2.1. The Khmer Language
The Khmer language, which is an official language of Cambodia, is spoken by
more than 15 million people in Cambodia (2019 census) [32]. Other minority
speakers are in southern Vietnam and northeast Thailand. The Khmer dialects
are classified into Central Khmer, Northern Khmer that is spoken in northeast
Thailand, Western Khmer, Phnom Penh Khmer, Southern Khmer that is spo-
ken in southern Vietnam, and Khmer Khe. However, the central Khmer is the
standard dialect that is taught in Cambodian schools. The Khmer language has
been revolutionized and its history is divided into four periods, that is, the Old
Khmer period that is subdivided into pre-Angkorian (from AD 600 to 800) and
Angkorian (from 9th to 13th century), the Middle Khmer (from 14th to 18th cen-
tury), and the Modern Khmer (18th century to present). In the Middle Khmer
period, the language had a major change in morphology, phonology, and lexicon.
In addition, many words were borrowed from Thai and French in this period.
In the early 20th century, the language was again changed and was standardized
as the modern language under the Khmerization phase, which was a transition
phase of getting rid of the foreign elements, reviving affixation, and using the old
Khmer roots (from historical Pali and Sanskrit) to develop new words for modern
ideas. Until today, the language is recognized as the Modern Khmer.

The Khmer script is based on the abugida writing system, in which consonant-
vowel sequences are written as units. The Khmer script consists of 33 consonants,
14 independent vowels, 16 dependent vowels, 13 diacritics [33], and other symbols
such as numbers and signs. The consonant is the main letter for each unit while
the vowel is the secondary, which is called the dependent vowel. In addition,
diacritics are also commonly used in Khmer writing, which are also attached to a
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ប៉ុសត&
Diacritic

Dependent Vowel

Consonant

Sub-consonant

Figure 2.1: A Khmer word example. Its word translation is “post office”. The
word consists of two consonant-vowel combinations, which are sepa-
rated by a vertical grey line.

consonant letter similar to the dependent vowel. Furthermore, a consonant letter
can be attached with more than one dependent vowel and diacritic. On top of
this combination, another consonant can be transformed into a sub-consonant
and attached under the main consonant letter, of which example is illustrated
in Fig. 2.1 However, unlike the dependent vowels, the independent vowels stand
alone without being attached to any consonant letter.

Regarding grammar, Khmer is an analytic language, which has no inflection on
words and auxiliary words are used to indicate the tense of sentences. Moreover,
Khmer is a zero-copula language where copulas for adjectives (or even a noun) are
mostly eliminated. The basic word order follows subject-verb-object and head-
initial order. Topic-comment structures and prepositions are also commonly used
in this language. Additionally, Khmer morphology was changed, at some points in
the past, from an agglutinative to an isolating language, which uses little prefixes
or suffixes in the modern Khmer’s morphology. However, compounding is very
common in the modern Khmer that will be further discussed in Chapter 3.

2.2. Sequence Labeling
Sequence labeling is a type of pattern recognition task that assigns a categorical
label to each element of a given input sequence, which is suitable for tokenization
and POS tagging tasks. Precisely, the input type and the labels set must be

11



defined to apply the sequence labeling for the tokenization and POS tagging. For
instance, for tokenization, the input and the label set are a characters sequence
and the word boundary information (e.g., IBES∗), respectively. For POS tagging,
the input is a words sequence and the label set is a POS tag set.

Let’s denote x = {x1, . . . , xT} and y = {y1, . . . , yT} the input and label se-
quence, respectively; M the size of the label set such that yi ∈ C : {c1, . . . , cM}.
The lengths of both x and y are assumed to be the same. The label sequence
can be determined by estimating a conditional probability distribution p(y|x) and
then searching for its optimal sequence as follows

ŷ = arg max
y

p(y|x) (2.1)

In supervised learning, a set of training data D = {(x1, y1), . . . , (xN , yN)} is
given for modeling the conditional probability distribution p(y|x). This section
describes particularly the modeling approaches that are applied in Chapter 3,
i.e., support vector machine (SVM), conditional random field (CRF), recurrent
neural network (RNN), and neural CRF. In short, for statistical models, SVM is a
maximum-margin-based algorithm that requires less computational power where
CRF considers the contextual information as well as the labels of its neighborhood
to address an ambiguous prediction. For neural models, RNN with LSTM cells
can capture wider contexts. A neural CRF model has a CRF layer added on the
top of an RNN and predicts each label depending on neighboring predictions.

2.2.1 Support Vector Machine (SVM)
Support vector machine (SVM) is used to classify the data points by determining
the optimal boundary—hyperplane—between two classes for binary classification
problems. For simplicity, we only discuss the linear SVM, which is used in Chap-
ter 3. For example, given a data point xi, the corresponding label yi is determined
by a sign of a function gw,b(xi) = wT xi− b. The hyperplane lies on a set of points
x that satisfies gw,b(x) = 0. The hyperplane is (p− 1)-dimensional where p is the

∗The four tags of IBES represent the Beginning of a token, End of a token, Inside a token, and
Single unit, which is simultaneously the beginning and the end of a token.
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dimension of its data points. In training, the hyperplane is optimized by finding
the one that maximizes the distance from itself to its nearest data points. The-
oretically, given a set of training data points, D = {(x1, y1), . . . , (xN , yN)} and
y ∈ [−1, 1], the hyperplane is detemined by minimizing

min
w,b

(
1
2
||w||2 + λ

N∑
i=1

max(1− yi · gw,b(xi), 0)
)

(2.2)

where λ > 0 is a penalty parameter.
The approach can be later cast to multi-class SVM by breaking down the

multiclass problem into multiple binary classifications. There are two common
methods for this problem, that is, one-vs-one and one-vs-the-rest. For one-vs-one,
M(M − 1)/2 hyperplanes are needed, and each hyperplane is used for separating
two classes. The class of each instance is determined by the votes of this set of
hyperplanes. One-vs-the-rest uses one hyperplane for each class that separates
itself from the rest of the classes. Therefore, it requires only M hyperplanes. We
used the latter approach in this thesis. In one-vs-the-rest, the decision of multi-
class classification at position i is by choosing a highest score binary classifier
such as

ŷi = arg max
y′∈C

gy′(xi) (2.3)

The model parameters can be optimized by Crammer-Singer formulation [34] as

min
w,b

(
1
2
||w||2 + λ

N∑
i=1

max(1− gyi
w,b(xi) + max

y′ ̸=yi

gy′(xi), 0)
)

(2.4)

where yi is a gold label at sequence position i, and y′ is any class label in C. Note
that each data point xi needs to be a numerical vector where the actual input is a
text. Therefore, we calculate a set of features for each textual input xi following
Neubig and Mori [35]. The features also include the contextual information for
each input to hope that classifier could make a better prediction.

13



2.2.2 Conditional Random Field (CRF)
Conditional random field (CRF) is an undirected graphical model such that a
conditional probability distribution p(y|x) is calculated with respect to the con-
ditional dependence structure of a given graph G = (V, E). A simple linear-chain
CRF, which has been applied for many NLP sequence labeling tasks, e.g., POS
tagging, shallow parsing, named entity recognition, is described in this section.
Precisely, the conditional probability distribution p(y|x) is written compactly
with the concept of feature functions and their corresponding weights. Each
feature has a form f(yt−1, yt, x1:T , t), which can be either a state-observation
s(yt, x1:T , t) or transition feature t(yt−1, yt) that are equivalent to the vertices
V or edges E of the graph G, respectively. Each feature is represented by a
Boolean value of either 0 or 1. Therefore, the conditional distribution p(y|x) is
written as

p(y|x) = 1
Z(x)

exp
(

T∑
t=1

K∑
i=1

wkfk(yt−1, yt, x1:T , t)
)

(2.5)

where K is the number of all features, Z(x) is a partition function, and wk is an
associated weight of the feature fk. We can rewrite the equation with a global
feature function Fk(y, x) as follows

p(y|x) = 1
Z(x)

exp
(

K∑
i=1

wkFk(y, x)
)

(2.6)

Fk(y, x) =
T∑

t=1
fk(yt−1, yt, x1:T , t) (2.7)

The weights wk ∈ W are the model parameters and learned from a given data
set D = {(x1, y1), . . . , (xN , yN)} by maximizing the log-likelihood objective func-
tion as
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L =
N∑

i=1
log p(y|x) (2.8)

=
N∑

i=1

(
K∑

i=1
wiFk(y, x)− log Z(x)

)
(2.9)

An important remark is that the feature function f(yt−1, yt, x1:T , t) is not nec-
essary to depend on the observation of every time step. Instead, the observation
window can be limited to a certain size. For instance, the feature at time t can
take into account only its previous xt−1 and next observation-state xt+1 and can
be rewritten as f(yt−1, yt, xt, xt−1, xt+1). A more sophisticated set of features can
be found in many practical NLP applications using CRF [2,36].

2.2.3 Recurrent Neural Network (RNN)
Both SVM and CRF are based on hand-crafted features. To relax this constraint,
a neural network together with deep learning has been applied for the textual se-
quence labeling task that learns input features instead of the hand-craft feature
engineering [37]. Since contextual information is crucial for the prediction, a
recurrent neural network (RNN) has been introduced to memorize the internal
state of the whole sequence by its dynamic behavior. To control the flow of the
memory more efficiently, long short-term memory (LSTM) can be used for the
flexibility to either forget or memorize the previous states. In addition, bidirec-
tional RNN encodes a sequence from left-to-right and right-to-left to memorize
the context of the longer sequence as in the left of Fig. 2.2. The bidirectional
LSTM-RNN model can be formulated as

p(y|x) = exp s(y, x)∑
y′∈YX exp s(y′, x)

(2.10)

s(y, x) =
T∑

t=1
(W ([

−→
ht ,
←−
ht ]) + b) (2.11)

where W and b are a weight matrix and a bias vector of an output layer, YX
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Figure 2.2: General LSTM-RNN architecture.

represent all possible tag sequences for a sentence X, and
−→
ht and

−→
ht are the

forward and backward output vectors of the bidirectional LSTM-RNN such as

−→
ht =

−−−−→
LSTM(

−−→
ht−1, embedding(xt)) (2.12)

←−
ht =

←−−−−
LSTM(

←−−
ht−1, embedding(xt)) (2.13)

2.2.4 Neural CRF
The formulation in Eq. (2.11) calculates the score of each label yt independently
from the other output predictions. Instead, it is beneficial to consider the neighbor
labels and choose the best chain of the label for a given input sequence. For
example, in English POS tagging, it is more likely that an adjective is followed
by a noun than a verb. Therefore, a CRF layer can be integrated on top of the
RNN model as in Fig. 2.2 and the scoring function s(y, x) can be rewritten as.

s(y, x) =
T∑

t=0
Ayt,yt+1 +

T∑
t=1

(W ([
−→
ht ,
←−
ht ]) + b) (2.14)

where A is a matrix of label transition scores. Ayt,yt+1 represents the transition
score from yt to yt+1 where y0 and yT +1 are the start and end labels of the
sequence. Consequently, A is a square matrix of size T + 2. The more detail of
neural CRF can be found in Lample et al. [38].
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2.3. Constituency Parsing
The constituency structure of a sentence describes how words can be recursively
grouped as a single unit or constituent that is associated with a syntactic label.
The number of constituents is not equal to that of words, which is required a
structural model that can generate or parse a constituency structure of a given
sentence. There are two mainstream approaches for constituency parsing, that
is, transition-based and chart-based parsing. A transition-based model is mainly
based on transition states and actions where a set of transition actions decide
how a structure could be constructed and tends to produce a well-form output.
On the other hand, the chart-based approach, which is also known as dynamic
programming, packs all possible structures into a chart table and enjoys searching
for an optimal structure.

2.3.1 Transition-Based
The transition-based approach decomposes a sentence’s structure into a series
of actions such that the task of parsing is to predict those actions for a given
sentence [39, 40]. More specifically, a transition-based parser consists of a stack
S, a queue W , and a list of transition actions A where S can contain terminal
or non-terminal nodes and W contains only terminal nodes. Actions in A can be
either shift or reduce action such that the transition-based parsing is also known
as shift-reduce parsing. States of both S and W represent a transition state that
will be changed by a transition action in A. At the initial state, S is empty and
W contains all the words in order so that the first word is the first element in W .
In a final state, parsing is terminated when S has one non-terminal node and W

is empty. Furthermore, the states are affected by the transition actions. A shift
action takes the first element from W and pushes it into S. Reduce actions are
subdivided as unary- and binary-reduce action, which assume the structures are
binarized. The unary-reduce action pops each time one element from S, creates
a new node on top of it, and then pushes the new node back into S. Like the
unary-reduce action, the binary-reduce action takes two elements each time from
S, creates a new node on top of them, and then pushes the new node back into S.
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The number of shift actions equals to the number of input words but the number
of reduce actions is dynamic that depends on the structure complexity of each
sentence.

Statistical Models. A transition-based parser could be a discriminative clas-
sifier that predicts each action based on a rich hand-crafted features set extracted
from each transition-state [39]. Each parsing output was initially obtained based
on a greedy search. However, this may suffer from the error propagation problem
that the errors at the early step will affect later predictions. Therefore, beam
search can be further applied to prevent such local decision errors. [40, 41].

