
Doctoral Dissertation

A Study on Uniform k-partition and Graph Class
Identification in the Population Protocol Model

Hiroto Yasumi
Program of Information Science and Engineering

Graduate School of Science and Technology
Nara Institute of Science and Technology

Supervisor: Michiko Inoue
Dependable System Lab. (Division of Information Science)

Submitted on March 9, 2022

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of SCIENCE

Hiroto Yasumi

Thesis Committee:
Supervisor Michiko Inoue

(Professor, Division of Information Science)
Shoji Kasahara
(Professor, Division of Information Science)
Fukuhito Ooshita
(Associate Professor, Division of Information Science)
Michihiro Shintani
(Assistant Professor, Division of Information Science)
Sébastien Tixeuil
(Professor, Sorbonne Université)

A Study on Uniform k-partition and Graph Class
Identification in the Population Protocol Model∗

Hiroto Yasumi

Abstract

In recent years, autonomous distributed systems consisting of low-performance
devices have attracted attention. For example, there is growing interest in a
technology called molecular robotics, in which molecules themselves are designed
as robots. To construct algorithms specialized for such low-performance devices,
we deal with a population protocol model; in this model, devices only have greatly
limited resources. So far, researchers have studied various problems in this model.
In this dissertation, we tackle with two important challenges of the population
protocol model.

One is to handle multiple tasks. Since devices are low-performance, one device
may not handle multiple tasks. Thus, it is necessary to develop a mechanism
to handle multiple tasks. As an approach to achieve it, we address network
partitioning on the population protocol model. By partitioning a network into
some groups, devices can handle multiple tasks by assigning different tasks to each
group. Concretely, we study the uniform k-partition problem on the population
protocol model. This problem aims to divide a network into k groups of the same
size, where k is a given positive integer. In this dissertation, to cope with various
situations, we consider the problem on various assumptions. Moreover, since
devices only have greatly limited resources, we mainly study space-complexity to
solve the problem. As a result, on various assumptions, we clarify the solvability
and space-complexity of this problem.

The other challenge is efficient task execution. To execute tasks efficiently, we
address investigation of the structure of networks. As many studies have shown,

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science
and Technology, NAIST-IS-DD2021045, March 9, 2022.

i

the structure of networks has a high impact on the efficiency of the algorithm.
Hence, by understanding the structure of networks, we can apply appropriate
algorithms to execute tasks efficiently. In this dissertation, we study graph class
identification problems that aim to understand the structure of networks (i.e.,
graph class of networks). In particular, as basic structures of networks, we focus
on lines, rings, k-regular graphs, stars, trees, and bipartite graphs. As a result,
we clarify the solvability and space-complexity of the problems for the graphs.

Keywords:

population protocol, uniform k-partition problem, graph class identification prob-
lem, distributed system, distributed algorithm

ii

Contents

I Introduction 1

1. The Background 1

2. Overview of This Dissertation 2
2.1 Uniform k-partition Problem . 2
2.2 Graph Class Identification Problems 4

3. Related Works 5
3.1 Leader Election Problem . 5
3.2 Counting Problem . 6
3.3 Majority Problem . 7
3.4 Uniform k-partition Problem . 7
3.5 Graph Class Identification Problems 7

4. Organization of This Dissertation 8

II Model Definition 9

III Uniform k-partition on Complete Graphs 12

1. Introduction 12
1.1 Our Contributions . 12

2. Problem Definition 19

3. Uniform 2-partition under Global Fairness on Complete Graphs 19
3.1 Uniform 2-partition Protocols with Initialized Base Station 20

3.1.1 Upper Bound for Symmetric Protocols with Designated Ini-
tial States . 20

3.1.2 Lower Bound with Designated Initial States 21

iii

3.1.3 Upper Bound for Symmetric Protocols with Arbitrary Ini-
tial States . 23

3.1.4 Lower Bound with Arbitrary Initial States 28
3.1.5 Impossibility with Non-initialized Base Station and Arbi-

trary Initial States . 30
3.2 Uniform 2-partition Protocols with No Base Station 31

3.2.1 Upper Bound for Asymmetric protocols with Designated
Initial States . 31

3.2.2 Upper Bound for Symmetric Protocols with Designated Ini-
tial States . 32

3.2.3 Lower Bound for Symmetric Protocols 34

4. Uniform 2-partition under Weak Fairness on Complete Graphs 35
4.1 Lower Bounds for Initialized Base Station 36

4.1.1 Common Properties of Asymmetric and Symmetric Protocols 36
4.1.2 Lower Bound for Asymmetric Protocols 39
4.1.3 Lower Bound for Symmetric Protocols 52

4.2 Upper Bounds for Initialized Base Station 71
4.2.1 Upper Bound for Asymmetric Protocols 71
4.2.2 Upper Bound for Symmetric Protocols 74

4.3 Impossibility with No Base Station and Designated Initial States
for Symmetric Protocols . 75

5. Uniform k-partition under Global Fairness on Complete Graphs 75
5.1 Lower Bound for Initialized Base Station with Designated Initial

States . 76
5.2 Upper Bound for Uniform k-partition Protocol 77

5.2.1 Basic strategy . 78
5.2.2 A problem of the basic strategy and its solution 80
5.2.3 Correctness . 82
5.2.4 Simulation Results . 87

6. Concluding Remarks 91

iv

IV Uniform 2-partition on Arbitrary Graphs 93

1. Introduction 93
1.1 Our Contributions . 93
1.2 Problem Definition . 95

2. Upper Bounds with a Non-initialized Base Station and Desig-
nated Initial States 96
2.1 Upper Bound for Symmetric Protocols under Global Fairness . . . 96
2.2 Upper Bound for Symmetric Protocols under Weak Fairness 98

2.2.1 A protocol on arbitrary graphs 98
2.2.2 A protocol with constant states on a restricted class of graphs104

3. Upper and Lower Bounds with No Base Station and Designated
Initial States 105
3.1 Upper Bound for Asymmetric Protocols under Global Fairness . . 105
3.2 Upper Bound for Symmetric Protocols under Global Fairness . . . 108
3.3 Lower Bound for Asymmetric Protocols under Global Fairness . . 111
3.4 Lower Bound for Symmetric Protocols under Global Fairness . . . 115
3.5 Impossibility under Weak Fairness 127

4. Concluding Remarks 129

V Graph Class Identification Protocols 130

1. Introduction 130
1.1 Our Contributions . 131

2. Graph Properties and Problem Definitions 132

3. Graph Class Identification Protocols 133
3.1 Tree Identification Protocol with No Initial Knowledge under Global

Fairness . 133
3.2 k-regular Identification Protocol with Knowledge of P under Global

Fairness . 146

v

3.3 Star Identification Protocol with Knowledge of n under Weak Fair-
ness . 160

4. Impossibility Results 168
4.1 A Common Property of Graph Class Identification Protocols for

Impossibility Results . 168
4.2 Impossibility with the Known Upper Bound of the Number of

Agents under Weak Fairness . 171
4.3 Impossibility with the Known Number of Agents under Weak Fair-

ness . 172
4.4 Impossibility with Arbitrary Initial States 178

5. Concluding Remarks 179

VI Conclusion 180

Acknowledgements 182

References 183

Publication list 189

vi

List of Figures

1 An example execution of the protocol. Symbols i, i′, r, and b rep-
resent states initial, initial′, red, and blue, respectively. Arrows
represent interactions of agents. 33

2 Example of execution segment e′ (P = 8, Q∗ = {s1, s2}, γ(s1) =
γ(s2) = γ(s3) = blue, and γ(s4) = γ(s5) = γ(s6) = γ(s7) = red),
where the thick black arrow represents two interactions between ai

and aj (or a′i and a′j) . 43
3 An example of k-partition . 80
4 Another example of k-partition . 81
5 The number of interactions for k ∈ {4,6,8} with changing the pop-

ulation size n . 88
6 The number of interactions to achieve the i-th grouping 89
7 The number of interactions for k ∈ {3,4,5,6} with changing the

population size n . 90
8 The number of interactions for n = 960 with changing k 91
9 An example of communication graphs G and G′ (n = 5). 113
10 An image of graphs G and G′. 117
11 Graphs G and G′. 128
12 An image of the start of the trial . 139
13 An image of the success of the trial 139
14 Images of the fail of the trial . 140
15 The example of deleting a mark . 152
16 An example of graphs G and G′ . 169
17 Images of C ′2t′j−1 , ξ

′
j, C ′2t′j . A solid line represents an edge on which

interactions occur in C ′2t′j−1
, ξ′j, C ′2t′j , and a dashed line represents

an edge on which interactions do not occur in C ′2t′j−1
, ξ′j, C ′2t′j 170

18 Graphs G, G′, and G′′ . 176

vii

List of Tables

1 Minimum number of states to solve the uniform 2-partition prob-
lem under global fairness on complete graphs. 13

2 Minimum number of states to solve the uniform 2-partition prob-
lem under weak fairness on complete graphs. 13

3 Minimum number of states to solve the 2-partition problem under
global fairness on complete graphs. 15

4 Minimum number of states to solve the 2-partition problem under
weak fairness on complete graphs. 15

5 Minimum number of states to solve the uniform k-partition prob-
lem under global fairness on complete graphs. 17

6 Minimum number of states to solve the uniform k-partition prob-
lem under weak fairness on complete graphs. 17

7 Minimum number of states to solve the k-partition problem under
global fairness on complete graphs. 18

8 Minimum number of states to solve the k-partition problem under
weak fairness on complete graphs. 18

9 Minimum number of states to solve the uniform 2-partition prob-
lem on arbitrary graphs under global fairness. 94

10 Minimum number of states to solve the uniform k-partition prob-
lem under weak fairness on complete graphs. P is a known upper
bound of the number of agents, and l ≥ 3 and h are positive integers. 94

11 The number of states to solve the graph class identification prob-
lems. n is the number of agents and P is an upper bound of the
number of agents . 131

viii

Part I

Introduction

1. The Background

In recent years, autonomous distributed systems consisting of low-performance
devices have attracted much attention. For example, there is growing interest
in a technology called molecular robotics [39], in which molecules themselves are
designed as robots. In this system, a large number of robots cooperate in a human
body to achieve an objective (e.g., carrying medicines). Another example is to
construct a network to investigate the ecosystem by attaching sensors to a flock
of wild small animals such as birds. In this system, since sensors are attached to
small animals, sensors should be small and thus sensors should have small amount
of memory.

The population protocol model is an abstract model for such low-performance
devices, introduced by Angluin et al. [7]. In this model, a network (called popula-
tion) consists of multiple devices (called agents). Those agents are greatly limited;
they are anonymous (i.e., they do not have identifiers), move unpredictably, and
have a small number of bits of memory. When two agents approach, they are
able to communicate and update their states. This communication is called an
interaction. By a sequence of interactions, the system proceeds a computation.
In this dissertation, we tackle with two significant challenges of the population
protocol model. One of the challenges is to handle multiple tasks. The other
challenge is efficient task execution.

Challenge 1: Handling multiple tasks

Handling multiple tasks is a key issue especially on the population protocol model.
This is because, since agents are low-performance, one agent may not handle
multiple tasks and thus it is necessary to develop a mechanism to handle multiple
tasks.

In order to achieve it, we focus on partitioning a population. By partitioning
a population into some groups, agents can handle multiple tasks by assigning dif-

1

ferent tasks to each group. Concretely, we study the uniform k-partition problem
on the population protocol model. This problem aims to divide a population into
k groups of the same size, where k is a given positive integer. By solving this
problem, since the population can be divided into an arbitrary number of groups,
an arbitrary number of tasks can be assigned, and, since each group has the same
number of agents, the tasks can proceed uniformly.

Challenge 2: Efficient task execution

To execute task efficiently, we focus on the structure of networks and address
the investigation of the structure of networks. As many studies have shown, the
structure of networks has a high impact on the efficiency of the algorithm. Actu-
ally, in the population protocol model, some efficient protocols are proposed with
limited structure of networks [5, 10, 26, 27]. Hence, by understanding the struc-
ture of networks, we can apply appropriate algorithms to execute tasks efficiently.
In this dissertation, we study graph class identification problems that aim to un-
derstand the structure of networks (i.e., graph class of networks). In particular,
as basic graph classes, we deal with lines, rings, k-regular graphs, stars, trees,
and bipartite graphs.

2. Overview of This Dissertation

In this dissertation, we study the space complexity of the problems. That is,
we investigate the number of states per agent to solve the problems. In the
population protocol model, the first goal is to execute tasks while the memory
capacity of devices is severely limited. Hence, it is very important to study the
space-complexity in this model.

2.1 Uniform k-partition Problem

The uniform k-partition problem aims to divide a population into k groups of
equal size, where k is a given positive integer.

As a first step, to clarify the solvability of the problem in a simple case,
we study the solvability of the uniform 2-partition on complete communication

2

graphs. More concretely, we study the solvability of the problem under various
assumptions; in order to be flexible for future applications, it is necessary to
consider various situations. In this dissertation, we consider four types of as-
sumptions: 1) with an initialized base station, a non-initialized base station, or
no base station, 2) designated or arbitrary initial states of agents, 3) asymmetric
or symmetric protocols, and 4) global or weak fairness. A base station is a special
agent that is distinguishable from other agents and has powerful capability. An
initialized base station means that the base station has a designated initial state
in the initial configuration, whereas a non-initialized base station means that the
base station has an arbitrary initial state in the initial configuration. The base
station enables us to construct efficient protocols, though it is sometimes difficult
to implement. The assumption of initial states bears on the requirement of ini-
tialization of agents (other than the base station) and the fault-tolerant property.
If a protocol requires designated initial states, it is necessary to initialize agents
to execute the protocol. Alternatively, if a protocol solves the problem with ar-
bitrary initial states, we do not need to initialize agents. This implies that, when
agents transition to arbitrary states by transient faults, the protocol can reach the
desired configuration. Symmetry of protocols is related to the power of symme-
try breaking in the population. Asymmetric protocols may include asymmetric
transitions that make agents with the same states transition to different states.
This needs a mechanism to break symmetry among agents and its implementa-
tion is not easy with heavily limited devices. Symmetric protocols do not include
such asymmetric transitions. Fairness is an assumption of interaction patterns.
Though weak fairness guarantees only that every pair of agents interact infinitely
often, global fairness makes a stronger assumption on the order of interactions.
As a result, we clarify the solvability of the uniform 2-partition problem for each
combination of the assumptions. In addition, we clarify tight upper and lower
bounds on the number of states to solve the uniform 2-partition problem for each
combination of the assumptions.

Secondly, we extend the results to the general case of an arbitrary number
of partitions (the uniform k-partition). Concretely, we clarify the solvability
on complete graphs for each combination of the assumptions, and clarify tight
upper and lower bounds on the number of states for most combinations of the

3

assumptions.
Finally, we consider the uniform 2-partition problem even on arbitrary com-

munication graphs. In the population protocol model, most existing works con-
sider the complete communication graph model. However, in realistic networks,
communication graphs may be unpredictable. Thus, we also need algorithms that
can solve the problem on arbitrary communication graphs. On arbitrary com-
munication graphs, we clarify the solvability of the uniform 2-partition problem
with designated initial states.

2.2 Graph Class Identification Problems

Graph class identification problems aim to decide whether a given communica-
tion graph is in the desired class (e.g., whether the given communication graph
is a ring graph). In the population protocol model, the computability of the
graph property was first considered in [6]. In [6], Angluin et al. proposed various
graph class identification protocols with directed graphs and designated initial
states under global fairness. Concretely, Angluin et al. proposed graph class
identification protocols for directed lines, directed rings, directed stars, and di-
rected trees. Moreover, they proposed graph class identification protocols for
other graphs such as 1) graphs having degree bounded by a constant k, 2) graphs
containing a fixed subgraph, 3) graphs containing a directed cycle, and 4) graphs
containing a directed cycle of odd length. However, there are still some open
questions such as “What is the computability for undirected graphs?” and “How
do other assumptions (e.g., initial states, fairness, etc.) affect the computability?”
In this dissertation, we answer those questions. That is, we study the solvability
of graph class identification problems for undirected graphs under various as-
sumptions such as initial states of agents, fairness of the execution, and an initial
knowledge of agents. The initial knowledge is given to agents for helping the
agents solve the problem. We consider three types of the initial knowledge: the
number of agents n, the upper bound P of the number of agents, and no knowl-
edge. The initial knowledge enables us to construct efficient protocols although
it may be difficult to know the knowledge in some situations.

As a result, for most combinations of the assumptions, we clarify the solv-
ability of graph class identification problems for various basic graphs such as line

4

graphs, ring graphs, k-regular graphs, star graphs, tree graphs, and bipartite
graphs.

3. Related Works

The population protocol model was introduced in [7, 9], where the class of com-
putable predicates in this model was studied. Then, many fundamental tasks
were studied, such as leader election, counting, majority, etc [4, 13]. These prob-
lems were studied under various assumptions, such as the existence of a base
station, fairness of the execution, symmetry of protocols, initial states of agents,
and an initial knowledge of agents.

3.1 Leader Election Problem

A population protocol solves a leader election problem if starting from an ini-
tially uniform population of agents, eventually a single agent outputs leader,
while all others output non-leader. The leader election problem was studied from
the perspective of time and space efficiency. Doty and Soloveichik [29] proved
that Ω(n) expected parallel time is required to solve leader election with prob-
ability 1 if agents have a constant number of states. Relaxing the number of
states to a polylogarithmic value, Alistarh and Gelashvili [3] proposed a leader
election protocol in polylogarithmic expected stabilization time. Then, Gąsieniec
et al. [32] designed a protocol with O(log logn) states and O(logn ⋅ log logn) ex-
pected time. Furthermore, the protocol of Gąsieniec et al. [32] is space-optimal for
solving the problem in polylogarithmic time. Sudo et al. [43] presented a leader
election protocol with O(logn) states and O(logn) expected time. This protocol
is time-optimal for solving the problem. Finally, Berenbrink et al. [20] proposed
a time and space optimal protocol that solves the leader election problem with
O(log logn) states and O(logn) expected time.

The designated initial states are assumed in above protocols whereas leader
election protocols with arbitrary initial states have also been studied by many
researchers [11, 14, 24, 26, 27, 30, 47]. Protocols with arbitrary initial are called
self-stabilizing protocols. In [11], Angluin et al. proposed various self-stabilizing
protocols such as leader election, spanning-tree construction, etc. Moreover, they

5

proved that, in the case of arbitrary communication graphs, self-stabilizing leader
election is impossible. After that, researchers studied self-stabilizing leader elec-
tion protocols with restricted graphs [26, 27], with some oracles [14, 30], or with
some initial knowledge [24, 47].

As a variant of the self-stabilizing protocol, loosely self-stabilizing protocols
were also studied for the leader election (loose stabilization relates to the fact
that correctness is only guaranteed for a very long expected amount of time)
[42, 41, 44, 33, 46, 45, 40]. Loosely self-stabilizing leader election was introduced
by Sudo et al. [42]. In [42], they proposed a loosely self-stabilizing leader election
with complete graphs and initial knowledge of the upper bound P of the number
of agents. The protocol obtains a safe configuration with O(nN logn) expected
time, where the safe configuration is a configuration after which a unique agent
outputs leader for a sufficiently long time. Then, with complete graphs, some
researchers proposed time-efficient protocols [33, 46]. Recently, Sudo et al. pro-
posed a time-optimal protocol with complete graphs [40]. On the other hand,
with arbitrary graphs, researchers proposed protocols with identifier of agent, or
non-deterministic protocols [44, 41]. Then, Sudo et al. proposed a deterministic
protocol without identifier [45].

3.2 Counting Problem

The counting problem consists in counting how many agents participate to the
protocol; As the agent’s memory is typically constant, this number is output by a
special agent that may maintain logarithmic size memory, the base station. The
counting problem was introduced by Beauquier et al. [16] and popularized the
concept of a base station. Space complexity was further reduced by follow-up
works [15, 34], until Aspnes et al. [12] finally proposed a time and space optimal
protocol. In the above works, they consider the problem with arbitrary initial
states (however the base station has a designated initial state). On the other hand,
by allowing the initialization of agents, the counting protocols without the base
station were proposed for both exact counting [21] and approximate counting [1,
21]. Alistarh et al. [1] proposed a protocol that computes an integer k such
that 1

2 logn < k < 9 logn in O(logn) time with high probability using O(logn)
states. Then, Berenbrink et al. [21] designed a protocol that outputs either ⌊logn⌋

6

or ⌈logn⌉ in O(log2 n) time with high probability using O(logn ⋅ log logn) states.
Moreover, they proposed the exact counting protocol that computes n in O(logn)
time using Õ(n) states with high probability.

3.3 Majority Problem

The majority problem aims to decide which, if any, initial state in a population is a
majority. The majority problem was addressed under different assumptions (e.g.,
with or without failures [8], deterministic [31, 35] or probabilistic [2, 17, 18, 35]
solutions, with arbitrary communication graphs [37], etc.). Those works also
consider minimizing the time and space complexity. Berenbrink et al. [19] show
trade-offs between time and space for the problem.

3.4 Uniform k-partition Problem

To our best knowledge, only a few variants of the uniform k-partition have been
considered so far. Lamani et al. [36] studied a group decomposition problem
that aims to divide a population into groups of designated sizes. Delporte-Gallet
et al. [28] proposed a k-partition protocol with relaxed uniformity constraints:
the population is divided into k groups such that in any group, at least n/(2k)
agents exist, where n is the number of agents. In addition, they also constructed
a uniform 2-partition protocol as a subroutine of the protocol.

3.5 Graph Class Identification Problems

For graph class identification problems, Chatzigiannakis et al. [25] studied solv-
abilities for directed graphs with some properties on the mediated population
protocol model [38], where the mediated population protocol model is an ex-
tension of the population protocol model. In this model, a communication link
(on which agents interact) has a state. Agents can read and update the state
of the communication link when agents interact on the communication link. In
[25], they proposed graph class identification protocol for some graphs such as
1) graphs having degree bounded by a constant k, 2) graphs in which the degree
of each agent is at least k, 3) graphs containing an agent such that in-degree of

7

the agent is greater than out-degree of the agent, 4) graphs containing a directed
path of at least k edges, etc. Since Chatzigiannakis et al. proposed protocols
for the mediated population protocol model, the protocols cannot work in the
population protocol model. As impossibility results, they showed that there is no
graph class identification protocol that decides whether the given directed graph
has two edges (u, v) and (v, u) for two agents u and v, or whether the given
directed graph is weakly connected.

4. Organization of This Dissertation

This dissertation consists of six parts. In Part II, we introduce a formal model
definition of the population protocol model. Part III and IV focus on the uniform
k-partition problem under various assumptions. In Part III, we clarify the solv-
ability of the uniform k-partition problem on complete communication graphs. In
Part IV, we clarify the solvability of the uniform 2-partition problem on arbitrary
communication graphs. Part V focuses on graph class identification problems.
Concretely, we clarify the solvability of graph class identification problems for
line, ring, tree, k-regular, and star. In Part VI, we conclude this dissertation.

8

Part II

Model Definition
In this part, we give a formal definition of the population protocol model. A
communication graph of a population is represented by a simple undirected con-
nected graph G = (V,E), where V represents a set of agents (called a population),
and E ⊆ V × V is a set of edges (containing neither multi-edges nor self-loops)
that represent the possibility of an interaction between two agents (i.e., only if
(a, b) ∈ E holds, two agents a ∈ V and b ∈ V can interact).

A protocol P = (Q,Y, γ, δ) consists of a set Q of possible states of agents,
a finite set of output symbols Y , an output function γ ∶ Q → Y , and a set of
transitions δ from Q ×Q to Q ×Q. Output symbols in Y represent outputs as
the results according to the purpose of the protocol. Output function γ maps a
state of an agent to an output symbol in Y . Each transition in δ is denoted by
(p, q) → (p′, q′). This means that, when an agent a in state p interacts with an
agent b in state q, their states become p′ and q′, respectively. We say that such
a is an initiator and such b is a responder. When a and b interact as an initiator
and a responder, respectively, we simply say that a interacts with b. Transition
(p, q) → (p′, q′) is null if both p = p′ and q = q′ hold. We omit null transitions
in descriptions of algorithms. Protocol P = (Q,Y, γ, δ) is deterministic if, for
any pair of states (p, q) ∈ Q × Q, exactly one transition (p, q) → (p′, q′) exists
in δ. We consider only deterministic protocols in this dissertation. Protocol
P = (Q,Y, γ, δ) is symmetric if, for every transition (p, q) → (p′, q′) in δ, (q, p) →
(q′, p′) exists in δ. In particular, if a protocol P = (Q,Y, γ, δ) is symmetric and
transition (p, p) → (p′, q′) exists in δ, p′ = q′ holds. In this dissertation, an
arbitrary protocol is also called an asymmetric protocol. When we refer to a
protocol as an asymmetric protocol, we simply emphasize that the protocol is
not subject to the restriction of transitions (whereas symmetric protocols are
subject to the restriction of transitions). Note that a symmetric protocol is
also an asymmetric protocol (and an asymmetric protocol is not necessarily a
symmetric protocol).

A configuration represents a global state of a population, defined as a vector

9

of states of all agents. A state of agent a in configuration C is denoted by s(a,C).
Moreover, when C is clear from the context, we simply use s(a) to denote the state
of agent a. A transition from configuration C to configuration C ′ is denoted by
C → C ′, and means that, by a single interaction between two agents, configuration
C ′ is obtained from configuration C. For two configurations C and C ′, if there
exists a sequence of configurations C = C0, C1, . . ., Cm = C ′ such that Ci → Ci+1

holds for every i (0 ≤ i <m), we say C ′ is reachable from C, denoted by C
∗Ð→ C ′.

An execution of a protocol is an infinite sequence of configurations Ξ = C0, C1,
C2, . . . where Ci → Ci+1 holds for every i (i ≥ 0). An execution Ξ is weakly-fair
if, for any adjacent agents a and a′, a interacts with a′ and a′ interacts with
a infinitely often1. An execution Ξ is globally-fair if, for each pair of configu-
rations C and C ′ such that C → C ′, C ′ occurs infinitely often when C occurs
infinitely often. Intuitively, global fairness guarantees that, if configuration C

occurs infinitely often, then any possible interaction in C also occurs infinitely
often. Then, if C occurs infinitely often, C ′ satisfying C → C ′ occurs infinitely
often, and we can deduce that C ′′ satisfying C ′ → C ′′ also occurs infinitely often.
Overall, with global fairness, if a configuration C occurs infinitely often, then
every configuration C∗ reachable from C also occurs infinitely often.

In this dissertation, we consider three possibilities for the base station: initial-
ized base station, non-initialized base station, and no base station. In the model
with a base station, we assume that a single agent, called a base station, exists
in V . Then, V can be partitioned into Vb, the singleton set containing the base
station, and Vp, the set of agents except for the base station. The base station
can be distinguished from other agents in Vp, although agents in Vp cannot be
distinguished. Then, the state set Q can be partitioned into a state set Qb for
the base station, and a state set Qp for agents in Vp. The base station has un-
limited resources (with respect to the number of states), in contrast with other
resource-limited agents (that are allowed only a limited number of states). So,

1We use this definition only for the lower bound under weak fairness. For the upper bound,
we use a slightly weaker assumption. We show that our proposed protocol for weak fairness
works if, for any adjacent agents a and a′, a and a′ interact infinitely often (i.e., it is possible
that, for any interaction between some adjacent agents a and a′, a becomes an initiator and a′

never becomes an initiator). Note that, in the protocol, if a transition (p, q)→ (p′, q′) exists for
p ≠ q, a transition (q, p)→ (q′, p′) also exists.

10

when we evaluate the space complexity of a protocol, we focus on the number of
states ∣Qp∣ for agents in Vp and do not consider the number of states ∣Qb∣ that are
allocated to the base station. In the sequel, we thus say a protocol uses x states if
∣Qp∣ = x holds. When we assume an initialized base station, the base station has a
designated initial state. When we assume a non-initialized base station, the base
station has an arbitrary initial state (in Qb). When we assume no base station,
there exists no base station and thus V = Vp and Q = Qp hold. For simplicity, we
use agents only to refer to agents in Vp in the following sections. To refer to the
base station, we always use the term base station (not an agent).

In this dissertation, we consider three settings for an initial knowledge of
agents: the number of agents n, the upper bound P of the number of agents, and
no knowledge. Note that the protocol depends on this initial knowledge. When
we explicitly state that an integer x is given as the number of agents, we write
the protocol as Pn=x. Similarly, when we explicitly state that an integer x is given
as the upper bound of the number of agents, the protocol is denoted by PP=x.
Unless otherwise mentioned, agents have no knowledge.

11

Part III

Uniform k-partition on Complete
Graphs

1. Introduction

In this part, we aim to clarify the solvabilities of the uniform k-partition on
complete graphs under various assumptions. As a first step, we consider a simple
case of the uniform k-partition where the number of partitions is two (the uniform
2-partition). Then, we consider the general case (the uniform k-partition). We
remark that some results of the uniform 2-partition is applied to the uniform
k-partition. Note that, in this part, since we assume complete graphs, each pair
of agents can interact.

1.1 Our Contributions

Results for the uniform 2-partition problem

Tables 1 and 2 show the solvability of the uniform 2-partition on complete graphs.
These tables show the number of states to solve the uniform 2-partition prob-

lem under various assumptions, where P is the known upper bound of the number
of agents. In this dissertation, we provide tight upper and lower bounds of the
number of states for each case. With a (initialized or non-initialized) base station
and designated initial states, we show that three states are necessary and sufficient
to solve the problem, regardless of fairness and symmetry. With an initialized
base station and arbitrary initial states, we show that four states are necessary
and sufficient to solve the problem under global fairness; under weak fairness, we
show that P states (resp., P +1 states) are necessary and sufficient for asymmetric
protocols (resp., symmetric protocols). With a non-initialized base station and
arbitrary initial states, we prove that the uniform 2-partition problem is unsolv-
able, regardless of fairness and symmetry. With no base station and designated
initial states, Delporte-Gallet et al. [28] constructed an asymmetric uniform 2-

12

Table 1. Minimum number of states to solve the uniform 2-partition problem
under global fairness on complete graphs.

Base station Initial states Symmetry Upper bound Lower bound

Initialized base station
Designated

Asymmetric 3 3
Symmetric 3 3

Arbitrary
Asymmetric 4 4
Symmetric 4 4

Non-initialized base station
Designated

Asymmetric 3 3
Symmetric 3 3

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

No base station
Designated

Asymmetric 3 [28] 3
Symmetric 4 [22] 4

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

Table 2. Minimum number of states to solve the uniform 2-partition problem
under weak fairness on complete graphs.

Base station Initial states Symmetry Upper bound Lower bound

Initialized base station
Designated

Asymmetric 3 3
Symmetric 3 3

Arbitrary
Asymmetric P P

Symmetric P + 1 P + 1

Non-initialized base station
Designated

Asymmetric 3 3
Symmetric 3 3

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

No base station
Designated

Asymmetric 3 3
Symmetric Unsolvable

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

13

partition protocol that solves the problem with three states under global fairness.
Moreover, with no base station and designated initial states, Bournez et al. [22]
proposed a transformer that transforms an asymmetric protocol into a symmetric
protocol under global fairness by assuming additional states. We use the same
idea to construct a symmetric uniform 2-partition protocol under global fairness
with no base station and designated initial states. As a result for lower bounds,
we prove that three states (resp., four states) are necessary to solve the problem
under global fairness for asymmetric protocols (resp., symmetric protocols). On
the other hand, under weak fairness, we show that three states are necessary and
sufficient for asymmetric protocols and there is no symmetric protocol, with no
base station and designated initial states. With no base station and arbitrary ini-
tial states, we prove that the uniform 2-partition problem is unsolvable, regardless
of fairness and symmetry.

Interestingly, in many impossibility results, we not only prove that there is
no uniform 2-partition protocol, but also that there is no protocol that solves
the 2-partition problem (which aims to divide a population into 2 groups, but
the problem allows for a constant difference in the number of agents between
the groups). Concretely, in all cases other than the case where we consider the
problem with an initialized base station and arbitrary initial states under weak
fairness, we show that the lower bounds of the 2-partition are the same as the
lower bounds of the uniform 2-partition. Moreover, since uniform 2-partition pro-
tocols are also 2-partition protocols, possibility results of the uniform 2-partition
can be applied directly to the 2-partition. Tables 3 and 4 show the results of the
2-partition on complete graphs. Overall, even in the case of the 2-partition, we
clarify tight upper and lower bounds on the number of states in most settings.

For the case of an initialized base station, arbitrary initial states, and weak
fairness, it is interesting to compare these results with those of naming protocols
[23]. A naming protocol aims to assign different states to all agents, and hence
it can be regarded as a uniform P -partition protocol (the size of each group is
zero or one). Burman et al. [23] prove that, to construct naming protocols in the
same setting, P states are necessary and sufficient for asymmetric protocols and
P + 1 states are necessary and sufficient for symmetric protocols. That is, nam-
ing protocols have the same space complexity as uniform 2-partition protocols.

14

Table 3. Minimum number of states to solve the 2-partition problem under global
fairness on complete graphs.

Base station Initial states Symmetry Upper bound Lower bound

Initialized base station
Designated

Asymmetric 3 3
Symmetric 3 3

Arbitrary
Asymmetric 4 4
Symmetric 4 4

Non-initialized base station
Designated

Asymmetric 3 3
Symmetric 3 3

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

No base station
Designated

Asymmetric 3 [28] 3
Symmetric 4 [22] 4

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

Table 4. Minimum number of states to solve the 2-partition problem under weak
fairness on complete graphs.

Base station Initial states Symmetry Upper bound Lower bound

Initialized base station
Designated

Asymmetric 3 3
Symmetric 3 3

Arbitrary
Asymmetric P -
Symmetric P + 1 -

Non-initialized base station
Designated

Asymmetric 3 3
Symmetric 3 3

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

No base station
Designated

Asymmetric 3 3
Symmetric Unsolvable

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

15

Clearly naming protocols (or uniform P -partition protocols) require P states to
assign different states to P agents. Interestingly uniform 2-partition protocols
still require P states in this setting. On the other hand, the number of states
is reduced to three or four when we assume designated initial states or global
fairness.

Results for the uniform k-partition problem

Tables 5 and 6 show the solvability of the uniform k-partition on complete graphs.
First of all, some results of the uniform 2-partition can be applied to the uniform
k-partition. First, since the uniform 2-partition is a special case of the uniform k-
partition, impossibility results of the uniform 2-partition can be applied directly
to the uniform k-partition. In addition, we prove the impossibility of k states with
the base station and designated initial states under global fairness by extending
the impossibility of three states for the uniform 2-partition. Secondly, with an
initialized base station under weak fairness, the P -state and P +1-state protocols
for the uniform 2-partition also work even for the uniform k-partition. Moreover,
with designated initial states and the (initialized or non-initialized) base station,
the uniform 2-partition protocols are easily extended to the uniform k-partitions.

The main contribution for the uniform k-partition is to propose a protocol
with designated initial states and no base station. Concretely, for the case with
no base station and designated initial states under global fairness, we propose a
symmetric protocol. This protocol requires 3k−2 states for each agent. This space
complexity is asymptotically optimal because the lower bound in this setting is
k + 1. Moreover, we evaluate the time complexity of the protocol by simulations.
From the simulation results, we can observe that the time complexity increases
exponentially with k but not exponentially with n, where n is the number of
agents.

As in the case of the uniform 2-partition, most results of the uniform k-
partition can also be applied to the k-partition (see Tables 7 and 8). Hence, even
in the case of the k-partition, we clarify tight upper and lower bounds on the
number of states in most settings.

16

Table 5. Minimum number of states to solve the uniform k-partition problem
under global fairness on complete graphs.

Base station Initial states Symmetry Upper bound Lower bound

Initialized base station
Designated

Asymmetric k + 1 k + 1
Symmetric k + 1 k + 1

Arbitrary
Asymmetric P k + 1
Symmetric P + 1 k + 1

Non-initialized base station
Designated

Asymmetric k + 1 k + 1
Symmetric k + 1 k + 1

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

No base station
Designated

Asymmetric 3k − 2 k + 1
Symmetric 3k − 2 k + 1

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

Table 6. Minimum number of states to solve the uniform k-partition problem
under weak fairness on complete graphs.

Base station Initial states Symmetry Upper bound Lower bound

Initialized base station
Designated

Asymmetric k + 1 k + 1
Symmetric k + 1 k + 1

Arbitrary
Asymmetric P P

Symmetric P + 1 P + 1

Non-initialized base station
Designated

Asymmetric k + 1 k + 1
Symmetric k + 1 k + 1

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

No base station
Designated

Asymmetric - k + 1
Symmetric Unsolvable

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

17

Table 7. Minimum number of states to solve the k-partition problem under global
fairness on complete graphs.

Base station Initial states Symmetry Upper bound Lower bound

Initialized base station
Designated

Asymmetric k + 1 k + 1
Symmetric k + 1 k + 1

Arbitrary
Asymmetric P k + 1
Symmetric P + 1 k + 1

Non-initialized base station
Designated

Asymmetric k + 1 k + 1
Symmetric k + 1 k + 1

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

No base station
Designated

Asymmetric 3k − 2 k + 1
Symmetric 3k − 2 k + 1

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

Table 8. Minimum number of states to solve the k-partition problem under weak
fairness on complete graphs.

Base station Initial states Symmetry Upper bound Lower bound

Initialized base station
Designated

Asymmetric k + 1 k + 1
Symmetric k + 1 k + 1

Arbitrary
Asymmetric P -
Symmetric P + 1 -

Non-initialized base station
Designated

Asymmetric k + 1 k + 1
Symmetric k + 1 k + 1

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

No base station
Designated

Asymmetric - k + 1
Symmetric Unsolvable

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

18

2. Problem Definition

Now, we give a formal definition of the uniform k-partition problem (and the
k-partition problem).

Let Vp be a set of all agents except for the base station. Let Y = {color1,
color2, . . ., colork} be an output set of the problem. Let γ ∶ Qp → Y be a function
that maps a state of an agent (except for the base station) to Y . We define a
color of v ∈ Vp as γ(s(v)). We say agent v ∈ Vp belongs to the i-th group if
γ(s(v)) = colori holds.

An execution Ξ = C0, C1, C2, . . . solves the k-partition problem with size
difference x ≥ 1 if Ξ includes a stable configuration Ct that satisfies the following
condition:

• There is a partition {H1, H2, . . . ,Hk} of Vp such that, 1) ∣∣Hi∣ − ∣Hj ∣∣ ≤ x

for any i and j, and, 2) for all C∗ such that C
∗Ð→ C∗, each agent in Hi

belongs to the i-th group at C∗ (i.e., at C∗, any agent v in Hi satisfies
γ(s(v)) = colori).

In this dissertation, we assume that size difference x is a constant. If each execu-
tion Ξ of protocol P solves the k-partition problem with size difference x ≥ 1, we
say protocol P solves the k-partition problem with x. In particular, if each exe-
cution Ξ of protocol P solves the k-partition problem with size difference x = 1,
we say protocol P solves the uniform k-partition problem.

3. Uniform 2-partition under Global Fairness on
Complete Graphs

In this section, we show the upper and lower bounds of the uniform 2-partition on
complete graphs under global fairness. Concretely, we consider three assumptions
1) a population with an initialized base station, non-initialized base station, or
no base station, 2) symmetric or asymmetric protocols, and 3) designated or
arbitrary initial states, and, for each combination of assumptions, we completely
clarify solvability of the uniform 2-partition problem. Moreover, if solvable, we
show the tight upper and lower bounds on the number of states.

19

In this section, since we consider the case of k = 2, function γ is defined as
γ ∶ Qp → {color1, color2}. In the case, we assign colors red and blue to color1 and
color2, respectively, and we define γ as function γ ∶ Qp → {red, blue} that maps a
state of a non base station agent to red or blue. We say agent a ∈ Vp is red (resp.,
blue) if γ(s(a)) = red (resp., γ(s(a)) = blue) holds.

3.1 Uniform 2-partition Protocols with Initialized Base Sta-
tion

In this subsection, we consider the uniform 2-partition problem under the assump-
tion of an initialized base station. Recall that the base station is distinguishable
from other agents, and we do not care the number of states for the base station.

3.1.1 Upper Bound for Symmetric Protocols with Designated Initial
States

In this protocol, the state set of agents is Qp = {initial, red, blue}, and we set
γ(initial) = γ(red) = red and γ(blue) = blue. The designated initial state of all
agents is initial. The idea of the protocol is to assign states red and blue to
agents alternately when agents interact with the base station. To do this, the
base station has a state set Qb = {bred, bblue}, and its initial state is bred. The
protocol consists of the following two transitions.

1. (bred, initial)→ (bblue, red)

2. (bblue, initial)→ (bred, blue)

That is, when the base station in state bred (resp., bblue) and an agent in state
initial interact, the base station changes the state of the agent to red (resp., blue)
and the state of itself to bblue (resp., bred). When two agents (except for the base
station) interact, no state transition occurs. Clearly, all agents evenly transition
to state red or blue, and the difference in the numbers of red and blue agents is at
most one. Note that the protocol contains no asymmetric transition and works
correctly if every agent interacts with the base station. Therefore, we have the
following theorem.

20

Theorem 1. In the model with an initialized base station, there exists a symmetric
protocol with three states and designated initial states that solves the uniform 2-
partition problem under global fairness.

Remark. This protocol works even under weak fairness. Even under weak
fairness, eventually all agents interact with the base station. Hence, eventually,
all agents transition to either red or blue. Moreover, the protocol does not depend
on the initial state of the base station; that is, the protocol can work with a non-
initialized base station. From these facts, we can observe that the protocol solves
the problem under weak fairness with a non-initialized base station.

Theorem 2. In the model with a non-initialized base station, there exists a sym-
metric protocol with three states and designated initial states that solves the uni-
form 2-partition problem under weak fairness.

3.1.2 Lower Bound with Designated Initial States

Next, we show three states are necessary to construct an asymmetric protocol
under global fairness. This implies that, in this case, three states are necessary
for asymmetric or symmetric protocols under global fairness because a symmetric
protocol is also asymmetric. That is, three states are necessary and sufficient in
this case.

Theorem 3. In the model with an initialized base station, no asymmetric protocol
with two states and designated initial states solves the 2-partition problem with
size difference x ≥ 1 under global fairness.

Proof. For contradiction, we assume that such a protocol Alg exists. Without
loss of generality, we assume Qp = {s1, s2}, f(s1) = red, f(s2) = blue, and that the
designated initial state of all agents is s1. Let n be a number that is at least x+4.
We consider the following three cases.

First, for population V of a single base station and n agents a1, a2, . . . , an,
consider a globally fair execution Ξ = C0,C1, . . . of Alg with size difference x.
According to the definition, there exists a stable configuration Ct. That is, after
Ct, the state of each agent does not change even if the base station and agents in
states s1 and s2 interact in any order, and the difference in the numbers of red

21

and blue agents is at most x. Note that, since n is at least x + 4, the numbers of
red and blue agents is at least 2 after Ct.

Next, for population V ′ of a single base station and n+2x+1 agents a1, a2, . . . , an+2x+1,
we define an execution Ξ′ = C ′0,C ′1, . . . ,C ′t,C ′t+1, . . . of Alg as follows.

• From C ′0 to C ′t, the base station and n agents a1, a2, . . . , an interact in the
same order as the execution Ξ.

• After C ′t, the base station and n + 2x + 1 agents interact so as to satisfy
global fairness.

Since the base station and agents a1, . . . , an change their states similarly to Ξ

from C ′0 to C ′t, the number of red agents is x+1 or more than the number of blue
agents at C ′t. Moreover, the state of the base station at C ′t is the same as the state
of the base station at Ct. However, since the difference in the numbers of red and
blue agents is at least x + 1, C ′t is not a stable configuration. Consequently, after
C ′t, some red or blue agent changes its state in execution Ξ′.

Lastly, we define execution Ξ′′ = C ′′0 ,C ′′1 , . . . for population V as follows. First,
we make agents transition similarly to Ξ and reach stable configuration C ′′t (= Ct)
in Ξ′′. After that we apply interactions in Ξ′ to execution Ξ′′. That is, we make
agents interact as follows after C ′′t in Ξ′′: 1) when the base station and an agent
in state s ∈ {s1, s2} interact at C ′u → C ′u+1 (u ≥ t) in Ξ′, the base station and an
agent in state s interact at C ′′u → C ′′u+1 in Ξ′′, and 2) when two agents in states
s ∈ {s1, s2} and s′ ∈ {s1, s2} interact at C ′u → C ′u+1 (u ≥ t) in Ξ′, two agents in
states s and s′ interact at C ′′u → C ′′u+1 in Ξ′′. We can realize such interactions
because, after stable configuration C ′′t , at least two agents are in s1 and at least
two agents are in s2. After C ′′t , since interactions occur similarly to Ξ′, some red

or blue agent changes its state similarly to Ξ′. After such a state change occurs,
we make agents interact so that Ξ′′ satisfies global fairness. This implies that, in
globally fair execution Ξ′′, an agent changes its color after stable configuration
C ′′t . This is a contradiction.

22

3.1.3 Upper Bound for Symmetric Protocols with Arbitrary Initial
States

Here we show a symmetric protocol with four states under global fairness. In
this protocol, each agent x has two variables rbx ∈ {red, blue} and markx ∈ {0,1}.
Variable rbx represents the color of agent x. That is, for state s of agent x,
γ(s) = red holds if rbx = red and γ(s) = blue holds if rbx = blue. We define #red

as the number of red agents and #blue as blue agents. We explain the role of
variable markx later.

The basic strategy of the protocol is that the base station counts red and blue

agents by counting protocol Count [15] and changes colors of agents so that the
numbers of red and blue agents become equal. Protocol Count is a symmetric
protocol that counts the number of agents from arbitrary initial states under
global fairness. Protocol Count uses only two states for each agent. We use
variable markx to maintain the state of protocol Count. In protocol Count, the
base station has variable Count.out that eventually outputs the number of agents.
More concretely, Count.out initially has value 0, gradually increases one by one,
eventually equals to the number of agents, and stabilizes. The following lemma
explains the characteristic of protocol Count.

Lemma 1 ([15]). Let n be the number of agents. In the initial configuration,
Count.out = 0 holds. When Count.out < n, Count.out eventually increases by
one under global fairness. When Count.out = n, Count.out never changes and
stabilizes.

To count red and blue agents, the base station executes two instances of pro-
tocol Count in parallel to the main procedure of the uniform 2-partition protocol.
We denote by Countred and Countblue instances of protocol Count to count red

and blue agents, respectively. The base station executes Countred when it inter-
acts with a red agent. That is, the base station updates variables of Countred at
the base station and the red agent by applying a transition of protocol Countred.
By this behavior, the base station executes Countred as if the population con-
tains only red agents. Therefore, after the base station initializes its own variables
of Countred, it can correctly count the number of red agents by Countred (i.e.,
Countred.out eventually stabilizes to #red) as long as a set of red agents does not

23

change. Similarly, the base station executes Countblue when it interacts with a
blue agent, and counts the number of blue agents. The straightforward approach
to use the counting protocols is to adjust colors of agents after Countred.out and
Countblue.out stabilize. However, the base station cannot know whether the out-
puts have stabilized or not. For this reason, the base station maintains estimated
numbers of red and blue agents, and it changes colors of agents when the differ-
ence in the estimated numbers of red and blue agents is two. Note that, since
the counting protocols assume that a set of counted agents does not change, the
base station must restart Countred and Countblue from the beginning when the
base station changes colors of some agents.

We explain the details of this procedure. The base station records the es-
timated numbers of red and blue agents in variables C∗rb[red] and C∗rb[blue],
respectively. In the beginning of execution, these variables are identical to out-
puts of Countred and Countblue. If the difference between C∗rb[red] and C∗rb[blue]
becomes two, the base station immediately changes colors of agents. At the same
time, the base station updates C∗rb[red] and C∗rb[blue] to reflect the change of
colors. After the base station changes colors of some agents, it restarts Countred

and Countblue from the beginning by initializing its own variables of the counting
protocols. Since the counting protocols allow arbitrary initial states of agents,
the base station can correctly count red and blue agents after that. Note that
the base station does not initialize C∗rb[red] and C∗rb[blue] because it knows such
numbers of red and blue agents exist. If the output of Countred and Countblue

exceeds C∗rb[red] and C∗rb[blue], the base station updates C∗rb[red] and C∗rb[blue],
respectively. After that, if the difference between C∗rb[red] and C∗rb[blue] becomes
two, the base station changes colors of agents. By repeating this behavior, the
base station adjusts colors of agents.

