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Representation Learning Schemes and
Interpretable Scoring for Sleep Stage∗

Zheng Chen

Abstract

Sleep stage scoring/classification is crucial for the assessment of sleep quality
and the diagnosis of sleep disorders. Recently with the progress in deep learn-
ing, the sleep community has seen successful applications of deep networks on
automatic stage classification tasks fueled by large-scale public sleep datasets.
Undoubtedly, the performance of a deep learning model is heavily dependent on
the data representation on which they are pre-processed to reveal more latent
information. Hence, how to represent the stage-dependent characteristics in hu-
man brain is crucial for the subsequent classifier. Moreover, manual scoring is a
rule-based process. It needs to follow the criteria that were defined by combining
the physiological evidence with the consensus of sleep experts. Hence, a reason-
able and interpretable framework is precisely what the sleep scoring community
requires.

Considering the frequency characteristics of the electroencephalogram (EEG)
in sleep nature, this thesis first explores the different time-frequency frame-
works for the representation learning of the EEG following the definition of sleep
medicine. The results show the stage-dependent characteristics of EEG wave-
form can be embedded into a set of spectrogram of short EEG segments that is
compliant with the scientific understanding of the cortical behavior during sleep.
By merging with the parallel computational deep learning structure-Transformer,
the pipeline attains the best performance when compared with the other works
and reached a new state-of-the-art. Finally, this thesis visualizes the stage scoring
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process of the model decision with the layer-gradient-wise propagation method,
which shows that our work is more sensitive and perceivable in the decision-
making process than the existing related works.

Keywords:

Sleep stage classification, EEG, Representation Learning, Deep Learning, Trans-
former
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1 | Introduction

Sleep is a human function, the characteristics of which are manifested by a se-
quence of physiological alterations, including neural spiking, cardiorespiratory,
blood oxygen saturation, and eye activity. During sleep, the consciousness will
be altered, the sensory activity is relatively inhibited while its reduced muscle ac-
tivity and inhibition of nearly all voluntary muscles during rapid eye movement
(REM) sleep [30]. It is distinguished from wakefulness by a decreased ability to
react to stimuli, but more reactive than a coma or disorders of consciousness,
with sleep displaying different, active brain patterns.

Sleep occurs in repeating periods, in which the body alternates between two
distinct modes: REM sleep and non-REM sleep [65]. Although REM stands
for "rapid eye movement", this mode of sleep has many other aspects, including
virtual paralysis of the body. A well-known feature of sleep is the dream, an
experience typically recounted in narrative form, which resembles waking life
while in progress, but which usually can later be distinguished as fantasy. During
sleep, most of the body’s systems are in an anabolic state, helping to restore
the immune, nervous, skeletal, and muscular systems; these are vital processes
that maintain mood, memory, and cognitive function, and play a large role in the
function of the endocrine and immune systems[50]. The internal circadian clock
promotes sleep daily at night. The diverse purposes and mechanisms of sleep are
the subject of substantial ongoing research. Sleep is a highly conserved behavior
across animal evolution [44].

Screening sleep is not only a tool in the assessment of pathophysiology [25, 51],
but an essential ingredient in the exploration of neuroscience [34, 68, 88]. Hu-
mans may suffer from various sleep disorders, including dyssomnias such as in-

1



Sleep study setup
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Figure 1.1: Human sleep during PSG recording

somnia, hypersomnia, narcolepsy, and sleep apnea; parasomnias such as sleep-
walking and rapid eye movement sleep behavior disorder; bruxism; and circadian
rhythm sleep disorders [8]. Moreover, experimental validations prove that some
electroencephalogram (EEG) features shown in different sleep stages have ex-
traordinary physiological significance [3]. For instance, slow waves contribute to
memory consolidation [64], and neurophysiologists proved sleep spindle is highly
correlated with tests of intellectual ability [31]. Hence, determining sleep stages
and consequent macrostructures is indispensable in sleep care and sleep science.

Standardized rules for sleep stage scoring using polysomnography (PSG) (seen
in Figure 1.1) were first laid out by Rechtschaffen and Kales (R&K rule) in
1968 [1]. There are seven stages: wake, stage S1, stage S2, stage S3, stage S4,
REM and movement. Usually, stage S1 and S2 can be viewed as light sleep that
implies human enters to beginning phase of sleep. This light sleep often contains
few sleep epoch and transfers the sleep condition to deep very fast. Stage S3 and
S4 are the deep sleep that human rehabilitates the physical fatigue during this
phase. The American Academy of Sleep Medicine (AASM) re-defines overnight
sleep into five different stages in 2007, where the stage S4 and movement is no
longer existed. There is a constant cyclic pattern of sleep stages from wake to
non-rapid eye movement (NREM) to REM that repeats several times one night,
where NREM consists of three stages, i.e., N1, N2, and N3 [7]. Sleep staging
clinically relies on overnight electrophysiological recordings using the PSG [71].
Clinically, experts are required to inspect the stage-dependent characteristics of
various physiological indexes in PSG recording and then assign a sleep stage
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to each 30-second epoch on the basis of distinct features. This laborious han-
dling strongly relies on prior knowledge and inevitably limits the batch scoring
of stages. Moreover, given that the recent advances in portable monitoring with
fewer sensors could provide technical support for daily sleep screening [70, 84].
Therefore, a reliable automatic sleep stage scoring alternative is crucial for the
sleep community.

1 Problem Statement

At the level of human electrophysiology, quantitative analysis of EEG is the
priority to illuminate the structure of sleep and its control mechanisms [34]. Au-
tomatic sleep scoring stimulated by the field of deep learning and recently shows
the promises [67, 76, 102]. With benefiting from the increasingly available sleep
databases, numerous advanced frameworks with large-scale parameters proposed
to explore the feasibility in several aspects [4, 9, 72, 75, 80, 92]. However, the
current research findings do not break a blockade by the manual process
yet.

The performance of the current deep learning models is overly dependent on
data and its representation [5]. Back to the sleep nature, the functional cooper-
ative interaction of brain dynamics always has heterogeneous characteristics of
inter-subject, even the same subject records at the different physical or emotional
conditions [3]. Without considering and introducing this nature, the methodology
of sleep stage scoring alternative is limited for revealing the inter-subject vari-
ability inherent in real clinical settings. Therefore, the representation learning for
the stage-dependent characteristics in sleep nature is a corn stone but essential
study for sleep staging alternative.

Some studies pay attention to finding a entire alternative. The network archi-
tectures are designed on top of reckless pursuing the scoring performance, with
overly relying on the ability of deep learning. With the architectures getting more
complex, the derived black-box issues lead the decision-making of the networks
to lack the explanations. A reasonable deep learning framework is precisely what
prerequisites the automatic sleep scoring community requires.

More recently, some studies aim to construct the end-to-end framework from

3



mining the latent features in data to stage scoring. However, manual scoring is a
rule-based process. It needs to follow the criteria that defined by combining the
physiological evidence with the consensus of sleep experts [72]. Without consider-
ing constraints of clinical sleep truth, it is hard to evaluate whether the results can
assist the sleep scoring. Therefore, the effectiveness of the proposed frameworks
is somewhat unconvincing. In conclusion, an interpretable sleep scoring needs to
involve an adaptive framework designed from the perspective of data attributes,
while explaining the decision-making of the networks. However, manual scoring
is a rule-based process that has to follow the criteria which defined by combining
the physiological evidence with the consensus of sleep experts [72]. Building the
framework cannot completely escape the constraints of clinical sleep truth to en-
sure effectiveness. In another word, interpretability sleep scoring needs to involve
an adaptive framework designed from the perspective of data attributes.

Existing works have proved that combined with the feature mapping layers of
deep learning, the performance has a significant improvement [4, 80, 92]. Mean-
while, the recent advances in portable monitoring with fewer sensors provide
technical support for daily sleep screening [70, 84]. Despite the above attempts,
it still remains unclear about (i) the representation learning method for sleep
stage-dependent characteristics, (ii) how to construct a context-sensitive flexible
pipeline that automatically adapts attributes of sleep data itself, (iii) the Inter-
pretability of the model decision-making. Therefore, I state this thesis as follows:

Thesis Statement: Considering the time-consuming issue in sleep stage
scoring, a reasonable and accurate automatic sleep stage framework is re-
quired. Presuming the natural frequency characteristics in sleep medicine,
this thesis aims to proposes a time-frequency framework for the representa-
tion learning of the electroencephalogram following the definition of sleep.
To meet the temporal-random and transient nature of the defining char-
acteristics of sleep stages, this thesis presents a context-sensitive flexible
pipeline that automatically adapts to the attributes of data itself. Through
the thinking and mimicking the sleep nature and scoring process, the pro-
posed framework provides the potential values and feasibility for future
sleep health-care.

4



2 Contributions

The main contributions of this thesis can be classified into two categories: em-
pirical observations and future research directions.

Empirical Observations

1. The multi-resolution latent features of EEG have a more accurate recon-
struction and it is benefit for downstream sleep stage classification. (Chap-
ter 3)

2. Latent Dirichlet Allocation topic model proved the feasibility of the multi-
topics representation for sleep signals. (Chapter 3)

3. Sleep scoring framework requires to extract the relevant features of sleep
stage that considers the intrinsic characteristics of stage defining character-
istics expressed in EEG signal, e.g., Delta (δ), Theta (θ), Alpha (α), Sigma
(σ), Beta (β). (Chapter 3)

4. The transient characteristics of the frequency domain can be parallel cap-
tured from the different 1-second time duration. (Chapter 3)

5. By constructing a delicate network structure, this paper reaches state-of-
the-art performance in scoring accuracy of intra-epoch classification under
the EEG-signal-only restriction. (Chapter 4)

6. By using the layer-wise relevance propagation method in the proposed
model, the resultant attention-derived matrix can be explained clinically
and therefore provides interpretability for the staging decision. (Chapter 4)

7. The sleep-mechanism based framework is able to elevate the scoring accu-
racy on one hand, and provides better interpretability on the other hand;
(Chapter 5)

Future research directions

1. Sleep stage scoring alternative requires more available dataset to tackle the
variability of inter-subject. (Chapter 3)
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2. However, the training issue, especially, sequence-level training needs to
adopt quantified strategy. (Chapter 4)

3. A further redundant information refinement and reduction will speed up
the real use in automatic sleep stage scoring. (Chapter 4)

3 Thesis Outline

In this section, I provide structure of the thesis and the potential research out-
comes. In the remainder of the thesis, first of all I introduce the studies that are
related to this thesis.

• Chapter 2— Three main related topics are discussed as follows: (i) rep-
resentation leaning method, (ii) automatic sleep stage scoring model, and
(iii) model explanation.

I then present the main studies that are split into three chapters. These
chapters are organized into Part I Representation Learning of Sleep Nature
and Part II Accurate Staging Framework and Decision Interpretability.
Each chapter has corresponding potential research outcomes.

• Chapter 3— This chapter introduces three case study to investigate the
representation methods of sleep stage-dependent characteristics in EEG.
The results show that extracting sleep frequency characteristics requires
to meet the criterion of sleep medicine and to consider feature representa-
tions in different frequency bands. Moreover, a time-domain refinement can
further improve the sleep stage scoring performance.

• Chapter 4— This chapter proposes a novel local-context-sensitive pipeline
to extract the relevant features of sleep stage that considers the intrinsic
characteristics of stage defining characteristics expressed in EEG signal.
Also, the proposed framework can capture the key stage-depdent features
in parallel and it is able to elevate the scoring accuracy on one hand.

• Chapter 5— This chapter investigates the feasibility of parameter-tracking
(model weight and output layers) visualization. By using the layer-wise
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relevance propagation method in the proposed framework, the resultant
attention-derived matrix can be explained clinically and therefore provides
interpretability for the staging decision.

Finally, Chapter 6 provides the conclusion that includes the main research
results and contributions of this thesis. I also provide the potential opportunities
for future sleep stage scoring alternative research.
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2 | Related Studies

Representation leaning method - Current deep learning methods strongly rely
on the data and its representation. During sleep, the noise involved issue and the
entangled multiply frequency waves bring the burden to the discriminative model.
A reliable representation of the signal is crucial for the sleep stage classification
task.

To capture/represent these sleep-specific features, early works have used hand-
craft feature design methods based on prior knowledge [46, 74, 97]. Based on these
clinical features, effort has been put into the searching for more salient features in
sleep scoring. The proposed features include spectrogram [9, 67, 72, 75, 76, 102],
power spectral density [40, 89, 97], entropy [46, 89], wavelet transformation
[39, 59, 74]. Considering the interpretability of the feature representation, some
studies introduced word distribution [49], graph representation [22, 41], statis-
tics [22, 55, 89] to feature extraction phase. These studies transfer the signal
dimensions to a explainable dimension and then fed the transformations into the
classifiers. However, the reconstructed feature space sometimes cannot retrieval
the key features back from the signal sequence. Therefore, empirical mode de-
composition [42, 104], wavelet[43], feature mapping neural network [4, 12, 80, 92]
are widely used in sleep stage classification study in recent. However, extract-
ing hand-crafted features is time-consuming and requires heavy prior knowledge.
Practitioners often select features that are expected to work well with the model
from a statistical learning perspective, and seldom consider the feature extraction
problem from a neuroscientific viewpoint that explicitly considers the dynamic
nature of human brain.

Existing works have proved that combined with the feature mapping layers of
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deep learning, the performance has a significant improvement [53, 86, 92, 102].
Even, some researchers try to construct a fully staging model from the feature
extraction to end classification decision.

Due to the convolutional neural networks (CNNs) becoming the defacto stan-
dard for visual classification tasks, CNNs have been used in feature extraction
from the frequency or time-frequency domain [4, 80, 92]. By interleaving a col-
lection of multi-size convolutional filters with non-linear activation functions and
downsampling operators, proposed scoring frameworks expect to capture sophisti-
cated local features and attain an inductive representation of the EEG epoch [35].
To named a few, Tsinalis et al. [97] employed a set of CNNs to learn task-specific
filters for sleep classification. Enrique et al. [28] and Arnaud et al. [86] explored
the extended CNNs-based architectures to capture more meaningful frequency
features within the deeper latent space.