Neural Models. The transition-based parser was then designed using neural
networks. Watanabe et al. [42] extended the parser of Zhu et al. [41] using
RNN and attempted to represent the stack and queue using feed-forward neural
networks. Cross et al. [43] used a deep LSTM encoder that the stacked-LSTM
outputs were used to predict each action instead of feature engineering. There
were other strategies that use neural network for the transition-based parser, e.g.,
recurrent neural network grammar [10] and Tetra-tagging parser [44].

2.3.2 Chart-Based
The Cocke-Kasami-Younger (CKY) algorithm is the most widely used chart-based
approach for parsing. The conventional CKY is used for context-free grammars
(CFGs), which must be in Chomsky Normal Form (CNF) [45] to make sure that
each node only consists of either two non-terminal nodes or a single terminal node.
At first, the CKY is used to recognize whether a sentence is valid with respect
to a given set of CFGs. For this purpose, a chart table of the sentence is filled
based on the given CFGs in a bottom-up fashion. In other words, if we represent
the chart table as an upper triangle, the filling processing follows the left-to-right
and bottom-up order until the final state is reached. As the example in Fig. 2.3,
the triangle table is filled by the left-hand side symbols of the CFG rules until
the final state at position [0, 7] is reached, which indicates that the sentence is
valid to the grammars. For a parsing purpose, the CKY is extended by creating
a node for each table cell and pointing each node to the elements that produce it.
Then, parsed structures could be generated by backtracking the pointers of the
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0 1 2 3 4 5 6 7

det NP S S 7

the noun 6

man verb VP X1, VP 5

saw det NP NP 4

the noun 3

girl prep PP 2

with det NP 1

the noun 0

S à NP, X1

S à NP, VP

X1 à VP, PP

VP à verb, NP

PP à prep, NP

NP à det, noun

NP à NP, PP

noun à man | girl | telescope

det à the

telescope

a. Chart table b. CFGs

Left-to-right and 
bottom-up order

Figure 2.3: An example of the CKY chart table with respect to given context-free
grammars (CFGs).

final state node. As the example in Fig. 2.3, the arrows in the chart table are the
pointers and two parsed structures are generated for the sentence. One of which
is illustrated by solid arrows and the other by dash arrows.

Statistical Models. Probabilistic CFGs (PCFGs) can be further used to
produce a score for each node so that the best-parsed structure can be decided
by the score of the node at the final state. Extensions of the statistical chart
parser focused on refinement of the CFG rules, e.g., head lexicalization [46], and
unlexicalized CFGs [47]; or on designing global features [48].

Neural Models. The CKY has recently been integrated with the neural
network [49–51], which is known as neural CKY, span-based, or neural chart-
based constituency parsing. The key idea is modeling the neural scoring function
of each node so that the best-parsed structure can be generated through the
backtracking process. The algorithm does not use grammar to constrain how
constituent is combined, instead just relying on the neural scorer. As a whole,
the model follows the encoder-decoder architecture where the encoder is to project
the input into a compact presentation, and the decoder scores each node in the
table and searches for the best-parsed structure using the CKY algorithm. The
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variants of the model are mainly based on the encoder architecture such as the
bidirectional LSTM [49,50] or the self-attention encoder [51]. Noting that a span,
which is the boundary of a constituent, is equivalent to the node in the table and
we will use span in the rest of this thesis.

Our work is based on the state-of-the-art self-attention-based encoder-decoder
architecture of Kitaev et al. [51]. Concretely, the encoder consists of word em-
bedding and self-attention layers to produce the contextual presentation for each
word. Word embedding is a table-look-up process that assigns a vector repre-
sentation for each textual input. The self-attention layer is responsible for the
interaction of each input vector with all other vectors, which is based on the
attention that the layer generates. At the decoder side, all possible spans are
extracted and each span (i, j) is represented by a hidden vector vi,j that is con-
structed by subtracting the representations associated with the start and end of
the span. Then, a labeling score s(·) is assigned to each span (i, j) by an MLP
span classifier as

s(i, j, ·) = W2g(f(W1vi,j + c1)) + c2, (2.15)

where W∗ and c∗ are a weight matrix and a bias vector, respectively; f and g are
the layer normalization and ReLU ("Re"ctified "L"inear "U"nit) activation func-
tion, respectively. For each sentence, the constituency structure T is represented
by a set of labeled spans {(it, jt, lt) : t = 1, . . . , |T |} where the score of T is

s(T ) =
∑

(i,j,l)∈T

s(i, j, l) (2.16)

At test time, the optimal structure can be obtained using CKY inference algo-
rithm [52,53]. For training, the model is optimized using a max-margin objective
function, the details of which can be found in Kitaev et al. [51].

2.4. Cross-Lingual Transfer
Cross-lingual transfer learning is a task where the available treebanks or models
of one language are used to solve the tasks of other languages. Source and target
languages are commonly used in this task where source language refers to a
high-resource language that has treebanks or models available, and the target
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language is the one with a small treebank or without any treebank. The cross-
lingual transfer has been categorized into three groups [54]: annotation projection,
treebank translation, and model transfer. In addition, there are more than one
source-language treebanks that exist in practice. Therefore, it is necessary to
either choose the most relevant treebank to the target language for single-source
transfer or combine all of them for multi-source transfer. Thus, this section
describes the annotation projection and treebank translation, model transfer,
single-source transfer, and multi-source transfer.

2.4.1 Annotation Projection and Treebank Trans-
lation

The goals of both annotation projection and treebank translation are similar in
that intend to project pseudo structures and use the structures to train a task
model for the target language. Concretely, the annotation projection extracts
the alignments of words from a given parallel corpus using an unsupervised word
alignment algorithm and the partial structures are heuristically projected from
source to target based on the alignment results. Certainly, a post-processing step
is necessary to normalize the noisy projected structures before training a model
for the target language. For treebank translation, a statistical machine transla-
tion is trained on the parallel corpus and then used to translate the treebank of
the source language. The word alignments between the source sentence and its
translation are tracked to perform heuristic projection for the target language.
The treebank translation approach was claimed to relax the noisiness of the pro-
jected structures. Unlike dependency parsing, very few works were studied for
constituency parsing. There were studies for the annotation projection for Chi-
nese and Japanese [55, 56]. After that, there is no further investigation on the
annotation projection nor the treebank translation for constituency parsing.

However, the annotation projection and treebank translation strongly rely on
the quantity and quality of the parallel corpus and the alignment algorithm. In
addition, the parallel corpora for many languages are still low or even unavailable
and their partial projected structures are required additional post-processing to
train a statistical parser, which is not applicable for the neural-based parser. All
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of these constraints make the approaches non-trivial to be reproduced. For that
reason, we do not consider the treebank projection and translation in our studies.
However, we still believe that the partially projected structures could be useful,
e.g., for the model transfer; so, we leave this study for future works.

2.4.2 Model Transfer
The model transfer, which can be regarded as an end-to-end version of the cross-
lingual transfer, is a process where a supervised model of the source language
is directly applied to solve the task of the target language. The basis of the
approach is the use of a cross-lingual representation for the inputs of a parser,
such as POS tags for delexicalization [57,58], glossed words [57], or bilingual word
embedding that is contextual independent [28] or dependent [59]. Each cross-
lingual representation could be produced using different resources. The POS
tags obviously need a POS-tagger for each source and target language and their
tag sets need to be similar. For glossed words and bilingual word embedding, a
bilingual dictionary for a source-target language pair is necessary. The dictionary
can be used to translate words from target to source language or reversely for
the glossed words and to learn a projection matrix between source and target
contextual-independent word embedding [60]. Nevertheless, the projection matrix
can be learned in an unsupervised manner [61] or based on Latin numbers or
symbols [62] but the performance on the bilingual lexicon induction task is far
behind the supervised method using the bilingual dictionary. On the other hand,
learning a projection matrix between the contextual-dependent word embedding
is more challenging because output embedding for each word is always changed
based on its sentence’s context, which has been attempted previously [59].

The model transfer has been widely studied for dependency parsing due to the
data availability for a wide range of languages and the data annotation follows the
same annotation guideline—Universal Dependency Project [17]. For constituency
parsing, only Zeman et al. [57] investigated a delexicalized model transfer from
Danish to Swedish based on a statistical parser. Therefore, we further investigate
the model transfer for constituency parsing for a wider range of languages using
the publicly available treebanks as in Chapter 4 and Chapter 5. As this thesis
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assumes that a POS-tagged corpus exists for each target language as we have
developed one for Khmer, we first investigate the delexicalized model transfer
based on the state-of-the-art neural-based constituency parser as in Chapter 4.
After that, we further investigate the model transfer using recent pretained mul-
tilingual language models that were trained without any bilingual information as
in Chapter 5.

2.4.3 Single-Source Transfer
For the single-source transfer, the source-side supervised model is trained using
the data of only one source language. As the data for multiple source languages
are available in practice, a simple solution is to use English as the source language
because the English treebank has been well annotated and studied. However, us-
ing English regardless of the target language will suffer from distance language
transfer, e.g., between English and Japanese. To avoid this problem, a source
language selection technique is necessary and basically a similarity measurement
between source and target languages. For the delexicalized model transfer, the
similarity measurement can be based on the KullbackLeibler divergence between
POS trigram distributions—KLcpos3—of the source and target languages [63].
Another measurement can be based on a language identification tool or a ty-
pological database [64]. For a more complicated technique, [65] further trained
a source-language ranking model according to the properties of the data and
the typological features of the source and target languages. We only consider
KLcpos3 and typological-based selection in our single-source transfer scenario in
Chapter 4.

2.4.4 Multi-Source Transfer
We can leverage all of the data or models of the multiple source languages by the
multi-source transfer approaches that can be subdivided into treebank concate-
nation [29,30,58,66], model parameters interpolation [67,68], or reparsing [63,64].
The treebank concatenation is to train a single supervised multilingual model us-
ing the data of multiple source languages to leverage the structural diversity for
the target language. The model parameters interpolation is to combine parame-
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ters of the single source parser models were trained using the individual treebanks
to obtain a final multi-source model, which is not practicable for neural parsers
due to a large number of model parameters. The reparsing is a two-stage ap-
proach that multiple single-source parsers are used to generate multiple parses of
a target-language sentence that are then combined to weigh each possible sub-
structure so that an optimal structure for the target-language sentence can be
extracted. In practice, this approach produces one cross-lingual model for each
target language. Compared with treebank concatenation, one cross-lingual model
can be used for many languages. Therefore, this thesis further investigates the
treebank concatenation for the cross-lingual constituency parsing.
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Chapter 3

Tokenization and POS Tagging for Khmer:
Data and Discussion
This chapter presents our Khmer tokenized-and-POS-tagged corpus and auto-
matic processing experiments based on this corpus. Firstly, we review related
works of the tokenization and POS tagging tasks and previous works on Khmer
processing. Secondly, we describe the development of this corpus including the
annotation processes and guidelines and illustrate an annotation example that
contains the grammaticalization and compounding annotation. After that, based
on this corpus, we conduct experiments on four representative machine learning
approaches, that is, (1) a point-wise classifier by support vector machine (SVM),
which is a light-weight and fast solution, (2) conditional random field (CRF), as
a standard baseline for sequence labeling tasks, (3) an end-to-end solution by a
recurrent neural network (RNN) utilizing long short-term memory (LSTM) units,
and (4) an integrated LSTM-CRF model as a state-of-the-art framework. Lastly,
we present analysis and discussions based on the experimental results to show
the achievements and limitations of the data and approaches.

3.1. Related Works
Tokenization and POS-tagging are two classic tasks in natural language process-
ing (NLP) and are fundamental processing for many downstream NLP tasks and
applications. This is particularly important for languages that apply a writing
system without word separators, such as Chinese and Japanese. At an early
stage, rule and dictionary-based matching approaches were applied, which re-
quired small resources. This is also a preliminary (or sole) approach for many
under-studied and low-resource languages. Unavoidable ambiguities evolved in
tokenization and POS-tagging tasks can be further handled by statistical ap-
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proaches once annotated data are provided. A classifier trained by SVM may
provide a fast solution such as in Neubig et al. [35]. As a more generalized
framework for sequence labeling, CRF [69] is considered as a standard baseline.
In recent years, neural networks, that is, models that use stacked multiple-layer
nonlinear functions [37], have further generalized many typical NLP tasks un-
der a sequence-to-sequence framework based on the methodology of end-to-end
processing. The LSTM [70] based RNN has been widely used as a feature ex-
tractor to capture long range dependencies within complex sequences. A typi-
cal investigation is Yan et al. [71]. Furthermore, the features extracted by an
LSTM-based RNN can be concatenated to a CRF interface for a better list-wise
search [38,72–74].