The pseudocode of this protocol is given in Algorithm 1. We define red = blue
and blue = red. Recall that variable markx is a two-state variable of counting
protocols Countred and Countblue. Since the base station restarts the counting
protocols whenever it changes colors of agents, the base station keeps a set of red
(resp., blue) agents unchanged until it restarts Countred (resp., Countblue). In
addition, each agent is involved in either Countred or Countblue at the same time.
Hence it requires only a single variable markx to execute Countred and Countblue.

24

Algorithm 1 Uniform 2-partition protocol
Variables at the base station:

C∗rb[c](c ∈ {red, blue}): the estimated number of c agents, initialized to 0
V ariables: variables of Countc(c ∈ {red, blue})

Variables at an agent x:
rbx ∈ {red, blue}: color of the agent, initialized arbitrarily
markx ∈ {0,1}: a variable of Countc(c ∈ {red, blue}), initialized arbitrarily

1: when an agent x interacts with the base station do
2: Update markx and variables of Countrbx at the base station by applying

a transition of Countrbx
3: if C∗rb[rbx] < Countrbx .out then
4: C∗rb[rbx]← Countrbx .out

5: end if
6: if C∗rb[rbx] −C∗rb[rbx] = 2 then
7: C∗rb[rbx]← C∗rb[rbx] − 1
8: C∗rb[rbx]← C∗rb[rbx] + 1, rbx ← rbx

9: reset variables of Countred and Countblue at base station
10: end if
11: end

25

When two agents (except for the base station) interact, no state transition occurs
in this protocol and counting protocols. When the base station and a red agent
interact, they update markx and variables of Countred at the base station by
applying a transition of Countred. This means that they execute Countred in
parallel to the main procedure of the uniform 2-partition protocol. After that,
if Countred.out is larger than C∗rb[red], C∗rb[red] is updated with Countred.out.
If the difference between C∗rb[red] and C∗rb[blue] becomes two, the red agent
changes its color to blue and the base station updates C∗rb[red] and C∗rb[blue].
After updating, the base station resets variables of Countred and Countblue, and
restarts counting. When the base station and a blue agent interact, they behave
similarly.

Lemma 2. In any configuration, C∗rb[red] ≤#red, C∗rb[blue] ≤#blue and ∣C∗rb[red]−
C∗rb[blue]∣ ≤ 1 hold.

Proof. We prove by induction on the index k ≥ 0 of a configuration in an execution
C0,C1,C2, . . . ,Ck, At the initial configuration C0, the lemma holds. Let us
assume that the lemma holds for configuration Ck and prove it for configuration
Ck+1. From this assumption, C∗rb[red] ≤ #red, C∗rb[blue] ≤ #blue and ∣C∗rb[red] −
C∗rb[blue]∣ ≤ 1 hold at Ck. Assume that, when Ck transitions to Ck+1, the base
station and agent x interact. If Countrbx .out becomes larger than C∗rb[rbx], the
base station updates C∗rb[rbx] by C∗rb[rbx] ← Countrbx .out (line 3). Note that, in
this case, C∗rb[rbx] increases by one from Lemma 1. In addition, C∗rb[red] ≤#red

and C∗rb[blue] ≤#blue still hold. Recall that ∣C∗rb[red]−C∗rb[blue]∣ ≤ 1 held before
this update and C∗rb[rbx] increases by one. Consequently, at this moment (before
line 5), ∣C∗rb[rbx]−C∗rb[rbx]∣ ≤ 1 or C∗rb[rbx]−C∗rb[rbx] = 2 holds. Next, we consider
lines 5 to 9. If C∗rb[rbx] − C∗rb[rbx] ≤ 1 at line 5, lines 6 to 8 are not executed,
and thus C∗rb[red] ≤ #red, C∗rb[blue] ≤ #blue and ∣C∗rb[red] −C∗rb[blue]∣ ≤ 1 hold.
If C∗rb[rbx] − C∗rb[rbx] = 2 at line 5, agent x changes its color from rbx to rbx,
C∗rb[rbx] decreases by one, and C∗rb[rbx] increases by one. This also preserves
C∗rb[red] ≤ #red, C∗rb[blue] ≤ #blue and ∣C∗rb[red] −C∗rb[blue]∣ ≤ 1. Therefore, the
lemma holds.

Theorem 4. Algorithm 1 solves the uniform 2-partition problem. That is, in
the model with an initialized base station, there exists a symmetric protocol with

26

four states and arbitrary initial states that solves the uniform 2-partition problem
under global fairness.

Proof. We define phase = C∗rb[red] + C∗rb[blue]. Initially, phase = 0 holds. We
show that 1) phase increases one by one if phase < n, and 2) Algorithm 1 solves
the uniform 2-partition problem if phase = n.

First we consider the initial configuration. Since we assume global fairness,
Countred.out or Countblue.out increases by one from Lemma 1 and at that time
phase increases by one.

Let us consider the transition C → C ′ such that phase increases by one (i.e.,
line 4 is executed) and phase < n holds at C ′. We consider two cases.

• Case that lines 7 to 9 are not executed at C → C ′. In this case, since the base
station does not change sets of red and blue agents, it can correctly continue
to execute Countred and Countblue. Since phase < n = #red +#blue holds,
either #red > C∗rb[red] or #blue > C∗rb[blue] holds. Consequently, from
Lemma 1, either Countred.out > C∗rb[red] or Countblue.out > C∗rb[blue] holds
eventually because we assume global fairness. At that time, C∗rb[red] or
C∗rb[blue] increases by one and hence phase increases by one.

• Case that lines 7 to 9 are executed at C → C ′. In this case, the base
station changes sets of red and blue agents. At that time, the base station
initializes its own variables of counting algorithms Countred and Countblue.
Since the counting algorithms work from arbitrary initial states of agents,
the base station can correctly execute Countred and Countblue from the
beginning under global fairness. Similarly to the first case, from Lemma 1,
either Countred.out > C∗rb[red] or Countblue.out > C∗rb[blue] holds eventually.
Then, phase increases by one.

Lastly, we consider the transition C → C ′ such that phase increases by one and
phase = n holds at C ′. From phase = n, C∗rb[red] +C∗rb[blue] = n = #red +#blue

holds, and consequently C∗rb[red] =#red and C∗rb[blue] =#blue hold from Lemma
2. This implies that Countred.out and Countblue.out never exceed C∗rb[red] and
C∗rb[blue] after that, respectively. Therefore, C∗rb[red] and C∗rb[blue] are never
updated and consequently agents never change their colors any more. Since

27

∣#red − #blue∣ = ∣C∗rb[red] − C∗rb[blue]∣ ≤ 1 holds from Lemma 2, we have the
theorem.

3.1.4 Lower Bound with Arbitrary Initial States

Now, we show that four states are necessary to construct an asymmetric protocol
with arbitrary initial states.

Theorem 5. In the model with an initialized base station, no asymmetric protocol
with three states and arbitrary initial states solves the 2-partition problem with
size difference x ≥ 1 under global fairness.

Proof. For contradiction, we assume that such a protocol Alg exists. Without
loss of generality, we assume that the state set of agents is Qp = {s1, s2, s3},
γ(s1) = γ(s2) = red, and γ(s3) = blue. We consider the following three cases.

First, we consider population V = {a0, . . . , an} of a single base station and n

agents such that n is at least x + 4. Assume that a0 is a base station. Since each
agent has an arbitrary initial state, we consider an initial configuration C0 such
that s(ai) = s3 holds for any i(1 ≤ i ≤ n). Note that the base station a0 has a
designated initial state at C0. From the definition of Alg, for any globally fair
execution Ξ = C0,C1, . . ., there exists a stable configuration Ct. Hence, both the
number of red agents and the number of blue agents are at least 2 at Ct. After
Ct, the color of agent ai (i.e., γ(s(ai))) never changes for any ai(1 ≤ i ≤ n) even
if the base station and agents interact in any order.

Next, consider population V ′ = {a′0, . . . , a′n+2x+1} of a single base station and
n + 2x + 1 agents. Assume that agent a′0 is a base station. We consider an initial
configuration C ′0 such that s(a′i) = s3 holds for any i (1 ≤ i ≤ n + 2x + 1). From
this initial configuration, we define an execution Ξ′ = C ′0,C ′1, . . . ,C ′t, . . . using the
execution Ξ as follows.

• For 0 ≤ u < t, when ai and aj interact at Cu → Cu+1, a′i and a′j interact at
C ′u → C ′u+1.

• For t ≤ u, an interaction occurs at C ′u → C ′u+1 so that Ξ′ satisfies global
fairness.

28

Since the base station and agents a1, . . . , an change their states similarly to Ξ

from C ′0 to C ′t, s(a′i) = s(ai) holds for 1 ≤ i ≤ n. Hence, the number of blue agents
is x + 1 or more than the number of red agents at C ′t. Consequently C ′t is not a
stable configuration. This implies that there exists a stable configuration C ′t′ for
some t′ > t. Clearly at least one blue agent becomes red from C ′t to C ′t′ . That is,
for some configuration C ′t∗(t ≤ t∗ < t′), an agent in state s3 transitions to state
s1 or s2 at Ct∗ → Ct∗+1. Assume that t∗ is the smallest value that satisfies the
condition.

Finally, for V we define an execution Ξ′′ = C ′′0 ,C ′′1 , . . . using executions Ξ and
Ξ′ as follows.

• Let C ′′u = Cu for 0 ≤ u ≤ t. That is, Ξ′′ reaches stable configuration C ′′t in
similarly to Ξ.

• For t ≤ u ≤ t∗, we define an execution so that interaction at C ′u → C ′u+1 also
occurs at C ′′u → C ′′u+1. Concretely, when a′i and a′j interact at C ′u → C ′u+1,
we define ai′ and aj′ as follows and they interact at C ′′u → C ′′u+1. If i ≤ n, let
i′ = i. Otherwise, since s(a′i) = s3 holds at C ′u (because no agent in state s3

changes its state from C ′t to C ′t∗), choose i′(≤ n) such that both s(ai′) = s3
and i′ ≠ j hold. Similarly, if j ≤ n, let j′ = j. Otherwise choose j′(≤ n) such
that both s(aj′) = s3 and j′ ≠ i′ hold. Such i′ and j′ exist since at least two
agents in state s3 exist (because n ≥ x + 4 holds and no agent in state s3

changes its state from C ′t to C ′t∗).

• After t∗ < u, an interaction occurs at C ′′u → C ′′u+1 so that Ξ′′ satisfies global
fairness.

Clearly, for t ≤ u ≤ t∗ and i ≤ n, s(ai) at C ′′u is equal to s(a′i) at C ′u. Additionally,
at C ′′t∗ → C ′′t∗+1, an agent in state s3 transitions to s1 or s2 as well as C ′t∗ → C ′t∗+1.
This means that the agent changes its color at C ′′t∗ → C ′′t∗+1. That is, an agent
changes its color after stable configuration C ′′t in globally fair execution Ξ′′. This
is a contradiction.

Remark. Note that, in the proof of Theorem 5, we consider a protocol with
Qp = {s1, s2, s3}, γ(s1) = γ(s2) = red, and γ(s3) = blue, and assume that every
agent is in state s3 at the initial configuration of Ξ, Ξ′, and Ξ′′. This means, even

29

if we consider a protocol with three states and designated initial states, there
exists no protocol such that the designated initial state does not have the same
color as any other state. This fact holds even if the number of states is larger
than three.

On the other hand, Section 3.1.1 gives a protocol with three states and desig-
nated initial states. In the protocol, the state set of agents is Qp = {initial, red, blue},
we set γ(initial) = γ(red) = red and γ(blue) = blue, and the designated initial
state is initial. This implies that there exists a protocol if the designated initial
state (i.e., initial) has the same color as one of other states (i.e., red).

3.1.5 Impossibility with Non-initialized Base Station and Arbitrary
Initial States

In this section, we show that the problem cannot be solved with a non-initialized
base station and arbitrary initial states. This result implies that, in the model
with no base station, there is no protocol for uniform 2-partition problem with
arbitrary initial states under global fairness.

Theorem 6. In the model with non-initialized base station, no protocol with arbi-
trary initial states solves the 2-partition problem with size difference x ≥ 1 under
global fairness.

Proof. By way of contradiction, we assume that such a protocol Alg exists. More-
over, we assume that n is at least x + 4. We consider the following two cases.

First, we consider population V = {a0, . . . , an} of n agents and a non-initialized
base station, where a0 is the base station. For V , we consider an execution
Ξ = C0,C1,⋯ of Alg. From the definition of Alg, there exists a stable configuration
Ct. Hence, both the number of red agents and the number of blue agents are at
least 2 at Ct. By the definition of a stable configuration, the color of agent ai

(i.e., γ(s(ai))) never changes for any ai (1 ≤ i ≤ n) after Ct, even if agents interact
in any order.

Next, we consider population V ′ = {a′0} ∪ {a′i∣γ(s(ai,Ct)) = red}, where a′0 is
the base station. For V ′, we consider an execution Ξ′ = C ′0,C ′1,⋯ of Alg from the
initial configuration C ′0 such that s(a′i,C ′0) = s(ai,Ct) holds for any a′i ∈ V ′. Note
that, because we assume a non-initialized base station, even the base station can

30

have s(a0,Ct) as its initial state. Because all agents are red at C ′0, some agents
must change their colors to reach a stable configuration. This implies that, after
Ct in execution Ξ, agents change their colors if they interact similarly to Ξ′. This
is a contradiction.

3.2 Uniform 2-partition Protocols with No Base Station

In this section, we consider the uniform 2-partition problem under the assumption
of no base station. That is, all agents are identical.

3.2.1 Upper Bound for Asymmetric protocols with Designated Initial
States

First, we consider asymmetric protocols in this case. Since three states are nec-
essary in the model with a base station from Theorem 3, three states are also
necessary in the model with no base station. In addition, Delporte-Gallet et
al. [28] gives a protocol with three states. This implies that three states are
necessary and sufficient in this case.

Here, we briefly explain the protocol proposed in [28]. In this protocol, the
state set of agents is Qp = {initial, red, blue}, and we set γ(initial) = γ(red) = red
and γ(blue) = blue. The designated initial state of all agents is initial. The
protocol consists of a single asymmetric transition (initial, initial)→ (red, blue).
In this protocol, when two agents in state initial interact, one agent transitions
to red and the other transitions to blue. This implies that the number of agents
in state red is always the same as the number of agents in state blue. Eventually
all agents (possibly except one agent) transition to state red or blue. From
γ(initial) = red, the difference in the numbers of red and blue agents is at most
one. Note that the protocol works correctly if every pair of agents interacts once.

Theorem 7 ([28]). In the model with no base station, there exists an asymmetric
protocol with three states and designated initial states that solves the uniform
2-partition problem under global fairness.

Remark. This protocol works even under weak fairness. Even under weak
fairness, if there are at least two agents in state initial, eventually an interaction

31

between agents in state initial occurs. Hence, eventually, all agents (possibly
except one agent) transition to either red or blue. From this fact, we can observe
that the protocol solves the problem under weak fairness.

Theorem 8 ([28]). In the model with no base station, there exists an asymmetric
protocol with three states and designated initial states that solves the uniform
2-partition problem under weak fairness.

3.2.2 Upper Bound for Symmetric Protocols with Designated Initial
States

Next, we consider symmetric protocols in this case. For this setting, we show a
protocol with four states and impossibility with three states. These results show
that, in this case, four states are necessary and sufficient to construct a symmetric
protocol under global fairness.

We can easily obtain a symmetric protocol with four states by a scheme pro-
posed in [22]. The scheme transforms an asymmetric protocol with α states to a
symmetric protocol with at most 2α states. By applying the scheme to an asym-
metric protocol in Section 3.2.1 and deleting unnecessary states, we can obtain a
symmetric protocol with four states.

For self-containment, we briefly explain the obtained protocol. Since no sym-
metric protocol solves the uniform 2-partition problem for a population of two
agents, we assume that a population consists of at least three agents. In this
protocol, the state set of agents is Qp = {initial, initial′, red, blue}, and we set
γ(initial) = γ(initial′) = γ(red) = red and γ(blue) = blue. The designated ini-
tial state of all agents is initial. The protocol consists of the following seven
transitions.

1. (initial, initial)→ (initial′, initial′)

2. (initial′, initial′)→ (initial, initial)

3. (initial, initial′)→ (red, blue)

4. (initial, red)→ (initial′, red)

5. (initial, blue)→ (initial′, blue)

32

(a) a1
i i

i i

a2

a3 a4

(b)

i’ i’

i’ i’

(c)

i i

i i

(d)

i’ i’

i’ i’

(e)

i i

i’ i’

(f)

r i

b i’

(g)

r i’

b i

(h)

r b

b r

Figure 1. An example execution of the protocol. Symbols i, i′, r, and b represent
states initial, initial′, red, and blue, respectively. Arrows represent interactions
of agents.

6. (initial′, red)→ (initial, red)

7. (initial′, blue)→ (initial, blue)

The main behavior of the protocol is similar to the previous asymmetric pro-
tocol with three states. However, since asymmetric transition (initial, initial)→
(red, blue) is not allowed in symmetric protocols, the scheme in [22] introduces
a new state initial′. Transition 3 implies that, when agents in states initial

and initial′ interact, they become red and blue, respectively. In addition, agents
in states initial and initial′ become initial′ and initial respectively when they
interact with some agents (except for interaction between two agents in states
initial and initial′). From global fairness, if at least two agents are in state
initial or initial′, some two agents eventually enter states initial and initial′.
After that, if the two agents interact, they enter states red and blue. Note that,
since γ(initial) = γ(initial′) = red holds, the protocol solves the problem even if
the number of agents is odd and an agent with state initial or initial′ remains
forever.

33

Figure 1 shows an example execution of the protocol for a population of four
agents. Initially all agents are in state initial (Fig. 1 (a)). After interactions
(a1, a2) and (a3, a4), all agents enter state initial′ (Fig. 1 (b)). Similarly, after
interactions (a1, a4), (a2, a3), (a1, a3), and (a2, a4), all agents have the same state
(Fig. 1 (c) and (d)). If these interactions happen infinite times, all agents keep
the same state and never achieve the uniform 2-partition. However, under the
global fairness, such interactions do not happen infinite times. This is because,
if some configuration C occurs infinite times, every configuration reachable from
C should occur. This implies that eventually interactions (a1, a2) and (a1, a3)
happen in this order from a configuration in Fig. 1 (d). Then, a1 and a3 enter
states red and blue, respectively (Fig. 1 (e) and (f)). After that, in a similar way,
the remaining agents eventually enter red and blue like Fig. 1 (g) and (h).

Theorem 7 and correctness of the scheme in [22] derives the following theorem.

Theorem 9. In the model with no base station, when the number of agents is
at least three, there exists a symmetric protocol with four states and designated
initial states that solves the uniform 2-partition problem under global fairness.

3.2.3 Lower Bound for Symmetric Protocols

Here we show that four states are necessary to construct a symmetric protocol
with no base station.

Theorem 10. In the model with no base station, no symmetric protocol with
three states and designated initial states solves the 2-partition problem with size
difference x ≥ 1 under global fairness.

Proof. For contradiction, we assume that such a protocol Alg exists. Without
loss of generality, we assume that the state set of agents is Qp = {s1, s2, s3},
γ(s1) = γ(s2) = red, and γ(s3) = blue. Consider population V = {a1, . . . , an} of n
agents such that n at least x + 6. First, assume that the designated initial state
of all agents is s3. Clearly, Alg has transition (s3, s3) → (si, si) for some i ≠ 3.
However, since at least 3 agents in state s3 exist at a stable configuration, some
agents change their states from s3 to si at the stable configuration. This implies
that agents change their colors. Therefore, a designated initial state is s1 or s2.

34

Next, assume that the designated initial state of all agents is s1 (Case of s2
is the same). Since Alg is a symmetric protocol and all the initial states are
s1, Alg includes (s1, s1) → (si, si) for some i ≠ 1. This implies that all agents
can transition to state si from the initial configuration. Hence, Alg also includes
(si, si) → (sj, sj) for some j ≠ i. When i = 3, since at least 3 blue agents exist
at a stable configuration and they are in state s3, the blue agents become red by
transition (s3, s3)→ (sj, sj). Therefore, i ≠ 3 holds.

The remaining case is i = 2. If j = 3, that is, Alg includes (s2, s2)→ (s3, s3), red
agents (i.e., agents in state s1 or s2) change their colors at a stable configuration
because Alg includes (s1, s1)→ (s2, s2) and (s2, s2)→ (s3, s3). This implies j = 1.
In this case, Alg includes (s2, s2)→ (s1, s1). Since some agents should transition
to state s3, Alg includes (s1, s2) → (sk, sl) such that k or l is 3. At a stable
configuration, there exist at least 3 agents with states s1 or s2. However, these
agents can transition to state s3 from transitions (s1, s2) → (sk, sl), (s2, s2) →
(s1, s1), and (s1, s1)→ (s2, s2). This is a contradiction.

4. Uniform 2-partition under Weak Fairness on Com-
plete Graphs

In this section, we show the upper and lower bounds of the uniform 2-partition
on complete graphs under weak fairness. Concretely, for each combination of
assumptions (base station, symmetry, and initial states), we completely clarify
solvability of the uniform 2-partition problem. Moreover, if solvable, we show
the tight upper and lower bounds on the number of states. More concretely,
with arbitrary initial states and initialized base station, we prove that P states
are necessary and sufficient to construct asymmetric protocols, and that P + 1
states are necessary and sufficient to construct symmetric protocols, where P is
the known upper bound of the number of agents. Recall that proposed protocols
in the setting are available for the uniform k-partition. Moreover, we show the
impossibility of the uniform 2-partition for symmetric protocols with no base
station and designated initial states. Note that, the impossibility results under
global fairness remain valid even under weak fairness, and the 3-state protocols
introduced in Section 3.1.1 and 3.2.1 work even under weak fairness.

35

As in Section 3, since we consider the uniform 2-partition in this section,
function γ is defined as γ ∶ Qp → {color1, color2}, and we assign colors red and
blue to color1 and color2, respectively. Note that we define γ as function γ ∶ Qp →
{red, blue} that maps a state of a non base station agent to red or blue. We say
agent a ∈ Vp is red (resp., blue) if γ(s(a)) = red (resp., γ(s(a)) = blue) holds.

4.1 Lower Bounds for Initialized Base Station

In this section, we provide the lower bounds for asymmetric and symmetric proto-
cols and the uniform 2-partition problem by proving impossibility. Clearly these
lower bounds can be applied to the uniform k-partition problem for k > 2. Recall
that, for an initialized base station, we assume weak fairness and arbitrary initial
states.

4.1.1 Common Properties of Asymmetric and Symmetric Protocols

First, we present the basic properties that hold for both asymmetric and symmet-
ric protocols. Let Alg be an arbitrary protocol that solves the uniform 2-partition.
Recall that P is the known upper bound of the number of agents. Hence, Alg
must solve the uniform 2-partition when the actual number of agents is at most
P . In the remainder of this subsection, we consider the case where the actual
number of agents is P − 2.

Lemma 3 shows that, in any execution for P − 2 agents, eventually all agents
continue to maintain different states.

Lemma 3. In any weakly-fair execution Ξ = C0, C1, C2, . . . of Alg with P − 2
agents and an initialized base station, there exists a configuration Ch such that
1) Ch is a stable configuration, and, 2) all agents have different states at Ch′ for
any h′ ≥ h.

Proof. First, we consider an arbitrary population V = {a0, a1, . . ., aP−2} of
P − 2 agents and a single base station, where a0 is the base station. Let Ξ =
C0,C1, . . . ,Ct, . . . be a weakly-fair execution of Alg, where Ct is a stable config-
uration. We assume, by way of contradiction, that two agents have the same
state for infinitely many configurations after Ct. Since the number of agents

36

is finite and the number of states is finite, there exist y, ap, and ap′ such that
configurations that satisfy y = s(ap) = s(ap′) appear infinitely often after Ct.

Next, we consider population V ′ = {a′0, . . ., a′P} of P agents and a single
base station, where a′0 is a base station. We consider an initial configuration
C ′0 such that the initial states of a′0, . . ., a′P are s(a0,C0), . . ., s(aP−2,C0), y, y,
respectively. For V ′, we define an execution Ξ′ = C ′0, C ′1, ⋯, C ′t, ⋯ using execution
Ξ as follows:

• For 0 ≤ u ≤ t − 1, when ai interacts with aj at Cu → Cu+1, a′i interacts with
a′j at C ′u → C ′u+1.

Clearly, s(a′i,C ′t) = s(ai,Ct) holds for any i (0 ≤ i ≤ P − 2). Because s(a′P ,C ′t) =
s(a′P−1,C ′t) = y holds, the difference between the numbers of red and blue agents
remains two, and consequently, C ′t is not a stable configuration.

After C ′t, we define an execution as follows: This definition aims to make P −2
agents behave similarly to Ξ and two agents keep state y.

• Until y = s(a′p) = s(a′p′) holds, if ai interacts with aj at Cu → Cu+1, a′i
interacts with a′j at C ′u → C ′u+1. Note that, because configurations that
satisfy y = s(ap) = s(ap′) appear infinitely often after Ct, eventually, y =
s(a′p) = s(a′p′) holds by behaving similarly to Ξ.

• To define the remainder of Ξ, we use procedure Proc(q, q′), which uses
two indices q and q′, and can be applied to a configuration that satisfies
y = s(a′p) = s(a′p′) = s(a′P−1) = s(a′P). Let V (q, q′) = (V ′/{a′p, a′p′ , a′P−1, a′P})∪
{a′q, a′q′}. Proc(q, q′) creates a sub-execution similar to Ξ by making a′q
and a′q′ join interactions instead of a′p and a′p′ , and guarantees that, for any
ordered pair (a∗1, a∗2) in V (q, q′)×V (q, q′), a∗1 interacts with a∗2 at least once,
and the last configuration also satisfies y = s(a′p) = s(a′p′) = s(a′P−1) = s(a′P).
The formal definition of Proc(q, q′) is as follows:

– When ai interacts with aj at Cu → Cu+1, a′i interacts with a′j at C ′u →
C ′u+1 if i, j ∉ {p, p′}.

– If i = p or j = p holds, a′q joins the interaction instead of a′p.

– If i = p′ or j = p′ holds, a′q′ joins the interaction instead of a′p′ .

37

– Procedure Proc(q, q′) continues these behaviors until, for any ordered
pair (a∗1, a∗2) in V (q, q′) × V (q, q′), a∗1 interacts with a∗2 at least once
and satisfies s(a′q) = s(a′q′) = y.

Using Proc(q, q′), we define the remainder of Ξ′ to satisfy weak fairness
as follows: Repeat Proc(p, p′), Proc(p,P − 1), Proc(p,P), Proc(P − 1, p′),
Proc(P, p′), and Proc(P,P − 1). Note that, because a′q and a′q′ cannot
interact with agents in {a′p, a′p′ , a′P−1, a′P}/{a′q, a′q′} in Proc(q, q′) (e.g., a′P
cannot interact with a′P−1 in Proc(p,P)), the above six Procs are necessary
to create interactions for each combination of a′p, a′p′ , a′P−1, and a′P .

Clearly, Ξ′ makes P −2 agents behave similarly to Ξ and two agents keep state y.
Hence, Ξ′ never converges to a stable configuration. Since Ξ′ is weakly-fair, this
is a contradiction.

In the next lemma, we prove that there exists a configuration C such that, in
any configuration reachable from C, all agents have different states. In addition,
we also show that the system reaches C in some execution.

Definition 1. Configuration C is strongly-stable if 1) C is stable, and, 2) for
any configuration C ′ with C

∗Ð→ C ′, all agents have different states at C ′.

Lemma 4. Let P be an arbitrary even integer. For any P -state uniform 2-
partition protocol Alg, when the number of agents other than the base station
is P − 2, there exists an execution of Alg that includes a strongly stable configu-
ration.

Proof. By way of contradiction, we assume that such an execution does not exist.
First, we consider an arbitrary weakly-fair execution Ξ = C0,C1,C2, . . . of an
arbitrary P -state protocol Alg. By Lemma 3, after some configuration Ct, all
agents have different states. From the assumption, Ct is not a strongly-stable
configuration; that is, there exists a configuration reachable from Ct such that
two agents have the same state. Hence, we can construct another weakly-fair
execution Ξ′ = C ′0, C ′1, C ′2, . . ., C ′t, . . ., C ′u, . . . of Alg as follows:

• For 0 ≤ i ≤ t, C ′i is equal to Ci.

38

• After C ′t, the population moves to C ′u such that two agents have the same
state.

• After C ′u, agents continue to interact so that Ξ′ satisfies weak fairness.

By Lemma 3, since Ξ′ is weakly-fair, all agents have different states after some
configuration C ′t′ . Hence, in a similar manner to Ξ′, we can construct another
weakly-fair execution Ξ′′ = C ′′0 , C ′′1 , . . ., C ′′t′ , . . ., C ′′u′ , . . . that satisfies the following
conditions:

• For 0 ≤ i ≤ t′, C ′′i is equal to C ′i .

• After C ′′t′ , the population moves to C ′′u′ such that two agents have the same
state.

• After C ′′u , agents continue to interact so that Ξ′′ satisfies weak fairness.

By repeating this construction, we can construct a weakly-fair execution such
that two agents have the same state infinitely often. From Lemma 3, this is a
contradiction.

4.1.2 Lower Bound for Asymmetric Protocols

We show that the lower bound of the number of states for symmetric protocols
is P . Recall that, when agents a and b interact as an initiator and responder,
respectively, we say a interacts with b.

Theorem 11. In the model with an initialized base station, there is no asymmetric
protocol that solves the uniform 2-partition problem with P−1 states from arbitrary
initial states under weak fairness, if P is an even integer.

To prove the theorem by contradiction, we assume that protocol Algasym

exists. Let Qp = {s1, s2, . . ., sP−1} be a state set of agents other than the
base station. Let Qblue = {s ∈ Qp ∣ γ(s) = blue} be a set of blue states and
Qred = {s ∈ Qp ∣ γ(s) = red} be a set of red states. Without loss of generality, we
assume that ∣Qblue∣ < ∣Qred∣ holds. Recall that Lemmas 3 and 4 can be applied to
both symmetric and asymmetric algorithms. Hence, the properties of the lem-
mas hold even in Algasym. In this proof, based on the properties, we construct an

39

execution of P agents such that the base station does not recognize the difference
between the execution of P −2 agents. We obtain a contradiction by proving that
this execution does not achieve the uniform 2-partition.

By Lemma 3, clearly Algasym requires P /2 − 1 blue states and P /2 − 1 red

states. Consequently, we have the following two corollaries.

Corollary 1. ∣Qblue∣ = P /2 − 1 and ∣Qred∣ = P /2 hold.

Corollary 2. For any weakly-fair execution of Algasym with P − 2 agents and
an initialized base station, any strongly-stable configuration includes all states in
Qblue.

To prove the main theorem, we focus on the following weakly-fair execution
of Algasym with P − 2 agents.

Definition 2. We consider a population V = {a0, a1, . . . , aP−2} of P − 2 agents
and an initialized base station, where a0 is the base station. We define Ξα =
C0,C1,C2, . . . as a weakly-fair execution of Algasym for population V that satisfies
the following conditions.

• Ξα includes a strongly-stable configuration Ct; and

• for any u ≥ 0, when agent x interacts with agent y at Ct+2u → Ct+2u+1, agent
y interacts with agent x at Ct+2u+1 → Ct+2(u+1) if s(x,Ct+2u+1) = s(y,Ct+2u)
and s(y,Ct+2u+1) = s(x,Ct+2u) hold; otherwise, agent x also interacts with
agent y at Ct+2u+1 → Ct+2(u+1).

Note that, in Ξα, the system reaches a strongly stable configuration Ct (this
is possible from Lemma 4). Moreover, in Ξα, after Ct, any agent in Qblue has the
same state in Ct+2, Ct+4, Ct+6, We show why this is true later.

Definition 3. We define Qt as a set of states that appear after Ct in Ξα.

Note that, because Ct is strongly stable, Qt includes at least P −2 states. This
implies that Qt includes all states in Qp or does not include one state in Qp. From
Corollary 2, Qblue ⊂ Qt holds. The following lemmas provide the key properties of
Algasym required to prove Theorem 11. We present proofs of these lemmas later.

40

Lemma 5. For any distinct states p and q such that p ∈ Qblue and q ∈ Qt hold,
transition rules (p, q) → (p′, q′) and (q, p) → (q′′, p′′) satisfy the following condi-
tions:

• If q ∈ Qred or q ∈ Qb (i.e., q is a state of the base station) holds, p′′ = p′ = p
holds.

• If q ∈ Qblue holds, either (p′, q′) = (p, q) or (p′, q′) = (q, p) holds. Similarly,
if q ∈ Qblue holds, either (q′′, p′′) = (p, q) or (q′′, p′′) = (q, p) holds.

Lemma 5 indicates that, after a strongly stable configuration in Ξα, any agent
with a state in Qblue never changes its state as a result of two consecutive interac-
tions with the same pair of agents. This is because, by the definition of a strongly
stable configuration, any agent with state p can interact only with an agent with
state q ≠ p after a strongly stable configuration.

Lemma 6. A non-empty state set Q∗ ⊆ Qblue exists that satisfies the following
conditions:

• For any state p ∈ Q∗, transition rule (p, p) → (p′, q′) satisfies p′ ∈ Q∗ and
q′ ∈ Q∗.

• We assume that, in a configuration C, there exists a subset of agents V ∗

such that all agents in V ∗ have states in Q∗, and ∣V ∗∣ ≥ ∣Q∗∣+1 holds. In this
case, for any agent ar ∈ V ∗ and any state q ∈ Q∗, there exists an execution
segment such that (1) the execution segment starts from C; (2) ar has state
q at the last configuration; (3) only agents in V ∗ join interactions; and (4)
all agents in V ∗ have states in Q∗ at the last configuration.

Lemma 6 indicates that, if at least ∣Q∗∣ + 1 agents have states in Q∗, we can
make an arbitrary agent with a state in Q∗ transition to an arbitrary state in Q∗.
Using these lemmas, we state the theorem by constructing a weakly fair execution
of Algasym with P agents that cannot be distinguished from execution Ξα.

Proof of Theorem 11

We consider a population V ′ = {a′0, . . ., a′P} of P agents and an initialized base
station, where a′0 is the base station. Let C ′0 be an initial configuration such that

41

the initial states of a′0, . . ., a′P are s(a0,C0), . . ., s(aP−2,C0), s∗, s∗, where s∗ is
a state in Q∗. For V ′, we construct an execution Ξβ = C ′0, C ′1, . . ., C ′t, . . . using
execution Ξα as follows:

• For 0 ≤ u ≤ t − 1, when ai interacts with aj at Cu → Cu+1 in Ξα, a′i interacts
with a′j at C ′u → C ′u+1 in Ξβ.

Clearly, s(a′i,C ′t) = s(ai,Ct) holds for any i (0 ≤ i ≤ P − 2). Since s(a′P−1,C ′t) =
s(a′P ,C ′t) = s∗ holds, the difference between the numbers of red and blue agents
remains two and consequently C ′t is not a stable configuration.

To construct the remainder of Ξβ, first we consider the characteristics of C ′t.
Let Vq ⊆ V be a set of agents that have states in Q∗ at Ct, and let V̄q = V −Vq. Since
all agents have different states and all states in Qblue appear in Ct by Corollary 2,
we have ∣Vq ∣ = ∣Q∗∣ from Q∗ ⊆ Qblue. Let V ′q ⊆ V ′ be a set of agents that have states
in Q∗ at C ′t, and let V̄ ′q = V ′ − V ′q . Note that, for i ≤ P − 2, ai ∈ Vq holds if and
only if a′i ∈ V ′q holds. Since a′P−1 and a′P are also in V ′q , we have ∣V ′q ∣ = ∣Q∗∣ + 2. In
the following, we construct the remainder of execution Ξβ that includes infinitely
many configurations similar to Ξα. We define similarity of configurations in Ξβ

and Ξα as follows.

Definition 4. We say configuration C ′u (u ≥ t) in Ξβ is similar to Cv (v ≥ t) in
Ξα if the following conditions hold:

• For any agent ai ∈ Vq, s(ai,Cv) ∈ Q∗ holds.

• For any agent a′i ∈ V ′q , s(a′i,C ′u) ∈ Q∗ holds.

• For any agent a′i ∈ V̄ ′q (i.e., ai ∈ V̄q), s(a′i,C ′u) = s(ai,Cv) holds.

We focus on an execution segment e = Ct+2u,Ct+2u+1,Ct+2(u+1) of Ξα for any
u ≥ 0. We consider a configuration C ′x of V ′ such that C ′x is similar to Ct+2u.
Now, we explain how to construct an execution segment e′ = C ′x, . . . ,C

′
y of Ξβ

that guarantees that C ′y is similar to Ct+2(u+1). Since C ′t is similar to Ct, we can
repeatedly apply this construction and construct an infinite execution Ξβ. As a
result, for any u ≥ 0, Ξβ includes a configuration C ′ that is similar to Ct+2u. Since
C ′ includes P − 1 red agents and P + 1 blue agents, Ξβ does not include a stable

42

Figure 2. Example of execution segment e′ (P = 8, Q∗ = {s1, s2}, γ(s1) = γ(s2) =
γ(s3) = blue, and γ(s4) = γ(s5) = γ(s6) = γ(s7) = red), where the thick black
arrow represents two interactions between ai and aj (or a′i and a′j)

configuration. Note that Ξβ is not necessarily weakly-fair, but later we explain
how to construct a weakly-fair execution from Ξβ.

We consider configuration C ′x that is similar to Ct+2u. We assume that, in
Ξα, ai interacts with aj at Ct+2u → Ct+2u+1. Recall that ai and aj also interact
at Ct+2u+1 → Ct+2(u+1). We construct execution segment e′ as follows (Figure 2
shows an example of execution segment e′ for each case):

43

• Case in which ai ∈ Vq ∧ aj ∈ Vq holds: Because s(ai,Ct+2u) ∈ Q∗ ⊆ Qblue and
s(aj,Ct+2u) ∈ Q∗ ⊆ Qblue hold, s(ai,Ct+2(u+1)) ∈ Q∗ and s(aj,Ct+2(u+1)) ∈ Q∗

also hold from Lemmas6 (the first condition) and 5. Because other agents
do not change their states, C ′x is similar to Ct+2(u+1). Hence, in this case,
we consider that the constructed execution segment e′ is empty.

• Case in which ai ∈ Vq ∧ aj ∈ V̄q holds: In this case, s(a′i,C ′x) ∈ Q∗ is not
necessarily equal to σ = s(ai,Ct+2u) ∈ Q∗. Hence, in the execution segment
e′, we first make some agent a′r ∈ V ′q enter state σ using interactions among
agents in V ′q . By Lemma 6 (the second condition) and ∣V ′q ∣ = ∣Q∗∣ + 2, such
interactions exist and all agents in V ′q have states in Q∗ after the interac-
tions. Let C ′z be the resultant configuration. Clearly C ′z is similar to Ct+2u

and s(a′r,C ′z) = s(ai,Ct+2u)∧ s(a′j,C ′z) = s(aj,Ct+2u) holds. Then, a′r and a′j
interact similarly to ai and aj; that is, first a′r interacts with a′j. Then, if ai
and aj interact with aj and ai, respectively, in Ct+2u+1 → Ct+2(u+1), a′r and
a′j interact with a′j and a′r, respectively. We regard the resultant configura-
tion as C ′y (i.e., the last configuration of the constructed execution segment
e′). Clearly both s(a′r,C ′y) = s(ai,Ct+2(u+1)) and s(a′j,C ′y) = s(aj,Ct+2(u+1))
hold. Because C ′z is similar to Ct+2u and s(a′j,C ′y) = s(aj,Ct+2(u+1)), it is
sufficient to prove s(a′r,C ′y) ∈ Q∗ to guarantee that C ′y is similar to Ct+2(u+1).
From s(a′r,C ′z) ∈ Q∗ ⊆ Qblue, s(a′r,C ′y) = s(a′r,C ′z) ∈ Q∗ holds by Lemma 5.
Therefore, C ′y is similar to Ct+2(u+1).

• Case in which ai ∈ V̄q ∧ aj ∈ Vq holds: In this case, as in the previous case,
clearly we can construct a configuration similar to Ct+2(u+1).

• Case in which ai ∈ V̄q ∧ aj ∈ V̄q holds: In this case, because s(a′i,C ′x) =
s(ai,Ct+2u) and s(a′j,C ′x) = s(aj,Ct+2u) hold, a′i and a′j interact twice simi-
larly to ai and aj. We regard the resultant configuration as C ′y (i.e., the last
configuration of the constructed execution segment e′). Clearly, because a′i
and a′j change their states similarly to ai and aj, C ′y is similar to Ct+2(u+1).

We have constructed the infinite execution Ξβ, but Ξβ is not necessarily weakly
fair. In the following, we construct a weakly fair execution Ξγ of population V ′

by slightly modifying Ξβ. To guarantee that Ξγ is weakly fair, for any pair of

44

agents (a′i, a′j), a′i should interact with a′j infinitely often in Ξγ. For a pair of
agents (a′i, a′j) with a′i ∈ V̄ ′q and a′j ∈ V̄ ′q , a′i interacts with a′j infinitely often in Ξβ

because Ξα is weakly fair and a′i interacts with a′j in Ξβ when ai interacts with aj

in Ξα. For a pair of agents (a′i, a′j) with a′i ∈ V ′q and a′j ∈ V ′q , we can arbitrarily add
interactions between them because, by Lemmas 6 (the first condition) and 5 (the
second condition), they keep their states in Q∗ and consequently do not influence
the similarity of configurations. Hence, we consider the remaining pair (a′i, a′j);
that is, either a′i ∈ V ′q ∧ a′j ∈ V̄ ′q or a′i ∈ V̄ ′q ∧ a′j ∈ V ′q holds. We show that any agent
in Vq and V̄ ′q can interact with any agent in V̄ ′q and Vq, respectively, infinitely
often without influencing the similarity of configurations. First, we consider the
case in which a′i ∈ V ′q ∧ a′j ∈ V̄ ′q holds. Because Ξα is weakly fair, an agent in Vq

interacts with an agent in V̄ ′q infinitely often in Ξα. Recall that these interactions
correspond to interactions between a′r and a′j in Ξβ, and a′r can be arbitrarily
selected from V ′q . For this reason, we can choose a′r in a round-robin manner so
that any agent in V ′q interacts with a′j infinitely often. For example, when an
agent in Vq and aj first interact (after Ct), we choose an agent in V ′q as a′r, and
then in the next interaction of an agent in Vq and aj, we choose another agent in
V ′q as a′r. Using this construction, any agent in V ′q can interact with a′j infinitely
often. Next, we consider the case in which a′i ∈ V̄ ′q ∧ a′j ∈ V ′q holds. Clearly, as
in the previous case, we can make any agent in V̄ ′q interact with any agent in V ′q
infinitely often. In this way, we can construct a weakly fair execution Ξγ similarly
to Ξβ. However, for any u ≥ 0, Ξγ includes a configuration C ′′ that is similar to
Ct+2u. Because C ′′ includes P /2 − 1 red agents and P /2 + 1 blue agents, Ξγ does
not include a stable configuration. This is a contradiction, and thus we have the
theorem. Moreover, Theorem 11 directly implies the following corollary.

Corollary 3. In the model with an initialized base station, there is no asymmetric
protocol that solves the uniform partition problem with P −1 states from arbitrary
initial states under weak fairness if P is an even integer.

Proofs of Lemmas 5 and 6

From now, we show the proofs of Lemmas 5 and 6. First, we prove Lemma 5.

Lemma 5. For any distinct states p and q such that p ∈ Qblue and q ∈ Qt hold,

45

transition rules (p, q) → (p′, q′) and (q, p) → (q′′, p′′) satisfy the following condi-
tions:

• If q ∈ Qred or q ∈ Qb (i.e., q is a state of the base station) holds, p′′ = p′ = p
holds.

• If q ∈ Qblue holds, either (p′, q′) = (p, q) or (p′, q′) = (q, p) holds. Similarly,
if q ∈ Qblue holds, either (q′′, p′′) = (p, q) or (q′′, p′′) = (q, p) holds.

Proof. We consider execution Ξα defined in Definition 2. From the definition,
each configuration Cu (u ≥ t) is strongly stable. From Corollary 2, each blue

state exists in any strongly stable configuration. For this reason, p exists in
any configuration Cu (u ≥ t). Additionally, since q ∈ Qt holds, there exists a
configuration Cv (v ≥ t) such that state q exists at Cv. Let ax and ay be agents
that have states p and q at Cv, respectively. We consider another execution Ξ′α
such that ax and ay interact at configuration Cv; that is, they change their states
according to the transition rule (p, q) → (p′, q′) or (q, p) → (q′′, p′′). Let C ′v be
the resultant configuration. Note that the transition does not change the colors
of ax and ay because Cv is stable. Now, we consider the following two cases.
First, we consider the case of q ∈ Qred or q ∈ Qb. For contradiction, we assume
that either p′ ≠ p or p′′ ≠ p holds. If p′ ≠ p (resp., p′′ ≠ p) holds, we assume that
(p, q) → (p′, q′) (resp., (q, p) → (q′′, p′′)) occurs at Cv → C ′v. Since p′, p′′ ∈ Qblue

holds, p′ and p′′ exist in Cv by Corollary 2. Thus, since p′ ≠ p (resp., p′′ ≠ p)
holds, two agents have p′ (resp., p′′) at C ′v. This is a contradiction because Cv

is strongly stable. Next, we consider the case of q ∈ Qblue. For contradiction, we
assume that, in C ′v, (1) ax and ay have p; (2) ax and ay have q; or (3) at least
one of ax and ay has a state r ∉ {p, q}. In the first two cases, two agents have the
same state in C ′v. In the last case, since r ∈ Qblue holds, state r exists in Cv from
Corollary 2, and consequently, two agents have r in C ′v. This is a contradiction
because Cv is strongly stable. Therefore, the lemma holds.

In the following, we prove Lemma 6. First, to prove the lemma, we provide
some definitions.

Definition 5. For states q and q′, we say q ↝ q′ if there exists a sequence of states
q = q0, q1,⋯, ql = q′ such that, for any i(0 ≤ i < l), transition rule (qi, qi)→ (qi+1, xi)
or (qi, qi)→ (xi, qi+1) exists for some xi.

46

Definition 6. For states q and q′, we say q
∗↝ q′ if x ↝ q′ holds for any x such

that q ↝ x holds.

Note that, in these definitions, we only consider interactions between agents
with the same state. We say two agents are homonyms if they have the same
state. Intuitively, q ↝ q′ means that an agent with state q can transition to q′

by only interacting with homonyms. Additionally, q ∗↝ q′ means that, even if an
agent with state q transitions to any state x by interactions with homonyms, it
can still transition from x to q′ by interactions with homonyms. By Corollary
1, without loss of generality, we assume that Qblue = {s1, s2, . . ., sP /2−1} and
Qred = {sP /2, sP /2+1, . . ., /sP−1} hold.

Definition 7. Qbc = {p ∈ Qblue ∣ ∃q ∈ Qred ∶ p↝ q}.

Definition 8. Qnbc = Qblue/Qbc.

Intuitively, p ∈ Qbc means that a blue agent with state p can become red by
interactions with homonyms. Additionally, p ∈ Qnbc means that a blue agent with
state p cannot become red by interactions with homonyms. The outline of the
proof of Lemma 6 is as follows: First, we show that Qnbc is not empty. This
implies that, by the definition of Qnbc, there exists a state p in Qnbc such that
p↝ p holds. Then we show that there exists a state p∗ in Qnbc such that p∗ ∗↝ p∗

holds. If such a p∗ does not exist, some state in Qnbc can transition to a state
not in Qnbc by interactions with homonyms, which contradicts the definition of
Qnbc. The existence of p∗ implies that there exists a state set Qp∗ ⊆ Qnbc such that
Qp∗ = {q ∣ p∗ ↝ q} holds. Finally, we show that this Qp∗ satisfies the conditions
of Lemma 6. Now we show that Qnbc is not empty. To show this, we provide the
following definition.

