Doctoral Dissertation

A Study on Uniform k-partition and Graph Class Identification in the Population Protocol Model

Hiroto Yasumi
Program of Information Science and Engineering
Graduate School of Science and Technology
Nara Institute of Science and Technology

Supervisor: Michiko Inoue
Dependable System Lab. (Division of Information Science)

> A Doctoral Dissertation
> submitted to Graduate School of Information Science, Nara Institute of Science and Technology
> in partial fulfillment of the requirements for the degree of Doctor of SCIENCE

Hiroto Yasumi

Thesis Committee:
Supervisor Michiko Inoue
(Professor, Division of Information Science)
Shoji Kasahara
(Professor, Division of Information Science)
Fukuhito Ooshita
(Associate Professor, Division of Information Science)
Michihiro Shintani
(Assistant Professor, Division of Information Science)
Sébastien Tixeuil
(Professor, Sorbonne Université)

A Study on Uniform k-partition and Graph Class Identification in the Population Protocol Model*

Hiroto Yasumi

Abstract

In recent years, autonomous distributed systems consisting of low-performance devices have attracted attention. For example, there is growing interest in a technology called molecular robotics, in which molecules themselves are designed as robots. To construct algorithms specialized for such low-performance devices, we deal with a population protocol model; in this model, devices only have greatly limited resources. So far, researchers have studied various problems in this model. In this dissertation, we tackle with two important challenges of the population protocol model.

One is to handle multiple tasks. Since devices are low-performance, one device may not handle multiple tasks. Thus, it is necessary to develop a mechanism to handle multiple tasks. As an approach to achieve it, we address network partitioning on the population protocol model. By partitioning a network into some groups, devices can handle multiple tasks by assigning different tasks to each group. Concretely, we study the uniform k-partition problem on the population protocol model. This problem aims to divide a network into k groups of the same size, where k is a given positive integer. In this dissertation, to cope with various situations, we consider the problem on various assumptions. Moreover, since devices only have greatly limited resources, we mainly study space-complexity to solve the problem. As a result, on various assumptions, we clarify the solvability and space-complexity of this problem.

The other challenge is efficient task execution. To execute tasks efficiently, we address investigation of the structure of networks. As many studies have shown,

^[*Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science and Technology, NAIST-IS-DD2021045, March 9, 2022.]

the structure of networks has a high impact on the efficiency of the algorithm. Hence, by understanding the structure of networks, we can apply appropriate algorithms to execute tasks efficiently. In this dissertation, we study graph class identification problems that aim to understand the structure of networks (i.e., graph class of networks). In particular, as basic structures of networks, we focus on lines, rings, k-regular graphs, stars, trees, and bipartite graphs. As a result, we clarify the solvability and space-complexity of the problems for the graphs.

Keywords:

population protocol, uniform k-partition problem, graph class identification problem, distributed system, distributed algorithm

Contents

I Introduction 1

1. The Background 1
2. Overview of This Dissertation 2
2.1 Uniform k-partition Problem 2
2.2 Graph Class Identification Problems 4
3. Related Works 5
3.1 Leader Election Problem 5
3.2 Counting Problem 6
3.3 Majority Problem 7
3.4 Uniform k-partition Problem 7
3.5 Graph Class Identification Problems 7
4. Organization of This Dissertation 8
II Model Definition 9
III Uniform k-partition on Complete Graphs 12
5. Introduction 12
1.1 Our Contributions 12
6. Problem Definition 19
7. Uniform 2-partition under Global Fairness on Complete Graphs 19
3.1 Uniform 2-partition Protocols with Initialized Base Station 20
3.1.1 Upper Bound for Symmetric Protocols with Designated Ini- tial States 20
3.1.2 Lower Bound with Designated Initial States 21
3.1.3 Upper Bound for Symmetric Protocols with Arbitrary Ini- tial States 23
3.1.4 Lower Bound with Arbitrary Initial States 28
3.1.5 Impossibility with Non-initialized Base Station and Arbi- trary Initial States 30
3.2 Uniform 2-partition Protocols with No Base Station 31
3.2.1 Upper Bound for Asymmetric protocols with Designated Initial States 31
3.2.2 Upper Bound for Symmetric Protocols with Designated Ini- tial States 32
3.2.3 Lower Bound for Symmetric Protocols 34
8. Uniform 2-partition under Weak Fairness on Complete Graphs 35
4.1 Lower Bounds for Initialized Base Station 36
4.1.1 Common Properties of Asymmetric and Symmetric Protocols 36
4.1.2 Lower Bound for Asymmetric Protocols 39
4.1.3 Lower Bound for Symmetric Protocols 52
4.2 Upper Bounds for Initialized Base Station 71
4.2.1 Upper Bound for Asymmetric Protocols 71
4.2.2 Upper Bound for Symmetric Protocols 74
4.3 Impossibility with No Base Station and Designated Initial States for Symmetric Protocols 75
9. Uniform k-partition under Global Fairness on Complete Graphs 75
5.1 Lower Bound for Initialized Base Station with Designated Initial States 76
5.2 Upper Bound for Uniform k-partition Protocol 77
5.2.1 Basic strategy 78
5.2.2 A problem of the basic strategy and its solution 80
5.2.3 Correctness 82
5.2.4 Simulation Results 87
10. Concluding Remarks 91
IV Uniform 2-partition on Arbitrary Graphs 93
11. Introduction 93
1.1 Our Contributions 93
1.2 Problem Definition 95
12. Upper Bounds with a Non-initialized Base Station and Desig- nated Initial States 96
2.1 Upper Bound for Symmetric Protocols under Global Fairness 96
2.2 Upper Bound for Symmetric Protocols under Weak Fairness 98
2.2.1 A protocol on arbitrary graphs 98
2.2.2 A protocol with constant states on a restricted class of graphs s104
13. Upper and Lower Bounds with No Base Station and Designated Initial States 105
3.1 Upper Bound for Asymmetric Protocols under Global Fairness 105
3.2 Upper Bound for Symmetric Protocols under Global Fairness 108
3.3 Lower Bound for Asymmetric Protocols under Global Fairness 111
3.4 Lower Bound for Symmetric Protocols under Global Fairness 115
3.5 Impossibility under Weak Fairness 127
14. Concluding Remarks 129
V Graph Class Identification Protocols 130
15. Introduction 130
1.1 Our Contributions 131
16. Graph Properties and Problem Definitions 132
17. Graph Class Identification Protocols 133
3.1 Tree Identification Protocol with No Initial Knowledge under Global Fairness 133
$3.2 \quad k$-regular Identification Protocol with Knowledge of P under Global Fairness 146
3.3 Star Identification Protocol with Knowledge of n under Weak Fair- ness 160
18. Impossibility Results 168
4.1 A Common Property of Graph Class Identification Protocols for Impossibility Results 168
4.2 Impossibility with the Known Upper Bound of the Number of Agents under Weak Fairness 171
4.3 Impossibility with the Known Number of Agents under Weak Fair- ness 172
4.4 Impossibility with Arbitrary Initial States 178
19. Concluding Remarks 179
VI Conclusion 180
Acknowledgements 182
References 183
Publication list 189

List of Figures

1 An example execution of the protocol. Symbols i, i^{\prime}, r, and b represent states initial, initial', red, and blue, respectively. Arrows represent interactions of agents.33
2 Example of execution segment $e^{\prime}\left(P=8, Q^{*}=\left\{s_{1}, s_{2}\right\}, \gamma\left(s_{1}\right)=\right.$ $\gamma\left(s_{2}\right)=\gamma\left(s_{3}\right)=$ blue, and $\gamma\left(s_{4}\right)=\gamma\left(s_{5}\right)=\gamma\left(s_{6}\right)=\gamma\left(s_{7}\right)=$ red $)$, where the thick black arrow represents two interactions between a_{i} and a_{j} (or a_{i}^{\prime} and a_{j}^{\prime})43
3 An example of k-partition 80
4 Another example of k-partition 81
5 The number of interactions for $k \in\{4,6,8\}$ with changing the pop- ulation size n 88
6 The number of interactions to achieve the i-th grouping 89
7 The number of interactions for $k \in\{3,4,5,6\}$ with changing the population size n 90
8 The number of interactions for $n=960$ with changing k 91
$9 \quad$ An example of communication graphs G and $G^{\prime}(n=5)$. 113
10 An image of graphs G and G^{\prime}. 117
11 Graphs G and G^{\prime}. 128
12 An image of the start of the trial 139
13 An image of the success of the trial 139
14 Images of the fail of the trial 140
15 The example of deleting a mark 152
16 An example of graphs G and G^{\prime} 169
17 Images of $C_{2 t_{j-1}^{\prime}}^{\prime}, \xi_{j}^{\prime}, C_{2 t_{j}^{\prime}}^{\prime}$. A solid line represents an edge on which interactions occur in $C_{2 t_{j-1}^{\prime}}^{\prime}, \xi_{j}^{\prime}, C_{2 t_{j}^{\prime}}^{\prime}$, and a dashed line represents an edge on which interactions do not occur in $C_{2 t_{j-1}^{\prime}}^{\prime}, \xi_{j}^{\prime}, C_{2 t_{j}^{\prime}}^{\prime}$. 170
18 Graphs G, G^{\prime}, and $G^{\prime \prime}$ 176

List of Tables

1 Minimum number of states to solve the uniform 2-partition problem under global fairness on complete graphs. 13
2 Minimum number of states to solve the uniform 2-partition problem under weak fairness on complete graphs. 13
3 Minimum number of states to solve the 2-partition problem under global fairness on complete graphs.15

4 Minimum number of states to solve the 2-partition problem under weak fairness on complete graphs.15

5 Minimum number of states to solve the uniform k-partition problem under global fairness on complete graphs.
6 Minimum number of states to solve the uniform k-partition problem under weak fairness on complete graphs.17
$7 \quad$ Minimum number of states to solve the k-partition problem under global fairness on complete graphs.18

8 Minimum number of states to solve the k-partition problem under weak fairness on complete graphs18

9 Minimum number of states to solve the uniform 2-partition problem on arbitrary graphs under global fairness.94

10 Minimum number of states to solve the uniform k-partition problem under weak fairness on complete graphs. P is a known upper bound of the number of agents, and $l \geq 3$ and h are positive integers. 94
11 The number of states to solve the graph class identification problems. n is the number of agents and P is an upper bound of the number of agents

Part I

Introduction

1. The Background

In recent years, autonomous distributed systems consisting of low-performance devices have attracted much attention. For example, there is growing interest in a technology called molecular robotics [39], in which molecules themselves are designed as robots. In this system, a large number of robots cooperate in a human body to achieve an objective (e.g., carrying medicines). Another example is to construct a network to investigate the ecosystem by attaching sensors to a flock of wild small animals such as birds. In this system, since sensors are attached to small animals, sensors should be small and thus sensors should have small amount of memory.

The population protocol model is an abstract model for such low-performance devices, introduced by Angluin et al. [7]. In this model, a network (called population) consists of multiple devices (called agents). Those agents are greatly limited; they are anonymous (i.e., they do not have identifiers), move unpredictably, and have a small number of bits of memory. When two agents approach, they are able to communicate and update their states. This communication is called an interaction. By a sequence of interactions, the system proceeds a computation. In this dissertation, we tackle with two significant challenges of the population protocol model. One of the challenges is to handle multiple tasks. The other challenge is efficient task execution.

Challenge 1: Handling multiple tasks

Handling multiple tasks is a key issue especially on the population protocol model. This is because, since agents are low-performance, one agent may not handle multiple tasks and thus it is necessary to develop a mechanism to handle multiple tasks.

In order to achieve it, we focus on partitioning a population. By partitioning a population into some groups, agents can handle multiple tasks by assigning dif-
ferent tasks to each group. Concretely, we study the uniform k-partition problem on the population protocol model. This problem aims to divide a population into k groups of the same size, where k is a given positive integer. By solving this problem, since the population can be divided into an arbitrary number of groups, an arbitrary number of tasks can be assigned, and, since each group has the same number of agents, the tasks can proceed uniformly.

Challenge 2: Efficient task execution

To execute task efficiently, we focus on the structure of networks and address the investigation of the structure of networks. As many studies have shown, the structure of networks has a high impact on the efficiency of the algorithm. Actually, in the population protocol model, some efficient protocols are proposed with limited structure of networks $[5,10,26,27]$. Hence, by understanding the structure of networks, we can apply appropriate algorithms to execute tasks efficiently. In this dissertation, we study graph class identification problems that aim to understand the structure of networks (i.e., graph class of networks). In particular, as basic graph classes, we deal with lines, rings, k-regular graphs, stars, trees, and bipartite graphs.

2. Overview of This Dissertation

In this dissertation, we study the space complexity of the problems. That is, we investigate the number of states per agent to solve the problems. In the population protocol model, the first goal is to execute tasks while the memory capacity of devices is severely limited. Hence, it is very important to study the space-complexity in this model.

2.1 Uniform k-partition Problem

The uniform k-partition problem aims to divide a population into k groups of equal size, where k is a given positive integer.

As a first step, to clarify the solvability of the problem in a simple case, we study the solvability of the uniform 2-partition on complete communication
graphs. More concretely, we study the solvability of the problem under various assumptions; in order to be flexible for future applications, it is necessary to consider various situations. In this dissertation, we consider four types of assumptions: 1) with an initialized base station, a non-initialized base station, or no base station, 2) designated or arbitrary initial states of agents, 3) asymmetric or symmetric protocols, and 4) global or weak fairness. A base station is a special agent that is distinguishable from other agents and has powerful capability. An initialized base station means that the base station has a designated initial state in the initial configuration, whereas a non-initialized base station means that the base station has an arbitrary initial state in the initial configuration. The base station enables us to construct efficient protocols, though it is sometimes difficult to implement. The assumption of initial states bears on the requirement of initialization of agents (other than the base station) and the fault-tolerant property. If a protocol requires designated initial states, it is necessary to initialize agents to execute the protocol. Alternatively, if a protocol solves the problem with arbitrary initial states, we do not need to initialize agents. This implies that, when agents transition to arbitrary states by transient faults, the protocol can reach the desired configuration. Symmetry of protocols is related to the power of symmetry breaking in the population. Asymmetric protocols may include asymmetric transitions that make agents with the same states transition to different states. This needs a mechanism to break symmetry among agents and its implementation is not easy with heavily limited devices. Symmetric protocols do not include such asymmetric transitions. Fairness is an assumption of interaction patterns. Though weak fairness guarantees only that every pair of agents interact infinitely often, global fairness makes a stronger assumption on the order of interactions. As a result, we clarify the solvability of the uniform 2-partition problem for each combination of the assumptions. In addition, we clarify tight upper and lower bounds on the number of states to solve the uniform 2-partition problem for each combination of the assumptions.

Secondly, we extend the results to the general case of an arbitrary number of partitions (the uniform k-partition). Concretely, we clarify the solvability on complete graphs for each combination of the assumptions, and clarify tight upper and lower bounds on the number of states for most combinations of the
assumptions.
Finally, we consider the uniform 2-partition problem even on arbitrary communication graphs. In the population protocol model, most existing works consider the complete communication graph model. However, in realistic networks, communication graphs may be unpredictable. Thus, we also need algorithms that can solve the problem on arbitrary communication graphs. On arbitrary communication graphs, we clarify the solvability of the uniform 2-partition problem with designated initial states.

2.2 Graph Class Identification Problems

Graph class identification problems aim to decide whether a given communication graph is in the desired class (e.g., whether the given communication graph is a ring graph). In the population protocol model, the computability of the graph property was first considered in [6]. In [6], Angluin et al. proposed various graph class identification protocols with directed graphs and designated initial states under global fairness. Concretely, Angluin et al. proposed graph class identification protocols for directed lines, directed rings, directed stars, and directed trees. Moreover, they proposed graph class identification protocols for other graphs such as 1) graphs having degree bounded by a constant $k, 2$) graphs containing a fixed subgraph, 3) graphs containing a directed cycle, and 4) graphs containing a directed cycle of odd length. However, there are still some open questions such as "What is the computability for undirected graphs?" and "How do other assumptions (e.g., initial states, fairness, etc.) affect the computability?" In this dissertation, we answer those questions. That is, we study the solvability of graph class identification problems for undirected graphs under various assumptions such as initial states of agents, fairness of the execution, and an initial knowledge of agents. The initial knowledge is given to agents for helping the agents solve the problem. We consider three types of the initial knowledge: the number of agents n, the upper bound P of the number of agents, and no knowledge. The initial knowledge enables us to construct efficient protocols although it may be difficult to know the knowledge in some situations.

As a result, for most combinations of the assumptions, we clarify the solvability of graph class identification problems for various basic graphs such as line
graphs, ring graphs, k-regular graphs, star graphs, tree graphs, and bipartite graphs.

3. Related Works

The population protocol model was introduced in [7, 9], where the class of computable predicates in this model was studied. Then, many fundamental tasks were studied, such as leader election, counting, majority, etc [4, 13]. These problems were studied under various assumptions, such as the existence of a base station, fairness of the execution, symmetry of protocols, initial states of agents, and an initial knowledge of agents.

3.1 Leader Election Problem

A population protocol solves a leader election problem if starting from an initially uniform population of agents, eventually a single agent outputs leader, while all others output non-leader. The leader election problem was studied from the perspective of time and space efficiency. Doty and Soloveichik [29] proved that $\Omega(n)$ expected parallel time is required to solve leader election with probability 1 if agents have a constant number of states. Relaxing the number of states to a polylogarithmic value, Alistarh and Gelashvili [3] proposed a leader election protocol in polylogarithmic expected stabilization time. Then, Gąsieniec et al. [32] designed a protocol with $O(\log \log n)$ states and $O(\log n \cdot \log \log n)$ expected time. Furthermore, the protocol of Gąsieniec et al. [32] is space-optimal for solving the problem in polylogarithmic time. Sudo et al. [43] presented a leader election protocol with $O(\log n)$ states and $O(\log n)$ expected time. This protocol is time-optimal for solving the problem. Finally, Berenbrink et al. [20] proposed a time and space optimal protocol that solves the leader election problem with $O(\log \log n)$ states and $O(\log n)$ expected time.

The designated initial states are assumed in above protocols whereas leader election protocols with arbitrary initial states have also been studied by many researchers [11, 14, 24, 26, 27, 30, 47]. Protocols with arbitrary initial are called self-stabilizing protocols. In [11], Angluin et al. proposed various self-stabilizing protocols such as leader election, spanning-tree construction, etc. Moreover, they
proved that, in the case of arbitrary communication graphs, self-stabilizing leader election is impossible. After that, researchers studied self-stabilizing leader election protocols with restricted graphs [26, 27], with some oracles [14, 30], or with some initial knowledge [24, 47].

As a variant of the self-stabilizing protocol, loosely self-stabilizing protocols were also studied for the leader election (loose stabilization relates to the fact that correctness is only guaranteed for a very long expected amount of time) [42, 41, 44, 33, 46, 45, 40]. Loosely self-stabilizing leader election was introduced by Sudo et al. [42]. In [42], they proposed a loosely self-stabilizing leader election with complete graphs and initial knowledge of the upper bound P of the number of agents. The protocol obtains a safe configuration with $O(n N \log n)$ expected time, where the safe configuration is a configuration after which a unique agent outputs leader for a sufficiently long time. Then, with complete graphs, some researchers proposed time-efficient protocols [33, 46]. Recently, Sudo et al. proposed a time-optimal protocol with complete graphs [40]. On the other hand, with arbitrary graphs, researchers proposed protocols with identifier of agent, or non-deterministic protocols [44, 41]. Then, Sudo et al. proposed a deterministic protocol without identifier [45].

3.2 Counting Problem

The counting problem consists in counting how many agents participate to the protocol; As the agent's memory is typically constant, this number is output by a special agent that may maintain logarithmic size memory, the base station. The counting problem was introduced by Beauquier et al. [16] and popularized the concept of a base station. Space complexity was further reduced by follow-up works [15, 34], until Aspnes et al. [12] finally proposed a time and space optimal protocol. In the above works, they consider the problem with arbitrary initial states (however the base station has a designated initial state). On the other hand, by allowing the initialization of agents, the counting protocols without the base station were proposed for both exact counting [21] and approximate counting [1, 21]. Alistarh et al. [1] proposed a protocol that computes an integer k such that $\frac{1}{2} \log n<k<9 \log n$ in $O(\log n)$ time with high probability using $O(\log n)$ states. Then, Berenbrink et al. [21] designed a protocol that outputs either $\lfloor\log n\rfloor$
or $\lceil\log n\rceil$ in $O\left(\log ^{2} n\right)$ time with high probability using $O(\log n \cdot \log \log n)$ states. Moreover, they proposed the exact counting protocol that computes n in $O(\log n)$ time using $\tilde{O}(n)$ states with high probability.

3.3 Majority Problem

The majority problem aims to decide which, if any, initial state in a population is a majority. The majority problem was addressed under different assumptions (e.g., with or without failures [8], deterministic [31, 35] or probabilistic [2, 17, 18, 35] solutions, with arbitrary communication graphs [37], etc.). Those works also consider minimizing the time and space complexity. Berenbrink et al. [19] show trade-offs between time and space for the problem.

3.4 Uniform k-partition Problem

To our best knowledge, only a few variants of the uniform k-partition have been considered so far. Lamani et al. [36] studied a group decomposition problem that aims to divide a population into groups of designated sizes. Delporte-Gallet et al. [28] proposed a k-partition protocol with relaxed uniformity constraints: the population is divided into k groups such that in any group, at least $n /(2 k)$ agents exist, where n is the number of agents. In addition, they also constructed a uniform 2-partition protocol as a subroutine of the protocol.

3.5 Graph Class Identification Problems

For graph class identification problems, Chatzigiannakis et al. [25] studied solvabilities for directed graphs with some properties on the mediated population protocol model [38], where the mediated population protocol model is an extension of the population protocol model. In this model, a communication link (on which agents interact) has a state. Agents can read and update the state of the communication link when agents interact on the communication link. In [25], they proposed graph class identification protocol for some graphs such as 1) graphs having degree bounded by a constant $k, 2$) graphs in which the degree of each agent is at least $k, 3$) graphs containing an agent such that in-degree of
the agent is greater than out-degree of the agent, 4) graphs containing a directed path of at least k edges, etc. Since Chatzigiannakis et al. proposed protocols for the mediated population protocol model, the protocols cannot work in the population protocol model. As impossibility results, they showed that there is no graph class identification protocol that decides whether the given directed graph has two edges (u, v) and (v, u) for two agents u and v, or whether the given directed graph is weakly connected.

4. Organization of This Dissertation

This dissertation consists of six parts. In Part II, we introduce a formal model definition of the population protocol model. Part III and IV focus on the uniform k-partition problem under various assumptions. In Part III, we clarify the solvability of the uniform k-partition problem on complete communication graphs. In Part IV, we clarify the solvability of the uniform 2-partition problem on arbitrary communication graphs. Part V focuses on graph class identification problems. Concretely, we clarify the solvability of graph class identification problems for line, ring, tree, k-regular, and star. In Part VI, we conclude this dissertation.

Part II

Model Definition

In this part, we give a formal definition of the population protocol model. A communication graph of a population is represented by a simple undirected connected graph $G=(V, E)$, where V represents a set of agents (called a population), and $E \subseteq V \times V$ is a set of edges (containing neither multi-edges nor self-loops) that represent the possibility of an interaction between two agents (i.e., only if $(a, b) \in E$ holds, two agents $a \in V$ and $b \in V$ can interact).

A protocol $\mathcal{P}=(Q, Y, \gamma, \delta)$ consists of a set Q of possible states of agents, a finite set of output symbols Y, an output function $\gamma: Q \rightarrow Y$, and a set of transitions δ from $Q \times Q$ to $Q \times Q$. Output symbols in Y represent outputs as the results according to the purpose of the protocol. Output function γ maps a state of an agent to an output symbol in Y. Each transition in δ is denoted by $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$. This means that, when an agent a in state p interacts with an agent b in state q, their states become p^{\prime} and q^{\prime}, respectively. We say that such a is an initiator and such b is a responder. When a and b interact as an initiator and a responder, respectively, we simply say that a interacts with b. Transition $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ is null if both $p=p^{\prime}$ and $q=q^{\prime}$ hold. We omit null transitions in descriptions of algorithms. Protocol $\mathcal{P}=(Q, Y, \gamma, \delta)$ is deterministic if, for any pair of states $(p, q) \in Q \times Q$, exactly one transition $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ exists in δ. We consider only deterministic protocols in this dissertation. Protocol $\mathcal{P}=(Q, Y, \gamma, \delta)$ is symmetric if, for every transition $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ in $\delta,(q, p) \rightarrow$ $\left(q^{\prime}, p^{\prime}\right)$ exists in δ. In particular, if a protocol $\mathcal{P}=(Q, Y, \gamma, \delta)$ is symmetric and transition $(p, p) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ exists in $\delta, p^{\prime}=q^{\prime}$ holds. In this dissertation, an arbitrary protocol is also called an asymmetric protocol. When we refer to a protocol as an asymmetric protocol, we simply emphasize that the protocol is not subject to the restriction of transitions (whereas symmetric protocols are subject to the restriction of transitions). Note that a symmetric protocol is also an asymmetric protocol (and an asymmetric protocol is not necessarily a symmetric protocol).