As reviewed, the technical background for tokenization and POS-tagging has
been solidly established, and the techniques have been applied to many well-
studied languages, such as Chinese word segmentation [73, 75, 76] and Japanese
morphology analysis [1]. When tokenization and POS-tagging tasks are both in-
volved, the joint processing of the two tasks typically leads to good performance.
In addition to Kudo et al. [1] for Japanese, a work on joint processing on Chi-
nese is Kruengkrai et al. [77]. Similar to the previous work on Burmese [2], we
also discussed the effectiveness of joint processing on a low-resource language.
Specifically, two difficulties exist for an under-studied language: (1) data prepa-
ration and (2) practical engineering issues. Regarding (1), annotation requires
native speaker annotators. A linguistic background in the specific language is
required in the design of the guidelines to construct explainable and consistent
annotated data. Annotation processing is thus time-consuming. Regarding (2),
a neural network-based end-to-end approach can theoretically bridge the input
and output directly without any further manual feature engineering. However,
practical engineering issues still need to be examined, such as the hyperparameter
selection, and more essentially, whether the quality and quantity of the available
data are adequate to enable an end-to-end model to achieve decent performance.
Syntactically, Khmer is more analytic than Burmese [23]. Particularly, gram-
matical categories for verbal morphemes in Khmer rely substantially on their
contexts as further discussed in Section 3.2.4. Compared to the previous work on
Burmese, this work investigates the performance of the morphological analysis
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regarding this Khmer language features and examines two more approaches, that
is, SVM and LSTM-CRF. Moreover, the limitations of both data and approaches
are discussed in Section 3.4.

A review of previous work on Khmer processing is as follows. Regarding tok-
enization, Seng et al. [78] and Bi et al. [18] applied dictionary-based maximum
matching; Huor et al. [20] further used corpus-based bi-gram language models;
Chea et al. [19] introduced the CRF. Regarding POS-tagging, Nou et al. [79] pro-
posed a template-based approach; Nou et al. [80] improved tagging for unknown
words using language models. As to this study, data for joint tokenization and
POS-tagging analysis are prepared and released, which are not only superior in
terms of the scale to previous ones, but also contain annotation for more lin-
guistic phenomena such as the grammaticalization and compounding. Based on
the data, a comprehensive investigation on joint tokenization and POS-tagging
processing for Khmer is conducted at the first time.

3.2. Data

3.2.1 Overview
The Khmer corpus is a component of the ALT project, for which an overview
is provided by Riza et al. [21]. Details are also described in previous works
on Burmese [2, 81]. Briefly, the source data comprise 20,000 sentences collected
from English Wikinews, and the English sentences are translated into different
Asian low-resource languages by professional translators.∗ The ultimate aim is
to build a syntactically annotated treebank for each language. The Khmer data
released in the present work are a stable morphologically annotated version. A
joint tokenization and POS-tagging scheme nova Ding et al. [23] is applied and
the annotation guidelines have be released.† In this section, a brief review of the

∗Stylistically, modern colloquial styles used for daily and business communications were required
in the translation, as the project focuses on developing NLP engineering techniques for contem-
porary societies.

†Annotation guidelines: http://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/
Khmer-annotation-guideline.pdf and http://www2.nict.go.jp/astrec-att/member/
mutiyama/ALT/Khmer-annotation-guideline-supplementary.pdf
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manual annotation process is provided in Section Section 3.2.2, important issues
related to the annotation is described in Section 3.2.3, and overall statistics with
typical annotation examples are presented in Section 3.2.4.

3.2.2 Timeline
Compared with the previous work on Burmese, where around thirty annotators
were involved [2], the team for Khmer annotation comprised only around ten
people, and at most times, fewer than five people. Except for Dr. Chenchen Ding,
the annotators are Khmer native speakers. All the team members are researchers
and students proficient in NLP. It takes around four years to prepare the released
data of this work. The following is a brief retrospect organized in four stages.

1. In 2016, the annotation guidelines were edited by me and Dr. Chenchen Ding.
The annotation was preliminary based on in-house data provided by Chea
et al. [19]. Automatic tools for tokenization and POS-tagging were trained
and applied to raw Khmer data. One native-speaker annotator (me) began
to perform manual checking on the automatically processed data from the
second half of 2016.

2. In 2017, seven further native-speaker annotators were involved in updating
the data according to the guidelines. At the end of 2017, the data had
been manually tokenized and annotated using the basic/auxiliary tags of
the nova scheme.

3. In 2018, the annotation was extended with the modified nova tags. The
supplementary material of the guidelines was edited. The work in 2018 was
conducted by me and Dr. Chenchen Ding with two other native-speaker
annotators.

4. In 2019, Dr. Chenchen Ding and I, with another native-speaker annotator,
began the syntactic annotation, along which the tokenization and POS-
tagging were further polished.
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3.2.3 Important Issue
For tokenization, two types of tokens, short and long ones, were designed to
accommodate the morpheme and word units, respectively. In the annotation,
spaces were inserted to separate short tokens; long tokens were bracket-wrapped
short token sequences. Smaller than a short token, the basic atom in Khmer
scripts is referred to as a writing unit. It comprises one or more staked consonant
characters, with one or more optional modifying diacritics. Phonetically, a writing
unit is not strictly consistent with the syllable structure [82]; however, it is the
minimal unbreakable atom in the writing system that is suitable for textual data
processing.‡

In practice, the short and long tokens were realized by aggressive and conser-
vative segmentation according to the native-speaker annotators common sense.
Specifically, the annotators were instructed to segment the data into meaningful
units as small as possible to generate the short tokens, where more segmented
instances are preferable if inconsistency arose among annotators. Several conven-
tional Khmer dictionaries are referred to in the annotation for the identification
of long tokens. Generally, a sequence composed of one or more short tokens is
identified as a long token if listed as an entry in dictionaries. For those expres-
sions that cannot be covered by dictionaries, the annotation is largely dependent
on the common sense, where extremely complex long tokens might be generated
due to compounding. In practice, annotators were suggested to restrict a long
token composed no more than four short tokens to avoid too complex long tokens.
The annotation related to foreign names and loanwords was based on the original
languages. Every single word in the original languages was treated as a short
token. Proper nouns and phrases composed of multiple words were annotated as
one long token.

As to the POS-tagging, Table 3.1 lists the applied tags from the annotation
guidelines. Each short token is tagged with one POS tag, and each long token
composed by multiple short tokens is tagged with a second-layer POS tag outside
a pair of wrapping brackets. In the released data, the basic/auxiliary/modified

‡Compared with Burmese processing, where the syllable is used as the natural atom [2], Khmer
has a more complex syllable structure and less clear boundaries between syllables in writing.
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Table 3.1: nova tags used in annotation.
basic tags

n general nouns, can be subjects or objects of tokens tagged by v
v general verbs, can take tokens tagged by n as arguments
a general adjectives, can directly describe or modify tokens tagged by n
o other modifications or complements, for which n, v and a tags are not

applicable
auxiliary tags

1 general numbers
. general punctuation marks
+ a catch-all category, for tokens with weak syntactic roles, such as interjec-

tions or fillers
modified tags

n- function n-tagged tokens, general pronouns
v- function v-tagged tokens, adpositions or particles from grammaticalized

verbs
a- function a-tagged tokens, general articles or determiners
o- a catch-all category for fuction tokens

tags are treated equally. An annotation example is provided in the following Sec-
tion 3.2.4 for illustration. The released guidelines provided basic principles of the
use of the tags for annotators. In practice, the same approach of cross-checking in
the previous work of Burmese [2] was applied to improve the consistency among
annotators.

3.2.4 Statistics and Example
Table 3.2 lists the statistics of the annotated data. The division of the train-
ing/development/test sets was performed according to the unified setting under
the ALT project. Figure 3.1 shows an example from the released data. The 19
indexed tokens are short tokens. In terms of long tokens, the bracketed 4 5 ,
9 10 , 13 14 15 , and 16 17 are considered as single long tokens. In the
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Table 3.2: Statistics for the released ALT Khmer data.
#token

dataset #writing unit short long #sentence
training 1, 245, 497 643, 785 478, 964 18, 088
development 68, 318 35, 221 26, 207 1, 000
test 69, 616 36, 007 26, 551 1, 008
total 1, 303, 431 715, 013 531, 722 20, 106
average writing unit(s) 1 1.9 2.6 68.8

case of the nova annotation of Burmese [2], the v- tag is not used; however, this
tag is frequently used for Khmer. This is because Khmer has huge grammati-
calized phenomena that many functional particles are derived from basic verbal
morphemes [25]. The tokens 3 , 6 , and 18 were originally the verbal mor-
phemes for “to say”, “to be able to”, and “to get”, respectively. 3 has become
a conjunction for direct/indirect speech, and 6 has become like an auxiliary
verb. The meaning of 18 has become vague, and it appears as a sentence-
ending particle with a collocation of 6 . All these tokens were annotated by v at
stage (2) mentioned in Section Section 3.2.2 and then further modified into v- at
stage (3). Compounding is abundant in Khmer, as the constituents of 4 5 and
13 14 15 show. Note that both of them have a purely head-initial structure, as

described in Fig. 1.1. The compound of 9 10 is another common structure in
which morphemes with identical/similar meanings are duplicated for emphasis.
The constituent of 16 17 is a numerical attribute that modifies 13 14 15 ;
note that 13 and 17 are identical morphemes, with the original meaning of
“grain/seed”. In the compound of 13 14 15 , it has a more specifically derived
meaning of “bullet”, and as 17 , it is grammaticalized as a counter for seed-like
objects. From this annotation example, it can be observed that POS conver-
sion (i.e., zero derivation) is common in Khmer, which may lead to difficulties in
automatic processing.
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3.3. Experiment

3.3.1 Settings
As mentioned in Section 3.2.4, the writing units in the Khmer scripts were used
as the atom tokens. Further tokenization and POS-tagging processing for short
and long tokens were thus unified into a sequence labeling task for these writing
units. The IBES scheme to represent inside a token, beginning of a token, end of a
token, and single unit, was used by default. Simplified schemes of IE and IB were
also compared in experiments. As to the configuration of processing, cascaded as
well as jointed manners were compared. The former one is to tokenize first and
then to tag the tokens using two separate models; the latter one is to generate
the token boundary with the POS information simultaneously using one model.

For a comprehensive investigation, four representative machine learning ap-
proaches are experimented with the following settings. The results by each ap-
proach are described in the following subsections respectively.

• A linear SVM wrapped by Kytea§ [83] was used as a preliminary fast solu-
§http://www.phontron.com/kytea
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tion. The SVM performs point-wise predication for each writing unit with
a sliding window of contextual features. Bi-, tri-, and 4-gram features were
experimented. As a trade-off of the speed, the point-wise estimation is
intrinsically weak in capturing the sequential information. Only the com-
plete IBES scheme was applied with this method to encode more contextual
information.

• A CRF model implemented by the CRF++ toolkit¶ was set as a standard
sequence labeling baseline. The settings and feature template followed the
previous work [2].

• An LSTM-based RNN was implemented using DyNet‖ [84]. The network
was essentially configured according to Ding et al. [2], whereas the dimen-
sions of layers were enlarged to achieve better performance. A diagram of
the network configuration is shown in Fig. 3.2. The parameters were trained
using Adam [85] with the default setting in DyNet.∗∗ The model ensemble
was also conducted, up to 100 models, as large-scale model-ensemble was
found gradually increase the performance.

• An LSTM-CRF was implemented using NCRF++†† [86]. The network
configuration followed that in Ma et al. [73] with the dimension of layers
adjusted to fit our task. A diagram of the network configuration is shown
in Fig. 3.3. The stochastic gradient descent method is used to optimize
the model with the default setting in NCRF++.‡‡ The loss of each batch
was averaged and the model was trained with 100 iterations. The model
ensemble was also conducted up to 100 models.

For the evaluation, the F-score, which is the harmonic mean of the precision
and recall, was used. For tokenization, precision is the ratio between the number
of correct segmented tokens and the total number of tokens obtained by automatic

¶https://taku910.github.io/crfpp/
‖https://github.com/clab/dynet

∗∗Learning rate α = 10−3, moving average for the mean/variance β1 = 0.9, β2 = 0.999, and bias
υ = 10−8.

††https://github.com/jiesutd/NCRFpp
‡‡10 for batch size and 0 for momentum. Initial learning rate η0 = 0.015 and decay rate ρ = 0.05.
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processing, and recall is the ratio between the correct segmented tokens and the
total number of manually segmented tokens in the reference. For POS-tagging,
the F-score was calculated jointly on correct tokens with correct POS tags.

3.3.2 SVM
Table 3.3 lists the F-score of tokenization and POS-tagging using the SVM. As a
fast and preliminary solution, several overall tendencies can be observed.

• The gains brought by tri-gram features were more obvious that those brought
by 4-gram features. In cascaded processing and on the processing of short
tokens, the 4-gram features did not bring substantial improvements. In
joint processing and on the processing of long tokens, the 4-gram features
provided limited improvements.

• The joint processing only boosted the performance on long tokens up to the
POS-tagging, where the longer N -gram features gave consistent increasing
gains.

These tendencies suggest that the joint processing combined with complex
features can help difficult tasks related to long tokens and POS-tagging. As the
capability of the point-wise processing is limited. We move on to the results of
CRF in the next subsection as a formal baseline.