Definition 9. DtR(si) is a function that satisfies the following property:

• If si ∈ Qred holds, DtR(si) = 0 holds.

• If si ∈ Qbc holds, DtR(si) = min{DtR(s1j), DtR(s2j)} +1 holds when transi-
tion rule (si, si)→ (s1j , s2j) exists.

• If si ∈ Qnbc holds, DtR(si) =∞ holds.

47

Intuitively, DtR(si) gives the minimum number of interactions to transition
from si to a red state when allowing only interactions with homonyms.

Lemma 7. Qnbc ≠ ∅.

Proof. The idea of the proof of the lemma is as follows: For contradiction, we
assume Qnbc = ∅. From the assumption, since Qblue = Qbc holds, all states in Qblue

can transition to a state in Qred by interactions with homonyms. Additionally,
when homonyms with states in Qblue interact, one of the agents transitions from
si to sj such that DtR(si) > DtR(sj) holds. When P is even, some blue agents
have the same state in a stable configuration because the number of blue agents
should be P /2 and ∣Qblue∣ = P /2 − 1 holds. This implies that interactions with
homonyms having states in Qblue are always possible. Thus, by repeating the
interactions, eventually, some agent transitions to s′ such that DtR(s′) = 0 holds
(i.e., s′ ∈ Qred). This contradicts that the configuration is stable. Now we present
the details of the proof. For contradiction, we assume Qnbc = ∅. We consider a
population V ′ = {a′0, . . . , a′P} of P agents and an initialized base station, where
a′0 is the base station. Let Ξ′ = C ′0,C ′1, . . . ,C ′t, . . . be a weakly fair execution of
Algasym, where C ′t is a stable configuration. Without loss of generality, we assume
DtR(sP−1) = ⋯ = DtR(sP /2) = 0 < DtR(sP /2−1) ≤ ⋯ ≤ DtR(s1). Since Qnbc = ∅
holds, DtR(s1) ≠ ∞ holds. From the definition of DtR(si), if DtR(si) > 0 and
DtR(si) ≠ ∞ hold, an agent with state si transitions to sj with j > i by an
interaction with homonyms. Using this property, we prove the following lemma.

Lemma 8. For 1 ≤ i ≤ P /2 − 1, if i + 1 agents have states in {s1, . . . , si}, one of
these agents can transition to sh(h ≥ i + 1) by interactions among these agents.

Proof. We prove the lemma by induction on i. The base case is when two agents
have state s1. If they interact, one of them transitions to sh(h ≥ 2). Thus, the
lemma holds in this case. For the induction step, we assume that the lemma
holds for i = k − 1 (k ≤ P /2 − 1), and prove that the lemma holds for i = k. To do
this, we consider the scenario in which k + 1 agents have states in {s1, . . ., sk}.
We consider three cases: (1) at least two agents have state sk; (2) exactly one
agent has state sk; and (3) no agent has state sk. First, we consider the case in
which at least two agents have state sk. In this case, if these two agents interact,
one of them transitions to sh(h ≥ k + 1). Hence, the lemma holds in this case.

48

Next, we consider the case in which exactly one agent has state sk. In this case
k agents have states in {s1, . . ., sk−1}. Hence, from the inductive assumption,
one of them can transition to sh(h ≥ k) by interactions among the k agents. If
h > k holds, the lemma holds; otherwise, two agents have state sk and hence the
lemma holds similarly to the first case. Finally, we consider the case in which no
agent has state sk. This implies that k + 1 agents have states in {s1, . . ., sk−1}.
Hence, from the inductive assumption, two of them can transition to sh(h ≥ k)
and sh′(h′ ≥ k). If h > k or h′ > k holds, the lemma holds; otherwise, two agents
have state sk and hence the lemma holds similarly to the first case.

Since C ′t is a stable configuration in Ξ′, P /2 agents have states in Qblue = {s1,
. . ., sP /2−1}. Hence, by Lemma 8, we can construct an execution segment that
makes a blue agent transition to sh for some h ≥ P /2. This implies that the agent
changes its color from blue to red. Since C ′t is a stable configuration, this is a
contradiction.

From now, we show that there exists a state p ∈ Qnbc such that p ↝ p holds.
Furthermore, we also show that there exists a state p ∈ Qnbc such that p

∗↝ p

holds.

Lemma 9. There exists a state p ∈ Qnbc such that p↝ p holds.

Proof. From Lemma 7, there exists a state p0 in Qnbc. From the definition, there
exists a sequence p0 ↝ p1 ↝ p2 ↝ p3 ↝ ⋯ starting from p0. Since the number of
states is finite, there exist some pi and pj such that j > i ≥ 0 and pi = pj holds.
This implies pi ↝ pi. Clearly, pi ∈ Qnbc holds because p0 ∈ Qnbc holds. Therefore,
the lemma holds.

Lemma 10. There exists a state p ∈ Qnbc such that p ∗↝ p holds.

Proof. For contradiction, we assume that such state p does not exist. By Lemma
9, there exists a state p0 ∈ Qnbc such that p0 ↝ p0 holds. Since p0

∗↝ p0 does not
hold, there exists some state q such that p0 ↝ q holds but q ↝ p0 does not hold.
Since p0 ↝ q holds, q belongs to Qnbc. For this reason, there exists a state p′0 such
that q ↝ p′0 ↝ p′0 holds. Note that, since q ↝ p0 does not hold, p′0 is not equal
to p0. Additionally, since p′0

∗↝ p′0 does not hold, there exists some state q′ such

49

that p′0 ↝ q′ holds but q′ ↝ p′0 does not hold. This implies that there exists a
state p′′0 ∈ Qnbc such that q′ ↝ p′′0 ↝ p′′0 , p′′0 ≠ p′0, and p′′0 ≠ p0 hold. By repeating
similar arguments, since the number of states is finite, we can prove that there
exists some state p∗0 ∈ Qnbc such that p∗0

∗↝ p∗0 holds. This is a contradiction.

In the following, we focus on a state p∗ ∈ Qnbc such that p∗
∗↝ p∗ holds. Let

Qp∗ = {q ∣ p∗ ↝ q}. Note that, if homonyms with a state in Qp∗ interact, they
transition to a state in Qp∗. This implies that Qp∗ satisfies the first condition of Q∗

in Lemma 6. Moreover, we observe that, for any s, s′ ∈ Qp∗, s
∗↝ s′ holds because

p∗
∗↝ s

∗↝ p∗ and p∗
∗↝ s′

∗↝ p∗ hold. To prove the second condition, we first show
that, when ∣Qp∗∣ agents have states in Qp∗ initially, for any s ∈ Qp∗, there exists an
execution such that only homonyms in the ∣Qp∗∣ agents interact, and eventually,
some agent transitions to state s. To show this, we define a potential function
Φ(C, s) for configuration C and state s ∈ Qp∗. Intuitively, Φ(C, s) represents how
far configuration C is from a configuration that includes an agent with state s.
To define Φ(C, s), we define DtQ(si, s) as follows:

Definition 10. DtQ(si, s) is a function that satisfies the following properties .

• If si = s holds, DtQ(si, s) = 0 holds.

• If si ≠ s and si ∈ Qp∗ holds, DtQ(si, s) = min{DtQ(s1j , s), DtQ(s2j , s)} + 1
holds when transition rule (si, si)→ (s1j , s2j) exists.

• If si ∉ Qp∗ holds, DtQ(si, s) =∞ holds.

Intuitively, DtQ(si, s) provides the minimum number of interactions required
to transition from state si to state s when allowing only interactions with homonyms.
Recall that, for any si ∈ Qp∗, si

∗↝ s holds because p∗
∗↝ si

∗↝ p∗ and p∗
∗↝ s

∗↝ p∗

hold.

Definition 11. We consider configuration C such that z = ∣Qp∗ ∣ agents a1, . . ., az
have states in Qp∗. In this case, we define potential function Φ(C, s) as a multiset
{DtQ(s(a1,C), s), DtQ(s(a2,C), s), DtQ(s(a3,C), s), . . ., DtQ(s(az,C), s)}.

Definition 12. For distinct Φ(C1, s) and Φ(C2, s), we define their comparative
operator as follows: Let i be the minimum integer such that the number of i-
elements is different between Φ(C1, s) and Φ(C2, s). If the number of i-elements
in Φ(C1, s) is larger than that in Φ(C2, s), we say Φ(C1, s) < Φ(C2, s).

50

Now we prove that, for any s ∈ Qp∗, there exists an execution such that only
homonyms in the ∣Qp∗∣ agents with states in Qp∗ interact, and eventually, some
agent transitions to state s.

Lemma 11. We consider a population Vp∗ = {a1, a2, . . ., az}, where z ≥ ∣Qp∗ ∣
holds. We consider an initial configuration Cq

0 such that all agents in Vp∗ have
states in Qp∗. For any q ∈ Qp∗, there exists an execution segment eq = Cq

0 , Cq
1 ,

Cq
2 , . . ., Cq

m such that (1) some agent has state q at the last configuration Cq
m;

and (2) only homonyms interact in eq.

Proof. Let C be a configuration with Vp∗ such that all agents have states in Qp∗.
If an agent with q in C, we can construct eq = C. Hence, we consider that there
does not exist an agent with q in C. Since at least ∣Qp∗ ∣ agents have states in
Qp∗ in C and there does not exist an agent with q in C, there exist homonyms
in C. When homonyms with a state in Qp∗ interact, they transition to a state
in Qp∗. These imply that, when homonyms interact at C → C ′, either an agent
with q or homonyms with a state in Qp∗ exist in C ′. Thus, for contradiction, we
assume that there exists an infinite execution segment eq = Cq

0 , C
q
1 , C

q
2 , . . . with

Vp∗ such that only homonyms interact and no agent ever has q in eq. We consider
the case in which ax and ay interact at Cq

i → Cq
i+1 for i ≥ 0. By the assumption,

ax and ay have the same state p ∈ Qp∗. From the property of Qp∗, p satisfies
p↝ p∗ ↝ q. Thus, DtQ(s(ax,Cq

i), q) >DtQ(s(ax,Cq
i+1), q) or DtQ(s(ay,Cq

i), q) >
DtQ(s(ay,Cq

i+1), q) holds. Hence, from the property of Φ, Φ(Cq
i , q) > Φ(C

q
i+1, q)

holds. Since the number of possible values of Φ(C, q) is finite, Φ(Cq
j , q) includes

0 for some Cq
j and thus some agent has q in Cq

j . By the definition of eq, this is a
contradiction.

Now, we show Lemma 6 by using Lemma 11.

Lemma 6. A non-empty state set Q∗ ⊆ Qblue exists that satisfies the following
conditions:

• For any state p ∈ Q∗, transition rule (p, p) → (p′, q′) satisfies p′ ∈ Q∗ and
q′ ∈ Q∗.

• We assume that, in a configuration C, there exists a subset of agents V ∗

such that all agents in V ∗ have states in Q∗ and ∣V ∗∣ ≥ ∣Q∗∣+1 holds. In this

51

case, for any agent ar ∈ V ∗ and any state q ∈ Q∗, there exists an execution
segment such that (1) the execution segment starts from C; (2) ar has state
q at the last configuration; (3) only agents in V ∗ join interactions; and (4)
all agents in V ∗ have states in Q∗ at the last configuration.

Proof. We show that Qp∗ satisfies the condition of Q∗. Clearly, Qp∗ satisfies the
first condition. Hence, we focus on the second condition. We consider a set of
agents V ∗ with ∣V ∗∣ ≥ ∣Qp∗∣+1, and consider an initial configuration Cp∗

0 such that
all agents in V ∗ have states in Qp∗. Let ar be an agent in V ∗ and let s = s(ar,Cp∗

0).
We consider a sequence of states T = t0, t1, t2, . . . , tl such that t0 = s, tl = q, and
for any i (0 ≤ i < l), transition rule (ti, ti) → (ti+1, xi) or (ti, ti) → (xi, ti+1) exists
for some xi. From configuration Cp∗

0 , we make ar change its state according
to T ; that is, if ar has state ti(0 ≤ i < l), we make one of the remaining agents
(i.e., V ∗−{ar}) transition to ti by interactions with homonyms and then make the
agent interact with ar. Note that the number of remaining agents is at least ∣Qp∗ ∣.
Such a procedure is possible because, by Lemma 11, one of the remaining agents
can transition to any state in Qp∗ by interactions with homonyms. We observe
that all agents in V ∗ keep states in Qp∗ when the procedure is applied. Hence,
we can construct an execution segment under the second condition. Therefore,
Qp∗ satisfies the conditions of Q∗ and thus the lemma holds.

4.1.3 Lower Bound for Symmetric Protocols

In this subsection, we show that the lower bound for symmetric protocols is P +1.
To prove this, we use the ideas of the impossibility proof for the naming protocol
[23]. This study showed that, in the model with an initialized base station, there
is no symmetric naming protocol with P states from arbitrary initial states under
weak fairness. We apply the proof in [23] to the uniform 2-partition but, because
the problem considered in that study is different, we need to make a non-trivial
modification.

Theorem 12. In the model with an initialized base station, there is no symmetric
protocol that solves the uniform 2-partition problem with P states from arbitrary
initial states under weak fairness, if P is an even integer.

52

In the case of naming protocols [23], the impossibility proof proves that a
unique state (called a sink state) always exists. However, in the case of uniform
2-partition protocols, sometimes no sink state exists. To consider this scenario,
we additionally define a sink pair, which is a pair of two states that has similar
properties to a sink state. We show that either a sink state or sink pair exists,
and we prove that there is no symmetric protocol in both cases. Furthermore,
Theorem 12 directly implies the following corollary.

Corollary 4. In the model with an initialized base station, there is no symmetric
protocol that solves the uniform partition problem with P states from arbitrary
initial states under weak fairness if P is an even integer.

Proof of Theorem 12

We assume, by way of contradiction, that such an algorithm Algsym exists. Let
Qp = {s1, . . . , sP} be a set of states of non-base station agents. Let Qblue = {s ∈
Qp ∣ γ(s) = blue} be a set of blue states and Qred = {s ∈ Qp ∣ γ(s) = red} be a
set of red states. Without loss of generality, we assume that ∣Qblue∣ ≤ ∣Qred∣ holds.
First, we define a sink state similarly to [11].

Definition 13. For states q and q′, we say q
sym↝ q′ if there exists a sequence of

states q = q0, q1,⋯, ql = q′ such that, for any i(0 ≤ i < l), transition rule (qi, qi) →
(qi+1, qi+1) exists.

Definition 14. For state q, if q
sym↝ q holds, q is called a loop state.

Definition 15. State m is a sink state if m ∈ Qp satisfies the following conditions:

1. There exists a transition rule (m,m)→ (m,m).

2. For any s ∈ Qp, s
sym↝ m holds.

3. If the number of agents is at most P − 2, m does not occur infinitely often
for any execution.

In the case of naming protocols [11], the impossibility proof proves that a
sink state always exists. However, in the case of uniform 2-partition protocols,
sometimes no sink state exists. To consider this scenario, we additionally define

53

a sink pair, which is a pair of two states that has a similar property of a sink
state. We prove that either a sink state or sink pair exists.

Definition 16. A pair of two states m1,m2 ∈ Qp is a sink pair if the following
conditions hold:

1. There exist transition rules (1) (m1,m1)→ (m1,m1) and (m2,m2)→ (m2,m2)
or (2) (m1,m1)→ (m2,m2) and (m2,m2)→ (m1,m1).

2. For any s ∈ Qp, s
sym↝ m1 or s

sym↝ m2 holds.

3. If the number of agents is at most P − 2, m1 and m2 do not occur infinitely
often for any execution.

The following lemma provides an important property to prove the existence
of a sink state or sink pair.

Lemma 12. Let Ξ = C0,C1,C2, . . . be a weakly fair execution of Algsym with
n ≤ P − 2 agents and an initialized base station. For any loop state sr ∈ Qp (i.e.,
sr

sym↝ sr holds), sr does not occur infinitely often in Ξ.

Proof. The idea of the proof is as follows: First, for contradiction, we consider
an execution Ξ with n ≤ P − 2 such that sr occurs infinitely often in Ξ. Next,
we consider an execution with P agents such that all additional agents have sr

as their initial states and other agents behave similarly to Ξ. In the execution,
all additional agents do not join the interactions until some other agent has sr.
At that time, one of non-additional agents has state sr and additional agents
also have state sr. We can prove that, from this configuration, non-additional
agents cannot recognize the additional agents and hence they behave in the same
manner as in Ξ. Additionally, the additional agents keep state sr. Since the
numbers of red and blue agents are balanced without the additional agents and
the additional agents have the same state, the uniform 2-partition problem cannot
be solved. Now we present the details of the proof. For contradiction, we assume
that there exists a weakly fair execution Ξ such that sr occurs infinitely often in
Ξ. First, we consider a population V = {a0, a1, a2, . . . , an} of n ≤ P − 2 agents and
an initialized base station, where a0 is the base station. Since there exist a finite
number of agents, there exists a particular agent ax that has sr infinitely often

54

in Ξ. We can define infinite configurations Cu0 ,Cu1 , . . . and infinite execution
segments e0, e1, e2, . . . of Ξ so that Ξ = Cu0 , e0, Cu1 , e1, Cu2 , e2, Cu3 , . . . satisfies
the following:

• For w ≥ 1, agent ax has state sr in Cuw .

• For j ≥ 0, during execution segment Cuj
, ej,Cuj+1 , any pair of agents in V

interacts at least once (this is possible because Ξ is weakly fair).

Next, we consider a population V ′ = {a′0, a′1, . . ., a′P} of P agents and an initialized
base station, where a′0 is the base station. We define execution Ξ′ = C ′u0

, e′0, C ′v0 ,
em0 , C ′u1

, e′1, C ′v1 , e
m
1 , C ′u2

, e′2, C ′v2 , . . . as follows:

• In initial configuration C ′u0
, a′i (n ≥ i ≥ 0) has the same state as ai in C0 and

a′n+1, a
′
n+2, . . . , a

′
P have state sr. Formally, s(a′i,C ′u0

) = s(ai,Cu0) holds for
any i (n ≥ i ≥ 0), and s(a′n+1,C ′u0

) = s(a′n+2,C ′u0
) = ⋯ = s(a′P ,C ′u0

) = sr holds.

• For j ≥ 0, we construct execution segment e′j = Ĉj
1 , Ĉj

2 , Ĉj
3 , . . ., Ĉj

z and
configuration C ′vj using ej = Cj

1 , C
j
2 , C

j
3 , . . ., C

j
z and Cuj+1 , where z = ∣ej ∣

holds. Specifically, we construct e′j as follows:

– Case in which j = (P − n + 1) ⋅ y holds for some y (y ≥ 0). In this case,
agents a′0, . . . , a

′
n interact in execution segment C ′uj

, e′j,C
′
vj

similarly
to a0, . . . , an in execution segment Cuj

, ej,Cuj+1 . Formally, when ag

interacts with ah at Cj
f → Cj

f+1 for z > f > 0 (resp., Cuj
→ Cj

1 and
Cj

z → Cuj+1), a′g interacts with a′h at Ĉj
f → Ĉj

f+1 (resp., C ′uj
→ Ĉj

1 and
Ĉj

z → C ′vj).

– Case in which j = (P − n + 1) ⋅ y + l holds for some y (y ≥ 0) and l

(P − n ≥ l ≥ 1). In this case, a′n+l joins interactions instead of a′x. Note
that, in C ′uj

, both a′n+l and a′x have state sr. Formally we construct e′j
as follows: (1) when ag(g ≠ x) interacts with ah(h ≠ x) at Cj

f → Cj
f+1

for z > f > 0 (resp., Cuj
→ Cj

1 and Cj
z → Cuj+1), a′g interacts with a′h at

Ĉj
f → Ĉj

f+1 (resp., C ′uj
→ Ĉj

1 and Ĉj
z → C ′vj), and (2) when ax interacts

with an agent ai(i ≠ x) at Cj
f → Cj

f+1 for z > f > 0 (resp., Cuj
→ Cj

1

and Cj
z → Cuj+1), a′n+l interacts with a′i at Ĉj

f → Ĉj
f+1 (resp., C ′uj

→ Ĉj
1

and Ĉj
z → C ′vj). Similarly, when an agent ai(i ≠ x) interacts with ax at

55

Cj
f → Cj

f+1 for z > f > 0 (resp., Cuj
→ Cj

1 and Cj
z → Cuj+1), a′i interacts

with a′n+l at Ĉj
f → Ĉj

f+1 (resp., C ′uj
→ Ĉj

1 and Ĉj
z → C ′vj).

• For j ≥ 0, during execution segment C ′vj , e
m
j ,C

′
uj+1 , agents a′x, a′n+1, a′n+2, . . .,

a′P interact so that, for any pair (a′g, a′h) of them, a′g interacts with a′h at
least once, and eventually, they have state sr. At the first configuration,
agents a′x, a′n+1, a′n+2, . . ., a′P have state sr. Since sr

sym↝ sr holds, each pair
of them can go back to state sr after some interactions. Thus, in C ′uj

(j > 0),
agents a′x, a′n+1, a′n+2, . . ., a′P have state sr.

In execution segment C ′uj
, e′j,C

′
vj

such that j = (P − n + 1) ⋅ y holds, for each pair
of agents a and b in V ′ − {a′n+1, a′n+2, . . . , a′P}, a interacts with b. In execution
segment C ′uj

, e′j,C
′
vj

such that j = (P −n+1) ⋅y+ l holds, for every pair of agents a
and b in (V ′ − {a′x, a′n+1, a′n+2, . . . , a′P}) ∪ {a′n+l}, a interacts with b. Moreover, for
every pair of agents a and b in {a′x, a′n+1, a′n+2, . . ., a′P}, a interacts with b in emj
for j > 0. From these facts, execution Ξ′ is weakly fair. In Ξ, let Cut be a stable
configuration such that agent ax has state sr. Let Rut be a set of red agents in Cut

and let But be a set of blue agents in Cut . Clearly, ∣∣Rut ∣ − ∣But ∣∣ ≤ 1 holds. Now,
we consider two cases. One is the case in which n is even (i.e., ∣∣Rut ∣ − ∣But ∣∣ = 0
holds). Another is the case in which n is odd (i.e., ∣∣Rut ∣ − ∣But ∣∣ = 1 holds). Note
that, in both cases, s(ai,Cuw) = s(a′i,C ′uw

) holds for n ≥ i ≥ 0 and w ≥ 0, and
other P − n agents have state sr in C ′uw

for w ≥ 0. Hence, for the number of
γ(sr)-agents, the difference between Cuw and C ′uw

is P − n for any w ≥ t. First,
we consider the case in which n is even. After C ′ut

, the number of γ(sr)-agents is
P −n ≥ 2 more than the number of γ(sr)-agents. Thus, Ξ′ never reaches a stable
configuration. Next, we consider the case that n is odd. Since n ≤ P − 2 holds
and both P − 1 and n are odd, n ≤ P − 3 holds and thus P − n ≥ 3 holds. Hence,
after C ′ut

, the number of γ(sr)-agents is at least two more than the number of
γ(sr)-agents. Thus, Ξ′ never reaches a stable configuration. Since Ξ′ is weakly
fair, this is a contradiction.

Using Lemma 12, Lemma 13 shows the existence of a sink state or sink pair.

Lemma 13. In any protocol Algsym, there exists either exactly one sink pair or
exactly one sink state.

56

Proof. For q ∈ Qp, let Lq = {q′ ∣ q
sym↝ q′ and q′

sym↝ q′}; that is, Lq is a set of loop
states such that an agent with state q can transition to the state by interactions
with homonyms. For any q0 ∈ Qp, we consider a sequence of transition rules
(q0, q0) → (q1, q1), (q1, q1) → (q2, q2), (q2, q2) → ⋯. Since the number of states
is finite, qi = qj holds for some j > i ≥ 0. Hence, Lq ≠ ∅ holds. We define L

as L = Ls1 ∪ Ls2 ∪ Ls3 ∪ ⋯ ∪ LsP . Now we show that ∣L∣ ≤ 2 holds by Lemmas
12 and 2. Recall that the properties of Lemma 2 hold even in a symmetric
algorithm Algsym. By Lemma 12, a loop state does not occur infinitely often
in any execution with n ≤ P − 2 agents. Additionally, by Lemma 2, when the
number of agents is P −2, there exists an execution such that at least P −2 states
occur infinitely often. This implies that such P − 2 states are not loop states.
Thus, the number of loop states is at most two; that is, ∣L∣ ≤ 2 holds. If ∣L∣ = 1
holds, a loop state in L satisfies conditions 2 and 3 of a sink state in Definition
15. This is because an agent with any state can transition to the loop state in L

by interactions with homonyms and the loop state does not occur infinitely often
by Lemma 12. For a similar reason, if ∣L∣ = 2 holds, two loop states in L satisfy
conditions 2 and 3 of a sink pair in Definition 16. Note that, in this case, the
two loop states in L are not sink states because they cannot satisfy conditions 1
and 2 of a sink state in Definition 15 simultaneously. In the following, we show
that a loop state and two loop states in L satisfy condition 1 of a sink state and
sink pair, respectively. First, we consider the case of ∣L∣ = 2. Let m1 and m2 be
states in L. For contradiction, we assume that there exists (m1,m1)→ (s, s) such
that s ∉ {m1,m2} holds. Since m1

sym↝ m1 holds, s
sym↝ s holds. However, by the

assumption, such an s does not exist because only m1 and m2 are loop states.
Hence, (m1,m1) → (s, s) does not exist, and hence either (m1,m1) → (m1,m1)
or (m1,m1)→ (m2,m2) exists. Similarly, (m2,m2)→ (s, s) for s ∉ {m1,m2} does
not exist, and hence either (m2,m2) → (m1,m1) or (m2,m2) → (m2,m2) exists.
If both (m1,m1) → (m1,m1) and (m2,m2) → (m1,m1) exist, m2

sym↝ m2 does
not hold. Similarly, if both (m1,m1)→ (m2,m2) and (m2,m2)→ (m2,m2) exist,
m1

sym↝ m1 does not hold. Thus, m1 and m2 satisfy condition 1 of a sink pair.
Next, we consider the case of ∣L∣ = 1. Let m be a state in L. For contradiction, we
assume that there exists (m,m) → (s, s) such that s ≠ m holds. Since m

sym↝ m

holds, s
sym↝ s holds. However, the loop state is only m. This is a contradiction,

57

and m satisfies condition 1 of a sink state. Therefore, the lemma holds.

We introduce a reduced execution that is also defined in [11].

Definition 17. In a reduced execution, if homonyms with a non-sink state (resp.,
neither of the sink pair) occur, they immediately enter a sink state (resp., one
of the sink pair) by interactions with the homonyms. This procedure is called
reducing .

By condition 2 of a sink state and sink pair, such reducing is possible. We say
configuration C is reduced if there are no homonyms except agents with a sink
state or one of the sink pair. Note that there exists a reduced weakly fair execution
of Algsym because any pair of agents can interact in a reduced configuration. We
consider a reduced weakly fair execution Ξ of Algsym with P − 2 agents. By
Lemma 12, there exists a stable reduced configuration such that no agent has a
sink state or states of the sink pair. Since no two agents have the same non-sink
state, we have the following corollaries.

Corollary 5. When a sink state exists in Qp, either

• the number of non-sink red states is P /2 and the number of non-sink blue

states is P /2 − 1; or

• the number of non-sink blue states is P /2 and the number of non-sink red

states is P /2 − 1.

Corollary 6. When a sink pair exists in Qp, the number of red (resp., blue) states
not in the sink pair is P /2 − 1 (resp., P /2 − 1).

Moreover, Corollary 5 can be extended to the following lemma.

Lemma 14. When a sink state m exists in Qp, the number of non-sink γ(m)-
states is P /2 − 1 and the number of non-sink γ(m)-states is P /2. This implies
that the number of γ(m)-states is P /2 and the number of γ(m)-states is also P /2.

Proof. By Corollary 5, the number of non-sink γ(m)-states is at least P /2 − 1
and at most P /2. Hence, for contradiction, we assume that the number of non-
sink γ(m)-states is P /2. This implies that the number of γ(m)-states (including

58

the sink state m) is P /2 + 1 and the number of γ(m)-states is P /2 − 1. Now,
we consider a reduced weakly fair execution Ξ of Algsym with P agents and an
initialized base station. In Ξ, after a stable configuration, a reduced configuration
occurs infinitely often. In a reduced configuration, each non-sink state is held by
at most one agent. Thus, because all the γ(m)-states are non-sink states and
the number of them is P /2 − 1, in a stable reduced configuration the number of
γ(m)-agents is at most P /2−1 and the number of γ(m)-agents is at least P /2+1.
This is a contradiction.

Subsequently, we show that, when a sink state m exists and the number of
agents is P −1, the number of γ(m)-agents is less than the number of γ(m)-agents
in a stable configuration.

Lemma 15. When a sink state m exists in Qp, for any reduced weakly fair exe-
cution Ξ = C0, C1, C2, . . ., Ct, . . . of Algsym with P − 1 agents and an initialized
base station, the following is satisfied in a stable configuration Ct of Ξ.

• The number of γ(m)-agents is P /2 − 1 and the number of γ(m)-agents is
P /2.

Proof. The idea of the proof is as follows: For contradiction, we consider a reduced
execution Ξ with P − 1 agents such that the number of γ(m)-agents is P /2 and
the number of γ(m)-agents is P /2−1 in a stable configuration of Ξ. Note that, by
Lemma 14, the number of γ(m)-states is P /2. Thus, since the stable configuration
is reduced, some agent has m in the stable configuration. Next, we consider an
execution with P agents such that one additional agent has m as an initial state
and other agents behave similarly to Ξ. In the execution, the additional agent
does not join the interactions until P −1 agents converge to a stable configuration
in Ξ. At that time, one of the P − 1 agents has state m and the additional
agent also has state m. We can prove that, from this configuration, P − 1 agents
cannot recognize the additional agent and hence they make the same behavior as
in Ξ. Additionally, the additional agent can keep state m. Since the additional
agent has γ(m)-state, the number of γ(m)-agents is P /2 + 1 and the number of
γ(m)-agents is P /2−1. This implies that the uniform 2-partition problem cannot
be solved. Now we present the details of the proof. For contradiction, there
exists a reduced weakly fair execution Ξ such that the number of γ(m)-agents

59

is P /2 and the number of γ(m)-agents is P /2 − 1 in a stable configuration of Ξ.
First, we consider a population V = {a0, a1, a2, . . . , aP−1} of P − 1 agents and an
initialized base station, where a0 is the base station. We define a reduced weakly
fair execution Ξ = C0, C1, C2, . . ., Ct, . . ., Ct′0

, e1, Ct′1
, e2, Ct′2

, e3, . . . of Algsym
with V as follows:

• Ct is a stable configuration.

• For any u ≥ 0, Ct′u is a particular stable reduced configuration such that Ct′0
=

Ct′1
= Ct′2

= ⋯ holds. Note that such a configuration (i.e., a stable reduced
configuration that appears an infinite number of times) exists because the
number of possible configurations is finite.

• For j > 0, ej is an execution segment such that, during execution segment
Ct′j−1

, ej,Ct′j
, for any pair of agents a and b in V , a interacts with b at least

once. This is possible because Ξ is weakly fair.

By Lemma 14, the number of γ(m)-states is P /2. Additionally, by the assump-
tion, the number of γ(m)-agents is also P /2 in Ct′u for any u. From these facts,
for any u, since Ct′u is a reduced configuration (i.e., there exist no homonyms
except m), there exists a particular agent aq that has state m in Ct′u for any u.
Next, we consider a population V ′ = {a′0, a′1, . . ., a′P} of P agents and an initialized
base station, where a′0 is the base station. We define Ξ′ = C ′0, C ′1, C ′2, . . ., C ′t, . . .,
C ′t′0

, e′1, C ′t′1 , e
′
2, C ′t′2 , e

′
3, . . . using Ξ. First, we define the first part of Ξ′; that is,

C ′0, C ′1, C ′2, . . ., C ′t, . . ., C ′t′0 as follows:

• In initial configuration C ′0, a′0, . . . , a′P−1 have the same states as a0, . . . , aP−1
in C0, and a′P has state m. Formally, s(a′i,C ′0) = s(ai,C0) holds for i (P −1 ≥
i ≥ 0), and s(a′P ,C ′0) =m holds.

• From C ′0 to C ′t′0
, a′0, . . . , a′P−1 interact similarly to a0, . . . , aP−1 in Ξ. Formally,

for any u(t′0 > u ≥ 0), when ag interacts with ah at Cu → Cu+1, a′g interacts
with a′h at C ′u → C ′u+1.

Clearly, s(a′i,C ′t′0) = s(ai,Ct′0
) holds for i (P − 1 ≥ i ≥ 0), and s(a′P ,C ′t′0) = m

holds. This implies that the number of γ(m)-agents is P /2+1 and the number of
γ(m)-agents is P /2−1 in C ′t′0

. We define the remaining part of Ξ′; that is, C ′t′0 , e
′
1,

C ′t′1
, e′2, C ′t′2 , e

′
3, . . . as follows:

60

• For j > 0, we construct an execution segment e′j = Ĉ
j
1 , Ĉ

j
2 , Ĉ

j
3 , . . ., Ĉ

j
z , Ĉj

z+1,
Ĉj

z+2 using ej = Cj
1 , C

j
2 , C

j
3 , . . ., C

j
z , where z = ∣ej ∣ holds. Specifically, we

construct C ′t′j−1
, e′j, C ′t′j as follows:

– Case in which j is even: In this case, agents a′0, . . . , a
′
P−1 interact in

execution segment C ′t′j−1
, e′j similarly to a0, . . . , aP−1 in execution seg-

ment Ct′j−1
, ej,Ct′j

. Formally, when ag interacts with ah at Cj
f → Cj

f+1,
for z > f > 0 (resp., Ct′j−1

→ Cj
1 , and Cj

z → Ct′j
), a′g interacts with a′h at

Ĉj
f → Ĉj

f+1, (resp., C ′t′j−1 → Ĉj
1 , and Ĉj

z → Ĉj
z+1.

– Case in which j is odd: In this case, a′P joins interactions instead of
a′q. Note that, in C ′t′j−1

, both a′P and a′q have state m. Formally, we
construct e′j as follows: (1) when ag(g ≠ q) interacts with ah(h ≠ q) at
Cj

f → Cj
f+1 for z > f > 0, (resp., Ct′j−1

→ Cj
1 , and Cj

z → Ct′j
), a′g interacts

with a′h at Ĉj
f → Ĉj

f+1, (resp., C ′t′j−1 → Ĉj
1 , and Ĉj

z → Ĉj
z+1; (2) when

aq interacts with an agent ai(i ≠ q) at Cj
f → Cj

f+1, (resp., Ct′j−1
→ Cj

1 ,
and Cj

z → Ct′j
), a′P interacts with a′i at Ĉj

f → Ĉj
f+1 (resp., C ′t′j−1 → Ĉj

1 ,

and Ĉj
z → Ĉj

z+1. Similarly, when an agent ai(i ≠ q) interacts with aq at
Cj

f → Cj
f+1, (resp., Ct′j−1

→ Cj
1 , and Cj

z → Ct′j
, a′i interacts with a′P at

Ĉj
f → Ĉj

f+1 (resp., C ′t′j−1 → Ĉj
1 , and Ĉj

z → Ĉj
z+1).

– a′P interacts with a′q at Ĉj
z+1 → Ĉj

z+2.

– a′q interacts with a′P at Ĉj
z+2 → C ′t′j

.

We can show inductively that, for any x ≥ 0, s(a′i,C ′t′x) = s(ai,Ct′x) holds for any
i (P − 1 ≥ i ≥ 0), and s(a′q,C ′t′x) = s(a

′
P ,C

′
t′x
) = s(aq,Ct′x) = m holds. Clearly, this

holds for x = 0. We assume that this holds for x = j, and consider the case of
x = j+1. When j+1 is even, during execution segment C ′t′j , e

′
j+1, agents in V ′−{a′P}

interact similarly to Ct′j
, ej+1, Ct′j+1

. Hence, for any j > 0, s(a′i, Ĉ
j+1
z+1) = s(ai,Ct′j+1

)
holds for any i (P − 1 ≥ i ≥ 0) and s(a′q, Ĉ

j+1
z+1) = s(a′P , Ĉ

j+1
z+1) = s(aq,Ct′j+1

) = m

holds. At Ĉj+1
z+1 → Ĉj+1

z+2 (resp., Ĉj+1
z+2 → C ′t′j+1

), a′P (resp. a′q) interacts with a′q
(resp., a′P), and hence, if they have state m, they do not change their states.
Thus, s(a′i,C ′t′j+1) = s(ai,Ct′j+1

) holds for any i (P − 1 ≥ i ≥ 0) and s(a′q,C ′t′j+1) =
s(a′P ,C ′t′j+1) = s(aq,Ct′j+1

) =m holds. When j+1 is odd, during execution segment
C ′t′j

, e′j+1, a′P joins interactions instead of a′q, and agents in V ′ − {a′q} behave simi-

61

larly to Ct′j−1
, ej, Ct′j

. Hence, for any j > 0, s(a′i, Ĉ
j+1
z+1) = s(ai,Ct′j+1

) holds for any
i (P − 1 ≥ i ≥ 0) and s(a′q, Ĉ

j+1
z+1) = s(a′P , Ĉ

j+1
z+1) = s(aq,Ct′j+1

) =m holds. At Ĉj+1
z+1 →

Ĉj+1
z+2 (resp., Ĉj+1

z+2 → C ′t′j+1
), a′P (resp., a′q) interacts with a′q (resp., a′P), and hence, if

they have state m, they do not change their states. Thus, s(a′i,C ′t′j+1) = s(ai,Ct′j+1
)

holds for any i (P − 1 ≥ i ≥ 0), and s(a′q,C ′t′j+1) = s(a
′
P ,C

′
t′j+1
) = s(aq,Ct′j+1

) = m

holds. For any j, the number of γ(m)-agents is P /2 and the number of γ(m)-
agents is P /2 − 1 in Ct′j

, and thus the number of γ(m)-agents is P /2 + 1 and the
number of γ(m)-agents is P /2 − 1 in C ′t′j

. Therefore, Ξ′ cannot solve the uniform
2-partition. During C ′t′j−1

, e′j, when j is even, for any pair of agents a and b in
V ′ − {a′P}, a interacts with b. Similarly, when j is odd, for any pair of agents a

and b in V ′ − {a′q}, a interacts with b. Moreover, for j > 0, at Ĉj+1
z+1 → Ĉj+1

z+2 (resp.,
Ĉj+1

z+2 → C ′t′j+1
), a′P (resp., a′q) interacts with a′q and a′P . Thus, Ξ′ is weakly fair.

Since Ξ′ cannot solve the uniform 2-partition, this is a contradiction.

Using these lemmas, we show that, when a sink state exists in Qp, Algsym does
not work. We prove this in a similar way to the case of naming protocols in [11],
but we need a non-trivial modification to apply the proof to uniform 2-partition
protocols.

Definition 18. We assume that a sink state m exists in Qp. We consider con-
figurations C0 and C1 for a population V . We say that C0 is far away from
C1 according to a non-sink state s ≠ m if there exists an agent ax such that
s(ay,C0) = s(ay,C1) for any ay ∈ V /{ax}, s(ax,C0) = m, and s(ax,C1) = s ≠ m
hold. Then, C0 is denoted by C−s1 and C1 is denoted by C+s0 .

We introduce the notion of equivalent configurations. We say that configura-
tions C and C ′ are equivalent if a multiset of states in C is identical to that in
C ′.

Lemma 16. We assume that a sink state m exists in Qp. We consider an exe-
cution segment e = C0,C1,C2, . . . ,Ck of Algsym with P agents and an initialized
base station that satisfies the following conditions:

• e is a reduced execution segment.

• C0 is reduced.

62

• There exists a non-sink state s such that, in any reduced configuration of e
except the last configuration Ck, no agent has state s.

Then, there exists the execution segment e′ = C ′0,C ′1,C ′2, . . . ,C ′k of Algsym with P

agents and an initialized base station that satisfies the following conditions:

• A particular agent ax with m does not join interactions.

• C0 = C ′0 holds.

• For any i (0 < i ≤ k), C ′i and Ci are equivalent.

Proof. In a reduced configuration with P agents, if there exists a non-sink state
that is held by no agent, there are at least two agents with a sink state. Hence, in
any reduced configuration of e except the last configuration Ck, there exist at least
two agents with a sink state. Using this property, we construct e′ by induction on
the index of configuration. First, since we can set the initial configuration C ′0 such
that C ′0 = C0 holds, the base case holds. For the induction step, we assume that
there exists a configuration C ′l(l ≥ 0) such that C ′u and Cu are equivalent for any
u ≤ l and ax does not join interactions until C ′l (i.e., ax has a sink state in C ′l). We
consider two cases of interaction at Cl → Cl+1. First, we consider the case in which
an agent with a sink state does not join an interaction at Cl → Cl+1. In this case,
since Cl and C ′l are equivalent and ax has a sink state in C ′l , a state transition
that occurs at Cl → Cl+1 can occur at C ′l → C ′l+1. Thus, the lemma holds at C ′l+1.
Next, we consider the case in which an agent with a sink state joins interaction
at Cl → Cl+1. In this case, Cl and C ′l are reduced. By the assumption, in Cl and
C ′l , there are at least two agents with a sink state. Let ay ≠ ax be an agent that
has a sink state in C ′l . Then, when agents ai and aj interact at Cl → Cl+1, we
consider the following two cases.

• Case in which ai and aj have a sink state: In this case, Cl = Cl+1 holds.
Hence, we skip this interaction and regard C ′l as C ′l+1

2. Clearly, C ′l+1 and
Cl+1 are equivalent.

2Strictly speaking, this violates the definition of an execution because no interaction occurs
at C ′l → C ′l+1. However, by removing C ′l+1 from e′, we can construct execution e′ that satisfies
the definition of an execution. This modification does not affect the following proofs.

63

• Case in which either ai or aj has a sink state: Without loss of generality,
we assume that ai has a sink state. In this case, by making an interaction
between ay and aj at C ′l → C ′l+1, we can obtain C ′l+1 such that C ′l+1 and Cl+1

are equivalent.

Then, we can obtain C ′l+1 without making ax join an interaction. Thus, the lemma
holds.

The following lemma is identical to the lemma in [11]. Although the lemma
is proved for naming protocols in [11], we can use the lemma because the proof
does not use the property of naming protocols. For completeness, we also provide
the proof.

Lemma 17. We assume that a sink state m exists in Qp. We consider two reduced
configurations C0 and C−s0 with P agents. The difference between C0 and C−s0 is
only whether an agent ax has a non-sink state s or sink state m. We consider a
reduced execution segment C−s0 , e−s0 ,C1 of Algsym with P agents and an initialized
base station that satisfies the following conditions:

• During C−s0 , e−s0 ,C1, ax does not join interactions.

• In any reduced configuration during C−s0 , e−s0 , there exists no agent with s.

• C1 is a reduced configuration such that there exists an agent with s.

If there exists such an execution segment, there also exists the reduced execution
segment C0, e0,C−s1 of Algsym with P agents and an initialized base station that
satisfies the following conditions:

• During C0, e0,C−s1 , ax does not join interactions except the last reducing.

• In any reduced configuration during C0, e0, there exists an agent with s.

• C−s1 is a reduced configuration such that there does not exist an agent with
s.

Proof. By making an interaction similar to C−s0 , e−s0 , C1, we can construct a re-
duced execution segment C0, e′0, C+s1 starting from C0. Because exactly two agents

64

have state s in C+s1 , C+s1 can be reduced to C−s1 . We denote this reducing pro-
cedure by C+s1 , er, C−s1 . Then, we can obtain an execution segment C0, e′0, C+s1 ,
er, C−s1 . Note that, during C0, e, C+s1 , agent ax does not join interactions. This
implies that, during C0, e′0, C+s1 , er, C−s1 , agent ax does not join interactions
except the last reducing. Hence, we can obtain the required execution segment
C0, e0,C−s1 such that e0 = e′0, C+s1 , er holds.

In the next lemma, we prove that a sink state does not exist.

Lemma 18. A sink state does not exist in Qp.

Proof. We use the idea of the impossibility proof for the naming protocol [11].
The idea of the proof is as follows: For contradiction, we assume that there exists
a sink state m ∈ Qp. First, we consider an execution segment e with P agents,
such that (1) a particular agent ax does not join interactions and other P − 1
agents interact until convergence; (2) ax has m as an initial state; and (3) its
final configuration Ch is a reduced configuration. Let s be a γ(m)-state. When
ax has s as an initial state, by making other agents interact similarly to e, we can
obtain C+sh . Moreover, by Lemma 15, since the number of γ(m)-agents except
for ax is P /2 in C+sh and Ch is reduced, there exists an agent with s except for ax
in C+sh . Thus, C−sh can be obtained by reducing C+sh . Because every γ(m)-state
must be held by one agent in a stable reduced configuration, C−sh is not stable.
Let Cu0 , C−su0

, and C+su0
be Ch, C−sh , and C+sh , respectively. There is a reduced

execution segment C−su0
, e−s0 , Cu1 such that any agent does not have s except Cu1 ,

and a single agent has s in Cu1 . This is because C−su0
is not stable, and state s

must be held by one agent in a stable reduced configuration. Then, by Lemmas
16 and 17, we can construct Cu0 , e0, C−su1

. Since every γ(m)-state must be held
by one agent in a stable reduced configuration, C−su1

is not stable. By repeating
similar arguments, for any i ≥ 0, we can construct C−sui

, e−si , Cui+1 and Cui
, ei,

C−sui+1 . Because C−su0
can be reached from some initial configuration, by combining

the above execution segments, we can construct a weakly fair execution of Algsym
so that an agent with s disappears infinitely often. Since every γ(m)-state must
be held by one agent in a stable reduced configuration, such an execution cannot
solve the uniform 2-partition and thus the lemma holds. Now we present the
details of the proof. For contradiction, there exists a sink state m ∈ Qp. We

65

consider a population V = {a0, a1, a2, . . . , aP} of P agents and an initialized base
station, where a0 is the base station. First, we consider an execution segment
e = C0, C1, C2, . . ., Ch such that,

• a particular agent ax has state m in C0 and does not interact during e;

• P − 1 other agents (and the base station) interact until convergence, which
implies that, by Lemma 15, the number of γ(m)-agents in V −{ax} is P /2−1
and the number of γ(m)-agents in V −{ax} is P /2 after some configuration
of e; and

• Ch is a reduced configuration.

In Ch, by Lemma 15, the number of γ(m)-agents is P /2 and the number of γ(m)-
agents is P /2 because additional agent ax has state m. Note that all γ(m)-states
are non-sink states and, by Lemma 14, the number of γ(m)-states is P /2. Since
Ch is reduced, no two agents have the same non-sink state and thus every γ(m)-
state is held by exactly one agent in Ch. Let s be a γ(m)-state. We consider
three configurations: Cu0 = Ch, C+su0

, and C−su0
. Since ax does not interact in e,

C+su0
can be obtained by the same interactions in e if ax has state s in the initial

configuration (note that this execution may not be a reduced execution). In C+su0
,

since every γ(m)-state is held by exactly one agent in V − {ax}, there exists
exactly one agent as ≠ ax with s. Hence, we can obtain a reduced configuration
C−su0

by reducing C+su0
. Note that, since the number of γ(m)-states is P /2, every

γ(m)-state must be held by one agent in any stable reduced configuration with
P agents. Hence, since C−su0

is reduced and no agent has state s in C−su0
, C−su0

is not
stable. Hence, there exists an execution segment from C−su0

that leads to a stable
configuration where some agent has state s. This implies that we can construct
a reduced execution segment ϵ1 = C−su0

, e−s0 , Cu1 of Algsym starting from C−su0
as

follows:

• Cu1 is reduced and exactly one agent ay has state s in Cu1 .

• For any reduced configuration in e−s0 , no agent has state s.

Moreover, by Lemma 16, since ax has m in C−su0
, we can construct ϵ1 such that

ax does not join interactions. Hence, by Lemma 17, we can construct a reduced

66

execution segment ϵ′1 = Cu0 , e0, C−su1
of Algsym. Note that, in C−su1

, ay has state m.
Similarly, we can construct a reduced execution segment ϵ2 = C−su1

, e−s1 , Cu2 such
that

• Cu2 is reduced and exactly one agent az has state s in Cu2 ; and

• for any reduced configuration in e−s1 , no agent has state s.