Since CNNs does not consider the local features against the global context, it
will results in a local inductive bias [98]. Consequently, it may draw more atten-
tion from the classifier onto a pattern of the neighboring area while distracting the
classifier from really important but transient information and its relevance. Mean-
while, feature extraction in each EEG epoch is handled by the sharing weights
of filters. This mechanism expects key rhythms to occur in a relatively inherent
position. Therefore, there is a mismatching between the translation-invariant con-
straint of CNNs and the temporally random and transient nature of the relevant
defining characteristics.

Automatic sleep stage scoring model - The sleep community has witnessed
successes in developing automatic staging systems combined with deep learning
methods. Recurrent neural networks (RNNs), such as long short-term memory
(LSTM) and gated recurrent neural networks (GRUs), have been established as
the state-of-the-art (SOTA) in automatic sleep scoring [75, 80, 85, 89]. Differ-
ent from CNNs, the RNNs-based models pay attention to the information of the
global context. By generating a set of hidden states, the decision-making con-
siders the influences of a sequence of previous time steps or future steps (by the
Bidirectional LSTM) [52].

Since RNNs-based models allow the sequential modeling of dependencies and
transfer the temporal influence into the data, some work utilized RNNs models
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into the construction of the staging system. Dong et al. [92] proposed a mixed
neural network that combines the RNNs with the LSTM. The 2-layer RNNs were
used to extract hierarchical handcraft features, while the LSTM was applied to
classify the sequence data. Supratak et al. [92] constructed a fully deep learning
model by combining the bidirectional-LSTM with the feature map CNNs. In this
work, CNNs were directly applied to the raw EEG signal to output the feature
vector which is further used for staging in Bi-LSTM. More recently, Xu et al. [102]
transformed the EEG+EOG signals to the multi-channel spectrogram and then
fed it into the LSTM model. They aim to find the time-frequency character-
istics from the second-to-second time duration and claim the performance has
an competitive overall accuracy. Considering the parallel computation, recent
works attempt to introduce the attention mechanism to the sequential model.
In the CNNs-LSTM model proposed by Chen et al. [15], an attention network
was merged to adjust the significance of two groups of features. Sun et al. [89]
proposed a multi-flow RNN which is utilized to learn temporal information by
fusing the hand-crafted features and network-trained features.

Although the periodic frequency waves, for example, theta oscillations meet
the assumption of a recurrent-based model, such transiently burst rhythms, such
as non-periodic sharp-wave ripples and spindle activities are unpredictable [2, 10].
Here, the previous time duration of the EEG segment cannot provide the indicator
for key rhythms. Further, the inherently sequential nature (time-invariant) of the
recurrent-based model precludes the possibility of parallelization within feature
capture [99]. This constraint but is a non-trivial consideration for screening the
occurrence of transient sleep rhythms.

Model Explanation - Sleep experts point to the scepticism of deep learning
models being a black box, which is a common criticism when it comes to the
application of artificial intelligence in healthcare and medicine [78]. Model ex-
planation, especially, to explicitly interpret the model decision-making process is
crucial for a machine scoring system to work alongside practitioners in an interac-
tive and collaborative manner. Some previous studies pay attention to providing
the interpretability for their designed scoring framework. Phan et al. visualizes
the learned weights from a sequence of the sleep epochs by using spectrogram of
short-time Fourier transformation [75]. Sun et al. visualizes the different forms
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of signal characteristics from the network trained features. Meanwhile, this work
validates the resulted features with the sleep experts annotation. They found
the high similarities in the morphology between network trained features and the
sleep events defined by AASM [89]. However, the aforementioned methods still
focus on providing the interpretability of result, but the decision-making itself.
More recently, Phan et al. [78] adopts an attention-based model as the sleep
stage classifier. The epoch-level attention scores in this work are used as a heat
map applied to the EEG signal input to highlight the features the model attends
to. Also, the attention scores at the sequence level is interpreted as the influence
of different neighboring epochs to the recognition of a target epoch in an input
sequence. It provides a certain quantilization analysis for model-based scoring
decision.
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Part I

Representation Learning of
Sleep Nature
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3 | Representing Stage-
Dependent Characteristics

1 Introduction

The sleep stage annotation is crucial to sleep disorder/insomnia diagnosis, and
the medical evidence is based majorly on the analysis of the EEG. Quantitative
electrophysiology, which allows for the sophisticated processing of EEG signals,
has revealed how widespread human neuronal systems generate the characteristic
electrical rhythms of different sleep stages [34].

The EEG-based technical specifications of AASM define the staging rule with
a 0.5 to 30-35 Hz range in frequency oscillation [7]. By inferring stage-dependent
occurrences (or increases) in EEG features, the clinical setting assigns a stage to
each 30-second epoch.

Specifically, the transition from quiet wakefulness to eyes closed in humans is
characterized by the onset of 8-12 Hz posterior dominant rhythm (alpha rhythm),
while scoring epochs as wakefulness when more than 50% of the epoch contains
alpha rhythm [2]. Beta waves (16-32 Hz) are the states associated with wakeful-
ness. The slow oscillations provide the nested characteristic waveforms (spindles,
K-complexes, theta and delta waves) for NREM sleep. Theta waves (4-8 Hz)
that consist of the low-amplitude and mixed frequency activity are the criteria
for stage N1. When one or more K-complex and sleep splines under the low beta
waves (12-16 Hz) appear, the corresponding epoch will be scored as stage N2.
Stage N3 is characterized by large-amplitude, slow oscillations (<1 Hz) and delta
waves (0-4 Hz) [2]. Although the significant characteristic of REM is the move-
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Table 3.1: EEG frequency definitions of AASM

Rhythm Frequency band (Hz) Target stages
Delta (δ) 1-4 N3
Theta (θ) 4-8 N1, R
Alpha (α) 8-12 N1, W
Sigma (β1) 12-16 N2
Beta (β2) 16-32 W, R

ment of the eye and muscle, the saw-tooth waves are alternative scoring criteria.
The summary of stage-dependent frequency waves has shown in TABLE 3.1.

Moreover, these frequency rhythms are reliant upon different modulations
from distinctive subcortical regions of the human brain. For example, the high
energy distribution of the occipital region commonly reflects activation of the
alpha rhythm [7]. However, the distributed networks of brain structures make
the information sharing from different activated regions and even synchronized
activation [26]. This mechanism results in a large number of stage-irrelevant
disturbances (or noise) in EEG records. Sometimes, the continuum of frequency
waves across stages even dominates the current stage [2]. As a consequence,
the stage-dependent characteristics are not always unequivocal among the same
staged EEG epochs.

However, some physiological nature of sleep still hinders the mapping from
the inherent feature space to inductive subspace. Reflecting the mechanism of
burst firing at the cell level to the frequency rhythm in EEG, the spontaneous
rhythms of the met criteria of staging sometimes are transient events [18]. For
instance, the spindling activity is even burst within a duration of 0.5–1.5 second
[2]. The duration of vertex sharp waves which represent stage N1 is less than 0.5
seconds.

Meanwhile, the transient rhythms exhibit dynamic or temporal-random char-
acteristics while it bursts with other concomitant frequency waves. Although
this truth leads to the stage-dependent waves cannot dominate one epoch, the
intense burst firing is important in stage scoring processes. Sometimes, an as-
signment of the stage relies on the key waves which solely appear at one time
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Figure 3.1: Stage-dependent features in sleep medicine: (a) exhibits a sample
spectrogram for its sleep stage, while (b) is the corresponding EEG epoch signal.
The stage-dependent feature following the TABLE I has highlighted in red. (c)
shows the morphological details for different sleep rhythms.
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(e.g., K-complex for stage N2 [7]). In addition, the issue of stage transition re-
mains. That is, multi-segment of an epoch often meets the criteria for different
stages. The temporal nature inevitably limits to capture the stage-dependent
characteristic from the time-invariant space. Importantly, how to represent the
key transient non-stationary rhythms, e.g., stage-dependent feature is a runoff
effort for the staging system.

The end-to-end pipeline implemented by deep learning models in recent years
has made feature generation more flexible and problem-specific [75, 80]. The
subject-wise generalization gap, especially in models with complicated represen-
tation learning, can be problematic [81]. Therefore, where to draw a line between
predefined and adjustable representation generation should be discussed.

We can think of predefined-feature-only input and raw EEG input to a learning
model as two extremes and assume that a better solution lies between them.
To finding a property representation method that is to server for downstream
staging/classification deep learning framework, this work aims to explore a feature
reasonable feature method in both learning method and hand-crafted method.
There are three case studies (CR) of representation learning are as below:

• CR1: A deep generative model: variational-autoencoder-based
representation

• CR2: A multifold symbolic representation with Latent Dirichlet
Allocation topic model

• CR3: A context-sensitive flexible pipeline based on time-frequency
representation

The key results of each CR are as follow:
For CR1, we constructed a shallow iVAE (Inception-based variational autoen-

coder) model, which will capture the multi-scale features of the spectrogram of
EEG by replacing the main structure in encoder and decoder with the inception-
like structure. By comparing with the vanilla VAE and convolutional autoencoder
(CAE), a more accurate reconstruction and a better classification using the latent
features of the iVAE can be confirmed.

For CR2, we investigated feasibility of the EEG-based symbolic representa-
tion for sleep stages. By combining the Latent Dirichlet Allocation topic model
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and comparing with different feature extraction methods, the work proved the
feasibility of multi-topics representation for sleep stages and physiological signals.

For CR3, the proposed pipeline is validated against a large database, i.e.,
the Sleep Heart Health Study (SHHS), and the results demonstrate that the
competitive performance for the wake, N2, and N3 stages outperforms the state-
of-art works.

1.1 Chapter Organization

The remainder of this chapter is organized as follows: Section 2 introduces the
details of CR1. Section 3 describes the symbolic representation of EEG (CR2 ).
Section 4 introduces the details of CR3. Finally, I conclude this chapter and
discusses the implications from the findings in Section 5.

2 CR1: iVAE

2.1 Variational Autoencoder

By borrowing the data-driven approaches based on deep learning, researchers
have started to use the generative model in data augmentation [48], add latent
features extraction [79]. However, one thing we need to be very careful is that
many physiological signals have crucial local features, for example, the existence
of P-wave in electrocardiogram (ECG), and it puts a very strong restriction on
applying the unsupervised methods in biomedical signals.

Recent studies emphasize the importance of representation learning rather
than feature engineering [6]. Hence, some researches turn their attention to auto-
matically extract the informative features by using deep-learning-based methods,
especially in, DGMs. DGMs is a unsupervised representation learning technol-
ogy, which can work on feature representation learning of images and reconstruct
the feature space into a lower latent [36]. Variational autoencoder (VAE) is one
of the type of unsupervised DGM which became widely utilized in analysis of
pathological images or biomedical problems.

VAE is now widely used in computer vision, natural language processing and
communication, etc [47]. By bringing in the assumption that the latent features
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Figure 3.2: VAE mechanism

are of a simple prior distribution and are independent, VAE can capture the
complicated distribution of the latent features, which may be further used in
downstream pipeline e.g., classification, of the data explicitly. On the other hand,
the disadvantages of the VAE are obvious, one of which is the roughness of the
rebuilt output. The other one is the prior distribution may not always go well
with the real data. The mechanism of VAE can be seen in Figure 3.2.

2.2 Motivating Example

Numerous researchers have tried to use the VAE in biomedical signals. Yildirim et
al. have used the convolutional autoencoder (CAE) to compress the normal ECG
signal [103], which has shown the potential of the VAE in learning the local and
general features. Targeting at the practical application, Dai et al. have used the
CAE model in motor imagery classification with EEG signal and have attained
the highest performance in experimental data [19]. Li et al. used the RNN-VAE
in multi-channel EEG emotion recognition and have shown a better performance
over the other recurrent deep learning models [54]. Phan et al. used the con-
volutional neural network in EEG, EMG, and EOG signal to classify the sleep
stages into W, N1–N3, and REM [76]. Li et al. used the predefined features of
EEG extracted from sleep stages and stage transition periods to classify the sleep
stages. Combined with assembly random forest classifier, they got satisfactory
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accuracy in open datasets [62].
Even though the number of open biomedical databases is increasing in re-

cent years and especially sleep-related datasets have spurted. The gap between
trained classification models based on open datasets and their uses in local sys-
tem remains. One of the propeller in the sleep-staging filed has been the design
and validation of new features, which were taken in by the classifier naturally, to
manifest the inherent characteristics of sleep stages [38], [21]. Zhang and Wu had
tried to choose the predefined features with the unsupervised k-means method
and combined them with the complexed-valued CNN to classify the sleep stages
[74], which was a trial in searching for new features or features space for sleep
stages.

2.3 Dataset and Preprocessing

This case study used two public databases which are available online on the
Physionet website: St. Vincent’s University Hospital/ University College Dublin
Sleep Apnea Database (UCDDB) 1 and MIT-BIH Polysomnographic Database
(SLPDB) 2 in this study [32].

The UCDDB contains 25 full overnight PSG recordings by utilizing the Jaeger-
Toennies system (sex: 21 males and 4 females; age: 50 ± 10, range 26-28 years;
AHI: 24.1 ± 20.3, range 1.7-90.9) [37] . Two EEG channels were recorded in
this database (C3-A2 and C4-A1). Meanwhile, sleep onset time and sleep stages
were scored by an experienced sleep technologist according to standard R&K
guidelines. Considering the capacity of two databases, only the signal of C4-A1
channel (128 Hz sample rate) is used in this work.

The SLPDB includes 18 recordings of multiple physiological signals during
sleep from 16 subjects. Each record contains the EEG signal of one of the three
channels (C4-A1, O2-A1, and C3-O1) with a 250 Hz sampling rate. In considering
the activation difference from different brain parts under the same stage, we finally
chose five records with EEG signal of C4-A1 channel.

In pre-processing phase, five records in SLPDB are firstly selected and re-
sampled to 128 Hz same as UCDDB. Since sleep EEG recordings have been

1https://physionet.org/content/ucddb/1.0.0/
2https://physionet.org/content/slpdb/1.0.0/
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typically contaminated by various types of artifacts, a 20th order Butterworth
bandpass filter with cutoff frequencies between 0.5 and 30 Hz is implemented
into two datasets. These cutoff frequencies for bandpass filtering were selected
because the brain activities have significant information in 0.5 to 30-35 Hz range
during sleep [69]. After the preprocessing of filtering, each record is labeled by
its corresponding sleep stage (Wake, REM, Lightsleep, and Deepsleep). Note-
worthily, we merge s1 and s2 stages into the lightsleep, thus, s3 and s4 stages are
regarded as deepsleep class.