3.3.3 CRF
Table 3.4 lists the F-score of tokenization and POS-tagging using the CRF. The
overall performance is much better than that by the SVM, while similar tendencies
can be observed. As a primary finding on the tagging scheme, the IBES scheme
was superior to the IB or IE schemes under all settings. This is reasonable and in
accordance with previous studies in which the IBES scheme coded more boundary
information.§§

§§As an interesting side finding, the IE scheme was slightly better than the IB scheme, partic-
ularly for long tokens. In Ding et al. [2], the authors mentioned that the IB scheme typically
outperformed the IE scheme for head-final languages. Here the reverse was observed on Khmer,
which is a typical head-initial language.
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Table 3.3: F-score for tokenization and POS-tagging using SVM based on writing
units.

cascaded joint
token POS token POS

short long short long short long short long
2-GRAM/IBES .971 .870 .951 .851 .972 .883 .946 .851
3-GRAM/IBES .977 .880 .953 .858 .976 .887 .951 .860
4-GRAM/IBES .976 .882 .952 .855 .976 .888 .951 .862

Table 3.4: F-score for tokenization and POS-tagging using CRFs based on writing
units.

cascaded joint
token POS token POS

short long short long short long short long
2-GRAM/IBES .980 .875 .959 .855 .980 .886 .959 .873
3-GRAM/IBES .982 .896 .961 .876 .980 .896 .962 .883
4-GRAM/IBES .982 .899 .960 .878 .979 .898 .960 .884
2-GRAM/IB .969 .837 .948 .818 .972 .870 .951 .856
3-GRAM/IB .977 .885 .956 .865 .976 .886 .958 .872
4-GRAM/IB .977 .888 .956 .868 .975 .888 .957 .874
2-GRAM/IE .971 .851 .950 .831 .974 .879 .953 .865
3-GRAM/IE .976 .889 .955 .869 .976 .892 .957 .878
4-GRAM/IE .976 .890 .956 .870 .975 .891 .957 .877

Table 3.2 shows that the short tokens comprised fewer than two writing units,
on average. Therefore, tri-gram features were adequate for short token identifica-
tion. Generally, the performance for short token processing was quite high, even
using cascaded processing, and joint processing did not result in substantial gains
(from .961 to .962; no statistical significance at the 5% level). This suggests that
short tokens, that is, morpheme-level units, were relatively consistent in the man-
ual annotation, as well as in the automatic processing. The performance on long
tokens obviously decreased. Using joint processing, there was a limited gain from
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.878 to .884 in terms of POS-tagging, but no difference for tokenization (.899 and

.898; no statistical significance at the 5% level). In practical annotation, long
tokens accommodated complex and diverse phenomena, such as compounding
and grammaticalization, which led to difficulties in automatic processing. The
reported results on long tokens in Table 3.4 were generated directly from writ-
ing units. When we introduced an extra cascaded step to generate short tokens
first and then combine them to long tokens, performance dropped to around .81.
Therefore, even though the gain that resulted from joint processing was limited,
it was indispensable for long token processing.

3.3.4 RNN
Table 3.5 presents the results from 10- to 100-model ensembles. The performance
of the best/worst model among the 100 models are also presented for comparison.
The ensemble made certain gains, which were more obvious for long tokens than
short tokens, and more obvious for POS-tagging processing than tokenization
processing. Experiments were conducted on both cascaded and joint processing
using the RNN, and joint processing always outperformed cascaded processing.
This is in accordance with the end-to-end methodology of neural network-based
approaches. The best performance for short tokens was .983 for tokenization and
.967 for POS-tagging. The improvement for tokenization was limited compared
with the CRF’s best results of .982; the improvement for POS-tagging was slightly
larger: from the CRF’s .962 to .967. For long tokens, the best performance for
tokenization was .906, and for POS-tagging was .892. Comparing the respective
best results of .899 and .884 using the CRF, the gains were more obvious than
those for short tokens.

Based on the experimental results, the RNN can be considered as a more
reasonable method than the CRF for Khmer processing when joint processing
is required, for example, to identify grammatical constituents larger than mor-
phemes, or further, to obtain the grammatical categories for them. Conversely,
the task of only identifying the boundary at morpheme-level is not difficult; and
the CRF will be a prompt option.
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3.3.5 LSTM-CRF
The results by LSTM-CRF are presented in Table 3.6. From the results of the
best/worst model, LSTM-CRF generally provided better and more stable perfor-
mance than that of the plain RNN in terms of single models. However, multi-
model ensemble was more effective on the models trained by the RNN than those
by the LSTM-CRF from the results of large-scale model ensemble. On short to-
kens, the RNN and LSTM-CRF gave very close performance in joint processing
after ensemble, i.e., .983 vs. .983 on tokenization and .967 vs. .967 on POS-
tagging. On long tokens, the ensemble improved the best RNN model from .892
to .906 (+.008), while only from .898 to .900 (+.002) for LSTM-CRF, in terms
of tokenization. The differences were more obvious on the POS-tagging for long
tokens, where ensemble boosted the RNN from .871 to .892 (+.021) while only
.885 to .888 (+.003) for LSTM-CRF. Consequently, the best ensembled results by
RNN outperformed those by LSTM-CRF with statistical significance at the 1%
level on the long tokens. As the ensemble theory [87] suggests that more diverged
models tend to yield better performance, it can be considered that those RNN
models suffered a more unstable training while benefited more from the ensemble,
compared with the LSTM-CRF where single models were stronger but with less
diversities.

3.4. Discussion

3.4.1 Short Token
As the RNN and LSTM-CRF had a nearly identical performance on short to-
kens, here the comparison between CRF baseline and RNN is focused. Typi-
cal tokenization errors for short tokens made by both the CRF and RNN are
listed in Fig. 3.4. Some of the errors were caused by the intrinsic analytic fea-
tures of Khmer, for example, the word for “train” comprises “vehicle” and “fire”;
“queen” has a prefix for emphasis; the duplicated expression of the preposition
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Table 3.5: F-score for tokenization and POS-tagging using LSTM-based RNN
based on writing units.

cascaded joint
token POS token POS

short long short long short long short long
MINIMUM @100 .975 .883 .955 .866 .977 .879 .954 .856
MAXIMUM @100 .979 .891 .961 .878 .979 .892 .960 .871
10-ENSEMBLE .981 .903 .965 .890 .983 .903 .966 .888
20-ENSEMBLE .982 .902 .966 .890 .983 .906 .967 .891
50-ENSEMBLE .982 .904 .966 .891 .983 .906 .967 .891

100-ENSEMBLE .982 .904 .966 .891 .983 .906 .967 .892

Table 3.6: F-score for tokenization and POS-tagging using LSTM-CRF based on
writing units.

cascaded joint
token POS token POS

short long short long short long short long
MINIMUM @100 .978 .887 .962 .875 .979 .892 .961 .878
MAXIMUM @100 .981 .894 .965 .881 .982 .898 .964 .885
10-ENSEMBLE .982 .895 .965 .884 .982 .898 .966 .885
20-ENSEMBLE .982 .897 .966 .885 .982 .899 .966 .886
50-ENSEMBLE .982 .898 .967 .886 .983 .900 .967 .888

100-ENSEMBLE .982 .897 .966 .885 .983 .900 .966 .888

“in”. Strictly, these types of over-segmented¶¶ results using automatic processing
were more consistent with our tokenization principles, compared with the man-
ual segmentation used for reference. Therefore, these errors were not serious but
just a reflection of the difficulty of manual annotation. The main problem in
tokenization was around non-native proper nouns, for example, “Transnistria”

¶¶If the automatic processing generates a more fragmentary segmentation compared with the
manual annotation, it is referred to as “over-segmented", and a less fragmentary segmentation
is referred to as “under-segmented".
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and “Jerusalem”. The difference in performance between the RNN and CRF
was mainly caused by such errors for proper nouns, where the RNN provided
better identification of boundaries using contextual information. Introducing a
large-scale dictionary should be an efficient solution to this issue.

In joint processing, the errors were mostly related to POS-tagging rather than
tokenization. Typical words with confusing POS tags are listed in Fig. 3.5, with
the tag distribution from manual annotation. The most common type of error
was around grammaticalized verbal tokens, which may act like prepositions, for
example, the words for “to be in”, “to be as”,∗∗∗ and “to go to”,††† or act like
particles, for example, the word for “to go up”. The RNN generally outperformed
both CRF for these verbal tokens because manual annotation is quite contextually
dependent and the RNN can model long-distance contextual information better
than the CRF. Other common errors were around some intrinsic ambiguities in
POS. For example, pronouns in Khmer are generally derived from various nouns.
The common second-person pronoun in Khmer is actually from the noun for “a
person,” which is a more frequent meaning in the data. Distinguishing between
its role as a pronoun and as a common noun is difficult no matter the specific
methods, as the syntactic roles are generally the same and there is no verbal
conjugation in Khmer to help disambiguate them. The numerical word for “one”
can also be used as an adjective for “single” depending on the context. In this
case, disambiguation is also difficult.

3.4.2 Long Token
As long tokens cover a large range of complex phenomena, a lexicalized statistic
results in a long tail of singletons. Table 3.7 shows frequent patterns of POS-
tagging errors for long tokens, in addition to the distribution of the number of
tokens in these errors. The under-segmentation tendency of the CRF and over-
segmentation tendency of the RNN are obvious. The LSTM-CRF has a mixed
tendency of CRF and RNN, where the over-segmentation is similar to RNN but
the patterns of POS errors are like those of CRF.

∗∗∗A copula and somehow a grammaticalized instrumental case marker.
†††Somehow, a grammaticalized dative case marker.
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manually segmented token

រថភ្លើង train រថ vehicle ភ្លើង fire

ភៅក្នុង in ភៅ at ក្នុង in

ម្ចា ស់ក្សត្រី queen ម្ចា ស់ owner ក្សត្រី queen

automatically segmented token

ជរូសាលឹម Jerusalem ជរូ *jeru- សាលឹម *-salem

ភត្រនសនីស្ថសរីន Transnistria ភត្រនសនី *transni- ស្ថសរីន *-stria

Figure 3.4: Typical errors for short tokens on the test set. (∗ represents meaning-
less fragments)

token
នៅ

to be in

ជា
to be as

នៅ
to go to

ន ើង
to go up

អ្នក
person, you

មួយ
one, single

tag

(%)

v- v v v- v- v v- v n n- 1 a

70.8 29.2 82.5 17.3 55.2 44.8 58.3 41.7 74.4 25.6 67.6 32.4

Figure 3.5: Distribution of manually annotated POS tags for short tokens difficult
to process automatically.

Table 3.7: Error distribution for long tokens at the POS-tagging level and for the
number of tokens. Top-3 frequent patterns are listed. For each item,
the left side of the arrow (->) represents the manual annotation and
right side represents the result using automatic joint processing.

CRF RNN LSTM-CRF
4-GRAM 100-ENSEMBLE 50-ENSEMBLE

POS
pattern

n n -> n 18.3% n -> n n 19.9% n n -> n 16.5%
n -> n n 13.2% n n -> n 12.8% n -> n n 16.3%

n v -> n 2.9% n v -> n 3.7% n v -> n 3.9%

token
number

2 -> 1 32.7% 1 -> 2 37.2% 1 -> 2 32.5%
1 -> 2 26.5% 2 -> 1 23.9% 2 -> 1 29.9%
1 -> 1 15.0% 1 -> 1 17.2% 1 -> 1 13.7%
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manually segmented token automatically segmented token

ប្រាក់ money ឈ្នួល salary ប្រាក់ឈ្នួល salary

ប ៉ូល pole ខាងជ ើង north ប ៉ូលខាងជ ើង the North Pole

ប្រកុម team អ៉ូស្ត្រា លី Australiaប្រកុមអ៉ូស្ត្រា លី Australian team

ការប្របកួត match ជ ៊េរី seriesការប្របកួតជ ៊េរី series match

Figure 3.6: Examples of under-segmented nominal expressions using the CRF
(top) and over-segmentation nominal expressions using the RNN (bot-
tom) compared with manual annotation.

Typical under-/over-segmentation examples are listed in Fig. 3.6. The exam-
ple of “salary” is similar to the example of “queen” in Fig. 3.4; the expression
is segmented into two tokens in the manual annotation. As such an inconsis-
tency lies on the borderline of the definition of the word, it is not so serious in
practice. However, the other three examples reveal a complex problem related
to the annotation of expressions that involve borrowed words. Here the Khmer
expressions for “pole”, “Australia”, and “series” are directly borrowed from En-
glish, and the expressions for “north”, “team”, and “match” are Khmer natives.
Confusion arises in such cases. For the expression for “the North Pole”, manual
annotation was performed according to the principle for detailed segmentation.
However, the Khmer morpheme for “team” has been grammaticalized, and the
“series” is not a stable borrowed word. Annotators may hesitate when tokenizing
such hybrid expressions.