By Lemma 16, we can construct ϵ2 such that ay does not join interactions. Hence,
by Lemma 17, we can construct a reduced execution segment ϵ′2 = Cu1 , e1, C−su2

of
Algsym. By repeating similar arguments, we can construct an infinite execution
segment ϵ∗ = C−su0

, e−s0 , Cu1 , e1, C−su2
, e−s2 , Cu3 , Recall that, for i ≥ 0, C−sui

is not stable because every γ(m)-state must be held by one agent in a stable
reduced configuration. Thus, ϵ∗ cannot reach a stable configuration. As described
above, there exists an execution segment eini that reaches C−su0

from some initial
configuration. Hence, we can construct an execution Ξ = eini, C−su0

, e−s0 , Cu1 , e1,
C−su2

, e−s2 , Cu3 , . . . that does not reach a stable configuration. The remaining step is
to show that we can construct Ξ so that Ξ is weakly fair. Recall how to construct
an execution segment ϵi = C−sui−1 , e

−s
i−1, Cui

. Since C−sui
is reduced, any pair of agents

can interact at the first interaction of ϵi. Consequently, we can construct ϵ1, ϵ2, . . .
so that, for every pair of agents a and b in V , a interacts with b infinitely often
in the first interactions of ϵ1, ϵ2, Additionally, when a interacts with b in ϵi,
a also interacts with b in ϵ′i. Hence, we can construct Ξ so that, for every pair
of agents a and b in V , a interacts with b infinitely often. This implies that Ξ is
weakly fair, but Ξ cannot solve the problem. This is a contradiction.

Finally, we prove that, even if a sink pair exists in Qp, Algsym does not work.

Lemma 19. A sink pair does not exist in Qp.

Proof. For contradiction, we assume that there exists a sink pair in Qp. Let m1

and m2 be a sink pair. We consider two cases: (1) γ(m1) = γ(m2) holds; or
(2) γ(m1) ≠ γ(m2) holds. First, we consider the case in which γ(m1) = γ(m2)
holds. By Corollary 6, the number of red (resp., blue) states not in the sink pair
is P /2 − 1 (resp., P /2 − 1). Since we assume ∣Qblue∣ ≤ ∣Qred∣, γ(m1) = γ(m2) = red
holds. Hence, ∣Qblue∣ = P /2 − 1 and ∣Qred∣ = P /2 + 1 hold. We consider a reduced

67

weakly fair execution Ξ∗ of Algsym with P agents and an initialized base station.
Since Ξ∗ is a reduced execution, a stable reduced configuration occurs infinitely
often in Ξ∗. Every state not in the sink pair is held by at most one agent in any
reduced configuration, and thus, at most P /2−1 blue agents exist in any reduced
configuration in Ξ∗. Hence, any reduced configuration in Ξ∗ is not stable. This
is a contradiction. Therefore, γ(m1) = γ(m2) does not hold (i.e., γ(m1) ≠ γ(m2)
holds). Next, we consider the case in which γ(m1) ≠ γ(m2) holds. The idea of
the proof is as follows: We consider an execution Ξ with P − 1 agents. Let m∗ be
a state in the sink pair such that the number of γ(m∗)-agents is P /2 in a stable
reduced configuration of Ξ. This implies that there exists some agent with m∗ in
the configuration. Next, we consider an execution with P agents such that one
additional agent has m∗ as an initial state and other agents behave similarly to
Ξ. In the execution, the additional agent does not join the interactions until P −1
agents converge to a stable reduced configuration in Ξ. At that time, one of the
P − 1 agents has state m∗ and the additional agent also has state m∗. We can
prove that, from this configuration, P − 1 agents cannot recognize the additional
agent and hence they make the same behavior as in Ξ. Moreover, the additional
agent can keep state m∗. Since the additional agent has γ(m∗)-state, the number
of γ(m∗)-agents is P /2 + 1 and the number of γ(m∗)-agents is P /2 − 1. This
implies that the uniform 2-partition problem cannot be solved. Now we present
the details of the proof. Without loss of generality, we assume that γ(m1) = red
and γ(m2) = blue hold. We consider a population V = {a0, a1, a2, . . . , aP−1} of
P − 1 agents and an initialized base station, where a0 is the base station. We
define a reduced weakly fair execution Ξ = C0, C1, C2, . . ., Ct, . . ., Ct′0

, e1, Ct′1
, e2,

Ct′2
, e3, . . . of Algsym with V as follows:

• Ct is a stable configuration.

• For any u ≥ 0, Ct′u is a particular stable reduced configuration such that Ct′0
=

Ct′1
= Ct′2

= ⋯ holds. Note that such a configuration (i.e., a stable reduced
configuration that appears an infinite number of times) exists because the
number of possible configurations is finite.

• For j > 0, ej is an execution segment such that, during execution segment
Ct′j−1

, ej,Ct′j
, for any pair of agents a and b in V , a interacts with b at least

68

once. This is possible because Ξ is weakly fair.

Let m∗ be a state in the sink pair such that the number of γ(m∗)-agents is P /2
in Ct′0

. Note that m∗ is uniquely chosen because the number of agents is P − 1.
Since every state not in the sink pair is held by at most one agent in a reduced
configuration, there exists an agent aq that has state m∗ in Ct′0

. Subsequently, we
consider a population V ′ = {a′0, a′1, a′2, . . ., a′P} of P agents and an initialized base
station, where a′0 is the base station. We define a reduced weakly fair execution
Ξ′ = C ′0, C ′1, C ′2, . . ., C ′t, . . . C ′t′0 , e

′
1, C ′t′1 , e

′
2, C ′t′2 , e

′
3, . . . of Algsym with V ′. First,

we define the first part of Ξ′, that is, C ′0, C ′1, C ′2, . . ., C ′t, . . . C ′t′0 as follows:

• In initial configuration C ′0, a′0, . . . , a′P−1 have the same states as a0, . . . , aP−1
in C0 and a′P has state m∗. Formally, s(a′i,C ′0) = s(ai,C0) holds for i

(P − 1 ≥ i ≥ 0), and s(a′P ,C ′0) =m∗ holds.

• From C ′0 to C ′t′0
, a′0, . . . , a′P−1 interact similarly to a0, . . . , aP−1 in Ξ. Formally,

for any u(t′0 > u ≥ 0), when ag interacts with ah at Cu → Cu+1, a′g interacts
with a′h at C ′u → C ′u+1.

Clearly, s(a′i,C ′t′0) = s(ai,Ct′0
) holds for i (P − 1 ≥ i ≥ 0) and s(a′P ,C ′t′0) = m∗

hold. This implies that the number of γ(m∗)-agents is P /2 + 1 and the number
of γ(m∗)-agents is P /2 − 1 in C ′t′0

. Then, we construct the remaining part of Ξ′;
that is, C ′t′0 , e

′
1, C ′t′1 , e

′
2, C ′t′2 , e

′
3, . . . as follows:

• For j > 0, we construct an execution segment e′j = Ĉ
j
1 , Ĉ

j
2 , Ĉ

j
3 , . . ., Ĉ

j
z , Ĉj

z+1,
Ĉj

z+2 using ej = Cj
1 , C

j
2 , C

j
3 , . . ., C

j
z , where z = ∣ej ∣ holds. Specifically, we

construct C ′t′j−1
, e′j, C ′t′j as follows:

– Case in which j is even: In this case, agents a′0, . . ., a′P−1 interact in
execution segment C ′t′j−1

, Ĉj
1 , Ĉ

j
2 , . . ., Ĉ

j
z+1 similarly to a0, . . ., aP−1 in

execution segment Ct′j−1
, ej, Ct′j

. Formally, when ag interacts with ah

at Cj
f → Cj

f+1 for z > f > 0, (resp., Ct′j−1
→ Cj

1 , and Cj
z → Ct′j

), a′g
interacts with a′h at Ĉj

f → Ĉj
f+1 (resp., C ′t′j−1 → Ĉj

1 and Ĉj
z → Ĉj

z+1).

– Case in which j is odd: In this case, a′P joins interactions instead of
a′q. Note that in C ′t′j−1

, both a′P and a′q have state m∗. Formally we
construct e′j as follows: (1) When ag(g ≠ q) interacts with ah(h ≠ q) at

69

Cj
f → Cj

f+1 for z > f > 0 (resp., Ct′j−1
→ Cj

1 , and Cj
z → Ct′j

), a′g interacts
with a′h at Ĉj

f → Ĉj
f+1 (resp., C ′t′j−1 → Ĉj

1 , and Ĉj
z → Ĉj

z+1). (2) When

aq interacts with an agent ai(i ≠ q) at Cj
f → Cj

f+1 (resp., Ct′j−1
→ Cj

1

and Cj
z → Ct′j

), a′P interacts with a′i at Ĉj
f → Ĉj

f+1 (resp., C ′t′j−1 → Ĉj
1

and Ĉj
z → Ĉj

z+1). Similarly, when an agent ai(i ≠ q) interacts with aq

at Cj
f → Cj

f+1 (resp., Ct′j−1
→ Cj

1 and Cj
z → Ct′j

), a′i interacts with a′P at
Ĉj

f → Ĉj
f+1 (resp., C ′t′j−1 → Ĉj

1 and Ĉj
z → Ĉj

z+1).

– a′P interacts with a′q at Ĉj
z+1 → Ĉj

z+2. Additionally, a′q interacts with a′P
at Ĉj

z+2 → C ′t′j
.

We can inductively show that, for any x ≥ 0, s(a′i,C ′t′x) = s(ai,Ct′x) holds for any
i (P − 1 ≥ i ≥ 0), and s(a′q,C ′t′x) = s(a

′
P ,C

′
t′x
) = s(aq,Ct′x) = m∗ holds. Clearly, this

holds for x = 0. We assume that this holds for x = j, and consider the case of x =
j+1. When j+1 is even, during execution segment C ′t′j , Ĉ

j+1
1 , Ĉj+1

2 , . . ., Ĉj+1
z+1, agents

in V ′ − {a′P} interact similarly to Ct′j
, ej+1, Ct′j+1

. Hence, s(a′i, Ĉ
j+1
z+1) = s(ai,Ct′j+1

)
holds for any i (P − 1 ≥ i ≥ 0) and s(a′q, Ĉ

j+1
z+1) = s(a′P , Ĉ

j+1
z+1) = s(aq,Ct′j+1

) = m∗

holds. a′P and a′q interact at Ĉj+1
z+1 → Ĉj+1

z+2 and Ĉj+1
z+2 → C ′t′j+1

. By the assumption
of m∗, if two agents with m∗ interact twice, they keep their state m∗. Since a′P
and a′q have state m∗ in Ĉj+1

z+1, they also have state m∗ in C ′t′j+1
, and thus, Ĉj+1

z+1

is equal to C ′t′j+1
. Thus, s(a′i,C ′t′j+1) = s(ai,Ct′j+1

) holds for any i (P − 1 ≥ i ≥ 0)
and s(a′q,C ′t′j+1) = s(a

′
P ,C

′
t′j+1
) = s(aq,Ct′j+1

) =m∗ holds. When j +1 is odd, during

execution segment C ′t′j , Ĉ
j+1
1 , Ĉj+1

2 , . . ., Ĉj+1
z+1, a′P interacts instead of a′q, and agents

in V ′−{a′q} behave similarly to Ct′j−1
, ej, Ct′j

. Hence, s(a′i, Ĉ
j+1
z+1) = s(ai,Ct′j+1

) holds
for any i (P − 1 ≥ i ≥ 0) and s(a′q, Ĉ

j+1
z+1) = s(a′P , Ĉ

j+1
z+1) = s(aq,Ct′j+1

) = m∗ holds.
Similarly, a′P and a′q interact at Ĉj+1

z+1 → Ĉj+1
z+2 and Ĉj+1

z+2 → C ′t′j+1
, and they keep

their state m∗. Thus, s(a′i,C ′t′j+1) = s(ai,Ct′j+1
) holds for any i (P − 1 ≥ i ≥ 0) and

s(a′q,C ′t′j+1) = s(a
′
P ,C

′
t′j+1
) = s(aq,Ct′j+1

) = m∗ holds. By the assumption, for any

j, the number of γ(m∗)-agents is one more than the number of γ(m∗)-agents in
Ct′j

. Thus, for any j, the number of γ(m∗)-agents is two more than the number of
γ(m∗)-agents in C ′t′j

. Hence, Ξ′ never converges to a stable configuration. During
the execution segment C ′t′j−1 , e

′
j, when j is even, for every pair of agents a and b in

V ′ − {a′P}, a interacts with b. Similarly, when j is odd, for every pair of agents a

70

and b in V ′ − {a′q}, a interacts with b. Moreover, for j > 0, at Ĉj
z+1 → Ĉj

z+2 (resp.,
Ĉj

z+2 → C ′t′j
), a′P (resp., a′q) interacts with a′q (resp., a′P). Thus, although Ξ′ is

weakly fair, Ξ′ cannot solve the problem. This is a contradiction. Therefore, the
lemma holds.

By Lemma 13, there exists either a sink pair or sink state. However, in both
cases, Algsym does not work. Therefore, we have proved the theorem.

4.2 Upper Bounds for Initialized Base Station

In this section, we propose both asymmetric and symmetric protocols for the
uniform k-partition problem. The asymmetric protocol requires P states and the
symmetric protocol requires P + 1 states. By the lower bounds, these protocols
are space-optimal.

4.2.1 Upper Bound for Asymmetric Protocols

In this subsection, we describe a P -state asymmetric protocol for the uniform
partition problem. The idea of the protocol is to assign states 0, 1, . . ., n−1 to n

agents individually and then regard an agent with state s as a member of the (s
mod k)-th group. One may think that, to implement this idea, we can directly
use a naming protocol [23], where the naming protocol assigns different states to
agents using P states if n ≤ P holds. In fact, if n = P holds, the naming protocol
assigns states 0, 1, . . ., P − 1 to P agents individually and hence it achieves the
uniform partition. However, if n < P holds, the naming protocol does not always
achieve the uniform partition. For example, in the case of (n − 1)k < P , the
naming protocol may assign states 0, k, 2k, . . ., (n−1)k to n agents individually,
which implies that all agents are in the 0-th group.

Algorithm 2 shows a P -state asymmetric protocol for the uniform k-partition
problem. Note that this protocol does not take into account whether an agent is
an initiator or responder if two agents with different states interact. If two agents
with the same state interact (line 8), one of them may change its state. In the
protocol, the base station assigns states 0, 1, . . ., n − 1 to n agents individually.
To do this, the base station maintains variable M , which represents the state
the base station will assign next. The base station sets M = 0 initially, and

71

Algorithm 2 Asymmetric uniform k-partition protocol
A variable at the base station

M : The state that the base station assigns next, initialized to 0
A variable at an agent a:

Sa ∈ {0,1,2, . . . , P − 1}: The agent state, initialized arbitrarily. Agent a
belongs to the (Sa mod k)-th group.

1: when an agent a and the base station interact do
2: if M ≤ Sa then
3: Sa =M
4: M =M + 1
5: end if
6: end
7: when two agents a and b interact do
8: if Sa = Sb and Sa < P − 1 then
9: Sa = Sa + 1

10: end if
11: end

increments M whenever it assigns M to an agent. We consider an interaction
between the base station and an agent with state x. If x is smaller than M , the
base station identifies that it has already assigned a state to the agent, and hence
it does not update the state. If x is M or larger, the base station assigns state
M to the agent and increments M . When the base station assigns state x to
an agent, there may exist another agent with state x because of arbitrary initial
states. To consider this case, when two agents with the same state x interact, one
enters state x+ 1 and the other keeps its state x. By repeating such interactions,
eventually, exactly one agent has state x. Using this behavior, the base station
eventually assigns states 0, 1, . . ., n − 1 to n agents individually, and hence the
protocol achieves the uniform k-partition.

As a result, we obtain the following theorem.

Theorem 13. Algorithm 2 solves the uniform k-partition problem. This means
that, in the model with an initialized base station, there exists an asymmetric pro-
tocol with P states and arbitrary initial states that solves the uniform k-partition
problem under weak fairness, where P is the known upper bound of the number
of agents.

To prove the theorem, we show the following two lemmas.

72

Lemma 20. Let Ξ = C0,C1, . . . be a weakly-fair execution of Algorithm 2. In
configuration Ci (i ≥ 0), for any s with 0 ≤ s ≤M −1, at least one agent with state
s exists.

Proof. We prove the lemma by induction on the index of a configuration in ex-
ecution Ξ. The base case is vacuously true because M is initialized to 0 in the
initial configuration C0. For the induction step, we assume that the lemma holds
at Ck(0 ≤ k); that is, at Ck, at least one agent with state s exists for any s with
0 ≤ s ≤ M − 1. We consider two cases of interaction at transition Ck → Ck+1.
First, we consider the case in which the base station joins the interaction. If the
base station interacts with an agent with state less than M , the base station and
the agent do not change their states. If the base station interacts with an agent
with state M or more, the base station assigns M to the agent and then increases
M . Thus, the lemma holds at Ck+1. Next, we consider the case in which the
base station does not join the interaction. When two agents interact, at least one
agent keeps its state. Because M is not changed, the lemma holds at Ck+1.

Lemma 21. Let Ξ = C0,C1, . . . be a weakly-fair execution of Algorithm 2. There
exists a configuration Ci such that M = n holds.

Proof. By way of contradiction, we assume that M does not become n in Ξ. Be-
cause M is monotonically increasing, the base station eventually stops updating
M . Let l < n be the last value of M , and Cj be the first configuration with M = l.
First, we can say that all agents have states less than l after Cj; otherwise; some
agent a′ with state l′ (l′ ≥ l) exists after Cj. From the algorithm, a′ never de-
creases its state unless a′ and the base station interact. Because Ξ is weakly fair,
a′ and the base station eventually interact. At that time, a′ has state at least
l′ ≥ l =M , and consequently, the base station increases M . This contradicts the
assumption. From Lemma 20, for each s with 0 ≤ s ≤ l − 1, at least one agent
with state s exists at configuration Cj. Additionally, because each agent has one
of states 0 to l − 1 with l < n, at least two agents have state q for some q < l.
From the algorithm, an agent with state less than l (=M) changes its state only
by an interaction with the homonyms. Hence, two agents with state q eventually
interact, and then one of them enters state q+1. If q+1 ≤ l−1 holds, at least two
agents with state q + 1 exist and similarly, one of them enters state q + 2. Hence,
eventually, some agent enters state l. This is a contradiction.

73

From Lemma 21, the base station eventually sets M = n. From Lemma 20,
when M = n holds, for each s with 0 ≤ s ≤ n − 1, exactly one agent has state s.
This implies that, after M = n holds, line 2 of the pseudocode is never executed,
and thus the base station never updates M . Clearly, the configuration achieves
the uniform partition and no agent subsequently updates its state. Therefore,
Theorem 13 holds.
Remark. Interestingly, when P is odd, Algorithm 2 solves the uniform 2-
partition, even if the number of agent states is P − 1. Specifically, let Sa ∈
{1,2,3, . . . , P − 1} be a set of agent states, and initialize variable M to 1. Then,
Algorithm 2 converges to a configuration such that there exist two agents with
state P − 1 (and other states are held by exactly one agent). This is because, in
the algorithm, the base station assigns P − 1 agents to P − 1 states individually,
and because the algorithm works under weak fairness, the remaining agent shifts
its state until state P − 1. In the configuration, the difference in the numbers of
red and blue agents is one. Moreover, each agent does not change its state after
the configuration. Hence, the uniform 2-partition is solved.

4.2.2 Upper Bound for Symmetric Protocols

In this subsection, we propose a (P +1)-state symmetric protocol for the uniform
partition problem. We can easily obtain the protocol using a scheme proposed in
[15]. In [15], a P -state symmetric protocol for the counting problem was proposed.
The counting protocol assigns different states in {1, . . . , n} to n agents and keeps
the configuration if n < P holds. Hence, by regarding P + 1 as the upper bound
of the number of agents and allowing P + 1 states, the protocol assigns different
states in {1, ..., n} to n agents for any n ≤ P . This implies that, as in the previous
subsection, the protocol can achieve the uniform partition by regarding an agent
with x as a member of the (x mod k)-th group.

Theorem 14. In the model with an initialized base station, there exists a symmet-
ric protocol with P + 1 states and arbitrary initial states that solves the uniform
k-partition problem under weak fairness, where P is the known upper bound of
the number of agents.

74

4.3 Impossibility with No Base Station and Designated Ini-
tial States for Symmetric Protocols

In the following, we show that the problem cannot be solved with no base station
and designated initial states for symmetric protocols.

Theorem 15. In the model with no base station, no symmetric protocol with
designated initial states solves the 2-partition problem with size difference x ≥ 1
under weak fairness.

Proof. By way of contradiction, we assume such a protocol Alg exists. We assume
the state set of agents is Qp = {s1, s2, . . .}. We consider population V = {a1, . . .,
an} of n agents, where n is even and at least x+1. Let si1 be the designated initial
state of all agents; that is, s(ai) = si1 holds for any i (1 ≤ i ≤ n) at the initial
configuration. Clearly, the symmetric protocol Alg has transition (si1 , si1) →
(si2 , si2) for some si2 . This implies that if all pairs of agents in state si1 interact,
all agents transition to si2 . Similarly, if all pairs of agents in state si2 interact, all
agents transition to the same state (say si3).

When the above execution is repeated, configurations such that all agents
have the same state appear infinitely often. By changing pairs of agents, we can
perform the above execution under weak fairness. If all agents are in the same
state, such a configuration is not stable because n is at least x + 1. This is a
contradiction.

5. Uniform k-partition under Global Fairness on
Complete Graphs

In this section, we consider the solvability of the uniform k-partition problem.
More concretely, we prove that, with initialized base station and designated ini-
tial states on complete graphs, there is no asymmetric protocols with k states.
Moreover, we propose a symmetric uniform k-partition protocol with designated
initial states under global fairness on complete graphs.

75

5.1 Lower Bound for Initialized Base Station with Desig-
nated Initial States

Here we show k+1 states are necessary to construct an asymmetric protocol with
initialized base station and designated initial states. We prove the impossibility
similarly to Theorem 3.

Theorem 16. In the model with an initialized base station, no asymmetric protocol
with k states and designated initial states solves the k-partition problem with size
difference x ≥ 1 under global fairness on complete graphs.

Proof. For contradiction, we assume such a protocol Alg exists. Without loss of
generality, we assume Qp = {s1, s2, . . ., sk}, and the designated initial state of all
agents is s1. Let n be a number such that n = ik holds for some i ≥ x + 1. We
consider the following three cases.

First, for population V of a single base station and n (non base station)
agents a1, a2, . . . , an, consider an execution Ξ = C0, C1, . . . of Alg. According to
the definition, there exists a stable configuration Ct. That is, after Ct, the state
of each agent does not change even if the base station and agents in states s1, s2,
. . ., sk interact in any order.

Next, for population V ′ of a single base station and n + 2x + 1 agents a1, a2,
. . ., an+2x+1, we define an execution Ξ′ = C ′0, C ′1, . . ., C ′t, C ′t+1, . . . of Alg as follows.

• From C ′0 to C ′t, the base station and n agents a1, a2, . . ., an interact in the
same order as the execution Ξ.

• After C ′t, the base station and n + 2x + 1 agents interact so as to satisfy
global fairness.

Since the base station and agents a1, . . . , an change their states similarly to Ξ from
C ′0 to C ′t, the number of agents in state s1 is x + 1 or more than the number of
agents in state sy for 2 ≤ y ≤ k at C ′t. Moreover, the state of the base station at C ′t
is the same as the state of the base station at Ct. However, since the difference in
the numbers of agents with s1 and other states is at least x+1, C ′t is not a stable
configuration. Consequently, after C ′t, some agent changes its state in execution
Ξ′.

76

Lastly, we consider execution Ξ for population V again. Here, we consider
interactions after stable configuration Ct, and apply interactions in Ξ′ to execution
Ξ. That is, we consider the following execution after Ct: 1) when the base station
and an agent in state s ∈ {s1, s2, . . ., sk} interact at C ′u → C ′u+1 (u ≥ t) in Ξ′, the
base station and an agent in state s interact at Cu → Cu+1 in Ξ, and 2) when two
agents in states s ∈ {s1, s2, . . ., sk} and s′ ∈ {s1, s2, . . ., sk} interact at C ′u → C ′u+1
(u ≥ t) in Ξ′, two agents in states s and s′ interact at Cu → Cu+1 in Ξ. We can
construct such an execution because, after stable configuration Ct, at least two
agents have each s1, s2, . . ., sk. In this execution Ξ, since interactions occur
similarly to Ξ′, some agent changes its state similarly to Ξ′ after Ct. This is a
contradiction because Ct is a stable configuration.

5.2 Upper Bound for Uniform k-partition Protocol

Here we show a symmetric uniform k-partition protocol with designated initial
states under global fairness on complete graphs. The summary of the protocol is
given in Algorithm 3.

In this protocol, a set of agent states is divided into four subsets, i.e., Q =
I ∪G ∪M ∪D, where I = {initial, initial′}, G = {g1, g2, . . ., gk}, M = {m2, m3,
. . ., mk−1}, and D = {d1, d2, . . ., dk−2}. The designated initial state of agents
is initial, that is, the state of every agent is initial in the initial configuration.
State gi in G indicates that the agent belongs to the i-th group, that is, γ(gi) = i
holds for any gi ∈ G. For other state s, we define γ(s) as follows:

• γ(ini) = 1 holds for any ini ∈ I.

• γ(di) = 1 holds for any di ∈D.

• γ(mi) = i holds for any mi ∈M .

We say an agent is free if its state is in I. We define initial = initial′ and
initial′ = initial.

We will describe the details of the protocol in Sections 5.2.1 and 5.2.2. In the
basic strategy (Section 5.2.1), the protocol makes k agents enter states g1, g2, . . . , gk
by using states in M as intermediate states. However, this strategy may increase

77

Algorithm 3 Uniform k-partition protocol
A state set

Q = I ∪G ∪M ∪D where
I = {initial, initial′},
G = {g1, g2, . . . , gk},
M = {m2,m3, . . . ,mk−1}, and
D = {d1, d2, . . . , dk−2}.

A mapping function to groups
γ(ini) = 1 holds for any ini ∈ I.
γ(gi) = i holds for any gi ∈ G.
γ(mi) = i holds for any mi ∈M .
γ(di) = 1 holds for any di ∈D.

Transition rules
1. (initial, initial)→ (initial′, initial′)
2. (initial′, initial′)→ (initial, initial)
3. (di, ini)→ (di, ini) (di ∈D and ini ∈ I)
4. (gi, ini)→ (gi, ini) (gi ∈ G and ini ∈ I)
5. (initial, initial′)→ (g1,m2)
6. (ini,mi)→ (gi,mi+1) (ini ∈ I and 2 ≤ i ≤ k − 2)
7. (ini,mk−1)→ (gk−1, gk) (ini ∈ I)
8. (mi,mj)→ (di−1, dj−1)(2 ≤ i, j ≤ k − 1)
9. (di, gi)→ (di−1, initial)(2 ≤ i ≤ k − 2)

10. (d1, g1)→ (initial, initial)

the number of agents in some groups beyond n/k. In Section 5.2.2, we overcome
such a situation by using states in D.

5.2.1 Basic strategy

The basic strategy of the protocol is as follows: First two free agents transition
to states g1 and m2. After that, for each i (2 ≤ i ≤ k − 2), when an agent in state
mi and a free agent interact, they transition to states mi+1 and gi, respectively.
Lastly, when an agent in state mk−1 and a free agent interact, they transition
to states gk and gk−1. By this behavior, k free agents can change their states to
g1, g2, . . . , gk. That is, the size of each group is increased by one. To achieve this,
the protocol includes the following transitions.

78

1. (initial, initial)→ (initial′, initial′)

2. (initial′, initial′)→ (initial, initial)

3. (di, ini)→ (di, ini) (di ∈D and ini ∈ I)

4. (gi, ini)→ (gi, ini) (gi ∈ G and ini ∈ I)

5. (initial, initial′)→ (g1,m2)

6. (ini,mi)→ (gi,mi+1) (ini ∈ I and 2 ≤ i ≤ k − 2)

7. (ini,mk−1)→ (gk−1, gk) (ini ∈ I)

First we explain transitions 1 to 5, which make two free agents transition to states
g1 and m2. Recall that all agents are in state initial in the initial configuration.
Since we consider symmetric protocols, two agents in state initial cannot transi-
tion to states g1 and m2 at one interaction. This is the reason why we introduce
state initial′. Each agent in state initial (resp., initial′) transitions to initial′

(resp., initial) when it interacts with an agent in a state in I ∪D ∪ G (except
for interaction between one in state initial and one in state initial′). Transition
5 implies that, when agents in states initial and initial′ interact, they become
g1 and m2, respectively. From global fairness, if at least two free agents and no
agents in a state in M exist, two free agents eventually enter states initial and
initial′, respectively, and then enter states g1 and m2 by an interaction. Tran-
sition 6 implies that, when a free agent and an agent in state mi interact, they
become gi and mi+1, respectively. By these transitions, free agents transition to
states g1, . . . , gk−2 one by one. After that, from transition 7, when a free agent
and an agent in state mk−1 interact, they become gk−1 and gk, respectively. From
this behavior, the size of each group is increased by one.

Figure 3 is an example execution of the protocol for a population of six agents.
Initially all agents are in state initial (Fig. 3 (a)). After interactions (a1, a2),
(a3, a4), and (a5, a6), all agents enter state initial′ (Fig. 3 (b)). After interactions
(a1, a6), (a2, a3), and (a4, a5), all agents enter state initial (Fig. 3 (c)). If such
interactions happen infinitely, the protocol never solves the uniform k-partition
problem. However, under the global fairness, such interactions do not occur
infinitely. This is because, if some configuration C occurs infinitely often, every

79

Figure 3. An example of k-partition

configuration reachable from C should occur. That is, eventually interactions
(a5, a6) and (a1, a6) happen in this order from such a configuration (Fig. 3 (d)
and (e)). Then, a1 and a6 enter states g1 and m2, respectively (Fig. 3 (e)). After
that, if interactions (a6, a2), (a6, a3), (a6, a4), and (a6, a5) occur in this order,
agent a6 changes its state from m2 to m3, m4, m5, and g6, and agents a2, a3, a4,
and a5 enter g2, g3, g4, and g5, respectively (Fig. 3 (f)).

5.2.2 A problem of the basic strategy and its solution

However, in the protocol of the basic strategy, ⌈n/k⌉ or more agents in state
m1 can appear. In this case, the above transitions do not achieve a uniform k-
partition. For example, in the case of n = 12 and k = 4, if four agents enter state
m1, agents can transition to states g1, g2, m3, g1, g2, m3, g1 ,g2, m3, g1, g2, m3.
To solve this problem, we introduce states in D and add the following transitions.

8. (mi,mj)→ (di−1, dj−1)(2 ≤ i, j ≤ k − 1)

9. (di, gi)→ (di−1, initial)(2 ≤ i ≤ k − 2)

10. (d1, g1)→ (initial, initial)

By transition 8, when two agents in states in mi and mj interact, they transi-
tion to states in di−1 and dj−1, respectively. Intuitively, an agent in state di makes
agents in g1, g2, . . . , gi go back to state initial. Recall that an agent in state mi+1

can enter state di and an agent in state mi+1 has made agents in states g1, g2, . . .,
gi. This means an agent in state di initializes agents that it makes enter states
g1, g2, . . ., gi. More concretely, an agent in a state in D works as follows:

80

Figure 4. Another example of k-partition

• For 2 ≤ i ≤ k − 2, when agents in states di and gi interact, they become di−1

and initial by transition 9, respectively.

• After that, from transition 10, when agents in states d1 and g1 interact,
they become initial.

Figure 4 is an example that shows the impact of states in D. Similarly to
Fig. 3, agents can transition to a configuration in Fig. 4 (a). If interactions (a2, a5),
(a3, a5), and (a4, a5) occur in this order from Fig. 4 (a), agents transition to a
configuration in Fig. 4 (c). In this configuration, transitions of the basic strategy
(transitions 1 to 7) are not applied. However, transition 8 can be applied, that is,
interaction (a5, a6) eventually occurs. By the interaction, a5 and a6 enter states
d3 and d1, respectively (Fig. 4 (d)). After that, interactions (a1, a6), (a4, a5),
(a3, a5) and (a2, a5) happen, and then all agents enter state initial (Fig. 4 (e)).

Clearly, agents can repeatedly enter state gi and go back to initial many times.
However, after an agent enters state gk, one set of agents in states g1, . . . , gk never
goes back to initial. Thus, if there are h agents in state gk, the number of agents
in state gi is at least h for each i. In addition, when there are h agents in state
gk and n − kh ≥ k holds, there is an execution that makes some agent enter state
gk. This implies that, from the global fairness, some agent eventually enters state
gk. When n − kh = r < k holds, there is an execution that makes the remaining
agents transition to g1, g2, . . . ,mr. From the global fairness, the remaining agents
eventually enter these states. In this configuration, agents achieve a uniform
k-partition and after that all agents never change their states.

81

5.2.3 Correctness

In this section, we prove the correctness of the proposed protocol. If k = 2, the
protocol is exactly the same as a uniform 2-partition protocol in Section 3.2.2.
Thus, the protocol solves the uniform k-partition problem for k = 2. In the rest
of this section, we assume that k ≥ 3 holds.

First, we define the notations to consider the number of states at a configura-
tion. We denote by #ini the number of free agents (i.e., agents in states initial

or initial′). We denote by #gx, #mp, and #dq the numbers of agents in state
gx, mp, and dq, respectively (1 ≤ x ≤ k, 2 ≤ p ≤ k − 1, 1 ≤ q ≤ k − 2).

The first lemma gives invariants that hold for any configuration reachable from
the initial configuration C0. In the following, when configuration C is reachable
from C0, we simply say C is reachable.

Lemma 22. For any reachable configuration C, #gx = ∑k−1
p=x+1#mp + ∑k−2

q=x #dq +
#gk holds for any x (1 ≤ x ≤ k) at C.

Proof. First we intuitively explain the invariants. Let us fix x. An agent in state
mp (2 ≤ p ≤ k−1) has made p−1 agents enter g1, g2, . . . , gp−1. Hence, for each agent
in state mp with p > x, there exists an agent in state gx that corresponds to the
agent. Consequently, there exist ∑k−1

p=x+1#mp agents in state gx that correspond
to agents in states in M . Since an agent in state dq has changed its state from
mq+1 to dq, it has made q agents enter g1, g2, . . . , gq. Hence, for each agent in state
dq with q ≥ x, there exists an agent in state gx that corresponds to the agent.
Consequently, there exist ∑k−2

q=x #dq agents in state gx that correspond to agents
in states in D. An agent in state gk has made k − 1 agents enter g1, g2, . . . , gk−1.
Hence, there exist #gk agents in state gx that correspond to agents in state gk.
Therefore, we have the above invariants.

We prove the lemma formally by induction. First let us consider the initial
configuration. Since #gx = 0, #mp = 0, and #dq = 0 hold for any x, p, and q

(1 ≤ x ≤ k, 2 ≤ p ≤ k − 1, 1 ≤ q ≤ k − 2), the lemma holds.
Next, assume that the lemma holds at some configuration C. We show that,

for any C ′ satisfying C → C ′, the lemma holds at C ′. Clearly, if transition 1, 2,
3, or 4 occurs in C → C ′, the lemma holds at C ′ because #gx, #mp, and #dq do
not change for any x, p, and q (1 ≤ x ≤ k, 2 ≤ p ≤ k − 1, 1 ≤ q ≤ k − 2). Hence, we

82

consider the remaining six transitions.
First, we consider the case of transition 5. This transition increases #g1 and

#m2 by one, and consequently it affects the formula of x = 1. Since the left and
right sides of the formula increase by one, the lemma holds in this case.

Let us consider the case of transition 6. This transition increases #gi and
#mi+1 by one, and decreases #mi by one. Consequently, it affects the formula
of x ≤ i. For x < i, since ∑k−1

p=x+1#mp and #gx do not change, the left and right
sides of the formula do not change. For x = i, both #gi and ∑k−1

p=i+1#mp increase
by one, the left and right sides of the formula increase by one. Hence, the lemma
holds in this case.

Let us consider the case of transition 7. This transition increases #gk−1 and
#gk by one, and decreases #mk−1 by one. Consequently, it affects the formula
of x ≤ k. For x < k − 1, since ∑k−1

p=x+1#mp decreases and #gk increases by one,
the left and right sides of the formula do not change. For x = k − 1, both #gk

and #gk−1 increase by one and #mk−1 is not included in ∑k−1
p=x+1#mp, the left and

right sides of the formula increase by one. For x = k, the formula always holds.
Hence, the lemma holds in this case.

Let us consider the case of transition 8. This transition increases #di−1 and
#dj−1 by one, and decreases #mi and #mj by one. Consequently, it affects the
formula of x ≤max{i, j}−1. Since this transition increases∑k−2

q=x #dq and decreases
∑k−1

p=x+1#mp by the same number for any x ≤ max{i, j} − 1, the lemma holds in
this case.

Let us consider the case of transition 9. This transition increases #di−1 by
one, and decreases #di and #gi by one. Consequently, it affects the formula of
x ≤ i. For x < i−1, since ∑k−2

q=x #dq and #gx do not change, the left and right sides
of the formula do not change. For x = i, both #gi and ∑k−2

q=x #dq decrease by one,
the left and right sides of the formula decrease by one. Hence, the lemma holds
in this case.

Finally, consider the case of transition 10. Since this transition decreases #d1

and #g1 by one, it affects only formula of x = 1. Clearly, the left and right sides
of the formula decrease by one. Hence, the lemma holds in this case.

The invariants in Lemma 22 explain some properties of the proposed protocol.
For example, #gx ≥ #gk holds for any x (1 ≤ x ≤ k). This means the number

83

of agents in each group is at least #gk. Since #gk is never decreased from the
protocol, the number of agents in each group is never decreased below #gk after
that. By Lemmas 23 to 25, we prove that #gk eventually becomes ⌊n/k⌋. That
is, the number of agents in each group eventually becomes ⌊n/k⌋.

Lemma 23. Let C1 be a set of all reachable configurations such that #ini ≥ k

holds. For any configuration C in C1, there exists C ′ such that C ∗Ð→ C ′ holds and
#gk at C ′ is increased by one from C.

Proof. If there exist no agents in state initial at C, there exist at least three
agents in state initial′ exist (because of k ≥ 3). Consequently two of them enter
state initial by interacting each other (transition 2). Similarly, if there exist no
agents in state initial′ at C, some agents can enter state initial′ (transition 1).
Hence, there exists a reachable configuration from C where at least one agent
in state initial′ and at least one agent in state initial. Let a1 and a2 be agents
in state initial′ and initial, respectively. After a1 and a2 interact, they become
m2 and g1, respectively (transition 5). At this moment, there exist at least k − 2
agents in state initial or initial′. After that, these k − 2 agents can interact with
a2 one by one. As a result, these k − 2 agents enter g2, g3, . . ., gk−1, and a2 enters
gk (transitions 6 and 7). Therefore, #gk is increased by one from C.

Lemma 24. Let C2 be a set of all reachable configurations such that #ini < k

and n − k ⋅#gk ≥ k hold. For any configuration C in C2, there exists C ′ such that
C
∗Ð→ C ′ holds and #gk at C ′ is increased by one from C.

Proof. We prove that, from C, there exists a transition such that 1) #gk is
increased by one or 2) #ini is increased. In the former case, the lemma directly
holds. In the latter case, since #gk is not increased, n − k ⋅#gk ≥ k still holds.
Consequently, we can repeatedly apply this claim, and eventually #ini exceeds
k or #gk is increased by one. If #ini exceeds k, #gk is eventually increased from
Lemma 23. Therefore, the lemma holds.

To prove the above claim, we divide C2 into the following four sets of config-
urations Cd, Cm2, Cm1, and Cm0.

• Cd is a set of configurations (in C2) such that #dq > 0 holds for some q

(1 ≤ q ≤ k − 2).

84

• Cm2 is a set of configurations (in C2) such that dq = 0 holds for any q

(1 ≤ q ≤ k − 2) and ∑k−1
p=2 #mp ≥ 2 holds.

• Cm1 is a set of configurations (in C2) such that dq = 0 holds for any q

(1 ≤ q ≤ k − 2) and ∑k−1
p=2 #mp = 1 holds.

• Cm0 is a set of configurations (in C2) such that dq = 0 holds for any q

(1 ≤ q ≤ k − 2) and ∑k−1
p=2 #mp = 0 holds.

First we consider a configuration C ∈ Cd. Let q be an integer such that dq > 0
holds in C. From Lemma 22, #gq > 0 holds. Consequently, when agents in states
dq and gq interact, at least one of them enters initial by transition 9 or 10. Thus,
#ini is increased.

Next consider a configuration C ∈ Cm2. From the definition of Cm2, there exist
two distinct agents ai and aj whose states are mi and mj, respectively. When ai

and aj interact, they enter states di−1 and dj−1 by transition 8, respectively. This
configuration belongs to Cd, and thus #ini is eventually increased.

Let us consider a configuration C ∈ Cm1. Let i be an integer such that #mi = 1
holds. From Lemma 22, #gx = 1+#gk holds for x ≤ i−1 and #gx =#gk holds for
x ≥ i. Since a population consists of one agent in state mi and agents in states
gx(1 ≤ x ≤ k), initial, and initial′, we have #ini = n−1−∑k

x=1#gx = n−k ⋅#gk−i ≥
k−i. Let a be the agent in state mi and ai, ai+1, . . ., ak−1 be agents in state initial
or initial′. If a interacts with ai, ai+1, . . ., ak−1 in this order, ai, ai+1, . . ., ak−1
transition to gi, gi+1, . . ., gk−1, respectively and a transitions to gk. Thus, #gk is
increased by one.

Finally, we consider a configuration C ∈ Cm0. In this case, ∑k
q=1#gq + #ini

= n holds. From Lemma 22, #gx = #gk holds for any x (1 ≤ x ≤ k). That is,
∑k

x=1#gx + #ini = k ⋅#gk + #ini = n holds. Hence, #ini = n− k ⋅#gk ≥ k holds.
This means no configuration is in Cm0.

Therefore, the lemma holds.

Lemma 25. For any execution Ξ = C0,C1, . . ., there exists Ct such that n−k ⋅#gk <
k holds.

Proof. First, we show that, when n − k ⋅ #gk ≥ k holds at a configuration Ci,
#gk is increased by one at Cj for some j (j > i). For contradiction, we assume

85

that such Cj does not exist. Since #gk is never decreased from the protocol,
#gk is never changed and n − k ⋅#gk ≥ k continuously holds after Ci. Since the
number of such configurations is finite, some configuration C ′i occurs infinitely
often after Ci in Ξ. From Lemmas 23 and 24, there exists C ′j such that C ′i

∗Ð→ C ′j
and #gk in C ′j is increased by one from C ′i . That is, there exists a sequence of
configurations C ′1,C ′2, . . . ,C ′l such that C ′i = C ′1 → C ′2 → ⋯→ C ′l = C ′j holds. From
global fairness, since C ′i = C ′1 occurs infinitely often, C ′2 occurs infinitely often.
Similarly, C ′3, . . . ,C ′l = C ′j occur infinitely often. That is, #gk at C ′j is increased
by one from Ci. This is a contradiction. Thus, if n − k ⋅#gk ≥ k holds, #gk is
eventually increased by one. Therefore, the lemma holds.

Note that, since n ≥ ∑k
x=1#gx ≥ k ⋅#gk holds from Lemma 22, n − k ⋅#gk < k

derives #gk = ⌊n/k⌋. Hence, Lemma 25 implies that #gk = ⌊n/k⌋ eventually
holds. This implies that the number of agents in each group eventually becomes
⌊n/k⌋ or ⌊n/k⌋ + 1 from Lemma 22. Let r = n − k ⋅ ⌊n/k⌋. If r = 0 holds, the
uniform k-partition has been solved. If r ≥ 1 holds, there exist r remaining
agents. Lemma 26 shows resultant states of the remaining agents. If r = 1 holds,
the one remaining agent is in state initial or initial′. If r ≥ 2 holds, r agents
enter states g1, g2, . . . , gr−1 and mr.

Lemma 26. Assume that r = n − k ⋅ ⌊n/k⌋ > 0 holds. Let C3 be a set of reachable
configurations such that n − k ⋅#gk < k holds (i.e., #gk = ⌊n/k⌋). For any con-
figuration C ∈ C3, there exists C ′ such that 1) C

∗Ð→ C ′ holds, 2) #gx = ⌊n/k⌋ + 1
holds for any x (1 ≤ x ≤ r − 1), 3) #gx = ⌊n/k⌋ holds for any x (r ≤ x ≤ k), and 4)
#ini = 1 holds if r = 1 and #mr = 1 holds if r ≥ 2.

Proof. From Lemma 22, #gx ≥#gk = ⌊n/k⌋ holds for any x (1 ≤ x ≤ k) at C. Let
V ′ ⊂ V be a set of agents that include ⌊n/k⌋ agents in state gx at C for any x

(1 ≤ x ≤ k), and let Vr = V − V ′.
Let us consider the case of r = 1. In this case Vr does not contain an agent in

state mp for any p because otherwise Vr also contains agents in state gr (r ≤ p−1)
from Lemma 22. Similarly, Vr does not contain an agent in state dq for any q.
Hence, Vr contains one agent in state initial or initial′. Thus, if r = 1, the lemma
holds.

86

In the following, we assume r ≥ 2. Similarly to Lemma 24, we can prove that
r agents in Vr transition to g1, g2, . . . , gr−1 and mr. That is, we can easily observe
the following facts. If all agents in Vr are in initial or initial′, they can transition
to g1, g2, . . . , gr−1 and mr by interacting one by one. If an agent in state dq exists
in Vr for some q, it eventually transitions to initial. If two agents in states mi

and mj exist in Vr for some i and j, they can transition to di−1 and dj−1. If Vr

contains exactly one agent in state mp for some p, Vr contains p − 1 agents in
states g1, g2, . . . , gp−1 and r − p agents in states initial and initial′. In this case,
agents in state mp, initial, and initial′ can transition to gp, gp+1, . . . , gr−1 and mr.

Since V ′ contains ⌊n/k⌋ agents in state gx for every x and Vr contains r agents
in states g1, g2, . . . , gr−1 and mr, the lemma holds.

Lemma 26 proved that a configuration specified in the lemma is reachable
from a configuration specified in Lemma 25. Thus, similarly to Lemma 25, we
can obtain the following lemma.

Lemma 27. Assume that r = n − k ⋅ ⌊n/k⌋ > 0 holds. For any execution Ξ =
C0,C1, . . ., there exists Ct such that 1) #gx = ⌊n/k⌋ + 1 holds for any x (1 ≤ x ≤
r − 1), 2) #gx = ⌊n/k⌋ holds for any x (r ≤ x ≤ k), and 3) #ini = 1 holds if r = 1
and #mr = 1 holds if r ≥ 2.

Let r = n−k ⋅⌊n/k⌋. From Lemmas 25 and 27, a population eventually reaches
a configuration C∗ such that 1) #gx = ⌊n/k⌋ + 1 holds for any x (1 ≤ x ≤ r − 1),
2) #gx = ⌊n/k⌋ holds for any x ≥ r, and 3) #ini = 1 holds if r = 1 and #mr = 1
holds if r ≥ 2. Since γ(gx) = x holds for x (1 ≤ x ≤ k), γ(mp) = p holds for p

(2 ≤ p ≤ k − 1), and γ(ini) = 1 holds for ini ∈ {initial, initial′}, the number of
agents in each group is ⌊n/k⌋ or ⌊n/k⌋ + 1. In addition, no transition can happen
at C∗. This implies that C∗ is stable. Therefore, we have the following theorem.

Theorem 17. The proposed protocol solves the uniform k-partition problem. That
is, there exists a symmetric protocol with 3k−2 states and designated initial states
that solves the uniform k-partition problem under global fairness.