A configuration represents a global state of a population, defined as a vector
of states of all agents. A state of agent a in configuration C is denoted by $s(a, C)$. Moreover, when C is clear from the context, we simply use $s(a)$ to denote the state of agent a. A transition from configuration C to configuration C^{\prime} is denoted by $C \rightarrow C^{\prime}$, and means that, by a single interaction between two agents, configuration C^{\prime} is obtained from configuration C. For two configurations C and C^{\prime}, if there exists a sequence of configurations $C=C_{0}, C_{1}, \ldots, C_{m}=C^{\prime}$ such that $C_{i} \rightarrow C_{i+1}$ holds for every $i(0 \leq i<m)$, we say C^{\prime} is reachable from C, denoted by $C \xrightarrow{*} C^{\prime}$.

An execution of a protocol is an infinite sequence of configurations $\Xi=C_{0}, C_{1}$, C_{2}, \ldots where $C_{i} \rightarrow C_{i+1}$ holds for every $i(i \geq 0)$. An execution Ξ is weakly-fair if, for any adjacent agents a and a^{\prime}, a interacts with a^{\prime} and a^{\prime} interacts with a infinitely often ${ }^{1}$. An execution Ξ is globally-fair if, for each pair of configurations C and C^{\prime} such that $C \rightarrow C^{\prime}, C^{\prime}$ occurs infinitely often when C occurs infinitely often. Intuitively, global fairness guarantees that, if configuration C occurs infinitely often, then any possible interaction in C also occurs infinitely often. Then, if C occurs infinitely often, C^{\prime} satisfying $C \rightarrow C^{\prime}$ occurs infinitely often, and we can deduce that $C^{\prime \prime}$ satisfying $C^{\prime} \rightarrow C^{\prime \prime}$ also occurs infinitely often. Overall, with global fairness, if a configuration C occurs infinitely often, then every configuration C^{*} reachable from C also occurs infinitely often.

In this dissertation, we consider three possibilities for the base station: initialized base station, non-initialized base station, and no base station. In the model with a base station, we assume that a single agent, called a base station, exists in V. Then, V can be partitioned into V_{b}, the singleton set containing the base station, and V_{p}, the set of agents except for the base station. The base station can be distinguished from other agents in V_{p}, although agents in V_{p} cannot be distinguished. Then, the state set Q can be partitioned into a state set Q_{b} for the base station, and a state set Q_{p} for agents in V_{p}. The base station has unlimited resources (with respect to the number of states), in contrast with other resource-limited agents (that are allowed only a limited number of states). So,

[^1]when we evaluate the space complexity of a protocol, we focus on the number of states $\left|Q_{p}\right|$ for agents in V_{p} and do not consider the number of states $\left|Q_{b}\right|$ that are allocated to the base station. In the sequel, we thus say a protocol uses x states if $\left|Q_{p}\right|=x$ holds. When we assume an initialized base station, the base station has a designated initial state. When we assume a non-initialized base station, the base station has an arbitrary initial state (in Q_{b}). When we assume no base station, there exists no base station and thus $V=V_{p}$ and $Q=Q_{p}$ hold. For simplicity, we use agents only to refer to agents in V_{p} in the following sections. To refer to the base station, we always use the term base station (not an agent).

In this dissertation, we consider three settings for an initial knowledge of agents: the number of agents n, the upper bound P of the number of agents, and no knowledge. Note that the protocol depends on this initial knowledge. When we explicitly state that an integer x is given as the number of agents, we write the protocol as $\mathcal{P}_{n=x}$. Similarly, when we explicitly state that an integer x is given as the upper bound of the number of agents, the protocol is denoted by $\mathcal{P}_{P=x}$. Unless otherwise mentioned, agents have no knowledge.

Part III

Uniform k-partition on Complete Graphs

1. Introduction

In this part, we aim to clarify the solvabilities of the uniform k-partition on complete graphs under various assumptions. As a first step, we consider a simple case of the uniform k-partition where the number of partitions is two (the uniform 2 -partition). Then, we consider the general case (the uniform k-partition). We remark that some results of the uniform 2-partition is applied to the uniform k-partition. Note that, in this part, since we assume complete graphs, each pair of agents can interact.

1.1 Our Contributions

Results for the uniform 2-partition problem

Tables 1 and 2 show the solvability of the uniform 2-partition on complete graphs.
These tables show the number of states to solve the uniform 2-partition problem under various assumptions, where P is the known upper bound of the number of agents. In this dissertation, we provide tight upper and lower bounds of the number of states for each case. With a (initialized or non-initialized) base station and designated initial states, we show that three states are necessary and sufficient to solve the problem, regardless of fairness and symmetry. With an initialized base station and arbitrary initial states, we show that four states are necessary and sufficient to solve the problem under global fairness; under weak fairness, we show that P states (resp., $P+1$ states) are necessary and sufficient for asymmetric protocols (resp., symmetric protocols). With a non-initialized base station and arbitrary initial states, we prove that the uniform 2-partition problem is unsolvable, regardless of fairness and symmetry. With no base station and designated initial states, Delporte-Gallet et al. [28] constructed an asymmetric uniform 2-

Table 1. Minimum number of states to solve the uniform 2-partition problem under global fairness on complete graphs.

Base station	Initial states	Symmetry	Upper bound	Lower bound
Initialized base station	Designated	Asymmetric	3	3
		Symmetric	3	3
	Arbitrary	Asymmetric	4	4
		Symmetric	4	4
Designated	Asymmetric	3	3	
	Arbitrary	Symmetric	3	3
		Asymmetric	Unsolvable	
	Symmetric	Unsolvable		
No base station	Designated	Asymmetric	$3[28]$	3
		Symmetric	$4[22]$	4
	Arbitrary		Unsolvable	
		Symmetric	Unsolvable	

Table 2. Minimum number of states to solve the uniform 2-partition problem under weak fairness on complete graphs.

Base station	Initial states	Symmetry	Upper bound	Lower bound
Initialized base station	Designated	Asymmetric	3	3
		Symmetric	3	3
	Arbitrary	Asymmetric	P	P
		Symmetric	$P+1$	$P+1$
Non-initialized base station	Designated	Asymmetric	3	3
		Symmetric	3	3
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	
No base station	Designated	Asymmetric	3	3
		Symmetric	Unsolvable	
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	

partition protocol that solves the problem with three states under global fairness. Moreover, with no base station and designated initial states, Bournez et al. [22] proposed a transformer that transforms an asymmetric protocol into a symmetric protocol under global fairness by assuming additional states. We use the same idea to construct a symmetric uniform 2-partition protocol under global fairness with no base station and designated initial states. As a result for lower bounds, we prove that three states (resp., four states) are necessary to solve the problem under global fairness for asymmetric protocols (resp., symmetric protocols). On the other hand, under weak fairness, we show that three states are necessary and sufficient for asymmetric protocols and there is no symmetric protocol, with no base station and designated initial states. With no base station and arbitrary initial states, we prove that the uniform 2-partition problem is unsolvable, regardless of fairness and symmetry.

Interestingly, in many impossibility results, we not only prove that there is no uniform 2-partition protocol, but also that there is no protocol that solves the 2-partition problem (which aims to divide a population into 2 groups, but the problem allows for a constant difference in the number of agents between the groups). Concretely, in all cases other than the case where we consider the problem with an initialized base station and arbitrary initial states under weak fairness, we show that the lower bounds of the 2-partition are the same as the lower bounds of the uniform 2-partition. Moreover, since uniform 2-partition protocols are also 2-partition protocols, possibility results of the uniform 2-partition can be applied directly to the 2-partition. Tables 3 and 4 show the results of the 2-partition on complete graphs. Overall, even in the case of the 2-partition, we clarify tight upper and lower bounds on the number of states in most settings.

For the case of an initialized base station, arbitrary initial states, and weak fairness, it is interesting to compare these results with those of naming protocols [23]. A naming protocol aims to assign different states to all agents, and hence it can be regarded as a uniform P-partition protocol (the size of each group is zero or one). Burman et al. [23] prove that, to construct naming protocols in the same setting, P states are necessary and sufficient for asymmetric protocols and $P+1$ states are necessary and sufficient for symmetric protocols. That is, naming protocols have the same space complexity as uniform 2-partition protocols.

Table 3. Minimum number of states to solve the 2-partition problem under global fairness on complete graphs.

Base station	Initial states	Symmetry	Upper bound	Lower bound
Initialized base station	Designated	Asymmetric	3	3
		Symmetric	3	3
	Arbitrary	Asymmetric	4	4
		Symmetric	4	4
Non-initialized base station	Designated	Asymmetric	3	3
		Symmetric	3	3
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	
No base station	Designated	Asymmetric	3 [28]	3
		Symmetric	4 [22]	4
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	

Table 4. Minimum number of states to solve the 2-partition problem under weak fairness on complete graphs.

Base station	Initial states	Symmetry	Upper bound	Lower bound
Initialized base station	Designated	Asymmetric	3	3
		Symmetric	3	3
	Arbitrary	Asymmetric	P	-
		Symmetric	$P+1$	-
Non-initialized base station	Designated	Asymmetric	3	3
		Symmetric	3	3
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	
No base station	Designated	Asymmetric	3	3
		Symmetric	Unsolvable	
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	

Clearly naming protocols (or uniform P-partition protocols) require P states to assign different states to P agents. Interestingly uniform 2-partition protocols still require P states in this setting. On the other hand, the number of states is reduced to three or four when we assume designated initial states or global fairness.

Results for the uniform k-partition problem

Tables 5 and 6 show the solvability of the uniform k-partition on complete graphs. First of all, some results of the uniform 2-partition can be applied to the uniform k-partition. First, since the uniform 2-partition is a special case of the uniform k partition, impossibility results of the uniform 2 -partition can be applied directly to the uniform k-partition. In addition, we prove the impossibility of k states with the base station and designated initial states under global fairness by extending the impossibility of three states for the uniform 2-partition. Secondly, with an initialized base station under weak fairness, the P-state and $P+1$-state protocols for the uniform 2-partition also work even for the uniform k-partition. Moreover, with designated initial states and the (initialized or non-initialized) base station, the uniform 2-partition protocols are easily extended to the uniform k-partitions.

The main contribution for the uniform k-partition is to propose a protocol with designated initial states and no base station. Concretely, for the case with no base station and designated initial states under global fairness, we propose a symmetric protocol. This protocol requires $3 k-2$ states for each agent. This space complexity is asymptotically optimal because the lower bound in this setting is $k+1$. Moreover, we evaluate the time complexity of the protocol by simulations. From the simulation results, we can observe that the time complexity increases exponentially with k but not exponentially with n, where n is the number of agents.

As in the case of the uniform 2-partition, most results of the uniform k partition can also be applied to the k-partition (see Tables 7 and 8). Hence, even in the case of the k-partition, we clarify tight upper and lower bounds on the number of states in most settings.

Table 5. Minimum number of states to solve the uniform k-partition problem under global fairness on complete graphs.

Base station	Initial states	Symmetry	Upper bound	Lower bound
Initialized base station	Designated	Asymmetric	$k+1$	$k+1$
		Symmetric	$k+1$	$k+1$
	Arbitrary	Asymmetric	P	$k+1$
		Symmetric	$P+1$	$k+1$
Non-initialized base station	Designated	Asymmetric	$k+1$	$k+1$
		Symmetric	$k+1$	$k+1$
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	
No base station	Designated	Asymmetric	3k-2	$k+1$
		Symmetric	3k-2	$k+1$
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	

Table 6. Minimum number of states to solve the uniform k-partition problem under weak fairness on complete graphs.

Base station	Initial states	Symmetry	Upper bound	Lower bound
Initialized base station	Designated	Asymmetric	$k+1$	$k+1$
		Symmetric	$k+1$	$k+1$
	Arbitrary	Asymmetric	P	P
		Symmetric	$P+1$	$P+1$
Non-initialized base station	Designated	Asymmetric	$k+1$	$k+1$
		Symmetric	$k+1$	$k+1$
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	
No base station	Designated	Asymmetric	-	$k+1$
		Symmetric	Unsolvable	
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	

Table 7. Minimum number of states to solve the k-partition problem under global fairness on complete graphs.

Base station	Initial states	Symmetry	Upper bound	Lower bound
Initialized base station	Designated	Asymmetric	$k+1$	$k+1$
		Symmetric	$k+1$	$k+1$
	Arbitrary	Asymmetric	P	$k+1$
		Symmetric	$P+1$	$k+1$
Non-initialized base station	Designated	Asymmetric	$k+1$	$k+1$
		Symmetric	$k+1$	$k+1$
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	
No base station	Designated	Asymmetric	$3 k-2$	$k+1$
		Symmetric	3k-2	$k+1$
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	

Table 8. Minimum number of states to solve the k-partition problem under weak fairness on complete graphs.

Base station	Initial states	Symmetry	Upper bound	Lower bound
Initialized base station	Designated	Asymmetric	$k+1$	$k+1$
		Symmetric	$k+1$	$k+1$
	Arbitrary	Asymmetric	P	-
		Symmetric	$P+1$	-
Non-initialized base station	Designated	Asymmetric	$k+1$	$k+1$
		Symmetric	$k+1$	$k+1$
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	
No base station	Designated	Asymmetric	-	$k+1$
		Symmetric	Unsolvable	
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	

2. Problem Definition

Now, we give a formal definition of the uniform k-partition problem (and the k-partition problem).

Let V_{p} be a set of all agents except for the base station. Let $Y=\left\{\right.$ color $_{1}$, color $_{2}, \ldots$, color $\left._{k}\right\}$ be an output set of the problem. Let $\gamma: Q_{p} \rightarrow Y$ be a function that maps a state of an agent (except for the base station) to Y. We define a color of $v \in V_{p}$ as $\gamma(s(v))$. We say agent $v \in V_{p}$ belongs to the i-th group if $\gamma(s(v))=$ color $_{i}$ holds.

An execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots$ solves the k-partition problem with size difference $x \geq 1$ if Ξ includes a stable configuration C_{t} that satisfies the following condition:

- There is a partition $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ of V_{p} such that, 1) $\left\|H_{i}|-| H_{j}\right\| \leq x$ for any i and j, and, 2) for all C^{*} such that $C \xrightarrow{*} C^{*}$, each agent in H_{i} belongs to the i-th group at C^{*} (i.e., at C^{*}, any agent v in H_{i} satisfies $\gamma(s(v))=$ color $\left._{i}\right)$.

In this dissertation, we assume that size difference x is a constant. If each execution Ξ of protocol \mathcal{P} solves the k-partition problem with size difference $x \geq 1$, we say protocol \mathcal{P} solves the k-partition problem with x. In particular, if each execution Ξ of protocol \mathcal{P} solves the k-partition problem with size difference $x=1$, we say protocol \mathcal{P} solves the uniform k-partition problem.

3. Uniform 2-partition under Global Fairness on Complete Graphs

In this section, we show the upper and lower bounds of the uniform 2-partition on complete graphs under global fairness. Concretely, we consider three assumptions 1) a population with an initialized base station, non-initialized base station, or no base station, 2) symmetric or asymmetric protocols, and 3) designated or arbitrary initial states, and, for each combination of assumptions, we completely clarify solvability of the uniform 2-partition problem. Moreover, if solvable, we show the tight upper and lower bounds on the number of states.

In this section, since we consider the case of $k=2$, function γ is defined as $\gamma: Q_{p} \rightarrow\left\{\right.$ color $_{1}$, color $\left._{2}\right\}$. In the case, we assign colors red and blue to color r_{1} and color $_{2}$, respectively, and we define γ as function $\gamma: Q_{p} \rightarrow\{r e d$, blue $\}$ that maps a state of a non base station agent to red or blue. We say agent $a \in V_{p}$ is red (resp., blue) if $\gamma(s(a))=$ red (resp., $\gamma(s(a))=$ blue) holds.

3.1 Uniform 2-partition Protocols with Initialized Base Station

In this subsection, we consider the uniform 2-partition problem under the assumption of an initialized base station. Recall that the base station is distinguishable from other agents, and we do not care the number of states for the base station.

3.1.1 Upper Bound for Symmetric Protocols with Designated Initial States

In this protocol, the state set of agents is $Q_{p}=\{$ initial, red, blue $\}$, and we set $\gamma($ initial $)=\gamma($ red $)=$ red and $\gamma($ blue $)=$ blue. The designated initial state of all agents is initial. The idea of the protocol is to assign states red and blue to agents alternately when agents interact with the base station. To do this, the base station has a state set $Q_{b}=\left\{b_{\text {red }}, b_{b l u e}\right\}$, and its initial state is $b_{\text {red }}$. The protocol consists of the following two transitions.

1. $\left(b_{\text {red }}\right.$, initial $) \rightarrow\left(b_{\text {blue }}\right.$, red $)$
2. $\left(b_{\text {blue }}\right.$, initial $) \rightarrow\left(b_{\text {red }}\right.$, blue $)$

That is, when the base station in state $b_{\text {red }}$ (resp., $b_{\text {blue }}$) and an agent in state initial interact, the base station changes the state of the agent to red (resp., blue) and the state of itself to $b_{\text {blue }}$ (resp., $b_{\text {red }}$). When two agents (except for the base station) interact, no state transition occurs. Clearly, all agents evenly transition to state red or blue, and the difference in the numbers of red and blue agents is at most one. Note that the protocol contains no asymmetric transition and works correctly if every agent interacts with the base station. Therefore, we have the following theorem.

Theorem 1. In the model with an initialized base station, there exists a symmetric protocol with three states and designated initial states that solves the uniform 2partition problem under global fairness.

Remark. This protocol works even under weak fairness. Even under weak fairness, eventually all agents interact with the base station. Hence, eventually, all agents transition to either red or blue. Moreover, the protocol does not depend on the initial state of the base station; that is, the protocol can work with a noninitialized base station. From these facts, we can observe that the protocol solves the problem under weak fairness with a non-initialized base station.

Theorem 2. In the model with a non-initialized base station, there exists a symmetric protocol with three states and designated initial states that solves the uniform 2-partition problem under weak fairness.

3.1.2 Lower Bound with Designated Initial States

Next, we show three states are necessary to construct an asymmetric protocol under global fairness. This implies that, in this case, three states are necessary for asymmetric or symmetric protocols under global fairness because a symmetric protocol is also asymmetric. That is, three states are necessary and sufficient in this case.

Theorem 3. In the model with an initialized base station, no asymmetric protocol with two states and designated initial states solves the 2-partition problem with size difference $x \geq 1$ under global fairness.

Proof. For contradiction, we assume that such a protocol Alg exists. Without loss of generality, we assume $Q_{p}=\left\{s_{1}, s_{2}\right\}, f\left(s_{1}\right)=r e d, f\left(s_{2}\right)=$ blue, and that the designated initial state of all agents is s_{1}. Let n be a number that is at least $x+4$. We consider the following three cases.

First, for population V of a single base station and n agents $a_{1}, a_{2}, \ldots, a_{n}$, consider a globally fair execution $\Xi=C_{0}, C_{1}, \ldots$ of $A l g$ with size difference x. According to the definition, there exists a stable configuration C_{t}. That is, after C_{t}, the state of each agent does not change even if the base station and agents in states s_{1} and s_{2} interact in any order, and the difference in the numbers of red
and blue agents is at most x. Note that, since n is at least $x+4$, the numbers of red and blue agents is at least 2 after C_{t}.

Next, for population V^{\prime} of a single base station and $n+2 x+1$ agents $a_{1}, a_{2}, \ldots, a_{n+2 x+1}$, we define an execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{t}^{\prime}, C_{t+1}^{\prime}, \ldots$ of $A l g$ as follows.

- From C_{0}^{\prime} to C_{t}^{\prime}, the base station and n agents $a_{1}, a_{2}, \ldots, a_{n}$ interact in the same order as the execution Ξ.
- After C_{t}^{\prime}, the base station and $n+2 x+1$ agents interact so as to satisfy global fairness.

Since the base station and agents a_{1}, \ldots, a_{n} change their states similarly to Ξ from C_{0}^{\prime} to C_{t}^{\prime}, the number of red agents is $x+1$ or more than the number of blue agents at C_{t}^{\prime}. Moreover, the state of the base station at C_{t}^{\prime} is the same as the state of the base station at C_{t}. However, since the difference in the numbers of red and blue agents is at least $x+1, C_{t}^{\prime}$ is not a stable configuration. Consequently, after C_{t}^{\prime}, some red or blue agent changes its state in execution Ξ^{\prime}.

Lastly, we define execution $\Xi^{\prime \prime}=C_{0}^{\prime \prime}, C_{1}^{\prime \prime}, \ldots$ for population V as follows. First, we make agents transition similarly to Ξ and reach stable configuration $C_{t}^{\prime \prime}\left(=C_{t}\right)$ in $\Xi^{\prime \prime}$. After that we apply interactions in Ξ^{\prime} to execution $\Xi^{\prime \prime}$. That is, we make agents interact as follows after $C_{t}^{\prime \prime}$ in $\left.\Xi^{\prime \prime}: 1\right)$ when the base station and an agent in state $s \in\left\{s_{1}, s_{2}\right\}$ interact at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}(u \geq t)$ in Ξ^{\prime}, the base station and an agent in state s interact at $C_{u}^{\prime \prime} \rightarrow C_{u+1}^{\prime \prime}$ in $\Xi^{\prime \prime}$, and 2) when two agents in states $s \in\left\{s_{1}, s_{2}\right\}$ and $s^{\prime} \in\left\{s_{1}, s_{2}\right\}$ interact at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}(u \geq t)$ in Ξ^{\prime}, two agents in states s and s^{\prime} interact at $C_{u}^{\prime \prime} \rightarrow C_{u+1}^{\prime \prime}$ in $\Xi^{\prime \prime}$. We can realize such interactions because, after stable configuration $C_{t}^{\prime \prime}$, at least two agents are in s_{1} and at least two agents are in s_{2}. After $C_{t}^{\prime \prime}$, since interactions occur similarly to Ξ^{\prime}, some red or blue agent changes its state similarly to Ξ^{\prime}. After such a state change occurs, we make agents interact so that $\Xi^{\prime \prime}$ satisfies global fairness. This implies that, in globally fair execution $\Xi^{\prime \prime}$, an agent changes its color after stable configuration $C_{t}^{\prime \prime}$. This is a contradiction.

3.1.3 Upper Bound for Symmetric Protocols with Arbitrary Initial States

Here we show a symmetric protocol with four states under global fairness. In this protocol, each agent x has two variables $r b_{x} \in\{$ red, blue $\}$ and $\operatorname{mark}_{x} \in\{0,1\}$. Variable $r b_{x}$ represents the color of agent x. That is, for state s of agent x, $\gamma(s)=$ red holds if $r b_{x}=$ red and $\gamma(s)=$ blue holds if $r b_{x}=$ blue. We define \#red as the number of red agents and \#blue as blue agents. We explain the role of variable mar_{x} later.

The basic strategy of the protocol is that the base station counts red and blue agents by counting protocol Count [15] and changes colors of agents so that the numbers of red and blue agents become equal. Protocol Count is a symmetric protocol that counts the number of agents from arbitrary initial states under global fairness. Protocol Count uses only two states for each agent. We use variable mark_{x} to maintain the state of protocol Count. In protocol Count, the base station has variable Count.out that eventually outputs the number of agents. More concretely, Count.out initially has value 0, gradually increases one by one, eventually equals to the number of agents, and stabilizes. The following lemma explains the characteristic of protocol Count.

Lemma 1 ([15]). Let n be the number of agents. In the initial configuration, Count.out $=0$ holds. When Count.out $<n$, Count.out eventually increases by one under global fairness. When Count.out $=n$, Count.out never changes and stabilizes.

To count red and blue agents, the base station executes two instances of protocol Count in parallel to the main procedure of the uniform 2-partition protocol. We denote by Count red and Count blue instances of protocol Count to count red and blue agents, respectively. The base station executes Count red when it interacts with a red agent. That is, the base station updates variables of Count red at the base station and the red agent by applying a transition of protocol Count $t_{\text {red }}$. By this behavior, the base station executes Count $_{\text {red }}$ as if the population contains only red agents. Therefore, after the base station initializes its own variables of Count ${ }_{r e d}$, it can correctly count the number of red agents by Count $t_{r e d}$ (i.e., Count $_{\text {red }}$.out eventually stabilizes to $\#$ red) as long as a set of red agents does not
change. Similarly, the base station executes Count $_{\text {blue }}$ when it interacts with a blue agent, and counts the number of blue agents. The straightforward approach to use the counting protocols is to adjust colors of agents after Count red $_{\text {.out }}$ and Count $_{\text {blue }}$.out stabilize. However, the base station cannot know whether the outputs have stabilized or not. For this reason, the base station maintains estimated numbers of red and blue agents, and it changes colors of agents when the difference in the estimated numbers of red and blue agents is two. Note that, since the counting protocols assume that a set of counted agents does not change, the base station must restart Count $_{\text {red }}$ and Count $_{\text {blue }}$ from the beginning when the base station changes colors of some agents.