3.4.3 Data Size and Further Improvement
Figure 3.7 shows the effect of the data size on the performance of joint processing.
The rightmost points are the above-reported results using the full training data,
and the performances using half, one-quarter, and one-eighth of the training
data are plotted. The results show that the differences between the RNN and
the LSTM-CRF are gradually reduced when more training data were provided.
However, the RNN always outperformed the CRF, regardless of the size of the
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Figure 3.7: F-score for joint processing on short (left) and long (right) tokens
on different training data sizes. (x-axes for the number of tokens, in
logarithmic scale.)

data set.
It suggests that performance can be further boosted by increasing the training

data. Especially on long tokens, the LSTM-CRF can be expected to outperform
the RNN. However, for the data provided in this study, we consider that inte-
grating the resources of proper nouns is the most practical direction to improve
automatic processing. Regarding the POS-tagging, there are intrinsic ambigui-
ties for certain morphemes because of the highly analytic features of Khmer. A
solution may rely on a more informative POS-tag set than the nova scheme used
in this study. This requires a more insightful, linguistically oriented investigation
of the Khmer language.

3.5. Summary
In this study, we primarily proposed a 20, 000-sentence tokenized and POS-tagged
Khmer corpus. The manual annotation processing started in 2016, and the cor-
pus was the largest morphological annotated Khmer dataset when this paper
was written in 2020. Based on the annotated data, experiments were conducted
for automatic tokenization and POS-tagging using four standard approaches of
SVM, CRF, LSTM-RNN and LSTM-CRF. Experiment-based analysis showed
that automatic processing up to morpheme-level was satisfactory, but for larger
constituents, for example, complex compounds and phrases, joint processing was
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required.
Broadly, the discussed linguistic phenomena of the Khmer language, that is, the

head-initial and analytic features, are prevalent for many languages in Southeast
Asia. The investigation in this study can also contribute to the development of
these languages, most of which are still low-resource and under-studied in the
NLP field.

Lastly, we have extended this corpus for the following chapters. For instance,
we have developed a small amount of treebank on top of this corpus to facilitate
the cross-lingual experiments of the following chapters. In addition, we have
converted this POS-tagged corpus from the nova tags to the universal POS-
tags for Chapter 4 based on the naive projection by Ding et al. [23] and with
additional manual conversion mostly on the distinction between the prepositions
and functional-verbs.
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Chapter 4

Cross-Lingual Constituency Parsing by
Delexicalization
This chapter presents cross-lingual constituency parsing by POS-based delexical-
ization. We assume the availability of the POS-tagged corpus for each target
language as we have already developed one for Khmer. Furthermore, single-
source transfer scenario, which considers only one source language each time, is
considered and various source-language selection techniques are investigated in
this chapter. Nevertheless, the aim here is to observe the cross-lingual perfor-
mance of delexicalized models throughout analyses and discussions on how to
maintain the best performance and what limitations the models have. Addition-
ally, because reproducing cross-lingual transfer baselines, e.g., treebank projec-
tion [55,56], is non-trivial as mentioned in Section 2.4 and we do not assume the
availability of parallel corpora for each source-target languages pair, we compare
the delexicalized models with the fully-unsupervised models, of which intention
is to show which models should be used to produce pseudo annotation for the
future constituency-treebank development.

4.1. Related Works
Grammar induction, a fully unsupervised constituency parsing, has a long his-
tory of attempting to induce constituency structure on sentences in a plain corpus.
The early successful attempts were the statistical approaches introduced by Clark
et al. [88] and Klein et al. [89]. In particular, Clark et al. [88] tried to induce
PCFG by clustering POS tag sequences according to mutual information, that is,
their contexts. Based on the same motivation—that tag sequences with the same
context are likely to be constituents—Klein et al. [89] introduced a generative
constituent-context model that can be optimized by an EM algorithm. Recently,
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neural networks have been used for grammar induction. Shen et al. [90] induced
constituency structure by simultaneously modeling a language and predicting the
syntactic distance between words. Drozdov et al. [91] integrated a recursive au-
toencoder with an inside-outside algorithm. Kim et al. [92] trained a recurrent
neural network grammar with a structured inference network and amortized vari-
ance inference. Kim et al. [93] parameterized PCFG with a neural network where
the rule probabilities are based on distributed representations, NPCFG, and can
be modulated by per-sentence continuous latent variable, CPCFG. NPCFG and
CPCFG have become the state-of-the-art models in grammar induction research.
Our study compared the cross-lingual model with the state-of-the-art NPCFG
and CPCFG models.

Cross-lingual transfer approaches, in which the data or model of one language
are used for a model of another language, have been categorized into three groups:
annotation projection, treebank translation, and model transfer [54]. Previous
studies projected annotation across languages using a word-alignment algorithm
for annotation projection [55,56,94] or statistical machine translation for treebank
translation [95]. In contrast, model transfer directly takes a supervised model of
the source language to apply to plain text in the target language. The basis
of model transfer is the use of a shared input representation, such as POS tags
[57,58], glossed words [57], or bilingual word embedding [28]. Extensions of model
transfer include source-language selection [63,64], multi-source combination [58],
parameter sharing [96], and self-training [97] and others. Our work is similar
to that of Zeman et al. [57], which also uses a delexicalized model for transfer
learning. However, we explore more languages than the work of Zeman et al. [57],
who only considered a single closely-related language pair. Essentially, languages
selected for this work have structural diversity. In addition, we select the best
source language with or without using the treebank of each target language.

For source-language selection, Rosa et al. [63] introduced a corpus-based dis-
tance metric, KLcpos3, which is the KullbackLeibler divergence between the POS
trigram distributions of the source and target languages. Agi et al. [64] proposed
to select the source language using a language identification tool, langid.py, and
a typological database, WALS. Lin et al. [65] trained a source-language ranking
model according to the properties of the data and the typological features of the
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Figure 4.1: Overview of our delexicalized model for cross-lingual constituency
parsing. The model is trained on delexicalized structural data of
source language and then applied on part-of-speech sequences of the
target language.

source and target languages. In this work, we select the best source language sim-
ply by using KLcpos3 and the typological features of languages. We also propose
a scenario in which a small constituency dataset of the target language, which
can be quickly created within a day, is used for source language selection.

4.2. Proposed Methods
In this work, we focus on transferring a constituency parser between languages
and selecting the best source language when multiple source languages are avail-
able. In the following section, we describe the design of our delexicalized model
and the source selection techniques used in this study.

4.2.1 Delexicalized Parser
Our delexicalized parsing model (DEX) is based on the self-attentive span-based
parser [51]. Specifically, as shown in Figure 4.1, a self-attention encoder is used
to project the input representation and the encoded outputs are combined to
represent span. Each span is independently labeled and scored, and then a tree is

47



incrementally constructed using the CKY algorithm; this is also known as chart
parsing. Only POS embeddings are used as input representations, so that the
treebank of the source language or the sentences of the target language have to
be delexicalized during both training and decoding.

There are two reasons for this span-based parser being suitable for a cross-
lingual model. First, a self-attention encoder can capture global context informa-
tion well and is less sensitive to word order [28]. Second, each span is indepen-
dently labeled, without considering the label decision of its children or parent [50].
This means that the failure of label prediction on a certain span does not affect
label prediction on the other spans. Intuitively, the prediction error caused by
local syntax variation between two languages does not strongly affect the overall
prediction.

For delexicalization, we use the universal POS tag set introduced by Petrov et
al. [98]. The tag set consists of 12 categories: NOUN (nouns), VERB (verbs),
ADJ (adjectives), ADV (adverbs), PRON (pronouns), DET (determiners), ADP
(prepositions or postpositions), NUM (numerals), CONJ (conjunctions), PRT
(particles), PUNC (punctuation marks), and X (a catch-all tag). We used these
coarse tags because any language-specific tags can easily be mapped to them. In
addition, they cover the most frequent POS tags that exist in most languages [98].

We use the same hyperparameters as Kitaev et al. [51]. It is worth noting that
the encoder and embedding layers must have the same dimension. Therefore,
the embedding dimension for POS tags was enlarged to have the same size as
the encoder. Specifically, we set the encoder to have dimension 1024, with eight
layers, eight attention heads, and dimension 64 for key, query, and value. The
feedforward layer size is 2048 and the batch size is 250.

4.2.2 Source Language Selection
Constituency data are available for multiple languages, and selecting the best
source language is most often better than concatenating the data of all languages
to train a single model [64]. We compare two scenarios: first, without awareness
of the target language structure and, second, when a small constituency dataset
of the target language can be created.
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For the first scenario, we compare two language distance metrics: KLcpos3
[63] and the typological feature-based metric. We directly use the precomputed
syntactic distance of Littell et al. [99] as the typological feature-based metric. The
precomputed distance has only two decimal places and many pairs of languages
have the same value. In this case, we use KLcpos3 to further weigh the same
distance values to obtain the final best source language. For notation, we use KL
for KLcpos3 and SD for precomputed syntactic distance [99].

For the second scenario, we propose to sample 10 sentences whose length is
between 10 and 20 and then manually annotate them (L20). We argue that these
data can be easily constructed within a day. Subsequently, a language is selected
as the best source language if its model achieves the highest unlabeled F1 score
on this dataset.

4.3. Experiments
We first parsed each target language using parsers of the other six languages. We
then selected the best parser to compare with the following baselines.

4.3.1 Settings
Dataset: The evaluation was performed on seven languages: English (en) from
Penn Treebank (PTB) [100]; Chinese (zh) from Chinese Penn Treebank 5.1 (CTB)
[101]; French (fr) [102] and German (de) from the SPMRL 2013 shared task∗

[103]; and Japanese (ja), Khmer (km), and Myanmar (my) from Asian Language
Treebank (ALT) [21]. Standard splits of each treebank were applied to prepare
the training, validation, and test datasets. Table 4.1 presents some statistics of
the datasets, as well as their sentence-level word order.

We mapped POS tags of English, Chinese, French, and German using a map-
ping table provided by Petrov et al. [98]. We created our own mapping table for
Japanese. Such mappings were not required for the Khmer and Myanmar datasets
because their POS tags already follow the universal tag set. In ALT, Khmer and

∗We only considered two of the seven languages in SPMRL because the POS tag mapping of the
other five languages is difficult for us.
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Order Language Train Valid Test

SVO

English 39, 832 1, 700 2, 416
Chinese 18, 096 352 348
French 14, 759 1, 235 2, 541
Khmer 8, 832 512 658

SOV
Japanese 17, 202 953 931
Myanmar 18, 088 1, 000 1, 018

Mix German 39, 465 4, 730 4, 882

Table 4.1: Data statistics. The numbers refer to numbers of sentences and ‘Mix’
indicates that word order is a mixture of V2 and SOV.

Myanmar data are analyzed down to the morpheme level [23]. However, we only
considered word-level tokens because many morphemes in these languages do not
correspond to other languages, which makes cross-lingual transfer very difficult.
The POS tags of both source and target languages are manually tagged for this
experiment.

Baselines: Two state-of-the-art grammar induction models, NPCFG and CPCFG
[93], were used for comparison. Model configuration and implementation† mostly
followed Zhao et al. [104], who has further evaluated the model for a wider range
of languages. We reproduced the results of Zhao et al. [104] and found that the
results could be improved for the SPMRL dataset by removing root nodes in the
evaluation. We also conducted the experiment with three new languages: Khmer,
Japanese, and Myanmar. We additionally trained delexicalized versions of both
NPCFG and CPCFG models on the same POS sequences as our model. Fol-
lowing the preprocessing step in the original work, punctuation and trivial spans
(width-one and sentence-level spans) were removed before training the NPCFG
and CPCFG models. We also compared naive systems, namely, left-branching
(LB) and right-branching (RB).

Evaluation: For comparison, the outputs of DEX are post-processed including
removal of trivial spans (width-one/unary and sentence-level spans) and punctu-
ation. Additionally, sentences with a length of 1 were excluded from the eval-

†https://github.com/zhaoyanpeng/cpcfg
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Target Languages
en zh fr km de ja my

So
ur

ce
La

ng
ua

ge
s en 85.7 48.6 49.9 47.6 42.3 24.0 24.2

zh 60.7 76.5 34.0 36.5 37.9 21.5 23.5
fr 45.9 26.2 71.4 35.3 38.0 15.7 12.9
km 42.8 39.1 26.6 70.0 29.1 24.6 26.0
de 40.3 35.3 33.8 27.2 82.3 20.4 17.3
ja 33.0 30.6 25.7 17.3 27.0 71.3 50.6
my 31.8 28.7 27.2 21.9 27.4 53.6 79.0

min 31.8 26.2 25.7 17.3 27.0 15.7 12.9
max 60.7 48.6 49.9 47.6 42.3 53.6 50.6

Table 4.2: Unlabeled F1 results for all source-target language pairs. Each row
represents the source language for training the delexicalized model and
each column represents the target language on which the delexicalized
model performed prediction. Each score is the average of four runs
with different random seeds. Boldface numbers are shown when the
source and target languages are the same, and underlined numbers are
the best scores for each target language.

uation. Finally, each model is evaluated on sentence-level unlabeled F1 against
non-binarized gold trees following the original work of Kim et al. [93].

4.3.2 Results
Table 4.2 shows the results for all source-target language pairs; each result is the
average of four runs with different random seeds. The standard derivation over all
language pairs is only 0.37, on average, and the minimum and maximum standard
deviations are 0.02 and 2.41, respectively. The highest standard deviation is for
the Khmer-to-Chinese pair, whereas the others are less than 1.