5.2.4 Simulation Results

In this section, we discuss the time complexity of the proposed protocol by simu-
lations. We evaluate the time complexity by the total number of interactions until

87

(a) k = 4 (b) k = 6

(c) k = 8

Figure 5. The number of interactions for k ∈ {4,6,8} with changing the population
size n

a population reaches a stable configuration. In the simulations, we construct an
execution by selecting two agents uniformly at random in each configuration and
making them interact. Note that, if we construct an infinite execution by this
way, the execution satisfies global fairness with probability 1. For all simulation
settings, we conduct a simulation 100 times and show the average values as the
results.

Varying the population size n

Figure 5 shows the number of interactions for k ∈ {4,6,8} with changing the
population size (i.e., the number of agents) n. As n increases, the number of
interactions tends to increase. However, the number of interactions sometimes
decreases when n increases. We can observe that such a phenomenon is repeated
with a period of a length of k. That is, nmod k influences the number of inter-
actions.

88

(a) k = 4 (b) k = 6

(c) k = 8

Figure 6. The number of interactions to achieve the i-th grouping

To observe the details of executions, we focus on the number of interactions
required to construct one set of agents in states g1, g2, . . . , gk. We refer to this
construction by grouping. Recall that, once an agent enters state gk, the set
of agents never goes back to initial. Let NIi be the number of interactions
required to construct the i-th set of agents in states g1, g2, . . . , gk. We define
NI0 = 0. We count NI ′i = NIi −NIi−1, i.e., the number of interactions to achieve
the i-th grouping. We show the results in Figure 6. In this figure, we show
NI ′1 at the bottom of the figure (denoted by 1st-grouping), NI ′2 at the second to
the bottom (denoted by 2nd-grouping), and so on. Figure 6 shows that NI ′1 <
NI ′2 < ⋯ holds except for the last part (i.e., transitions of the remaining nmod k

agents). This is because, as the execution proceeds, the number of agents not in
a group decreases and consequently agents require more interactions to achieve
the grouping. In addition, we can observe that, for any positive integer c, when
n = c ⋅k+2, c ⋅k+3, . . . , c ⋅k+(k+1) holds, the number of interactions to achieve the
(c+ 1)-th grouping (shown in the top of each graph) increases steeply with n. In

89

Figure 7. The number of interactions for k ∈ {3,4,5,6} with changing the popu-
lation size n

addition, the number of interactions for the (c+1)-th grouping accounts for more
than half of the total number of interactions for n = c ⋅k +k and n = c ⋅k + (k + 1).
These facts influence juggy forms of graphs in Figure 5.

Hereafter, to prevent the effect of nmod k, we execute simulations for the
case where nmod k = 0 holds.

Figure 7 shows the number of interactions for k ∈ {3,4,5,6} with changing
the population size n. We consider n = 120 ⋅ n′ for n′ ∈ {1,2, . . . ,8} so that
nmod k = 0 holds. Figure 7 shows that, as n increases, the number of interactions
also increases. The number of interactions seems to increase more than linearly
but less than exponentially with n.

Varying the number of groups k

The logarithmic graph in Figure 8 shows the number of interactions for n = 960
with changing k. To avoid the effect of nmod k, we show the results only for
the case where nmod k = 0 holds. Figure 8 shows that the number of interac-

90

Figure 8. The number of interactions for n = 960 with changing k

tions seems to increase exponentially with k. This is because, to create a set
of groups including agents with states g1 to gk, a m2-state agent interacts k − 2
free agents (i.e., agents with state initial or initial′) without interacting other
m-state agents. Since interaction of initial and initial′ agents creates a m-state
agent, a non-negligible number of m-state agents exist. Hence, the possibility
that an agent interacts k − 2 free agents without interacting m-state agents be-
comes exponentially small when k becomes large. This increases the number of
interactions exponentially with k.

6. Concluding Remarks

In this part, we focus on the uniform k-partition problem on complete graphs.
We considered the problem under various assumptions such as the existence of
a base station, fairness, symmetry of protocols, and initial states of agents. For
the case of k = 2, we clarified the solvability for each combination of assumptions.
Moreover, for each solvable case, we proposed a space-optimal protocol (i.e., we
clarified tight upper and lower bounds on the number of states per agent for each

91

case).
On the other hand, for the general case of an arbitrary number of partitions

(the uniform k-partition), we clarified the solvability for most cases (23 out of
24 cases). Moreover, we clarified tight upper and lower bounds on the number
of states per agent for many of solvable cases (10 out of 15 cases). Concretely,
for 19 cases, we extended the results of the uniform 2-partition to results of the
uniform k-partition, and we proposed a symmetric protocol with 3k−2 states and
designated initial states that solves the uniform k-partition problem under global
fairness (this protocol works for 2 cases). This symmetric protocol is asymptoti-
cally space-optimal because Ω(k) states are necessary for any uniform k-partition
protocol. Moreover, we evaluated the time complexity of the protocol by simu-
lations. From the simulation results, we can observe that the time complexity
increases exponentially with k but not exponentially with n.

We show that our most results can be applied to the k-partition. That is, even
for the k-partition, we clarified the solvability and space-complexity in many
cases. Concretely, for the 2-partition, we clarified solvability for all cases and
clarified tight upper and lower bounds on the number of states for 22 out of 24
cases, and, for the k-partition, we clarified solvability for 23 out of 24 cases and
clarified tight upper and lower bounds on the number of states for 8 out of 15
solvable cases.

92

Part IV

Uniform 2-partition on Arbitrary
Graphs

1. Introduction

In this part, we aim to clarify the space complexity of the uniform 2-partition on
arbitrary graphs. In Part III, we have only dealt with the uniform k-partition
on complete graphs. In the original population protocol model, Angluin et al.
mainly studied computability of the model on complete communication graphs
(i.e., all agents can interact with each other). Then, many subsequent papers
also studied various problems on complete communication graphs. However, in
recent years, researchers have studied problems on various communication graphs
[5, 11, 14, 26, 27, 37, 44]. Actually, in realistic systems, the communication graph
may not be a complete graph because low-performance devices may not move so
wide. For example, in a sensor network system, sensors may be scattered over
a large area and some of them may move only a short distance because sensors
move passively. Because of this, some pair of sensors never communicate with
each other and thus the communication graph is not a complete graph.

1.1 Our Contributions

A summary of the results is presented in Table 9. Let us first observe that, as
complete communication graphs are a special case of arbitrary communication
graphs, the impossibility results in Section 3.1.1 remain valid in our setting.
With a base station (be it initialized or non-initialized) under global fairness, we
extend the three states protocol with designated initial states in Section 3.1.1
from complete communication graphs to arbitrary communication graphs. With
a non-initialized base station and designated initial states, we propose a new
symmetric protocol with 3P +1 states that solves the problem under weak fairness
with the assumption that an upper bound P of the number of agents is given
to agents. These results yield identical upper bounds for the easier cases of

93

Table 9. Minimum number of states to solve the uniform 2-partition problem on
arbitrary graphs under global fairness.

Base station Initial states Symmetry Upper bound Lower bound

Initialized base station
Designated

Asymmetric 3 3
Symmetric 3 3

Arbitrary
Asymmetric - 4
Symmetric - 4

Non-initialized base station
Designated

Asymmetric 3 3
Symmetric 3 3

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

No base station
Designated

Asymmetric 4 4
Symmetric 5 5

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

Table 10. Minimum number of states to solve the uniform k-partition problem
under weak fairness on complete graphs. P is a known upper bound of the number
of agents, and l ≥ 3 and h are positive integers.

Base station Initial states Symmetry Upper bound Lower bound

Initialized
Designated

Asymmetric/
Symmetric

3P + 1
3l + 1 for no l ⋅ h cycle

3

base station
Arbitrary

Asymmetric - P

Symmetric - P + 1

Non-initialized
Designated

Asymmetric/
Symmetric

3P + 1
3l + 1 for no l ⋅ h cycle

3

base station
Arbitrary

Asymmetric Unsolvable
Symmetric Unsolvable

No base station
Designated

Asymmetric Unsolvable
Symmetric Unsolvable

Arbitrary
Asymmetric Unsolvable
Symmetric Unsolvable

94

asymmetric protocols and/or initialized base station. In addition, we also show
a condition of communication graphs where the number of states in the protocol
can be reduced from 3P + 1 to constant. Concretely, we show that the number
of states in the protocol can be reduced to 3l + 1 if we assume communication
graphs such that every cycle either includes the base station or its length is
not a multiple of l, where l is a positive integer greater than three. With no
base station and designated initial states, we prove that four and five states
are necessary and sufficient to solve uniform 2-partition under global fairness
with asymmetric and symmetric protocols, respectively. In the same setting,
in complete graphs, three and four states are necessary and sufficient. So, one
additional state enables us to solve the problem on arbitrary graphs. On the other
hand, by changing the fairness assumption from global fairness to weak fairness,
we prove that the problem cannot be solved, by using a similar argument as in
the impossibility result for leader election by Fischer and Jiang [30]. Overall, we
show the solvability of uniform 2-partition in a variety of settings for a population
of agents assuming arbitrary communication graphs.

1.2 Problem Definition

Let Y = {red, blue} be an output set of the uniform 2-partition problem. Let
γ ∶ Qp → {red, blue} be a function that maps a state of an agent to Y . We define
the color of an agent a as γ(s(a)). Then, we say that agent a is red (resp., blue)
if γ(s(a)) = red (resp., γ(s(a)) = blue) holds. If an agent a has state s such that
γ(s) = red (resp., γ(s) = blue), we call a a red agent (resp., a blue agent). For
some population V , the number of red agents (resp., blue agents) in V is denoted
by #red(V) (resp., #blue(V)). When V is clear from the context, we simply
write #red and #blue.

A configuration C is stable with respect to the uniform 2-partition if there
exists a partition {Hr, Hb} of Vp that satisfies the following conditions:

1. ∣∣Hr∣ − ∣Hb∣∣ ≤ 1 holds, and

2. For every configuration C ′ such that C
∗Ð→ C ′, each agent in Hr (resp., Hb)

remains red (resp., blue) in C ′.

95

An execution Ξ = C0, C1, C2, . . . solves the uniform 2-partition problem if
Ξ includes a configuration Ct that is stable for uniform 2-partition. Finally, a
protocol P solves the uniform 2-partition problem if every possible execution Ξ

of protocol P solves the uniform 2-partition problem.

2. Upper Bounds with a Non-initialized Base Sta-
tion and Designated Initial States

In this section, we prove some upper bounds on the number of states that are
required to solve the uniform 2-partition problem on arbitrary graphs with des-
ignated initial states and a non-initialized base station. More concretely, with
global fairness, we propose a symmetric deterministic protocol with three states
by extending the protocol in Section 3.1.1 from a complete communication graph
to an arbitrary communication graph. In the case of weak fairness, we present a
symmetric protocol with 3P + 1 states, where P is a known upper bound of the
number of agents. Recall that we consider only deterministic protocols in this
dissertation.

2.1 Upper Bound for Symmetric Protocols under Global
Fairness

The state set of agents in this protocol is Qp = {initial, red, blue}, and we assume
that γ(initial) = γ(red) = red and γ(blue) = blue hold. The designated initial
state of agents is initial. The idea of the protocol is as follows: the base station
assigns red and blue to agents whose state is initial alternately. As the base
station cannot meet every agent (the communication graph is arbitrary), the
positions of state initial are moved throughout the communication graph using
transitions. Thus, if an agent with initial state exists somewhere in the network,
the base station has infinitely many chances to interact with a neighboring agent
with initial state. This implies that the base station is able to repeatedly assign
red and blue to neighboring agents with initial state unless no agent anywhere
in the network has initial state. Since the base station assigns red and blue

alternately, the uniform 2-partition is completed after no agent has initial state.

96

To make red and blue alternately, the base station has a state set Qb = {bred,
bblue}. Using its current state, the base station decides which color to use for the
next interaction with a neighboring agent with initial state. Now, to move the
position of an initial state in the communication graph, if an agent with initial

state and an agent with red (or blue) state interact, they exchange their states.
This implies that eventually an agent adjacent to the base station has initial

state and then the agent and the base station interact (global fairness guarantees
that such interaction eventually happens). Transition rules of the protocol are the
following (for each transition rule (p, q) → (p′, q′), transition rule (q, p) → (q′, p′)
exists, but we omit the description).

1. (bred, initial)→ (bblue, red)

2. (bblue, initial)→ (bred, blue)

3. (blue, initial)→ (initial, blue)

4. (red, initial)→ (initial, red)

From these transition rules, eventually each agent transitions to red or blue.
Hence, there exist ⌈n/2⌉ red (resp., blue) agents, and ⌊n/2⌋ blue (resp., red) agents
if the base station has bred (resp., bblue) as an initial state. When no agent has
initial state, the protocol converges (indeed, no interaction is defined when no
agent has initial state). Therefore, the protocol solves the uniform 2-partition
problem.

We now prove the correctness of the protocol.

Theorem 18. In the population protocol model with a non-initialized base station,
there exists a symmetric protocol with three states per agent that solves the uni-
form 2-partition problem with designated initial states assuming global fairness in
arbitrary communication graphs.

Proof. Recall that #red (resp., #blue) denotes the number of agents in state
s such that γ(s) = red (resp., γ(s) = blue) holds, thus initially #red = n and
#blue = 0 hold. We show that eventually ∣#red −#blue∣ ≤ 1 holds and no agent
ever changes its state afterwards. Transition rules 1 and 2 indicate that, if the

97

base station has state bred (resp., bblue), and an agent with initial state interact,
the agent state becomes red (resp., blue), and the base station state becomes
bblue (resp., bred). By repeating these transitions, agents are assigned red and
blue alternately, and the number of agents in state initial decreases. This implies
that, eventually ∣#red −#blue∣ ≤ 1 holds by alternating transition rules 1 and
2 (transition rules 1 and 2 are never enabled simultaneously, and executing one
disables it while enabling the other). Transition rules 3 and 4 indicate that,
if an agent with initial state and an agent with red (or blue) state interact,
they exchange their states. From the global fairness hypothesis and transition
rules 3 and 4, if there exists an agent with initial state, the base station and a
neighboring agent with initial state eventually interact. Thus, transition rules 1
and 2 occur repeatedly unless no agent has initial. After all agents have red or
blue state, no agent ever changes its color. Recall that agents are assigned red

and blue alternately and thus ∣#red −#blue∣ ≤ 1 holds after those assignments.
Moreover, the arguments do not depend on the initial state of the base station,
and the proposed protocol is symmetric. Therefore, the theorem holds.

Note that, under weak fairness, this protocol does not solve the uniform 2-
partition problem. This is because we can construct a weakly-fair execution of this
protocol such that some agents keep initial state infinitely often. For example,
we can make an agent keep initial by constructing an execution as follows: If
the agent (in initial) interacts with an agent in red or blue, the next interaction
occurs between the same pair of agents.

2.2 Upper Bound for Symmetric Protocols under Weak Fair-
ness

2.2.1 A protocol on arbitrary graphs

In this protocol, every agent x has variables colorx ∈ {ini, r, b} and depthx ∈ {�,
1, 2, . . ., P}. Variable colorx represents the color of agent x. That is, for an agent
x, if colorx = ini or colorx = r holds, γ(s(x)) = red holds. On the other hand, if
colorx = b holds, γ(s(x)) = blue holds. The protocol is given in Algorithm 4.

The basic strategy of the protocol is the following.

98

Algorithm 4 Uniform 2-partition protocol with 3P + 1 states.
Variables at the base station:

RB ∈ {r, b}: The state that the base station assigns next
Variables at an agent x:

colorx ∈ {ini, r, b}: Color of the agent, initialized to ini
depthx ∈ {�,1,2,3, . . . , P}: Depth of agent x in a tree rooted at the base
station, initialized to �

1: when an agent x and the base station interact do
2: if colorx = ini and depthx = 1 then
3: colorx ← RB
4: RB ← RB
5: end if
6: if depthx = � then
7: depthx ← 1
8: end if
9: end

10: when two agents x and y interact do
11: if depthy ≠ � and depthx = � then
12: depthx ← depthy + 1
13: else if depthx ≠ � and depthy = � then
14: depthy ← depthx + 1
15: end if
16: if depthx < depthy and colory = ini then
17: colory ← colorx
18: colorx ← ini
19: end if
20: if depthy < depthx and colorx = ini then
21: colorx ← colory
22: colory ← ini
23: end if
24: end
Note: If depthx = � holds, colorx = ini holds.

99

1. Create a spanning tree rooted at the base station. Concretely, agent x

assigns its depth in a tree rooted at the base station into variable depthx.
Variable depthx is initialized to �. Variable depthx obtains the depth of x
in the spanning tree as follows: If the base station and an agent p with
depthp = � interact, depthp becomes 1. If an agent q with depthq ≠ � and
an agent p with depthp = � interact, depthp becomes depthq + 1. By these
behaviors, for any agent x, eventually variable depthx has a depth of x in a
tree rooted at the base station.

2. Using the spanning tree, carry the initial color ini toward the base station
and make the base station assign r and b to agents one by one. Concretely,
if agents x and y interact and both depthy < depthx and colorx = ini hold, x
and y exchange their colors (i.e., ini is carried from x to y). Hence, since ini
is always carried to a smaller depth, eventually an agent z with depthz = 1
obtains ini. After that, the base station and the agent z interact and the
base station assigns r or b to z. Note that, if the base station assigns r

(resp., b), the base station assigns b (resp., r) next.

Then, for any agent v, eventually colorv ≠ ini holds. Hence, there exist ⌈n/2⌉
red (resp., blue) agents, and ⌊n/2⌋ blue (resp., red) agents if variable RB in the
base station has r (resp., b) as an initial value. Therefore, the protocol solves the
uniform 2-partition problem.

From now, we demonstrate the correctness of the protocol. Let #ini = ∣{x∣
colorx = ini}∣, #r = ∣{x∣colorx = r}∣, and #b = ∣{x∣colorx = b}∣. First of all, by
the pseudocode, we can observe that #r, #b, and #ini do not change except for
an interaction between the base station and an agent v such that depthv = 1 and
colorv = ini hold. This is because #r, #b, and #ini are changed only by lines
3–4.

Lemma 28. For any weakly-fair execution of Algorithm 4, unless an interaction
occurs between the base station and an agent v such that depthv = 1 and colorv =
ini hold, #r, #b, and #ini do not change.

We now show three basic properties of variable depth. First, we have the
following lemma because, in the pseudocode, agent v never changes depthv if
depthv ≠ � holds.

100

Lemma 29. For any agent v, when depthv ≠ � holds in a configuration, depthv

does not change afterwards.

Then, we show the remaining properties of variable depth.

Lemma 30. For any agent v, depthv ≠ � holds after some configuration in any
weakly-fair execution of Algorithm 4.

Proof. By the weak fairness assumption, for any agent v0 adjacent to the base sta-
tion, eventually v0 and the base station interact. By lines 6–7 of the pseudocode,
depthv0 ≠ � holds after the interaction with the base station. From Lemma 29,
for any agent v, once depthv ≠ � holds, depthv ≠ � holds perpetually. As the
graph is connected, if there is a pair of agents v and v′ such that depthv = � and
depthv′ ≠ � hold, there is a pair of adjacent agents va and vb such that depthva = �
and depthvb ≠ � hold. Hence, eventually such agents va and vb interact by the
weak fairness assumption, and after the interaction occurs, depthva ≠ � holds. By
using a similar argument, for any agent v, eventually depthv ≠ � holds.

Lemma 31. For any agent v1, when depthv1 is neither � nor one, then v1 is
adjacent to an agent v2 such that depthv1 = depthv2 + 1 holds. When depthv1 is 1,
v1 is adjacent to the base station.

Proof. We focus on interactions such that an agent v assigns a value other than
� to depthv. By Lemmas 29 and 30, the number of such interactions for a given
agent is exactly one. We consider two cases.

First, we consider the case when depthv becomes one by the interaction. From
the protocol, depthv can become one only if the base station and v interact. Hence,
v is adjacent to the base station.

Next, we consider the case where depthv becomes neither � nor one by the
interaction. From the protocol, if the interaction happens between v and an
agent w, depthv becomes depthw + 1 by the interaction. By Lemma 29, depthw

and depthv never change afterward. Thus, the lemma holds.

From the above lemmas, we show that eventually #ini = 0 holds in any
weakly-fair execution of the protocol.

Lemma 32. For any weakly-fair execution of Algorithm 4, #ini = 0 holds after
finite time.

101

Proof. For the purpose of contradiction, let us assume that, after some configu-
ration C, #ini > 0 never decreases. Let us consider a configuration C ′ such that
depthv ≠ � holds for any agent v in C ′, and C ′ appears after C. By Lemma 30,
such C ′ exists. In C ′, let Ini = {x∣colorx = ini}, and let v1 ∈ Ini be an agent such
that depthv1 =min{depthx∣x ∈ Ini} holds. By Lemma 31, either depthv1 = 1 holds
or v1 is adjacent to an agent v2 such that depthv2 = depthv1 − 1.

First, we consider the case when depthv1 = 1 holds. By Lemma 31, v1 is
adjacent to the base station. Since depthv1 = 1 holds, there is not an agent v′2
such that depthv′2

< depthv1 holds. Hence, from the protocol, colorv1 keeps ini

unless v1 and the base station interact. Thus, eventually v1 with colorv1 = ini

and the base station interact. Then, #ini decreases in this case.
Next, we consider the case where v1 is adjacent to an agent v2 such that

depthv2 = depthv1 − 1. From the protocol, since depthv1 ≠ 1 holds, colorv1 keeps
ini unless an interaction happens between v1 and an agent v′2 such that depthv′2

<
depthv1 holds. From the weak fairness, eventually v1 and such v′2 interact and
colorv′2 becomes ini. At that time, the smallest depth of agents with color ini

decreases. By repeating this behavior similarly, eventually some agent vh with
depthvh = 1 obtains color ini. After that, vh and the base station interact and
#ini decreases. This is a contradiction.

Next, we prove that ∣#r −#b∣ ≤ 1 always holds in any weakly-fair execution
of the protocol.

Lemma 33. For any configuration in any weakly-fair execution of Algorithm 4,
(i) 0 ≤#r−#b ≤ 1 holds if RB = b holds, and (ii) 0 ≤#b−#r ≤ 1 holds if RB = r
holds.

Proof. Let us consider an execution Ξ = C0, C1, . . . of the protocol. We prove the
lemma by induction on the index of a configuration. In the base case (C0), #r =
#b = 0 holds and thus alternatives (i) and (ii) of the lemma hold immediately.

For the induction step, assume that there exists an integer i ≥ 0 such that the
lemma holds in Ci. Let us consider an interaction at Ci → Ci+1.We consider two
cases.

102

First, we consider the case where, for an agent v such that depthv = 1 and
colorv = ini hold, the base station and v do not interact. By Lemma 28, when
the base station and such v do not interact, #r, #b, and #ini do not change.
Moreover, from the protocol, RB does not change at the interaction, and thus
both alternatives (i) and (ii) of the lemma hold in this case.

Next, we consider the case where, for an agent v such that depthv = 1 and
colorv = ini hold, the base station and v interact.

• In the case where RB = r holds in Ci: After the interaction at Ci → Ci+1,
#r increases by one and RB becomes b. By the induction assumption, since
0 ≤#b−#r ≤ 1 holds in Ci, 0 ≤#r−#b ≤ 1 and RB = b hold in Ci+1. Hence,
alternatives (i) and (ii) of the lemma hold.

• In the case where RB = b holds in Ci: After the interaction at Ci → Ci+1, #b

increases by one and RB becomes r. By the induction assumption, since
0 ≤#r−#b ≤ 1 holds in Ci, 0 ≤#b−#r ≤ 1 and RB = r hold in Ci+1. Hence,
alternatives (i) and (ii) of the lemma hold.

Thus, the lemma holds.

Using Lemmas 32 and 33, we show that the protocol solves the uniform 2-
partition problem.

Theorem 19. Algorithm 4 solves the uniform 2-partition problem. That is, there
exists a protocol with 3P +1 states and designated initial states that solves the uni-
form 2-partition problem under weak fairness assuming arbitrary communication
graphs with a non-initialized base station.

Proof. By Lemmas 32 and 33, ∣#r −#b∣ ≤ 1 holds in any weakly-fair execution
of the protocol and eventually #ini = 0 holds in the execution. Moreover, from
the protocol, when there exists no agent v such that colorv = ini, any agent x

does not change its colorx. Thus, the protocol solves the problem. Additionally,
the protocol works with 2P + (P + 1) states. This is because, if depthx = � holds,
colorx = ini holds. That is, depthx takes �, 1, 2, . . ., P for ini, and takes 1, 2, . . .,
P for r and b.

Therefore, the theorem holds.

103

2.2.2 A protocol with constant states on a restricted class of graphs

In this subsection, we show that the space complexity of Algorithm 4 can be re-
duced to constant for communication graphs such that every cycle either includes
the base station or its length is not a multiple of l, where l is a positive integer
at least three.

We modify Algorithm 4 as follows. Each agent maintains the distance from
the base station by computing modulo l plus 1. That is, we change lines 12 and
14 in Algorithm 4 to depthx ← depthy mod l + 1 and depthy ← depthx mod l + 1,
respectively. Now depthx ∈ {�,1,2,3, . . ., l} holds for any agent x. Then we
define the relation depthx ≺ depthy as follow: depthx ≺ depthy holds if and only if
depthy − depthx mod l = 1 holds, and we use depthx ≺ depthy instead of depthx <
depthy in lines 16 and 20.

We can easily observe that these modifications do not change the essence of
Algorithm 4. For two agents x and y, we say x ≺ y if depthx ≺ depthy holds. Each
agent x eventually assigns a depth of x minus 1 modulo l plus 1 to depthx, and
at that time there exists a path x0, x1, . . . , xh such that x0 is a neighbor of the
base station, x = xh holds, and xi ≺ xi+1 holds for any 0 ≤ i < h. In addition, there
exists no cycle x0, x1, . . . , xh = x0 such that xi ≺ xi+1 holds for any 0 ≤ i < h. This
is because, from the definition of relation ’≺’, the length of such a cycle should
be a multiple of l, but we assume that underlying communication graphs do not
include a cycle of agents in Vp whose length is a multiple of l. Hence, similarly to
Algorithm 4, we can carry the initial color ini toward the base station and make
the base station assign r and b to agents one by one.

Corollary 7. There exists a protocol with 3l + 1 states and designated initial
states that solves the uniform 2-partition problem under weak fairness assuming
arbitrary communication graphs with a non-initialized base station if, for any cycle
of the communication graphs, it either includes the base station or its length is
not a multiple of l, where l is a positive integer at least three.

104

Algorithm 5 Uniform 2-partition protocol with four states.
A state set

Q = {rω, bω, r, b}
A mapping to colors

γ(rω) = γ(r) = red
γ(bω) = γ(b) = blue

Transition rules
1. (rω, rω)→ (r, b)
2. (rω, bω)→ (b, b)
3. (rω, r)→ (r, rω)
4. (bω, b)→ (b, bω)
5. (rω, b)→ (r, bω)
6. (bω, r)→ (b, rω)

3. Upper and Lower Bounds with No Base Station
and Designated Initial States

In this section, we show upper and lower bounds of the number of states to solve
the uniform 2-partition problem with no base station and designated initial states
on arbitrary communication graphs. Concretely, under global fairness, we prove
that the minimum number of states for asymmetric deterministic protocols is four,
and the minimum number of states for symmetric protocols is five. Under weak
fairness, we prove that the uniform 2-partition problem cannot be solved without
a base station using proof techniques similar to those Fischer and Jiang [30]
used to show the impossibility of leader election. Recall that we consider only
deterministic protocols in this dissertation.

3.1 Upper Bound for Asymmetric Protocols under Global
Fairness

In this subsection, on arbitrary graphs with designated initial states and no base
station under global fairness, we give an asymmetric protocol with four states.

We define a state set of agents as Q = {rω, bω, r, b} , and function γ as follows:
γ(rω) = γ(r) = red and γ(bω) = γ(b) = blue. We say an agent has a token if its
state is rω or bω. Initially, every agent has state rω, that is, every agent is red and

105

has a token. The transition rules are given in Algorithm 5 (for each transition
rule (p, q) → (p′, q′) except for transition rule 1, transition rule (q, p) → (q′, p′)
exists, but we omit the description).

The basic strategy of the protocol is as follows. When two agents with tokens
interact and one of them is red, a red agent transitions to blue and the two
tokens are deleted (transition rules 1 and 2). Since n tokens exist initially and
the number of tokens decreases by two in an interaction, ⌊n/2⌋ blue agents appear
and ⌈n/2⌉ red agents remain after all tokens (except one token for the case of
odd n) disappear. To make such interactions, the protocol moves a token when
agents with and without a token interact (transition rules 3, 4, 5, and 6). Global
fairness guarantees that, if two tokens exist, an interaction of transition rule 1
or 2 happens eventually. Therefore, the uniform 2-partition is achieved by the
protocol.

From now, we prove the correctness of the protocol. We define #r, #b, #rω,
#bω as the number of agents that have state r, b, rω, bω, respectively. Let
#red = #r +#rω and #blue = #b +#bω be the number of red and blue agents,
respectively. Let #token =#rω +#bω be the number of agents with tokens.

Lemma 34. In any globally-fair execution of Algorithm 5, #r =#b+2 ⋅#bω holds
in any configuration.

Proof. Let us consider an execution Ξ = C0, C1, . . . of the protocol. We prove the
equation by induction on the index of a configuration. The base case is the case
of C0. In this case, the equation holds because all agents have rω initially. For
the induction step, assume that the equation holds in Ci (0 ≤ i). Let us consider
an interaction at Ci → Ci+1 for each transition rule.

• Transition rule 1: When the transition rule 1 occurs at Ci → Ci+1, #r and
#b increase by one.

• Transition rule 2: When the transition rule 2 occurs at Ci → Ci+1, #bω

decreases by one, and #b increases by two.

• Transitions rule 3 and 4: When the transition rule 3 or 4 occurs at Ci → Ci+1,
#r, #b, and #bω do not change.

106

• Transition rule 5: When the transition rule 5 occurs at Ci → Ci+1, #b

decreases by one, and #r and #bω increase by one.

• Transition rule 6: When the transition rule 6 occurs at Ci → Ci+1, #b

increases by one, and #r and #bω decrease by one.

For every case, #r =#b+ 2 ∗#bω holds in Ci+1. Therefore, the lemma holds.

Lemma 35. For any globally-fair execution of the Algorithm 5, #token ≤ 1 holds
after finite time.

Proof. First of all, there is no transition rule that increases #token. This implies
that, if #token ≤ 1 holds at some configuration, #token ≤ 1 holds thereafter.
Hence, for the purpose of contradiction, we assume that there exists a globally-
fair execution Ξ of the protocol where #token = x > 1 continuously holds after
some configuration.

Let us consider a configuration C that occurs infinitely often in Ξ. Note that
C is stable and satisfies #token = x. First, we show that a blue agent exists in
C. In the initial configuration, all agents have rω. Thus, by the first interaction,
an agent with b occurs by transition rule 1. Since there is no transition that
decreases the number of blue agents, there exists a blue agent in C. In addition,
since #r = #b + 2 ⋅ #bω holds by Lemma 34, a red agent exists in C. Let us
consider two agents a1 and a2 such that a1 is adjacent to a2, and a1 is red, and
a2 is blue in C.

Since tokens can move through a graph without changing colors by swapping
states (transition rules 3,4,5, and 6), a configuration C ′ such that a1 and a2 have
a token is reachable from C. When a1 and a2 interact at C ′ → C ′′, #token = x−2
holds in C ′′. From the global fairness assumption, since C occurs infinitely often
in Ξ, C ′′ also occurs infinitely often. Since #token = x continuously holds after
some configuration, this is a contradiction.

Next, by using these lemmas, we show that Algorithm 5 solves the problem
under the assumptions.

Theorem 20. Algorithm 5 solves the uniform 2-partition problem. That is, there
exists a protocol with four states and designated initial states that solves the

107

uniform 2-partition problem under global fairness on arbitrary communication
graphs.

Proof. Since #token is reduced only by transition rules 1 and 2, #token is reduced
by two in an interaction. This implies that, by Lemma 35, when n is even (resp.,
odd), #token = 0 (resp., #token = 1) holds after some configuration C.

First, we consider the case where n is even. By Lemma 34, if #token = 0

holds, #r = #b holds. Hence, since n = #r +#b +#token holds, #r = #b = n/2
holds at C. Moreover, since agents can change their colors only if #token ≥ 2

holds, they do not change their colors after C. Hence C is a stable configuration,
and thus the uniform 2-partition is completed.

Next, we consider the case where n is odd. When #token = 1 holds, we
consider two cases. If an agent in state rω exists at C, by Lemma 34, #r = #b

holds and thus #red =#r+#rω =#b+1 =#blue+1 holds. If an agent in state bω

exists at C, by Lemma 34, #r =#b+2 holds and thus #red =#r =#b+#bω+1 =
#blue+ 1 holds. Hence, in both cases, #red−#blue = 1 holds at C. Since agents
can change their colors only if #token ≥ 2 holds, they do not change their colors
after C. Hence C is a stable configuration, and thus the uniform 2-partition is
completed.

3.2 Upper Bound for Symmetric Protocols under Global
Fairness

In this subsection, with arbitrary communication graphs with designated initial
states and no base station under global fairness, we give a symmetric protocol with
five states. We obtain the symmetric protocol by applying a transformer proposed
in [22] to the protocol in subsection 3.1. The transformer simulates an asymmetric
protocol on a symmetric protocol. To do this, the transformer requires additional
states. Moreover, the transformer works with a complete communication graphs.
We show that one additional state is sufficient to transform from the asymmetric
uniform 2-partition protocol to symmetric one even if we assume arbitrary graphs.

Observe that, with designated initial states and no base station, clearly no
symmetric protocol can solve the problem if the number of agents n is two (the
state of the two agents is the same in the initial state, so symmetry is never

108

Algorithm 6 Uniform 2-partition protocol with five states.
A state set

Q = {rω0 , rω1 , bω, r, b}
A mapping to colors

γ(rω0) = γ(rω1) = γ(r) = red
γ(bω) = γ(b) = blue

Transition rules
1. (rω0 , rω0)→ (rω1 , rω1)
2. (rω1 , rω1)→ (rω0 , rω0)
3. (rω0 , rω1)→ (r, b)
4. (rω0 , bω)→ (b, b)
5. (rω1 , bω)→ (b, b)
6. (rω0 , r)→ (r, rω0)
7. (rω1 , r)→ (r, rω0)
8. (bω, b)→ (b, bω)
9. (rω0 , b)→ (r, bω)

10. (rω1 , b)→ (r, bω)
11. (bω, r)→ (b, rω0)

broken and uniform 2-partition cannot occur). Thus, we assume that n ≥ 3 holds.
We define a state set of agents as Q = {rω0 , rω1 , bω, r, b} , and function γ as

follows: γ(rω0) = γ(rω1) = γ(r) = red and γ(bω) = γ(b) = blue. We say an agent has
a token if its state is rω0 , rω1 , or bω. Initially, every agent has state rω0 , that is,
every agent is red and has a token. The transition rules are given in Algorithm 6.

The idea of Algorithm 6 is similar to Algorithm 5. That is, when two agents
with tokens interact and one of them is red, a red agent transitions to blue,
and the two tokens are deleted. Then, eventually ⌊n/2⌋ blue agents appear and
⌈n/2⌉ red agents remain after all tokens (except one token for the case of odd
n) disappear. However, to make a red agent transition to a blue agent in the
first place, Algorithm 5 includes transition rule 1 that makes agents with the
same states transition to different states. This implies that Algorithm 5 is not
symmetric. Hence, by borrowing the technique proposed in [22], we improve
Algorithm 5 so that the new protocol (Algorithm 6) makes a red agent transition
to a blue agent without such a transition (and two tokens are deleted at that

109

time). Concretely, we achieve it as follows. In Algorithm 6, there are two states
rω0 and rω1 that are red and have a token. When two agents with rω0 interact, they
transition to rω1 , and vice versa (transition rules 1 and 2). Thus, under global
fairness, eventually an agent with rω0 interacts with an agent with rω1 and then
one of them transitions to blue, and two tokens are deleted (transition rule 3).
Observe that these transitions do not affect the essence of Algorithm 5. This is
because the numbers of blue agents, red agents, and tokens do not change after
transition rules 1 and 2, and a red agent transitions to blue, and two tokens are
deleted at transition rule 3.

We now prove the correctness of Algorithm 6 along the proof in subsection
3.1. We define #r, #b, #rω0 , #rω1 , #bω as the number of agents that have state
r, b, rω0 , rω1 , bω, respectively. Let #red =#r+#rω0 +#rω1 and #blue =#b+#bω be
the number of red and blue agents, respectively. Let #token = #rω0 +#rω1 +#bω

be the number of agents with tokens.
Recall that a mechanism of symmetry breaking (transition rules 1, 2, and 3)

does not affect the essence of Algorithm 5. In particular, if rω0 = rω1 (= rω) holds,
Algorithm 6 is equal to Algorithm 5. Thus, since an equation of Lemma 34 holds
in any configuration of any execution of Algorithm 6 and #rω is not related to
the equation, the following corollary holds.

Corollary 8. In any globally-fair execution of Algorithm 6, #r =#b+2 ⋅#bω holds
in any configuration.

If a blue agent occurs, both red agent and blue agent exist afterwards with
Algorithm 6. This is because, similarly to Algorithm 5, there is no transition
rule that decreases the number of blue agents in Algorithm 6, and red agents also
exist by Corollary 8.

Now, we simply show that eventually a blue agent occurs in any execution Ξ.
When n = #rω0 +#rω1 holds, only transition rules 1, 2, and 3 can occur. Hence,
from the global fairness assumption, there is a configuration C such that, for
some adjacent agents x and y, x has rω0 and y has rω1 in C and C occurs infinitely
often in Ξ. Then, eventually x with rω0 and y with rω1 interact. By the interaction,
transition rule 3 happens and thus one blue agent occurs.

Thus, we can observe that both red agent and blue agent exist after some
configuration. Then, clearly we can obtain the following lemma by the same

110

argument as in Lemma 35.

Lemma 36. For any globally-fair execution of Algorithm 6, #token ≤ 1 holds
after some configuration.

Finally, we show, similarly to Theorem 20, that Algorithm 6 solves the uniform
2-partition problem.

Theorem 21. Algorithm 6 solves the uniform 2-partition problem. That is, there
exists a symmetric protocol with five states and designated initial states that solves
the uniform 2-partition problem under global fairness with arbitrary communica-
tion graphs.

Proof. Since #token is reduced only in transition rules 3, 4, and 5, #token is
reduced by two in an interaction. This implies that, by Lemma 36, when n is
even (resp., odd), #token = 0 (resp., #token = 1) holds after some configuration
C.

After #token ≤ 1 holds, Algorithm 6 is substantially the same as Algorithm 5
because transition rules 1, 2, and 3 do not occur if #token ≤ 1 holds. Thus, we
can prove the remaining part in the same way as Theorem 20 by using Corollary
8 instead of Lemma 34.

3.3 Lower Bound for Asymmetric Protocols under Global
Fairness

In this section, we show that, on arbitrary graphs with designated initial states
and no base station under global fairness, there exists no asymmetric protocol
with three states.

To prove this, we first show that, when the number of agents n is odd and no
more than P /2, each agent changes its own state to another state infinitely often
in any globally-fair execution Ξ of any uniform 2-partition protocol, where P is a
known upper bound of the number of agents. This proposition holds regardless
of the number of states in a protocol.

After that, we prove impossibility of an asymmetric protocol with three states.
From the above proposition, in any globally-fair execution of any uniform 2-
partition protocol, agents change their states infinitely often. Now, since the

111

number of states is three, the number of red states or the number of blue states is
one. This implies that some agents change their color after a stable configuration.
Thus, no protocol can solve the uniform 2-partition problem.

From now, we show that, in any globally-fair execution Ξ of a protocol Alg
solving uniform 2-partition on an arbitrary communication graph such that the
number of agents n < P /2 is odd, all agents transition their own state to another
state infinitely often.

Lemma 37. Assume that there exists a uniform 2-partition protocol Alg with des-
ignated initial states on arbitrary communication graphs assuming global fairness.
Let us consider a graph G = (V,E) such that the number of agents n is odd and
no more than P /2. In any globally-fair execution Ξ = C0, C1, . . . of Alg on G,
each agent changes its state infinitely often.

Proof. Let V = {v0, v1, v2, v3, . . ., vn−1}. Assume, for the purpose of contradiction,
that there exists vα that does not change its state after some stable configuration
Ch in globally-fair execution Ξ. Let sα be a state that vα has after Ch. Since the
number of states is finite, in Ξ, there exists a stable configuration Ct that appears
infinitely often after Ch. Without loss of generality, #red(V)−#blue(V) = 1 holds
after Ch. Let vβ be an agent that is adjacent to vα. Let Sβ be a set of states that
vβ has after Ch.

Next, consider a communication graph G′ = (V ′,E′) that satisfies the follow-
ing.

• V ′ = V ′1 ∪ V ′2 , where V ′1 = {v′0, v′1, v′2, . . ., v′n−1} and V ′2 = {v′n, v′n+1, v′n+2, . . .,
v′2n−1}.

• E′ = {(v′x, v′y), (v′x+n, v′y+n) ∈ V ′ × V ′ ∣ (vx, vy) ∈ E} ∪ {(v′α, v′n+β)}.

An example (n = 5) of G and G′ is shown in Figure 9.
Over G′, we construct an execution Ξ′ such that, agents in V ′1 and V ′2 behave

similarly to Ξ until states of agents in V ′1 and V ′2 converge, and then make in-
teractions so that Ξ′ satisfies global fairness. Concretely, consider a globally-fair
execution Ξ′ = C ′0, C ′1, C ′2, C ′3, . . . on G′ as follows:

• For i ≤ t, when vx interacts with vy at Ci → Ci+1, v′x interacts with v′y at
C ′2i → C ′2i+1, and v′x+n interacts with v′y+n at C ′2i+1 → C ′2i+2.

112

Figure 9. An example of communication graphs G and G′ (n = 5).

• After C ′2t, agents make interactions so that Ξ′ satisfies global fairness.

The outline of the remaining part of the proof is as follows. Since Ξ is globally-
fair, we can show that the following facts hold after states of agents in V ′1 and V ′2
converge in Ξ′.

• v′α has state sα as long as v′n+β has a state in Sβ.

• v′n+β has a state in Sβ as long as v′α has state sα.

From these facts, in Ξ′, v′α continues to have state sα and v′n+β continues to have
a state in Sβ. Hence, in Ξ′, each agent in V ′1 cannot notice the existence of
agents in V ′2 , and vice versa. Thus, since we assume, without loss of generality,
that #red(V) −#blue(V) = 1 holds in stable configuration Ch of Ξ, #red(V ′) −
#blue(V ′) = 2 holds in a stable configuration of Ξ′.

Now, we show the details of the proof.
In the following, for configuration C ′ in Ξ′ and configuration C in Ξ, we say

C ′ of V ′1 (resp., V ′2) is equivalent to C if s(v′x,C ′) = s(vx,C) (resp., s(v′x+n,C ′) =
s(vx,C)) holds for any vx ∈ V . Observe that, by the definition of Ξ′, C ′2t of V ′1
and V ′2 is equivalent to Ct.

From now, by induction on the index of configuration, we prove the proposition
that, for any configuration C ′m that occurs after C ′2t, there is a configuration Ca

(resp., Cb) such that 1) C ′m of V ′1 (resp., V ′2) is equivalent to Ca (resp., Cb) and
2) Ca (resp., Cb) appears infinitely often in Ξ.

The base case is C ′m = C ′2t. Since Ct appears infinitely often in Ξ and C ′2t of
V ′1 and V ′2 is equivalent to Ct, the base case holds.

For the induction step, assume that, for C ′m(m ≥ 2t), there are configurations
Ca and Cb that satisfy the conditions. We consider two cases for an interaction

113

at C ′m → C ′m+1. The first case considers an interaction of v′α and v′n+β, and the
second case considers other interactions.

First, we consider the case where v′α and v′n+β interact at C ′m → C ′m+1. By the
assumption, we have s(v′α,C ′m) = s(vα,Ca) = sα, s(v′n+α,C ′m) = s(vα,Cb) = sα, and
s(v′n+β,C ′m) = s(vβ,Cb). Hence, since vα does not change its state even when it
interacts with vβ at Cb, any transition rule is of the form (s(vβ,Cb), sα)→ (s, sα),
where s is some state. This implies that, when v′α and v′n+β interact at C ′m, v′α
keeps the state sα. Thus, C ′m+1 of V ′1 is still equivalent to Ca. Additionally, since
s(v′α,C ′m) = s(v′n+α,C ′m) = s(vα,Cb) = sα and s(v′n+β,C ′m) = s(vβ,Cb) hold, v′n+β
changes its state similarly to the case where vβ interacts with vα in Cb. That is,
letting Cb′ be a configuration immediately after vα and vβ interact at Cb, C ′m+1
of V ′2 is equivalent to Cb′ . Since Cb occurs infinitely often in Ξ and Ξ is globally
fair, Cb′ occurs infinitely often in Ξ. Thus, the proposition holds for C ′m+1.

Next, we consider the case where at least one agent other than v′α and v′n+β
joins an interaction at C ′m → C ′m+1. By the definition, no edge other than
(v′α, v′n+β) connects V ′1 and V ′2 . Hence, if v′i and v′j interact at C ′m → C ′m+1, either
v′i ∈ V ′1 ∧ v′j ∈ V ′1 or v′i ∈ V ′2 ∧ v′j ∈ V ′2 holds. In the former case, letting Ca′ be the
configuration immediately after vi and vj interact at Ca, C ′m+1 of V ′1 is equivalent
to Ca′ and C ′m+1 of V ′2 is still equivalent to Cb. In the latter case, letting Cb′ be
the configuration immediately after vi−n and vj−n interact at Cb, C ′m+1 of V ′1 is
still equivalent to Ca and C ′m+1 of V ′2 is equivalent to Cb′ . Since Ca and Cb occur
infinitely often in Ξ and Ξ is globally fair, such Ca′ and Cb′ occur infinitely often
in Ξ and thus the proposition holds in the case.

Recall that, we assumed that #red(V) −#blue(V) = 1 after Ch in Ξ. Hence,
#red(V ′1) −#blue(V ′1) = 1 and #red(V ′2) −#blue(V ′2) = 1 holds after C ′2t in Ξ′.
Thus, #red(V ′) −#blue(V ′) = 2 holds after C ′2t in Ξ′. Since Ξ′ is globally fair,
this is a contradiction.

From now, by using Lemma 37, we show the theorem.

Theorem 22. There exists no uniform 2-partition protocol with three states and
designated initial states on arbitrary communication graphs assuming global fair-
ness when the upper bound of the number of agents P ≥ 6 is given.

Proof. For the purpose of contradiction, we assume that such a protocol Alg

114

exists.
Let S = {s1, s2, s3} be a state set of agents. Without loss of generality, γ(s1) =

γ(s2) = red and γ(s3) = blue hold. Let us consider a globally-fair execution Ξ of
Alg on graph G such that the number of agents is odd and no more than P /2.
By Lemma 37, after some stable configuration Ct in Ξ, each agent changes its
state infinitely often. This implies that each agent with s3 transitions to s1 or s2
after Ct. That is, each blue agent transitions to red state after Ct. Since Ct is
stable, this is a contradiction.

Furthermore, by Lemma 37, we can obtain the following corollary.

Corollary 9. Assume that there exists a uniform 2-partition protocol with desig-
nated initial states on arbitrary communication graphs assuming global fairness
(when the upper bound P of the number of agents is not given). Let us consider
a graph G = (V,E) such that the number of agents n is odd. In any globally-
fair execution Ξ = C0, C1, . . . of the protocol on G, each agent changes its state
infinitely often.

By this corollary, we have the following theorem by the same argument as in
Theorem 22.

Theorem 23. There exists no uniform 2-partition protocol with three states and
designated initial states on arbitrary communication graphs assuming global fair-
ness (when the upper bound P of the number of agents is not given).

3.4 Lower Bound for Symmetric Protocols under Global
Fairness

In this section, we show that, with arbitrary communication graphs, designated
initial states, and no base station assuming global fairness, there exists no sym-
metric protocol with four states. Recall that, with designated initial states and
no base station, clearly any symmetric protocol never solves the problem if the
number of agents n is two. Thus, we assume that 3 ≤ n ≤ P holds, where P is a
known upper bound of the number of agents. Note that the symmetric protocol
proposed in subsection 3.2 solves the problem for 3 ≤ n ≤ P .