We explain the details of this procedure. The base station records the estimated numbers of red and blue agents in variables $C_{r b}^{*}[r e d]$ and $C_{r b}^{*}[b l u e]$, respectively. In the beginning of execution, these variables are identical to outputs of $C_{\text {ount }}^{\text {red }}$ and Count $_{\text {blue }}$. If the difference between $C_{r b}^{*}[\mathrm{red}]$ and $C_{r b}^{*}[b l u e]$ becomes two, the base station immediately changes colors of agents. At the same time, the base station updates $C_{r b}^{*}[r e d]$ and $C_{r b}^{*}[b l u e]$ to reflect the change of colors. After the base station changes colors of some agents, it restarts Count red and Count $_{\text {blue }}$ from the beginning by initializing its own variables of the counting protocols. Since the counting protocols allow arbitrary initial states of agents, the base station can correctly count red and blue agents after that. Note that the base station does not initialize $C_{r b}^{*}[r e d]$ and $C_{r b}^{*}[b l u e]$ because it knows such numbers of red and blue agents exist. If the output of Count red and Count blue exceeds $C_{r b}^{*}[r e d]$ and $C_{r b}^{*}[b l u e]$, the base station updates $C_{r b}^{*}[r e d]$ and $C_{r b}^{*}[b l u e]$, respectively. After that, if the difference between $C_{r b}^{*}[r e d]$ and $C_{r b}^{*}[$ blue $]$ becomes two, the base station changes colors of agents. By repeating this behavior, the base station adjusts colors of agents.

The pseudocode of this protocol is given in Algorithm 1. We define $\overline{r e d}=b l u e$ and $\overline{b l u e}=$ red. Recall that variable mark_{x} is a two-state variable of counting protocols Count red and Count $_{\text {blue }}$. Since the base station restarts the counting protocols whenever it changes colors of agents, the base station keeps a set of red (resp., blue) agents unchanged until it restarts Count $_{r e d}$ (resp., Count blue). In addition, each agent is involved in either Count ${ }_{\text {red }}$ or Count blue at the same time. Hence it requires only a single variable mark $_{x}$ to execute Count red and Count ${ }_{\text {blue }}$.

```
Algorithm 1 Uniform 2-partition protocol
Variables at the base station:
    \(C_{r b}^{*}[c](c \in\{r e d, b l u e\})\) : the estimated number of \(c\) agents, initialized to 0
    Variables: variables of Count \(_{c}(c \in\{\) red, blue \(\})\)
Variables at an agent \(x\) :
    \(r b_{x} \in\{r e d\), blue \(\}\) : color of the agent, initialized arbitrarily
    \(\operatorname{mark}_{x} \in\{0,1\}:\) a variable of \(\operatorname{Count}_{c}(c \in\{\) red, blue \(\})\), initialized arbitrarily
    when an agent \(x\) interacts with the base station do
    Update \(\operatorname{mark}_{x}\) and variables of Count \(_{r b_{x}}\) at the base station by applying
    a transition of Count \({ }_{r b_{x}}\)
        if \(C_{r b}^{*}\left[r b_{x}\right]<\) Count \(_{r b_{x}}\).out then
            \(C_{r b}^{*}\left[r b_{x}\right] \leftarrow\) Count \(_{r b_{x}}\).out
        end if
        if \(C_{r b}^{*}\left[r b_{x}\right]-C_{r b}^{*}\left[\overline{r b_{x}}\right]=2\) then
            \(C_{r b}^{*}\left[r b_{x}\right] \leftarrow C_{r b}^{*}\left[r b_{x}\right]-1\)
            \(C_{r b}^{*}\left[\overline{r b_{x}}\right] \leftarrow C_{r b}^{*}\left[\overline{r b_{x}}\right]+1, r b_{x} \leftarrow \overline{r b_{x}}\)
            reset variables of Count \({ }_{\text {red }}\) and Count \(_{\text {blue }}\) at base station
        end if
    end
```

When two agents (except for the base station) interact, no state transition occurs in this protocol and counting protocols. When the base station and a red agent interact, they update mark_{x} and variables of Count ${ }_{r e d}$ at the base station by applying a transition of Count red . This means that they execute Count ${ }_{r e d}$ in parallel to the main procedure of the uniform 2-partition protocol. After that, if Count $t_{r e d}$.out is larger than $C_{r b}^{*}[r e d], C_{r b}^{*}[r e d]$ is updated with Count $t_{r e d}$.out. If the difference between $C_{r b}^{*}[r e d]$ and $C_{r b}^{*}[b l u e]$ becomes two, the red agent changes its color to blue and the base station updates $C_{r b}^{*}[r e d]$ and $C_{r b}^{*}[b l u e]$. After updating, the base station resets variables of Count $t_{\text {red }}$ and Count ${ }_{\text {blue }}$, and restarts counting. When the base station and a blue agent interact, they behave similarly.

Lemma 2. In any configuration, $C_{r b}^{*}[$ red $] \leq \#$ red, $C_{r b}^{*}[$ blue $] \leq \#$ blue and $\mid C_{r b}^{*}[$ red $]-$ $C_{r b}^{*}[b l u e] \mid \leq 1$ hold.

Proof. We prove by induction on the index $k \geq 0$ of a configuration in an execution $C_{0}, C_{1}, C_{2}, \ldots, C_{k}, \ldots$. At the initial configuration C_{0}, the lemma holds. Let us assume that the lemma holds for configuration C_{k} and prove it for configuration C_{k+1}. From this assumption, $C_{r b}^{*}[r e d] \leq \# r e d, C_{r b}^{*}[b l u e] \leq \# b l u e$ and $\mid C_{r b}^{*}[r e d]-$ $C_{r b}^{*}[b l u e] \mid \leq 1$ hold at C_{k}. Assume that, when C_{k} transitions to C_{k+1}, the base station and agent x interact. If Count $t_{r b_{x}}$.out becomes larger than $C_{r b}^{*}\left[r b_{x}\right]$, the base station updates $C_{r b}^{*}\left[r b_{x}\right]$ by $C_{r b}^{*}\left[r b_{x}\right] \leftarrow$ Count $_{r b_{x}}$.out (line 3). Note that, in this case, $C_{r b}^{*}\left[r b_{x}\right]$ increases by one from Lemma 1. In addition, $C_{r b}^{*}[r e d] \leq \#$ red and $C_{r b}^{*}[b l u e] \leq \# b l u e$ still hold. Recall that $\left|C_{r b}^{*}[r e d]-C_{r b}^{*}[b l u e]\right| \leq 1$ held before this update and $C_{r b}^{*}\left[r b_{x}\right]$ increases by one. Consequently, at this moment (before line 5), $\left|C_{r b}^{*}\left[r b_{x}\right]-C_{r b}^{*}\left[\overline{r b_{x}}\right]\right| \leq 1$ or $C_{r b}^{*}\left[r b_{x}\right]-C_{r b}^{*}\left[\overline{r b_{x}}\right]=2$ holds. Next, we consider lines 5 to 9 . If $C_{r b}^{*}\left[r b_{x}\right]-C_{r b}^{*}\left[\overline{r b_{x}}\right] \leq 1$ at line 5 , lines 6 to 8 are not executed, and thus $C_{r b}^{*}[r e d] \leq \#$ red, $C_{r b}^{*}[b l u e] \leq \# b l u e$ and $\mid C_{r b}^{*}[r e d]-C_{r b}^{*}[$ blue $] \mid \leq 1$ hold. If $C_{r b}^{*}\left[r b_{x}\right]-C_{r b}^{*}\left[\overline{r b_{x}}\right]=2$ at line 5, agent x changes its color from $r b_{x}$ to $\overline{r b_{x}}$, $C_{r b}^{*}\left[r b_{x}\right]$ decreases by one, and $C_{r b}^{*}\left[\overline{r b_{x}}\right]$ increases by one. This also preserves $C_{r b}^{*}[r e d] \leq \#$ red, $C_{r b}^{*}[$ blue $] \leq \# b l u e$ and $\left|C_{r b}^{*}[r e d]-C_{r b}^{*}[b l u e]\right| \leq 1$. Therefore, the lemma holds.

Theorem 4. Algorithm 1 solves the uniform 2-partition problem. That is, in the model with an initialized base station, there exists a symmetric protocol with
four states and arbitrary initial states that solves the uniform 2-partition problem under global fairness.

Proof. We define phase $=C_{r b}^{*}[r e d]+C_{r b}^{*}[$ blue $]$. Initially, phase $=0$ holds. We show that 1) phase increases one by one if phase $<n$, and 2) Algorithm 1 solves the uniform 2-partition problem if phase $=n$.

First we consider the initial configuration. Since we assume global fairness, Count $_{\text {red }}$.out or Count blue $^{\text {.out increases by one from Lemma } 1 \text { and at that time }}$ phase increases by one.

Let us consider the transition $C \rightarrow C^{\prime}$ such that phase increases by one (i.e., line 4 is executed) and phase $<n$ holds at C^{\prime}. We consider two cases.

- Case that lines 7 to 9 are not executed at $C \rightarrow C^{\prime}$. In this case, since the base station does not change sets of red and blue agents, it can correctly continue to execute Count red and Count blue . Since phase $<n=\#$ red $+\#$ blue holds, either \#red $>C_{r b}^{*}[$ red $]$ or \#blue $>C_{r b}^{*}[$ blue $]$ holds. Consequently, from Lemma 1, either Count $_{\text {red }}$.out $>C_{r b}^{*}[$ red $]$ or Count $_{\text {blue }}$.out $>C_{r b}^{*}[$ blue $]$ holds eventually because we assume global fairness. At that time, $C_{r b}^{*}[r e d]$ or $C_{r b}^{*}[b l u e]$ increases by one and hence phase increases by one.
- Case that lines 7 to 9 are executed at $C \rightarrow C^{\prime}$. In this case, the base station changes sets of red and blue agents. At that time, the base station initializes its own variables of counting algorithms Count red and Count $_{\text {blue }}$. Since the counting algorithms work from arbitrary initial states of agents, the base station can correctly execute Count red and Count blue from the beginning under global fairness. Similarly to the first case, from Lemma 1, either Count $_{\text {red }}$.out $>C_{r b}^{*}[$ red $]$ or $C o u n t ~_{\text {blue }}$.out $>C_{r b}^{*}[$ blue $]$ holds eventually. Then, phase increases by one.

Lastly, we consider the transition $C \rightarrow C^{\prime}$ such that phase increases by one and phase $=n$ holds at C^{\prime}. From phase $=n, C_{r b}^{*}[$ red $]+C_{r b}^{*}[$ blue $]=n=\#$ red $+\#$ blue holds, and consequently $C_{r b}^{*}[r e d]=\#$ red and $C_{r b}^{*}[b l u e]=\# b l u e$ hold from Lemma 2. This implies that Count ${ }_{\text {red }}$.out and Count blue .out never exceed $C_{r b}^{*}[r e d]$ and $C_{r b}^{*}[$ blue $]$ after that, respectively. Therefore, $C_{r b}^{*}[r e d]$ and $C_{r b}^{*}[b l u e]$ are never updated and consequently agents never change their colors any more. Since
$\mid \#$ red $-\# b l u e\left|=\left|C_{r b}^{*}[r e d]-C_{r b}^{*}[b l u e]\right| \leq 1\right.$ holds from Lemma 2, we have the theorem.

3.1.4 Lower Bound with Arbitrary Initial States

Now, we show that four states are necessary to construct an asymmetric protocol with arbitrary initial states.

Theorem 5. In the model with an initialized base station, no asymmetric protocol with three states and arbitrary initial states solves the 2-partition problem with size difference $x \geq 1$ under global fairness.

Proof. For contradiction, we assume that such a protocol Alg exists. Without loss of generality, we assume that the state set of agents is $Q_{p}=\left\{s_{1}, s_{2}, s_{3}\right\}$, $\gamma\left(s_{1}\right)=\gamma\left(s_{2}\right)=$ red, and $\gamma\left(s_{3}\right)=$ blue. We consider the following three cases.

First, we consider population $V=\left\{a_{0}, \ldots, a_{n}\right\}$ of a single base station and n agents such that n is at least $x+4$. Assume that a_{0} is a base station. Since each agent has an arbitrary initial state, we consider an initial configuration C_{0} such that $s\left(a_{i}\right)=s_{3}$ holds for any $i(1 \leq i \leq n)$. Note that the base station a_{0} has a designated initial state at C_{0}. From the definition of $A l g$, for any globally fair execution $\Xi=C_{0}, C_{1}, \ldots$, there exists a stable configuration C_{t}. Hence, both the number of red agents and the number of blue agents are at least 2 at C_{t}. After C_{t}, the color of agent a_{i} (i.e., $\left.\gamma\left(s\left(a_{i}\right)\right)\right)$ never changes for any $a_{i}(1 \leq i \leq n)$ even if the base station and agents interact in any order.

Next, consider population $V^{\prime}=\left\{a_{0}^{\prime}, \ldots, a_{n+2 x+1}^{\prime}\right\}$ of a single base station and $n+2 x+1$ agents. Assume that agent a_{0}^{\prime} is a base station. We consider an initial configuration C_{0}^{\prime} such that $s\left(a_{i}^{\prime}\right)=s_{3}$ holds for any $i(1 \leq i \leq n+2 x+1)$. From this initial configuration, we define an execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{t}^{\prime}, \ldots$ using the execution Ξ as follows.

- For $0 \leq u<t$, when a_{i} and a_{j} interact at $C_{u} \rightarrow C_{u+1}, a_{i}^{\prime}$ and a_{j}^{\prime} interact at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}$.
- For $t \leq u$, an interaction occurs at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}$ so that Ξ^{\prime} satisfies global fairness.

Since the base station and agents a_{1}, \ldots, a_{n} change their states similarly to Ξ from C_{0}^{\prime} to $C_{t}^{\prime}, s\left(a_{i}^{\prime}\right)=s\left(a_{i}\right)$ holds for $1 \leq i \leq n$. Hence, the number of blue agents is $x+1$ or more than the number of red agents at C_{t}^{\prime}. Consequently C_{t}^{\prime} is not a stable configuration. This implies that there exists a stable configuration $C_{t^{\prime}}^{\prime}$ for some $t^{\prime}>t$. Clearly at least one blue agent becomes red from C_{t}^{\prime} to $C_{t^{\prime}}^{\prime}$. That is, for some configuration $C_{t^{*}}^{\prime}\left(t \leq t^{*}<t^{\prime}\right)$, an agent in state s_{3} transitions to state s_{1} or s_{2} at $C_{t^{*}} \rightarrow C_{t^{*}+1}$. Assume that t^{*} is the smallest value that satisfies the condition.

Finally, for V we define an execution $\Xi^{\prime \prime}=C_{0}^{\prime \prime}, C_{1}^{\prime \prime}, \ldots$ using executions Ξ and Ξ^{\prime} as follows.

- Let $C_{u}^{\prime \prime}=C_{u}$ for $0 \leq u \leq t$. That is, $\Xi^{\prime \prime}$ reaches stable configuration $C_{t}^{\prime \prime}$ in similarly to Ξ.
- For $t \leq u \leq t^{*}$, we define an execution so that interaction at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}$ also occurs at $C_{u}^{\prime \prime} \rightarrow C_{u+1}^{\prime \prime}$. Concretely, when a_{i}^{\prime} and a_{j}^{\prime} interact at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}$, we define $a_{i^{\prime}}$ and $a_{j^{\prime}}$ as follows and they interact at $C_{u}^{\prime \prime} \rightarrow C_{u+1}^{\prime \prime}$. If $i \leq n$, let $i^{\prime}=i$. Otherwise, since $s\left(a_{i}^{\prime}\right)=s_{3}$ holds at C_{u}^{\prime} (because no agent in state s_{3} changes its state from C_{t}^{\prime} to $\left.C_{t^{*}}^{\prime}\right)$, choose $i^{\prime}(\leq n)$ such that both $s\left(a_{i^{\prime}}\right)=s_{3}$ and $i^{\prime} \neq j$ hold. Similarly, if $j \leq n$, let $j^{\prime}=j$. Otherwise choose $j^{\prime}(\leq n)$ such that both $s\left(a_{j^{\prime}}\right)=s_{3}$ and $j^{\prime} \neq i^{\prime}$ hold. Such i^{\prime} and j^{\prime} exist since at least two agents in state s_{3} exist (because $n \geq x+4$ holds and no agent in state s_{3} changes its state from C_{t}^{\prime} to $\left.C_{t^{*}}^{\prime}\right)$.
- After $t^{*}<u$, an interaction occurs at $C_{u}^{\prime \prime} \rightarrow C_{u+1}^{\prime \prime}$ so that $\Xi^{\prime \prime}$ satisfies global fairness.

Clearly, for $t \leq u \leq t^{*}$ and $i \leq n, s\left(a_{i}\right)$ at $C_{u}^{\prime \prime}$ is equal to $s\left(a_{i}^{\prime}\right)$ at C_{u}^{\prime}. Additionally, at $C_{t^{*}}^{\prime \prime} \rightarrow C_{t^{*}+1}^{\prime \prime}$, an agent in state s_{3} transitions to s_{1} or s_{2} as well as $C_{t^{*}}^{\prime} \rightarrow C_{t^{*}+1}^{\prime}$. This means that the agent changes its color at $C_{t^{*}}^{\prime \prime} \rightarrow C_{t^{*}+1}^{\prime \prime}$. That is, an agent changes its color after stable configuration $C_{t}^{\prime \prime}$ in globally fair execution $\Xi^{\prime \prime}$. This is a contradiction.

Remark. Note that, in the proof of Theorem 5, we consider a protocol with $Q_{p}=\left\{s_{1}, s_{2}, s_{3}\right\}, \gamma\left(s_{1}\right)=\gamma\left(s_{2}\right)=$ red, and $\gamma\left(s_{3}\right)=$ blue, and assume that every agent is in state s_{3} at the initial configuration of Ξ, Ξ^{\prime}, and $\Xi^{\prime \prime}$. This means, even
if we consider a protocol with three states and designated initial states, there exists no protocol such that the designated initial state does not have the same color as any other state. This fact holds even if the number of states is larger than three.

On the other hand, Section 3.1.1 gives a protocol with three states and designated initial states. In the protocol, the state set of agents is $Q_{p}=\{$ initial, red, blue $\}$, we set $\gamma($ initial $)=\gamma($ red $)=$ red and $\gamma($ blue $)=$ blue, and the designated initial state is initial. This implies that there exists a protocol if the designated initial state (i.e., initial) has the same color as one of other states (i.e., red).

3.1.5 Impossibility with Non-initialized Base Station and Arbitrary Initial States

In this section, we show that the problem cannot be solved with a non-initialized base station and arbitrary initial states. This result implies that, in the model with no base station, there is no protocol for uniform 2-partition problem with arbitrary initial states under global fairness.

Theorem 6. In the model with non-initialized base station, no protocol with arbitrary initial states solves the 2-partition problem with size difference $x \geq 1$ under global fairness.

Proof. By way of contradiction, we assume that such a protocol Alg exists. Moreover, we assume that n is at least $x+4$. We consider the following two cases.

First, we consider population $V=\left\{a_{0}, \ldots, a_{n}\right\}$ of n agents and a non-initialized base station, where a_{0} is the base station. For V, we consider an execution $\Xi=C_{0}, C_{1}, \cdots$ of Alg . From the definition of Alg , there exists a stable configuration C_{t}. Hence, both the number of red agents and the number of blue agents are at least 2 at C_{t}. By the definition of a stable configuration, the color of agent a_{i} (i.e., $\left.\gamma\left(s\left(a_{i}\right)\right)\right)$ never changes for any $a_{i}(1 \leq i \leq n)$ after C_{t}, even if agents interact in any order.

Next, we consider population $V^{\prime}=\left\{a_{0}^{\prime}\right\} \cup\left\{a_{i}^{\prime} \mid \gamma\left(s\left(a_{i}, C_{t}\right)\right)=r e d\right\}$, where a_{0}^{\prime} is the base station. For V^{\prime}, we consider an execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, \cdots$ of $A l g$ from the initial configuration C_{0}^{\prime} such that $s\left(a_{i}^{\prime}, C_{0}^{\prime}\right)=s\left(a_{i}, C_{t}\right)$ holds for any $a_{i}^{\prime} \in V^{\prime}$. Note that, because we assume a non-initialized base station, even the base station can
have $s\left(a_{0}, C_{t}\right)$ as its initial state. Because all agents are red at C_{0}^{\prime}, some agents must change their colors to reach a stable configuration. This implies that, after C_{t} in execution Ξ, agents change their colors if they interact similarly to Ξ^{\prime}. This is a contradiction.

3.2 Uniform 2-partition Protocols with No Base Station

In this section, we consider the uniform 2-partition problem under the assumption of no base station. That is, all agents are identical.

3.2.1 Upper Bound for Asymmetric protocols with Designated Initial States

First, we consider asymmetric protocols in this case. Since three states are necessary in the model with a base station from Theorem 3, three states are also necessary in the model with no base station. In addition, Delporte-Gallet et al. [28] gives a protocol with three states. This implies that three states are necessary and sufficient in this case.

Here, we briefly explain the protocol proposed in [28]. In this protocol, the state set of agents is $Q_{p}=\{$ initial, red, blue $\}$, and we set $\gamma($ initial $)=\gamma($ red $)=$ red and $\gamma($ blue $)=$ blue. The designated initial state of all agents is initial. The protocol consists of a single asymmetric transition (initial, initial) \rightarrow (red, blue). In this protocol, when two agents in state initial interact, one agent transitions to red and the other transitions to blue. This implies that the number of agents in state red is always the same as the number of agents in state blue. Eventually all agents (possibly except one agent) transition to state red or blue. From $\gamma($ initial $)=$ red, the difference in the numbers of red and blue agents is at most one. Note that the protocol works correctly if every pair of agents interacts once.

Theorem 7 ([28]). In the model with no base station, there exists an asymmetric protocol with three states and designated initial states that solves the uniform 2-partition problem under global fairness.

Remark. This protocol works even under weak fairness. Even under weak fairness, if there are at least two agents in state initial, eventually an interaction
between agents in state initial occurs. Hence, eventually, all agents (possibly except one agent) transition to either red or blue. From this fact, we can observe that the protocol solves the problem under weak fairness.

Theorem 8 ([28]). In the model with no base station, there exists an asymmetric protocol with three states and designated initial states that solves the uniform 2-partition problem under weak fairness.

3.2.2 Upper Bound for Symmetric Protocols with Designated Initial States

Next, we consider symmetric protocols in this case. For this setting, we show a protocol with four states and impossibility with three states. These results show that, in this case, four states are necessary and sufficient to construct a symmetric protocol under global fairness.

We can easily obtain a symmetric protocol with four states by a scheme proposed in [22]. The scheme transforms an asymmetric protocol with α states to a symmetric protocol with at most 2α states. By applying the scheme to an asymmetric protocol in Section 3.2.1 and deleting unnecessary states, we can obtain a symmetric protocol with four states.

For self-containment, we briefly explain the obtained protocol. Since no symmetric protocol solves the uniform 2-partition problem for a population of two agents, we assume that a population consists of at least three agents. In this protocol, the state set of agents is $Q_{p}=\{$ initial, initial', red, blue $\}$, and we set $\gamma($ initial $)=\gamma\left(\right.$ initial $\left.^{\prime}\right)=\gamma($ red $)=$ red and $\gamma($ blue $)=$ blue. The designated initial state of all agents is initial. The protocol consists of the following seven transitions.

1. $($ initial, initial $) \rightarrow\left(\right.$ initial $^{\prime}$, initial $\left.^{\prime}\right)$
2. $\left(\right.$ initial $^{\prime}$, initial $\left.^{\prime}\right) \rightarrow($ initial, initial $)$
3. $\left(\right.$ initial, initial $\left.{ }^{\prime}\right) \rightarrow($ red, blue $)$
4. $($ initial, red $) \rightarrow($ initial',$r e d)$
5. (initial, blue) \rightarrow (initial', blue)
(a)

(b)

(c)
(d)

(e)

(f)

(g)
(h)

Figure 1. An example execution of the protocol. Symbols i, i^{\prime}, r, and b represent states initial, initial', red, and blue, respectively. Arrows represent interactions of agents.
6. $($ initial', red $) \rightarrow($ initial, red $)$
7. (initial', blue $) \rightarrow($ initial, blue $)$

The main behavior of the protocol is similar to the previous asymmetric protocol with three states. However, since asymmetric transition (initial, initial) \rightarrow (red ,blue) is not allowed in symmetric protocols, the scheme in [22] introduces a new state initial'. Transition 3 implies that, when agents in states initial and initial' interact, they become red and blue, respectively. In addition, agents in states initial and initial' become initial' and initial respectively when they interact with some agents (except for interaction between two agents in states initial and initial'). From global fairness, if at least two agents are in state initial or initial', some two agents eventually enter states initial and initial'. After that, if the two agents interact, they enter states red and blue. Note that, since $\gamma($ initial $)=\gamma\left(\right.$ initial $\left.^{\prime}\right)=$ red holds, the protocol solves the problem even if the number of agents is odd and an agent with state initial or initial' remains forever.

Figure 1 shows an example execution of the protocol for a population of four agents. Initially all agents are in state initial (Fig. 1 (a)). After interactions $\left(a_{1}, a_{2}\right)$ and $\left(a_{3}, a_{4}\right)$, all agents enter state initial' (Fig. 1 (b)). Similarly, after interactions $\left(a_{1}, a_{4}\right),\left(a_{2}, a_{3}\right),\left(a_{1}, a_{3}\right)$, and $\left(a_{2}, a_{4}\right)$, all agents have the same state (Fig. 1 (c) and (d)). If these interactions happen infinite times, all agents keep the same state and never achieve the uniform 2-partition. However, under the global fairness, such interactions do not happen infinite times. This is because, if some configuration C occurs infinite times, every configuration reachable from C should occur. This implies that eventually interactions $\left(a_{1}, a_{2}\right)$ and $\left(a_{1}, a_{3}\right)$ happen in this order from a configuration in Fig. 1 (d). Then, a_{1} and a_{3} enter states red and blue, respectively (Fig. 1 (e) and (f)). After that, in a similar way, the remaining agents eventually enter red and blue like Fig. 1 (g) and (h).