The diagonal scores can be regarded as the performance of the supervised
delexicalized model (DEX Sup) of each language. The performance of our parsing
model has been reduced by delexicalization. Compared with labeled F1 results
for the lexicalized model on English (93.6), Chinese (87.4), French (84.1), and
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German (87.7) without external pretrained embedding‡, the performance was
reduced by between 5.4 and 12.7. The reduction could be larger if our models
were measured with span labels because the labeled F1 took into account the
label errors.

For cross-lingual performance, the DEX model of English yielded the best
performance for Chinese, French, Khmer, and German, but not for Japanese
or Myanmar. However, Japanese and Myanmar were mutually the best source
languages. The best results for each target language are marked by underlined
unlabeled F1 numbers. The sentence-level word order of Japanese and Myanmar
are Subject-Object-Verb (SOV), whereas four other languages are Subject-Verb-
Object (SVO) and German is a mixed-order language, between verb-second (V2)
and SOV order. The results show that the performance of the DEX model fun-
damentally relies on the word orders of the source and target languages. For
instance, at rows six to seven in the first five columns, when Myanmar and
Japanese were used as the source languages for SVO languages, the unlabeled
F1 values were the lowest or the second-lowest. This indicates that cross-lingual
transfer is more difficult when the sentence-level word orders of the source and
target languages differ.

The last two rows show the minimum (min) and maximum (max) scores over all
choices of source languages, excluding the target language itself. The differences
between min and max are very large, averaging 28.1, with a min-max range
of 15.4–37.9. This suggests that the ability to select the best source language
is highly beneficial for cross-lingual transfer. For each target language, we can
determine the best source language based on the max results, denoted as DEX@1.

Data efficiency. Even though language characteristics can be used as a clue to
choose the appropriate source language, the quantity and quality of the training
data of source languages is also crucial for cross-lingual transfer. We tested this
hypothesis by reducing the amount of source-language training data and limiting
the sentence length. In particular, we sampled 5, 000 sentences of the training
data of each source language, with and without a constraint on the sentence length
to select only sentences with a length between 10 and 30. This constraint was

‡These results are taken from Kitaev et al. [51] except for Chinese, which is from rerunning the
code.
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trg
DEX Sup DEX@1

Full ∆5k ∆30 Full ∆5k ∆30
en 85.7 5.4 25.6 60.7 0.9 16.2
zh 76.5 5.8 25.1 48.6 1.5 13.4
fr 71.4 13.8 24.2 49.9 3.5 17.7
km 70.0 2.3 16.3 47.6 −0.5 9.3
de 82.3 28.3 26.7 42.3 1.7 10.3
ja 71.3 3.1 23.3 53.6 0.2 14.3
my 79.0 2.3 20.4 50.6 1.3 12.9

avg − 8.7 23.1 − 1.2 13.5

Table 4.3: Unlabeled F1 differences when the dataset sizes were reduced and sen-
tence lengths limited. ∆ refers to the reduction in unlabeled F1 score
from the model trained on the full dataset to that trained on con-
strained data.

also applied to the validation set with a sample size of 150. Table 4.3 presents the
performance reduction of DEX Sup and DEX@1 when each model was trained on
only 5, 000 samples without length constraints (∆5k) and with length constraints
(∆30). The results show that the performance of both DEX Sup and DEX@1
was worse when the amount of training data was reduced, and the reduction was
more obvious when the training data contained only sentences with a very limited
length, from 10 to 30. This indicates that the quality and quantity of training
data are important for model transfer, as well as for the supervised model itself.

Source selection. Table 4.4 shows the effectiveness of the source-language
selection algorithms, KL, SD, and L20. Based on this result, KL and SD were
able to correctly pick the best source language for five out of seven languages,
and the selection by L20 was identical to DEX@1 as expected. We find that both
KL and SD chose German for English and French and their second choice was
English. We hypothesize that KL and SD can be improved by filtering source
languages from the pool according to their sentence-level word order; for instance,
the source-language pool for SVO languages should contain only SVO languages.
Figure 4.2 further shows that the closeness of the POS sequences between source
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trg DEX@1 ∆KL ∆SD ∆L20
en 60.7 zh −20.4 −20.4 0.0
zh 48.6 en 0.0 0.0 0.0
fr 49.9 en −16.1 −16.1 0.0
km 47.6 en 0.0 0.0 0.0
de 42.3 en 0.0 0.0 0.0
ja 53.6 my 0.0 0.0 0.0
my 50.6 ja 0.0 0.0 0.0

Table 4.4: Unlabeled F1 results of source language selection algorithms, where
the relative F1 of ∆X = DEX@1 − X.
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Figure 4.2: Relation between KL and unlabeled F1. Each dot represents a relation
for a source-target language pair where source ̸= target.

and target languages might not have an impact on the parsing performance as
the Pearson correlation coefficient between KL and unlabeled F1 is only −0.56.

Comparison. We assume that, for each language, we can select the best
source language, which we call DEX@1. We also add the second-best language
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Model en zh fr km de ja my
LB 8.9 7.2 7.2 6.9 13.0 14.3 17.6
RB 39.7 25.5 29.1 43.9 18.6 12.8 12.8
NPCFG† 35.2±6.8 26.7±1.3 41.0±2.5 33.6±4.0 29.1±11.3 18.1±3.8 30.4±7.3

CPCFG† 40.2±2.0 32.8±1.2 42.7±1.9 28.2±0.7 42.4±1.3 19.8±3.6 36.6±0.9

NPCFG 50.0±3.3 29.3±4.3 45.7±0.8 21.0±4.3 41.2±0.6 31.8±9.3 13.6±1.0

CPCFG 56.2±1.7 30.7±7.4 43.5±0.3 24.1±4.4 43.5±1.0 24.4±7.0 45.8±2.4

DEX@1 60.7±0.2 48.6±0.5 49.9±0.3 47.6±0.4 42.3±0.5 53.6±0.1 50.6±0.3

DEX@2 45.9±0.4 39.1±2.4 34.0±0.5 36.5±0.4 38.0±0.4 24.6±0.2 26.0±0.5

Table 4.5: Unlabeled F1 results of all baselines compared with the best DEX
model. LB and RB refer to the left- and right-branching baselines.
Unlabeled F1 results of NPCFG and CPCFG are the average scores
from four runs with different random seeds, and the numbers preceded
by ±∗ are their standard deviations. † marks the delexicalized version
of either the NPCFG and CPCFG model.

(DEX@2) for comparison. Table 4.5 presents the performance of all baselines and
the comparison with our DEX models. First, for LB and RB, it is obvious that
the languages in the first four columns are strongly biased toward right branches,
whereas the other three languages are relatively equally balanced between the left
and right branches. From this observation, we can predict that the constituency
structures of SVO languages are right-branch-biased and those of non-SVO lan-
guages are more equally balanced between the left and right branches. This also
supports our argument that sentence-level word order indicates the structural
similarity between languages. For the NPCFG and CPCFG baselines, the delex-
icalized versions of the NPCFG and CPCFG have lower performance than their
lexicalized versions in most cases. Therefore, we will consider only their lexical-
ized versions for the following comparison. To this end, with the exception of
German, our DEX@1 outperformed all the baselines by a large margin. Specif-
ically, compared with NPCFG and CPCFG, the improvement in unlabeled F1
score ranges from 4.2 to 37. For German, the unlabeled F1 score of DEX@1 is
slightly lower than that of CPCFG but higher than that of NPCFG. Nonetheless,
NPCFG and CPCFG were very competitive in comparison with our DEX@2.
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Figure 4.3: The unlabeled recall of the target languages with respect to their
constituent length. >20 is the average recall of all constituents with
a length greater than or equal to 20.

There was a considerable reduction in performance from DEX@1 to DEX@2,
even when the source and target word orders were the same.

4.4. Analysis
This section analyzes the parsed outputs of DEX to understand what kind of
structures the model has transferred across languages. More specifically, we an-
alyze the length and type of constituents that could be correctly parsed by our
cross-lingual model. For simplicity, we assume that we can choose the best source
language for each target language. Therefore, only the DEX@1 model will be an-
alyzed in this section.

4.4.1 Constituent Length
Figure 4.3 presents the performance of DEX in terms of constituent length. We
use the supervised delexicalized model, DEX Sup, to define the upper-bound
parsing performance of each language as the dash lines in each plot. The overall
tendency of the DEX is described in the first plot, which shows the average per-
formance of all languages. The values of unlabeled recall for DEX and DEX Sup

56



U
nl

ab
el

ed
 R

ec
al

l (
%

)

Figure 4.4: The unlabeled recall for all languages with respect to their constituent
type. Each dot represents an average result for each constituent type.

reduce as constituent length increases. This is reasonable that long constituents
tend to be more difficult to be parsed because the patterns of the long constituents
are diverse and less frequent in the corpus. Besides, the gap between the DEX
and DEX Sup models becomes gradually wider as constituent length increases.
This might be because, for the long constituents, similar POS sequences between
two languages were rare compared to the short constituents. The other plots
in Figure 4.3 further present the parsing performance for each target language.
The performance of DEX on short constituents is relatively high and even closed
to each upper-bound performance for English, French, German, and Japanese.
However, the tendency is less obvious for the Chinese, Khmer, and Myanmar.
Additionally, the supervised performance is high for English and German regard-
less the length of the constituent, which results in a large gap in the performance
between DEX and DEX Sup on the long constituents. This might be because
the training treebanks for English and German are large compared to the other
languages.
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Table 4.6: Constituent labels mapping table

Labels
Languages

English French German Chinese Khmer Japanese
NP NAC,

NX,
PRN,
WHNP

NC PN,
CNP

CLP,
DNP,
PRN

- BASENP

VP
- VN,

VPinf,
VPpart

CVP DVP,
VCD,
VCP,
VSB

- -

VNV,
VPT,
VRD

S SBAR,
SBARQ,
SINV,
SQ,
RRC

Sint,
Ssub,
Srel

CS IP, CP - SBAR

PP WHPP - CPP LCP - -

4.4.2 Constituent Types
This section analyzes the types of constituents induced by the DEX model. Be-
cause our experimental data are annotated using different sets of constituent
labels, we map their labels sets to a general shared label set. For the shared
label set, we choose only four major types of constituents: NP, VP, S, and PP.
We map the constituent labels of each language according to Table 4.6. Of the
other minority labels, those that are not in the table are ignored in this analysis.
Unfortunately, we are not able to map the label set of Myanmar because only two
labels, NOUN and VERB, are used in the Myanmar data. Therefore, we exclude
the Myanmar language from this analysis.
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Figure 4.5: Partial tree examples for French. The upper structures are the
ground-truth examples and lower structures are the induced exam-
ples. The words in gray are the English glosses of the French words.
For remarks, VN and VPinf are mapped to VP for the analysis; and
“Ils” in (a) is clitic originally tagged as “CLS”.

Figure 4.4 shows the overall performance of the DEX model on each type
of constituent. The constituent types are sorted in descending order by their
averaged unlabeled recall values. The average result shows that the most difficult
type of constituent for the DEX model was S and the easiest one was NP. For VP
and PP, the accuracy of DEX was also pretty high compared with S. We might
conclude here that it is because NP and PP are the short constituents and S is the
long constituent according to our previous analysis on the length of constituent
that the long constituents are more difficult than the short constituents. However,
even though the VP constituent is commonly long, the model performance on
this constituent was relatively high compared to the S constituent. Eventually,
the performance regarding the constituent type depends on which source-target
language pair to be transferred as the bar chart in Figure 4.4. For example,
the performance on PP was low for Chinese while it was high for the other
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languages. We find that the annotation of both preposition and postposition
is equally common in Chinese but that of the postposition is rare in its source
language, English. Interestingly, for French, the accuracy for VP was low while its
source language is English and English-French is known as a similar language pair.
For this, we find that some verbal annotations are different from those of English,

for example, the clitic pronoun and deep function annotations. Specifically, there
is a distinction between clitic pronouns and other pronouns and their structural
annotations are different. For instance, as the upper structures in Figure 4.5,
the clitic, “Ils” in (a), is combined with its following verb, “pourront”, whereas
the pronoun, “Certains” in (b), is considered as the subject of the sentence. In
universal POS tags, clitic is annotated with the same tag as the other pronouns.
As the result, their structures parsed by the DEX model are the same as the
lower structures in Figure 4.5. In addition, as in (b), the objects or arguments
are placed outside the verbal constituent in the ground-truth structure but inside
the verbal constituent in the parsed structure. All these indicate the complex
verbal structure of French constituency data. Such differences between ground-
truth and parsed structure are reasonable.

4.5. Discussion
Our results indicate that a simple cross-lingual delexicalized model can achieve
relatively high performance compared with all the baseline models if the best
source language can be determined. the best source language can be accurately
selected using current measurements, such as KLcpos3, precomputed syntax dis-
tance, or using a small treebank. However, we assume that similar languages
exist in the source language pool but we cannot detect their absence. For instance,
in our experiment, the word order of German is fundamentally different from that
of other languages in the pool. Therefore, future work to solve this problem will
be very important for low-resource settings such as source data transformation
and the detection of the absence of similar languages in the pool.