In this subsection, we newly define q
sym↝ q′ as follows:

115

• For states q and q′, we say q
sym↝ q′ if there exists a sequence of states

q = q0, q1,⋯, qk = q′ such that, for any i (0 ≤ i < k), transition rule (qi, qi) →
(qi+1, qi+1) exists.

Moreover, we say two agents are homonyms if they have the same state.
Intuitively, q

sym↝ q′ means that an agent in state q can transition to q′ by a
sequence of interactions with homonyms.

Theorem 24. There exists no symmetric protocol for the uniform 2-partition
with four states and designated initial states on arbitrary graph assuming global
fairness when P is fourteen or more.

For the purpose of contradiction, suppose that there exists such a protocol
Alg. To begin with, we give a roadmap of the proof. In this proof, by using a
property of symmetry, fist we prove some lemmas to show the existence of a state
inir that satisfies the following conditions.

1. State inir is an initial state of each agent, and, for a state inib, there are
transition rules (inir, inir)→ (inib, inib) and (inib, inib)→ (inir, inir).

2. There is no transition rule that increases the number of agents with inir or
inib.

3. If a given graph is a complete graph, the number of agents with inir or inib
converges to at most 1.

4. Agents can change their colors only if an agent with s1 ∈ {inir, inib} and an
agent with s2 ∈ {inir, inib} interact.

5. If a given graph is a complete graph with three agents, there exists a stable
configuration such that there exists exactly one agent with s ∈ {inir, inib}
and other agents have different color from a color of s.

Then, we consider a graph G′ shown as the right side of Figure 10. On the
graph, we consider four subgraphs G′1, G′2, G′3, and G′4. By making interactions
on each subgraph, we make a configuration such that, agents on subgraph G′5
have s ∈ {inir, inib}, and other agents have different color from a color of s and
have neither inir nor inib (this is possible by the above conditions 3 and 5). Then,

116

Figure 10. An image of graphs G and G′.

we make agents on G′5 transition to an initial state (this is possible by the above
condition 1). After that, we make interactions on G′5 until agents converge. Let
C be a resulting configuration. By the above condition 3, in C, the number of
agents with inir or inib on G′5 is at most 1. Moreover, in C, other agents (agents
not on G′5) have neither inir nor inib. Thus, by the above condition 2, the number
of agents with inir or inib on G′ is at most 1 after C. By the above condition 4,
agents do not change their colors after C. Since agents not on G′5 have different
color from a color of s, they have the same color. Thus, after C, there are at
least eight agents with the same color whereas the number of agents is twelve.
Therefore, the uniform 2-partition problem cannot be solved.

Now, we show the details of the proof. Let R (resp., B) be a state set such
that, for any s ∈ R (resp., s′ ∈ B), γ(s) = red (resp., γ(s′) = blue) holds. First, we
show that the following lemma holds from Lemma 37.

Lemma 38. ∣R∣ = ∣B∣ = 2 holds.

Proof. Assume, for the purpose of contradiction, that ∣R∣ ≠ ∣B∣ holds. Without
loss of generality, assume that ∣R∣ = 1 and ∣B∣ = 3 hold (clearly R ≠ ∅ holds and
thus only this combination is valid), and let r be the state belonging to R.

Let us consider a graph G such that the number of agents is odd and no more
than P /2. At least one agent stabilizes to r in a globally-fair execution of Alg

117

with G. By Lemma 37, the agent changes its state to a state in B afterwards.
This is a contradiction.

Let inir and r (resp., inib and b) be states belonging to R (resp., B). In
addition, without loss of generality, assume that inir is the initial state of agents.

From the property of symmetry, the following lemma holds.

Lemma 39. Let us consider a symmetric transition sequence (inir, inir)→ (p1, p1),
(p1, p1) → (p2, p2), (p2, p2) → (p3, p3), . . . starting from inir. For any i, pi ≠ pi+1
holds.

Proof. For the purpose of contradiction, suppose that pi = pi+1 holds for some
i. Let us consider a complete communication graph G = (V,E) such that the
number of agents n is four, where V = {v1, v2, v3, v4}.

Let us consider a globally-fair execution Ξ as follows:

• v1 (resp., v3) interacts with v2 (resp., v4) i times.

• After that, make interactions so that Ξ satisfies global fairness.

Since the initial state of agents is inir, all agents have pi after the i interactions.
By the assumption, since (pi, pi)→ (pi, pi) holds, every agent keeps state pi after
that. Hence, Ξ cannot reach a stable configuration. Since Ξ is globally fair, this
is a contradiction.

Additionally, we can extend Lemma 39 as follows (we show the detail of this
proof later):

Lemma 40. There exists some state sb ∈ B such that (inir, inir) → (sb, sb) and
(sb, sb)→ (inir, inir) hold.

Without loss of generality, assume that (inir, inir) → (inib, inib) and (inib,
inib) → (inir, inir) exist. For some population V , we denote the number of agents
with inir (resp., inib) belonging to V as #inir(V) (resp., #inib(V)). Moreover,
let #ini(V) be the sum of #inir(V) and #inib(V). When V is clear from the
context, we simply denote them as #inir, #inib, and #ini, respectively.

From now, we show that Theorem 24 holds if the following lemmas and corol-
lary hold. We show the detail of these intermediate proofs later (To show Lemma
41, P must be fourteen or more).

118

Lemma 41. There does not exist a transition rule such that #ini increases after
the transition.

Lemma 42. Let us consider a globally-fair execution Ξ of Alg with some complete
communication graph G. After some configuration in Ξ, #ini ≤ 1 holds.

Corollary 10. Let us consider a state set Ini = {inir, inib}. When s1 ∉ Ini or
s2 ∉ Ini holds, if transition rule (s1, s2) → (s′1, s′2) exists then γ(s1) = γ(s′1) and
γ(s2) = γ(s′2) hold.

We consider a globally-fair execution Ξ = C0, C1, C2, . . . of Alg with a complete
communication graph G = (V,E) such that the number of agents is three, where
V = {v0, v1, v2}. In a stable configuration of Ξ, either #blue(V) −#red(V) = 1
or #red(V) −#blue(V) = 1 holds.

First, we consider the case of #blue(V) −#red(V) = 1.
Since ∣V ∣ ≤ P /2 holds and ∣V ∣ is odd, by Lemma 37 red agents keep exchanging

r for inir in Ξ. Hence, there exists a stable configuration Ct of Ξ such that there
exists exactly one agent that has inir. Without loss of generality, we assume that
the agent is v0.

We consider the communication graph G′ = (V ′,E′) that includes four copies
of G. The details of G′ are as follows:

• Let V ′ = {v′0, v′1, v′2, v′3, . . ., v′11}. We define a partition of V ′ as V ′1 = {v′0,
v′1, v′2}, V ′2 = {v′3, v′4, v′5}, V ′3 = {v′6, v′7, v′8}, and V ′4 = {v′9, v′10, v′11}. Let
V ′red = {v′0, v′3, v′6, v′9}.

• E′ = {(v′x, v′y), (v′x+3, v′y+3), (v′x+6, v′y+6), (v′x+9, v′y+9) ∈ V ′ × V ′ ∣ (vx, vy) ∈
E} ∪ {(v′x, v′y) ∈ V ′ × V ′ ∣ x, y ∈ {0, 3, 6, 9}}.

An image of G and G′ is shown in Figure 10.
We consider the following execution Ξ′ = C ′0, C ′1, C ′2, . . . of Alg with G′ =

(V ′,E′).

• For i ≤ t, when vx interacts with vy at Ci → Ci+1, v′x interacts with v′y at
C ′4i → C ′4i+1, v′x+3 interacts with v′y+3 at C ′4i+1 → C ′4i+2, v′x+6 interacts with
v′y+6 at C ′4i+2 → C ′4i+3, and v′x+9 interacts with v′y+9 at C ′4i+3 → C ′4i+4.

119

• After C ′4t, make interactions between agents in V ′red until states of agents in
V ′red converge and #ini(V ′red) ≤ 1 holds. We call the configuration C ′t′ .

• After C ′t′ , make interactions so that Ξ′ satisfies global fairness.

Until C ′4t, agents in V ′1 , V ′2 , V ′3 , and V ′4 behave similarly to agents in V from C0

to Ct. This implies that, in C ′4t, every agent in V ′red has state inir. From Lemma
42, since inir is the initial state of agents, it is possible to make interactions
between agents in V ′red until states of agents in V ′red converge and #ini(V ′red) ≤ 1
holds. Moreover, since v0 is the only agent that has inir in Ct, no agent in
V ′i /V ′red(1 ≤ i ≤ 4) has state inir or inib in C ′4t. Hence, #ini ≤ 1 holds in C ′t′ . By
Corollary 10, if #ini ≥ 2 does not hold, no agent can change its color. Thus, since
#ini ≤ 1 holds after C ′t′ by Lemma 41, no agent can change its color after C ′t′ .
Since v1 and v2 are blue in Ct, v′1, v′2, v′4, v′5, v′7, v′8, v′10, and v′11 are blue in C ′t′ .
In addition, #blue(V ′red) = #red(V ′red) holds. Hence, #blue(V ′) −#red(V ′) = 8
holds. Since no agent can change its color after C ′t′ and Ξ′ is globally-fair, this is
a contradiction.

Next, consider the case of #red(V)−#blue(V) = 1. In this case, we can prove
in the same way as the case of #blue(V) −#red(V) = 1. However, in the case,
we focus on inib instead of inir. That is, we assume that agents in V ′red (i.e., v′0,
v′3, v′6, and v′9) have inib in C ′4t. From C ′4t, we make v′0 (resp., v′6) interact with v′3
(resp., v′9) once. Then, by Lemma 40, all of them transition to inir. After that,
since all agents in V ′red have inir, we can construct an execution such that only
agents in V ′red interact and eventually #ini(V ′red) ≤ 1 holds. As a result, we can
lead to contradiction in the same way as the case of #blue(V) −#red(V) = 1.

Proofs of Lemmas 40, 41, and 42, and Corollary 10

From now, we prove Lemmas 40, 41, and 42, and Corollary 10. First, we show
the proof of Lemma 40.

Lemma 40. There exists some state sb ∈ B such that (inir, inir) → (sb, sb) and
(sb, sb)→ (inir, inir) hold.

Proof. Let us consider a globally-fair execution Ξ = C0, C1, C2, . . . of Alg with a
complete communication graph G such that the number of agents n is six. First,

120

we consider a state q such that there are two or more agents with q in a stable
configuration Ct of Ξ. Observe that, for any state q′ such that q

sym↝ q′ holds,
γ(q) = γ(q′) holds. This is because, if such equation does not hold, it contradicts
the definition of the stable configuration (i.e., it contradicts the fact that each
agent cannot change its own color after a stable configuration). Using this fact,
we show that the lemma holds.

Since the number of states is four and Lemma 39 holds, there are three possible
symmetric transition sequences starting from inir as follows:

1. For distinct states inir, p1, p2, and p3, there exists a transition sequence
(inir, inir) → (p1, p1), (p1, p1) → (p2, p2), (p2, p2) → (p3, p3), (p3, p3) →
(x,x), . . . , where x ∈ {inir, p1, p2}.

2. For distinct states inir, p1, and p2, there exists a transition sequence (inir,
inir)→ (p1, p1), (p1, p1)→ (p2, p2), (p2, p2)→ (y, y), . . . , where y ∈ {inir, p1}.

3. For distinct states inir and p1, there exists a transition sequence (inir, inir)
→ (p1, p1), (p1, p1)→ (inir, inir), (inir, inir)→ (p1, p1),

Case 1: Assume, for the purpose of contradiction, that the transition sequence
1 holds. Let p ∈ {p1, p2, p3} be a state such that γ(p) = red holds. By the
assumption, in a stable configuration Ct of Ξ, #red is three. This implies that
there exist two agents with inir or p. If there exist two agents with inir in Ct,
they can transition to p′ ∈ {p1, p2, p3} such that γ(p′) = blue ≠ γ(inir) holds by
a sequence of interactions with homonyms. Hence, by the definition of stable
configurations, there exists at most one agent with inir in Ct and thus there exist
two or more agents with p.

We consider cases of p = p3, p = p2, and p = p1. In the case of p = p3,
γ(p1) = γ(p2) = blue holds. By the transition sequence 1, p can transition to
p2 by a sequence of interactions with homonyms. By the definition of stable
configurations, since γ(p) ≠ γ(p2) holds, this case this case cannot occur. In the
case of p = p2 or p = p1, γ(p3) = blue holds. By the transition sequence 1, p can
transition to p3 by a sequence of interactions with homonyms. By the definition
of stable configurations, since γ(p) ≠ γ(p3) holds, this case cannot occur. Thus,
the transition sequence 1 does not hold.

121

Case 2: Assume, for the purpose of contradiction, that the transition sequence
2 holds. We show that 1) γ(p1) = γ(p2) = blue holds and 2) y = p1 holds. After
that, from these facts, we show that 3) the transition sequence 2 does not hold.

First we show 1) γ(p1) = γ(p2) = blue holds. Assume, for the purpose of
contradiction, that either p1 or p2 is a red state and the other is a blue state
(since inir is red state, either p1 or p2 is blue state). In this case, since inir can
transition to blue state by a sequence of interactions with homonyms, there exists
at most one agent with inir in Ct of Ξ. Hence, in Ct, there exists two red agents
with p1 or p2. By the transition sequence 2, p1 (resp., p2) can transition to p2

(resp., p1) by a sequence of interactions with homonyms. Since γ(p1) ≠ γ(p2)
holds, this contradicts the definition of stable configuration.

Next, we show 2) y = p1 holds. For the purpose of contradiction, assume that
y = inir holds. In this case, p1 and p2 can transition to inir by a sequence of
interactions with homonyms. In addition, γ(inir) = red holds. From 1) γ(p1) =
γ(p2) = blue, since #blue is three in a stable configuration Ct of Ξ, there exist two
agents with p1 or p2. These facts contradict the definition of stable configuration.

Finally, we show 3) the transition sequence 2 does not hold.
Let us consider a complete communication graph Ĝ = (V̂ , Ê) such that the

number of agents n is six, where V̂ = {v̂0, v̂1, v̂2, . . ., v̂5}. Moreover, consider a
globally-fair execution Ξ̂ as follows:

• v̂0, v̂1, and v̂2 interact with v̂3, v̂4, and v̂5 once, respectively.

• After that, make interactions so that Ξ̂ satisfies global fairness.

After the first item, all agents have p1. Hence, from 1) γ(p1) = γ(p2) = blue
and 2) y = p1 (i.e., (p1, p1) → (p2, p2) and (p2, p2) → (p1, p1) hold), there exists
transition rule (p1, p2)→ (sr1, sr2) such that γ(sr1) = γ(sr2) = blue does not hold.
Since transition rules (p1, p1) → (p2, p2) and (p2, p2) → (p1, p1) exist and only p1

and p2 are blue states, a stable configuration Ĉt of Ξ̂ can reach Ĉt′ such that both
p1 and p2 exist in Ĉt′ . Additionally, since (p1, p2) → (sr1, sr2) exists, some agent
can change its color after Ĉt′ . Since Ĉt is stable, this is a contradiction. Thus,
the transition sequence 2 does not hold.
Case 3: Since Cases 1 and 2 do not hold, Case 3 holds. Thus, by proving
that γ(p1) = blue holds, we can obtain the lemma. We assume, for the pur-

122

pose of contradiction, that γ(p1) = red holds. Let us consider a globally-fair
execution Ξ′ of Alg with a complete communication graph G′ = (V ′,E′) such
that the number of agents is six. Since transition rules (inir, inir) → (p1, p1) and
(p1, p1)→ (inir, inir) exist and γ(inir) = γ(p1) = red holds, there exists transition
rule (inir, p1) → (sb1, sb2) such that γ(sb1) = γ(sb2) = red does not hold. Since
transition rules (inir, inir) → (p1, p1) and (p1, p1) → (inir, inir) exist and only
inir and p1 are red state (and the number of red agents is three in any stable
configuration), a stable configuration C ′t of Ξ′ can reach C ′t′ such that both p1 and
inir exist in C ′t′ . In addition, since (inir, p1) → (sb1, sb2) exists, some agent can
change its color from C ′t′ . Since C ′t is stable, this is a contradiction. Therefore,
γ(p1) = blue holds and thus the lemma holds.

Next, from Lemmas 37 and 40, we prove the following lemmas.

Lemma 43. Let us consider a globally-fair execution Ξ of Alg with some complete
communication graph G = (V,E). In any stable configuration of Ξ, there is at
most one agent with inir and at most one agent with inib.

Proof. For the purpose of contradiction, assume that there exists a stable con-
figuration Ct of Ξ such that there are more than one agent with inir (or more
than one agent with inib). Since G = (V,E) is a complete communication graph,
two agents with inir (or two agents with inib) can interact. By Lemma 40, inir
(resp., inib) transitions to inib (resp., inir). Since γ(inir) ≠ γ(inib) holds and Ct

is stable, this is a contradiction.

Lemma 44. Let us consider a globally-fair execution Ξ of Alg with a complete
communication graph G = (V,E) such that the number of agents n is odd and
no more than P /2. There exists a stable configuration Ct1 (resp., Ct2) such that
there exists exactly one agent with inir (resp., inib), and Ct1 (resp., Ct2) occurs
infinitely often in Ξ.

Proof. Let us consider a globally-fair execution Ξ of Alg with a complete commu-
nication graph G = (V,E) such that the number of agents n is odd and no more
than P /2. From Lemma 43, if some agent change its state to inir (resp., inib) in
a stable configuration of Ξ, there exists exactly one agent with inir (resp., inib)
in the resulting configuration. Thus, from Lemma 37, since red agents (resp.,

123

blue agents) keep exchanging r for inir (resp., b for inib) in Ξ, there is a stable
configuration Ct1 (resp., Ct2) of Ξ such that there exists exactly one agent with
inir (resp., inib) and Ct1 (resp., Ct2) occurs infinitely often in Ξ.

Lemma 45. There exist transition rules (r, r)→ (r, r), (b, b)→ (b, b), and (r, b)→
(r, b).

Proof. Let us consider a globally-fair execution Ξ of Alg with a complete com-
munication graph G = (V,E) such that the number of agents n is seven. Let us
consider a stable configuration Ct1 (resp., Ct2) of Ξ such that there exists exactly
one agent with inir (resp., inib) and Ct1 (resp., Ct2) occurs infinitely often in Ξ.
From Lemma 44, such Ct1 and Ct2 exist. Note that, since we assume that P ≥ 14
holds, we can use Lemma 44 (because n = 7 ≤ P /2 holds and n is odd). Since the
number of agents n is seven, there exist at least two agents with r and at least
two agents with b in Ct1 and Ct2 . Hence, since G is a complete graph and Ct1

and Ct2 are stable, we can say the following.

• If (r, r)→ (r′, r′) exists, γ(r) = γ(r′) holds.

• If (b, b)→ (b′, b′) exists, γ(b) = γ(b′) holds.

• If (r, b)→ (r′′, b′′) exists, γ(r) = γ(r′′) and γ(b) = γ(b′′) hold.

In addition, by Lemma 43, r′ and r′′ are not inir, and, b′ and b′′ are not inib.
Therefore, the lemma holds.

From these lemmas, we can prove Lemma 41.

Lemma 41. There does not exist a transition rule such that #ini increases after
the transition.

Proof. For the purpose of contradiction, assume that such a transition rule ex-
ists. By Lemma 45, transition rules (r, r) → (r, r), (b, b) → (b, b), and (r, b) →
(r, b) exist and these transition rules do not increase #ini. Hence, there exists
(rb, ini)→ (ini1, ini2) such that rb ∈ {r, b}, and ini, ini1, ini2 ∈ {inir, inib}3 hold.

Let us consider a globally-fair execution Ξ of Alg with a complete graph
G = (V,E) such that the number of agents n is five. Moreover, consider a stable
configuration Ct1 (resp., Ct2) such that there exists exactly one agent with inir

124

(resp., inib) and Ct1 (resp., Ct2) occurs infinitely often in Ξ. From Lemma 44,
such Ct1 and Ct2 exist. Note that, because n = 5 ≤ P /2 and n is odd, we can
use Lemma 44. Since the number of agents n is five, there exists at least one
agent with r and at least one agent with b in Ct1 and Ct2 . This implies that, an
agent with inir (resp., inib) can interact with an agent with r in Ct1 (resp., Ct2).
Similarly, an agent with inir (resp., inib) can interact with an agent with b in Ct1

(resp., Ct2). Moreover, since G is a complete graph and Ξ is globally fair, those
interactions happen infinitely often.

First, we consider the case where ini = inir and rb = r hold. Let us consider
an interaction between an agent with inir and an agent with r in Ct1 . Since any
agent cannot change its color in a stable configuration, both agents transition to
inir by the interaction. However, by Lemma 43, two agents cannot have inir in
any stable configuration. This is a contradiction. Thus, ini = inir and rb = r do
not hold. In a similar way, ini = inib and rb = b do not hold.

Next, we consider the case where ini = inir and rb = b hold. Let us consider
an interaction between an agent with inir and an agent with b in Ct1 . Let Ct′1

be
configuration that can be obtained from Ct1 by the interaction. Since any agent
cannot change its color after a stable configuration, one inir and one inib occur
by the interaction. By Lemma 43, there exist exactly one inir and exactly one
inib in Ct′1

. This implies that, since Ct′1
is stable and n is five, there exists at least

one agent with b and thus an agent with inir can interact with an agent with
b in Ct′1

. Hence, we can obtain Ct′′1
from Ct′1

by making interaction between an
agent with inir and an agent with b. Clearly, in Ct′′1

, there exist two agents with
inib. This contradicts Lemma 43 and thus ini = inir and rb = b do not hold. In a
similar way, we can prove that ini = inib and rb = r do not hold. Hence, for any
rb ∈ {r, b} and ini ∈ {inir, inib}, transition rule (rb, ini) → (ini1, ini2) with ini1,
ini2 ∈ {inir, inib} does not exist. Consequently the lemma holds.

By the existence of (inir, inir)→ (inib, inib) and (inib, inib)→ (inir, inir), we
can prove the following lemma.

Lemma 46. There exists a transition rule (inir, inib)→ (x, y) such that x ∈ {r, b}
or y ∈ {r, b} holds.

Proof. For the purpose of contradiction, assume that, if there is (inir, inib) →

125

(x, y), x ∈ {inir, inib} and y ∈ {inir, inib} hold.
Let us consider a globally-fair execution Ξ of Alg with a complete commu-

nication graph G = (V,E) such that the number of agents is three. By Lemma
43, there exists at most one agent with inir and at most one agent with inib

in a stable configuration of Ξ. However, by the assumption and the existence
of (inir, inir) → (inib, inib) and (inib, inib) → (inir, inir), all agents have inir or
inib permanently in Ξ. This is a contradiction.

By Lemmas 41, 43, and 46, we show the proof of Lemma 42.

Lemma 42. Let us consider a globally-fair execution Ξ of Alg with some complete
communication graph G. After some configuration in Ξ, #ini ≤ 1 holds.

Proof. Let us consider Ct such that #ini ≤ 2 holds in Ct and Ct occurs infinitely
often in Ξ. By Lemma 43, such a configuration exists. Moreover, by Lemma 41,
#ini ≤ 2 holds even after Ct. First, we consider the case where #ini ≤ 1 holds in
Ct. By Lemma 41, #ini ≤ 1 holds after Ct and thus the lemma holds immediately
in this case. Next, consider the case where #ini = 2 holds in Ct. By Lemma 43,
in Ct, there exists an agent v1 (resp., v2) with inir (resp., inib). By Lemma 46,
when v1 interacts with v2 at Ct → Ct+1, #ini ≤ 1 holds in Ct+1. By global fairness,
Ct+1 occurs infinitely often in Ξ. By Lemma 41, #ini ≤ 1 holds after Ct+1 and
thus the lemma holds.

From Lemmas 43 and 44, we can obtain the following lemma.

Lemma 47. Let ini ∈ {inir, inib} and rb ∈ {r, b}. If (ini, rb) → (x, y) exists,
γ(ini) = γ(x) and γ(rb) = γ(y) hold.

Proof. We assume, for the purpose of contradiction, that there exists (ini, rb)→
(x, y) such that γ(ini) ≠ γ(x) or γ(rb) ≠ γ(y) holds.

Let us consider a globally-fair execution Ξ of Alg with a complete commu-
nication graph G = (V,E) such that the number of agents n is five. Because
n = 5 ≤ P /2 and n is odd, we can use Lemma 44. Hence, by Lemmas 43 and
44, there exists a stable configuration Ct1 (resp., Ct2) of Ξ such that there is vr

(resp., vb), which is the only agent with inir (resp., inib) in Ct1 (resp., Ct2) and
there is vrb with rb. By the assumption, when vr (resp., vb) interacts with vrb at

126

Ct1 → Ct1+1 (resp., Ct2 → Ct2+1), vr (resp., vb) or vrb changes its color. Since Ct1

and Ct2 are stable, this is a contradiction.

From Lemmas 45 and 47, we can obtain the following corollary.

Corollary 10. Let us consider a state set Ini = {inir, inib}. When s1 ∉ Ini or
s2 ∉ Ini holds, if transition rule (s1, s2) → (s′1, s′2) exists then γ(s1) = γ(s′1) and
γ(s2) = γ(s′2) hold.

3.5 Impossibility under Weak Fairness

In this subsection, assuming arbitrary communication graphs and designated ini-
tial states and no base station, we show that there is no protocol that solves the
problem under weak fairness. Fischer and Jiang [30] proved the impossibility of
leader election for a ring communication graph. We borrow their proof technique
and apply it to the impossibility proof of a uniform 2-partition problem.

Theorem 25. There exists no protocol that solves the uniform 2-partition problem
with designated initial states and no base station under weak fairness assuming
arbitrary communication graphs.

Proof. For the purpose of contradiction, let us assume that there exists such a
protocol Alg.

First, we consider a complete graph G with three agents v0, v1, and v2. Let
(v0, v1), (v1, v2), and (v2, v0) be the edges of G. Furthermore, let Ξ = C0, C1, C2,
. . ., Ct, . . . be an execution of Alg, where Ct is a stable configuration. Without
loss of generality, we assume that #red = 1 and #blue = 2 hold in Ct.

Next, consider a ring G′ with six agents such that two copies of G are combined
to form G′. Let v′0, v′1, v′2, v′3, v′4, and v′5 be agents of G′, and let (v′0, v′1), (v′1,
v′5), (v′5, v′3), (v′3, v′4), (v′4, v′2), and (v′2, v′0) be edges of G′ (see Figure 11).

Now, let us construct the following execution Ξ′ = C ′0, C ′1, C ′2, C ′3

• For x and y such that either x = 0 or y = 0 holds, when vx interacts with
vy at Ci → Ci+1, v′x interacts with v′y at C ′2i → C ′2i+1, and v′x+3 interacts with
v′y+3 at C ′2i+1 → C ′2i+2.

127

Figure 11. Graphs G and G′.

• When v1 interacts with v2 at Ci → Ci+1, v′1 interacts with v′5 at C ′2i → C ′2i+1,
and v′4 interacts with v′2 at C ′2i+1 → C ′2i+2. Similarly, when v2 interacts with
v1 at Ci → Ci+1, v′5 interacts with v′1 at C ′2i → C ′2i+1, and v′2 interacts with
v′4 at C ′2i+1 → C ′2i+2.

If configurations C of G and C ′ of G′ satisfy the following condition, we say
that those configurations are equivalent.

• For i (0 ≤ i ≤ 2), s(vi,C) = s(v′i,C ′) = s(v′i+3,C ′) holds.

From now, by induction on the index of configuration, we show that Cr and
C ′2r are equivalent for any r ≥ 0. Clearly C0 and C ′0 are equivalent, so the base
case holds immediately. For the induction step, we assume that Cl and C ′2l are
equivalent, and then consider two cases of interaction at Cl → Cl+1.

First we consider the case where, for x and y such that either x = 0 or y = 0
holds, vx interacts with vy at Cl → Cl+1. In this case, at C ′2l → C ′2l+1, v′x interacts
with v′y and, at C ′2l+1 → C ′2l+2, v

′
x+3 interacts with v′y+3. By the induction assump-

tion, s(vx,Cl) = s(v′x,C ′2l) = s(v′x+3,C ′2l) and s(vy,Cl) = s(v′y,C ′2l) = s(v′y+3,C ′2l)
hold. Thus, agents v′x and v′x+3 change their state similarly to vx, and agents v′y
and v′y+3 change their state similarly to vy. Hence, Cl+1 and C ′2l+2 are equivalent
in this case.

Next, we consider the case where v1 and v2 interact at Cl → Cl+1. When v1

interacts with v2 at Cl → Cl+1, v′1 interacts with v′5 at C ′2l → C ′2l+1 and v′4 interacts
with v′2 at C ′2l+1 → C ′2l+2. When v2 interacts with v1 at Cl → Cl+1, v′5 interacts
with v′1 at C ′2l → C ′2l+1 and v′2 interacts with v′4 at C ′2l+1 → C ′2l+2. By the induction
assumption, s(v1,Cl) = s(v′1,C ′2l) = s(v′4,C ′2l) and s(v2,Cl) = s(v′2,C ′2l) = s(v′5,C ′2l)
hold. Thus, agents v′1 and v′4 change their state similarly to v1, and agents v′2 and

128

v′5 change their state similarly to v2. Hence, Cl+1 and C ′2l+2 are equivalent in this
case.

Thus, Cr and C ′2r are equivalent for any r ≥ 0.
This implies that, after C ′2t, #red = 2 and #blue = 4 hold. Moreover, since Ξ

is weakly fair, clearly Ξ′ is weakly fair. This is a contradiction.

4. Concluding Remarks

In this part, we considered the uniform 2-partition problem assuming arbitrary
communication graphs. We investigated the problem solvability under various
assumptions such as the existence of the base station, initial states of agents,
fairness, and symmetry. Concretely, with no base station under global fairness, we
proved that four is the minimum number of states per agent to enable asymmetric
protocols, and five is the minimum number of states per agent to enable symmetric
protocols. With the base station, we showed that three is the minimum number
of states per agent. Hence, we clarified that, for the uniform 2-partition under
global fairness, there is a difference of just two states between the protocol with
and without the base station.

Under weak fairness, we proved the impossibility to obtain an asymmetric
protocol with no base station. With a base station, we proposed a symmetric
protocol with 3P + 1 states under weak fairness.

129

Part V

Graph Class Identification
Protocols

1. Introduction

In this part, we aim to clarify the space complexity of the graph class identification
problems under various assumptions such as initial states of agents, fairness of
the execution, and an initial knowledge of agents. In the population protocol
model, Angluin et al. proposed various graph class identification protocols [6].
However, they focused on graph class identification protocols for directed graphs.
In this part, we propose graph class identification protocols for undirected graphs.
To the best of our knowledge, this is first research that deals with graph class
identification problems for undirected graphs.

We remark that some protocols in [6] for directed graphs can be easily ex-
tended to undirected graphs with designated initial states under global fairness
(see Table 11). Concretely, graph class identification protocols for directed lines,
directed rings, and directed stars can be easily extended to protocols for undi-
rected lines, undirected rings, and undirected stars, respectively. In addition,
the graph class identification protocol for bipartite graphs can be deduced from
the protocol that decides whether a given graph contains a directed cycle of odd
length. This is because, if we replace each edge of an undirected non-bipartite
graph with two opposite directed edges, the directed non-bipartite graph always
contains a directed cycle of odd length. On the other hand, the graph class iden-
tification protocol for directed trees cannot work for undirected trees because the
protocol uses a property of directed trees such that in-degree (resp., out-degree)
of each agent is at most one on an out-directed tree (resp., an in-directed tree).
Note that agents can identify trees if they understand the graph contains no
cycle. However, the graph class identification protocol for graphs containing a
directed cycle in directed graphs cannot be used to identify a (simple) cycle in
undirected graphs. This is because, if we replace an undirected edge with two

130

Table 11. The number of states to solve the graph class identification problems.
n is the number of agents and P is an upper bound of the number of agents

Model Graph Properties
Initial states Fairness Initial knowledge Line Ring Bipartite Tree k-regular Star

Designated
Global

n O(1)† O(1)† O(1)† O(1)* O(k logn)* O(1)†
P O(1)† O(1)† O(1)† O(1)* O(k logP)* O(1)†

None O(1)† O(1)† O(1)† O(1)* - O(1)†

Weak
n Unsolvable* O(n)*

P/None Unsolvable*

Arbitrary
Global/

n/P/None Unsolvable*
Weak

* Contributions of this paper †Deduced from Angluin et al. [6]

opposite directed edges, the two directed edges compose a directed cycle.

1.1 Our Contributions

In this part, we clarify the computability of graph class identification problems
for undirected graphs under various assumptions. A summary of our results is
given in Table 11. Under global fairness, we propose two graph class identification
protocols. One is a graph class identification protocol for trees with designated
initial states. This protocol works with constant number of states even if no
initial knowledge is given. The other is a graph class identification protocol for
k-regular graphs with designated initial states and the initial knowledge of the
upper bound P of the number of agents. On the other hand, under weak fairness,
we show that there exists no graph class identification protocol for lines, rings,
k-regular graphs, stars, trees, or bipartite graphs even if the upper bound P of the
number of agents is given. In the case where the number of agents n is given, we
propose a graph class identification protocol for stars and prove that there exists
no graph class identification protocol for lines, rings, k-regular graphs, trees, or
bipartite graphs. With arbitrary initial states, we prove that there is no protocol
for lines, rings, k-regular graphs, stars, trees, or bipartite graphs.

131

2. Graph Properties and Problem Definitions

We define graph properties treated in this dissertation as follows:

• A graph G satisfies property tree if there is no cycle on graph G.

• A graph G = (V,E) satisfies property k-regular if the degree of every agent
in V is k.

• A graph G satisfies property star if G is a tree with one internal agent and
n − 1 leaves.

• A graph G = (V,E) satisfies property bipartite if V can be divided into two
disjoint and independent sets U and W (i.e., U ⋂W = ∅ holds and there is
no edge connecting two agents in U or W).

• A graph G = (V,E) satisfies property line if E = {(v0, v1), (v1, v2), (v2, v3),
. . ., (vn−1, vn)} for V = {v1, v2, . . . vn}.

• A graph G = (V,E) satisfies property ring if the degree of every agent in V

is 2.

Let gp be an arbitrary graph property. The gp identification problem aims to
decide whether a given communication graph G satisfies property gp. In the gp

identification problem, the output set is Y = {yes, no}. Recall that the output
function γ maps a state of an agent to an output symbol in Y (i.e., yes or no).
A configuration C is stable if C satisfies the following conditions: There exists
yn ∈ {yes, no} such that 1) ∀a ∈ V ∶ γ(s(a,C)) = yn holds, and 2) for every
configuration C ′ such that C

∗Ð→ C ′, ∀a ∈ V ∶ γ(s(a,C ′)) = yn holds.
An execution Ξ = C0, C1, C2, . . . solves the gp identification problem if Ξ

includes a stable configuration Ct that satisfies the following conditions.

1. If a given graph G = (V,E) satisfies graph property gp, ∀a ∈ V ∶ γ(s(a,Ct)) =
yes holds.

2. If a given graph G = (V,E) does not satisfy graph property gp, ∀a ∈ V ∶
γ(s(a,Ct)) = no holds.

A protocol P solves the gp identification problem if every possible execution
Ξ of protocol P solves the gp identification problem.

132

3. Graph Class Identification Protocols

3.1 Tree Identification Protocol with No Initial Knowledge
under Global Fairness

In this section, we give a tree identification protocol (hereinafter referred to as
“TI protocol”) with 18 states and designated initial states under global fairness.

The basic strategy of the protocol is as follows. First, agents elect one leader
token, one right token, and one left token. Agents carry these tokens on a graph
by interactions as if each token moves freely on the graph. After the election,
agents repeatedly execute a trial to detect a cycle by using the tokens. The trial
starts when two adjacent agents x and y have the right token and the left token,
respectively. During the trial, x and y hold the right token and the left token,
respectively. To detect a cycle, agents use the right token and the left token as a
single landmark. The right token and the left token correspond to a right side and
a left side of the landmark, respectively. If agents can carry the leader token from
the right side of the landmark to the left side of the landmark without passing
through the landmark, the trial succeeds. Clearly, when the trial succeeds, there
is a cycle. In this case, an agent with the leader token recognizes the success
of the trial and decides that there is a cycle and thus the given graph is not a
tree. Then, the decision is conveyed to all agents by the leader token and thus all
agents decide that the given graph is not a tree. Initially, all agents think that
the given graph is a tree. Hence, unless the trial succeeds, all agents continue to
think that the given graph is a tree. Therefore, the protocol solves the problem.

Before we explain the details of the protocol, first we introduce variables at
agent a.

• LFa ∈ {Lse, Ll, Lr, Lt
se, Lt

se′ , Lse′ , Lt
l , Lt

r, ϕ}: Variable LFa, initialized to
Lr, represents a token held by agent a. If LFa is not ϕ, agent a has LFa

token. There are three types of tokens: a leader token (Lse, Lt
se, Lt

se′ , and
Lse′), a left token (Ll and Lt

l), and a right token (Lr and Lt
r). We show the

details of them later. ϕ represents no token.

• trea ∈ {yes, no}: Variable trea, initialized to yes, represents a decision of
the tree. If trea = yes holds for agent a, then γ(sa) = yes holds (i.e., a

133

decides that the given graph is a tree). If trea = no holds, then γ(sa) = no
holds (i.e., a decides that the given graph is not a tree).

The protocol uses 18 states because the number of values taken by variable LFa

is 9 and the number of values taken by variable trea is 2.
From now, we explain the details of the protocol. The protocol is given in

Algorithms 7 and 1.

Election of three tokens (lines 2–8) Initially, each agent has a right token.
When two agents with right tokens interact, the agents change one of the tokens
to a left token (lines 2–3). When two agents with left tokens interact, the agents
change one of the tokens to a leader token (lines 4–5). When two agents with
leader tokens interact, the agents delete one of the tokens (lines 6–7). As we
explain later, agents carry a token on a graph by interactions as if a token moves
freely on the graph. Thus, by the above behaviors, eventually agents elect one
right token, one left token, and one leader token.

In the cycle detection part, we will just show behaviors after agents complete
the token election (i.e., agents elect one right token, one left token, and one
leader token). However, in this protocol, agents may make a wrong decision
before agents complete the token election. Agents overcome this problem by the
following behaviors.

• Agents behave as if the leader token has the decision, and agents follow the
decision. Concretely, when agent a moves the leader token to agent b by an
interaction, agent b copies trea to treb. Since the leader token moves freely
on the graph, finally all agents follow the decision of the leader token.

• When two agents with leader tokens interact and agents delete one of them,
the agents reset tre of the remaining leader token. That is, if agent a has
the remaining leader token, it assigns yes to trea (line 8).

Note that the last token is elected by an interaction between agents with the
leader tokens (i.e., the last interaction in this election part occurs between agents
with the leader tokens). By this interaction, the elected leader token resets its
tre to yes. Hence, tre of the leader token is yes just after agents complete the
token election, and all agents follow tre of the leader token. Thus, because agents

134

Algorithm 7 A TI protocol (1/2)
Variables at an agent a:

LFa ∈ {Lse, Ll, Lr, Lt
se, Lt

se′ , Lse′ , Lt
l , Lt

r, ϕ}: Token held by the agent,
initialized to Lr.
trea ∈ {yes, no}: Decision of the tree, initialized to yes.

1: when agent a interacts with agent b do
{ The election of tokens }

2: if LFa, LFb ∈ {Lt
r, Lr} then

3: LFb ← Ll

4: else if LFa, LFb ∈ {Lt
l , Ll} then

5: LFb ← Lse

6: else if LFa, LFb ∈ {Lse, Lt
se, Lt

se′ , Lse′} then
7: LFa ← Lse, LFb ← ϕ
8: trea ← yes

{ Movement of tokens }
9: else if LFa ≠ ϕ ∧ LFb = ϕ then

10: if LFa ∈ {Lse, Lt
se, Lt

se′ , Lse′} then
11: treb ← trea
12: end if
13: if LFa = Lt

κ for κ ∈ {l, r} then
14: LFa ← Lκ

15: else if LFa = Lse′ ∨ LFa = Lt
se′ then

16: LFa ← Lse

17: end if
18: LFa↔ LFb *

{ Decision }
19: else if LFa = Lse ∧ LFb = Ll then
20: LFa ← Lt

l , LFb ← Lse′

21: treb ← trea
22: else if LFa = Lse′ ∧ LFb = Lr then
23: LFa ← Lt

r, LFb ← Lt
se

24: treb ← trea
25: else if LFa = Lt

se ∧ LFb = Lt
l then

26: LFa ← Ll, LFb ← Lt
se′

27: treb ← trea
28: else if LFa = Lt

se′ ∧ LFb = Lt
r then

29: LFa ← Lr, LFb ← Lse

30: treb ← no

* p↔ q means that p and q exchange values.
▷ Continued on the next page

135

Algorithm 1 A TI protocol (2/2)
31: else if LFa ≠ ϕ ∧ LFb ≠ ϕ then
32: if LFab ∈ {Lse, Lt

se, Lt
se′ , Lse′} for ab ∈ {a, b} then

33: trea ← treab, treb ← treab
34: end if
35: if LFab = Lt

κ for ab ∈ {a, b} and κ ∈ {l, r} then
36: LFab ← Lκ

37: end if
38: if LFab = Lse′ ∨ LFab = Lt

se ∨ LFab = Lt
se′ for ab ∈ {a, b} then

39: LFab ← Lse

40: end if
41: LFa↔ LFb

42: end if
43: end

correctly detect a cycle after the token election (we will show this later), agents
are not affected by the wrong decision.

Movement of tokens (lines 9–18) When an agent having a token interacts
with an agent having no token, the agents move the token (lines 9–18). Con-
cretely, the token moves by a behavior of line 18. In lines 10–12, tre of the
leader token is conveyed. We will explain the behavior of lines 13–17 after the
explanation of the trial of the cycle detection.

The trial of the cycle detection (lines 19–43) In this paragraph, we show
that, by a trial of the cycle detection, agents correctly detect a cycle after agents
complete the token election. To begin with, we explain the start of the trial. To
start the trial, agents place the left token and the right token next to each other.
To distinguish between a moving token and a placed token, we use a trial mode.
Agents regard right and left tokens in a trial mode as placed tokens. Thus, when
agents place the right token and the left token, agents make the right token and
the left token transition to the trial mode. An Lt

r token (resp., an Lt
l token)

represents the right token (resp., the left token) in the trial mode. An Lr token
(resp., an Ll token) represents the right token (resp., the left token) in a non-trial
mode.

An image of the start of the trial is shown in Figure 12. Figures 12(a) and
12(b) show the behavior such that agents make the left token and the right token

136

transition to the trial mode. First, an agent with an Lse token changes an Ll token
to an Lt

l token by an interaction (Figure 12(a)), where the Lse token represents
the default leader token. By the interaction, the agents exchange their tokens and
the Lse token transitions to an Lse′ token, where the Lse′ token represents the
leader token next to the Lt

l token. This behavior appears in lines 19–21. Then, an
agent with the Lse′ token changes the right token to a trial mode by an interaction
(Figure 12(b)). By the interaction, the agents exchange their tokens. Thus, since
the Lse′ token represents the leader token next to the Lt

l token, agents place an Lt
r

token next to the Lt
l token by the interaction. Hence, by the interaction, agents

place the tokens in the following order: the Lt
l token, the Lt

r token, the leader
token (Figure 12(c)). Moreover, by the interaction, the Lse′ token transitions to
an Lt

se token, where the Lt
se token represents the leader token trying to detect

a cycle. This behavior appears in lines 22–24. When agents place all tokens as
shown in Figure 12(c), a trial of the cycle detection starts.

From now, we explain the main behavior of the cycle detection (Figure 13
and 14). Let x (resp., y) be an agent having the Lt

r token (resp., the Lt
l token).

Let X (resp., Y) be a set of agents adjacent to x (resp., y). Let X ′ = X /{y} and
Y ′ = Y/{x}. In a trial, agents try to carry the leader token from an agent in X ′

to an agent in Y ′ without using the edge between x and y.
First, we explain the case where a trial succeeds (Figure 13). In the trial,

agents carry the Lt
se token while the Lt

r token and the Lt
l token are placed at

x and y, respectively. Concretely, if the following procedure occurs, the trial
succeeds.

1. Agents carry the Lt
se token from an agent in X ′ to an agent in Y ′ without

using the edge between x and y (Figure 13(c)).

2. An agent having the Lt
se token interacts with agent y having the Lt

l to-
ken. By the interaction, agents exchange their tokens and the Lt

se token
transitions to an Lt

se′ token (Figure 13(d)). In addition, by the interaction,
agents confirm that the Lt

l token was placed at y while agents move the
leader token to an agent in Y ′. The Lt

se′ token represents the leader token
that confirmed it. This behavior appears in lines 25–27.

3. Agent y having the Lt
se′ token interacts with agent x having the Lt

r token

137

(Figure 13(e)). By the interaction, agents confirm that the Lt
r token was

placed at x while agents move the leader token to an agent in Y ′. This
behavior appears in lines 28–30.

Clearly, if there is no cycle, agents do not perform this procedure. Thus, if agents
perform this procedure, an agent with the leader token decides that there is a
cycle and thus the given graph is not a tree (Figure 13(f)). Concretely, the agent
with the leader token changes its tre to no (line 30).

Next, we explain the case where a trial fails (Figure 14). There are three cases
where the trial fails: (1) An agent having the Lse′ or Lt

se′ token fails to interact
with the right token, (2) an agent having the Lt

l or Lt
r token fails to wait for

the leader token, and (3) an agent having the Lt
se token fails to interact with an

agent having the Lt
l token. Case (1) is that an agent having the Lse′ token (resp.,

the Lt
se′ token) interacts with an agent that does not have the Lr token (resp.,

the Lt
r token). Figure 14(A-1) and (B-1) shows an example of case (1). By the

interaction, agents make the token transition to the Lse token (lines 9–17 and
31–43). If agents make the Lse′ token transition to the Lse token, the condition
in line 22 is never satisfied in the trial. If agents make the Lt

se′ token transition
to the Lse token, the condition in line 28 is never satisfied in the trial. Case
(2) is that an agent having an Lt

l token (resp., an Lt
r token) interacts with an

agent that does not have the Lt
se token (resp., the Lt

se′ token). Figure 14(A-2)
and (B-2) shows an example of case (2). By the interaction, agents make the Lt

l

token (resp., the Lt
r token) transition to an Ll token (resp., an Lr token) by the

behavior of lines 13–14 or 31–37, and thus the condition in line 25 or 28 is never
satisfied in the trial. Case (3) is that an agent having the Lt

se token interacts with
an agent having a token that is not the Lt

l token. Figure 14(A-3) and (B-3) shows
an example of case (3). By the interaction, agents make the Lt

se token transition
to the Lse token (lines 31–43). If agents make the Lt

se token transition to the Lse

token, the condition in line 25 is never satisfied in the trial.
Agents have an infinite number of chances of the trial. This is because agents

can make the leader token, the left token, and the right token transition to the
Lse token, the Ll token, and the Lr token, respectively, from any configuration
(lines 9–18 and 31–43). Hence, from global fairness, eventually agents make the
left and right tokens transition to the trial mode on the cycle and then agents

138

(a) (b) (c)

Figure 12. An image of the start of the trial

(d) (e) (f)(c)

Figure 13. An image of the success of the trial

find the cycle by the leader token. Thus, eventually a trial succeeds if there is a
cycle.

By the behaviors of the trial, since tre of the leader token is yes just after
agents complete the token election, tre of the leader token converges to a correct
value. Since eventually all agents follow the decision of the leader token, all agents
correctly decide whether the given graph is a tree or not.

Correctness

First of all, if the number of agents n is less than 3, clearly a leader token is not
generated in Algorithm 7. Hence, in the case, trea of each agent a converges to
yes. Thus, since the given graph with n < 3 is a tree, each agent make a correct
decision in this case. From now on, we consider the case where the number of
agents n is at least 3.

To begin with, we define some notions for the numbers of the leader, left, and
right tokens as follows:

Definition 19. The number of agents with Lr or Lt
r tokens is denoted by #Lr.