The spectrograms (size: 129×29) are generated for each EEG epoch to trans-
form the signal into the log-power spectra via a short-time Fourier transform
(STFT) with a 256 points Hamming window, 50 % overlap, and 256 sampling
points Fast Fourier Transform (FFT). Whereafter, min-max normalization is im-
plemented for each spectrogram across different subjects to take the inter-subject
variation into the model.

2.4 Network Architecture

Preprocessed spetrogram is input to the proposed VAE-based model (iVAE) to
generate a latent representation. VAE is an unsupervised generative model for
estimating distributions in lower dimensional latent feature spaces (z) to rep-
resent the data itself. The random variable z is learned from the given input
X. The posterior pθ(z|X) parameterized by weights θ is modeled by an encoder
network. Since pθ(z|X) is an intractable posterior distribution, VAE framework
proposes a substitutive distribution qφ(z|X) to approximate pθ(z|X) by varia-
tional inference, while qφ(z|X) is usually assumed to be a Gaussian distribution
N(0, 1). Meanwhile, a distribution pθ(X|z) is constructed by the input data and
then evaluate the latent feature spaces z and to represent the distribution of X
itself via a decoder network.

pθ(X) = pθ(X|z)p(z) (3.1)

The loss function of VAE is minimized following the evidence lower bound, is
given by:

L(X; θ, φ) = Eqφ(z|X)[log pθ(X|z)]−KL(qφ(z|X)||p(z)) (3.2)
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where the KL-Divergence between approximate distribution and the true poste-
rior can be interpreted as the loss of the inference network (encoder), and the
generative network (decoder) need to minimize the reconstruction error.
Inception module: The inception-like multi-scale module is used in the encoder
following the initial SequenceNet and this module is mirrored in the decoder.
The Inception architecture has been proposed in [93] [95], and the key concept
of this architecture is based upon finding the optimal local sparse structure in
a convolutional vision network that can be approximated and applied [57]. The
proposed Inception-like module in our work has shown in Figure 3.3 (b).

A SequenceNet is first applied to input data, which consists of a 2-D CNN
(kernel size = 1) layer, a 2-D batch normalization (BatchNorm) manipulation and
rectified linear (ReLU) activation function. The Inception module in this work
is modified, which includes multiple SequenceNets of 1 × 1 CNN, 3 × 3 CNN,
5 × 5 CNN and 3 × 3 Maxpooling layer. The first layer of Inception consists of
a Maxpooling layer and a SequenceNet (CNN kernel size = 1), whose aim is to
map and store the feature of input.

The output of the first SequenceNet will be separately passed onto three par-
allel SequenceNets with different size of CNNs to extract the feature of different
scales. Here, unlike the conventional Inception module that concatenates the out-
put from previous layers, we replace the concatenation function to the summation
of the outputs to decrease the computational complexity.

Two linear layers are applied to Inception output and they are interpreted as
a vector of means and a vector of variances of the latent features following nor-
mal distribution. In the decoder, Then a new latent vector is sampled from its
distribution learned by the encoder and subsequently be mapped and reshaped
back to the size of the original spectrogram and used as the input to the decoder.
With the decoder structure, it is expected to be reconstructed similarly to the
original spectrogram. Moreover, the decoder has the same Inception architecture
of encoder which is reconstructing data by using deconvolution layer. The acti-
vation function in the last SequenceNet uses the sigmoid function to output the
reconstructed spectrogram.
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Figure 3.3: Framework of proposed iVAE model: (a) illustrates the system
overview that starts from the raw EEG data go through the system to the output.
The design of iVAE architecture is illustrated by (b), the encoder and decoder
are separately constructed by a Inception module along with a SequenceNet.
Moreover, the Inception also consists of a Maxpooling and four SequenceNet
units where each SequenceNet includes three functional layers. The index of Se-
quenceNet is the parameter setting of CNN that is to represent (input channel,
output channel, 2-D kernel size, padding value), while all the stride in this work
we set as 1. The latent space consists of three linear layers as the common VAE.
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Figure 3.4: Training loss of three VAE architecture. The shadow shows the
standard deviation of loss function for different models in three times training.

2.5 Evaluation and Result

To evaluate the feasibility of the Inception module in VAE architecture, we store
the reconstructed sprectrograms for each input data and assess the reconstruction
of different sleep stages. Given the performance metric of iVAE and a necessity
of interpretability, we construct the vanilla VAE and the CAE and compare the
performance of them with iVAE architecture. The encoder and decoder of the
vanilla VAE and the CAE models are constructed as two layers, with a latent
vector of 50 dimensions. Thus, for each model, experiment is implemented three
times to analyze the mean of training loss and the generalizability of the models.

Since the inference network can be regarded as the feature generation network.
We unitize the latent feature encoder to reconstruct the feature space of original
data under fifty dimensions, and then, random forest machine learning model is
used to evaluate the generated latent feature. That is, four classes classification
is conducted for these VAE models and 80% of the sample as training data is
implemented with 5-fold cross-validation.

Figure 3.5 and 3.6 provides the comparison between original input data and
reconstructed spectrogram. It can be seen that the model has good performance
in the lower frequency band (0-10 Hz) for the wake stage. Moreover, even though
the reconstruction become blurry in the high frequency (30–60 Hz), a bound-
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ary of power intensity can be seen around 15 Hz from both the original and
reconstructed spectrogram. For the REM stage, a distinguishable feature of a
relatively high power intensity in the frequency band from 0–30 Hz is preserved
in the reconstructed spectrogram.
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(b)  REM

Figure 3.5: Sample of reconstructed spectrograms. The left column shows the
spectrograms transformed from raw EEG data, since the right side is the gener-
ated image for each sleep stage.

In the lightsleep stage, the brain wave activity begins to shift from the waking
state to sleep state, and the power intensity of the mid frequency band (15–30
Hz) increases. This change can be seen by comparing the reconstructed spectro-
grams of the Wake and the lightsleep stages in Figure 3.6. Moreover, the output
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(c)  Lightsleep

Figure 3.6: Sample of reconstructed spectrograms. The left column shows the
spectrograms transformed from raw EEG data, since the right side is the gener-
ated image for each sleep stage.
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in the deepsleep stage can generally be reconstructed. As it can be seen from
the original spectrogram, only the very low frequency (0–4 Hz) has a relatively
high power density, and the reconstructed spectrogram can faithfully conserve
this characteristic, albeit a little overshoot can be seen in the reconstructed spec-
trogram.

Architecture
Random forest classification accuracy

(in %)
Vanilla VAE 63.57

CAE 66.35
Proposed iVAE 68.12

Table 3.2: Classification result of proposed iVAE architecture versus two basic
VAE architectures.

The results of training loss of the three VAE architectures can be seen in
Figure 3.4. Among the three architectures, the convergence of iVAE is the fastest
and the loss of iVAE becomes stable after 10 epochs and the iVAE has the best
performance after 50 epochs training. It can be interpreted that the iVAE can
learn the stage specific features of input data with less parameters (the number
of parameters: 3912449 in vanilla VAE; 2259999 in CAE; 2260345 in iVAE).
The classification results using the latent features of three VAE architectures are
presented in Table 3.2, where we can see an obvious improvement as we change
from the vanilla VAE to the iVAE architecture.

2.6 Conclusion and Discussion

The prior distribution of the latent features in the iVAE is a Gaussian distribution.
It matches the current understanding of the EEG that its characteristics follow
Gaussian distribution [101]. By imposing the prior the latent features can be
further explored and integrated into the pipeline of classification.

The inherent problem of VAE that the output of the decoder can only pre-
serve the major characteristics of the input, is untouched in this paper because
according to the medical guideline, only a few major features are used in the
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(a) SLPDB + UCD (b) SHHS

Figure 3.7: (a) shows the clustering results (by PCA) of SLPDB+UCDD dataset,
while (b) exhibits the result in SHHS dataset.

stage annotation. From the input-output examples shown in Figure 3.5, we can
see that the iVAE can preserve the major changes in different frequency bands.

However, VAE fits the data representation in latent spaces to multiple Gaus-
sian distributions, where the Gaussian assumption is for tractability. Although we
make an ablation study that experiments the proposed iVAE with large dataset
(SHHS), the clustering results are not satisfied (seen in Figure 3.7). Such strong
assumption poses a challenge for EEG modeling, since the EEG data is usually
massive, redundant, and noisy. A refinement processing of the feature is neces-
sary.

3 CR2: Symbolic Representation

3.1 Latent Dirichlet Allocation

One representation that the data mining community has been considered trans-
forming real valued data into symbolic representations, noting such representa-
tions would potentially allow researchers to avail of the wealth of data structures
and algorithms from the text processing and the machine learning [58]. Moreover,
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such studies have more recent attention in the sleep stage analysis. Herrera et
al., proposed the application of a novel method for symbolic representation of the
EEG and evaluated its potential as information source for a sleep stage classifier
[33].

The Latent Dirichlet Allocation (LDA) is a Natural Language Processing
(NLP) model which is based on the hypothesis that a document has certain
topic or a mixture of different topics. When the documents with a similar topic,
the topic can be reflected in the particular vocabulary and the probability dis-
tribution of words from the dictionary. The LDA facilitates the explanation of
dataset by clustering the features of the data into latent unobserved sets. In this
work, the symbolic represented epochs can be regards as a series of documents.

3.2 Motivating Example

To meet the criticism and reveal the latent sleep states, Koch et al., utilized
symbolic aggregate approximation (SAX) to transform the sleep epoch of EEG
to a mixture of probabilities of latent sleep states and developed an automatic
sleep classifier using the LDA topic model [49]. Christensen et al. inspired the
idea of Koch et al,. and used the same method to analyze the sleep EEG of people
with insomnia disorder with a frequency-based sleep analysis procedure, which is
describing each epoch as a mixture vigilance states [16]. However, the proposed
SAX has a major limitation, that is, symbols are mapped from the average values
of segments. Different segments with similar average values may be mapped to
the same symbols, and the represented distance between them is 0 [90].

The topic model is competent in discovering latent, multi-faceted summaries
of documents or symbolic data in the NLP community. Therefore, this case
study further investigated that the multifold symbolic representation with LDA
model from frequency domain is appropriate for representing and manifesting
the latent characterization of sleep stages. The study attempted to explore the
representation capability of the different statistical methods to evaluate relevant
transformation and capture the spontaneous characteristics of different stages.
Evaluating by the data-driven method, the EEG-based symbolic representation
of sleep stages can be further incorporated into the pipeline of sleep studies.
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3.3 Dataset and Preprocessing

The dataset used in this work is from the SHHS. The purpose of SHHS is to test
whether sleep-related breathing is associated with an increased risk of coronary
heart disease, stroke, all-cause mortality, and hypertension. Access to the SHHS
was permitted via the National Sleep Research Resource3. The database consists
of two rounds of at-home PSG recordings (SHHS-1 and SHHS-2), and only SHHS-
1 is used in our work. Nine institutions cooperatively created SHHS-1, for which
the full PSG recordings of 5793 individuals are collected between 1995 and 1998.
The participants were restricted to those who met the recruited criteria, including,
age (older than 40 years), no sleep-related diseases, etc.

Sleep stages were scored by consensus between two sleep technicians blind
to the condition of the participants for six classes (wake, REM, S1, S2, S3, S4)
according to the R&K guidelines [1]. Noteworthily, this work merges S3 and
S4 into stage N3 in reference to the AASM criteria Due to unscored epochs,
invalid labels, and misaligned records, 5736 subjects were selected to construct
the experimental dataset in this study. Each recording provided two channels
(C4-A1 and C3-A2) of EEG, sampled at 125 Hz. The EEG records have been
typically contaminated by various types of artifacts, a 8th order Butterworth
bandpass filter with cutoff frequencies between 0.5 and 30 Hz was implemented
over all records. These cutoff frequencies for band pass filtering were selected
since the brain activities have significant information in 0.5 to 30-35 Hz range
during sleep [7].

3.4 Symbolization of sleep epoch

As shown in Figure 3.8, to reveal the inherent characteristics of sleep stages, five
filtered signals for each EEG record were generated by clinical frequency bands
(δ, θ, α, σ, β). The single-sided spectral analysis was then implemented into each
band-pass filtered signal by fast Fourier transform within 1 second/bin window
and no-overlapping. Three feature extraction methods (trapezoidal integration,
spectral entropy and mean) performed the numerical representation of cumula-
tive spectrum on each bin, in order to create subject-wise distribution of spectral

3www.sleepdata.org
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Figure 3.8: The framework of symbolization: (a) illustrates the generation of the
filtered signals within five classical frequency bands. The FFT is implemented to
generate the spectrum for each 1 second showed by (b). Then, each 1s spectrum
is to calculate different features (Mean, Trapezoidal integration, and spectral
entropy), subsequently, the numerical values of each record are converted to a
word sequence by categorizing the relative distribution. (c) illustrates an example
for the Trapezoidal integration process within α-band. A 3 s moving window with
one stride is utilized to generate the epochs from each record as shown in (d).
Finally, the content of one sleep epoch containing 150 words and five sentences
(five frequency bands) is illustrated by (e).
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feature within each classical frequency band. Since the generated distributions
were normalized to N(0, 1), each subject a histogram was produced for each
frequency band and the four boundaries producing five equal proportion bins de-
rived. Meanwhile, five quantification categories were labeled as different symbols
(Extreme, High, Median, Low, or Very low). Each 1-second numerical value of
trapezoidal integration was converted to a word according to the cutoff bound-
aries and corresponding frequency band. That is, each record was represented
into five symbolic sequences.

During the sleep cycles, idiopathic neural oscillatory activities are generated
into different sleep stages. For instance, sleep spindles are derived by interplay of
the thalamic reticular nucleus during stage N2 of non-REM sleep with a duration
of 0.5–2 seconds. To facilitate the mining and representation of the exclusive
patterns, a 3-second moving window with one stride (2 bins overlapping) was
used to generate the epoch sample which contains 30 6-letter words for each
frequency band. Each 6-letter word represents a 3 second spectral pattern of
corresponding frequency band (e.g., AHALAE : α(Alpha)−high−low−median).
Consequently, one sleep epoch was described by 150 words and five sentences.