Finally, since the performance of the fully unsupervised models, NPCFG and
CPCFG, are impressive, the combination of both cross-lingual and unsupervised
models is considered an interesting direction for future work of low-resource con-
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stituency parsing.

4.6. Summary
This work investigated the performance of cross-lingual transfer, particularly
delexicalized model transfer. We compared the performance of model transfer
with state-of-the-art grammar induction models. We have confirmed that model
transfer can achieve high performance if the best source languages are carefully
selected. We have compared three methods of source selection and shown that
using a small treebank of target languages for selection is highly accurate.

Additionally, we have shown that the parsing performance of source language
has been reduced by delexicalization. Therefore, the following chapter will inves-
tigate the use of lexicalized cross-lingual embedding models but without using
any bilingual resource. We will also investigate multi-source transfer scenarios to
leverage all source-language parsing.
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Chapter 5

Multi-Source Cross-Lingual Constituency
Parsing
This chapter investigates the use of pretrained multilingual language models for
the cross-lingual constituency parsing, and multi-source transfer scenario to lever-
age all source-languages parsing. Unlike the single-source transfer in Chapter 4,
the multi-source transfer scenario combines treebanks of multiple languages to-
gether to train a multilingual parser that can be later used for any unseen lan-
guage.

However, for constituency parsing, training a multilingual parser has two main
issues that must be considered. First, the source languages can produce di-
verse word orders—for instance, different subject-verb-object or noun-adjective
orders. These language properties can be simply identified using existing typology
databases, e.g., WALS or SSWL. It is intuitive that these language properties can
be used to guide a multilingual parser to share corresponding model parameters
among similar languages [29,30,66,96]. For cross-lingual transfer, the typological
features could hurt performance [29], and an effective integration technique is re-
quired [30]. Inspired by this, we investigate the usefulness of typological features
for cross-lingual constituency parsing and propose a training strategy to general-
ize the cross-lingual capability of the model using smooth sampling and random
dropout. The second issue is that even though constituency structure is univer-
sal, the design of a label set is language-specific. For dependency structures, this
problem has inspired the creation of the Universal Dependency project [17]. The
syntactic label sets of constituency structure vary across languages—for instance,
very few labels are shared and even labels for the same syntactic category may
be different across languages. This increases the complexity of the multi-source
transfer. Therefore, we propose to preprocess the constituency treebanks to uni-
versalize the multilingual parsing model. In summary, to address both issues,
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we propose 1) typological feature integration for model generalization on unseen
languages (Section 5.3.1), and 2) a treebank preprocessing step is proposed to
reduce the complexity of cross-lingual structural prediction (Section 5.3.2).

5.1. Related Works
In multi-source transfer, task-specific knowledge of multiple source languages is
combined and jointly transferred to an unseen or zero-shot language. This com-
bination can be categorized according to three levels [54], that is, the level of
treebanks [29, 30, 58, 66], model parameters [67, 68], or parse outputs [63, 64].
This work focuses on the treebank level, that is, treebank concatenation and,
unlike previous studies, we study a more sophisticated structure, constituency
treebanks, which simultaneously contain diverse syntactic labels across multiple
source languages.

Typological features are a valuable resource for multi-source transfer where
source languages have diverse structures, and they have been used specifically for
sharing the parameters of non-neural [96, 97, 105] and neural [29, 30, 66] models.
Following the same motivation, we also investigate the usefulness of typological
features for a multilingual constituent parser and propose a training strategy
that generalizes the model for zero-shot languages. Specifically, we integrate
typological features into the self-attentive constituency parser [51].

Our work is similar to that of Kitaev et al. [106] who investigated the mul-
tilingualism of the self-attentive constituency parser [51] using the pretrained
multilingual language model. However, our work differs from theirs such that
we focus on zero-shot performance. In addition, we propose to preprocess the
concatenated treebanks and integrate typological features for better zero-shot
performance. We also extend the sampling technique that Kitaev et al. [106] use
by constraining the minimum size of each treebank.

5.2. The Self-Attentive Parser
The basis of our model (Fig. 5.1b) follows the self-attention-based encoder-
decoder architecture of Kitaev et al. [51]. Specifically, the encoder consists of
word embedding and self-attention layers to produce the contextual presentation
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for each word. At the decoder side, all possible spans are extracted and each span
(i, j) is represented by a hidden vector vi,j that is constructed by subtracting the
representations associated with the start and end of the span. Then, each span
(i, j) is assigned a labeling score s(i, j, ·) by an MLP span classifier as

s(i, j, ·) = W2g(f(W1vi,j + c1)) + c2, (5.1)

where W∗ and c∗ are the weight and bias, respectively; f and g are the layer
normalization and ReLU ("Re"ctified "L"inear "U"nit) activation function, respec-
tively, as shown in Figure 5.1c. For each sentence, the constituency structure T

is represented by a set of labeled spans {(it, jt, lt) : t = 1, . . . , |T |} where the score
of T is

s(T ) =
∑

(i,j,l)∈T

s(i, j, l). (5.2)

At test time, the optimal structure can be obtained using a CKY-style inference
algorithm. For training, the model is optimized using a max-margin objective
function, the details of which can be found in Kitaev et al. [51]. In addition, the
parser’s hyperparameters are unchanged from Kitaev et al. [51].

To perform cross-lingual parsing, an external pretrained multilingual language
model must be used and simply take the place of the word embedding layer.
Because the model is trained on sub-words, only the last sub-word unit of the
corresponding token is used to represent a word. In this experiment, we use a
recent multilingual language model, i.e. XLM-RoBERTa-Large∗ [107].

∗This is a variant of XLM-RoBERTa, which has a larger parameters set.
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is also integrated with a feature extractor (d) for binary typological
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5.3. Proposed Methods
In this section, we present our multilingual constituency parser for cross-lingual
transfer. Overall, our approach consists of treebank preprocessing and typological
feature integration with smooth sampling and random dropout.

5.3.1 Typological Feature Integration
A typology database is a valuable resource that represents various aspects of lan-
guages. Recent lang2vec [99] provides an interface to represent languages as
binary vectors of typological features. Inspired by the recent work of Ustun et
al. [30], we also integrate typological features f (TF) into our model to guide
the multilingual model’s sharing of the structural knowledge among similar lan-
guages, as Figure 5.1d shows. We use simple feature concatenation to integrate
typological features into the span classifier. Like Ustun et al. [30], we embed
binary typological vectors using two linear layers and a ReLU activation function
g, and further apply random dropout over the binary typological vectors as

f ′ = M2g(M1dropout(f) + z1) + z2. (5.3)

We then concatenate f ′ with each span vector, vi,j, which modifies Equation 5.1
as

s(i, j, ·) = W2g(f(W1[vi,j, f ′] + c1)) + c2. (5.4)

Dropout is applied directly to the binary features because, during training,
typological features only vary with respect to the number of source languages,
and each feature is only helpful in the context of other features, which is known
as co-adaptation [108]. Therefore, for a zero-shot language, without dropout, the
model would not be able to extract individual features in a new feature context,
which can be prevented using simple random dropout [108]. Like Hinton et
al. [108], we drop 50% of the features during training.

The number of multilingual treebanks commonly differs, and high-resource
languages tend to be over-represented during training. Similar to the exponential
smoothing in Kitaev et al. [106], at each epoch, we sample da examples from each
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language, where d is the size of each language treebank and a is a hyperparameter.
Unlike Kitaev et al. [106], we use a = 0.95 because the size of each treebank is
not as large as the unlabeled corpora. We also constrain the smoothed number of
examples as da > m, where m is the smallest treebank size in the source-language
pool. We call this approach “smooth sampling.”

For the typological features, we combine the syntax features of WALS [109] or
SSWL [110]†. We only select the relevant features such as 81A, 82A, 83A, 85A,
87A, 88A, 89A, 90A, 144A, and other unknown ID features as in Table 5.1. In
addition, we exclude the morphological features, which contain the word prefix or
suffix, and the missing features of any source language. For zero-shot languages,
the missing features are set to zero. After that, we further automatically remove
unnecessary features that are repeated for all source languages. Like Ustun et
al. [30], we set the hidden and output layer of our TF to 10 and 32, respectively.

5.3.2 Treebank Preprocessing
When combining multiple constituency treebanks, many syntactic disagreements
among those treebanks could occur. One obvious issue is the difference in their
syntactic labels. We observed that high-resource languages tend to have more
diverse labels, whereas low-resource languages use a much smaller label set; for
instance, Myanmar and Khmer have five and six labels, respectively, whereas
English has 26. Moreover, label symbols for each treebank are very language-
specific; for example, French and English, which have large label sets, only share
two labels. Additionally, unary constituents that can be regarded as stacked labels
of their child’s labels might be common in some treebanks. We found that the
number of stacks differs across the existing treebanks which is also problematic
for the cross-lingual transfer evaluation.

Therefore, to solve this diversity, we propose a treebank preprocessing (TP)
step when combining treebanks of multiple languages together. Firstly, we remove
any non-terminal span that has length or number of children less than two, which
is a unary span (i, j) ∈ T where j − i < 2. After that, we mask the labels of

†These features can be obtained using lang2vec by passing a syntax_wals+syntax_sswl. ar-
gument.
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Name Feature ID
81A SVO, SOV, VSO, VOS, OVS, OSV

82A
SUBJECT_BEFORE_VERB
SUBJECT_AFTER_VERB

83A
OBJECT_AFTER_VERB
OBJECT_BEFORE_VERB

85A
ADPOSITION_BEFORE_NOUN
ADPOSITION_AFTER_NOUN

87A
ADJECTIVE_BEFORE_NOUN
ADJECTIVE_AFTER_NOUN

8A
DEMONSTRATIVE_WORD_BEFORE_NOUN
DEMONSTRATIVE_WORD_AFTER_NOUN

89A
NUMERAL_BEFORE_NOUN
NUMERAL_AFTER_NOUN

90A
RELATIVE_BEFORE_NOUN
RELATIVE_AFTER_NOUN
RELATIVE_AROUND_NOUN

144A

NEGATIVE_WORD_BEFORE_VERB
NEGATIVE_WORD_AFTER_VERB
NEGATIVE_WORD_INITIAL
NEGATIVE_WORD_FINAL
NEGATIVE_WORD_ADJACENT_BEFORE_VERB
NEGATIVE_WORD_ADJACENT_AFTER_VERB

Others

SUBJECT_BEFORE_OBJECT
SUBJECT_AFTER_OBJECT
POSSESSOR_BEFORE_NOUN
POSSESSOR_AFTER_NOUN
DEGREE_WORD_BEFORE_ADJECTIVE
DEGREE_WORD_AFTER_ADJECTIVE
SUBORDINATOR_WORD_BEFORE_CLAUSE
SUBORDINATOR_WORD_AFTER_CLAUSE

Table 5.1: List of typological features.
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all the remaining non-terminal spans with an unified symbol, e.g., “P” as in the
example in Figure 5.1a. As a result, our label classifier is simplified to only detect
the span as a span or non-span.

5.4. Experiment

5.4.1 Setting
Dataset: The evaluation was performed on 14 languages: English from the Penn
Treebank [100]; Chinese from the Chinese Penn Treebank 5.1 [101]; Japanese,
Khmer, and Myanmar from the Asian Language Treebank [21]; and Arabic,
Basque, French, German, Hebrew, Hungarian, Korean, Polish, and Swedish from
the SPMRL 2013 shared task [103]. The standard splits of each treebank were
applied to prepare the training, validation, and test datasets. We grouped the lan-
guages into high- and low-resource (zero-shot) languages based on their amount
of data; those with fewer than 10k samples were treated as low-resource languages
(Khmer, Hungarian, Basque, Polish, Swedish, and Hebrew). We trained a mul-
tilingual model on the high-resource languages and evaluated the cross-lingual
parsing on the low-resource languages. Note that Khmer and Myanmar scripts
have no word boundaries, so we simply use their gold segmented long token‡ for
this experiment. We observe that XLM-RoBERTa-Large’s tokenizer produces
reasonable sub-words for Khmer and Myanmar’s long tokens, even when the tok-
enizer was trained using SentencePiece for these two languages. Table 5.2 presents
detailed data statistics for each language.