139

(B-1)(A-1) (B-2)(A-2)

(B-3)(A-3)

Figure 14. Images of the fail of the trial

The number of agents with Ll or Lt
l tokens is denoted by #Ll. The number of

agents with Lse, Lt
se, Lt

se′, or Lse′ tokens is denoted by #Lse.

Next, we define a configuration where agents complete the token election.

Definition 20. For an execution Ξ = C0, C1, . . ., we say that agents complete the
token election at Ci if #Lr > 1, #Ll > 1, or #Lse > 1 holds in Ci−1, and #Lr = 1,
#Ll = 1, and #Lse = 1 hold in Ci.

From now, we show that agents eventually complete the token election, and,
for agent a with the leader token, trea = yes hold just after the election.

Lemma 48. For any globally-fair execution Ξ = C0, C1, . . ., there is a configura-
tion Ci at which agents complete the token election.

In Ci, there exists an agent a that has an Lse token and trea is yes. Moreover,
in any configuration after Ci, #Lr = 1, #Ll = 1, and #Lse = 1 hold.

Proof. Consider a globally-fair execution Ξ = C0, C1, C2, From the pseu-
docode, when an agent having a leader token interacts with an agent having no
leader token, agents move the leader token. Similarly, when an agent having
a left token (resp., a right token) interacts with an agent having no left token
(resp., no right token), agents move the token. Only if an agent having a leader

140

token interacts with an agent having a leader token, the number of leader tokens
decreases. Similarly, only if an agent having a left token (resp., a right token)
interacts with an agent having a left token (resp., a right token), the number of
the tokens decreases. These imply that, from global fairness, if there are two or
more tokens of the same type (leader, left, or right), eventually adjacent agents
have the tokens and then they interact.

Hence, from global fairness, because there is no behavior to increase #Lr,
#Lr continues to decrease as long as #Lr ≥ 2 holds, by the behavior of lines
2–3. Thus, after some configuration, #Lr = 1 holds and the behavior of lines
2–3 does not occur. After that, because there is no behavior to increase #Ll

except for the behavior of lines 2–3, #Ll continues to decrease as long as #Ll ≥ 2
holds, by the behavior of lines 4–5. Thus, after some configuration, #Ll = 1 holds
and the behavior of lines 4–5 does not occur. After that, because there is no
behavior to increase #Ll except for the behavior of lines 4–5, #Lse continues to
decrease as long as #Lse ≥ 2 holds, by the behavior of lines 6–7. Thus, after some
configuration, #Lse = 1 holds. Hence, there exists a configuration Ci such that
#Lr = 1, #Ll = 1, and #Lse = 1 hold after Ci and #Lr > 1, #Ll > 1, or #Lse > 1
holds in Ci−1.

If n > 3 holds, agents execute lines 6–8 of the pseudocode at transition Ci−1 →
Ci because only the behavior of lines 6–8 decreases the number of leader tokens.
For an agent a with the leader token, the leader token transitions to an Lse token
and trea transitions to yes when agents execute lines 6–8. If n = 3 holds, agents
execute lines 4–5 of the pseudocode at transition Ci−1 → Ci, and the first leader
token is generated by this transition (and hence the leader token is the Lse token
and trea = yes for an agent a with the Lse token). These imply that, in Ci, there
exists an agent a that has the Lse token and trea is yes. Therefore, the lemma
holds.

From Lemma 48, after agents complete the token election, only one leader
token remains. From now on, we define tre of the leader token as trea such that
agent a has the leader token.

From the pseudocode, tre of the leader token is conveyed to all agents. This
implies that, after tre of the leader token converges, tre of each agent also con-
verges to the same value as tre of the leader token. Hence, from now, we show

141

that tre of the leader token converges to no (resp., yes) if there is a cycle (resp.,
no cycle) on the graph.

First, we show that tre of the leader token converges to yes if there is no cycle
on the graph.

Lemma 49. For any globally-fair execution Ξ, if there is no cycle on a given
communication graph, tre of the leader token converges to yes.

Proof. Variable tre of the leader token transitions to no only if agents execute
lines 28–30. From Lemma 48, when agents complete the token election, tre of
the leader token transitions to yes. Thus, for the purpose of contradiction, we
assume that, for a globally-fair execution Ξ with a graph G containing no cycle,
agents execute lines 28–30 after agents complete the token election. From now,
let us consider the configuration after agents complete the token election. We
first prove that, to execute lines 28–30, agents execute the following procedure.

1. By executing lines 19–21, an Lse′ token and an Lt
l token are generated.

2. By executing lines 22–24, an Lt
se token and an Lt

r token are generated.

3. By executing lines 25–27, an Lt
se′ token is generated.

4. Agents execute lines 28–30.

From now, we show why agents execute the above procedure to execute lines 28–
30. To execute lines 28–30, an Lt

se′ token is required (line 28). Recall that, when
agents complete the token election, the leader token is Lse. Hence, to generate an
Lt
se′ token, agents need to execute lines 25–27 (i.e., the item 3 of the procedure

is necessary). This is because the behavior of lines 25–27 is the only way to
generate an Lt

se′ token. To execute lines 25–27, an Lt
se token is required (line 25).

To generate an Lt
se token, agents need to execute lines 22–24 (i.e., the item 2 of

the procedure is necessary) because the behavior of lines 22–24 is the only way to
generate an Lt

se token. Similarly, to execute lines 22–24, an Lse′ token is required
(line 22), and, to generate an Lse′ token, agents need to execute lines 19–21 (i.e.,
the item 1 of the procedure is necessary) because the behavior of lines 19–21 is
the only way to generate an Lse′ token.

142

In the procedure, agents may perform the behaviors of some items multiple
times by resetting the leader token to a Lse token (e.g., agents may perform the
behaviors of items 1, 2, 3, and 4 after performing the behaviors of items 1 and
2). However, we can observe that agents finally execute a procedure such that
agents perform the behavior of each item only once in the procedure. From now
on, we consider only such a procedure.

From the pseudocode, to execute lines 28–30, the following three conditions
should hold during the procedure. Note that, after agents complete the token
election, #Lr = 1, #Ll = 1, and #Lse = 1 hold.

• After executing lines 19–21, an agent having an Lse′ token does not interact
with other agents until the agent interacts with an agent having an Lr token
(i.e., the agent interacts only when agents execute lines 22–24). Otherwise,
agents make the Lse′ token transition to an Lse token and cannot execute
lines 22–24 (i.e., the item 2 of the procedure cannot be executed).

• After executing lines 19–21, an agent having an Lt
l token does not interact

with other agents until the agent interacts with an agent having an Lt
se token

(i.e., the agent interacts only when agents execute lines 25–27). Otherwise,
agents make the Lt

l token transition to an Ll token and cannot execute lines
25–27 (i.e., the item 3 of the procedure cannot be executed).

• After executing lines 22–24, an agent having an Lt
r token does not inter-

act with other agents until the agent interacts with an agent having an
Lt
se′ token (i.e., the agent interacts only when agents execute lines 28–30).

Otherwise, agents make the Lt
r token transition to an Lr token and cannot

execute lines 28–30 (i.e., the item 4 of the procedure cannot be executed).

From items 1 and 2, an Lt
l token exists next to an Lse′ token when agents

execute lines 22–24. Hence, from the pseudocode, an Lt
r token and an Lt

l token
are next to each other just after agents execute lines 22–24. In addition, an Lt

se

token and the Lt
r token are also next to each other just after agents execute lines

22–24. To execute lines 25–27, an agent having the Lt
se token must interact with

the agent having the Lt
l token without meeting the agent having the Lt

r token.
Furthermore, the agent having the Lt

r token must not interact with other agents

143

until agents execute lines 28–30. By the assumption, since agents execute lines
28–30, there are two paths from the agent having the Lt

se token to the agent
having the Lt

l token just after agents execute lines 22–24. One of the paths is the
path via the agent having the Lt

r token. The other is the path without passing
through the agent having the Lt

r token. Therefore, there is a cycle in G. This is
a contradiction.

Next, we show that tre of the leader token converges to no if there is a cycle
on the graph.

Lemma 50. For any globally-fair execution Ξ, if there is a cycle on a given
communication graph, tre of the leader token converges to no.

Proof. Consider a globally-fair execution Ξ with a graph G containing a cycle. In
Ξ, let C be a configuration such that C occurs infinitely often. From Lemma 48,
eventually agents complete the token election and thus C occurs infinitely often
after agents complete the token election.

Clearly, each condition in lines 2–8 is not satisfied after C. Thus, from the
pseudocode, a token moves by any interaction (except for null transitions) after
C. This implies that tokens can move freely on G after C. Hence, from global
fairness, a configuration C ′ such that all tokens are on a cycle occurs. Moreover,
there exists a configuration C ′′ such that C ′′ is reachable from C ′ and Lse, Ll,
and Lr tokens are on the cycle in C ′′. This is because C ′′ occurs if the following
behaviors occur from C ′.

1. Making Ll and Lr tokens: If an agent having an Lt
l (or Ll) token and an

agent having an Lt
r (or Lr) token can interact in C ′, they interact and then

an Ll token and an Lr token are generated by the behavior of lines 31–43.
Otherwise, since the left token and the right token are on a cycle in C ′ (and
hence an agent with the token has at least two edges), each agent having
the token can interact with an agent having no token. In the case, an agent
having an Lt

l token (resp., an Lt
r token) interacts with an agent having no

token, and an Ll token (resp., an Lr token) is generated.

2. Making an Lse token: If the leader token is an Lse′ token or an Lt
se′ token,

an agent having the token interacts with an agent having an Ll token or no

144

token. As a result, an Lse token is generated. If the leader token is an Lt
se

token, the Lt
se token moves to an agent that is on a cycle and is adjacent

to an agent with an Ll token (or an Lr token). Then, an agent having the
Lt
se token interacts with an agent having the Ll token (or the Lr token) and

then an Lse token is generated.

There exists a configuration such that the configuration is reachable from C ′′

and, on a cycle, an agent having an Lse token is adjacent to an agent having
an Ll token in the configuration. This is because tokens can move freely on a
graph. In the configuration, agents can execute lines 19–21. If agents execute
lines 19–21, the configuration transitions to a configuration such that Lse′ , Lt

l ,
and Lr tokens exist in a cycle. From the configuration, the Lr token can move to
an agent next to an agent with the Lse′ token while an agent with the Lse′ token
and an agent with the Lt

l token do not interact with any agent. This is because
they are on a cycle and the Lr token can move along the cycle. Then, an agent
having the Lse′ token can interact with an agent having the Lr token and then
agents execute lines 22–24. Such behavior causes a configuration such that Lt

se,
Lt
l , and Lt

r tokens are on a cycle. From the configuration, the Lt
se token can move

to an agent next to an agent having the Lt
l token while an agent having the Lt

r

token and an agent having the Lt
l token do not interact with any agent. This is

because they are on a cycle and the Lt
se token can move along the cycle. Then,

an agent having the Lt
se token can interact with an agent having the Lt

l token
and agents can execute lines 25–27. After that, an agent having an Lt

se′ token
can interact with an agent having the Lt

r token and agents can execute lines 28–
30. Hence, from global fairness, since each of the configurations occurs infinitely
often, agents execute lines 28–30 infinitely often and agents assign no to tre of
the leader token infinitely often. Although tre of the leader token transitions to
yes if agents execute line 8, agents does not execute line 8 after C. Therefore,
the lemma holds.

From Lemmas 48, 49, and 50, we prove the following theorem.

Theorem 26. Algorithms 7 and 1 solve the tree identification problem. That is,
there exists a protocol with constant states and designated initial states that solves
the tree identification problem under global fairness.

145

Proof. From Lemma 48, there is a configuration C such that tre of the leader
token is yes in C and agents complete the token election at C. Hence, from
Lemmas 49 and 50, if there is a cycle (resp., no cycle) in a given communication
graph, tre of the leader token converges to no (resp., yes). From the pseudocode,
since each token can move freely on the graph, tre of each agent converges to the
same value of tre of the leader token. Thus, if there is a cycle (resp., no cycle)
in a given communication graph, tre of each agent converges to no (resp., yes).
Therefore, the theorem holds.

3.2 k-regular Identification Protocol with Knowledge of P

under Global Fairness

In this subsection, we give a k-regular identification protocol (hereinafter referred
to as “kRI protocol”) with O(k logP) states and designated initial states under
global fairness. In this protocol, the upper bound P of the number of agents is
given. However, we also show that the protocol solves the problem with O(k logn)
states if the number of agents n is given.

From now, we explain the basic strategy of the protocol. First, agents elect a
leader token. In this protocol, agents with leader tokens leave some information
in agents. To keep only the information that is left after completion of the
election, we introduce level of an agent. If an agent at level i has the leader
token, we say that the leader token is at level i. Agents with leader tokens leave
the information with their levels. Before agents complete the election of leader
tokens, agents keep increasing their levels (we explain later how to increase the
level), and agents discard the information with smaller levels when agents increase
their levels. When agents complete the election of leader tokens, the agent with
the leader token is the only agent that has the largest level. Then, all agents
eventually converge to the level. Hence, since agents discard the information
with smaller levels, agents virtually discard any information that was left before
agents complete the election. From now on, we consider configurations after
agents elect a leader token and discard any outdated information.

Now, we explain how the protocol solves the k-regular identification problem
by using the leader token. Concretely, each agent examines whether its degree

146

is at least k, and whether its degree is at least k + 1. If an agent confirms that
its degree is at least k but does not confirm that its degree is at least k + 1, then
the agent thinks that its degree is k. Each agent examines whether its degree
is at least k as follows: An agent a with the leader token checks whether a can
interact with k different agents. To check it, agent a with the leader token marks
adjacent agents and counts how many times a has marked. Concretely, when
agent a having the leader token interacts with an agent b, agent a marks agent
b by making b change to a marked state. Agent a counts how many times a

interacts with an agent having a non-marked state (hereinafter referred to as “a
non-marked agent”). If agent a having the leader token interacts with k non-
marked agents successively, a decides that a can interact with k different agents
(i.e., its degree is at least k).

If an agent confirms that its degree is at least k, the agent stores this in-
formation locally. To do this, we introduce a variable loca at agent a: Variable
loca ∈ {yes, no}, initialized to no, represents whether the degree of agent a is at
least k. If loca = yes holds, agent a thinks that its degree is at least k. If an agent
a confirms that its degree is at least k, agent a stores this information locally by
making loca transition from no to yes.

Next, we show how agents decide whether the graph is k-regular. In this
protocol, first an agent with the leader token decides whether the graph is k-
regular, and then the decision is conveyed to all agents by the leader token. We
use variable rega at agent a for the decision: Variable rega ∈ {yes, no}, initialized
to no, represents the decision of the k-regular graph. If rega = yes holds for agent
a, then γ(sa) = yes holds. If rega = no holds, then γ(sa) = no holds. Whenever
an agent a with the leader token makes loca transition to yes, agent a makes
rega transition to yes. If an agent a with the leader token finds an agent b such
that locb = no or its degree is at least k + 1, agents reset rega to no. Note that,
since all agents follow the decision of the leader token, this behavior practically
resets reg of each agent. If there is such agent b, agent a with the leader token
eventually finds agent b since the leader token moves freely on the graph. Hence,
if the graph is not k-regular, reg of the leader token (i.e., rega such that agent
a has the leader token) transitions to no infinitely often. On the other hand,
if the graph is k-regular, eventually loca of each agent a transitions from no to

147

yes. Let us consider a configuration where loc of each agent other than an agent
x is yes and locx is no. After the configuration, when agent x makes locx and
regx transition to yes, agent x has the leader token (i.e., reg of the leader token
transitions to yes). Hence, since there is no agent such that its loc is no or its
degree is at least k + 1, reg of the leader token never transitions to no afterwards
and thus reg of the leader token converges to yes. Thus, since agents convey the
decision of the leader token to all agents, eventually all agents make a correct
decision.

Before we explain the details of the protocol, first we introduce other variables
at agent a.

• LFa ∈ {L0, L1, . . ., Lk, ϕ, ϕ′}: Variable LFa, initialized to L0, represents
states for a leader token and marked agents. If LFa is neither ϕ nor ϕ′,
agent a has a leader token. In particular, if LFa = Li(i ∈ {0, 1, . . ., k})
holds, agent a has an Li token. Moreover, LFa = Li represents that agent a
has interacted with i different non-marked agents (i.e., agent a has at least
i edges). If LFa = ϕ holds, agent a has no leader token. If LFa = ϕ′ holds,
agent a has no leader token and a is marked by other agents.

• levela ∈ {0, 1, 2, . . ., ⌊logP ⌋}: Variable levela, initialized to 0, represents
the level of agent a.

The protocol uses O(k logP) states because the number of values taken by vari-
able LFa is k+2, the number of values taken by variable levela is ⌊logP ⌋+1, and
the number of values taken by other variables (loca and rega) is constant.

Now, we explain the details of the protocol. The protocol is given in Algorithm
2.

The election of leader tokens with levels (lines 2–7 and 26–30 of the
pseudocode) Initially, each agent has the leader token and the level of each
agent is 0. If two agents with leader tokens at the same level interact, agents delete
one of the leader tokens and increase the level of the agent with the remaining
leader token by one (lines 2–5). Moreover, loca and rega transition to no (lines
6–7), where agent a is the agent with the remaining leader token. Next, we
consider the case where two agents at different levels interact. If an agent a at

148

Algorithm 2 A kRI protocol
Variables at an agent a:

LFa ∈ {L0, L1, . . ., Lk, ϕ, ϕ′}: States for a leader token and marked agents,
initialized to L0.
levela ∈ {0, 1, 2, . . ., ⌊logP ⌋}: States for the level of agent a, initialized to 0.
loca ∈ {yes, no}: States representing whether the degree of agent a is at least
k, initialized to no.
rega ∈ {yes, no}: Decision of the k-regular graph, initialized to no.

1: when agent a interacts with agent b do
⟪ The behavior when agents have the same level ⟫

2: if levela = levelb then
{ The election of leader tokens }

3: if LFa = Lx ∧ LFb = Ly (x, y ∈ {0, 1, 2, . . ., k}) then
4: levela ← levela + 1
5: LFa ← L0, LFb ← ϕ
6: rega ← no
7: loca ← no

{ Decision and movement of the token }
8: else if LFa = Lx ∧ LFb = ϕ (x ∈ {0, 1, 2, . . ., k − 2}) then
9: LFa ← Lx+1, LFb ← ϕ′

10: else if LFa = Lx ∧ LFb = ϕ′ (x ∈ {0, 1, 2, . . ., k}) then
11: LFa ← ϕ, LFb ← L0

12: regb ← rega
13: else if LFa = Lk−1 ∧ LFb = ϕ then
14: LFa ← Lk, LFb ← ϕ′

15: if loca = no then
16: rega ← yes
17: loca ← yes
18: end if

{ Reset of reg of the leader token (the degree of agent a is at least k + 1) }
19: else if LFa = Lk ∧ LFb = ϕ then
20: LFa ← L0, LFb ← ϕ′

21: rega ← no
22: end if

{ Reset of reg of the leader token (loca or locb is no) }
23: if loca = no ∨ locb = no then
24: rega ← no, regb ← no
25: end if
⟪ The behavior when agents have different levels ⟫

26: else if levela > levelb then
27: levelb ← levela
28: locb ← no
29: LFb ← ϕ
30: end if
31: end

149

the larger level interacts with an agent b at the smaller level, agent b update its
level to the same level as the larger level (regardless of possession of the leader
token). This behavior appears in lines 26–27. Furthermore, at the interaction,
agent b resets locb to no (line 28), and agent b deletes its leader token if agent b

has the leader token (line 29). We can observe that there is level lev_last such
that all agents converge to level lev_last, because agents update their levels by
only above behaviors and there is no behavior that increases the number of leader
tokens. Since an agent at the largest level updates its level only if the agent has
the leader token, there is an agent with the leader token at the largest level in any
configuration. Thus, since each agent converges to level lev_last and the leader
token moves freely among agents at the same level (we will show this movement
behavior later), eventually agents elect a leader token by above behaviors.

Agents at the largest level delete the leader token only by the behavior of
lines 3–7. This implies that, if at least two agents at the largest level have the
leader token, eventually agents at the largest level with the leader tokens interact
and then the largest level is updated. Hence, only one leader token can obtain
level lev_last. When an agent a with the leader token updates its level to level
lev_last by the behavior of lines 3–7, agent a resets loca and rega to no. Since
other agents are at levels smaller than level lev_last just after the interaction,
other agents will reset their loc to no by the behavior of line 28. From these facts,
the interaction causes a configuration such that 1) the number of agents with the
leader token at level lev_last is one, 2) rega = no and loca = no hold for the agent
a with the leader token at level lev_last, and 3) other agents will reset their loc
after the configuration.

Note that, since agents delete one leader token by the behavior of lines 3–7, at
most half of leader tokens at level i update their level to i+1 for 0 ≤ i. Thus, since
there is no behavior that increases the number of leader tokens, the maximum
level is at most ⌊logn⌋. In this protocol, since only the upper bound P of the
number of agents is given, the maximum level is at most ⌊logP ⌋.

Search for an agent whose degree is at least k or at least k+1 with levels
(lines 8–18 of the pseudocode) First of all, this search behavior is performed
only on the same level (line 2). Recall that eventually all agents converge to the

150

same level (and agents discard the information at other levels).
In this behavior, to examine degrees of agents, agents use the leader token.

An agent having the leader token confirms whether the agent can interact with
k different agents, so that the agent confirms that its degree is at least k. To
confirm it, the agent marks adjacent agents one by one and counts how many
times the agent interacts with a non-marked agent. Concretely, when an agent
a having the Li token interacts with an agent b having ϕ, agent a marks agent b

(i.e., LFb transitions to ϕ′). At the interaction, a makes the Li token transition
to the Li+1 token. These behaviors appear in lines 8–9. If agent a obtains the
Lj token by such an interaction, agent a has interacted with j different agents
because a has marked j non-marked agents. Thus, when agent a having the Lk−1

token interacts with an agent with ϕ, agent a notices that a has at least k edges
and thus a updates loca and rega to yes (lines 13–18). Similarly, when agent a

having the Lk token interacts with an agent with ϕ, agent a notices that a has
at least k + 1 edges and thus a updates rega to no (lines 19–22).

When agent a having the Li token interacts with a marked agent b (i.e., agent b
with ϕ′), agent a resets the Li token to the L0 token. Moreover, at the interaction,
a deletes a mark of b and carries the L0 token to b (i.e., LFb = ϕ′ transitions to
L0 and LFa transitions to ϕ). These behaviors appear in lines 10–12. By these
behaviors, the leader token can move freely on a graph because an agent having
the leader token can mark any adjacent agent by an interaction. Note that, after
the leader token moves, some agents may remain as marked agents. However,
even in the case, eventually agents correctly detect an agent whose degree is at
least k or k+1 because an agent with the leader token can delete marks of adjacent
agents freely. Concretely, an agent a having the leader token deletes a mark of
the adjacent agent b by making interaction between a and b three times. Figure
15 shows the example of the three interactions. By the interactions, the agents
carry the leader token from a to b and then agent b returns the leader token to a.
As a result, agent a has the leader token again and the marked agent b transitions
to a non-marked agent.

By the above behaviors, eventually each agent with degree k makes its loc

transition to yes. If agents find some agent a with loca = no, agents make reg of
the leader token transition to no (lines 23–25). Thus, if there is an agent whose

151

Figure 15. The example of deleting a mark

degree is not k, reg of the leader token converges to no. On the other hand, if
the degree of each agent is k, eventually each agent makes its loc transition to
yes, and there is no behavior that makes reg of the leader token transition to
no afterwards. Hence, since loc and reg of the leader token transition to yes

simultaneously by lines 15–18, reg of the leader token converges to yes in the
case. When agents move the leader token, agents convey reg of the leader token
(line 12). Therefore, eventually each agent makes a correct decision.

Correctness

First of all, we define some notations for the level. Let lev(a,C) be level of
agent a in a configuration C. For a set of all agents V = {v1, v2, . . ., vn} and a
configuration C, let lev_max(C) =maxa∈V {lev(a,C)}.

To begin with, we show that, in any execution of Algorithm 2, the behavior of
line 4 is not performed by agent a such that levela = ⌊logn⌋ holds. This implies
that the domain of variable level is valid. Note that each agent a increases its
levela one by one.

Lemma 51. In any execution, agent a does not increase levela if levela = ⌊logn⌋
holds.

Proof. First of all, from the pseudocode, there is no behavior that decreases the
number of leader tokens, and there is no behavior that decreases the level of an
agent.

From now, we show that, in any execution, at most one leader token at level
⌊logn⌋ can occur. From the pseudocode, the number of leader tokens at some
level increases only if the behavior of lines 3–7 occurs. Hence, by the behavior of
lines 3–7, if the number of leader tokens at level i increases by one, agents delete

152

two leader tokens at level i− 1. Thus, since an initial level of each agent is 0 and
the initial number of leader tokens is n, at most one leader token at level ⌊logn⌋
can occur.

From the pseudocode, the behavior of line 4 occurs only if two agents with
leader tokens at the same level interact. Hence, if levela = ⌊logn⌋ holds, agent a

cannot increase levela and thus the lemma holds.

From now, we show that Algorithm 2 solves the problem. First, we prove that,
in any configuration C of any execution, there exists an agent with the leader
token at level lev_max(C).

Lemma 52. Let us consider a graph G = (V,E), where V = {v1, v2, . . ., vn}. For
any configuration C of any execution Ξ with G, there exists an agent vm with the
leader token such that lev(vm,C) = lev_max(C) holds.

Proof. For any graph G = (V,E), let us consider an execution Ξ = C0, C1, C2, . . .
of the protocol, where V = {v1, v2, . . ., vn}. We prove the lemma by induction on
the index of a configuration. In the base case (C0), clearly levelv1 = levelv2 = ⋯ =
levelvn = lev_max(C0) = 0 holds. For the induction step, we assume that, there
exists an agent vm with the leader token such that lev(vm,Ck) = lev_max(Ck).
Let us consider an interaction at Ck → Ck+1 for four cases.

• Case where the behavior of lines 3–7, 10–12, or 26–30 does not occur at
Ck → Ck+1: From the pseudocode, by the interaction, agents do not update
levelvi for 1 ≤ i ≤ n. In addition, by the interaction, agents do not move
the leader token, and the number of leader tokens is not changed. Hence,
in this case, agent vm with the leader token satisfies that lev(vm,Ck+1) =
lev_max(Ck+1).

• Case where the behavior of lines 3–7 occurs at Ck → Ck+1: From the
pseudocode, if an agent increases its level by the interaction, the agent
has the leader token after the interaction. Hence, if lev_max(Ck+1) =
lev_max(Ck) holds, agent vm does not join the interaction and thus lev(vm,Ck+1) =
lev_max(Ck+1) holds and agent vm has the leader token in Ck+1. On the
other hand, if lev_max(Ck+1) > lev_max(Ck) holds, one of the interacting
agents v′m with the leader token satisfies lev(vm′ ,Ck+1) = lev_max(Ck+1).

153

• Case where the behavior of lines 10–12 occurs at Ck → Ck+1: From the
pseudocode, by the interaction, agents move the leader token from an
interacting agent to the other interacting agent. The interacting agents
have the same level before the interaction. Moreover, by the interaction,
agents do not change their level and thus lev_max(Ck+1) = lev_max(Ck)
holds. Hence, if agent vm does not join the interaction, lev(vm,Ck+1) =
lev_max(Ck+1) holds and agent vm has the leader token in Ck+1. If agent
vm joins the interaction, other interacting agent vm′ with the leader token
satisfies lev(vm′ ,Ck+1) = lev_max(Ck+1).

• Case where the behavior of lines 26–30 occurs at Ck → Ck+1: From the
pseudocode, by the interaction, an interacting agent a at the larger level do
not change its variables, and the other interacting agent b at the smaller
level becomes the same level as the level of agent a. Hence, in this case,
agent vm with the leader token satisfies that lev(vm,Ck+1) = lev_max(Ck+1)
(whether vm joins the interaction or not).

In each case, there exists an agent vm with the leader token such that lev(vm,Ck+1) =
lev_max(Ck+1). Therefore, the lemma holds.

Next, we show that, in any execution, the level of each agent converges to the
same value.

Lemma 53. For any execution Ξ with some graph G, there exist a configuration
C and lev_last (0 ≤ lev_last ≤ ⌊logn⌋) such that levela = lev_last holds for each
agent a after C.

Proof. Let us consider a graph G = (V,E) and an execution Ξ = C0, C1, . . .

with G, where V = {v1, v2, . . ., vn}. From the pseudocode, since there is no
behavior that increases the number of leader tokens, the number of leader tokens
does not change after some configuration Ci. This implies that, after Ci, the
behavior of lines 3–7 does not occur. Thus, no agent can obtain the level larger
than lev_max(Ci). Let us consider two agents vx and vy that interact at Cj →
Cj+1 for j ≥ i. If lev(vx,Cj) > lev(vy,Cj) holds, lev(vy,Cj+1) = lev(vx,Cj+1) =
lev(vx,Cj) holds by the behavior of lines 26–30. Hence, since there is no behavior
that decreases level of an agent, lev(v1,Ck) = lev(v2,Ck) = ⋯ = lev(vn,Ck) =

154

lev_max(Ci) holds for a configuration Ck (k ≥ i) from global fairness. Since
each agent maintains lev_max(Ci) after Ck, the lemma holds.

Let us consider some execution Ξ∗ with some graph G. Let lev_last be level
such that levela = lev_last holds for each agent a after some configuration of
Ξ∗. From Lemma 53, such lev_last exists. From now, we show some properties
about Ξ∗ and lev_last. First, we prove that, in Ξ∗, after some of agents obtains
level lev_last, there is only one leader token that is at level lev_last.

Lemma 54. In Ξ∗, after some of agents obtains level lev_last, there is only one
leader token that is at level lev_last.

Proof. Let C be a configuration in Ξ∗ such that the first agent at level lev_last

appears (i.e., there is an agent at level lev_last in C and there is no agent that
is at level lev_last before C). We show that there is only one leader token that
is at level lev_last after C. First of all, from Lemma 52, after C, there is at least
one leader token that is at level lev_last. Thus, for the purpose of contradiction,
we assume that there exists a configuration C ′ of Ξ∗ such that there are two or
more leader tokens that are at level lev_last in C ′ and C ′ occurs after C. Let
ω1 and ω2 be the leader tokens in C ′. Let us consider a configuration C ′′ such
that levela = lev_last holds for each agent a after C ′′ and C ′′ occurs after C ′. If
agents delete ω1 or ω2, the behavior of lines 3–7 or 26–30 occurs. However, both
behaviors must not occur from the definition of lev_last. Hence, there also exist
ω1 and ω2 in C ′′.

After C ′′, when an agent having a leader token interacts with an agent hav-
ing no leader token, agents move the leader token, or, by making an additional
interaction between them, agents move the leader token. This implies that ω1

and ω2 can move to any agent after C ′′. Hence, from global fairness, eventually
an agent having ω1 interacts with an agent having ω2 and then they update their
levels to lev_last+1 by the behavior of lines 3–7. This contradicts the definition
of lev_last.

In addition, since agents at level lev_last do not delete the leader token,
Lemma 54 can be extended as follow.

Lemma 55. In Ξ∗, only one leader token can be at level lev_last.

155

Next, we show properties about an agent at level lev_last whose degree is
less than k + 1.

Lemma 56. In Ξ∗, an agent a at level lev_last does not perform the behavior of
lines 15–18 if the degree of agent a is less than k. Moreover, in Ξ∗, an agent b at
level lev_last does not perform the behavior of lines 19–22 if the degree of agent
b is less than k + 1.

Proof. In Ξ∗, when an agent c with the leader token updates its level from
lev_last − 1 to lev_last by the behavior of lines 3–7, LFc transitions to L0.
Note that, from Lemma 55, only agent c with the leader token at level lev_last

updates its level from lev_last−1 to lev_last by the behavior of lines 3–7 in Ξ∗.
Hence, when other agents update its level to lev_last, the agents reset their LF
to ϕ.

From now, we consider interactions between agents at level lev_last. To
execute lines 15–18, it needs to occur k times that an agent having the leader
token interacts with a non-marked agent without moving the leader token. This is
because the leader token transitions to L0 when it moves. When an agent having
the leader token interacts with a non-marked agent, the agent with the leader
token marks the non-marked agent. From the pseudocode, unless the leader
token moves, a marked agent at level lev_last never transitions to a non-marked
agent. From these facts, since there is only one leader token, agents never execute
lines 15–18 if there is no agent whose degree is at least k. Similarly, agents never
execute lines 19–22 if there is no agent whose degree is at least k + 1. Therefore,
the lemma holds.

Now, we show properties about an agent whose degree is at least k. We prove
that, if there is an agent whose degree is at least k (resp., k+1), the agent performs
the behavior of lines 13–18 (resp., lines 19–22) infinitely often.

Lemma 57. In Ξ∗, an agent a performs the behavior of lines 13–18 infinitely
often if the degree of agent a is at least k. Moreover, in Ξ∗, an agent b performs
the behavior of lines 19–22 infinitely often if the degree of agent b is at least k+1.

Proof. From Lemmas 53 and 55, there exists a configuration C in Ξ∗ such that
there is only one leader token and each agent is at level lev_last after C. We

156

consider configurations after C. From the pseudocode, the leader token can move
to any agent after C. Thus, from global fairness, there exists a configuration C ′

such that C ′ occurs infinitely often and agent a whose degree is at least k has the
leader token in C ′.

In C ′, since there exists only one leader token, each agent adjacent to a has
ϕ or ϕ′. To make all ϕ′ adjacent to a transition to ϕ, we consider the following
procedure.

1. Agent a having the leader token interacts with an agent c having ϕ′ three
times. From the pseudocode, after the interactions, agent a has the L0

token and agent c has ϕ (and other agents are the same states as before the
interactions).

2. Agents repeat the above behavior until no agent adjacent to a has ϕ′.

From global fairness, eventually agents perform the above procedure. Hence,
there exists a configuration such that, for agent a with the leader token, each
agent adjacent to a has ϕ and the configuration occurs infinitely often. Moreover,
from the configuration, eventually agent a interacts with each adjacent agent in
a row. From the pseudocode, when such interactions occur, agents execute lines
13–18. Thus, if the degree of agent a is at least k, agent a performs the behavior
of lines 13–18 infinitely often. Similarly, if the degree of agent b is at least k + 1,
agent b performs the behavior of lines 19–22 infinitely often.

From Lemmas 53 and 55, eventually agents complete the election of leader
tokens in Ξ∗. From now on, we define reg of the leader token as rega such that
agent a has the elected leader token. We show that reg of the leader token
transitions to yes only a finite number of times in Ξ∗.

Lemma 58. In Ξ∗, reg of the leader token transitions to yes only a finite number
of times.

Proof. From the pseudocode, reg of the leader token transitions to yes only by
the behavior of lines 15–18. Hence, we prove that this behavior occurs only a
finite number of times. From Lemmas 53 and 55, there exists a configuration C

in Ξ∗ such that there is only one leader token and each agent is at level lev_last.

157

From the pseudocode, loca of an agent a transitions from yes to no only by the
behaviors of lines 3–7 and 26–30. The behavior of lines 3–7 occurs only if there
are multiple leader tokens, and the behavior of lines 26–30 occurs only if there
are agents at different levels. From these facts, loca of each agent a transitions
from yes to no a finite number of times in Ξ∗. Hence, from the condition of line
15, the behavior of lines 15–18 occurs a finite number of times in Ξ∗. Therefore,
the lemma holds.

By using the above lemmas, we show that the protocol solves the k-regular
identification problem. First, we show that, if the given graph is not k-regular,
rega of each agent a converges to no.

Lemma 59. If the given communication graph is not k-regular, rega of each agent
a converges to no in any globally-fair execution.

Proof. Let Ξ be an execution with a non k-regular graph. Let lev_last be level
such that the level of each agent converges to level lev_last in Ξ. From Lemma
53, such lev_last exists.

First, we show that, if there is an agent a whose degree is less than k on the
graph, reg of the leader token converges to no in Ξ. From Lemma 56, if there is
an agent a whose degree is less than k on the graph, agent a never updates its
loca from no to yes after agent a obtains level lev_last. When agent a obtains
level lev_last, agent a updates its loca to no by the behavior of lines 3–7 or
26–30. Hence, since loca converges to no, reg of the leader token transitions to
no infinitely often by the behavior of lines 23–25. From Lemma 58, reg of the
leader token transitions from no to yes only a finite number of times in Ξ. Thus,
if there is an agent whose degree is less than k on the graph, reg of the leader
token converges to no in Ξ.

Next, we show that, if there is an agent whose degree is at least k + 1 on the
graph, reg of the leader token converges to no in Ξ. From Lemma 57, if there
is an agent whose degree is at least k + 1 on the graph, reg of the leader token
transitions to no infinitely often in Ξ. Thus, if there is an agent whose degree is
at least k + 1 on the graph, reg of the leader token converges to no in Ξ.

Now, we show that rega of each agent a converges to no in Ξ. Let C be a
configuration in Ξ such that there is only one leader token and each agent is at

158

level lev_last after C. From Lemmas 53 and 55, such C exists in Ξ. From the
pseudocode, after C, the leader token moves freely on the graph and the decision
of the leader token is conveyed to all agents. Thus, since reg of the leader token
converges to no in Ξ, rega of each agent a converges to no in Ξ from global
fairness.

Next, we show that, if the given graph is k-regular, rega of each agent a

converges to yes.

Lemma 60. If the given communication graph is k-regular, rega of each agent a
converges to yes in any globally-fair execution.

Proof. Let Ξ be an execution with a k-regular graph. In Ξ, let us consider a
configuration C such that 1) there is only one leader token, 2) each agent has
some level lev_last after C, and 3) loca of some agent a is no in C. From the
pseudocode, when an agent b increases its level, agent b updates its locb to no.
Thus, from Lemmas 53 and 55, such C exists in Ξ.

From Lemma 57, each agent performs the behavior of lines 13–18 infinitely
often after C. Hence, eventually each agent a, such that loca = no in C, makes
loca transition to yes by the behavior of lines 15–18 after C. Since there is only
one leader token and each agent is at level lev_last after C, the behaviors of
lines 3–7 and 26–30 do not occur after C. This implies that, after C, loca of each
agent a keeps yes if loca = yes.

Let us consider the last agent that performs the behavior of lines 15–18. From
Lemma 58, since reg of the leader token transitions to yes by the behavior of lines
15–18, the behavior of lines 15–18 occurs a finite number of times and thus such
an agent exists. From the pseudocode, when the agent performs the behavior,
reg of the leader token transitions to yes. After that, since loca of each agent
a is yes, the behavior of lines 23–25 does not occur. Furthermore, from Lemma
56, the behavior of lines 19–22 is not performed. Thus, reg of the leader token
does not transition to no afterwards and thus rega of each agent a converges to
yes.

From Lemma 59, if the given communication graph is not k-regular, rega of
each agent a converges to no in any execution of the protocol. From Lemma 60,

159

if the given communication graph is k-regular, rega of each agent a converges to
yes in any execution of the protocol. Thus, we can obtain the following theorem.

Theorem 27. Algorithm 2 solves the k-regular identification problem. That is, if
the upper bound P of the number of agents is given, there exists a protocol with
O(k logP) states and designated initial states that solves the k-regular identifica-
tion problem under global fairness.

Clearly, when the number of agents n is given, the protocol works even if the
protocol uses variable levela = {0, 1, 2, . . ., ⌊logn⌋} instead of levela = {0, 1, 2,
. . ., ⌊logP ⌋}. Therefore, we have the following theorem.

Theorem 28. If the number of agents n is given, there exists a protocol with
O(k logn) states and designated initial states that solves the k-regular identifica-
tion problem under global fairness.

3.3 Star Identification Protocol with Knowledge of n under
Weak Fairness

In this subsection, we give a star identification protocol (hereinafter referred to as
“SI protocol”) with O(n) states and designated initial states under weak fairness.
In this protocol, the number of agents n is given. Recall that, in this protocol
under weak fairness, if a transition (p, q) → (p′, q′) exists for p ≠ q, a transition
(q, p)→ (q′, p′) also exists. Since a given graph is a star if n ≤ 2 holds, we consider
the case where n is at least 3.

The basic strategy of the protocol is as follows. Initially, each agent thinks
that the given graph is not a star. First, agents elect an agent with degree two
or more as a central agent (i.e., an agent that connects to all other agents in
the star graph). Then, by counting the number of agents adjacent to the central
agent, agents examine whether there is a star subgraph in the given graph such
that the subgraph consists of n agents. Concretely, if the central agent confirms
by counting that there are n− 1 adjacent agents, agents confirm that there is the
subgraph. In this case, agents think that the given graph is a star. Then, if two
agents other than the central agent interact, agents decide that the graph is not
a star. If such an interaction does not occur, agents continue to think that the
given graph is a star.

160

To explain the details, first we introduce variables at an agent a.

• LFa ∈ {F , F ′, l′, L2, L3, . . ., Ln−1}: Variable LFa, initialized to F , represents
a role of agent a. LFa = Li means that a central agent a has marked i agents
(i.e., agent a has at least i edges). LFa = l′ means that a is a candidate of
a central agent and is a marked agent. LFa = F means that agent a is a
non-marked agent. LFa = F ′ means that agent a is a marked agent. When
LFa = x holds, we refer to a as an x-agent.

• stara ∈ {yes, no, never}: Variable stara, initialized to no, represents a
decision of a star. If stara = yes holds, γ(sa) = yes holds (i.e., a decides
that a given graph is a star). If stara = no or stara = never holds, γ(sa) = no
holds (i.e., a decides that a given graph is not a star). stara = never means
the stronger decision of no. If agent a with stara = never interacts with
agent b, starb transitions to never regardless of the value of starb.

The protocol is given in Algorithm 3. Algorithm 3 uses 3n+ 3 states because the
number of values taken by variable LFa is n + 1 and the number of values taken
by variable stara is 3.

Now, we show the details of the protocol.

Examination of the subgraph (lines 5–14 and 20–22 of the pseudocode)
First, agents elect a central agent. Initially, LFa of each agent a is F . When two
F -agents interact, both F -agents transition to l′-agents (lines 5–6). When an
l′-agent interacts with an F -agent, the l′-agent transitions to an L2-agent (lines
7–8). By these behaviors, we can observe that the L2-agent is adjacent to at
least two agents. Clearly, if the given graph is a star, agents correctly elect the
central agent. If the given graph is not a star, agents may elect no central agent
or multiple central agents. However, in both cases, star of each agent keeps no

(we explain the details later).
Then, to confirm that the central agent is adjacent to n−1 agents, the central

agent marks adjacent agents one by one and counts how many times the agent
interacts with a non-marked agent. Concretely, for 2 ≤ i ≤ n − 3, when the Li-
agent interacts with an F -agent, the Li-agent marks the F -agent (i.e., the F -agent
transitions to an F ′-agent), and the Li-agent transitions to the Li+1-agent (lines

161

Algorithm 3 A SI protocol
A variable at an agent a:

LFa ∈ {F , F ′, l′, L2, L3, . . ., Ln−1}: States that represent roles of agents,
initialized to F . Li represents a central agent, l′ represents a candidate of the
central agent, F ′ represents a marked agent, and F represents a non-marked
agent.
stara ∈ {yes, no, never}: Decision of a star, initialized to no.

1: when agent a interacts with agent b do
⟪ The behavior when stara or starb is never ⟫

2: if stara = never ∨ starb = never then
3: stara ← never, starb ← never
⟪ The behaviors when stara ≠ never and starb ≠ never holds ⟫

4: else
{ The election of a central agent }

5: if LFa = F ∧ LFb = F then
6: LFa ← l′, LFb ← l′

7: else if LFa = l′ ∧ LFb = F then
8: LFa ← L2, LFb ← F ′

{ Counting the number of adjacent agents by the central agent }
9: else if LFa = Li ∧ LFb = F (2 ≤ i ≤ n − 2) then

10: LFa ← Li+1, LFb ← F ′

11: end if
12: if LFa = Ln−1 then
13: stara ← yes, starb ← yes
14: end if

{ Decision of never }
15: if LFa = F ′ ∧ LFb = F ′ then
16: stara ← never, starb ← never
17: else if LFa = F ′ ∧ LFb = l′ then
18: stara ← never, starb ← never
19: end if

{ Conveyance of yes }
20: if stara = yes ∨ starb = yes then
21: stara ← yes, starb ← yes
22: end if
23: end if
24: end

162

9–11). Note that, when an agent becomes the central agent, the agent has already
interacted two different agents. Thus, in this protocol, the agent marked the two
agents by the interactions, and the agent starts as an L2-agent (lines 5–8). Recall
that an l′-agent is a marked agent.

When an agent becomes an Ln−1-agent, the Ln−1-agent notices that the agent
is adjacent to n−1 agents. Thus, agents notice that there is a star subgraph in the
given graph such that the subgraph consists of n agents. Hence, when an agent
becomes an Ln−1-agent, the interacting agents make their star transition to yes

(lines 12–14). When an agent a with stara = yes and an agent b with starb = no
interact, starb transitions to yes (lines 20–22). By this behavior, eventually yes

is conveyed to all agents.
When agents elect multiple central agents (resp., no central agent), star of

each agent cannot transition to yes because the central agents cannot mark n−1
agents (resp., there is no agent that marks agents). Thus, since initially star of
each agent is no, agents make their star keep no. In both cases, since clearly the
given graph is not a star, agents make a correct decision.

Decision of never (lines 2–3 and 15–19 of the pseudocode) When two
F ′-agents interact, they make their star transition to never (lines 15–16). When
an F ′-agent interacts with an l′-agent, they also make their star transition to
never (lines 17–19).

From now, we show that 1) agents do not perform the above behaviors if the
given graph is a star, and 2) agents perform the above behaviors or agents make
their star keep no if the given graph is not a star.

If the given graph is a star, agents correctly elect the central agent. Thus,
since agents other than the central agent can interact only with the Li-agent,
agents do not perform the above behaviors.

Next, let us consider the case where the given graph is not a star. In this case,
if agents do not confirm the star subgraph that consists of n agents, agents do not
make their star transition to yes. Thus, agents make a correct decision because,
if stara = no or stara = never holds, γ(sa) = no holds. On the other hand, if
agents confirm the star subgraph that consists of n agents, there is an agent
that is not elected as the central agent and is adjacent to two or more agents.

163

Moreover, after agents confirm the subgraph, the agent is an F ′- or l′-agent and
is adjacent to another F ′- or l′-agent. Hence, eventually two F ′-agents interact,
or the F ′-agent interacts with the l′-agent. By the interaction, the interacting
agents make their star transition to never. When an agent a with stara = never
and an agent b interact, starb transitions to never (lines 2–3). By this behavior,
eventually never is conveyed to all agents. Note that, when this behavior occurs,
the behavior of lines 20–22 does not occur. Thus, never has priority over yes.

From these facts, we can observe that agents make a correct decision in any
case.

Correctness

First, we define some notations.

Definition 21. The number of F -agents is denoted by #F . The number of F ′-
agents is denoted by #F ′. The number of Li-agents for 2 ≤ i ≤ n−1 is denoted by
#Li. Let #L =#L2 +#L3 +⋯ +#Ln−1.

Definition 22. A function L(a,C) represents the number of agents counted by
an agent a in configuration C. Concretely, if LFa = Li holds in C, L(a,C) = i
holds. If LFa ∈ {F , F ′, l′} holds in C, L(a,C) = 0 holds.

From now, we show an equation that holds in any execution of Algorithm 3.

Lemma 61. Let us consider an execution Ξ with some graph G = (V,E), where
V = {v1, v2, . . ., vn}. In any configuration C of Ξ, L(v1,C) + L(v2,C) + ⋯ +
L(vn,C) =#F ′ +#L holds.

Proof. Let us consider an execution Ξ with a graph G = (V,E), where V = {v1,
v2, . . ., vn}. We prove the lemma by induction on the index of a configuration.
In the base case (C0), clearly L(v1,C0)+L(v2,C0)+⋯+L(vn,C0) =#F ′+#L = 0
holds. For the induction step, we assume that the equation holds in Ck. Let us
consider an interaction at Ck → Ck+1 for three cases.