3.5 Latent Dirichlet Allocation Topic Model

The Latent Dirichlet Allocation is an NLP model which is based on the hypoth-
esis that a document has certain topic or a mixture of different topics. When
the documents with a similar topic, the topic can be reflected in the particular
vocabulary and the probability distribution of words from the dictionary. The
LDA facilitates the explanation of dataset by clustering the features of the data
into latent unobserved sets. In this work, the symbolic represented epochs can
be regards as a series of documents (seen in Figure 3.9). Assuming the document
(epoch) j has 150 words and wij is the observed value of word i in document j.
LDA will traversal and cluster all the words from each document into T topics
to label this document by derived the probability of each topic. This process of
LDA is described as following:

• For a topic t, a multinomial parameter σt is sampled from Dirichlet prior
σt∼D(ω1).
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• For a document j, a multinomial parameter φj over the T topics is sampled
from Dirichlet prior φj∼D(ω2).

• For a word i in document j, a topic label τji is sampled from discrete
distribution τji ∼ Discrete(φj).

• The value wji of word i in document j is sampled from the discrete distri-
bution of topic τji, wji ∼ Discrete(στji).

Where ω1 and ω2 are Dirichlet prior hyperparameters. σt and φt are hid-
den variables to be inferred while τji can be sampled through a Gibbs sampling
procedure.
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Word distribution of one topic

Figure 3.9: LDA is an probabilistic model which is based on the hypothesis that
a document has certain topic or a mixture of different topics.

To write about a topic then means to pick a word with a certain probability
from the pool of words of that topic. A whole document can then be represented
as a mixture of different topics. When the author of a document is one person,
these topics reflect the person’s view of a document and her particular vocabulary.
In the context of tagging systems where multiple users are annotating resources,
the resulting topics reflect a collaborative shared view of the document and the
tags of the topics reflect a common vocabulary to describe the document.

3.6 Evaluation and Result

A grid search [5:1:13] for the number of topics was first to find the optimal distri-
butions of words based on the topic coherence metric within different feature en-
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gineering. The topic coherence measures score a single topic which is the artifact
of statistical inference by measuring the degree of semantic similarity between
high scoring words in the topic. This word utilized Cv measurement which is
based on a sliding window, one-set segmentation of the top words and an indirect
confirmation measure that by using mutual information and the cosine similarity.
Moreover, the LDA results (topics) had been decomposed via principal compo-
nent analysis (PCA) to visualize the topic construction and distribution by using
the pyLDAvis python packages 4. To map the topics to the sleep epochs, the
probability of topics for epochs were resulted by trained LDA model, and the sta-
tistical distribution was generated to evaluate the co-occurrence and importance
for each sleep stage.

PC2
Topic 5

Topic 1

Topic 4

Topic 7

Topic 6

Topic 3

Topic 2

Topic 8

Wake
N1
N2
N3

REM

PC1

Figure 3.10: The visualization of PCA of 8 topics. The histograms show the word
distributions and estimated word frequency for each topic. The distribution of
the pie chart illuminates the statistical contributions for five stages and the area
of each pie chart is proportional to how many documents feature each topic.

Table 3.3 illustrates the coherence metrics for different methods of feature
extraction. Over all the grid search of topics, the trapezoidal integration of spec-

4https://pypi.org/project/pyLDAvis/
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trum has a better performance than the common SAX (mean value) and the
spectral entropy. Meanwhile, the fine-tuning of the number of topics is 8 in this
word shows the highest coherence for trapezoidal integration.

Table 3.3: A grid search of number of topics for different feature process methods

#Topics 5 6 7 8 9 10 11 12 13
Mean Value 0.281 0.275 0.305 0.316 0.319 0.298 0.291 0.287 0.253

Trapezoidal Integration 0.313 0.306 0.327 0.351 0.316 0.295 0.315 0.314 0.314
Spectral Entropy 0.229 0.226 0.234 0.228 0.224 0.222 0.224 0.221 0.213

Table 3.4: Top 3 importance of topics for five sleep stages

Stages Wake N1 N2 N3 REM
Top 3 topics T2; T5; T7 T1; T8; T4; T1; T5; T8 T5; T6; T3 T1; T8; T5

The PCA result of the optimal number of topics for trapezoidal integration has
shown in Figure 3.10, 3.11, and3.12. The topics (8-dimensional in our case) were
flattened to be only 2-dimensional. There is no overlapping area among topics,
that is, the topics and their word distributions are mutually independent. The
center of pie charts represent the position of 8 topics in the latent feature space,
while the distances between topics illustrate similarity or dissimilarity. Moreover,
according to the word distributions, it can group topics 6 and 8 into one since
the pie distribution are more similar, and have half estimated very low frequency
of θ over all term frequency.

The topics 2, and 7 are mainly contributed to wakefulness while these topics
have a smaller metric distance. Topics 1 and 2 have high term frequency for σ

and β bands according to Figure 3.10 and 3.11, and the high term frequency of
θ band can be reflected to N2 sleep. Topics 5 is related to N2 and wakefulness
stages as shown in Table 3.4, while the amount of estimated words of θ band
(e.g., tltltl : θ − low − low − low) is represented to REM stages. Table 3.4 lists
the top 3 importance of topics for different stages. The N1 and N2 have similar
construction of topics since these two stages belong to light sleep. The most
relevant term for topic 3 is the δ band word while the delta waves (more than
20%) are more related to stage N3.
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3.7 Conclusion

In this study, we investigated the symbolic representation of EEG records for
sleep stages. Comparing with the different feature extraction methods, the work
proved the feasibility of an improved representation method of sleep stages and
physiological signals based on the data-driven. The further study will extend
to systematically explore the sleep construction and to evaluate the downstream
study in the sleep community.

4 Patch Embedded Representation

4.1 Embeddings

In NLP, word embedding is a term used for the representation of words for text
analysis, typically in the form of a real-valued vector that encodes the meaning
of the word such that the words that are closer in the vector space are expected
to be similar in meaning.

Word embeddings can be obtained using a set of language modeling and fea-
ture learning techniques where words or phrases from the vocabulary are mapped
to vectors of real numbers. Conceptually it involves the mathematical embedding
from space with many dimensions per word to a continuous vector space with a
much lower dimension. Methods to generate this mapping include neural net-
works, dimensionality reduction on the word co-occurrence matrix, probabilistic
models, explainable knowledge base method, and explicit representation in terms
of the context in which words appear. Word and phrase embeddings, when used
as the underlying input representation, have been shown to boost the performance
in NLP tasks such as syntactic parsing and sentiment analysis.

Due to the appealing progress of self-attention architecture, some attention-
based attempts for automatic sleep scoring have recently been proposed [15, 27,
53]. Attention mechanisms have become an integral part of compelling sequence
modeling and transduction models in various tasks, allowing modeling of depen-
dencies without regarding to their distance in the input or output sequences [99].
In particular, Transformer, a model architecture relying entirely on an attention
mechanism, has reached a new state of the art in the visual classification tasks
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[24, 60], and has been extended to sleep scoring [15]. Similar to the word embed-
ding, the visual task divides one input image into a set of sub-images (patches).
Each patch containing a self local information is fed to the attention-based neu-
ral networks. This patch embedded process allows the model to query the local
significant feature from the global context.

4.2 Motivating Example

Considering the parallel computation, recent works attempt to introduce the at-
tention mechanism to the sequential model. In the CNNs-LSTM model proposed
by Chen et al. [14], an attention network was merged to adjust the significance
of two groups of features. Sun et al. [89] proposed a multi-flow RNN which is
utilized to learn temporal information by fusing the hand-crafted features and
network-trained features. The proposed model was evaluated by 147 full night
recordings with an overall accuracy of 0.88, and an F1-score of 0.82. Among
these preceding studies, Qu et al. applied residual blocks to the EEG signal af-
ter Hilbert-Transform-like preprocessing and the Transformer on the epoch level
for accurate sleep scoring[80]. The results are plausible since the macro sleep
structure is relatively constant with cyclic patterns and can be modeled by using
sequence-to-sequence strategy. According to the AASM guideline, sleep stages
can be generally determined on the basis of intra-epoch signals. Moreover, as has
been validated both computationally and experimentally, the structure of shorter
signals embeds information related to sleep stages [16, 96].

Inspired by the embedding scaling successes in visual tasks, this case study
introduces the patch embedding to time-frequency spectrogram and explores the
feasibility representation for sleep transient stage-dependent frequency features.
Assuming the mentioned transient characteristics can be revealed into 1-second
EEG signals. Here, I segment the spectrogram of each epoch into the temporal
patches, in order to capture the transient characteristics from 1-second frequency
band. Afterward, a sequence of linear embeddings of these patches is fed into
a attention model expecting to parallel find the global dependencies among the
1-second duration.
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4.3 Dataset and Preprocessing

The dataset used in this study is same to the CR2 from the SHHS. Due to
the unscored epochs and misaligned records, here, we use only the SHHS Visit
1 containing two channel EEG records (C4-A1 and C3-A2) from 5736 subjects
sampled at 125 Hz. The EEG records have been typically contaminated by various
types of artifacts, a 8th order Butterworth bandpass filter with cutoff frequencies
between 0.5 and 30 Hz is implemented over all records. According to our previous
work, the spectrograms (size: 30 × 30) are finally generated for each filtered
30s epoch. This transformation utilizes the log-power spectra via a consecutive
Fourier transform with 1-second segmentation, no overlap, and 125 sampling
points Fast Fourier Transform. Table 3.5 contains the description of dataset, and
the preprocessing has been shown in Figure 3.13.

Table 3.5: Dataset Description of SHHS

Wakefulness N1 N2 N3 REM
#Sample 2371496 166619 809155 732389 214985

4.4 Embedding and Classification Model

Inspired by this visual attention work [24], we segment each spectrogram S ∈
RF×T×C into a sequence of patches Ŝ ∈ RT×(F ·C). T is the number of patches
(30 patches) for generated sequence Ŝ so that each patch represents the 1-second
brain waves in frequency domain from two channels. Then all patches are mapped
through a linear projection layer to a high dimension D (64 in this work) for fur-
ther training step. This study we adopt a attention model, e.g., Transformer, as
the classification model (The detail of Transformer will describe in following Part
II). Attention is a parallel mechanism, that is, without merging the relative or
absolute information, it can be regarded as a bag-of-words model. Similar to [24],
we inject the parameterization positional embedding Epos to the patch sequence.
An extra class token SCls is appended which is compressed the global relevance
and used for the final classification task. The input sequence of Transformer

39



Spectrogram
Time

30
 p

at
ch

es
30s EEG epoch 

filtered by (0.3-32Hz) bandpass filter

30s Sequence

Li
ne

ar
 P

ro
je

ct
io

n 

Po
si

tio
n 

Em
be

dd
in

g

Stack
Encoder

Wake
N1
N2
N3

REM

Attention model

Fr
eq

ue
nc

y

Staging 
result

Key 1-second patch

Fr
eq

ue
nc

y

Relevant to stage x

Time (30 second)

Fr
eq

ue
nc

y

First 1-seond End

Figure 3.13: The framework of sleep scoring system. Each 30s EEG epoch is first
transferred to a time-frequency spectrogram (size: 30× 30). Then 30 patches are
segmented with a 1-second moving window without overlapping. Each patch as
a 30 × 1 vector is projected to a high dimension by using to a fully connected
layer. The generated sequence feeds to the attention model. A softmax layer is
finally applied to the trained token to result the classification tasks.
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Figure 3.11: Confusion matrix for five sleep stages

The confusion matrix in Fig. 3.11 provides the details about the model per-
formance and classification result. It can be seen that Wake is clearly separated
without a large number mismatching. Focusing on the N2 and N3, the model is
still able to provide an accurate performance that classifies the N2 and N3 from
the other stages. However, the challenge of the N1 stage still remains, due to the
unbalance training data. For the REM stage, without considering the movement
information of the eyes (EOG) [120], the results need more improvements.

Overall, the comparative results between the proposed method and baseline
work which experiments with using the same dataset and EEG channels can be
seen in Table 3.6. By using the sole Transformer model, our proposed result has
a competitive performance for most of the stages. However, the stage N1 and
REM staging should improve more in future work.

4.6 Conclusion

Inspired by the patch embedding in visual task, we experimented with the sleep
stage classification by applying the time-frequency embedded representation based
on the large EEG database. Comparing with the baseline method which was eval-
uated in the same dataset, the proposed method has a good performance for the
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II). Attention is a parallel mechanism, that is, without merging the relative or
absolute information, it can be regarded as a bag-of-words model. Similar to [57],
we inject the parameterization positional embedding Epos to the patch sequence.
An extra class token SCls is appended which is compressed the global relevance
and used for the final classification task. The input sequence of Transformer
model is defined as follow:

X = [SCls; E · bS] + Parameterize(Epos) (3.3)

where E 2 R(F ·C)⇥D represents the linear projection of flattened patches. The
paremeterized embedding Epos 2 R(F ·C+1)⇥D is then added to extended patch
sequence. In this study, we also evaluate the positional embedding method of the
original Transformer. The proposed cosine function allows the model to learn to
attend by relative positions. It assumes the closer 1-second patches will provide
more potential information when one patch is salient for its sequence.

4.5 Experiment and Result

The result of the proposed method by using two positional embedding methods
has been shown in Table 2. Comparing the traditional positional embedding
(cosine-method), the learnable method has a better overall performance with a
0.76 ACC and 0.73 macro-averaging F1-score.