Baselines: We trained two baselines, single- and multi-source models. For
the single-source model, we trained the parser for each high-resource language
and then selected the best model based on its parsing accuracy on the oracle
test set (Sbest) of the low-resource language or used the precomputed syntactic
distance [99] (Sdist). For the same-value syntactic distance, we further weighted
each source language based on the size of its corresponding training data. For the
multi-source baseline, a multilingual parser (Mbase) was trained on concatenated

‡Khmer and Myanmar written scripts can be segmented into morphemes (short tokens) or at
compound level (long tokens) [23]
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Code Language Train Valid Test
de German 40, 472 5, 000 5, 000
en English 39, 832 1, 700 2, 416
ko Korean 23, 010 2, 066 2, 287
my Myanmar 18, 088 1, 000 1, 018
zh Chinese 17, 544 352 348
ja Japanese 17, 204 953 931
ar Arabic 15, 762 1, 985 1, 959
fr French 14, 759 1, 235 2, 541
km Khmer 8, 788 510 654
hu Hungarian 8, 146 1, 051 1, 009
eu Basque 7, 577 948 946
pl Polish 6, 578 821 822
sv Swedish 5, 000 494 666
he Hebrew 5, 000 500 716

Table 5.2: Data statistics. The numbers refer to numbers of sentences where
upper languages are high-resource languages and lower for low-resource
languages.

treebanks without the treebank preprocessing step or typological features.
Evaluation: The outputs of all models were post-processed including removal

of trivial spans (width-one/unary and sentence-level spans). Unlike the evaluation
in Chapter 4, punctuation marks were kept in this chapter. We calculated the
unlabeled F1 measure to evaluate cross-lingual performance. All following F1
values refer to the unlabeled F1 for simplicity. Worth noting that the removal
of trivial spans and the evaluation without labels is equivalent to applying our
treebank preprocessing step.

5.4.2 Results
As shown in Table 5.3, the performance of single-source transfer was very high,
especially when the best source language can be accurately detected. Unfor-
tunately, the precomputed syntactic distance is not enough to choose the best
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Model km hg eu pl sv he avg
Sbest 70.0 64.7 33.2 72.8 74.8 77.1 64.5
Sdist 70.0 31.2 27.2 72.8 74.8 71.3 55.5
Mbase 55.5 68.6 27.3 65.6 67.8 80.5 61.9
TPours 69.0 73.9 34.7 67.9 73.1 81.6 66.2
TP+TFours 71.8 74.7 35.8 68.3 73.8 82.2 67.0

Table 5.3: Main results in unlabeled F1. The best F1 for each row is highlighted
in bold text.

source language; in the results, it failed in three out of six cases. The alter-
native to source selection is to train a multilingual parser. Interestingly, even
the straightforward treebank concatenation Mbase has a competitive performance
when compared with the single-source transfer. The results further show that the
treebank preprocessing step is essential when training a multilingual constituency
parser for zero-shot languages, where the improvement over Mbase is 4.3 in average
F1. This result suggests that reducing the complexity of the structure improves
cross-lingual performance. In addition to the treebank preprocessing step, our
integration of typological features constantly improves cross-lingual performance.

5.4.3 Analysis

Effect of Smooth Sampling and Dropout

This section analyzes the effect of the smooth sampling and dropout as in Fig-
ure 5.2. The analysis shows that the straightforward integration of typological
features yields smaller improvements or hurts the performance for some zero-shot
languages, indicating the effectiveness of our smooth sampling and dropout, which
generalize the typology-guided cross-lingual parser for zero-shot languages. We
additionally observe that the combination of both smooth sampling and dropout
is the best configuration for the cross-lingual parsing.
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Figure 5.2: Improvements in the F1 of TP+TF over TP model with or without
SD. SD refers to Smooth sampling and random Dropout.

Effect of Pretrained Multilingual Language Models

We have demonstrated the high performance of cross-lingual constituency parsing
using the pretrained multilingual language model—XLM-RoBERTa-Large (XLM-
R-L), of which performance is up to 70 F1 for most target languages. Since the
cross-lingual model is based on its cross-lingual input representation, this section
further compares the use of the pretrained multilingual language model and the
delexicalized model (DEX) that we presented in Chapter 4. In addition, we also
analyze how other pretrained multilingual language models, i.e., mBERT [111]
and the smaller variant of the XLM-RoBERTa (XLM-R) [107], be effective for
cross-lingual constituency parsing. To compare with DEX, we will only analyze
for seven languages, that is, English, Chinese, French, Khmer, German, Japanese,
and Myanmar, which were studied in Chapter 4. It is also because the POS-tags
of the other languages are difficult to be projected to the universal POS-tags.
Noting that the F1 performance of the delexicalized model will differ from that
of in Chapter 4 because the punctuation is included in this evaluation.

Table 5.4 presents the comparison in terms of the supervised and cross-lingual
performance. The supervised performance is based on the evaluation of the parser
of each target language. The cross-lingual performance is based on the evalua-
tion of the single source transfer scenario with Sdist or Sbest selection approach,
of which source languages are among the seven aforementioned languages. As a
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Model en zh fr km de ja my avg
Supervised parsing

DEX 84.5 79.2 73.1 71.3 78.7 70.3 83.7 77.2
mBERT 95.1 93.1 94.1 46.5 83.3 88.9 94.3 85.0
XLM-R 95.7 92.5 95.2 89.8 84.0 89.7 95.2 91.7
XLM-R-L 96.1 92.8 95.9 90.6 84.3 90.5 95.9 92.3

Cross-lingual transfer with Sdist

DEX 40.4 58.9 47.0 37.2 50.8 42.9 35.8 44.7
mBERT 54.1 71.5 51.5 18.4 57.5 62.3 50.4 52.3
XLM-R 53.8 75.1 55.1 66.5 61.1 62.6 48.2 60.3
XLM-R-L 50.8 66.7 58.4 70.0 54.5 63.9 54.5 59.8

Cross-lingual transfer with Sbest

DEX 52.1 58.9 47.0 38.9 50.8 42.9 40.8 47.3
mBERT 63.7 71.5 51.5 22.3 57.5 62.3 51.7 54.4
XLM-R 68.8 75.1 55.1 66.5 61.1 62.6 48.2 62.5
XLM-R-L 77.1 68.4 60.1 70.0 54.5 63.9 57.2 64.5

Table 5.4: Comparison of the cross-lingual input representation.

result, all of the pretrained multilingual language models are better than DEX
in both supervised and cross-lingual performance, which indicates that the pre-
trained models are highly beneficial for cross-lingual transfer because there is no
requirement of any bilingual information or POS-tag projection. Another ad-
vantage is from their diverse lexical information and sub-word processing that
preserve or boost the source-language parsing performance. However, the per-
formance of the mBERT for Khmer is very low that is because the mBERT’s
tokenizer chunk the Khmer word into characters, which has been fixed in the
XLM-RoBERTa model by exponential-smoothing-based sampling. In addition,
the XLM-RoBERTa models tend to perform better than mBERT in most cases
and the performance of the XLM-R-L and XLM-R are comparable.
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5.5. Summary
We demonstrated the strong ability of recent pretrained multilingual language
models for cross-lingual constituency parsing. This result will serve as a new
benchmark for future cross-lingual constituency parsing. Moreover, we found that
our treebank preprocessing step is crucial when training multilingual treebanks
with diverse label sets. In addition, our typological feature integration with
dropout and smooth sampling generalizes and improves the model for zero-shot
languages. Because we integrated typological features into the span classifier
using a simple concatenation approach, more advanced techniques—for instance,
a parameter generator [30]—with our dropout and smooth sampling could be
studied in the future.
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Chapter 6

Conclusions

6.1. Summary
This thesis addressed the fundamental problems of the NLP systems, that is,
tokenization, POS tagging, and constituency parsing for the Khmer language.
Preliminary, we developed a corpus and investigated the tokenization and POS
tagging for the Khmer language as in Chapter 3. After that, we studied cross-
lingual transfer for constituency parsing as in Chapters 4 and 5.

In Chapter 3, we proposed a tokenized and POS-tagged Khmer corpus that
contains annotation for the grammaticalization and compounding. The corpus
consists of 20, 000 sentences. The manual annotation processing started in 2016,
and the corpus was the largest morphological annotated Khmer dataset when
this work was completed in 2020. Khmer is extremely analytic such that its
syntactic information is overwhelmingly afforded by word order with abundant
grammaticalization phenomena. Therefore, the tokenization and POS tagging
processing for Khmer are considerably ambiguous. We investigated the auto-
matic tokenization and POS tagging based on our annotated data using four
standard approaches of SVM, CRF, LSTM-RNN, and LSTM-CRF. Our exper-
imental analysis showed that automatic processing up to morpheme level was
satisfactory, but for larger constituents, for example, complex compounds and
phrases, joint processing was required. Broadly, the discussed linguistic phenom-
ena of the Khmer language, that is, the head-initial and analytic features, are
prevalent for many languages in Southeast Asia. The investigation in this study
can also contribute to the development of these languages, most of which are still
low-resource and understudied in the NLP field.

In Chapter 4, we proposed a cross-lingual constituency parser by delexical-
ization, which outperformed the fully-unsupervised baselines in most cases. We
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confirmed that the model transfer can achieve high performance if the best source
languages are carefully selected. We have compared three source selection meth-
ods and shown that using a small treebank of target languages for selection is
highly accurate. In addition, we observed that the delexicalization sacrificed the
supervised parsing performance for each source language that was then addressed
in Chapter 5 by preserving the lexical information.

In Chapter 5, we examined the performance of a multi-source cross-lingual con-
stituency parsing model and proposed a treebank preprocessing step and typolog-
ical features integration to generalize the cross-lingual performance of the model.
Specifically, we demonstrated the strong ability of recent pretrained multilingual
language models for lexicalized cross-lingual constituency parsing even without
using bilingual information. We investigated multi-source transfer, which does
not require source-selection technique and in some way outperform best-selected
single source transfer. Lastly, we showed that our treebank preprocessing step is
crucial when training multilingual treebanks with diverse label sets. In addition,
our typological feature integration with dropout and smooth sampling generalizes
and improves the model for zero-shot languages. Lastly, we have also shown the
state-of-the-art supervised and zero-shot performance for the Khmer language
in this chapter. Specifically, the supervised performance is up to 90.6 and the
zero-shot performance based on our model is up to 71.8.

6.2. Future Directions
On top of our tokenized and POS tagged corpus, the syntactic annotation has
been completed as a final treebank for Khmer and is going to release in near
future. We plan to conduct experiments on the ultimate joint processing of tok-
enization, POS-tagging, and syntactic parsing on our final treebank. Additionally,
as the experiments showed, a proper noun dictionary is necessary. Therefore, like
Mon et al. [112], we also plan to develop a dictionary of borrowed words in Khmer
after completing the final treebank.

For cross-lingual parsing, there are rooms to improve our approach that we plan
to study in the future. Specifically, firstly, even we have shown that the concate-
nation technique for typological features integration yield a good improvement,
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more advanced techniques—for instance, a parameter generator [30]—with our
dropout and smooth sampling will be studied in the future. Secondly, as the
typological features are valuable and useful for the cross-lingual transfer, further
analysis of each feature’s contribution to the approach will provide more insight
and allow to select more relevant features for transferring. This will also be
studied in our future work.

Additionally, we are also interested to fine-tune our model in Chapter 5 using
each target language’s treebank. However, our preliminary experiment cannot ob-
serve any obvious improvement using a simple fine-tuning technique that simply
uses our model for parameter initialization. Intuitively, surpassing the perfor-
mance of the supervised model is difficult for two reasons. First, the supervised
model leveraged the pretrained language model that has overcome the unknown
vocabulary problems. Second, structures in both train and test sets are very
similar in that most structures in the test set might be covered in the training
set as their accuracies are already higher than 90% in most cases as in Table
5.4. Therefore, an attentive fine-tuning experiment including setup, analysis,
and discussion, is necessary, which will be studied in the future as well.

Furthermore, we also would like to discuss the application of our works for
future NLP systems. As we have developed a tokenized and POS tagged corpus
for Khmer morphemes and words our corpus will be used for the basic step—
tokenization—of the NLP tasks for Khmer, e.g., the multilingual NLP tasks that
are being studied for more than a hundred languages. Based on our knowledge,
there are language modeling [107], machine translation [113], text summariza-
tion [114], named entity recognition [115], and question answering [116] tasks.
None of these tasks tokenize texts for Khmer into words or morphemes. Instead,
the Khmer texts were chunked using sentencepiece approach [107, 113], or into
characters sequence [115]. However, the experiment without a tokenizer is diffi-
cult to be conducted [114]. Therefore, our corpus will facilitate future NLP tasks
or will be used to improve the system performance. Besides, we plan to analyze
the performance of the various NLP tasks when using the morpheme or word as
the input unit. In addition, we are also interested to explore the usefulness of the
POS-tag information for machine translation for Khmer, which is inspired by the
previous works [5, 7].
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The syntax is essential for the NLP systems because it represents the language
interpretation behavior of humans [117]. Its contribution to the NLP systems has
been demonstrated in various studies, e.g., syntax-based language modeling [10],
text summarization [16], and machine translation [11, 14, 15]; and the syntax
information tends to be more useful for low-resource languages [11,13–15]. How-
ever, the syntax of English was commonly used for these studies due to the high
quality of the English treebanks and it can be more interesting to investigate the
use of the syntax of the low-resource languages. Besides we have shown that our
zero-shot parser can induce a good pseudo syntax, the future syntax-based NLP
systems should be able to benefit our zero-shot parser. Certainly, our zero-shot
parser may not perform well for all the languages because of the limited number
of source languages for training the model. However, it is possible to validate the
quality of the pseudo syntax based on the performance of the downstream tasks
and to improve the parser performance via a multi-task approach [10], which are
listed in our plans.
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