Theorem 7 and correctness of the scheme in [22] derives the following theorem.
Theorem 9. In the model with no base station, when the number of agents is at least three, there exists a symmetric protocol with four states and designated initial states that solves the uniform 2-partition problem under global fairness.

3.2.3 Lower Bound for Symmetric Protocols

Here we show that four states are necessary to construct a symmetric protocol with no base station.

Theorem 10. In the model with no base station, no symmetric protocol with three states and designated initial states solves the 2-partition problem with size difference $x \geq 1$ under global fairness.

Proof. For contradiction, we assume that such a protocol Alg exists. Without loss of generality, we assume that the state set of agents is $Q_{p}=\left\{s_{1}, s_{2}, s_{3}\right\}$, $\gamma\left(s_{1}\right)=\gamma\left(s_{2}\right)=$ red, and $\gamma\left(s_{3}\right)=$ blue. Consider population $V=\left\{a_{1}, \ldots, a_{n}\right\}$ of n agents such that n at least $x+6$. First, assume that the designated initial state of all agents is s_{3}. Clearly, Alg has transition $\left(s_{3}, s_{3}\right) \rightarrow\left(s_{i}, s_{i}\right)$ for some $i \neq 3$. However, since at least 3 agents in state s_{3} exist at a stable configuration, some agents change their states from s_{3} to s_{i} at the stable configuration. This implies that agents change their colors. Therefore, a designated initial state is s_{1} or s_{2}.

Next, assume that the designated initial state of all agents is s_{1} (Case of s_{2} is the same). Since $A l g$ is a symmetric protocol and all the initial states are s_{1}, Alg includes $\left(s_{1}, s_{1}\right) \rightarrow\left(s_{i}, s_{i}\right)$ for some $i \neq 1$. This implies that all agents can transition to state s_{i} from the initial configuration. Hence, Alg also includes $\left(s_{i}, s_{i}\right) \rightarrow\left(s_{j}, s_{j}\right)$ for some $j \neq i$. When $i=3$, since at least 3 blue agents exist at a stable configuration and they are in state s_{3}, the blue agents become red by transition $\left(s_{3}, s_{3}\right) \rightarrow\left(s_{j}, s_{j}\right)$. Therefore, $i \neq 3$ holds.

The remaining case is $i=2$. If $j=3$, that is, Alg includes $\left(s_{2}, s_{2}\right) \rightarrow\left(s_{3}, s_{3}\right)$, red agents (i.e., agents in state s_{1} or s_{2}) change their colors at a stable configuration because Alg includes $\left(s_{1}, s_{1}\right) \rightarrow\left(s_{2}, s_{2}\right)$ and $\left(s_{2}, s_{2}\right) \rightarrow\left(s_{3}, s_{3}\right)$. This implies $j=1$. In this case, Alg includes $\left(s_{2}, s_{2}\right) \rightarrow\left(s_{1}, s_{1}\right)$. Since some agents should transition to state s_{3}, Alg includes $\left(s_{1}, s_{2}\right) \rightarrow\left(s_{k}, s_{l}\right)$ such that k or l is 3 . At a stable configuration, there exist at least 3 agents with states s_{1} or s_{2}. However, these agents can transition to state s_{3} from transitions $\left(s_{1}, s_{2}\right) \rightarrow\left(s_{k}, s_{l}\right),\left(s_{2}, s_{2}\right) \rightarrow$ $\left(s_{1}, s_{1}\right)$, and $\left(s_{1}, s_{1}\right) \rightarrow\left(s_{2}, s_{2}\right)$. This is a contradiction.

4. Uniform 2-partition under Weak Fairness on Complete Graphs

In this section, we show the upper and lower bounds of the uniform 2-partition on complete graphs under weak fairness. Concretely, for each combination of assumptions (base station, symmetry, and initial states), we completely clarify solvability of the uniform 2-partition problem. Moreover, if solvable, we show the tight upper and lower bounds on the number of states. More concretely, with arbitrary initial states and initialized base station, we prove that P states are necessary and sufficient to construct asymmetric protocols, and that $P+1$ states are necessary and sufficient to construct symmetric protocols, where P is the known upper bound of the number of agents. Recall that proposed protocols in the setting are available for the uniform k-partition. Moreover, we show the impossibility of the uniform 2-partition for symmetric protocols with no base station and designated initial states. Note that, the impossibility results under global fairness remain valid even under weak fairness, and the 3-state protocols introduced in Section 3.1.1 and 3.2.1 work even under weak fairness.

As in Section 3, since we consider the uniform 2-partition in this section, function γ is defined as $\gamma: Q_{p} \rightarrow\left\{\right.$ color $_{1}$, color $\left._{2}\right\}$, and we assign colors red and blue to color ${ }_{1}$ and color $_{2}$, respectively. Note that we define γ as function $\gamma: Q_{p} \rightarrow$ $\{r e d, b l u e\}$ that maps a state of a non base station agent to red or blue. We say agent $a \in V_{p}$ is red (resp., blue) if $\gamma(s(a))=$ red (resp., $\gamma(s(a))=$ blue) holds.

4.1 Lower Bounds for Initialized Base Station

In this section, we provide the lower bounds for asymmetric and symmetric protocols and the uniform 2-partition problem by proving impossibility. Clearly these lower bounds can be applied to the uniform k-partition problem for $k>2$. Recall that, for an initialized base station, we assume weak fairness and arbitrary initial states.

4.1.1 Common Properties of Asymmetric and Symmetric Protocols

First, we present the basic properties that hold for both asymmetric and symmetric protocols. Let $A l g$ be an arbitrary protocol that solves the uniform 2-partition. Recall that P is the known upper bound of the number of agents. Hence, $A l g$ must solve the uniform 2-partition when the actual number of agents is at most P. In the remainder of this subsection, we consider the case where the actual number of agents is $P-2$.

Lemma 3 shows that, in any execution for $P-2$ agents, eventually all agents continue to maintain different states.

Lemma 3. In any weakly-fair execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots$ of Alg with $P-2$ agents and an initialized base station, there exists a configuration C_{h} such that 1) C_{h} is a stable configuration, and, 2) all agents have different states at $C_{h^{\prime}}$ for any $h^{\prime} \geq h$.

Proof. First, we consider an arbitrary population $V=\left\{a_{0}, a_{1}, \ldots, a_{P-2}\right\}$ of $P-2$ agents and a single base station, where a_{0} is the base station. Let $\Xi=$ $C_{0}, C_{1}, \ldots, C_{t}, \ldots$ be a weakly-fair execution of $A l g$, where C_{t} is a stable configuration. We assume, by way of contradiction, that two agents have the same state for infinitely many configurations after C_{t}. Since the number of agents
is finite and the number of states is finite, there exist y, a_{p}, and $a_{p^{\prime}}$ such that configurations that satisfy $y=s\left(a_{p}\right)=s\left(a_{p^{\prime}}\right)$ appear infinitely often after C_{t}.

Next, we consider population $V^{\prime}=\left\{a_{0}^{\prime}, \ldots, a_{P}^{\prime}\right\}$ of P agents and a single base station, where a_{0}^{\prime} is a base station. We consider an initial configuration C_{0}^{\prime} such that the initial states of $a_{0}^{\prime}, \ldots, a_{P}^{\prime}$ are $s\left(a_{0}, C_{0}\right), \ldots, s\left(a_{P-2}, C_{0}\right), y, y$, respectively. For V^{\prime}, we define an execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, \cdots, C_{t}^{\prime}, \cdots$ using execution Ξ as follows:

- For $0 \leq u \leq t-1$, when a_{i} interacts with a_{j} at $C_{u} \rightarrow C_{u+1}, a_{i}^{\prime}$ interacts with a_{j}^{\prime} at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}$.

Clearly, $s\left(a_{i}^{\prime}, C_{t}^{\prime}\right)=s\left(a_{i}, C_{t}\right)$ holds for any $i(0 \leq i \leq P-2)$. Because $s\left(a_{P}^{\prime}, C_{t}^{\prime}\right)=$ $s\left(a_{P-1}^{\prime}, C_{t}^{\prime}\right)=y$ holds, the difference between the numbers of red and blue agents remains two, and consequently, C_{t}^{\prime} is not a stable configuration.

After C_{t}^{\prime}, we define an execution as follows: This definition aims to make $P-2$ agents behave similarly to Ξ and two agents keep state y.

- Until $y=s\left(a_{p}^{\prime}\right)=s\left(a_{p^{\prime}}^{\prime}\right)$ holds, if a_{i} interacts with a_{j} at $C_{u} \rightarrow C_{u+1}, a_{i}^{\prime}$ interacts with a_{j}^{\prime} at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}$. Note that, because configurations that satisfy $y=s\left(a_{p}\right)=s\left(a_{p^{\prime}}\right)$ appear infinitely often after C_{t}, eventually, $y=$ $s\left(a_{p}^{\prime}\right)=s\left(a_{p^{\prime}}^{\prime}\right)$ holds by behaving similarly to Ξ.
- To define the remainder of Ξ, we use procedure $\operatorname{Proc}\left(q, q^{\prime}\right)$, which uses two indices q and q^{\prime}, and can be applied to a configuration that satisfies $y=s\left(a_{p}^{\prime}\right)=s\left(a_{p^{\prime}}^{\prime}\right)=s\left(a_{P-1}^{\prime}\right)=s\left(a_{P}^{\prime}\right)$. Let $V\left(q, q^{\prime}\right)=\left(V^{\prime} \backslash\left\{a_{p}^{\prime}, a_{p^{\prime}}^{\prime}, a_{P-1}^{\prime}, a_{P}^{\prime}\right\}\right) \cup$ $\left\{a_{q}^{\prime}, a_{q^{\prime}}^{\prime}\right\} . \operatorname{Proc}\left(q, q^{\prime}\right)$ creates a sub-execution similar to Ξ by making a_{q}^{\prime} and $a_{q^{\prime}}^{\prime}$ join interactions instead of a_{p}^{\prime} and $a_{p^{\prime}}^{\prime}$, and guarantees that, for any ordered pair $\left(a_{1}^{*}, a_{2}^{*}\right)$ in $V\left(q, q^{\prime}\right) \times V\left(q, q^{\prime}\right), a_{1}^{*}$ interacts with a_{2}^{*} at least once, and the last configuration also satisfies $y=s\left(a_{p}^{\prime}\right)=s\left(a_{p^{\prime}}^{\prime}\right)=s\left(a_{P-1}^{\prime}\right)=s\left(a_{P}^{\prime}\right)$. The formal definition of $\operatorname{Proc}\left(q, q^{\prime}\right)$ is as follows:
- When a_{i} interacts with a_{j} at $C_{u} \rightarrow C_{u+1}, a_{i}^{\prime}$ interacts with a_{j}^{\prime} at $C_{u}^{\prime} \rightarrow$ C_{u+1}^{\prime} if $i, j \notin\left\{p, p^{\prime}\right\}$.
- If $i=p$ or $j=p$ holds, a_{q}^{\prime} joins the interaction instead of a_{p}^{\prime}.
- If $i=p^{\prime}$ or $j=p^{\prime}$ holds, $a_{q^{\prime}}^{\prime}$ joins the interaction instead of $a_{p^{\prime}}^{\prime}$.
- Procedure $\operatorname{Proc}\left(q, q^{\prime}\right)$ continues these behaviors until, for any ordered pair $\left(a_{1}^{*}, a_{2}^{*}\right)$ in $V\left(q, q^{\prime}\right) \times V\left(q, q^{\prime}\right), a_{1}^{*}$ interacts with a_{2}^{*} at least once and satisfies $s\left(a_{q}^{\prime}\right)=s\left(a_{q^{\prime}}^{\prime}\right)=y$.

Using $\operatorname{Proc}\left(q, q^{\prime}\right)$, we define the remainder of Ξ^{\prime} to satisfy weak fairness as follows: Repeat $\operatorname{Proc}\left(p, p^{\prime}\right), \operatorname{Proc}(p, P-1), \operatorname{Proc}(p, P), \operatorname{Proc}\left(P-1, p^{\prime}\right)$, $\operatorname{Proc}\left(P, p^{\prime}\right)$, and $\operatorname{Proc}(P, P-1)$. Note that, because a_{q}^{\prime} and $a_{q^{\prime}}^{\prime}$ cannot interact with agents in $\left\{a_{p}^{\prime}, a_{p^{\prime}}^{\prime}, a_{P-1}^{\prime}, a_{P}^{\prime}\right\} \backslash\left\{a_{q}^{\prime}, a_{q^{\prime}}^{\prime}\right\}$ in $\operatorname{Proc}\left(q, q^{\prime}\right)$ (e.g., a_{P}^{\prime} cannot interact with a_{P-1}^{\prime} in $\left.\operatorname{Proc}(p, P)\right)$, the above six Procs are necessary to create interactions for each combination of $a_{p}^{\prime}, a_{p^{\prime}}^{\prime}, a_{P-1}^{\prime}$, and a_{P}^{\prime}.

Clearly, Ξ^{\prime} makes $P-2$ agents behave similarly to Ξ and two agents keep state y. Hence, Ξ^{\prime} never converges to a stable configuration. Since Ξ^{\prime} is weakly-fair, this is a contradiction.

In the next lemma, we prove that there exists a configuration C such that, in any configuration reachable from C, all agents have different states. In addition, we also show that the system reaches C in some execution.

Definition 1. Configuration C is strongly-stable if 1) C is stable, and, 2) for any configuration C^{\prime} with $C \xrightarrow{*} C^{\prime}$, all agents have different states at C^{\prime}.

Lemma 4. Let P be an arbitrary even integer. For any P-state uniform 2partition protocol Alg, when the number of agents other than the base station is $P-2$, there exists an execution of Alg that includes a strongly stable configuration.

Proof. By way of contradiction, we assume that such an execution does not exist. First, we consider an arbitrary weakly-fair execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots$ of an arbitrary P-state protocol Alg . By Lemma 3, after some configuration C_{t}, all agents have different states. From the assumption, C_{t} is not a strongly-stable configuration; that is, there exists a configuration reachable from C_{t} such that two agents have the same state. Hence, we can construct another weakly-fair execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t}^{\prime}, \ldots, C_{u}^{\prime}, \ldots$ of $A l g$ as follows:

- For $0 \leq i \leq t, C_{i}^{\prime}$ is equal to C_{i}.
- After C_{t}^{\prime}, the population moves to C_{u}^{\prime} such that two agents have the same state.
- After C_{u}^{\prime}, agents continue to interact so that Ξ^{\prime} satisfies weak fairness.

By Lemma 3, since Ξ^{\prime} is weakly-fair, all agents have different states after some configuration $C_{t^{\prime}}^{\prime}$. Hence, in a similar manner to Ξ^{\prime}, we can construct another weakly-fair execution $\Xi^{\prime \prime}=C_{0}^{\prime \prime}, C_{1}^{\prime \prime}, \ldots, C_{t^{\prime}}^{\prime \prime}, \ldots, C_{u^{\prime}}^{\prime \prime}, \ldots$ that satisfies the following conditions:

- For $0 \leq i \leq t^{\prime}, C_{i}^{\prime \prime}$ is equal to C_{i}^{\prime}.
- After $C_{t^{\prime}}^{\prime \prime}$, the population moves to $C_{u^{\prime}}^{\prime \prime}$ such that two agents have the same state.
- After $C_{u}^{\prime \prime}$, agents continue to interact so that $\Xi^{\prime \prime}$ satisfies weak fairness.

By repeating this construction, we can construct a weakly-fair execution such that two agents have the same state infinitely often. From Lemma 3, this is a contradiction.

4.1.2 Lower Bound for Asymmetric Protocols

We show that the lower bound of the number of states for symmetric protocols is P. Recall that, when agents a and b interact as an initiator and responder, respectively, we say a interacts with b.

Theorem 11. In the model with an initialized base station, there is no asymmetric protocol that solves the uniform 2-partition problem with $P-1$ states from arbitrary initial states under weak fairness, if P is an even integer.

To prove the theorem by contradiction, we assume that protocol Alg asym exists. Let $Q_{p}=\left\{s_{1}, s_{2}, \ldots, s_{P-1}\right\}$ be a state set of agents other than the base station. Let $Q_{\text {blue }}=\left\{s \in Q_{p} \mid \gamma(s)=\right.$ blue $\}$ be a set of blue states and $Q_{r e d}=\left\{s \in Q_{p} \mid \gamma(s)=r e d\right\}$ be a set of red states. Without loss of generality, we assume that $\left|Q_{\text {blue }}\right|<\left|Q_{\text {red }}\right|$ holds. Recall that Lemmas 3 and 4 can be applied to both symmetric and asymmetric algorithms. Hence, the properties of the lemmas hold even in $A l g_{\text {asym }}$. In this proof, based on the properties, we construct an
execution of P agents such that the base station does not recognize the difference between the execution of $P-2$ agents. We obtain a contradiction by proving that this execution does not achieve the uniform 2-partition.

By Lemma 3, clearly $A l g_{\text {asym }}$ requires $P / 2-1$ blue states and $P / 2-1$ red states. Consequently, we have the following two corollaries.

Corollary 1. $\left|Q_{\text {blue }}\right|=P / 2-1$ and $\left|Q_{\text {red }}\right|=P / 2$ hold.
Corollary 2. For any weakly-fair execution of Algasym with $P-2$ agents and an initialized base station, any strongly-stable configuration includes all states in $Q_{\text {blue }}$.

To prove the main theorem, we focus on the following weakly-fair execution of $A l g_{\text {asym }}$ with $P-2$ agents.

Definition 2. We consider a population $V=\left\{a_{0}, a_{1}, \ldots, a_{P-2}\right\}$ of $P-2$ agents and an initialized base station, where a_{0} is the base station. We define $\Xi_{\alpha}=$ $C_{0}, C_{1}, C_{2}, \ldots$ as a weakly-fair execution of Algasym for population V that satisfies the following conditions.

- Ξ_{α} includes a strongly-stable configuration C_{t}; and
- for any $u \geq 0$, when agent x interacts with agent y at $C_{t+2 u} \rightarrow C_{t+2 u+1}$, agent y interacts with agent x at $C_{t+2 u+1} \rightarrow C_{t+2(u+1)}$ if $s\left(x, C_{t+2 u+1}\right)=s\left(y, C_{t+2 u}\right)$ and $s\left(y, C_{t+2 u+1}\right)=s\left(x, C_{t+2 u}\right)$ hold; otherwise, agent x also interacts with agent y at $C_{t+2 u+1} \rightarrow C_{t+2(u+1)}$.

Note that, in Ξ_{α}, the system reaches a strongly stable configuration C_{t} (this is possible from Lemma 4). Moreover, in Ξ_{α}, after C_{t}, any agent in $Q_{\text {blue }}$ has the same state in $C_{t+2}, C_{t+4}, C_{t+6}, \ldots$ We show why this is true later.

Definition 3. We define Q_{t} as a set of states that appear after C_{t} in Ξ_{α}.
Note that, because C_{t} is strongly stable, Q_{t} includes at least $P-2$ states. This implies that Q_{t} includes all states in Q_{p} or does not include one state in Q_{p}. From Corollary $2, Q_{\text {blue }} \subset Q_{t}$ holds. The following lemmas provide the key properties of $A l g_{\text {asym }}$ required to prove Theorem 11. We present proofs of these lemmas later.

Lemma 5. For any distinct states p and q such that $p \in Q_{\text {blue }}$ and $q \in Q_{t}$ hold, transition rules $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ and $(q, p) \rightarrow\left(q^{\prime \prime}, p^{\prime \prime}\right)$ satisfy the following conditions:

- If $q \in Q_{\text {red }}$ or $q \in Q_{b}$ (i.e., q is a state of the base station) holds, $p^{\prime \prime}=p^{\prime}=p$ holds.
- If $q \in Q_{\text {blue }}$ holds, either $\left(p^{\prime}, q^{\prime}\right)=(p, q)$ or $\left(p^{\prime}, q^{\prime}\right)=(q, p)$ holds. Similarly, if $q \in Q_{\text {blue }}$ holds, either $\left(q^{\prime \prime}, p^{\prime \prime}\right)=(p, q)$ or $\left(q^{\prime \prime}, p^{\prime \prime}\right)=(q, p)$ holds.

Lemma 5 indicates that, after a strongly stable configuration in Ξ_{α}, any agent with a state in $Q_{\text {blue }}$ never changes its state as a result of two consecutive interactions with the same pair of agents. This is because, by the definition of a strongly stable configuration, any agent with state p can interact only with an agent with state $q \neq p$ after a strongly stable configuration.

Lemma 6. A non-empty state set $Q^{*} \subseteq Q_{b l u e}$ exists that satisfies the following conditions:

- For any state $p \in Q^{*}$, transition rule $(p, p) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ satisfies $p^{\prime} \in Q^{*}$ and $q^{\prime} \in Q^{*}$.
- We assume that, in a configuration C, there exists a subset of agents V^{*} such that all agents in V^{*} have states in Q^{*}, and $\left|V^{*}\right| \geq\left|Q^{*}\right|+1$ holds. In this case, for any agent $a_{r} \in V^{*}$ and any state $q \in Q^{*}$, there exists an execution segment such that (1) the execution segment starts from C; (2) a_{r} has state q at the last configuration; (3) only agents in V^{*} join interactions; and (4) all agents in V^{*} have states in Q^{*} at the last configuration.

Lemma 6 indicates that, if at least $\left|Q^{*}\right|+1$ agents have states in Q^{*}, we can make an arbitrary agent with a state in Q^{*} transition to an arbitrary state in Q^{*}. Using these lemmas, we state the theorem by constructing a weakly fair execution of $A l g_{\text {asym }}$ with P agents that cannot be distinguished from execution Ξ_{α}.

Proof of Theorem 11

We consider a population $V^{\prime}=\left\{a_{0}^{\prime}, \ldots, a_{P}^{\prime}\right\}$ of P agents and an initialized base station, where a_{0}^{\prime} is the base station. Let C_{0}^{\prime} be an initial configuration such that
the initial states of $a_{0}^{\prime}, \ldots, a_{P}^{\prime}$ are $s\left(a_{0}, C_{0}\right), \ldots, s\left(a_{P-2}, C_{0}\right), s^{*}, s^{*}$, where s^{*} is a state in Q^{*}. For V^{\prime}, we construct an execution $\Xi_{\beta}=C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{t}^{\prime}, \ldots$ using execution Ξ_{α} as follows:

- For $0 \leq u \leq t-1$, when a_{i} interacts with a_{j} at $C_{u} \rightarrow C_{u+1}$ in $\Xi_{\alpha}, a_{i}^{\prime}$ interacts with a_{j}^{\prime} at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}$ in Ξ_{β}.

Clearly, $s\left(a_{i}^{\prime}, C_{t}^{\prime}\right)=s\left(a_{i}, C_{t}\right)$ holds for any $i(0 \leq i \leq P-2)$. Since $s\left(a_{P-1}^{\prime}, C_{t}^{\prime}\right)=$ $s\left(a_{P}^{\prime}, C_{t}^{\prime}\right)=s^{*}$ holds, the difference between the numbers of red and blue agents remains two and consequently C_{t}^{\prime} is not a stable configuration.

To construct the remainder of Ξ_{β}, first we consider the characteristics of C_{t}^{\prime}. Let $V_{q} \subseteq V$ be a set of agents that have states in Q^{*} at C_{t}, and let $\bar{V}_{q}=V-V_{q}$. Since all agents have different states and all states in $Q_{b l u e}$ appear in C_{t} by Corollary 2, we have $\left|V_{q}\right|=\left|Q^{*}\right|$ from $Q^{*} \subseteq Q_{\text {blue }}$. Let $V_{q}^{\prime} \subseteq V^{\prime}$ be a set of agents that have states in Q^{*} at C_{t}^{\prime}, and let $\bar{V}_{q}^{\prime}=V^{\prime}-V_{q}^{\prime}$. Note that, for $i \leq P-2, a_{i} \in V_{q}$ holds if and only if $a_{i}^{\prime} \in V_{q}^{\prime}$ holds. Since a_{P-1}^{\prime} and a_{P}^{\prime} are also in V_{q}^{\prime}, we have $\left|V_{q}^{\prime}\right|=\left|Q^{*}\right|+2$. In the following, we construct the remainder of execution Ξ_{β} that includes infinitely many configurations similar to Ξ_{α}. We define similarity of configurations in Ξ_{β} and Ξ_{α} as follows.

Definition 4. We say configuration $C_{u}^{\prime}(u \geq t)$ in Ξ_{β} is similar to $C_{v}(v \geq t)$ in Ξ_{α} if the following conditions hold:

- For any agent $a_{i} \in V_{q}, s\left(a_{i}, C_{v}\right) \in Q^{*}$ holds.
- For any agent $a_{i}^{\prime} \in V_{q}^{\prime}, s\left(a_{i}^{\prime}, C_{u}^{\prime}\right) \in Q^{*}$ holds.
- For any agent $a_{i}^{\prime} \in \bar{V}_{q}^{\prime}$ (i.e., $\left.a_{i} \in \bar{V}_{q}\right), s\left(a_{i}^{\prime}, C_{u}^{\prime}\right)=s\left(a_{i}, C_{v}\right)$ holds.