Table 3.6: Comparison between our proposed method and baseline model which
evaluated the same dataset and EEG channels

Wake N1 N2 N3 REM
Pre 0.91 0.54 0.84 0.83 0.87

Baseline Method [64] Re 0.91 0.22 0.91 0.82 0.82
(Enrique et al, 2020) F1 - - - - -

Pre 0.89 0.41 0.79 0.83 0.72
Cosine Method Re 0.88 0.19 0.86 0.80 0.63

F1 0.88 0.26 0.82 0.81 0.67
Pre 0.91 0.42 0.85 0.84 0.73

Learnable Method Re 0.93 0.20 0.89 0.83 0.76
F1 0.92 0.27 0.87 0.84 0.74
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Figure 3.14: (a) shows the comparison between our proposed method and baseline
model which evaluated the same dataset and EEG channels; (b) exhibits the
corresponding confusion matrix for five stages by using the parameterized position
embedding.

model is defined as follow:

X = [SCls;E · Ŝ] + Parameterize(Epos) (3.3)

where E ∈ R(F ·C)×D represents the linear projection of flattened patches. The
paremeterized embedding Epos ∈ R(F ·C+1)×D is then added to extended patch
sequence. In this study, we also evaluate the positional embedding method of the
original Transformer. The proposed cosine function allows the model to learn to
attend by relative positions. It assumes the closer 1-second patches will provide
more potential information when one patch is salient for its sequence.

4.5 Experiment and Result

The result of the proposed method by using two positional embedding meth-
ods and comparison performance [28] have been shown in the table in Figure
3.14 (a). Comparing the traditional positional embedding (cosine-method), the
learnable method has a better overall performance with a 0.76 ACC and 0.73
macro-averaging F1-score.

The confusion matrix in Figure 3.14 (b) provides the details about the model
performance and classification result. It can be seen that Wake is clearly sep-
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arated without a large number mismatching. Focusing on the N2 and N3, the
model is still able to provide an accurate performance that classifies the N2 and
N3 from the other stages. However, the challenge of the N1 stage still remains,
due to the unbalance training data. For the REM stage, without considering the
movement information of the eyes (EOG) [63], the results need more improve-
ments.

Overall, the comparative results between the proposed method and baseline
work which experiments with using the same dataset and EEG channels can be
seen the table in Figure 3.14 (a). By using the sole Transformer model, our
proposed result has a competitive performance for most of the stages. However,
the stage N1 and REM staging should improve more in future work.

4.6 Conclusion

Inspired by the patch embedding in visual task, we experimented with the sleep
stage classification by applying the time-frequency embedded representation based
on the large EEG database. Comparing with the baseline method which was eval-
uated in the same dataset, the proposed method has a good performance for the
Wake, N2, and N3 stages. Moreover, the work proved the transient character-
istics of the frequency domain can be parallel captured from different 1-second
time positions. The further study will try to overcome the misclassification of the
N1 and REM stages.

5 Summary and Discussions

Sleep screening based on the construction of sleep stages is one of the major tool
for the assessment of sleep quality and early detection of sleep-related disorders.
Due to the inherent variability such as inter-users anatomical variability and the
inter-systems differences, representation learning of sleep stages in order to obtain
the stable and reliable characteristics is runoff for downstream tasks in sleep
science. In this chapter, the thesis describes three EEG-based representation
learning for the different sleep stages.

CR1, proposed the inception-inspiring VAE structure (iVAE) to character-
ize and reconstruct the EEG spectrogram of four sleep stages. The iVAE is
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constructed by replacing the main structure in encoder and decoder with the
inception-like module, which will capture the multi-scales features of the spec-
trogram of EEG. By comparing with the vanilla VAE and the CAE, a more
accurate reconstruction and a better classification using the latent features of the
iVAE can be confirmed. This study also proves the possibility of automate gen-
eration of latent representation of sleep stages by using unsupervised generative
model and suggests a further optimization of the iVAE structure will benefit the
sleep stage characterization. Moreover, we find that comparing with the different
feature extraction methods, the symbolic representation (CR2 proved the fea-
sibility of an improved representation method of sleep stages and physiological
signals based on the data-driven method. In CR3, we found the re-segmented
spectrogram+Transformer framework has a powerful stage scoring ability. This
framework should be refined and incorporated into the pipeline of sleep stage
classification.
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Part II

Accurate Staging Framework
and Decision Interpretability
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4 | Mechanism-based End-to-
End Staging Pipeline

1 Introduction

Deep neural networks (DNNs) have recently achieved success in the sleep stage
scoring community [75, 76, 102]. One of the key attributes of DNNs is their ability
to automatically reconstruct a more relevant feature space from a large amount of
sleep data. Meanwhile, it takes advantage of the adjustment of the parameters of
the feature map layers by backward propagation to fit the representation functions
of different sleep stages. Although the performance of the automatic scoring
algorithm has been greatly improved by deep learning models as well as free
access to large-scale sleep databases [4, 9, 72, 80, 92], the optimization of the
learning pipeline is still at the midway point. Specifically, the representation
strategy for EEG signals and the learning structure of the network need precise
optimization to adapt to the intrinsic traits of autonomic sleep scoring based on
EEG signals.

With the optimized combination on these two aspects, we hope to improve
the overall performance of automatic sleep stage scoring on one hand, and to shed
light on clinical/physiological significance by retaining the interpretability of the
model as much as possible. In the following two sub-sections, the rationale for
why the aforementioned special care should be given will be explained, whereafter
the motivation of this work will be elicited.
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1.1 Notes on EEG Representation

In the Part I, we have introduced the EEG representation. The end-to-end frame-
work implemented by deep learning models in recent years has made feature
generation more flexible and problem-specific [75, 80]. The subject-wise gen-
eralization gap, especially in models with complicated representation learning,
can be problematic [81]. Therefore, where to draw a line between predefined
and adjustable representation generation should be discussed. We can think of
predefined-feature-only input and raw EEG input to a learning model as two
extremes and assume that a better solution lies between them.

1.2 Notes on Learning Structure

The need to delicately select learning structures is rooted in the origin of the EEG
signal and the intrinsic characteristics of neuron activities in the cortex, that is,
the spatial heterogeneity of relevant features in the cortex [7], [26], which means
that the corresponding features may not always be seen from one lead, while
stage-irrelevant features/disturbance may be seen [78]. This situation is even
made tougher by the transient and temporally random natures of some dominant
characteristics [18, 45]. For instance, sleep spindle is the defining characteristic of
N2 stage, however, it is a spontaneously burst and only last for a short duration of
0.5–1.5 seconds. Therefore, in N2 stage, sometimes the stage-irrelevant features
dominate the current epoch[2]. As a consequence, the stage-dependent features
are not always unequivocal among the same staged EEG epochs. Therefore, in
addition to the feature representation, stage-specific feature refinement in the
global content is needed.

The sleep community has witnessed significant progress with the merging of
deep neural networks in automatic sleep scoring [4, 72, 80]. It is expected that
the separated feature engineering study and classification study to be superseded
by the end-to-end framework[23, 85].

Due to CNNs becoming the defacto standard for visual classification tasks,
CNNs have been used in feature extraction from the frequency or time-frequency
domain [4, 80, 92]. By interleaving a collection of multi-size convolutional fil-
ters with non-linear activation functions and downsampling operators, proposed
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scoring frameworks expect to capture sophisticated local features and attain an
inductive representation of the EEG epoch [35]. Since CNN does not consider
the local features against the global context, it will results in a local inductive
bias [98]. Consequently, it may draw more attention from the classifier onto a
pattern of the neighboring area while distracting the classifier from really impor-
tant but transient information and its relevance. Meanwhile, feature extraction
in each EEG epoch is handled by the sharing weights of filters. This mechanism
expects key rhythms to occur in a relatively inherent position. Therefore, there
is a mismatching between the translation-invariant constraint of CNNs and the
temporally random and transient nature of the relevant defining characteristics.

Recurrent neural networks (RNNs), such as long short-term memory (LSTM)
and gated recurrent neural networks, have been established as the state-of-the-
art (SOTA) in automatic sleep scoring [75, 80, 85, 89]. Different from CNNs, the
recurrent-based models pay attention to the information of the global context.
By generating a set of hidden states, the decision-making considers the influences
of a sequence of previous time steps or future steps (by the Bidirectional LSTM)
[52]. Given the issue of transiently bursting rhythms, such as non-periodic sharp-
wave ripples and spindle activities [2, 10], RNNs cannot be regarded as the best
choice for sleep scoring. Further, the inherently sequential processing flow of
RNNs precludes the possibility of parallelization within feature capture [99].

Although some advanced deep frameworks have been proposed, for instance,
the sequence-to-sequence framework that can handles a set of consecutive sleep
epochs by simulating the transition rule of inter-stage[75], epoch-wise automatic
scoring frameworks remain the limitations. It implies that a context-sensitive
flexible pipeline that automatically adapts attributes of data itself is a require-
ment.

1.3 Goal and Contributions

Given the considerations introduced above, this work proposes a tailored pipeline
for autonomic sleep scoring by proposing a novel way of generating features that
alleviate the influence of temporally random and transient nature of the EEG
features while retaining the resolution in the frequency domain. This method
can find its clinically informative explanation, which will be explained in Section
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Figure 4.1: Framework of sleep scoring pipeline. Experiment of this work was
done with two channel EEGs. Each 30-second EEG epoch is first transferred to
time-frequency spectrogram (size: 32 × 30). Then, spectrograms of the 2 chan-
nels are segmented into patch sequence respectively. Each patch as 1-second-1-
frequency-band feature vector is projected to high dimension by using patch-wise
fully connected layer. Positional embedding procedure adds relative positional
information to patch sequence, while extra class indicator is also concatenated.
Afterward, augmented patch sequence is fed to scoring module model that con-
tains stacked encoder blocks and the final classification layer. After training,
class patch that absorbs intra-patch characteristics is used for stage assignment
decision.
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3.1 and 3.2.
It can also be seen that epoch-wise contextual relating of temporally local

features is necessary. The time-frequency feature representation is first organized
as a time series of features of the frequency domain and then input into an elab-
orate attention-based deep learning model. The attention mechanism is designed
to extract the global contextual relevance between units of a time series signal
or stream of text. Therefore, it is regarded as a suitable learning scheme in this
study.

The attention-based model, including the Transformer [24, 60], has been tried
in sleep scoring and relevant problems [15, 53, 80]. Among these preceding stud-
ies, Qu et al. applied residual blocks to the EEG signal after Hilbert-Transform-
like preprocessing and the Transformer on the epoch level for accurate sleep
scoring[80]. The results are plausible since the macro sleep structure is relatively
constant with cyclic patterns and can be modeled by using sequence-to-sequence
strategy. According to the AASM guideline, sleep stages can be generally deter-
mined on the basis of intra-epoch signals. Moreover, as has been validated both
computationally and experimentally, the structure of shorter signals embeds in-
formation related to sleep stages [16, 96].

Specifically, this work transforms two channels of EEG signals into spectro-
grams, which are then divided into five parts following the five frequency bands
as indicated in TABLE 3.1 and the power spectral density is calculated for every
1 Hz (frequency patching). Whereafter, each part is further partitioned tempo-
rally into 1-second bins (time patching). Finally, the resultant patches are input
into an epoch-wise scoring model. With the attention matrix output by the
trained attention-based model, this pipeline is expected to show physiologically
interpretable patterns that are important in stage classification. The results also
show that our methods reach a new state-of-the-art performance in an experiment
with a large clinical dataset (Sleep Heart Health Study) of 5736 patients.

1.4 Chapter Organization

The remainder of this chapter is organized as follows: Section 2 introduces the
details of dataset and its preprocessing. Section 3 describes the details that how to
represent the stage-dependent characteristics in EEG data, while the subsequent
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framework is reported in this Section. Section 4 introduces the experiments of
the case study and the details of model parameter settings. Section 4 shows the
results of framework performance. Finally, we conclude this chapter and discusses
the implications from the findings in Section 5.

2 Database and Preprocessing

The dataset used in this work is from the Sleep Heart Health Study (SHHS). The
purpose of SHHS is to test whether sleep-related breathing is associated with an
increased risk of coronary heart disease, stroke, all-cause mortality, and hyper-
tension. Access to the SHHS was permitted via the National Sleep Research Re-
source. The database consists of two rounds of at-home PSG recordings (SHHS-1
and SHHS-2), and only SHHS-1 is used in our work. Nine institutions coop-
eratively created SHHS-1, for which the full PSG data of 5793 individuals are
collected between 1995 and 1998. The participants were restricted to those who
met the recruited criteria, including, age (older than 40 years), no sleep-related
diseases, etc.

Sleep stages were scored by consensus between two sleep technicians blind
to the condition of the participants for six classes (wake, REM, S1, S2, S3, S4)
according to the R&K guidelines [1]. Noteworthily, this work merges S3 and
S4 into stage N3 in reference to the AASM criteria Due to unscored epochs,
invalid labels, and misaligned records, 5736 subjects were selected to construct
the experimental dataset in this study. Each recording provided two channels
(C4-A1 and C3-A2) of EEG, sampled at 125 Hz.

Considering the issue of imbalance in the dataset, a sample balanced subset
called ’healthy-set’ was extracted. Here, this subset served in the pre-training
phase in our experiments. Since SHHS-1 provides a personal health description
of all subjects, the subjects were selected on the basis of inspection of the clinical
criteria. The SHHS provides the health status assessments of each participant
before and after the at-home PSG experiments. Considering the subject is in
relatively good health status can be regarded as a more general sample in the
dataset, we screen the subjects and construct a healthy set from below six aspects.

• Prev_ang: Number of Angina Episodes Prior to Baseline Angina episodes
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prior to baseline PSG;

• Prev_chf: Number of Congestive Heart Failure (CHF) episodes Prior to
Baseline Congestive Heart Failure (CHF) episodes prior to baseline PSG;

• Prev_mi: Number of myocardial infarctions (MIs) Prior to Baseline My-
ocardial infarction (MI) prior to baseline PSG;

• Prev_mip: Number of Procedures Related to Heart Attack Prior to Base-
line Myocardial infarction (MI)/procedure prior to baseline PSG;

• Prev_revpro: Number of Revascularization Procedures Prior to Baseline
Revascularization procedure prior to baseline PSG;

• prev_stk: Number of Strokes Prior to Baseline Stroke prior to baseline

where Prev_ang, Prev_chf, Prev_mi, Prev_mip, Prev_revpro, and prev_stk are
variable name in SHHS-1 dataset description 1. The healthy-set consists of 684
subject-wise recordings with 26080 epochs for each class. A summary of the
experimental dataset used in this work is shown in TABLE 4.1.