• Case where the behavior of lines 7–8 or 9–11 does not occur at Ck → Ck+1: In
this case, clearly L(vi,Ck+1) = L(vi,Ck) holds for 1 ≤ i ≤ n. Moreover, by the
interaction, #F ′ and #L do not change. Thus, L(v1,Ck+1) + L(v2,Ck+1) +
⋯ +L(vn,Ck+1) =#F ′ +#L holds in this case.

164

• Case where the behavior of lines 7–8 occurs at Ck → Ck+1: From the pseu-
docode, an l′-agent (resp., an F -agent) transitions to an L2-agent (resp.,
an F ′-agent) by the interaction. Hence, by the interaction, L(v1,Ck+1) +
L(v2,Ck+1) + ⋯ + L(vn,Ck+1) = L(v1,Ck) + L(v2,Ck) + ⋯ + L(vn,Ck) + 2
holds. In addition, #F ′ increases by one and #L increases by one. Thus,
L(v1,Ck+1) +L(v2,Ck+1) +⋯ +L(vn,Ck+1) =#F ′ +#L holds in this case.

• Case where the behavior of lines 9–11 occurs at Ck → Ck+1: From the pseu-
docode, an Li-agent (resp., an F -agent) transitions to an Li+1-agent (resp.,
an F ′-agent) by the interaction. Hence, by the interaction, L(v1,Ck+1) +
L(v2,Ck+1)+⋯+L(vn,Ck+1) = L(v1,Ck)+L(v2,Ck)+⋯+L(vn,Ck)+1 holds,
and #F ′ increases by one. Thus, L(v1,Ck+1)+L(v2,Ck+1)+⋯+L(vn,Ck+1) =
#F ′ +#L holds in this case.

In each case, the equation holds after the interaction. Therefore, the lemma
holds.

Next, by using Lemma 61, we show that, if the given communication graph
is a star, agents make a correct decision.

Lemma 62. If the given communication graph is a star, stara of each agent a

converges to yes for any weakly-fair execution Ξ.

Proof. First of all, by the property of the star graph, an agent a with degree
n − 1 joins any interaction. In the first interaction, agent a and another agent
b interact. From the pseudocode, agents a and b transition to l′-agents. After
that, since agents other than a and b are F -agents and agent a with degree n− 1
is the l′-agent, agents can transition to other states only by the behavior of lines
7–8. From weak fairness, eventually the behavior of lines 7–8 occurs, and agent
a transitions to an L2-agent.

After that, agent a does not become an F -, F ′-, or l′-agent from the pseu-
docode. Thus, since agent a always joins interactions, agent b is always the l′-
agent, and any agent other than a and b is F - or F ′-agent. Hence, from Lemma
61, if agent a is the Li-agent, #F ′ is i − 1 and #F is n − 2 − (i − 1) = n − i − 1.
Then, from the pseudocode, agent a and F -agents can update their LF only by
the behavior of line 9–11. Thus, since agent a is adjacent to each agent, the

165

behavior of line 9–11 occurs repeatedly from weak fairness until agent a transi-
tions to an Ln−1-agent. Note that, since #F is n − i − 1 when LFa = Li holds,
eventually agent a transitions to the Ln−1-agent. When agent a transitions to the
Ln−1-agent, stara transitions to yes from the pseudocode. Then, agent a is always
the Ln−1-agent. Hence, since agents other than agent a are adjacent only to agent
a, star of any agent does not transition to never because the behaviors of lines
15–19 do not occur. Thus, from the pseudocode, star of each agent transitions
to yes by the behavior of lines 20–22, and star of each agent does not update
afterwards. Therefore, the lemma holds.

From now, we show that, even if the given communication graph is not a star,
agents make a correct decision. To show this, we first show the property of a
configuration such that there is an Ln−1-agent in the configuration.

Lemma 63. If there is an Ln−1-agent in a configuration, there is an l′-agent and
other n − 2 agents are F ′-agents in the configuration. Furthermore, after the
configuration, each agent a does not update its LFa.

Proof. Let C be a configuration in which there is an agent a that is an Ln−1-agent.
First of all, clearly #F ′ +#L > n does not hold in any configuration. Hence,

from Lemma 61, any agent other than a is not an Li-agent for 2 ≤ i ≤ n − 1 in C

(otherwise #F ′ +#L = n − 1 + i > n holds). Thus, since #F ′ +#L = n − 1 holds
in C, n − 2 agents are F ′-agents and one agent b is an F - or l′-agent.

Now, we show that agent b is an l′-agent in C. From the pseudocode, if an
agent is an F ′-agent in C, the agent is not an l′-agent before and after C. Since
an l′-agent occurs only by the behavior of lines 5–6 and an Ln−1-agent exists in
C, the behavior of lines 5–6 occurs before C. From these facts, agents a and b

performed the behavior of lines 5–6 before C. From the pseudocode, if an agent is
an l′-agent, the agent is not an F -agent afterwards. Hence, agent b is an l′-agent
in C and thus agent a is the Ln−1-agent, agent b is the l′-agent, and other n − 2
agents are F ′-agents in C.

From the pseudocode, clearly each agent a does not update its LFa after C.
Therefore, the lemma holds.

Now, by using Lemma 63, we show that agents make a correct decision even
if the given communication graph is not a star.

166

Lemma 64. If the given communication graph is not a star, stara of each agent
a converges to no or never for any weakly-fair execution Ξ.

Proof. Let Ξ be a weakly-fair execution with a non-star graph. Let us consider
two cases: (1) stara of some agent a transitions to yes in Ξ, and (2) star of any
agent does not transition to yes in Ξ.

In case (1), since the behavior of lines 12–14 occurs, an agent a becomes an
Ln−1-agent. Moreover, from the pseudocode, agent a is always the Ln−1-agent
afterwards. From now on, let us consider configurations after agent a becomes
the Ln−1-agent. Since the given graph is not a star, there are two agents whose
degree is two or more. Hence, there is an agent b that is adjacent to an agent
other than a. From weak fairness, eventually agent b interacts with the agent
other than a. By the interaction, from Lemma 63, the behavior of lines 15–16 or
17–19 occurs and starb transitions to never. After that, by the behavior of lines
2–3, star of each agent transitions to never. Furthermore, after agents update
their star to never, agents do not update their star. Thus, star of each agent
converges to never in this case.

In case (2), if star of an agent transitions to never, star of each agent con-
verges to never similarly to case (1); otherwise, since initially star of each agent
is no, star of each agent converges to no. Therefore, the lemma holds.

From Lemma 62, if the given communication graph is a star, stara of each
agent a converges to yes in any execution of the protocol. From Lemma 64, if
the given communication graph is not a star, stara of each agent a converges to
no or never in any execution of the protocol. Thus, we can obtain the following
theorem.

Theorem 29. Algorithm 3 solves the star identification problem. That is, there
exists a protocol with O(n) states and designated initial states that solves the star
identification problem under weak fairness if the number of agents n is given.

167

4. Impossibility Results

4.1 A Common Property of Graph Class Identification Pro-
tocols for Impossibility Results

In this subsection, we present a common property that holds for protocols with
designated initial states under weak fairness.

With designated initial states under weak fairness, we assume that a protocol
P solves some of the graph class identification problems. From now, we show that,
with P , there exists a case where agents cannot distinguish between some different
connected graphs. Note that P has no constraints for an initial knowledge (i.e.,
for some integer x, P is Pn=x, PP=x, or a protocol with no initial knowledge).

Lemma 65. Let us consider a communication graph G = (V,E), where V = {v1,
v2, v3, . . ., vn}. Let G′ = (V ′,E′) be a communication graph that satisfies the
following, where V ′ = {v′1, v′2, v′3, . . ., v′2n}.

• E′ = {(v′x, v′y), (v′x+n, v′y+n) ∈ V ′ × V ′ ∣ (vx, vy) ∈ E} ∪ {(v′1, v′z+n), (v′1+n, v′z) ∈
V ′ × V ′ ∣ (v1, vz) ∈ E} (Figure 16 shows an example of the graphs).

Let Ξ be a weakly-fair execution of P with G. If there exists a configuration
C of Ξ after which ∀v ∈ V ∶ γ(s(v)) = yn ∈ {yes, no} holds, there exists an
execution Ξ′ of P with G′ such that there exists a configuration C ′ of Ξ′ after
which ∀v′ ∈ V ′ ∶ γ(s(v′)) = yn holds.

Proof. First, we define a term that represents a relation between configurations.
Let Ci and C ′j be configurations with G and G′, respectively. If s(vx,Ci) =
s(v′x,C ′j) = s(v′x+n,C ′j) holds for 1 ≤ x ≤ n, we say that Ci and C ′j are equivalent.

Let Ξ be a weakly-fair execution of P with G such that there exists a config-
uration Ct of Ξ after which ∀v ∈ V ∶ γ(s(v)) = yn ∈ {yes, no} holds. Without loss
of generality, we assume yn = yes.

Since Ξ is weakly fair, Ξ can be represented by the following Ξ = C0, C1, C2,
. . ., Ct, . . ., Ct′0

, ξ1, Ct′1
, ξ2, Ct′2

, ξ3,

• For u ≥ 0, Ct′u is a stable configuration such that Ct′0
= Ct′1

= Ct′2
= ⋯ holds

and Ct′u occurs infinitely often.

168

Figure 16. An example of graphs G and G′

• For j ≥ 1, ξj is a sub-execution such that, in Ct′j−1
, ξj,Ct′j

, for each pair (a, b)
in E, agent a interacts with agent b and agent b interacts with agent a, at
least once.

Next, let us consider the following execution Ξ′ = C ′0, C ′1, C ′2, . . ., C ′2t′0
, ξ′1,

C ′2t′1
, ξ′2, C ′2t′2 , ξ

′
3, . . . of P with G′.

• For 0 ≤ i < t′0, when vx interacts with vy at Ci → Ci+1, v′x interacts with v′y
at C ′i → C ′i+1, and v′x+n interacts with v′y+n at C ′i+t′0

→ C ′i+t′0+1
. Clearly, v′1,

. . ., v′n and v′1+n, . . ., v′2n behave similarly to v1, . . ., vn in Ξ and thus Ct′0

and C ′2t′0
are equivalent.

• For j ≥ 1, by using ξj = Cj
1 , C

j
2 , C

j
3 , . . ., C

j
m, we define ξ′j = Ĉ

j
1 , Ĉ

j
2 , Ĉ

j
3 , . . .,

Ĉj
2m+1 as follows (Figure 17 shows images of C ′2t′j−1 , ξ

′
j, C ′2t′j).

– Case where j is an even number: v′1, . . ., v′n and v′1+n, . . ., v′2n behave
similarly to v1, . . ., vn in Ξ. Concretely, for 1 ≤ i < m, when vx

interacts with vy at Cj
i → Cj

i+1, v′x interacts with v′y at Ĉj
i → Ĉj

i+1, and
v′x+n interacts with v′y+n at Ĉj

i+m+1 → Ĉj
i+m+2. When vx interacts with

vy at Ct′j−1
→ Cj

1 (resp., Cj
m → Ct′j

), v′x interacts with v′y at C ′2t′j−1
→ Ĉj

1

(resp., Ĉj
m → Ĉj

m+1), and v′x+n interacts with v′y+n at Ĉj
m+1 → Ĉj

m+2

(resp., Ĉj
2m+1 → C ′2t′j

).

169

Figure 17. Images of C ′2t′j−1 , ξ
′
j, C ′2t′j . A solid line represents an edge on which

interactions occur in C ′2t′j−1
, ξ′j, C ′2t′j

, and a dashed line represents an edge on
which interactions do not occur in C ′2t′j−1

, ξ′j, C ′2t′j

In this case, clearly v′1, . . ., v′n and v′1+n, . . ., v′2n make transitions
similarly to v1, . . ., vn in Ξ. Hence, if Ct′j−1

and C ′2t′j−1
are equivalent,

Ct′j
and C ′2t′j

are equivalent.

– Case where j is an odd number: {v′1+n}∪{v′2, . . ., v′n} and {v′1}∪{v′2+n,
. . ., v′2n} behave similarly to v1, . . ., vn in Ξ. Concretely, for 1 ≤ i < m
and x, y ≠ 1, when vx interacts with vy at Cj

i → Cj
i+1, v′x interacts

with v′y at Ĉj
i → Ĉj

i+1, and v′x+n interacts with v′y+n at Ĉj
i+m+1 → Ĉj

i+m+2.
When vx interacts with vy at Ct′j−1

→ Cj
1 (resp., Cj

m → Ct′j
), v′x interacts

with v′y at C ′2t′j−1 → Ĉj
1 (resp., Ĉj

m → Ĉj
m+1), and v′x+n interacts with v′y+n

at Ĉj
m+1 → Ĉj

m+2 (resp., Ĉj
2m+1 → C ′2t′j

).

For 1 ≤ i < m, when v1 interacts with vx (resp., vx interacts with v1)
at Cj

i → Cj
i+1, v′1+n interacts with v′x (resp., v′x interacts with v′1+n) at

Ĉj
i → Ĉj

i+1, and v′1 interacts with v′x+n (resp., v′x+n interacts with v′1) at
Ĉj

i+m+1 → Ĉj
i+m+2. When v1 interacts with vx (resp., vx interacts with

v1) at Ct′j−1
→ Cj

i , v′1+n interacts with v′x (resp., v′x interacts with v′1+n)
at C ′2t′j−1

→ Ĉj
i , and v′1 interacts with v′x+n (resp., v′x+n interacts with

v′1) at Ĉj
m+1 → Ĉj

m+2. When v1 interacts with vx (resp., vx interacts
with v1) at Cj

m → Ct′j
, v′1+n interacts with v′x (resp., v′x interacts with

170

v′1+n) at Ĉj
m → Ĉj

m+1, and v′1 interacts with v′x+n (resp., v′x+n interacts
with v′1) at Ĉj

2m+1 → C ′2t′j
.

In this case, {v′1+n}∪{v′2, . . ., v′n} and {v′1}∪{v′2+n, . . ., v′2n} make tran-
sitions similarly to v1, . . ., vn in Ξ. Hence, if Ct′j−1

and C ′2t′j−1
are equiv-

alent, Ct′j
and C ′2t′j

are equivalent because s(v1,Ct′j−1
) = s(v′1,C ′2t′j−1) =

s(v′1+n,C ′2t′j−1) holds.

Since Ξ is weakly fair, clearly each pair of agents in E′ interacts infinitely often
in Ξ′ and thus Ξ′ satisfies weak fairness. By behaviors of Ξ′, since C ′2t and Ct

are equivalent and ∀v ∈ V ∶ γ(s(v)) = yes holds after Ct, ∀v′ ∈ V ′ ∶ γ(s(v′)) = yes
holds after C ′2t. From these facts, the lemma holds.

4.2 Impossibility with the Known Upper Bound of the Num-
ber of Agents under Weak Fairness

For the purpose of the contradiction, we assume that, for an integer x, there exists
a protocol PP=x that solves some of the graph class identification problems with
designated initial states under weak fairness. We can apply Lemma 65 to PP=x
because we can apply the same protocol PP=x to both G and G′ in Lemma 65.
Clearly, we can construct G and G′ in Lemma 65 such that, for any of properties
line, ring, tree, k-regular, and star, G is a graph that satisfies the property, and
G′ is a graph that does not satisfy the property. Therefore, we have the following
theorem.

Theorem 30. Even if the upper bound of the number of agents is given, there
exists no protocol that solves the line, ring, k-regular, star, or tree identification
problem with the designated initial states under weak fairness.

Note that, in Theorem 30, the bipartite identification problem is not included.
However, we show later that there is no protocol that solves the bipartite identi-
fication problem even if the number of agents is given.

171

4.3 Impossibility with the Known Number of Agents under
Weak Fairness

In this subsection, we show that, even if the number of agents n is given, there ex-
ists no protocol that solves the line, ring, k-regular, tree, or bipartite identification
problem with designated initial states under weak fairness.

Case of Line, Ring, k-regular, and Tree First, we show that there exists
no protocol that solves the line, ring, k-regular, or tree identification problem.
Concretely, we show that there is a case where a line graph and a ring graph are
not distinguishable. To show this, we first define a particular execution Ξ with a
line graph.

Let G = (V,E) be a line graph with four agents, where V = {v1, v2, v3, v4}
and E = {(v1, v2), (v2, v3), (v3, v4)}. Let s0 be an initial state of agents. Let us
consider a transition sequence T = (s0, s0) → (sa1 , sb1), (sb1 , sa1) → (sb2 , sa2),
(sa2 , sb2) → (sa3 , sb3), (sb3 , sa3) → (sb4 , sa4), Since the number of states is
finite, there are i and j such that sai = saj , sbi = sbj , and i < j hold. Let sa and
sb be states such that sa = sai = saj and sb = sbi = sbj hold.

We define an execution Ξ = C0, ξ1, Cu1 , ξ2, Cu2 , ξ3, Cu3 , ξ4, Cu4 , ξ5, . . . of a
protocol P with G as follows, where ξm is a sub-execution (m ≥ 1).

• In C0, ξ1, Cu1 , until s(v1) = sa and s(v2) = sb hold, agents repeat the
following interactions: v1 interacts with v2, v2 interacts with v1, v1 interacts
with v2 From the definition of the transition sequence T , this is possible.

• In Cu1 , ξ2, Cu2 , until s(v3) = sa and s(v4) = sb hold, agents repeat the
following interactions: v3 interacts with v4, v4 interacts with v3, v3 interacts
with v4 Thus, s(v1,Cu2) = s(v3,Cu2) = sa and s(v2,Cu2) = s(v4,Cu2) =
sb hold.

• For i ≥ 2, we construct the execution as follows:

– Case where imod 3 = 0 holds: In Cui
, ξi+1, Cui+1 , until s(v1) = sa and

s(v2) = sb hold, agents repeat the following interactions: v1 interacts
with v2, v2 interacts with v1, v1 interacts with v2 To satisfy weak

172

fairness, we construct the interactions so that v1 and v2 interact at
least twice.

– Case where imod 3 = 1 holds: In Cui
, ξi+1, Cui+1 , until s(v2) = sb and

s(v3) = sa hold, agents repeat the following interactions: v3 interacts
with v2, v2 interacts with v3, v3 interacts with v2 To satisfy weak
fairness, we construct the interactions so that v2 and v3 interact at
least twice.

– Case where imod 3 = 2 holds: In Cui
, ξi+1, Cui+1 , until s(v3) = sa and

s(v4) = sb hold, agents repeat the following interactions: v3 interacts
with v4, v4 interacts with v3, v3 interacts with v4 To satisfy weak
fairness, we construct the interactions so that v3 and v4 interact at
least twice.

For i ≥ 2, if s(v1,Cui
) = s(v3,Cui

) = sa and s(v2,Cui
) = s(v4,Cui

) = sb

hold, we can construct such interactions from the definition of the transi-
tion sequence T . Thus, since s(v1,Cu2) = s(v3,Cu2) = sa and s(v2,Cu2) =
s(v4,Cu2) = sb hold, Cui

= Cui+1 holds for i ≥ 2.

Since each pair of agents interact infinitely often in Ξ, Ξ is weakly-fair. Since Ξ

is weakly-fair, γ(sa) = γ(sb) = yn ∈ {yes, no} holds in a stable configuration of Ξ.
Now, we show that there is a case where a line graph and a ring graph are

not distinguishable.

Lemma 66. Let G′ = (V ′,E′) be a ring graph with four agents, where V ′ = {v′1,
v′2, v′3, v′4} and E′ = {(v′1, v′2), (v′2, v′3), (v′3, v′4), (v′4, v′1)}. There exists a weakly-
fair execution Ξ′ of P with G′ such that ∀v′ ∈ V ′ ∶ γ(s(v′)) = yn holds in a stable
configuration of Ξ′.

Proof. Let us consider the following execution Ξ′ = C ′0, ξ′1, C ′u′1 , ξ
′
2, C ′u′2 , ξ

′
3, C ′u′3 ,

ξ′4, C ′u′4 , ξ
′
5, . . . of P with G′, where ξ′m is a sub-execution (m ≥ 1).

• In C ′0, ξ′1, C ′u′1
, until s(v′1) = sa and s(v′2) = sb hold, agents repeat the

following interactions: v′1 interacts with v′2, v′2 interacts with v′1, v′1 interacts
with v′2 From the definition of the transition sequence T , this is possible.

173

• In C ′u′1
, ξ′2, C ′u′2

, until s(v′3) = sa and s(v′4) = sb hold, agents repeat the
following interactions: v′3 interacts with v′4, v′4 interacts with v′3, v′3 interacts
with v′4 Thus, s(v′1,C ′u′2) = s(v

′
3,C

′
u′2
) = sa and s(v′2,C ′u′2) = s(v

′
4,C

′
u′2
) =

sb hold.

• For i ≥ 2, we construct the execution as follows:

– Case where imod 4 = 0 holds: In C ′u′i
, ξ′i+1, C ′u′i+1 , until s(v′1) = sa and

s(v′2) = sb hold, agents repeat the following interactions: v′1 interacts
with v′2, v′2 interacts with v′1, v′1 interacts with v′2 To satisfy weak
fairness, we construct the interactions so that v′1 and v′2 interact at
least twice.

– Case where imod 4 = 1 holds: In C ′u′i
, ξ′i+1, C ′u′i+1 , until s(v′2) = sb and

s(v′3) = sa hold, agents repeat the following interactions: v′3 interacts
with v′2, v′2 interacts with v′3, v′3 interacts with v′2 To satisfy weak
fairness, we construct the interactions so that v′2 and v′3 interact at
least twice.

– Case where imod 4 = 2 holds: In C ′u′i
, ξ′i+1, C ′u′i+1 , until s(v′3) = sa and

s(v′4) = sb hold, agents repeat the following interactions: v′3 interacts
with v′4, v′4 interacts with v′3, v′3 interacts with v′4 To satisfy weak
fairness, we construct the interactions so that v′3 and v′4 interact at
least twice.

– Case where imod 4 = 3 holds: In C ′u′i
, ξ′i+1, C ′u′i+1 , until s(v′4) = sb and

s(v′1) = sa hold, agents repeat the following interactions: v′1 interacts
with v′4, v′4 interacts with v′1, v′1 interacts with v′4 To satisfy weak
fairness, we construct the interactions so that v′1 and v′4 interact at
least twice.

For i ≥ 2, if s(v′1,C ′u′i) = s(v′3,C ′u′i) = sa and s(v′2,C ′u′i) = s(v′4,C ′u′i) = sb

hold, we can construct such interactions from the definition of the transi-
tion sequence T . Thus, since s(v′1,C ′u′2) = s(v

′
3,C

′
u′2
) = sa and s(v′2,C ′u′2) =

s(v′4,C ′u′2) = sb hold, C ′u′i = C
′
u′i+1

holds for i ≥ 2.

Since each pair of agents interact infinitely often in Ξ′, Ξ′ is weakly-fair. From
these facts, since γ(sa) = γ(sb) = yn holds, ∀v′ ∈ V ′ ∶ γ(s(v′)) = yn holds in a

174

stable configuration in Ξ′. Thus, the lemma holds.

Note that, even if the number of agents is given, Lemma 66 holds because
∣V ∣ = ∣V ′∣ = 4 holds in the lemma. In Lemma 66, G is a line graph and a tree
graph whereas G′ is neither a line graph nor a tree graph. Furthermore, G′ is a
ring graph and a 2-regular graph whereas G is neither a ring graph nor a 2-regular
graph. Hence, by Lemma 66, there is no protocol that solves the line, ring, tree,
or k-regular identification problem, and thus we have the following theorem.

Theorem 31. Even if the number of agents n is given, there exists no protocol
that solves the line, ring, k-regular, or tree identification problem with designated
initial states under weak fairness.

Case of Bipartite Next, we show that there exists no protocol that solves the
bipartite identification problem. For the purpose of the contradiction, we assume
that there exists a protocol Pn=6 that solves the bipartite identification problem
with designated initial states under weak fairness if the number of agents 6 is
given.

We define a ring graph G = (V,E) with three agents, a ring graph G′ = (V ′,E′)
with 6 agents, and a graph G′′ = (V ′′,E′′) with 6 agents as follows:

• V = {v1, v2, v3} and E = {(v1, v2), (v2, v3), (v3, v1)}.

• V ′ = {v′1, v′2, v′3, v′4, v′5, v′6} and E′ = {(v′1, v′2), (v′2, v′6), (v′6, v′4), (v′4, v′5),
(v′5, v′3), (v′3, v′1)}.

• V ′′ = {v′′1 , v′′2 , v′′3 , v′′4 , v′′5 , v′′6 } and E′′ = {(v′′x , v′′y), (v′′x+n, v′′y+n) ∈ V ′′ × V ′′ ∣
(vx, vy) ∈ E} ∪ {(v′′1 , v′′5), (v′′1 , v′′6), (v′′4 , v′′2), (v′′4 , v′′3)}.

Figure 18 shows graphs G, G′, and G′′.
From now, we show that there exists an execution Ξ′′ of Pn=6 with G′′ such

that all agents converge to yes whereas G′′ does not satisfy bipartite. To show
this, we first show that, in any execution Ξ of Pn=6 with G (i.e., the protocol for
6 agents is applied to a population consisting of 3 agents), all agents converge to
yes. To prove this, we borrow the proof technique in [30]. In [30], Fischer and
Jiang proved the impossibility of leader election for a ring graph.

175

Figure 18. Graphs G, G′, and G′′

Lemma 67. In any weakly-fair execution Ξ of Pn=6 with G, all agents converge
to yes. That is, in Ξ, there exists Ct such that ∀v ∈ V ∶ γ(s(v,Ci)) = yes holds
for i ≥ t.

Proof. Let Ξ = C0, C1, C2 be a weakly-fair execution of Pn=6 with G. Let us
consider the following execution Ξ′ =D0, D′0, D1, D′1 . . . of Pn=6 with G′.

• For x and y such that either x = 1 or y = 1 holds, when vx interacts with vy

at Ci → Ci+1, v′x interacts with v′y at Di → D′i, and v′x+3 interacts with v′y+3
at D′i →Di+1.

• For x ∈ {2,3} and y ∈ {2,3} such that x ≠ y holds, when vx interacts with
vy at Ci → Ci+1, v′x interacts with v′y+3 at Di → D′i, and v′x+3 interacts with
v′y at D′i →Di+1.

For a configuration C of G and a configuration D of G′, if s(vi,C) = s(v′i,D) =
s(v′i+3,D) holds for i (1 ≤ i ≤ 3), we say that C and D are equivalent.

From now, we show, by induction on the index of configuration, that Cr and
Dr are equivalent for any r ≥ 0. Since clearly C0 and D0 are equivalent, the base
case holds. For the induction step, we assume that Cl and Dl are equivalent, and
then consider two cases of interaction at Cl → Cl+1.

First we consider the case where, for x and y such that either x = 1 or y = 1
holds, agents vx interacts with vy at Cl → Cl+1. In this case, v′x interacts with v′y at
Dl →D′l, and v′x+3 interacts with v′y+3 at D′l →Dl+1. By the induction assumption,
s(vx,Cl) = s(v′x,Dl) = s(v′x+3,Dl) and s(vy,Cl) = s(v′y,Dl) = s(v′y+3,Dl) hold.
Hence, agents v′x and v′x+3 (resp., v′y and v′y+3) update their states similarly to vx

(resp., vy), and thus Cl+1 and Dl+1 are equivalent in this case.

176

Next, we consider the case where, for x ∈ {2,3} and y ∈ {2,3} such that x ≠ y
holds, agents vx interacts with vy at Cl → Cl+1. In this case, v′x interacts with v′y+3
at Dl →D′l, and v′x+3 interacts with v′y at D′l →Dl+1. By the induction assumption,
s(vx,Cl) = s(v′x,Dl) = s(v′x+3,Dl) and s(vy,Cl) = s(v′y,Dl) = s(v′y+3,Dl) hold.
Hence, agents v′x and v′x+3 (resp., v′y and v′y+3) update their states similarly to vx

(resp., vy), and thus Cl+1 and Dl+1 are equivalent in this case. Thus, Cr and Dr

are equivalent for any r ≥ 0.
In Ξ′, since the number of agents is given correctly, a stable configuration

exists, and ∀v′ ∈ V ′ ∶ γ(s(v′)) = yes holds in the configuration because G′ satisfies
bipartite. Since Cr and Dr are equivalent for any r ≥ 0, ∀v ∈ V ∶ γ(s(v)) = yes
holds after some configuration in Ξ. Thus, the lemma holds.

Now, we show that there exists execution Ξ′′ of Pn=6 with G′′ such that all
agents converge to yes.

Lemma 68. With the designated initial states, there exists a weakly-fair execution
Ξ′′ of Pn=6 with G′′ such that ∀v′′ ∈ V ′′ ∶ γ(s(v′′)) = yes in a stable configuration.

Proof. By Lemma 67, there exists a weakly-fair execution of Pn=6 with G such
that all agents converge to yes in the execution even if 2n is given as the number of
agents whereas the number of agents is n. This implies that we can apply Lemma
65 to protocol Pn=6 and graphs G and G′′. This is because G and G′′ satisfy the
condition of G and G′ in Lemma 65, and the protocol Pn=6 satisfies the condition
of protocol P in Lemma 65. Hence, there exists a weakly-fair execution Ξ′′ of
Pn=6 with G′′ such that ∀v′′ ∈ V ′ ∶ γ(s(v′′)) = yes holds in a stable configuration
of Ξ′′. Thus, the lemma holds.

Graph G′′ does not satisfy bipartite. Thus, from Lemma 68, Pn=6 is incorrect.
Therefore, we have the following theorem.

Theorem 32. Even if the number of agents n is given, there exists no protocol
that solves the bipartite identification problem with the designated initial states
under weak fairness.

177

4.4 Impossibility with Arbitrary Initial States

In this subsection, we show that, even if the number of agents n is given, there
exists no protocol that solves the line, ring, k-regular, star, tree, or bipartite
identification problem with arbitrary initial states under global fairness.

For the purpose of the contradiction, we assume that there exists a protocol P
that solves some of the above graph class identification problems with arbitrary
initial states under global fairness if the number of agents n is given. From now,
we show that there are two executions Ξ and Ξ′ of P such that the decision of
all agents in the executions converges to the same value whereas Ξ and Ξ′ are for
graphs G and G′(≠ G), respectively.

Lemma 69. Let G = (V,E) and G′ = (V ′,E′) be connected graphs that satisfy the
following condition, where V = {v1, v2, v3, . . ., vn} and V ′ = {v′1, v′2, v′3, . . ., v′n}.

• For some edge (vα, vβ) in E, E′ = {(v′x, v′y) ∈ V ′×V ′ ∣ (vx, vy) ∈ E}/{(v′α, v′β)}.

If there exists a globally-fair execution Ξ of P with G such that ∀v ∈ V ∶ γ(s(v)) =
yn ∈ {yes, no} holds in a stable configuration of Ξ, there exists a globally-fair
execution Ξ′ of P with G′ such that ∀v′ ∈ V ′ ∶ γ(s(v′)) = yn holds in a stable
configuration of Ξ′.

Proof. Let Ξ = C0, C1, C2, . . . be a globally-fair execution of P with G such that
∀v ∈ V ∶ γ(s(v)) = yn ∈ {yes, no} holds in a stable configuration. Let Ct be a
stable configuration in Ξ. For the purpose of the contradiction, we assume that
there exists no execution of P with G′ such that ∀v′ ∈ V ′ ∶ γ(s(v′)) = yn holds in
a stable configuration.

Let us consider an execution Ξ′ = C ′0, C ′1, C ′2, . . ., C ′t′ , . . . of P with G′ as
follows:

• For 1 ≤ i ≤ n, s(v′i,C ′0) = s(vi,Ct) holds.

• C ′t′ is a stable configuration.

By the assumption, ∃v′z ∈ V ′ ∶ γ(s(v′z,C ′t′)) = yn′(≠ yn) holds.
Next, let us consider an execution Ξ′′ = C ′′0 , C ′′1 , C ′′2 , . . ., C ′′t , . . . of P with G

as follows:

178

• For 0 ≤ i ≤ t, C ′′i = Ci holds (i.e., agents behave similarly to Ξ).

• For t < i ≤ t+ t′, when v′x interacts with v′y at C ′i−t−1 → C ′i−t, vx interacts with
vy at C ′′i−1 → C ′′i . This is possible because E′ ⊂ E holds.

Since Ct is a stable configuration, C ′′t is also a stable configuration and ∀v ∈
V ∶ γ(s(v,C ′′t)) = yn holds. Since agents behave similarly to Ξ′ after C ′′t ,
γ(s(vz,C ′′t+t′)) = yn′ holds. This contradicts the fact that C ′′t is a stable con-
figuration.

We can construct a non-line graph, a non-ring graph, a non-star graph, and a
non-tree graph by adding an edge to a line graph, a ring graph, a star graph, and
a tree graph, respectively. Moreover, we can construct a bipartite graph, and a
k-regular graph by adding an edge to some non-bipartite graph, and some non-
k-regular graph, respectively. From Lemma 69, there is a case where the decision
of all agents converges to the same value for each pair of graphs. Therefore, we
have the following theorem.

Theorem 33. There exists no protocol that solves the line, ring, k-regular, star,
tree, or bipartite identification problem with arbitrary initial states under global
fairness.

5. Concluding Remarks

In this part, we considered the graph class identification problems on various
assumptions such as initial states of agents, fairness, and initial knowledge of
agents. With designated initial states, we proposed graph class identification
protocols for trees, k-regular graphs, and stars under global fairness. In particular,
the star identification protocol works even under weak fairness. Moreover, we
showed that, even if agents know the number of agents n, there is no graph class
identification protocol for lines, rings, k-regular graphs, trees, or bipartite graphs
under weak fairness, and no graph class identification for lines, rings, k-regular
graphs, stars, trees, or bipartite graphs with arbitrary initial states. Overall,
we clarified the solvability of the graph class identification problems for each
combination of assumptions except for one case of k-regular graph.

179

Part VI

Conclusion
In this dissertation, we dealt with a distributed system for low performance de-
vices. Concretely, we used the population protocol model as a model of a dis-
tributed system for low-performance devices. In the population protocol model,
we tackled with two significant challenges: (1) Handling multiple tasks and (2) Ef-
ficient task execution. Concretely, we studied the uniform k-partition problem to
achieve handling multiple tasks, and studied graph class identification problems
to achieve efficient task execution.

In Part III and IV, we dealt with the uniform k-partition problem which aims
to divide a population into k groups of equal size. We considered the problem
on complete communication graphs in Part III, and considered the problem on
arbitrary communication graphs in Part IV. On complete communication graphs,
all agents can interact with each other. This implies that this case is for an envi-
ronment in which the devices (agents) have a wide range of movement (because,
on the population protocol model, agents can communicate only when the agents
sufficiently close). While such an environment is feasible, there may be cases
where devices do not move so wide. Thus, we also considered the problem on
arbitrary communication graphs.

In Part III, as a first step, we considered the uniform 2-partition problem
on complete graphs. As a result, we clarified the solvability of the uniform 2-
partition for each combination of assumptions (24 out of 24 cases). Moreover, if
it is solvable, we clarified tight upper and lower bounds on the number of states
per agent. On the other hand, for the uniform k-partition problem, we clarified
the solvability for most combinations of assumptions (23 out of 24 cases), and we
clarified tight upper and lower bounds on the number of states per agent for 10
out of 15 solvable cases.

In Part IV, we clarified the solvability of the uniform 2-partition on arbitrary
graphs in variety of cases (20 out of 24 cases), and we clarified tight upper and
lower bounds on the number of states per agent for 6 out of 10 solvable cases.

In Part V, we focused on graph class identification problems which aim to

180

decide whether the given communication graph is in desired class (e.g., whether
the given graph is a ring graph). We consider graph class identification problems
for basic graphs under various assumptions. Concretely, with designated initial
states, we proposed graph class identification protocols for trees and k-regular
graphs under global fairness, and we proposed the star identification protocol
under weak fairness. As impossibility results, for lines, rings, k-regular graphs,
trees, or bipartite graphs, we proved that there is no protocol under weak fairness.
With arbitrary initial states, we proved that there is no graph class identification
protocol for lines, rings, k-regular graphs, stars, trees, or bipartite graphs.

From now, we show future directions of our works. One of the important
tasks is to study the time complexity of the problems. In our works, except for
the uniform k-partition protocol in Part III, we only considered the space com-
plexity. In order to increase the versatility and applicability, we should study the
time complexity of the problems. Another important future task is to investi-
gate the relationship with other basic problems. Concretely, we should consider
what is possible by combining our protocols with other protocols, and investigate
whether there is a problem which can be solved efficiently by using our protocols
as subroutine.

181

Acknowledgements

Thankfully, I have had the support of many people. First of all, I deeply would
like to appreciate Professor Michiko Inoue for her guidance and continuous sup-
port. She gave me useful comments to improve my papers and presentations.
Secondly, I am grateful to Professor Shoji Kasahara for precious comments on
this dissertation. He has left very valuable comments on the dissertation even
though it is a bit far from his research field. I express our sincere thanks to As-
sociate Professor Fukuhito Ooshita. He always cooperated with me and gave me
various technical comments and encouragements. I would like to greatly thank
Assistant Professor Michihiro Shintani for guidance and useful comments on this
dissertation. Despite his busy schedule, he provides effective comments on this
dissertation. I would like to extremely appreciate Professor Sébastien Tixeuil for
his kind supports and thoughtful comments. He has devotedly supported me,
and he always cared about my research. Finally, I would also like to thank the
members of Dependable System Laboratory for helpful supports.

182

References

[1] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L
Rivest. Time-space trade-offs in population protocols. In Proceedings of the
28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2560–
2579, 2017.

[2] Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority
in population protocols. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 2221–2239, 2018.

[3] Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in
population protocols. In Proceedings of the 42nd International Colloquium
on Automata, Languages, and Programming, pages 479–491, 2015.

[4] Dan Alistarh and Rati Gelashvili. Recent algorithmic advances in population
protocols. ACM SIGACT News, 49(3):63–73, 2018.

[5] Dan Alistarh, Rati Gelashvili, and Joel Rybicki. Fast graphical population
protocols. arXiv preprint arXiv:2102.08808, 2021.

[6] Dana Angluin, James Aspnes, Melody Chan, Michael J Fischer, Hong Jiang,
and René Peralta. Stably computable properties of network graphs. In
Proceedings of International Conference on Distributed Computing in Sensor
Systems, pages 63–74, 2005.

[7] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J Fischer, and René
Peralta. Computation in networks of passively mobile finite-state sensors.
Distributed computing, 18(4):235–253, 2006.

[8] Dana Angluin, James Aspnes, and David Eisenstat. A simple population pro-
tocol for fast robust approximate majority. Distributed Computing, 21(2):87–
102, 2008.

[9] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The com-
putational power of population protocols. Distributed Computing, 20(4):279–
304, 2007.

183

[10] Dana Angluin, James Aspnes, Michael J Fischer, and Hong Jiang. Self-
stabilizing population protocols. In International Conference On Principles
Of Distributed Systems, pages 103–117, 2005.

[11] Dana Angluin, James Aspnes, Michael J Fischer, and Hong Jiang. Self-
stabilizing population protocols. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 3(4):13, 2008.

[12] James Aspnes, Joffroy Beauquier, Janna Burman, and Devan Sohier. Time
and space optimal counting in population protocols. In Proceedings of Inter-
national Conference on Principles of Distributed Systems, pages 13:1–13:17,
2016.

[13] James Aspnes and Eric Ruppert. An introduction to population protocols.
In Middleware for Network Eccentric and Mobile Applications, pages 97–120,
2009.

[14] Joffroy Beauquier, Peva Blanchard, and Janna Burman. Self-stabilizing
leader election in population protocols over arbitrary communication graphs.
In International Conference on Principles of Distributed Systems, pages 38–
52, 2013.

[15] Joffroy Beauquier, Janna Burman, Simon Claviere, and Devan Sohier. Space-
optimal counting in population protocols. In Proceedings of International
Symposium on Distributed Computing, pages 631–646, 2015.

[16] Joffroy Beauquier, Julien Clement, Stephane Messika, Laurent Rosaz, and
Brigitte Rozoy. Self-stabilizing counting in mobile sensor networks with a
base station. In Proceedings of International Symposium on Distributed Com-
puting, pages 63–76, 2007.

[17] Stav Ben-Nun, Tsvi Kopelowitz, Matan Kraus, and Ely Porat. An o (log3/2
n) parallel time population protocol for majority with o (log n) states. In
Proceedings of the 39th Symposium on Principles of Distributed Computing,
pages 191–199, 2020.

184

[18] Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter
Kling, and Tomasz Radzik. A population protocol for exact majority with
o(log5/3 n) stabilization time and theta(log n) states. In Proceedings of
International Symposium on Distributed Computing.

[19] Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter
Kling, and Tomasz Radzik. Time-space trade-offs in population protocols
for the majority problem. Distributed Computing, pages 1–21, 2020.

[20] Petra Berenbrink, George Giakkoupis, and Peter Kling. Optimal time and
space leader election in population protocols. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, pages 119–129,
2020.

[21] Petra Berenbrink, Dominik Kaaser, and Tomasz Radzik. On counting the
population size. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 43–52, 2019.

[22] Olivier Bournez, Jérémie Chalopin, Johanne Cohen, Xavier Koegler, and
Mikael Rabie. Population protocols that correspond to symmetric games.
International Journal of Unconventional Computing, 9, 2013.

[23] Janna Burman, Joffroy Beauquier, and Devan Sohier. Brief announcement:
Space-optimal naming in population protocols. In Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, pages 479–481,
2018.

[24] Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility
under global fairness: On space complexity of self-stabilizing leader election
on a population protocol model. Theory of Computing Systems, 50(3):433–
445, 2012.

[25] Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis.

[26] Hsueh-Ping Chen and Ho-Lin Chen. Self-stabilizing leader election. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Comput-
ing, pages 53–59, 2019.

185

[27] Hsueh-Ping Chen and Ho-Lin Chen. Self-stabilizing leader election in regular
graphs. In Proceedings of the 39th Symposium on Principles of Distributed
Computing, pages 210–217, 2020.

[28] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Eric
Ruppert. When birds die: Making population protocols fault-tolerant. Dis-
tributed Computing in Sensor Systems, pages 51–66, 2006.

[29] David Doty and David Soloveichik. Stable leader election in population
protocols requires linear time. Distributed Computing, 31(4):257–271, 2018.

[30] Michael Fischer and Hong Jiang. Self-stabilizing leader election in networks
of finite-state anonymous agents. In International Conference On Principles
Of Distributed Systems, pages 395–409, 2006.

[31] Leszek Gąsieniec, David Hamilton, Russell Martin, Paul G Spirakis, and
Grzegorz Stachowiak. Deterministic population protocols for exact majority
and plurality. In Proceedings of International Conference on Principles of
Distributed Systems, pages 14:1–14:14, 2016.

[32] Leszek Gąsieniec, Grzegorz Stachowiak, and Przemyslaw Uznanski. Almost
logarithmic-time space optimal leader election in population protocols. In
The 31st ACM on Symposium on Parallelism in Algorithms and Architec-
tures, pages 93–102, 2019.

[33] Taisuke Izumi. On space and time complexity of loosely-stabilizing leader
election. In Proceedings of International Colloquium on Structural Informa-
tion and Communication Complexity, pages 299–312, 2015.

[34] Tomoko Izumi, Keigo Kinpara, Taisuke Izumi, and Koichi Wada. Space-
efficient self-stabilizing counting population protocols on mobile sensor net-
works. Theoretical Computer Science, 552:99–108, 2014.

[35] Adrian Kosowski and Przemyslaw Uznanski. Brief announcement: Popu-
lation protocols are fast. In Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing, pages 475–477, 2018.

186

[36] Anissa Lamani and Masafumi Yamashita. Realization of periodic functions
by self-stabilizing population protocols with synchronous handshakes. In
Proceedings of International Conference on Theory and Practice of Natural
Computing, pages 21–33, 2016.

[37] George B Mertzios, Sotiris E Nikoletseas, Christoforos L Raptopoulos, and
Paul G Spirakis. Determining majority in networks with local interactions
and very small local memory. In International Colloquium on Automata,
Languages, and Programming, pages 871–882, 2014.

[38] Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. Mediated pop-
ulation protocols. Theoretical Computer Science, 412(22):2434–2450, 2011.

[39] Satoshi Murata, Akihiko Konagaya, Satoshi Kobayashi, Hirohide Saito, and
Masami Hagiya. Molecular robotics: A new paradigm for artifacts. New
Generation Computing, 31(1):27–45, 2013.

[40] Yuichi Sudo, Ryota Eguchi, Taisuke Izumi, and Toshimitsu Masuzawa. Time-
optimal loosely-stabilizing leader election in population protocols. arXiv
preprint arXiv:2005.09944, 2020.

[41] Yuichi Sudo, Toshimitsu Masuzawa, Ajoy K Datta, and Lawrence L Larmore.
The same speed timer in population protocols. In Proceedings of Interna-
tional Conference on Distributed Computing Systems, pages 252–261, 2016.

[42] Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirot-
sugu Kakugawa, and Toshimitsu Masuzawa. Loosely-stabilizing leader elec-
tion in a population protocol model. Theoretical Computer Science, 444:100–
112, 2012.

[43] Yuichi Sudo, Fukuhito Ooshita, Taisuke Izumi, Hirotsugu Kakugawa, and
Toshimitsu Masuzawa. Time-optimal leader election in population protocols.
IEEE Transactions on Parallel and Distributed Systems, 2020.

[44] Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Ma-
suzawa. Loosely-stabilizing leader election on arbitrary graphs in population
protocols. In International Conference on Principles of Distributed Systems,
pages 339–354, 2014.

187

[45] Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Ma-
suzawa. Loosely stabilizing leader election on arbitrary graphs in population
protocols without identifiers or random numbers. IEICE Transactions on
Information and Systems, 103(3):489–499, 2020.

[46] Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, Toshimitsu Ma-
suzawa, Ajoy K Datta, and Lawrence L Larmore. Loosely-stabilizing leader
election with polylogarithmic convergence time. Theoretical Computer Sci-
ence, 806:617–631, 2020.

[47] Yuichi Sudo, Masahiro Shibata, Junya Nakamura, Yonghwan Kim, and
Toshimitsu Masuzawa. Self-stabilizing population protocols with global
knowledge. IEEE Transactions on Parallel and Distributed Systems, 2021.

188

Publication list

Peer-Reviewed Journal Papers

[1] Hiroto Yasumi, Fukuhito Ooshita, Ken’ichi Yamaguchi, and Michiko Inoue,
Space-optimal population protocols for uniform bipartition under global
fairness, IEICE Transactions on Information and Systems, 102(3):454–463,
2019.

[2] Hiroto Yasumi, Naoki Kitamura, Fukuhito Ooshita, Taisuke Izumi, and
Michiko Inoue, A population protocol for uniform k-partition under global
fairness, International Journal of Networking and Computing, 9(1):97–110,
2019.

[3] Hiroto Yasumi, Fukuhito Ooshita, Michiko Inoue, and Sebastien Tixeuil,
Uniform bipartition in the population protocol model with arbitrary graphs,
Theoretical Computer Science, 892:187–207, 2021.

Peer-Reviewed Conference Papers

[1] Hiroto Yasumi, Fukuhito Ooshita, Ken’ichi Yamaguchi, and Michiko Inoue,
Constant-space population protocols for uniform bipartition, Proceedings of
International Conference on Principles of Distributed Systems, 2017.

[2] Hiroto Yasumi, Naoki Kitamura, Fukuhito Ooshita, Taisuke Izumi, and
Michiko Inoue, A population protocol for uniform k-partition under global
fairness, Proceedings of Workshop on Advances in Parallel and Distributed
Computational Models, pages 813–819, 2018.

[3] Hiroto Yasumi, Fukuhito Ooshita, and Michiko Inoue, Uniform partition in
population protocol model under weak fairness, Proceedings of International
Conference on Principles of Distributed Systems, 2019.

[4] Hiroto Yasumi, Fukuhito Ooshita, Michiko Inoue, and Sébastien Tixeuil,
Uniform Bipartition in the Population Protocol Model with Arbitrary Com-
munication Graphs, Proceedings of International Conference on Principles
of Distributed Systems, 2020.

189

[5] Hiroto Yasumi, Fukuhito Ooshita, and Michiko Inoue, Population Proto-
cols for Graph Class Identification Problems, Proceedings of International
Conference on Principles of Distributed Systems, 2021.

190