We focus on an execution segment $e=C_{t+2 u}, C_{t+2 u+1}, C_{t+2(u+1)}$ of Ξ_{α} for any $u \geq 0$. We consider a configuration C_{x}^{\prime} of V^{\prime} such that C_{x}^{\prime} is similar to $C_{t+2 u}$. Now, we explain how to construct an execution segment $e^{\prime}=C_{x}^{\prime}, \ldots, C_{y}^{\prime}$ of Ξ_{β} that guarantees that C_{y}^{\prime} is similar to $C_{t+2(u+1)}$. Since C_{t}^{\prime} is similar to C_{t}, we can repeatedly apply this construction and construct an infinite execution Ξ_{β}. As a result, for any $u \geq 0, \Xi_{\beta}$ includes a configuration C^{\prime} that is similar to $C_{t+2 u}$. Since C^{\prime} includes $P-1$ red agents and $P+1$ blue agents, Ξ_{β} does not include a stable

(i) Case that $a_{i} \in V_{q} \wedge a_{j} \in V_{q}$

(ii) Case that either $a_{i} \in V_{q} \wedge a_{j} \in \bar{V}_{q}$ or $a_{i} \in \bar{V}_{q} \wedge a_{j} \in V_{q}$

(iii) Case that $a_{i} \in \bar{V}_{q} \wedge a_{j} \in \bar{V}_{q}$

Figure 2. Example of execution segment $e^{\prime}\left(P=8, Q^{*}=\left\{s_{1}, s_{2}\right\}, \gamma\left(s_{1}\right)=\gamma\left(s_{2}\right)=\right.$ $\gamma\left(s_{3}\right)=$ blue, and $\left.\gamma\left(s_{4}\right)=\gamma\left(s_{5}\right)=\gamma\left(s_{6}\right)=\gamma\left(s_{7}\right)=r e d\right)$, where the thick black arrow represents two interactions between a_{i} and a_{j} (or a_{i}^{\prime} and a_{j}^{\prime})
configuration. Note that Ξ_{β} is not necessarily weakly-fair, but later we explain how to construct a weakly-fair execution from Ξ_{β}.

We consider configuration C_{x}^{\prime} that is similar to $C_{t+2 u}$. We assume that, in Ξ_{α}, a_{i} interacts with a_{j} at $C_{t+2 u} \rightarrow C_{t+2 u+1}$. Recall that a_{i} and a_{j} also interact at $C_{t+2 u+1} \rightarrow C_{t+2(u+1)}$. We construct execution segment e^{\prime} as follows (Figure 2 shows an example of execution segment e^{\prime} for each case):

- Case in which $a_{i} \in V_{q} \wedge a_{j} \in V_{q}$ holds: Because $s\left(a_{i}, C_{t+2 u}\right) \in Q^{*} \subseteq Q_{\text {blue }}$ and $s\left(a_{j}, C_{t+2 u}\right) \in Q^{*} \subseteq Q_{\text {blue }}$ hold, $s\left(a_{i}, C_{t+2(u+1)}\right) \in Q^{*}$ and $s\left(a_{j}, C_{t+2(u+1)}\right) \in Q^{*}$ also hold from Lemmas6 (the first condition) and 5. Because other agents do not change their states, C_{x}^{\prime} is similar to $C_{t+2(u+1)}$. Hence, in this case, we consider that the constructed execution segment e^{\prime} is empty.
- Case in which $a_{i} \in V_{q} \wedge a_{j} \in \bar{V}_{q}$ holds: In this case, $s\left(a_{i}^{\prime}, C_{x}^{\prime}\right) \in Q^{*}$ is not necessarily equal to $\sigma=s\left(a_{i}, C_{t+2 u}\right) \in Q^{*}$. Hence, in the execution segment e^{\prime}, we first make some agent $a_{r}^{\prime} \in V_{q}^{\prime}$ enter state σ using interactions among agents in V_{q}^{\prime}. By Lemma 6 (the second condition) and $\left|V_{q}^{\prime}\right|=\left|Q^{*}\right|+2$, such interactions exist and all agents in V_{q}^{\prime} have states in Q^{*} after the interactions. Let C_{z}^{\prime} be the resultant configuration. Clearly C_{z}^{\prime} is similar to $C_{t+2 u}$ and $s\left(a_{r}^{\prime}, C_{z}^{\prime}\right)=s\left(a_{i}, C_{t+2 u}\right) \wedge s\left(a_{j}^{\prime}, C_{z}^{\prime}\right)=s\left(a_{j}, C_{t+2 u}\right)$ holds. Then, a_{r}^{\prime} and a_{j}^{\prime} interact similarly to a_{i} and a_{j}; that is, first a_{r}^{\prime} interacts with a_{j}^{\prime}. Then, if a_{i} and a_{j} interact with a_{j} and a_{i}, respectively, in $C_{t+2 u+1} \rightarrow C_{t+2(u+1)}, a_{r}^{\prime}$ and a_{j}^{\prime} interact with a_{j}^{\prime} and a_{r}^{\prime}, respectively. We regard the resultant configuration as C_{y}^{\prime} (i.e., the last configuration of the constructed execution segment $\left.e^{\prime}\right)$. Clearly both $s\left(a_{r}^{\prime}, C_{y}^{\prime}\right)=s\left(a_{i}, C_{t+2(u+1)}\right)$ and $s\left(a_{j}^{\prime}, C_{y}^{\prime}\right)=s\left(a_{j}, C_{t+2(u+1)}\right)$ hold. Because C_{z}^{\prime} is similar to $C_{t+2 u}$ and $s\left(a_{j}^{\prime}, C_{y}^{\prime}\right)=s\left(a_{j}, C_{t+2(u+1)}\right)$, it is sufficient to prove $s\left(a_{r}^{\prime}, C_{y}^{\prime}\right) \in Q^{*}$ to guarantee that C_{y}^{\prime} is similar to $C_{t+2(u+1)}$. From $s\left(a_{r}^{\prime}, C_{z}^{\prime}\right) \in Q^{*} \subseteq Q_{\text {blue }}, s\left(a_{r}^{\prime}, C_{y}^{\prime}\right)=s\left(a_{r}^{\prime}, C_{z}^{\prime}\right) \in Q^{*}$ holds by Lemma 5 . Therefore, C_{y}^{\prime} is similar to $C_{t+2(u+1)}$.
- Case in which $a_{i} \in \bar{V}_{q} \wedge a_{j} \in V_{q}$ holds: In this case, as in the previous case, clearly we can construct a configuration similar to $C_{t+2(u+1)}$.
- Case in which $a_{i} \in \bar{V}_{q} \wedge a_{j} \in \bar{V}_{q}$ holds: In this case, because $s\left(a_{i}^{\prime}, C_{x}^{\prime}\right)=$ $s\left(a_{i}, C_{t+2 u}\right)$ and $s\left(a_{j}^{\prime}, C_{x}^{\prime}\right)=s\left(a_{j}, C_{t+2 u}\right)$ hold, a_{i}^{\prime} and a_{j}^{\prime} interact twice similarly to a_{i} and a_{j}. We regard the resultant configuration as C_{y}^{\prime} (i.e., the last configuration of the constructed execution segment e^{\prime}). Clearly, because a_{i}^{\prime} and a_{j}^{\prime} change their states similarly to a_{i} and a_{j}, C_{y}^{\prime} is similar to $C_{t+2(u+1)}$.

We have constructed the infinite execution Ξ_{β}, but Ξ_{β} is not necessarily weakly fair. In the following, we construct a weakly fair execution Ξ_{γ} of population V^{\prime} by slightly modifying Ξ_{β}. To guarantee that Ξ_{γ} is weakly fair, for any pair of
agents $\left(a_{i}^{\prime}, a_{j}^{\prime}\right), a_{i}^{\prime}$ should interact with a_{j}^{\prime} infinitely often in Ξ_{γ}. For a pair of agents ($a_{i}^{\prime}, a_{j}^{\prime}$) with $a_{i}^{\prime} \in \bar{V}_{q}^{\prime}$ and $a_{j}^{\prime} \in \bar{V}_{q}^{\prime}, a_{i}^{\prime}$ interacts with a_{j}^{\prime} infinitely often in Ξ_{β} because Ξ_{α} is weakly fair and a_{i}^{\prime} interacts with a_{j}^{\prime} in Ξ_{β} when a_{i} interacts with a_{j} in Ξ_{α}. For a pair of agents $\left(a_{i}^{\prime}, a_{j}^{\prime}\right)$ with $a_{i}^{\prime} \in V_{q}^{\prime}$ and $a_{j}^{\prime} \in V_{q}^{\prime}$, we can arbitrarily add interactions between them because, by Lemmas 6 (the first condition) and 5 (the second condition), they keep their states in Q^{*} and consequently do not influence the similarity of configurations. Hence, we consider the remaining pair ($a_{i}^{\prime}, a_{j}^{\prime}$); that is, either $a_{i}^{\prime} \in V_{q}^{\prime} \wedge a_{j}^{\prime} \in \bar{V}_{q}^{\prime}$ or $a_{i}^{\prime} \in \bar{V}_{q}^{\prime} \wedge a_{j}^{\prime} \in V_{q}^{\prime}$ holds. We show that any agent in V_{q} and \bar{V}_{q}^{\prime} can interact with any agent in \bar{V}_{q}^{\prime} and V_{q}, respectively, infinitely often without influencing the similarity of configurations. First, we consider the case in which $a_{i}^{\prime} \in V_{q}^{\prime} \wedge a_{j}^{\prime} \in \bar{V}_{q}^{\prime}$ holds. Because Ξ_{α} is weakly fair, an agent in V_{q} interacts with an agent in \bar{V}_{q}^{\prime} infinitely often in Ξ_{α}. Recall that these interactions correspond to interactions between a_{r}^{\prime} and a_{j}^{\prime} in Ξ_{β}, and a_{r}^{\prime} can be arbitrarily selected from V_{q}^{\prime}. For this reason, we can choose a_{r}^{\prime} in a round-robin manner so that any agent in V_{q}^{\prime} interacts with a_{j}^{\prime} infinitely often. For example, when an agent in V_{q} and a_{j} first interact (after C_{t}), we choose an agent in V_{q}^{\prime} as a_{r}^{\prime}, and then in the next interaction of an agent in V_{q} and a_{j}, we choose another agent in V_{q}^{\prime} as a_{r}^{\prime}. Using this construction, any agent in V_{q}^{\prime} can interact with a_{j}^{\prime} infinitely often. Next, we consider the case in which $a_{i}^{\prime} \in \overline{V_{q}^{\prime}} \wedge a_{j}^{\prime} \in V_{q}^{\prime}$ holds. Clearly, as in the previous case, we can make any agent in $\overline{V_{q}^{\prime}}$ interact with any agent in V_{q}^{\prime} infinitely often. In this way, we can construct a weakly fair execution Ξ_{γ} similarly to Ξ_{β}. However, for any $u \geq 0, \Xi_{\gamma}$ includes a configuration $C^{\prime \prime}$ that is similar to $C_{t+2 u}$. Because $C^{\prime \prime}$ includes $P / 2-1$ red agents and $P / 2+1$ blue agents, Ξ_{γ} does not include a stable configuration. This is a contradiction, and thus we have the theorem. Moreover, Theorem 11 directly implies the following corollary.

Corollary 3. In the model with an initialized base station, there is no asymmetric protocol that solves the uniform partition problem with $P-1$ states from arbitrary initial states under weak fairness if P is an even integer.

Proofs of Lemmas 5 and 6

From now, we show the proofs of Lemmas 5 and 6. First, we prove Lemma 5.
Lemma 5. For any distinct states p and q such that $p \in Q_{b l u e}$ and $q \in Q_{t}$ hold,
transition rules $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ and $(q, p) \rightarrow\left(q^{\prime \prime}, p^{\prime \prime}\right)$ satisfy the following conditions:

- If $q \in Q_{\text {red }}$ or $q \in Q_{b}$ (i.e., q is a state of the base station) holds, $p^{\prime \prime}=p^{\prime}=p$ holds.
- If $q \in Q_{\text {blue }}$ holds, either $\left(p^{\prime}, q^{\prime}\right)=(p, q)$ or $\left(p^{\prime}, q^{\prime}\right)=(q, p)$ holds. Similarly, if $q \in Q_{\text {blue }}$ holds, either $\left(q^{\prime \prime}, p^{\prime \prime}\right)=(p, q)$ or $\left(q^{\prime \prime}, p^{\prime \prime}\right)=(q, p)$ holds.

Proof. We consider execution Ξ_{α} defined in Definition 2. From the definition, each configuration $C_{u}(u \geq t)$ is strongly stable. From Corollary 2, each blue state exists in any strongly stable configuration. For this reason, p exists in any configuration $C_{u}(u \geq t)$. Additionally, since $q \in Q_{t}$ holds, there exists a configuration $C_{v}(v \geq t)$ such that state q exists at C_{v}. Let a_{x} and a_{y} be agents that have states p and q at C_{v}, respectively. We consider another execution Ξ_{α}^{\prime} such that a_{x} and a_{y} interact at configuration C_{v}; that is, they change their states according to the transition rule $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ or $(q, p) \rightarrow\left(q^{\prime \prime}, p^{\prime \prime}\right)$. Let C_{v}^{\prime} be the resultant configuration. Note that the transition does not change the colors of a_{x} and a_{y} because C_{v} is stable. Now, we consider the following two cases. First, we consider the case of $q \in Q_{\text {red }}$ or $q \in Q_{b}$. For contradiction, we assume that either $p^{\prime} \neq p$ or $p^{\prime \prime} \neq p$ holds. If $p^{\prime} \neq p$ (resp., $p^{\prime \prime} \neq p$) holds, we assume that $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ (resp., $\left.(q, p) \rightarrow\left(q^{\prime \prime}, p^{\prime \prime}\right)\right)$ occurs at $C_{v} \rightarrow C_{v}^{\prime}$. Since $p^{\prime}, p^{\prime \prime} \in Q_{\text {blue }}$ holds, p^{\prime} and $p^{\prime \prime}$ exist in C_{v} by Corollary 2. Thus, since $p^{\prime} \neq p$ (resp., $p^{\prime \prime} \neq p$) holds, two agents have p^{\prime} (resp., $p^{\prime \prime}$) at C_{v}^{\prime}. This is a contradiction because C_{v} is strongly stable. Next, we consider the case of $q \in Q_{\text {blue }}$. For contradiction, we assume that, in C_{v}^{\prime}, (1) a_{x} and a_{y} have $p ;(2) a_{x}$ and a_{y} have q; or (3) at least one of a_{x} and a_{y} has a state $r \notin\{p, q\}$. In the first two cases, two agents have the same state in C_{v}^{\prime}. In the last case, since $r \in Q_{\text {blue }}$ holds, state r exists in C_{v} from Corollary 2, and consequently, two agents have r in C_{v}^{\prime}. This is a contradiction because C_{v} is strongly stable. Therefore, the lemma holds.

In the following, we prove Lemma 6. First, to prove the lemma, we provide some definitions.

Definition 5. For states q and q^{\prime}, we say $q \leadsto q^{\prime}$ if there exists a sequence of states $q=q_{0}, q_{1}, \cdots, q_{l}=q^{\prime}$ such that, for any $i(0 \leq i<l)$, transition rule $\left(q_{i}, q_{i}\right) \rightarrow\left(q_{i+1}, x_{i}\right)$ or $\left(q_{i}, q_{i}\right) \rightarrow\left(x_{i}, q_{i+1}\right)$ exists for some x_{i}.

Definition 6. For states q and q^{\prime}, we say $q \stackrel{*}{\sim} q^{\prime}$ if $x \leadsto q^{\prime}$ holds for any x such that $q \leadsto x$ holds.

Note that, in these definitions, we only consider interactions between agents with the same state. We say two agents are homonyms if they have the same state. Intuitively, $q \leadsto q^{\prime}$ means that an agent with state q can transition to q^{\prime} by only interacting with homonyms. Additionally, $q \stackrel{*}{\sim} q^{\prime}$ means that, even if an agent with state q transitions to any state x by interactions with homonyms, it can still transition from x to q^{\prime} by interactions with homonyms. By Corollary 1, without loss of generality, we assume that $Q_{\text {blue }}=\left\{s_{1}, s_{2}, \ldots, s_{P / 2-1}\right\}$ and $Q_{\text {red }}=\left\{s_{P / 2}, s_{P / 2+1}, \ldots, / s_{P-1}\right\}$ hold.

Definition 7. $Q_{b c}=\left\{p \in Q_{b l u e} \mid \exists q \in Q_{r e d}: p \leadsto q\right\}$.
Definition 8. $Q_{n b c}=Q_{b l u e} \backslash Q_{b c}$.
Intuitively, $p \in Q_{b c}$ means that a blue agent with state p can become red by interactions with homonyms. Additionally, $p \in Q_{n b c}$ means that a blue agent with state p cannot become red by interactions with homonyms. The outline of the proof of Lemma 6 is as follows: First, we show that $Q_{n b c}$ is not empty. This implies that, by the definition of $Q_{n b c}$, there exists a state p in $Q_{n b c}$ such that $p \leadsto p$ holds. Then we show that there exists a state p^{*} in $Q_{n b c}$ such that $p^{*} \stackrel{*}{\sim} p^{*}$ holds. If such a p^{*} does not exist, some state in $Q_{n b c}$ can transition to a state not in $Q_{n b c}$ by interactions with homonyms, which contradicts the definition of $Q_{n b c}$. The existence of p^{*} implies that there exists a state set $Q_{p *} \subseteq Q_{n b c}$ such that $Q_{p^{*}}=\left\{q \mid p^{*} \leadsto q\right\}$ holds. Finally, we show that this $Q_{p *}$ satisfies the conditions of Lemma 6. Now we show that $Q_{n b c}$ is not empty. To show this, we provide the following definition.

Definition 9. $\operatorname{Dt} R\left(s_{i}\right)$ is a function that satisfies the following property:

- If $s_{i} \in Q_{\text {red }}$ holds, $\operatorname{DtR}\left(s_{i}\right)=0$ holds.
- If $s_{i} \in Q_{b c}$ holds, $\operatorname{DtR}\left(s_{i}\right)=\min \left\{\operatorname{Dt} R\left(s_{j}^{1}\right), \operatorname{Dt} R\left(s_{j}^{2}\right)\right\}+1$ holds when transition rule $\left(s_{i}, s_{i}\right) \rightarrow\left(s_{j}^{1}, s_{j}^{2}\right)$ exists.
- If $s_{i} \in Q_{n b c}$ holds, $\operatorname{DtR}\left(s_{i}\right)=\infty$ holds.

Intuitively, $\operatorname{Dt} R\left(s_{i}\right)$ gives the minimum number of interactions to transition from s_{i} to a red state when allowing only interactions with homonyms.

Lemma 7. $Q_{n b c} \neq \varnothing$.
Proof. The idea of the proof of the lemma is as follows: For contradiction, we assume $Q_{n b c}=\varnothing$. From the assumption, since $Q_{b l u e}=Q_{b c}$ holds, all states in $Q_{b l u e}$ can transition to a state in $Q_{r e d}$ by interactions with homonyms. Additionally, when homonyms with states in $Q_{\text {blue }}$ interact, one of the agents transitions from s_{i} to s_{j} such that $\operatorname{DtR}\left(s_{i}\right)>\operatorname{DtR}\left(s_{j}\right)$ holds. When P is even, some blue agents have the same state in a stable configuration because the number of blue agents should be $P / 2$ and $\left|Q_{\text {blue }}\right|=P / 2-1$ holds. This implies that interactions with homonyms having states in $Q_{\text {blue }}$ are always possible. Thus, by repeating the interactions, eventually, some agent transitions to s^{\prime} such that $\operatorname{Dt} R\left(s^{\prime}\right)=0$ holds (i.e., $s^{\prime} \in Q_{r e d}$). This contradicts that the configuration is stable. Now we present the details of the proof. For contradiction, we assume $Q_{n b c}=\varnothing$. We consider a population $V^{\prime}=\left\{a_{0}^{\prime}, \ldots, a_{P}^{\prime}\right\}$ of P agents and an initialized base station, where a_{0}^{\prime} is the base station. Let $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{t}^{\prime}, \ldots$ be a weakly fair execution of $A l g_{\text {asym }}$, where C_{t}^{\prime} is a stable configuration. Without loss of generality, we assume $\operatorname{DtR}\left(s_{P-1}\right)=\cdots=\operatorname{DtR}\left(s_{P / 2}\right)=0<\operatorname{DtR}\left(s_{P / 2-1}\right) \leq \cdots \leq \operatorname{DtR}\left(s_{1}\right)$. Since $Q_{n b c}=\varnothing$ holds, $\operatorname{DtR}\left(s_{1}\right) \neq \infty$ holds. From the definition of $\operatorname{DtR}\left(s_{i}\right)$, if $\left.\operatorname{DtR(} s_{i}\right)>0$ and $\operatorname{Dt} R\left(s_{i}\right) \neq \infty$ hold, an agent with state s_{i} transitions to s_{j} with $j>i$ by an interaction with homonyms. Using this property, we prove the following lemma.

Lemma 8. For $1 \leq i \leq P / 2-1$, if $i+1$ agents have states in $\left\{s_{1}, \ldots, s_{i}\right\}$, one of these agents can transition to $s_{h}(h \geq i+1)$ by interactions among these agents.

Proof. We prove the lemma by induction on i. The base case is when two agents have state s_{1}. If they interact, one of them transitions to $s_{h}(h \geq 2)$. Thus, the lemma holds in this case. For the induction step, we assume that the lemma holds for $i=k-1(k \leq P / 2-1)$, and prove that the lemma holds for $i=k$. To do this, we consider the scenario in which $k+1$ agents have states in $\left\{s_{1}, \ldots, s_{k}\right\}$. We consider three cases: (1) at least two agents have state s_{k}; (2) exactly one agent has state s_{k}; and (3) no agent has state s_{k}. First, we consider the case in which at least two agents have state s_{k}. In this case, if these two agents interact, one of them transitions to $s_{h}(h \geq k+1)$. Hence, the lemma holds in this case.

Next, we consider the case in which exactly one agent has state s_{k}. In this case k agents have states in $\left\{s_{1}, \ldots, s_{k-1}\right\}$. Hence, from the inductive assumption, one of them can transition to $s_{h}(h \geq k)$ by interactions among the k agents. If $h>k$ holds, the lemma holds; otherwise, two agents have state s_{k} and hence the lemma holds similarly to the first case. Finally, we consider the case in which no agent has state s_{k}. This implies that $k+1$ agents have states in $\left\{s_{1}, \ldots, s_{k-1}\right\}$. Hence, from the inductive assumption, two of them can transition to $s_{h}(h \geq k)$ and $s_{h^{\prime}}\left(h^{\prime} \geq k\right)$. If $h>k$ or $h^{\prime}>k$ holds, the lemma holds; otherwise, two agents have state s_{k} and hence the lemma holds similarly to the first case.

Since C_{t}^{\prime} is a stable configuration in $\Xi^{\prime}, P / 2$ agents have states in $Q_{\text {blue }}=\left\{s_{1}\right.$, $\left.\ldots, s_{P / 2-1}\right\}$. Hence, by Lemma 8 , we can construct an execution segment that makes a blue agent transition to s_{h} for some $h \geq P / 2$. This implies that the agent changes its color from blue to red. Since C_{t}^{\prime} is a stable configuration, this is a contradiction.

From now, we show that there exists a state $p \in Q_{n b c}$ such that $p \leadsto p$ holds. Furthermore, we also show that there exists a state $p \in Q_{n b c}$ such that $p \stackrel{*}{\sim} p$ holds.

Lemma 9. There exists a state $p \in Q_{n b c}$ such that $p \leadsto p$ holds.
Proof. From Lemma 7, there exists a state p_{0} in $Q_{n b c}$. From the definition, there exists a sequence $p_{0} \leadsto p_{1} \leadsto p_{2} \leadsto p_{3} \leadsto \cdots$ starting from p_{0}. Since the number of states is finite, there exist some p_{i} and p_{j} such that $j>i \geq 0$ and $p_{i}=p_{j}$ holds. This implies $p_{i} \leadsto p_{i}$. Clearly, $p_{i} \in Q_{n b c}$ holds because $p_{0} \in Q_{n b c}$ holds. Therefore, the lemma holds.