Table 4.1: SHHS database description

All Healthy-set
#Subject 5736 684

Gender
M: 2774 M: 360
F: 2962 F: 324

Age (year) 62.17±11.02 63.14±11.22
#W 1666191 (28.8%)

26080 (20%)
#N1 214985 (3.7%)
#N2 2371496 (40.9%)
#N3 732389 (12.6%)
#REM 809155 (14.0%)

1https://sleepdata.org/datasets/shhs/files/datasets
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3 Sleep Mechanism-based Framework

The proposed framework, the overall illustration of which is shown in Figure 4.1,
is a sequence-to-target workflow. A spectrogram is transformed into a sequence of
patches of five frequency bands, augmented with class tokens, and finally input
into our attention-based model for sleep classification. This section is divided
into four sub-sections, the first two of which introduce the generation of time-
frequency representations (3.1) and a novel framework for feature organization
(3.2). The second half focuses on the network architecture, which includes the
sequence augmentation and embedding of the input (3.3) and the architecture of
the model (3.4).

3.1 Time-Frequency Representation

EEG recordings are typically contaminated with various types of artifacts. An
8th order Butterworth bandpass filter with cutoff frequencies between 0.2 and
32 Hz was applied to all recordings. Whereafter, each epoch is transformed into
a spectrogram to manifest its time-frequency characteristics. Given that the
advantage of short EEG segments (1-second) in expressing the transient sleep
rhythms has been shown [13], a log-power spectrogram is generated for every 1-
second EEG signal by using a non-overlapping Hamming window and fast Fourier
transform and then calculating the integral in power spectrum every 1 Hz. With
its time frequency resolution, the spectrogram possesses sufficient information for
sleep stages, whose local or contextual features can find their correspondence in
the spectrogram.

Therefore, for one epoch, two spectrograms that correspond to the two EEG
channels are generated. The initial feature is denoted as S ∈ RF×T×C , where F

denotes the frequency range (0-32 Hz), T denotes the time (30-seconds), and C

denotes the channels (two channels).

3.2 Frequency-time patching

In this part, we propose an important processing framework termed frequency-
time patching for organizing the input spectrogram. That is, the spectrogram is
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Figure 4.2: Workflow of time-frequency patching

divided into eight frequency bands every 4 Hz in accordance with the five fre-
quency bands of TABLE 3.1, where the beta band is further divided into four
segments (frequency patching). Afterward, time patches are acquired by extract-
ing and rearranging each column (1-sec) of the spectrogram (time patching). This
framework embodies two scientific findings, that is, the concurrence of sleep stages
in one epoch [26] and the fact that most of the clinically crucial features can be
represented by the time-frequency features at a 1-sec resolution [18]. With the
special structure of the network architecture, which will be introduced in 3.4,
the frequency-time patching structure will be kept consistent throughout the net-
work to facilitate the discussion of model interpretability. Along with Figure 4.2,
frequency-time patching is introduced herein.

• Frequency patching: Each S is split into five parts S =(Sδ, Sθ, Sα, Sσ, Sβ) in
accordance with the five predominant frequency bands (TABLE 3.1) of sleep
rhythms. The first four spectrogram parts, Sδ, Sθ, Sα, Sσ ∈ R(F/8)×T×C ,
have the same bandwidth of 4 Hz. A block of the beta band is quartered into
four sub-blocks, Sβ = (Sβ1, Sβ2, Sβ3, Sβ4), where the subscripts β1 ∼ β4

correspond to the four quarters of the beta band.
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• Time patching: Each frequency block as shown in the middle of Figure
4.2 is divided by column to extract frequency-time patches. Therefore, one
time patch is Si (Si = (Si

δ, S
i
θ, S

i
α, S

i
σ, S

i
β), where the superscript i denotes

the i-th second.

• Sub-block averaging: For the frequency-time patches in the Beta band,
mean values are calculated and used in the following steps, so that S̄β =
(S̄β1, S̄β2, S̄β3, S̄β4).

• Spectrogram transformation: For each time patch Si, the new structure
is S ′i = (Si

δ, S
i
θ, S

i
α, S

i
σ, S̄

i
β) ∈ R20, resulting in the transformation of the

original spectrogram S into S ′ ∈ R20×T×C .

• Patches rearrangement: A sequence of frequency-time (FT) patches is gen-
erated by column-wise traversal. Therefore, Sseq ∈ R150×Dp (150 = 5 fre-
quency bands ×30 sec) is the patch sequence for one epoch, where Dp

denotes the dimension of each patch ∈ R4.

To validate the effect of the frequency patching, we compare its performance
with time patches (1-second) input to the same network architecture. The results
of the baseline model can be found in TABLE 4.4, the (Time patching + proposed
model) pipeline.

3.3 Patches Sequence Embedding

As indicated in above, physiologically, the individual FT patches contain uneven
information about sleep stages and the concurrence of patches along with its
sequential distance (time difference) is informative. Therefore, the self-attention,
is a suitable mechanism for the process of feature extraction, and the attention-
based classification model have been used computer vision [20, 24].

To construct our model, an extra class token SCls is inserted to each sample
at the beginning of the FT patches sequence. With the processing and propaga-
tion of the input through the model layers, this token are retained as the stage
indicator, and will be used in the final stage scoring/classification step. These
two steps can be formulated as below:

S ′
seq = Concat(SCls, E · Sseq), (4.1)
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where E is a patch-wise linear projection that project the two FT patches of
two EEG channels of the same time into higher dimension. Consequently, S ′

seq ∈
R(150+1)×D is the output sequence, where D is the dimension of output of the
linear projection.

Because The attention mechanism does not differentiate the position of the
keys when calculating the attention values of a query, the position embedding is
a routine supplementary. In adapting the mechanism for sleep staging, where the
global position could be a nuisance, we make use of the positional encoding tech-
nique [24], by which a suitable positioning scheme can be generated by training.
After, the position embedding is merged into the S ′

seq to form final input

X = S ′
seq + Parameterize(Epos), (4.2)

where Epos ∈ R(150+1)×D with the same shape of S ′
seq represents the parameterized

embedding sequence.
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Figure 4.3: Architecture of the stacked encoder blocks

3.4 Scoring network

The frequency-time patches go through the network architecture as shown in
Figure 4.3. Augmented by Multi-heading (see the red box in Figure 4.3) the at-
tention layer is applied to delineate the contextual relevance of FT patches in the
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Multi-layer perceptron (MLP) module, which includes the patch-wise connection
(PaC) layer and attention layer (Figure 4.6). The basic encoder blocks of the
{Layer Norm (1), Multi-head Attention, Layer Norm (2), PaC layers} with two
residual connections are stacked to construct the network architecture (Figure
4.3). In the PaC layers, information propagation is restricted to the same patch.
The purpose is to render the network to calculate the relevance of patches by
self-attention only. We give details on the three important manipulations/layers
herein.
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Figure 4.4: Attention mechanism: (a) shows that the attention layer first calcu-
lates relevancies among patches and then maps the relevant weight matrix to an
input of each attention layer. (b) illuminates the workflow of the attention layer.

Attention mechanism: The attention mechanism associates the individual
patches and maps the relevance to the ground truth stage y with three compo-
nents: the query (Q), key (K), and value (V ) matrices, which are the matrix of
linear projections produced by the input X.

Q,K, V = Linear(X), X ∈ R(L+1)×D (4.3)

where, Q, K, V ∈ R(H·W+1)×D Here, the matrix Q (in the case of using mini-
batch) represents query that comprises of a query sequence with basic units (FT
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patches here). In the case of self-attention, the K is the same as Q, and the
attention is utilized to calculated relevance among the patches. The resultant
relevance values are further used to calculate V . Ultimately, the weighted value
matrix that encompasses the importance of FT patches extracted via a global
reference will be fed into a further encoder or final staging module. The mathe-
matical processing of Q,K, V can be summarized as below:

WA = Softmax(
QKT

√
d

) (4.4)

AttentionScore = WA · V (4.5)

where layer
√
d denotes a normalization-like scale that is applied to each Q-K

computation, and the softmax layer is used to functionally obtain the weight
vector of attention WA for V .

Multi-head attention: Similar to the way that a CNN increases the number
of filters to enrich the expressiveness of the feature space, the attention mechanism
can be extended to multi-head attention to prevent losing the manifold expres-
sion of the features. At the beginning of each building block, h (the number of
the heads) set of Q and K is generated and mapped by the linear projection.
Then, the self-attention implements h times in parallel to calculate relevance rep-
resentations, where each operation is called a “head.” Eventually, a linear layer
projects their concatenated outputs and summarizes the attention result. The
multi-head attention is defined as follows:

ZMhead(Q,K, V ) = Concat(head1, head2, · · · , headh)W o, (4.6)

where W o ∈ Rh·D×(150+1) is a weight matrix. It is used for head-wise attention,
while a linear projection is applied after the output of the multi-head attention
for each round. Different from the conventional channel-wise output (like the
CNNs), the multi-head attention can be regarded as multi-threads to implement
the attention in parallel.

MLP&Staging module: As introduced above, the output of the multi-
head layer is fed to the PaC layers with GELU being their activation function.
Simultaneously, a residual connection skip-connects to the output of the building
block to avoid the gradient vanishing.
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As the information passes through all stacked blocks, the class patch S ′
Cls

has absorbed information about the relevance of FT patches extracted from the
global context and is used solely in the scoring step. As shown in Figure 4.6, a
linear projection finally compresses the flattened class token to neurons that have
the same number of sleep stages.

y′ = Linear(LayerNorm(S ′
Cls)), (4.7)

where y′ ∈ {W, N1, N2, N3, REM}, and S ′
Cls is also normalized before the final

classification layer.

4 Experiment

4.1 Training Strategy

Since a healthy dataset (mentioned in Section II) was extracted, we conducted
a pre-training-to-fine-tuning strategy in the training process. Specifically, during
the pre-training phase, the healthy-set, which contained balanced samples for
each of the stages, was used to optimize the model parameters. Here, we utilized
the Adam optimizer with a biggish learning rate of 10−3 to spur the model to
converge fast and adjust the parameters along the broadly right direction [100].
In the fine-tuning phase, the remaining training data was used to further optimize
the pre-trained parameters. Moreover, the AdamW optimizer [61] is used. The
learning rate was set to 10−4 to meticulously optimize the cross-entropy loss
function.

To alleviate the overvaluation of the performance, we implemented a subject-
wise 7-fold cross-validation by splitting the data into seven subject-wise subsets.
In one trial, six subsets were used in the training step, while the remaining subset
(roughly 800 subjects) was used for testing.

4.2 Parameter settings

The details of the parameter settings are shown in TABLE 4.2. To make the
utmost of the model, a grid search of hyperparameters was implemented in this
work to seek the best combination. Note that the optimal settings (the bold
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Table 4.2: Grid search of the model parameter setting in experiments and the
optimal combination is in bold.

Parameter Value
#Stacked encoder {6, 8, 12}
#Heads (h) {2, 4, 8, 12}
Dimension of linear projection of D {16, 32, 64}
Normalization-like scale (

√
d) {2, 4}

Dimension of MLP output {64, 128, 256}
Dropout rate {0.2, 0.5, 0.8}
#Training epoch 200
Batch size 32
#Parameters 1.3× 105

values in TABLE 4.2) were used both for pre-training and the subsequent training.
Additionally, a dropout layer was added after each linear projection and attention
layer to further avoid the overfitting problem. The model was implemented with
the Pytorch v1.4 framework, and all experiments were conducted on a server with
an NVIDIA GeForce RTX 2080Ti GPU.

4.3 Baseline Networks

As introduced above, there are special treatments in the feature generation and
network structure in this research. The validate their efficacy, seven baseline
models with changes in the following three aspects are also constructed for com-
parison.

Data processing: (i) The argument for using the spectrogram was supported
by repeating the process of feature generation that appeared in the preceding
works of [85, 92], where the pipeline tried to learn how to generate features with
raw EEG signals (see the [Inception + proposed model] pipeline in TABLE 4.4).
By using the multi-scale Inception architecture [94], the pipeline is expected to
find more latent features in parallel [94]. Specifically, one convolutional layer
containing five parallel filters corresponding to the five frequency bands of sleep
EEG was constructed. Therefore, the output of this layer can be regarded as the
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multi-scale components of the original EEG signal. Details on this framework
can be seen in Appendix.
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Figure 4.6: Architecture of stage-specific feature mapping network

(ii) To evaluate the frequency-time patching of the spectrogram, we prepared
input that consisted of 1-sec time patches without frequency patching [13]. Af-
ter, a sequence of 30 time patches of 32 dimensions was embedded to a higher
dimension of 64 and fed into the network with the same settings in TABLE III
(see the [Time patching+proposed model] pipeline).

Sequential model: The argument over the advantage of using attention is
validated by replacing the attention mechanism with RNN networks. Four RNN
models using LSTM and Bi-LSTM were used as the replacement (see the four
pipelines using LSTM or Bi-LSTM in TABLE 4.4 that cover both the raw EEG
input and time-patch input).

Learning strategy: Although the model was pre-trained within a balanced
dataset, the imbalance issue existed in fine-tuning training. Since previous work
on deep learning has tried to overcome the imbalance problem with weighted loss
function, we implemented a class-wise weighted cross-entropy loss function[82]
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in another baseline model while all the other aspects are the same (see the [T
patching+proposed model+weighted learning ] pipeline in TABLE 4.4).

For each fold, we counted the proportion of each class (cls) from the total
sample Tcls. To provide more weight to the class that had fewer samples, the
weight vector Pw was derived from the inverse of the class proportion. This step
is defined as below.

Pw =

∑N
cls=1 Tcls

Tcls

(4.8)

To normalize the sample distributions of different folds to the same distribu-
tion, Pw was scaled by its maximum element. Afterwards, the resulting vector
Wwce as the parameter was transferred to the following loss function.

Wwce = Pw/Max(Pw) (4.9)

Since the maximum element divided by itself was one, Wwce in this imple-
mentation was registered to a range of [0, 1]. The final expression of the loss is
described as:

£ = −Wwce

N∑

cls=1

ylog(y′), (4.10)

where y was the ground truth of the input samples, while y′ was the predicted
label that resulted in the network referring to Eq. 4.7.