Lemma 10. There exists a state $p \in Q_{n b c}$ such that $p \stackrel{*}{\sim} p$ holds.
Proof. For contradiction, we assume that such state p does not exist. By Lemma 9 , there exists a state $p_{0} \in Q_{n b c}$ such that $p_{0} \leadsto p_{0}$ holds. Since $p_{0} \stackrel{*}{\sim} p_{0}$ does not hold, there exists some state q such that $p_{0} \leadsto q$ holds but $q \leadsto p_{0}$ does not hold. Since $p_{0} \leadsto q$ holds, q belongs to $Q_{n b c}$. For this reason, there exists a state p_{0}^{\prime} such that $q \leadsto p_{0}^{\prime} \leadsto p_{0}^{\prime}$ holds. Note that, since $q \leadsto p_{0}$ does not hold, p_{0}^{\prime} is not equal to p_{0}. Additionally, since $p_{0}^{\prime} \stackrel{*}{\leadsto} p_{0}^{\prime}$ does not hold, there exists some state q^{\prime} such
that $p_{0}^{\prime} \leadsto q^{\prime}$ holds but $q^{\prime} \leadsto p_{0}^{\prime}$ does not hold. This implies that there exists a state $p_{0}^{\prime \prime} \in Q_{n b c}$ such that $q^{\prime} \leadsto p_{0}^{\prime \prime} \leadsto p_{0}^{\prime \prime}, p_{0}^{\prime \prime} \neq p_{0}^{\prime}$, and $p_{0}^{\prime \prime} \neq p_{0}$ hold. By repeating similar arguments, since the number of states is finite, we can prove that there exists some state $p_{0}^{*} \in Q_{n b c}$ such that $p_{0}^{*} \underset{\sim}{*} p_{0}^{*}$ holds. This is a contradiction.

In the following, we focus on a state $p^{*} \in Q_{n b c}$ such that $p^{*} \stackrel{*}{\sim} p^{*}$ holds. Let $Q_{p^{*}}=\left\{q \mid p^{*} \leadsto q\right\}$. Note that, if homonyms with a state in $Q_{p *}$ interact, they transition to a state in $Q_{p *}$. This implies that $Q_{p^{*}}$ satisfies the first condition of Q^{*} in Lemma 6. Moreover, we observe that, for any $s, s^{\prime} \in Q_{p *}, s \stackrel{*}{\sim} s^{\prime}$ holds because $p^{*} \stackrel{*}{\sim} s \stackrel{*}{\sim} p^{*}$ and $p^{*} \stackrel{*}{\sim} s^{\prime} \stackrel{*}{\sim} p^{*}$ hold. To prove the second condition, we first show that, when $\left|Q_{p *}\right|$ agents have states in $Q_{p *}$ initially, for any $s \in Q_{p *}$, there exists an execution such that only homonyms in the $\left|Q_{p *}\right|$ agents interact, and eventually, some agent transitions to state s. To show this, we define a potential function $\Phi(C, s)$ for configuration C and state $s \in Q_{p *}$. Intuitively, $\Phi(C, s)$ represents how far configuration C is from a configuration that includes an agent with state s. To define $\Phi(C, s)$, we define $\left.\operatorname{DtQ(} s_{i}, s\right)$ as follows:

Definition 10. $\operatorname{DtQ}\left(s_{i}, s\right)$ is a function that satisfies the following properties .

- If $s_{i}=s$ holds, $D t Q\left(s_{i}, s\right)=0$ holds .
- If $s_{i} \neq s$ and $s_{i} \in Q_{p *}$ holds, $\operatorname{DtQ}\left(s_{i}, s\right)=\min \left\{\operatorname{DtQ}\left(s_{j}^{1}, s\right), \operatorname{DtQ}\left(s_{j}^{2}, s\right)\right\}+1$ holds when transition rule $\left(s_{i}, s_{i}\right) \rightarrow\left(s_{j}^{1}, s_{j}^{2}\right)$ exists.
- If $s_{i} \notin Q_{p^{*}}$ holds, $D t Q\left(s_{i}, s\right)=\infty$ holds.

Intuitively, $\operatorname{DtQ}\left(s_{i}, s\right)$ provides the minimum number of interactions required to transition from state s_{i} to state s when allowing only interactions with homonyms. Recall that, for any $s_{i} \in Q_{p *}, s_{i} \stackrel{*}{\sim} s$ holds because $p^{*} \stackrel{*}{\sim} s_{i} \stackrel{*}{\sim} p^{*}$ and $p^{*} \stackrel{*}{\sim} s \stackrel{*}{\sim} p^{*}$ hold.

Definition 11. We consider configuration C such that $z=\left|Q_{p^{*}}\right|$ agents a_{1}, \ldots, a_{z} have states in $Q_{p^{*}}$. In this case, we define potential function $\Phi(C, s)$ as a multiset $\left\{\operatorname{DtQ}\left(s\left(a_{1}, C\right), s\right), \operatorname{DtQ}\left(s\left(a_{2}, C\right), s\right), \operatorname{DtQ}\left(s\left(a_{3}, C\right), s\right), \ldots, \operatorname{DtQ}\left(s\left(a_{z}, C\right), s\right)\right\}$.

Definition 12. For distinct $\Phi\left(C_{1}, s\right)$ and $\Phi\left(C_{2}, s\right)$, we define their comparative operator as follows: Let i be the minimum integer such that the number of i elements is different between $\Phi\left(C_{1}, s\right)$ and $\Phi\left(C_{2}, s\right)$. If the number of i-elements in $\Phi\left(C_{1}, s\right)$ is larger than that in $\Phi\left(C_{2}, s\right)$, we say $\Phi\left(C_{1}, s\right)<\Phi\left(C_{2}, s\right)$.

Now we prove that, for any $s \in Q_{p *}$, there exists an execution such that only homonyms in the $\left|Q_{p *}\right|$ agents with states in $Q_{p *}$ interact, and eventually, some agent transitions to state s.

Lemma 11. We consider a population $V_{p *}=\left\{a_{1}, a_{2}, \ldots, a_{z}\right\}$, where $z \geq\left|Q_{p^{*}}\right|$ holds. We consider an initial configuration C_{0}^{q} such that all agents in $V_{p *}$ have states in $Q_{p *}$. For any $q \in Q_{p *}$, there exists an execution segment $e^{q}=C_{0}^{q}, C_{1}^{q}$, $C_{2}^{q}, \ldots, C_{m}^{q}$ such that (1) some agent has state q at the last configuration C_{m}^{q}; and (2) only homonyms interact in e^{q}.

Proof. Let C be a configuration with $V_{p *}$ such that all agents have states in $Q_{p *}$. If an agent with q in C, we can construct $e^{q}=C$. Hence, we consider that there does not exist an agent with q in C. Since at least $\left|Q_{p^{*}}\right|$ agents have states in $Q_{p *}$ in C and there does not exist an agent with q in C, there exist homonyms in C. When homonyms with a state in $Q_{p *}$ interact, they transition to a state in $Q_{p *}$. These imply that, when homonyms interact at $C \rightarrow C^{\prime}$, either an agent with q or homonyms with a state in $Q_{p *}$ exist in C^{\prime}. Thus, for contradiction, we assume that there exists an infinite execution segment $e^{q}=C_{0}^{q}, C_{1}^{q}, C_{2}^{q}, \ldots$ with $V_{p *}$ such that only homonyms interact and no agent ever has q in e^{q}. We consider the case in which a_{x} and a_{y} interact at $C_{i}^{q} \rightarrow C_{i+1}^{q}$ for $i \geq 0$. By the assumption, a_{x} and a_{y} have the same state $p \in Q_{p *}$. From the property of $Q_{p *}, p$ satisfies $p \leadsto p^{*} \leadsto q$. Thus, $\operatorname{Dt} Q\left(s\left(a_{x}, C_{i}^{q}\right), q\right)>\operatorname{DtQ}\left(s\left(a_{x}, C_{i+1}^{q}\right), q\right)$ or $\operatorname{DtQ}\left(s\left(a_{y}, C_{i}^{q}\right), q\right)>$ $\operatorname{Dt} Q\left(s\left(a_{y}, C_{i+1}^{q}\right), q\right)$ holds. Hence, from the property of $\Phi, \Phi\left(C_{i}^{q}, q\right)>\Phi\left(C_{i+1}^{q}, q\right)$ holds. Since the number of possible values of $\Phi(C, q)$ is finite, $\Phi\left(C_{j}^{q}, q\right)$ includes 0 for some C_{j}^{q} and thus some agent has q in C_{j}^{q}. By the definition of e^{q}, this is a contradiction.

Now, we show Lemma 6 by using Lemma 11 .
Lemma 6. A non-empty state set $Q^{*} \subseteq Q_{\text {blue }}$ exists that satisfies the following conditions:

- For any state $p \in Q^{*}$, transition rule $(p, p) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ satisfies $p^{\prime} \in Q^{*}$ and $q^{\prime} \in Q^{*}$.
- We assume that, in a configuration C, there exists a subset of agents V^{*} such that all agents in V^{*} have states in Q^{*} and $\left|V^{*}\right| \geq\left|Q^{*}\right|+1$ holds. In this
case, for any agent $a_{r} \in V^{*}$ and any state $q \in Q^{*}$, there exists an execution segment such that (1) the execution segment starts from C; (2) a_{r} has state q at the last configuration; (3) only agents in V^{*} join interactions; and (4) all agents in V^{*} have states in Q^{*} at the last configuration.

Proof. We show that $Q_{p^{*}}$ satisfies the condition of Q^{*}. Clearly, $Q_{p^{*}}$ satisfies the first condition. Hence, we focus on the second condition. We consider a set of agents V^{*} with $\left|V^{*}\right| \geq\left|Q_{p *}\right|+1$, and consider an initial configuration $C_{0}^{p^{*}}$ such that all agents in V^{*} have states in $Q_{p *}$. Let a_{r} be an agent in V^{*} and let $s=s\left(a_{r}, C_{0}^{p^{*}}\right)$. We consider a sequence of states $T=t_{0}, t_{1}, t_{2}, \ldots, t_{l}$ such that $t_{0}=s, t_{l}=q$, and for any $i(0 \leq i<l)$, transition rule $\left(t_{i}, t_{i}\right) \rightarrow\left(t_{i+1}, x_{i}\right)$ or $\left(t_{i}, t_{i}\right) \rightarrow\left(x_{i}, t_{i+1}\right)$ exists for some x_{i}. From configuration $C_{0}^{p^{*}}$, we make a_{r} change its state according to T; that is, if a_{r} has state $t_{i}(0 \leq i<l)$, we make one of the remaining agents (i.e., $\left.V^{*}-\left\{a_{r}\right\}\right)$ transition to t_{i} by interactions with homonyms and then make the agent interact with a_{r}. Note that the number of remaining agents is at least $\left|Q_{p^{*}}\right|$. Such a procedure is possible because, by Lemma 11, one of the remaining agents can transition to any state in $Q_{p^{*}}$ by interactions with homonyms. We observe that all agents in V^{*} keep states in $Q_{p^{*}}$ when the procedure is applied. Hence, we can construct an execution segment under the second condition. Therefore, $Q_{p^{*}}$ satisfies the conditions of Q^{*} and thus the lemma holds.

4.1.3 Lower Bound for Symmetric Protocols

In this subsection, we show that the lower bound for symmetric protocols is $P+1$. To prove this, we use the ideas of the impossibility proof for the naming protocol [23]. This study showed that, in the model with an initialized base station, there is no symmetric naming protocol with P states from arbitrary initial states under weak fairness. We apply the proof in [23] to the uniform 2-partition but, because the problem considered in that study is different, we need to make a non-trivial modification.

Theorem 12. In the model with an initialized base station, there is no symmetric protocol that solves the uniform 2-partition problem with P states from arbitrary initial states under weak fairness, if P is an even integer.

In the case of naming protocols [23], the impossibility proof proves that a unique state (called a sink state) always exists. However, in the case of uniform 2-partition protocols, sometimes no sink state exists. To consider this scenario, we additionally define a sink pair, which is a pair of two states that has similar properties to a sink state. We show that either a sink state or sink pair exists, and we prove that there is no symmetric protocol in both cases. Furthermore, Theorem 12 directly implies the following corollary.

Corollary 4. In the model with an initialized base station, there is no symmetric protocol that solves the uniform partition problem with P states from arbitrary initial states under weak fairness if P is an even integer.

Proof of Theorem 12

We assume, by way of contradiction, that such an algorithm $A l g_{s y m}$ exists. Let $Q_{p}=\left\{s_{1}, \ldots, s_{P}\right\}$ be a set of states of non-base station agents. Let $Q_{\text {blue }}=\{s \in$ $Q_{p} \mid \gamma(s)=$ blue $\}$ be a set of blue states and $Q_{\text {red }}=\left\{s \in Q_{p} \mid \gamma(s)=r e d\right\}$ be a set of red states. Without loss of generality, we assume that $\left|Q_{\text {blue }}\right| \leq\left|Q_{\text {red }}\right|$ holds. First, we define a sink state similarly to [11].

Definition 13. For states q and q^{\prime}, we say $q \stackrel{s y m}{\sim} q^{\prime}$ if there exists a sequence of states $q=q_{0}, q_{1}, \cdots, q_{l}=q^{\prime}$ such that, for any $i(0 \leq i<l)$, transition rule $\left(q_{i}, q_{i}\right) \rightarrow$ (q_{i+1}, q_{i+1}) exists.

Definition 14. For state q, if $q \stackrel{\text { sym }}{\sim} q$ holds, q is called a loop state.
Definition 15. State m is a sink state if $m \in Q_{p}$ satisfies the following conditions:

1. There exists a transition rule $(m, m) \rightarrow(m, m)$.
2. For any $s \in Q_{p}, s \stackrel{s y m}{\leadsto} m$ holds.
3. If the number of agents is at most $P-2, m$ does not occur infinitely often for any execution.

In the case of naming protocols [11], the impossibility proof proves that a sink state always exists. However, in the case of uniform 2-partition protocols, sometimes no sink state exists. To consider this scenario, we additionally define
a sink pair, which is a pair of two states that has a similar property of a sink state. We prove that either a sink state or sink pair exists.

Definition 16. A pair of two states $m_{1}, m_{2} \in Q_{p}$ is a sink pair if the following conditions hold:

1. There exist transition rules $(1)\left(m_{1}, m_{1}\right) \rightarrow\left(m_{1}, m_{1}\right)$ and $\left(m_{2}, m_{2}\right) \rightarrow\left(m_{2}, m_{2}\right)$ or (2) $\left(m_{1}, m_{1}\right) \rightarrow\left(m_{2}, m_{2}\right)$ and $\left(m_{2}, m_{2}\right) \rightarrow\left(m_{1}, m_{1}\right)$.
2. For any $s \in Q_{p}, s \stackrel{s y m}{\sim} m_{1}$ or $s \stackrel{s y m}{\sim} m_{2}$ holds.
3. If the number of agents is at most $P-2, m_{1}$ and m_{2} do not occur infinitely often for any execution.

The following lemma provides an important property to prove the existence of a sink state or sink pair.

Lemma 12. Let $\Xi=C_{0}, C_{1}, C_{2}, \ldots$ be a weakly fair execution of $A l g_{\text {sym }}$ with $n \leq P-2$ agents and an initialized base station. For any loop state $s_{r} \in Q_{p}$ (i.e., $s_{r} \stackrel{s y m}{\sim} s_{r}$ holds), s_{r} does not occur infinitely often in Ξ.

Proof. The idea of the proof is as follows: First, for contradiction, we consider an execution Ξ with $n \leq P-2$ such that s_{r} occurs infinitely often in Ξ. Next, we consider an execution with P agents such that all additional agents have s_{r} as their initial states and other agents behave similarly to Ξ. In the execution, all additional agents do not join the interactions until some other agent has s_{r}. At that time, one of non-additional agents has state s_{r} and additional agents also have state s_{r}. We can prove that, from this configuration, non-additional agents cannot recognize the additional agents and hence they behave in the same manner as in Ξ. Additionally, the additional agents keep state s_{r}. Since the numbers of red and blue agents are balanced without the additional agents and the additional agents have the same state, the uniform 2-partition problem cannot be solved. Now we present the details of the proof. For contradiction, we assume that there exists a weakly fair execution Ξ such that s_{r} occurs infinitely often in Ξ. First, we consider a population $V=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right\}$ of $n \leq P-2$ agents and an initialized base station, where a_{0} is the base station. Since there exist a finite number of agents, there exists a particular agent a_{x} that has s_{r} infinitely often
in Ξ. We can define infinite configurations $C_{u_{0}}, C_{u_{1}}, \ldots$ and infinite execution segments $e_{0}, e_{1}, e_{2}, \ldots$ of Ξ so that $\Xi=C_{u_{0}}, e_{0}, C_{u_{1}}, e_{1}, C_{u_{2}}, e_{2}, C_{u_{3}}, \ldots$ satisfies the following:

- For $w \geq 1$, agent a_{x} has state s_{r} in $C_{u_{w}}$.
- For $j \geq 0$, during execution segment $C_{u_{j}}, e_{j}, C_{u_{j+1}}$, any pair of agents in V interacts at least once (this is possible because Ξ is weakly fair).

Next, we consider a population $V^{\prime}=\left\{a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{P}^{\prime}\right\}$ of P agents and an initialized base station, where a_{0}^{\prime} is the base station. We define execution $\Xi^{\prime}=C_{u_{0}}^{\prime}, e_{0}^{\prime}, C_{v_{0}}^{\prime}$, $e_{0}^{m}, C_{u_{1}}^{\prime}, e_{1}^{\prime}, C_{v_{1}}^{\prime}, e_{1}^{m}, C_{u_{2}}^{\prime}, e_{2}^{\prime}, C_{v_{2}}^{\prime}, \ldots$ as follows:

- In initial configuration $C_{u_{0}}^{\prime}, a_{i}^{\prime}(n \geq i \geq 0)$ has the same state as a_{i} in C_{0} and $a_{n+1}^{\prime}, a_{n+2}^{\prime}, \ldots, a_{P}^{\prime}$ have state s_{r}. Formally, $s\left(a_{i}^{\prime}, C_{u_{0}}^{\prime}\right)=s\left(a_{i}, C_{u_{0}}\right)$ holds for any $i(n \geq i \geq 0)$, and $s\left(a_{n+1}^{\prime}, C_{u_{0}}^{\prime}\right)=s\left(a_{n+2}^{\prime}, C_{u_{0}}^{\prime}\right)=\cdots=s\left(a_{P}^{\prime}, C_{u_{0}}^{\prime}\right)=s_{r}$ holds.
- For $j \geq 0$, we construct execution segment $e_{j}^{\prime}=\hat{C}_{1}^{j}, \hat{C}_{2}^{j}, \hat{C}_{3}^{j}, \ldots, \hat{C}_{z}^{j}$ and configuration $C_{v_{j}}^{\prime}$ using $e_{j}=C_{1}^{j}, C_{2}^{j}, C_{3}^{j}, \ldots, C_{z}^{j}$ and $C_{u_{j+1}}$, where $z=\left|e_{j}\right|$ holds. Specifically, we construct e_{j}^{\prime} as follows:
- Case in which $j=(P-n+1) \cdot y$ holds for some $y(y \geq 0)$. In this case, agents $a_{0}^{\prime}, \ldots, a_{n}^{\prime}$ interact in execution segment $C_{u_{j}}^{\prime}, e_{j}^{\prime}, C_{v_{j}}^{\prime}$ similarly to a_{0}, \ldots, a_{n} in execution segment $C_{u_{j}}, e_{j}, C_{u_{j+1}}$. Formally, when a_{g} interacts with a_{h} at $C_{f}^{j} \rightarrow C_{f+1}^{j}$ for $z>f>0$ (resp., $C_{u_{j}} \rightarrow C_{1}^{j}$ and $C_{z}^{j} \rightarrow C_{u_{j+1}}$), a_{g}^{\prime} interacts with a_{h}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$ (resp., $C_{u_{j}}^{\prime} \rightarrow \hat{C}_{1}^{j}$ and $\left.\hat{C}_{z}^{j} \rightarrow C_{v_{j}}^{\prime}\right)$.
- Case in which $j=(P-n+1) \cdot y+l$ holds for some $y(y \geq 0)$ and l $(P-n \geq l \geq 1)$. In this case, a_{n+l}^{\prime} joins interactions instead of a_{x}^{\prime}. Note that, in $C_{u_{j}}^{\prime}$, both a_{n+l}^{\prime} and a_{x}^{\prime} have state s_{r}. Formally we construct e_{j}^{\prime} as follows: (1) when $a_{g}(g \neq x)$ interacts with $a_{h}(h \neq x)$ at $C_{f}^{j} \rightarrow C_{f+1}^{j}$ for $z>f>0$ (resp., $C_{u_{j}} \rightarrow C_{1}^{j}$ and $C_{z}^{j} \rightarrow C_{u_{j+1}}$), a_{g}^{\prime} interacts with a_{h}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$ (resp., $C_{u_{j}}^{\prime} \rightarrow \hat{C}_{1}^{j}$ and $\hat{C}_{z}^{j} \rightarrow C_{v_{j}}^{\prime}$), and (2) when a_{x} interacts with an agent $a_{i}(i \neq x)$ at $C_{f}^{j} \rightarrow C_{f+1}^{j}$ for $z>f>0$ (resp., $C_{u_{j}} \rightarrow C_{1}^{j}$ and $C_{z}^{j} \rightarrow C_{u_{j+1}}$), a_{n+l}^{\prime} interacts with a_{i}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$ (resp., $C_{u_{j}}^{\prime} \rightarrow \hat{C}_{1}^{j}$ and $\left.\hat{C}_{z}^{j} \rightarrow C_{v_{j}}^{\prime}\right)$. Similarly, when an agent $a_{i}(i \neq x)$ interacts with a_{x} at
$C_{f}^{j} \rightarrow C_{f+1}^{j}$ for $z>f>0$ (resp., $C_{u_{j}} \rightarrow C_{1}^{j}$ and $C_{z}^{j} \rightarrow C_{u_{j+1}}$), a_{i}^{\prime} interacts with a_{n+l}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$ (resp., $C_{u_{j}}^{\prime} \rightarrow \hat{C}_{1}^{j}$ and $\hat{C}_{z}^{j} \rightarrow C_{v_{j}}^{\prime}$).
- For $j \geq 0$, during execution segment $C_{v_{j}}^{\prime}, e_{j}^{m}, C_{u_{j+1}}^{\prime}$, agents $a_{x}^{\prime}, a_{n+1}^{\prime}, a_{n+2}^{\prime}, \ldots$, a_{P}^{\prime} interact so that, for any pair $\left(a_{g}^{\prime}, a_{h}^{\prime}\right)$ of them, a_{g}^{\prime} interacts with a_{h}^{\prime} at least once, and eventually, they have state s_{r}. At the first configuration, agents $a_{x}^{\prime}, a_{n+1}^{\prime}, a_{n+2}^{\prime}, \ldots, a_{P}^{\prime}$ have state s_{r}. Since $s_{r} \stackrel{s y m}{\sim} s_{r}$ holds, each pair of them can go back to state s_{r} after some interactions. Thus, in $C_{u_{j}}^{\prime}(j>0)$, agents $a_{x}^{\prime}, a_{n+1}^{\prime}, a_{n+2}^{\prime}, \ldots, a_{P}^{\prime}$ have state s_{r}.

In execution segment $C_{u_{j}}^{\prime}, e_{j}^{\prime}, C_{v_{j}}^{\prime}$ such that $j=(P-n+1) \cdot y$ holds, for each pair of agents a and b in $V^{\prime}-\left\{a_{n+1}^{\prime}, a_{n+2}^{\prime}, \ldots, a_{P}^{\prime}\right\}, a$ interacts with b. In execution segment $C_{u_{j}}^{\prime}, e_{j}^{\prime}, C_{v_{j}}^{\prime}$ such that $j=(P-n+1) \cdot y+l$ holds, for every pair of agents a and b in $\left(V^{\prime}-\left\{a_{x}^{\prime}, a_{n+1}^{\prime}, a_{n+2}^{\prime}, \ldots, a_{P}^{\prime}\right\}\right) \cup\left\{a_{n+l}^{\prime}\right\}, a$ interacts with b. Moreover, for every pair of agents a and b in $\left\{a_{x}^{\prime}, a_{n+1}^{\prime}, a_{n+2}^{\prime}, \ldots, a_{P}^{\prime}\right\}, a$ interacts with b in e_{j}^{m} for $j>0$. From these facts, execution Ξ^{\prime} is weakly fair. In Ξ, let $C_{u_{t}}$ be a stable configuration such that agent a_{x} has state s_{r}. Let $R_{u_{t}}$ be a set of red agents in $C_{u_{t}}$ and let $B_{u_{t}}$ be a set of blue agents in $C_{u_{t}}$. Clearly, $\| R_{u_{t}}\left|-\left|B_{u_{t}}\right|\right| \leq 1$ holds. Now, we consider two cases. One is the case in which n is even (i.e., $\left\|R_{u_{t}}|-| B_{u_{t}}\right\|=0$ holds). Another is the case in which n is odd (i.e., $\| R_{u_{t}}\left|-\left|B_{u_{t}}\right|\right|=1$ holds). Note that, in both cases, $s\left(a_{i}, C_{u_{w}}\right)=s\left(a_{i}^{\prime}, C_{u_{w}}^{\prime}\right)$ holds for $n \geq i \geq 0$ and $w \geq 0$, and other $P-n$ agents have state s_{r} in $C_{u_{w}}^{\prime}$ for $w \geq 0$. Hence, for the number of $\gamma\left(s_{r}\right)$-agents, the difference between $C_{u_{w}}$ and $C_{u_{w}}^{\prime}$ is $P-n$ for any $w \geq t$. First, we consider the case in which n is even. After $C_{u_{t}}^{\prime}$, the number of $\gamma\left(s_{r}\right)$-agents is
 configuration. Next, we consider the case that n is odd. Since $n \leq P-2$ holds and both $P-1$ and n are odd, $n \leq P-3$ holds and thus $P-n \geq 3$ holds. Hence, after $C_{u_{t}}^{\prime}$, the number of $\gamma\left(s_{r}\right)$-agents is at least two more than the number of $\overline{\gamma\left(s_{r}\right)}$-agents. Thus, Ξ^{\prime} never reaches a stable configuration. Since Ξ^{\prime} is weakly fair, this is a contradiction.

Using Lemma 12, Lemma 13 shows the existence of a sink state or sink pair.
Lemma 13. In any protocol Alg $_{\text {sym }}$, there exists either exactly one sink pair or exactly one sink state.

Proof. For $q \in Q_{p}$, let $L_{q}=\left\{q^{\prime} \mid q \stackrel{\text { sym }}{\sim} q^{\prime}\right.$ and $\left.q^{\prime} \stackrel{\text { sym }}{\sim} q^{\prime}\right\}$; that is, L_{q} is a set of loop states such that an agent with state q can transition to the state by interactions with homonyms. For any $q_{0} \in Q_{p}$, we consider a sequence of transition rules $\left(q_{0}, q_{0}\right) \rightarrow\left(q_{1}, q_{1}\right),\left(q_{1}, q_{1}\right) \rightarrow\left(q_{2}, q_{2}\right),\left(q_{2}, q_{2}\right) \rightarrow \cdots$. Since the number of states is finite, $q_{i}=q_{j}$ holds for some $j>i \geq 0$. Hence, $L_{q} \neq \varnothing$ holds. We define L as $L=L_{s_{1}} \cup L_{s_{2}} \cup L_{s_{3}} \cup \cdots \cup L_{s_{P}}$. Now we show that $|L| \leq 2$ holds by Lemmas 12 and 2. Recall that the properties of Lemma 2 hold even in a symmetric algorithm Alg $_{\text {sym. }}$. By Lemma 12, a loop state does not occur infinitely often in any execution with $n \leq P-2$ agents. Additionally, by Lemma 2, when the number of agents is $P-2$, there exists an execution such that at least $P-2$ states occur infinitely often. This implies that such $P-2$ states are not loop states. Thus, the number of loop states is at most two; that is, $|L| \leq 2$ holds. If $|L|=1$ holds, a loop state in L satisfies conditions 2 and 3 of a sink state in Definition 15. This is because an agent with any state can transition to the loop state in L by interactions with homonyms and the loop state does not occur infinitely often by Lemma 12. For a similar reason, if $|L|=2$ holds, two loop states in L satisfy conditions 2 and 3 of a sink pair in Definition 16. Note that, in this case, the two loop states in L are not sink states because they cannot satisfy conditions 1 and 2 of a sink state in Definition 15 simultaneously. In the following, we show that a loop state and two loop states in L satisfy condition 1 of a sink state and sink pair, respectively. First, we consider the case of $|L|=2$. Let m_{1} and m_{2} be states in L. For contradiction, we assume that there exists $\left(m_{1}, m_{1}\right) \rightarrow(s, s)$ such that $s \notin\left\{m_{1}, m_{2}\right\}$ holds. Since $m_{1} \stackrel{s y m}{\sim} m_{1}$ holds, $s \stackrel{s y m}{\sim} s$ holds. However, by the assumption, such an s does not exist because only m_{1} and m_{2} are loop states. Hence, $\left(m_{1}, m_{1}\right) \rightarrow(s, s)$ does not exist, and hence either $\left(m_{1}, m_{1}\right) \rightarrow\left(m_{1}, m_{1}\right)$ or $\left(m_{1}, m_{1}\right) \rightarrow\left(m_{2}, m_{2}\right)$ exists. Similarly, $\left(m_{2}, m_{2}\right) \rightarrow(s, s)$ for $s \notin\left\{m_{1}, m_{2}\right\}$ does not exist, and hence either $\left(m_{2}, m_{2}\right) \rightarrow\left(m_{1}, m_{1}\right)$ or $\left(m_{2}, m_{2}\right) \rightarrow\left(m_{2}, m_{2}\right)$ exists. If both $\left(m_{1}, m_{1}\right) \rightarrow\left(m_{1}, m_{1}\right)$ and $\left(m_{2}, m_{2}\right) \rightarrow\left(m_{1}, m_{1}\right)$ exist, $m_{2} \stackrel{s y m}{\sim} m_{2}$ does not hold. Similarly, if both $\left(m_{1}, m_{1}\right) \rightarrow\left(m_{2}, m_{2}\right)$ and $\left(m_{2}, m_{2}\right) \rightarrow\left(m_{2}, m_{2}\right)$ exist, $m_{1} \stackrel{s y m}{\leadsto} m_{1}$ does not hold. Thus, m_{1} and m_{2} satisfy condition 1 of a sink pair. Next, we consider the case of $|L|=1$. Let m be a state in L. For contradiction, we assume that there exists $(m, m) \rightarrow(s, s)$ such that $s \neq m$ holds. Since $m \stackrel{\text { sym }}{\sim} m$ holds, $s \stackrel{s y m}{\sim} s$ holds. However, the loop state is only m. This is a contradiction,
and m satisfies condition 1 of a sink state. Therefore, the lemma holds.
We introduce a reduced execution that is also defined in [11].
Definition 17. In a reduced execution, if homonyms with a non-sink state (resp., neither of the sink pair) occur, they immediately enter a sink state (resp., one of the sink pair) by interactions with the homonyms. This procedure is called reducing.

By condition 2 of a sink state and sink pair, such reducing is possible. We say configuration C is reduced if there are no homonyms except agents with a sink state or one of the sink pair. Note that there exists a reduced weakly fair execution of $A l g_{s y m}$ because any pair of agents can interact in a reduced configuration. We consider a reduced weakly fair execution Ξ of $A l g_{s y m}$ with $P-2$ agents. By Lemma 12, there exists a stable reduced configuration such that no agent has a sink state or states of the sink pair. Since no two agents have the same non-sink state, we have the following corollaries.

Corollary 5. When a sink state exists in Q_{p}, either

- the number of non-sink red states is $P / 2$ and the number of non-sink blue states is $P / 2-1$; or
- the number of non-sink blue states is $P / 2$ and the number of non-sink red states is $P / 2-1$.

Corollary 6. When a sink pair exists in Q_{p}, the number of red (resp., blue) states not in the sink pair is $P / 2-1$ (resp., $P / 2-1$).

Moreover, Corollary 5 can be extended to the following lemma.
Lemma 14. When a sink state m exists in Q_{p}, the number of non-sink $\gamma(m)$ states is $P / 2-1$ and the number of non-sink $\overline{\gamma(m)}$-states is $P / 2$. This implies that the number of $\gamma(m)$-states is $P / 2$ and the number of $\overline{\gamma(m)}$-states is also $P / 2$.

Proof. By Corollary 5, the number of non-sink $\gamma(m)$-states is at least $P / 2-1$ and at most $P / 2$. Hence, for contradiction, we assume that the number of nonsink $\gamma(m)$-states is $P / 2$. This implies that the number of $\gamma(m)$-states (including
the sink state m) is $P / 2+1$ and the number of $\overline{\gamma(m)}$-states is $P / 2-1$. Now, we consider a reduced weakly fair execution Ξ of $A l g_{\text {sym }}$ with P agents and an initialized base station. In Ξ, after a stable configuration, a reduced configuration occurs infinitely often. In a reduced configuration, each non-sink state is held by at most one agent. Thus, because all the $\overline{\gamma(m)}$-states are non-sink states and the number of them is $P / 2-1$, in a stable reduced configuration the number of $\overline{\gamma(m)}$-agents is at most $P / 2-1$ and the number of $\gamma(m)$-agents is at least $P / 2+1$. This is a contradiction.

Subsequently, we show that, when a sink state m exists and the number of agents is $P-1$, the number of $\gamma(m)$-agents is less than the number of $\overline{\gamma(m)}$-agents in a stable configuration.

Lemma 15. When a sink state m exists in Q_{p}, for any reduced weakly fair execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots, C_{t}, \ldots$ of Alg sym with $P-1$ agents and an initialized base station, the following is satisfied in a stable configuration C_{t} of Ξ.

- The number of $\gamma(m)$-agents is $P / 2-1$ and the number of $\overline{\gamma(m)}$-agents is $P / 2$.

Proof. The idea of the proof is as follows: For contradiction, we consider a reduced execution Ξ with $P-1$ agents such that the number of $\gamma(m)$-agents is $P / 2$ and the number of $\overline{\gamma(m)}$-agents is $P / 2-1$ in a stable configuration of Ξ. Note that, by Lemma 14, the number of $\gamma(m)$-states is $P / 2$. Thus, since the stable configuration is reduced, some agent has m in the stable configuration. Next, we consider an execution with P agents such that one additional agent has m as an initial state and other agents behave similarly to Ξ. In the execution, the additional agent does not join the interactions until $P-1$ agents converge to a stable configuration in Ξ. At that time, one of the $P-1$ agents has state m and the additional agent also has state m. We can prove that, from this configuration, $P-1$ agents cannot recognize the additional agent and hence they make the same behavior as in Ξ. Additionally, the additional agent can keep state m. Since the additional agent has $\gamma(m)$-state, the number of $\gamma(m)$-agents is $P / 2+1$ and the number of $\overline{\gamma(m)}$-agents is $P / 2-1$. This implies that the uniform 2-partition problem cannot be solved. Now we present the details of the proof. For contradiction, there exists a reduced weakly fair execution Ξ such that the number of $\gamma(m)$-agents
is $P / 2$ and the number of $\overline{\gamma(m)}$-agents is $P / 2-1$ in a stable configuration of Ξ. First, we consider a population $V=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{P-1}\right\}$ of $P-1$ agents and an initialized base station, where a_{0} is the base station. We define a reduced weakly fair execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots, C_{t}, \ldots, C_{t_{0}^{\prime}}, e_{1}, C_{t_{1}^{\prime}}, e_{2}, C_{t_{2}^{\prime}}, e_{3}, \ldots$ of $A l g_{s y m}$ with V as follows:

- C_{t} is a stable configuration.
- For any $u \geq 0, C_{t_{u}^{\prime}}$ is a particular stable reduced configuration such that $C_{t_{0}^{\prime}}=$ $C_{t_{1}^{\prime}}=C_{t_{2}^{\prime}}=\cdots$ holds. Note that such a configuration (i.e., a stable reduced configuration that appears an infinite number of times) exists because the number of possible configurations is finite.
- For $j>0, e_{j}$ is an execution segment such that, during execution segment $C_{t_{j-1}^{\prime}}, e_{j}, C_{t_{j}^{\prime}}$, for any pair of agents a and b in V, a interacts with b at least once. This is possible because Ξ is weakly fair.

By Lemma 14, the number of $\gamma(m)$-states is $P / 2$. Additionally, by the assumption, the number of $\gamma(m)$-agents is also $P / 2$ in $C_{t_{u}^{\prime}}$ for any u. From these facts, for any u, since $C_{t_{u}^{\prime}}$ is a reduced configuration (i.e., there exist no homonyms except m), there exists a particular agent a_{q} that has state m in $C_{t_{u}^{\prime}}$ for any u. Next, we consider a population $V^{\prime}=\left\{a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{P}^{\prime}\right\}$ of P agents and an initialized base station, where a_{0}^{\prime} is the base station. We define $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t}^{\prime}, \ldots$, $C_{t_{0}^{\prime}}^{\prime}, e_{1}^{\prime}, C_{t_{1}^{\prime}}^{\prime}, e_{2}^{\prime}, C_{t_{2}^{\prime}}^{\prime}, e_{3}^{\prime}, \ldots$ using Ξ. First, we define the first part of Ξ^{\prime}; that is, $C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t}^{\prime}, \ldots, C_{t_{0}^{\prime}}^{\prime}$ as follows:

- In initial configuration $C_{0}^{\prime}, a_{0}^{\prime}, \ldots, a_{P-1}^{\prime}$ have the same states as a_{0}, \ldots, a_{P-1} in C_{0}, and a_{P}^{\prime} has state m. Formally, $s\left(a_{i}^{\prime}, C_{0}^{\prime}\right)=s\left(a_{i}, C_{0}\right)$ holds for $i(P-1 \geq$ $i \geq 0)$, and $s\left(a_{P}^{\prime}, C_{0}^{\prime}\right)=m$ holds.
- From C_{0}^{\prime} to $C_{t_{0}^{\prime}}^{\prime}, a_{0}^{\prime}, \ldots, a_{P-1}^{\prime}$ interact similarly to a_{0}, \ldots, a_{P-1} in Ξ. Formally, for any $u\left(t_{0}^{\prime}>u \geq 0\right)$, when a_{g} interacts with a_{h} at $C_{u} \rightarrow C_{u+1}, a_{g}^{\prime}$ interacts with a_{h}^{\prime} at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}$.

Clearly, $s\left(a_{i}^{\prime}, C_{t_{0}^{\prime}}^{\prime}\right)=s\left(a_{i}, C_{t_{0}^{\prime}}\right)$ holds for $i(P-1 \geq i \geq 0)$, and $s\left(a_{P}^{\prime}, C_{t_{0}^{\prime}}^{\prime}\right)=m$ holds. This implies that the number of $\gamma(m)$-agents is $P / 2+1$ and the number of $\overline{\gamma(m)}$-agents is $P / 2-1$ in $C_{t_{0}^{\prime}}^{\prime}$. We define the remaining part of Ξ^{\prime}; that is, $C_{t_{0}^{\prime}}^{\prime}, e_{1}^{\prime}$, $C_{t_{1}^{\prime}}^{\prime}, e_{2}^{\prime}, C_{t_{2}^{\prime}}^{\prime}, e_{3}^{\prime}, \ldots$ as follows:

- For $j>0$, we construct an execution segment $e_{j}^{\prime}=\hat{C}_{1}^{j}, \hat{C}_{2}^{j}, \hat{C}_{3}^{j}, \ldots, \hat{C}_{z}^{j}, \hat{C}_{z+1}^{j}$, \hat{C}_{z+2}^{j} using $e_{j}=C_{1}^{j}, C_{2}^{j}, C_{3}^{j}, \ldots, C_{z}^{j}$, where $z=\left|e_{j}\right|$ holds. Specifically, we construct $C_{t_{j-1}^{\prime}}^{\prime}, e_{j}^{\prime}, C_{t_{j}^{\prime}}^{\prime}$ as follows:
- Case in which j is even: In this case, agents $a_{0}^{\prime}, \ldots, a_{P-1}^{\prime}$ interact in execution segment $C_{t_{j-1}^{\prime}}^{\prime}, e_{j}^{\prime}$ similarly to a_{0}, \ldots, a_{P-1} in execution segment $C_{t_{j-1}^{\prime}}, e_{j}, C_{t_{j}^{\prime}}$. Formally, when a_{g} interacts with a_{h} at $C_{f}^{j} \rightarrow C_{f+1}^{j}$, for $z>f>0$ (resp., $C_{t_{j-1}^{\prime}} \rightarrow C_{1}^{j}$, and $C_{z}^{j} \rightarrow C_{t_{j}^{\prime}}$), a_{g}^{\prime} interacts with a_{h}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$, (resp., $C_{t_{j-1}^{\prime}}^{\prime} \rightarrow \hat{C}_{1}^{j}$, and $\hat{C}_{z}^{j} \rightarrow \hat{C}_{z+1}^{j}$.
- Case in which j is odd: In this case, a_{P}^{\prime} joins interactions instead of a_{q}^{\prime}. Note that, in $C_{t_{j-1}^{\prime}}^{\prime}$, both a_{P}^{\prime} and a_{q}^{\prime} have state m. Formally, we construct e_{j}^{\prime} as follows: (1) when $a_{g}(g \neq q)$ interacts with $a_{h}(h \neq q)$ at $C_{f}^{j} \rightarrow C_{f+1}^{j}$ for $z>f>0$, (resp., $C_{t_{j-1}^{\prime}} \rightarrow C_{1}^{j}$, and $C_{z}^{j} \rightarrow C_{t_{j}^{\prime}}$), a_{g}^{\prime} interacts with a_{h}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$, (resp., $C_{t_{j-1}^{\prime}}^{\prime} \rightarrow \hat{C}_{1}^{j}$, and $\hat{C}_{z}^{j} \rightarrow \hat{C}_{z+1}^{j} ;$ (2) when a_{q} interacts with an agent $a_{i}(i \neq q)$ at $C_{f}^{j} \rightarrow C_{f+1}^{j}$, (resp., $C_{t_{j-1}^{\prime}} \rightarrow C_{1}^{j}$, and $C_{z}^{j} \rightarrow C_{t_{j}^{\prime}}$), a_{P}^{\prime} interacts with a_{i}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$ (resp., $C_{t_{j-1}^{\prime}}^{j-1} \rightarrow \hat{C}_{1}^{j}$, and $\hat{C}_{z}^{j} \rightarrow \hat{C}_{z+1}^{j}$. Similarly, when an agent $a_{i}(i \neq q)$ interacts with a_{q} at $C_{f}^{j} \rightarrow C_{f+1}^{j}$, (resp., $C_{t_{j-1}^{\prime}} \rightarrow C_{1}^{j}$, and $C_{z}^{j} \rightarrow C_{t_{j}^{\prime}}, a_{i}^{\prime}$ interacts with a_{P}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$ (resp., $C_{t_{j-1}^{\prime}}^{\prime} \rightarrow \hat{C}_{1}^{j}$, and $\hat{C}_{z}^{j} \rightarrow \hat{C}_{z+1}^{j}$).
$-a_{P}^{\prime}$ interacts with a_{q}^{\prime} at $\hat{C}_{z+1}^{j} \rightarrow \hat{C}_{z+2}^{j}$.
$-a_{q}^{\prime}$ interacts with a_{P}^{\prime} at $\hat{C}_{z+2}^{j} \rightarrow C_{t_{j}^{\prime}}^{\prime}$.
We can show inductively that, for any $x \geq 0, s\left(a_{i}^{\prime}, C_{t_{x}^{\prime}}^{\prime}\right)=s\left(a_{i}, C_{t_{x}^{\prime}}\right)$ holds for any $i(P-1 \geq i \geq 0)$, and $s\left(a_{q}^{\prime}, C_{t_{x}^{\prime}}^{\prime}\right)=s\left(a_{P}^{\prime}, C_{t_{x}^{\prime}}^{\prime}\right)=s\left(a_{q}, C_{t_{x}^{\prime}}\right)=m$ holds. Clearly, this holds for $x=0$. We assume that this holds for $x=j$, and consider the case of $x=j+1$. When $j+1$ is even, during execution segment $C_{t_{j}^{\prime}}^{\prime}, e_{j+1}^{\prime}$, agents in $V^{\prime}-\left\{a_{P}^{\prime}\right\}$ interact similarly to $C_{t_{j}^{\prime}}, e_{j+1}, C_{t_{j+1}^{\prime}}$. Hence, for any $j>0, s\left(a_{i}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{i}, C_{t_{j+1}^{\prime}}\right)$ holds for any $i(P-1 \geq i \geq 0)$ and $s\left(a_{q}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{P}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{q}, C_{t_{j+1}^{\prime}}\right)=m$ holds. At $\hat{C}_{z+1}^{j+1} \rightarrow \hat{C}_{z+2}^{j+1}$ (resp., $\hat{C}_{z+2}^{j+1} \rightarrow C_{t_{j+1}^{\prime}}^{\prime}$), a_{P}^{\prime} (resp. a_{q}^{\prime}) interacts with a_{q}^{\prime} (resp., a_{P}^{\prime}), and hence, if they have state m, they do not change their states. Thus, $s\left(a_{i}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=s\left(a_{i}, C_{t_{j+1}^{\prime}}\right)$ holds for any $i(P-1 \geq i \geq 0)$ and $s\left(a_{q}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=$ $s\left(a_{P}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=s\left(a_{q}, C_{t_{j+1}^{\prime}}\right)=m$ holds. When $j+1$ is odd, during execution segment $C_{t_{j}^{\prime}}^{\prime}, e_{j+1}^{\prime}, a_{P}^{\prime}$ joins interactions instead of a_{q}^{\prime}, and agents in $V^{\prime}-\left\{a_{q}^{\prime}\right\}$ behave simi-
larly to $C_{t_{j-1}^{\prime}}, e_{j}, C_{t_{j}^{\prime}}$. Hence, for any $j>0, s\left(a_{i}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{i}, C_{t_{j+1}^{\prime}}\right)$ holds for any $i(P-1 \geq i \geq 0)$ and $s\left(a_{q}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{P}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{q}, C_{t_{j+1}^{\prime}}\right)=m$ holds. At $\hat{C}_{z+1}^{j+1} \rightarrow$ \hat{C}_{z+2}^{j+1} (resp., $\hat{C}_{z+2}^{j+1} \rightarrow C_{t_{j+1}^{\prime}}^{\prime}$), a_{P}^{\prime} (resp., a_{q}^{\prime}) interacts with $a_{q}^{\prime}\left(\right.$ resp., $\left.a_{P}^{\prime}\right)$, and hence, if they have state m, they do not change their states. Thus, $s\left(a_{i}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=s\left(a_{i}, C_{t_{j+1}^{\prime}}\right)$ holds for any $i(P-1 \geq i \geq 0)$, and $s\left(a_{q}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=s\left(a_{P}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=s\left(a_{q}, C_{t_{j+1}^{\prime}}\right)=m$ holds. For any j, the number of $\gamma(m)$-agents is $P / 2$ and the number of $\overline{\gamma(m)}$ agents is $P / 2-1$ in $C_{t_{j}^{\prime}}$, and thus the number of $\gamma(m)$-agents is $P / 2+1$ and the number of $\overline{\gamma(m)}$-agents is $P / 2-1$ in $C_{t_{j}^{\prime}}^{\prime}$. Therefore, Ξ^{\prime} cannot solve the uniform 2-partition. During $C_{t_{j-1}^{\prime}}^{\prime}, e_{j}^{\prime}$, when j is even, for any pair of agents a and b in $V^{\prime}-\left\{a_{P}^{\prime}\right\}, a$ interacts with b. Similarly, when j is odd, for any pair of agents a and b in $V^{\prime}-\left\{a_{q}^{\prime}\right\}, a$ interacts with b. Moreover, for $j>0$, at $\hat{C}_{z+1}^{j+1} \rightarrow \hat{C}_{z+2}^{j+1}$ (resp., $\left.\hat{C}_{z+2}^{j+1} \rightarrow C_{t_{j+1}^{\prime}}^{\prime}\right), a_{P}^{\prime}$ (resp., a_{q}^{\prime}) interacts with a_{q}^{\prime} and a_{P}^{\prime}. Thus, Ξ^{\prime} is weakly fair. Since Ξ^{\prime} cannot solve the uniform 2-partition, this is a contradiction.

Using these lemmas, we show that, when a sink state exists in $Q_{p}, A l g_{s y m}$ does not work. We prove this in a similar way to the case of naming protocols in [11], but we need a non-trivial modification to apply the proof to uniform 2-partition protocols.

Definition 18. We assume that a sink state m exists in Q_{p}. We consider configurations C_{0} and C_{1} for a population V. We say that C_{0} is far away from C_{1} according to a non-sink state $s \neq m$ if there exists an agent a_{x} such that $s\left(a_{y}, C_{0}\right)=s\left(a_{y}, C_{1}\right)$ for any $a_{y} \in V \backslash\left\{a_{x}\right\}, s\left(a_{x}, C_{0}\right)=m$, and $s\left(a_{x}, C_{1}\right)=s \neq m$ hold. Then, C_{0} is denoted by C_{1}^{-s} and C_{1} is denoted by C_{0}^{+s}.

We introduce the notion of equivalent configurations. We say that configurations C and C^{\prime} are equivalent if a multiset of states in C is identical to that in C^{\prime}.

Lemma 16. We assume that a sink state m exists in Q_{p}. We consider an execution segment $e=C_{0}, C_{1}, C_{2}, \ldots, C_{k}$ of Alg sym with P agents and an initialized base station that satisfies the following conditions:

- e is a reduced execution segment.
- C_{0} is reduced.
- There exists a non-sink state s such that, in any reduced configuration of e except the last configuration C_{k}, no agent has state s.

Then, there exists the execution segment $e^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{k}^{\prime}$ of $A l g_{\text {sym }}$ with P agents and an initialized base station that satisfies the following conditions:

- A particular agent a_{x} with m does not join interactions.
- $C_{0}=C_{0}^{\prime}$ holds.
- For any $i(0<i \leq k), C_{i}^{\prime}$ and C_{i} are equivalent.

Proof. In a reduced configuration with P agents, if there exists a non-sink state that is held by no agent, there are at least two agents with a sink state. Hence, in any reduced configuration of e except the last configuration C_{k}, there exist at least two agents with a sink state. Using this property, we construct e^{\prime} by induction on the index of configuration. First, since we can set the initial configuration C_{0}^{\prime} such that $C_{0}^{\prime}=C_{0}$ holds, the base case holds. For the induction step, we assume that there exists a configuration $C_{l}^{\prime}(l \geq 0)$ such that C_{u}^{\prime} and C_{u} are equivalent for any $u \leq l$ and a_{x} does not join interactions until C_{l}^{\prime} (i.e., a_{x} has a sink state in C_{l}^{\prime}). We consider two cases of interaction at $C_{l} \rightarrow C_{l+1}$. First, we consider the case in which an agent with a sink state does not join an interaction at $C_{l} \rightarrow C_{l+1}$. In this case, since C_{l} and C_{l}^{\prime} are equivalent and a_{x} has a sink state in C_{l}^{\prime}, a state transition that occurs at $C_{l} \rightarrow C_{l+1}$ can occur at $C_{l}^{\prime} \rightarrow C_{l+1}^{\prime}$. Thus, the lemma holds at C_{l+1}^{\prime}. Next, we consider the case in which an agent with a sink state joins interaction at $C_{l} \rightarrow C_{l+1}$. In this case, C_{l} and C_{l}^{\prime} are reduced. By the assumption, in C_{l} and C_{l}^{\prime}, there are at least two agents with a sink state. Let $a_{y} \neq a_{x}$ be an agent that has a sink state in C_{l}^{\prime}. Then, when agents a_{i} and a_{j} interact at $C_{l} \rightarrow C_{l+1}$, we consider the following two cases.