Table 4.3: Hyperparameters of the Inception and LSTM/Bi-LSTM used in the
baseline models

Inception LSTM / Bi-LSTM
#Module 1 #Layers {4, 6}
Dropout rate 0 Dropout rate 0
Kernel size {12, 31, 62, 125} Hidden size 32
Padding size {105, 0, 0, 0} Bias True
Stride {12, 31, 62, 125} -
#Parameters 3.5× 105 #Parameters 1.2× 106
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4.4 Evaluation metrics

To evaluate the staging performance of each class, three metrics were used in
the experiments, i.e., the stage-specific precision (Pre), recall (Re), and F1-score
(F1). Precision is the proportion of positive prediction that was actually correct,
while recall is the proportion of actual positives that were successfully predicted.
F1-score reflects the overall metrics based on these two. Moreover, we adopted
overall accuracy to evaluate the training effusiveness and Cohen’s Kappa coef-
ficient (k) to measure the inter-rater reliability (IRR) [17]. The definitions of
precision (Pre), recall (Re), F1-score (F1), accuracy (ACC) and kappa (k) are as
follows:

Prec =
TP

TP + FP
(4.11)

Rec =
TP

TP + FN
(4.12)

F1c =
2 · Prec ·Rec
Prec +Rec

(4.13)

ACC =

∑c
c=1 TPc

N
(4.14)

k =
Nc −Ne

Nt −Ne

(4.15)

where TP , FP , and FN denote the true positives, false positives, and false
negatives of the class (c), respectively. Meanwhile Nc denotes the number of
correctly scored stages, Nt denotes the total number of stages while Ne denotes
the expected number of agreements for each stage.

4.5 Result

Observation 1: The proposed model had a small generalization gap. Figure 4.7
(a) depicts the average training loss and the 7-fold validation loss in the fine-
tuning step. Since the cost gap between the training and the validation can be
viewed as a loose measure of the generalization gap, the small sample-wise gap
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Figure 4.7: Training effectiveness in the fine-tuning: (a) shows 7-fold training loss
and validation loss of each fold. (b) is average accuracy in each fold validation.

(0.06 on average) and the narrow variation among folds suggests the model could
be extended to new dataset without a plunge in performance. As the training loss
converged gradually, the validation loss showed a similar trend without obvious
fluctuation in the latter training epochs, which implies that the over-fitting of the
trained model was not severe in the proposed model.

Figure 4.7 (b) shows the trends in the accuracy of the 7-fold validations. the
accuracy reached a plateau in a fewer epochs than the decrease of loss and was
steady (0.84 – 0.86) in the following training epochs.

Observation 2: The proposed model is better in generating the stage-dependent
features. Looking closer into the performance of the baseline models in TABLE
4.4, two conclusions can be drawn. The first one is that the models based on
the attention mechanism, including the Time patching+Attention and the In-
ception+Attention pipelines, outperformed the RNN based ones. Given that the
best of the RNN models comes from FT Patching+Bi-LSTM, which is different
from the proposed pipeline in terms of the model architecture only, it is reason-
able to conclude that the proposed model is a better architecture in generating
stage-dependent features.

Observation 3: The proposed frequency-time patching is an ideal representation
of sleep stages. The conclusion is drawn by comparing the performance of the
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Table 4.4: Comparison of performance among baseline pipelines and our pipelines.
We make the best stage-wise performance of each evaluation metric.

Comparative Domain Pipeline Evaluation Metrics Wake N1 N2 N3 REM Overall

Data Processing

Time patching + proposed model
Pre 0.91 0.42 0.85 0.84 0.73 0.75
Re 0.93 0.20 0.89 0.83 0.76 0.72
F1 0.92 0.31 0.87 0.84 0.75 0.74

Inception + proposed model
Pre 0.91 0.38 0.85 0.85 0.75 0.77
Re 0.89 0.32 0.80 0.84 0.77 0.72
F1 0.90 0.34 0.82 0.84 0.76 0.74

Model

Time patching + LSTM
Pre 0.85 0.31 0.80 0.83 0.65 0.69
Re 0.89 0.18 0.79 0.79 0.64 0.66
F1 0.87 0.22 0.80 0.82 0.64 0.68

FT patching + LSTM
Pre 0.86 0.32 0.82 0.83 0.66 0.70
Re 0.88 0.22 0.80 0.80 0.65 0.67
F1 0.87 0.27 0.81 0.82 0.65 0.69

Time patching + Bi-LSTM
Pre 0.84 0.31 0.79 0.83 0.67 0.68
Re 0.89 0.23 0.86 0.80 0.63 0.68
F1 0.87 0.26 0.83 0.80 0.65 0.68

FT patching + Bi-LSTM
Pre 0.85 0.33 0.82 0.84 0.68 0.70
Re 0.89 0.24 0.87 0.81 0.63 0.69
F1 0.87 0.29 0.85 0.83 0.66 0.70

Learning Strategy FT patching + proposed model + weighted learning
Pre 0.90 0.40 0.81 0.82 0.76 0.74
Re 0.91 0.30 0.85 0.80 0.75 0.72
F1 0.90 0.35 0.83 0.81 0.75 0.73

Proposed Pipeline
Pre 0.93 0.42 0.87 0.89 0.80 0.78

FT patching + proposed model Re 0.93 0.33 0.90 0.84 0.79 0.76
F1 0.93 0.38 0.89 0.87 0.80 0.77

model with different inputs, namely the time patching and FT patching of the
spectrogram and the raw EEG signal input to the Inception module. Among
the three pipelines (weighted learning excluded here), the retainment of the
frequency-band information, that is the Inception+proposed model and the FT
patching+proposed pipelines, showed its effectiveness in a comparison of the over-
all performances with the time patching+proposed pipelines. Given that the de-
sign of the Inception module serves the same purpose of retaining the resolution in
the frequency domain, the combination of spectrogram and FT patching is more
appropriate than the data-driven approach for feature generation. This situation
may be caused by the nature of the high randomness in EEG signals and can be
mitigated by transformation to the frequency domain and the following integral
process each 1 Hz.

Observation 4: The proposed method reached the new SOTA for most of
the stages. We compared the performances of the proposed method with related
works that experimented with the same or different database (SHHS) in TABLE
4.5. We can observe that the classification of the wake stage had the best perfor-
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Table 4.5: Performance obtained by proposed pipeline and existing works using
same SHHS database.

Method
# Experimental
SHHS subjects

Wake N1 N2 N3 REM k

EEG + proposed model
Pre 0.93 0.42 0.87 0.89 0.80

0.80Proposed pipeline 5736 Re 0.93 0.33 0.90 0.84 0.79
F1 0.93 0.38 0.88 0.87 0.80

EEG&EMG
+ Separable CNN

Pre 0.89 0.57 0.85 0.88 0.83
0.80Enrique Fernandez et al., 2021 [29] 5793 Re 0.93 0.23 0.89 0.77 0.85

F1 0.91 0.40 0.87 0.83 0.84

EMG, EOG, EEG
+ GRU, LSTM

Pre - - - - -
0.85Huy Phan et al., 2021 [77] 5791 Re - - - - -

F1 0.92 0.50 0.88 0.85 0.88

EEG + CNN
Pre 0.90 0.30 0.87 0.87 0.80

0.81Emadeldeen Eldele et al., 2021 [27] 329 Re 0.83 0.36 0.86 0.87 0.83
F1 0.86 0.33 0.87 0.87 0.82

EEG, EOG, EMG
+ CNN, bi-LSTM

Pre 0.92 0.31 0.83 0.84 0.88
0.79Shreyasi Pathak et al., 2021 [73] 5793 Re 0.92 0.50 0.84 0.67 0.89

F1 0.92 0.40 0.84 0.76 0.89

EEG + RCNN
Pre 0.92 0.42 0.85 0.85 0.87

0.80Hogeon Seo et al., 2020 [83] 5791 Re 0.88 0.47 0.90 0.86 0.86
F1 0.90 0.45 0.87 0.85 0.86

ECG + CNN
Pre 0.86 0.74 0.68 0.76

0.66Niranjan Sridhar et al., 2020 [87] 561 Re 0.80 0.82 0.49 0.81
F1 0.82 0.78 0.57 0.78

ECG + CNN
Pre 0.85 0.62 0.59 0.60

Qiao Li et al., 2018 [56] 5793 Re 0.80 0.74 0.54 0.73 -
F1 0.82 0.67 0.56 0.65

EEG, Resp, EMG + RCNN
Pre 0.90 0.69 0.84 0.80 0.79

0.73Siddharth Biswal et al., 2018 [9] 15804 Re 0.81 0.67 0.78 0.76 0.74
F1 0.85 0.68 0.81 0.78 0.76

EEG + KNN
Pre 0.89 0.55 0.75 0.84 0.86

Foroozan Karimazadeh et al., 2018 [46] 140 Re 0.81 0.58 0.68 0.54 0.78 -
F1 0.85 0.56 0.71 0.66 0.81
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mance when compared with the other works. Meanwhile, the proposed pipeline
also outperformed the other works in terms of stages N2 and N3, with the F1
score being 0.88 and 0.87, respectively. Pathak’s paper [73], reach the highest
performance for the REM stage by fusing the EOG and EMG signals, which
are clinically important for REM stage. As we will mention in the Discussion,
although the fusing of EMG gets the new best performance of REM using our
pipeline, this paper focus on the EEG-only situation. In a similar way, Biswal
et al. [9] gets the best performance for N1 by fusing the EEG, waveforms of
the chest belt (respiration) and EMG and capturing the intra- and inter-epoch
context using the Bidirectional LSTM. We will further discuss the results in in
TABLE 4.5 in Discussion.

(b) EEG + EOG(a) EEG only

0.93 0.09 0.02 0 0.03

0.03 0.42 0.02 0.01 0.03

0.03 0.37 0.87 0.1 0.03

0 0 0.07 0.89 0.11

0.01 0.12 0.02 0 0.8

Wake

N1

N2

N3

REM

Wake N1 N2 N3 REM
Reference

Pr
ed
ic
tio
n

0.92 0.17 0.02 0 0.01

0.02 0.49 0.01 0.01 0.07

0.05 0.21 0.88 0.09 0.01

0 0.01 0.05 0.9 0

0.01 0.12 0.04 0 0.91

Wake

N1

N2

N3

REM

Wake N1 N2 N3 REM
Reference

Pr
ed
ic
tio
n

Figure 4.8: (a) Confusion matrix of the proposed pipeline with EEG as the input.
(b) Confusion matrix of the proposed pipeline with EEG and EOG as the input.

5 Summary and Discussions

As introduced above, by proposing a new feature processing framework for EEG
signal called FT patching and associating the FT patches through the multiplica-
tions of the Query, Key, and Value matrices, the attention scores were generated
as alternatives of the conventional features. The proposed model attained the
best performance with a lighter network architecture compared with the baseline
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models (see #parameters in TABLE 4.2 and 4.3).
One of the main purpose of this work is to push the epoch-wise automatic stage

scoring algorithm with EEG signal to a new level. From the comparison with the
preceding researches, it is reasonable to conclude that this purpose is fulfilled.
Of note, the N1 stage stand in the midway of a dynamic process from conscious
to a real sleep stage. According to the definition of N1, comparison with the
preceding epoch, i.e., decrease of Alpha band component, is required. However,
such kind of information is inevitably lacking in epoch-wise classification. For this
reason, in the research that also takes in the inter-epoch relation [83], significant
improvement on the Recall can be seen.

Besides, it is well acknowledged that EOG signal is indispensable in identifying
the REM stage, and the results of the Pathak et al [73] can be regarded as
experimental evidence. By taking the EOG signal as part of the input, the
identification of REM reach the best performance. We have tried to include the
EOG in our pipeline, and the results get the highest record for the REM stage
with 0.91 precision, 0.90 Recall and 0.91 F1 score. The corresponding confusion
matrix has shown in Figure 4.8 (b). In the main body of this work the results are
discussed under the restriction of EEG signal in pursuing a potential extension
to home use, where the simplicity on the sensor attachment is advantageous.
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5 | Interprebility in Model De-
cision

1 introduction

Despite all this progress, we have not yet seen automatic sleep staging widely
adopted clinically yet. Unofficial communications with leading sleep experts point
to the scepticism of deep learning models being a black box, which is a common
criticism when it comes to the application of artificial intelligence in healthcare
and medicine [78]. We argue that two overarching obstacles need to be addressed
for a machine scoring system to work alongside practitioners in an interactive and
collaborative manner: (1) interpretability, and (2) uncertainty quantification.
Interpretability is the ability of a model to explain how its decision is made
given a certain input, to be understood by a human. Inspired by the way a
sleep expert performs manual scoring, interpretability in automatic sleep scoring
is reasonably about (but not limited to) what features the model learns from
the input signal, whether these features are relevant to and underpin the sleep
stages, and how the decision on a target epoch is made under the influence of
its neighboring epochs. Interpretability is particularly important due to the fact
that sleep stages are ambiguous and even different human experts tend to disagree
at a certain extend. Also, due to this ambiguity, quantifying uncertainty in the
model’s decisions is equally important. Simply put, we are in need of a simple and
concrete metric, ideally a single number, for quantifying the model’s uncertainty.
Using this metric, epochs that are scored with low confidence by the model can
be deferred to sleep experts for further inspection.

69



1.1 Chapter Organization

The remainder of this chapter is structured as follows: Section 2 describes model
interpretability methods and tools in computer vision and sequential model (Trans-
former). Section 3 introduces the method of our visualization. Section 4 shows
the results of model classification decision. Section 5 further discusses the model
performance by visualizing the decision-making.

2 Preliminary

Explainability in computer vision: Many methods were suggested for gen-
erating a heatmap that indicates local relevancy, given an input image and a
CNN. Most of these methods belong to one of two classes: gradient methods
and attribution methods. Gradient based methods are based on the gradients
with respect to the input of each layer, as computed through back-propagation.
The gradient is often multiplied by the input activations, which was first done
in the gradient-input method. Integrated Gradients [91] also compute the multi-
plication of the inputs with their derivatives. However, this computation is done
on the average gradient and a linear interpolation of the input. SmoothGrad,
visualizes the mean gradients of the input, and performs smoothing by adding
to the input image a random Gaussian noise at each iteration. The FullGrad
method offers a more complete modeling of the gradient by also considering the
gradient with respect to the bias term, and not just with respect to the input.
We observe that these methods are all classagnostic: at least in practice, similar
outputs are obtained regardless of the class used to compute the gradient that is
being propagated.
Explainability for Transformers: There are not many contributions that
explore the field of visualization for Transformers and, as mentioned, many con-
tributions employ the attention scores themselves. This practice ignores most of
the attention components, as well as the parts of the networks that perform other
types of computation. A self-attention head involves the computation of queries,
keys, and values. Reducing it only to the obtained attention scores (inner prod-
ucts of queries and keys) is myopic. Other layers are not even considered. Our
method, in contrast, propagates through all layers from the decision back to the
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input. LRP was applied for Transformers based on the premise that considering
mean attention heads is not optimal due to different relevance of the attention
heads in each layer [11]. However, this was done in a limiting way, in which no
relevance scores were propagated back to the input, thus providing partial infor-
mation on the relevance of each head. We note that the relevancy scores were
not directly evaluated, only used for visualization of the relative importance and
for pruning less relevant attention heads.

3 Method

3.1 Attention Visualization

The multi-head attention relies heavily on the multiplication operation in the
attention calculation, and the relevance scores of the resultant attention matrices
might play different roles in the network. Unlike the conventional gradient-based
visualization [91], we use an attention-oriented visualization similar to the works
of Chefer et al. [11] to highlight the FT patches that the model is attending to by
inferring both the gradient and the relevance from the final classification decision
for each attention layer.

Hence, the output of the visualization is ideally reconstructed as a spectrogram-
like attention graph (V̂ ). That is, the size of the attention graph is maintained
with the 1-channel processed spectrogram S ′ and is defined as:

V̂ = Ā(1) · Ā(2) · . . . · Ā(B), (5.1)

where V̂ ∈ RF ′×T consists of a set of sub-graphs of B encoder modules. Since each
row of WA in Eq. 4.4 is normalized to the attention coefficients of each embedded
patch with respect to the others, WA can be treated as an attention map. Each
sub-graph Ā(b) in encoder b has a gradient of the attention map ▽W

(b)
A and its

relevance diffusion R(nb), which can be formulated in:

Ā(b) = I +Meanh(▽W
(b)
A ⊙R(nb)), (5.2)

where ⊙ is the Hadamard product. With to the multi-head mechanism, a mean
operation is applied across the h dimension. In addition, the identity matrix (I)
is used to avoid the self-inhibition of each patch [11].
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The process of relevance propagation starts from the class y of the staging
module and iteratively diffuses to the each layer L(n), where n ∈ (1, · · ·N) is the
layer index for the whole Transformer, here, the staging module, i.e., a linear
projection in Eq. 4.7 is defined as L(1). Suppose L(n(X(n), Y (n)) describes the
layer n function to the corresponding input X(n) and the weights W (n); the rele-
vance propagation is similar to the chain rule and follows the generic Deep Taylor
Decomposition [66]:

R
(n)
j =

∑

i

X
(n)
j

∂L
(n)
i (X(n),W (n))

∂Xj

R
(n−1)
i

L
(n)
i (X(n),W (n))

, (5.3)

where the subscript j denotes the elements in R(n). Because L(n) corresponds
to the first layer of the network, the index i represents the elements in R(n−1).
Moreover, this relevance propagation will stop at the first layer of the block for
each round b.

3.2 Uncertainty Quantification

To reveal the decision process of the model for different channels, each sample
generates two attention graphs. Unit resolution of the attention graph corre-
sponds to 1 FT patch and manifests the intensity it is attended to throughout
the pipeline.

Meanwhile, an entropy-based statistical analysis is utilized for each two at-
tention graphs to quantify the causality between the attention visualization and
the model decision. Considering the transient attribute of stage-dependent fea-
tures, the attention intensities in one frequency band distributed homogeneously
might contain more stage-dependent information. Otherwise, the band within
continuous lower intensity or highlighting should lead to a lower sample entropy
value.

4 Result

Attention map of the proposed FT patching is more sensitive and per-
ceivable. To discuss the interpretability of the pipeline proposed in Section 3.1,
in Figure 5.1, we attempted to visualize the attention scores of two different input
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sequences, which were FT patches and time patches. For simplicity and clarity,
we normalized the intensity of each reconstructed spectrogram-like attention map.
Gradient-based visualization (GbV) using Grad-CAM [column (e) in Figure 5.1]
was also generated for a direct comparison.

Spectrogram & FT patches : While most of the bright spots (higher power
of FT patches) in the spectrograms can find their correspondences in the attention
maps of FT patches, the latter contain more clues. For instance, regarding the
wake stage, the bright patch around 2 sec of the spectrogram (C4-A1 channel) of
the Alpha band finds its correspondence in the FT patch map (see the stride in
the ellipse), and the bright patches of the Alpha band can also be found around
22 sec in C3-A2. The re-organization of the FT patches can also be seen in stage
N1, where the last patches of the Theta band were closely attended to (ellipse
of C4-A1). The fusion of the two spectrograms can also be seen around 2–5 sec,
where C4-A1 is given more attention than the counterpart in C3-A2 (see the two
red boxes of N1). When the stage turned to deep sleep (N2, and N3), it can be
seen that the patches in the Delta band gradually became patches in the spot
light. For the N2 stage, most of the K-complex shown in both the EEG signal
and the spectrogram was closely attended to. Besides, a spindle-alike patch (see
the red box in C3-A2 channel) was given high attention as well. Regarding the
N3 stage, while the spectrograms were very similar to those of N2, the attention
maps of the FT patch features themselves were generally bright patches of the
Delta band.

Attention map of FT patches & GbV : The GbV suggests different FT
patches [bright spots in Figure 5.1 (e)] that contributed to the identification of the
sleep stages. However, some of the highlighted FT patches were not authentic.
The solely bright stride in the Delta band of C4-A1 for the wake stage and the
bright strides in the Delta band of the two channels of the N1 stage were not
concretely supported by clinical findings. For direct visualization, it is reasonable
to conclude that an attention map of FT patches results in a distinct view of the
input that is more informative than a network without the attention mechanism.

Attention map of FT patches & time patches : The homogeneity of the
time patching in the frequency domain drove the attention to inevitably focus
on the time domain solely. Referring to the corresponding spectrogram, the
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Figure 5.1: Visualization of different pipelines.
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bright time patches shown in Figure 5.1 (d) find themselves unobtrusive against
a generally bright background, e.g., the 2-sec time patch of C4-A1 of the wake, or
without concrete clinical support, e.g., the bright time patches of the two channels
of the N3 stage. Some other samples can be found in Appendix.

Another view of the attention maps of the FT patches can be seen in radar
graphs (Figure 5.2), which sums up the sample entropy of the attention intensities
for the FT patches in the five frequency bands. In stage wake sample, the entropy
of Alpha band reaches relatively higher values, that is, 6.21 and 5.51 in C4-
A1 and C3-A2. From wake to N1, the dominant Alpha band attenuated in N1
accompanying the increase in the Theta band. As the sleep went deeper, the
attention given to the Alpha band turned stable gradually at a relatively low state,
while the Delta band came into the foreground. Although the Theta dominates
the REM case in appearance, the Beta frequency band indicates certain quantities
of information. That result meets the sleeping truth that the brain becomes active
again and starts to dream in REM.

5 Summary and Discussions

The augmented class patches that were trained in the model absorbs the pair-
wise relevance of patches and conclude the patches each class needs to attend
to. As mentioned in Section 4 direct connection between the clinical standard
and the attention map can be seen in our pipeline. We consider this exposure an
important enhancement of the interpretability of an autonomic scoring algorithm
and will facilitate clinical/physiological discussion.

By visually comparing the manual annotations of the sleep stages with the
autonomic scoring of our pipeline (Figure 5.3), it can be seen that the misclas-
sification tends to occur in between {N2, N3} pair and {Wake, REM} pair (The
counting results have shown in TABLE 5.1). Moreover, misclassification often
occurs when the sleep stages transition frequently in a relatively short interval
(see the red dots in the middle hypnogram of Figure 5.3). This situation may be
caused by the incompleteness of sleep relevant information of the EEG signal com-
pared with polysomnography used in manual annotation. In contrast, our model
can recognize the transitions of stage with relatively low frequency accurately.
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Figure 5.3: Examples of hypnogram manually scored by human expert (a) and
hypnogram automatically scored by our method (b) for one subject from SHHS
dataset. Misclassification is marked in red. The sticks in the bottom figure (c)
mark the wrong labels. Blue sticks represent the regular sleep stage transitions
that can not be detected; while the red sticks represent the falsely detected irreg-
ular transitions.

Table 5.1: Different types of misclassifications and their counting results. Each
pair illuminates the two direction inter-epoch transitions, e.g., {Wake, N1}:
Wake → N1 and N1 → Wake.

Regular pairs #Pair Irregular pairs #Pair
{Wake, N1} 12 {N1, REM} 9
{Wake, N2} 6 {N2, REM} 18
{Wake, N3} 1 - -
{N1, N2} 14 - -
{N2, N3} 58 - -
{Wake, REM} 35 - -
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Furthermore, irregular misclassification pairs that the inter-epoch transitions vi-
olate the regular sleep cyclic pattern can be seen, occupying about 18% of the
total misclassification. For instance, our pipeline may output assignments of {N1,
REM} (N1 → REM or REM → N1), a sharp change of stage that skips N2
and N3 stages. Noteworthily, for the irregular pairs of {N2, REM}, N2 sometimes
changes to REM without the deep sleep phase may happen occasionally (around
200 in Figure 5.3). However once the body becomes stable at REM stage, this
kind of change seldom happen. Given the issue mentioned above, introducing of
the constraint on inter-epoch transition is considerable in future works.
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6 | Conclusion

Sleep is a crucial physiological function of humans. Lacking adequate sleep might
leads to the risk of many sleep-related disorders, such as sleep apnea syndrome,
schizophrenia, depression, and other neural abnormalities. The gold standard of
sleep construction is re-defined as five different stages according to the American
Academy of Sleep Medicine. Screening the sleep stages incorporating electroen-
cephalogram is the major tool in the assessment of the sleep quality and diagnosis
of sleep-related disorders, such as sleep apnea syndrome, depression, schizophre-
nia, insomnia, narcolepsy, and other neural abnormalities. Recent advances in
portable monitoring technology have increased access to sleep screening, yet the
gold-standard in-lab multi-lead EEG capturing from the overnight polysomnogra-
phy still require manual scoring by sleep experts. This laborious manual process
is a major obstacle for advancing our understanding about sleep and more impor-
tantly, for deploying sleep-scientific findings into neuroscientific and pathological
problems.

To spur the use of automatic sleep stage scoring alternative in the real clinical
setting, this thesis explores the representation learning of sleep stage-dependent
characteristics and proposes a context-sensitive flexible pipeline that automat-
ically adapts attributes of data itself. Meanwhile, we visualize the stage scor-
ing process of the model decision with the Layer-wise Relevance Propagation
method, which shows that the proposed pipeline is more sensitive perceivable in
the decision-making process than the baseline pipelines.
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1 Contributions

The outcomes drawn from this thesis could be beneficial for both medical prac-
titioners and researchers. Below, the contribution along with suggestions are
summarized for each part as follows:

• The proposed model had a small generalization gap. As the training loss
converged gradually, the validation loss showed a similar trend without
obvious fluctuation in the latter training epochs, which implies that the
over-fitting of the trained model was not severe in the proposed model.

• The proposed model is better in generating the stage-dependent features.
Given that the comparative models comes from popular sequential model
(LSTM/Bi-LSTM), which is different from the proposed pipeline in terms of
the model architecture only, it is reasonable to conclude that the proposed
model is a better architecture in generating stage-dependent features.

• Results indicate that the proposed frequency-time patching is an ideal rep-
resentation of sleep stages. Given that the design of the Inception module
serves the same purpose of retaining the resolution in the frequency do-
main, the combination of spectrogram and frequency-time patching is more
appropriate than the data-driven approach for feature generation. This sit-
uation may be caused by the nature of the high randomness in EEG signals
and can be mitigated by transformation to the frequency domain and the
following integral process each 1 Hz.

• Attention map of the proposed frequency-time patching is more sensitive
and perceivable. Results indicate that while most of the higher power of
frequency-time patches in the spectrograms can find their correspondences
in the attention maps of frequency-time patches, the latter contain more
clues.

• The gradient-based visualization suggests different frequency-time patches
that contributed to the identification of the sleep stages. For direct visual-
ization, it is reasonable to conclude that an attention map of patches results
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in a distinct view of the input that is more informative than a network with-
out the attention mechanism.

• Without using the EOG signal, although the Theta dominates the REM
case in appearance, the Beta frequency band indicates certain quantities of
information. That result meets the sleeping truth that the brain becomes
active again and starts to dream in REM..

2 Opportunities for Future Work

We believe that this thesis makes a major contribution to improving the automatic
sleep stage scoring alternative. However, there are many open challenges for
future work. Below, we outline a list of potential opportunities.

One of the main purpose of this paper is to push the epoch-wise automatic
stage scoring algorithm with EEG signal to a new level. From the comparison with
the preceding researches, it is reasonable to conclude that this purpose is fulfilled.
Of note, the N1 stage stand in the midway of a dynamic process from conscious
to a real sleep stage. According to the definition of stage N1, comparison with the
preceding epoch, i.e., decrease of Alpha band component, is required. However,
such kind of information is inevitably lacking in epoch-wise classification. For
this reason, in the research that also takes in the inter-epoch relation, significant
improvement on the Recall can be seen.

It is well acknowledged that EOG signal is indispensable in identifying the
REM stage. By taking the EOG signal as part of the input, the identification
of REM reach the best performance. We have tried to include the EOG in our
pipeline, and the results get the highest performance for the REM stage. In the
main body of this paper the results are discussed under the restriction of EEG
signal in pursuing a potential extension to home use, where the simplicity on the
sensor attachment is advantageous.

In spite of the difficulties mentioned above, the pipeline still get the best
performance for the Wake and deep sleep stages with the least information in
terms of information sources (EEG only versus senors fusion) and abundance
(epoch-wise versus inter-epoch).
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The augmented class patches that were trained in the model absorbs the pair-
wise relevance of patches and conclude the patches each class needs to attend to.
We consider this exposure an important enhancement of the interpretability of an
autonomic scoring algorithm and will facilitate clinical/physiological discussion.
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