- Case in which a_{i} and a_{j} have a sink state: In this case, $C_{l}=C_{l+1}$ holds. Hence, we skip this interaction and regard C_{l}^{\prime} as $C_{l+1}^{\prime}{ }^{2}$. Clearly, C_{l+1}^{\prime} and C_{l+1} are equivalent.

[^2]- Case in which either a_{i} or a_{j} has a sink state: Without loss of generality, we assume that a_{i} has a sink state. In this case, by making an interaction between a_{y} and a_{j} at $C_{l}^{\prime} \rightarrow C_{l+1}^{\prime}$, we can obtain C_{l+1}^{\prime} such that C_{l+1}^{\prime} and C_{l+1} are equivalent.

Then, we can obtain C_{l+1}^{\prime} without making a_{x} join an interaction. Thus, the lemma holds.

The following lemma is identical to the lemma in [11]. Although the lemma is proved for naming protocols in [11], we can use the lemma because the proof does not use the property of naming protocols. For completeness, we also provide the proof.

Lemma 17. We assume that a sink state m exists in Q_{p}. We consider two reduced configurations C_{0} and C_{0}^{-s} with P agents. The difference between C_{0} and C_{0}^{-s} is only whether an agent a_{x} has a non-sink state s or sink state m. We consider a reduced execution segment $C_{0}^{-s}, e_{0}^{-s}, C_{1}$ of $A l g_{\text {sym }}$ with P agents and an initialized base station that satisfies the following conditions:

- During $C_{0}^{-s}, e_{0}^{-s}, C_{1}, a_{x}$ does not join interactions.
- In any reduced configuration during C_{0}^{-s}, e_{0}^{-s}, there exists no agent with s.
- C_{1} is a reduced configuration such that there exists an agent with s.

If there exists such an execution segment, there also exists the reduced execution segment C_{0}, e_{0}, C_{1}^{-s} of $A l g_{\text {sym }}$ with P agents and an initialized base station that satisfies the following conditions:

- During C_{0}, e_{0}, C_{1}^{-s}, a_{x} does not join interactions except the last reducing.
- In any reduced configuration during C_{0}, e_{0}, there exists an agent with s.
- C_{1}^{-s} is a reduced configuration such that there does not exist an agent with s.

Proof. By making an interaction similar to $C_{0}^{-s}, e_{0}^{-s}, C_{1}$, we can construct a reduced execution segment $C_{0}, e_{0}^{\prime}, C_{1}^{+s}$ starting from C_{0}. Because exactly two agents
have state s in C_{1}^{+s}, C_{1}^{+s} can be reduced to C_{1}^{-s}. We denote this reducing procedure by $C_{1}^{+s}, e^{r}, C_{1}^{-s}$. Then, we can obtain an execution segment $C_{0}, e_{0}^{\prime}, C_{1}^{+s}$, e^{r}, C_{1}^{-s}. Note that, during C_{0}, e, C_{1}^{+s}, agent a_{x} does not join interactions. This implies that, during $C_{0}, e_{0}^{\prime}, C_{1}^{+s}, e^{r}, C_{1}^{-s}$, agent a_{x} does not join interactions except the last reducing. Hence, we can obtain the required execution segment C_{0}, e_{0}, C_{1}^{-s} such that $e_{0}=e_{0}^{\prime}, C_{1}^{+s}, e^{r}$ holds.

In the next lemma, we prove that a sink state does not exist.
Lemma 18. A sink state does not exist in Q_{p}.
Proof. We use the idea of the impossibility proof for the naming protocol [11]. The idea of the proof is as follows: For contradiction, we assume that there exists a sink state $m \in Q_{p}$. First, we consider an execution segment e with P agents, such that (1) a particular agent a_{x} does not join interactions and other $P-1$ agents interact until convergence; (2) a_{x} has m as an initial state; and (3) its final configuration C_{h} is a reduced configuration. Let s be a $\overline{\gamma(m)}$-state. When a_{x} has s as an initial state, by making other agents interact similarly to e, we can obtain C_{h}^{+s}. Moreover, by Lemma 15, since the number of $\overline{\gamma(m)}$-agents except for a_{x} is $P / 2$ in C_{h}^{+s} and C_{h} is reduced, there exists an agent with s except for a_{x} in C_{h}^{+s}. Thus, C_{h}^{-s} can be obtained by reducing C_{h}^{+s}. Because every $\overline{\gamma(m)}$-state must be held by one agent in a stable reduced configuration, C_{h}^{-s} is not stable. Let $C_{u_{0}}, C_{u_{0}}^{-s}$, and $C_{u_{0}}^{+s}$ be C_{h}, C_{h}^{-s}, and C_{h}^{+s}, respectively. There is a reduced execution segment $C_{u_{0}}^{-s}, e_{0}^{-s}, C_{u_{1}}$ such that any agent does not have s except $C_{u_{1}}$, and a single agent has s in $C_{u_{1}}$. This is because $C_{u_{0}}^{-s}$ is not stable, and state s must be held by one agent in a stable reduced configuration. Then, by Lemmas 16 and 17, we can construct $C_{u_{0}}, e_{0}, C_{u_{1}}^{-s}$. Since every $\overline{\gamma(m)}$-state must be held by one agent in a stable reduced configuration, $C_{u_{1}}^{-s}$ is not stable. By repeating similar arguments, for any $i \geq 0$, we can construct $C_{u_{i}}^{-s}, e_{i}^{-s}, C_{u_{i+1}}$ and $C_{u_{i}}, e_{i}$, $C_{u_{i+1}}^{-s}$. Because $C_{u_{0}}^{-s}$ can be reached from some initial configuration, by combining the above execution segments, we can construct a weakly fair execution of $A l g_{\text {sym }}$ so that an agent with s disappears infinitely often. Since every $\overline{\gamma(m)}$-state must be held by one agent in a stable reduced configuration, such an execution cannot solve the uniform 2-partition and thus the lemma holds. Now we present the details of the proof. For contradiction, there exists a sink state $m \in Q_{p}$. We
consider a population $V=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{P}\right\}$ of P agents and an initialized base station, where a_{0} is the base station. First, we consider an execution segment $e=C_{0}, C_{1}, C_{2}, \ldots, C_{h}$ such that,

- a particular agent a_{x} has state m in C_{0} and does not interact during e;
- $P-1$ other agents (and the base station) interact until convergence, which implies that, by Lemma 15 , the number of $\gamma(m)$-agents in $V-\left\{a_{x}\right\}$ is $P / 2-1$ and the number of $\overline{\gamma(m)}$-agents in $V-\left\{a_{x}\right\}$ is $P / 2$ after some configuration of e; and
- C_{h} is a reduced configuration.

In C_{h}, by Lemma 15, the number of $\gamma(m)$-agents is $P / 2$ and the number of $\overline{\gamma(m)}$ agents is $P / 2$ because additional agent a_{x} has state m. Note that all $\overline{\gamma(m)}$-states are non-sink states and, by Lemma 14, the number of $\overline{\gamma(m)}$-states is $P / 2$. Since C_{h} is reduced, no two agents have the same non-sink state and thus every $\overline{\gamma(m)}-$ state is held by exactly one agent in C_{h}. Let s be a $\overline{\gamma(m)}$-state. We consider three configurations: $C_{u_{0}}=C_{h}, C_{u_{0}}^{+s}$, and $C_{u_{0}}^{-s}$. Since a_{x} does not interact in e, $C_{u_{0}}^{+s}$ can be obtained by the same interactions in e if a_{x} has state s in the initial configuration (note that this execution may not be a reduced execution). In $C_{u_{0}}^{+s}$, since every $\overline{\gamma(m)}$-state is held by exactly one agent in $V-\left\{a_{x}\right\}$, there exists exactly one agent $a_{s} \neq a_{x}$ with s. Hence, we can obtain a reduced configuration $C_{u_{0}}^{-s}$ by reducing $C_{u_{0}}^{+s}$. Note that, since the number of $\overline{\gamma(m)}$-states is $P / 2$, every $\overline{\gamma(m)}$-state must be held by one agent in any stable reduced configuration with P agents. Hence, since $C_{u_{0}}^{-s}$ is reduced and no agent has state s in $C_{u_{0}}^{-s}, C_{u_{0}}^{-s}$ is not stable. Hence, there exists an execution segment from $C_{u_{0}}^{-s}$ that leads to a stable configuration where some agent has state s. This implies that we can construct a reduced execution segment $\epsilon_{1}=C_{u_{0}}^{-s}, e_{0}^{-s}, C_{u_{1}}$ of $A l g_{s y m}$ starting from $C_{u_{0}}^{-s}$ as follows:

- $C_{u_{1}}$ is reduced and exactly one agent a_{y} has state s in $C_{u_{1}}$.
- For any reduced configuration in e_{0}^{-s}, no agent has state s.

Moreover, by Lemma 16, since a_{x} has m in $C_{u_{0}}^{-s}$, we can construct ϵ_{1} such that a_{x} does not join interactions. Hence, by Lemma 17, we can construct a reduced
execution segment $\epsilon_{1}^{\prime}=C_{u_{0}}, e_{0}, C_{u_{1}}^{-s}$ of $A l g_{s y m}$. Note that, in $C_{u_{1}}^{-s}, a_{y}$ has state m. Similarly, we can construct a reduced execution segment $\epsilon_{2}=C_{u_{1}}^{-s}, e_{1}^{-s}, C_{u_{2}}$ such that

- $C_{u_{2}}$ is reduced and exactly one agent a_{z} has state s in $C_{u_{2}}$; and
- for any reduced configuration in e_{1}^{-s}, no agent has state s.

By Lemma 16, we can construct ϵ_{2} such that a_{y} does not join interactions. Hence, by Lemma 17, we can construct a reduced execution segment $\epsilon_{2}^{\prime}=C_{u_{1}}, e_{1}, C_{u_{2}}^{-s}$ of $A l g_{\text {sym }}$. By repeating similar arguments, we can construct an infinite execution segment $\epsilon^{*}=C_{u_{0}}^{-s}, e_{0}^{-s}, C_{u_{1}}, e_{1}, C_{u_{2}}^{-s}, e_{2}^{-s}, C_{u_{3}}, \ldots$ Recall that, for $i \geq 0, C_{u_{i}}^{-s}$ is not stable because every $\overline{\gamma(m)}$-state must be held by one agent in a stable reduced configuration. Thus, ϵ^{*} cannot reach a stable configuration. As described above, there exists an execution segment $e_{i n i}$ that reaches $C_{u_{0}}^{-s}$ from some initial configuration. Hence, we can construct an execution $\Xi=e^{i n i}, C_{u_{0}}^{-s}, e_{0}^{-s}, C_{u_{1}}, e_{1}$, $C_{u_{2}}^{-s}, e_{2}^{-s}, C_{u_{3}}, \ldots$ that does not reach a stable configuration. The remaining step is to show that we can construct Ξ so that Ξ is weakly fair. Recall how to construct an execution segment $\epsilon_{i}=C_{u_{i-1}}^{-s}, e_{i-1}^{-s}, C_{u_{i}}$. Since $C_{u_{i}}^{-s}$ is reduced, any pair of agents can interact at the first interaction of ϵ_{i}. Consequently, we can construct $\epsilon_{1}, \epsilon_{2}, \ldots$ so that, for every pair of agents a and b in V, a interacts with b infinitely often in the first interactions of $\epsilon_{1}, \epsilon_{2}, \ldots$. Additionally, when a interacts with b in ϵ_{i}, a also interacts with b in ϵ_{i}^{\prime}. Hence, we can construct Ξ so that, for every pair of agents a and b in V, a interacts with b infinitely often. This implies that Ξ is weakly fair, but Ξ cannot solve the problem. This is a contradiction.

Finally, we prove that, even if a sink pair exists in $Q_{p}, A l g_{s y m}$ does not work.
Lemma 19. A sink pair does not exist in Q_{p}.
Proof. For contradiction, we assume that there exists a sink pair in Q_{p}. Let m_{1} and m_{2} be a sink pair. We consider two cases: (1) $\gamma\left(m_{1}\right)=\gamma\left(m_{2}\right)$ holds; or (2) $\gamma\left(m_{1}\right) \neq \gamma\left(m_{2}\right)$ holds. First, we consider the case in which $\gamma\left(m_{1}\right)=\gamma\left(m_{2}\right)$ holds. By Corollary 6, the number of red (resp., blue) states not in the sink pair is $P / 2-1$ (resp., $P / 2-1$). Since we assume $\left|Q_{\text {blue }}\right| \leq\left|Q_{r e d}\right|, \gamma\left(m_{1}\right)=\gamma\left(m_{2}\right)=$ red holds. Hence, $\left|Q_{\text {blue }}\right|=P / 2-1$ and $\left|Q_{\text {red }}\right|=P / 2+1$ hold. We consider a reduced
weakly fair execution Ξ^{*} of $A l g_{\text {sym }}$ with P agents and an initialized base station. Since Ξ^{*} is a reduced execution, a stable reduced configuration occurs infinitely often in Ξ^{*}. Every state not in the sink pair is held by at most one agent in any reduced configuration, and thus, at most $P / 2-1$ blue agents exist in any reduced configuration in Ξ^{*}. Hence, any reduced configuration in Ξ^{*} is not stable. This is a contradiction. Therefore, $\gamma\left(m_{1}\right)=\gamma\left(m_{2}\right)$ does not hold (i.e., $\gamma\left(m_{1}\right) \neq \gamma\left(m_{2}\right)$ holds). Next, we consider the case in which $\gamma\left(m_{1}\right) \neq \gamma\left(m_{2}\right)$ holds. The idea of the proof is as follows: We consider an execution Ξ with $P-1$ agents. Let m^{*} be a state in the sink pair such that the number of $\gamma\left(m^{*}\right)$-agents is $P / 2$ in a stable reduced configuration of Ξ. This implies that there exists some agent with m^{*} in the configuration. Next, we consider an execution with P agents such that one additional agent has m^{*} as an initial state and other agents behave similarly to Ξ. In the execution, the additional agent does not join the interactions until $P-1$ agents converge to a stable reduced configuration in Ξ. At that time, one of the $P-1$ agents has state m^{*} and the additional agent also has state m^{*}. We can prove that, from this configuration, $P-1$ agents cannot recognize the additional agent and hence they make the same behavior as in Ξ. Moreover, the additional agent can keep state m^{*}. Since the additional agent has $\gamma\left(m^{*}\right)$-state, the number of $\gamma\left(m^{*}\right)$-agents is $P / 2+1$ and the number of $\overline{\gamma\left(m^{*}\right)}$-agents is $P / 2-1$. This implies that the uniform 2-partition problem cannot be solved. Now we present the details of the proof. Without loss of generality, we assume that $\gamma\left(m_{1}\right)=$ red and $\gamma\left(m_{2}\right)=$ blue hold. We consider a population $V=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{P-1}\right\}$ of $P-1$ agents and an initialized base station, where a_{0} is the base station. We define a reduced weakly fair execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots, C_{t}, \ldots, C_{t_{0}^{\prime}}, e_{1}, C_{t_{1}^{\prime}}, e_{2}$, $C_{t_{2}^{\prime}}, e_{3}, \ldots$ of $A l g_{\text {sym }}$ with V as follows:

- C_{t} is a stable configuration.
- For any $u \geq 0, C_{t_{u}^{\prime}}$ is a particular stable reduced configuration such that $C_{t_{0}^{\prime}}=$ $C_{t_{1}^{\prime}}=C_{t_{2}^{\prime}}=\cdots$ holds. Note that such a configuration (i.e., a stable reduced configuration that appears an infinite number of times) exists because the number of possible configurations is finite.
- For $j>0, e_{j}$ is an execution segment such that, during execution segment $C_{t_{j-1}^{\prime}}, e_{j}, C_{t_{j}^{\prime}}$, for any pair of agents a and b in V, a interacts with b at least
once. This is possible because Ξ is weakly fair.
Let m^{*} be a state in the sink pair such that the number of $\gamma\left(m^{*}\right)$-agents is $P / 2$ in $C_{t_{0}^{\prime}}$. Note that m^{*} is uniquely chosen because the number of agents is $P-1$. Since every state not in the sink pair is held by at most one agent in a reduced configuration, there exists an agent a_{q} that has state m^{*} in $C_{t_{0}^{\prime}}$. Subsequently, we consider a population $V^{\prime}=\left\{a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{P}^{\prime}\right\}$ of P agents and an initialized base station, where a_{0}^{\prime} is the base station. We define a reduced weakly fair execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t}^{\prime}, \ldots C_{t_{0}^{\prime}}^{\prime}, e_{1}^{\prime}, C_{t_{1}^{\prime}}^{\prime}, e_{2}^{\prime}, C_{t_{2}^{\prime}}^{\prime}, e_{3}^{\prime}, \ldots$ of $A l g_{s y m}$ with V^{\prime}. First, we define the first part of Ξ^{\prime}, that is, $C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t}^{\prime}, \ldots C_{t_{0}^{\prime}}^{\prime}$ as follows:
- In initial configuration $C_{0}^{\prime}, a_{0}^{\prime}, \ldots, a_{P-1}^{\prime}$ have the same states as a_{0}, \ldots, a_{P-1} in C_{0} and a_{P}^{\prime} has state m^{*}. Formally, $s\left(a_{i}^{\prime}, C_{0}^{\prime}\right)=s\left(a_{i}, C_{0}\right)$ holds for i ($P-1 \geq i \geq 0$), and $s\left(a_{P}^{\prime}, C_{0}^{\prime}\right)=m^{*}$ holds.
- From C_{0}^{\prime} to $C_{t_{0}^{\prime}}^{\prime}, a_{0}^{\prime}, \ldots, a_{P-1}^{\prime}$ interact similarly to a_{0}, \ldots, a_{P-1} in Ξ. Formally, for any $u\left(t_{0}^{\prime}>u \geq 0\right)$, when a_{g} interacts with a_{h} at $C_{u} \rightarrow C_{u+1}, a_{g}^{\prime}$ interacts with a_{h}^{\prime} at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}$.

Clearly, $s\left(a_{i}^{\prime}, C_{t_{0}^{\prime}}^{\prime}\right)=s\left(a_{i}, C_{t_{0}^{\prime}}\right)$ holds for $i(P-1 \geq i \geq 0)$ and $s\left(a_{P}^{\prime}, C_{t_{0}^{\prime}}^{\prime}\right)=m^{*}$ hold. This implies that the number of $\gamma\left(m^{*}\right)$-agents is $P / 2+1$ and the number of $\overline{\gamma\left(m^{*}\right)}$-agents is $P / 2-1$ in $C_{t_{0}^{\prime}}^{\prime}$. Then, we construct the remaining part of Ξ^{\prime}; that is, $C_{t_{0}^{\prime}}^{\prime}, e_{1}^{\prime}, C_{t_{1}^{\prime}}^{\prime}, e_{2}^{\prime}, C_{t_{2}^{\prime}}^{\prime}, e_{3}^{\prime}, \ldots$ as follows:

- For $j>0$, we construct an execution segment $e_{j}^{\prime}=\hat{C}_{1}^{j}, \hat{C}_{2}^{j}, \hat{C}_{3}^{j}, \ldots, \hat{C}_{z}^{j}, \hat{C}_{z+1}^{j}$, \hat{C}_{z+2}^{j} using $e_{j}=C_{1}^{j}, C_{2}^{j}, C_{3}^{j}, \ldots, C_{z}^{j}$, where $z=\left|e_{j}\right|$ holds. Specifically, we construct $C_{t_{j-1}^{\prime}}^{\prime}, e_{j}^{\prime}, C_{t_{j}^{\prime}}^{\prime}$ as follows:
- Case in which j is even: In this case, agents $a_{0}^{\prime}, \ldots, a_{P-1}^{\prime}$ interact in execution segment $C_{t_{j-1}^{\prime}}^{\prime}, \hat{C}_{1}^{j}, \hat{C}_{2}^{j}, \ldots, \hat{C}_{z+1}^{j}$ similarly to a_{0}, \ldots, a_{P-1} in execution segment $C_{t_{j-1}^{\prime}}^{j-1}, e_{j}, C_{t_{j}^{\prime}}$. Formally, when a_{g} interacts with a_{h} at $C_{f}^{j} \rightarrow C_{f+1}^{j}$ for $z>f>0$, (resp., $C_{t_{j-1}^{\prime}} \rightarrow C_{1}^{j}$, and $C_{z}^{j} \rightarrow C_{t_{j}^{\prime}}$), a_{g}^{\prime} interacts with a_{h}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$ (resp., $C_{t_{j-1}^{\prime}}^{\prime} \rightarrow \hat{C}_{1}^{j}$ and $\hat{C}_{z}^{j} \rightarrow \hat{C}_{z+1}^{j}$).
- Case in which j is odd: In this case, a_{P}^{\prime} joins interactions instead of a_{q}^{\prime}. Note that in $C_{t_{j-1}^{\prime}}^{\prime}$, both a_{P}^{\prime} and a_{q}^{\prime} have state m^{*}. Formally we construct e_{j}^{\prime} as follows: (1) When $a_{g}(g \neq q)$ interacts with $a_{h}(h \neq q)$ at
$C_{f}^{j} \rightarrow C_{f+1}^{j}$ for $z>f>0$ (resp., $C_{t_{j-1}^{\prime}} \rightarrow C_{1}^{j}$, and $C_{z}^{j} \rightarrow C_{t_{j}^{\prime}}$), a_{g}^{\prime} interacts with a_{h}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$ (resp., $C_{t_{j-1}^{\prime}}^{\prime} \rightarrow \hat{C}_{1}^{j}$, and $\hat{C}_{z}^{j} \rightarrow \hat{C}_{z+1}^{j}$). (2) When a_{q} interacts with an agent $a_{i}(i \neq q)$ at $C_{f}^{j} \rightarrow C_{f+1}^{j}$ (resp., $C_{t_{j-1}^{\prime}} \rightarrow C_{1}^{j}$ and $C_{z}^{j} \rightarrow C_{t_{j}^{\prime}}$), a_{P}^{\prime} interacts with a_{i}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$ (resp., $C_{t_{j-1}^{\prime}}^{\prime} \rightarrow \hat{C}_{1}^{j}$ and $\left.\hat{C}_{z}^{j} \rightarrow \hat{C}_{z+1}^{j}\right)$. Similarly, when an agent $a_{i}(i \neq q)$ interacts with a_{q} at $C_{f}^{j} \rightarrow C_{f+1}^{j}$ (resp., $C_{t_{j-1}^{\prime}} \rightarrow C_{1}^{j}$ and $C_{z}^{j} \rightarrow C_{t_{j}^{\prime}}$), a_{i}^{\prime} interacts with a_{P}^{\prime} at $\hat{C}_{f}^{j} \rightarrow \hat{C}_{f+1}^{j}$ (resp., $C_{t_{j-1}^{\prime}}^{\prime} \rightarrow \hat{C}_{1}^{j}$ and $\hat{C}_{z}^{j} \rightarrow \hat{C}_{z+1}^{j}$).
$-a_{P}^{\prime}$ interacts with a_{q}^{\prime} at $\hat{C}_{z+1}^{j} \rightarrow \hat{C}_{z+2}^{j}$. Additionally, a_{q}^{\prime} interacts with a_{P}^{\prime} at $\hat{C}_{z+2}^{j} \rightarrow C_{t_{j}^{\prime}}^{\prime}$.

We can inductively show that, for any $x \geq 0, s\left(a_{i}^{\prime}, C_{t_{x}^{\prime}}^{\prime}\right)=s\left(a_{i}, C_{t_{x}^{\prime}}\right)$ holds for any $i(P-1 \geq i \geq 0)$, and $s\left(a_{q}^{\prime}, C_{t_{x}^{\prime}}^{\prime}\right)=s\left(a_{P}^{\prime}, C_{t_{x}^{\prime}}^{\prime}\right)=s\left(a_{q}, C_{t_{x}^{\prime}}^{\prime}\right)=m^{*}$ holds. Clearly, this holds for $x=0$. We assume that this holds for $x=j$, and consider the case of $x=$ $j+1$. When $j+1$ is even, during execution segment $C_{t_{j}^{\prime}}^{\prime}, \hat{C}_{1}^{j+1}, \hat{C}_{2}^{j+1}, \ldots, \hat{C}_{z+1}^{j+1}$, agents in $V^{\prime}-\left\{a_{P}^{\prime}\right\}$ interact similarly to $C_{t_{j}^{\prime}}, e_{j+1}, C_{t_{j+1}^{\prime}}$. Hence, $s\left(a_{i}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{i}, C_{t_{j+1}^{\prime}}\right)$ holds for any $i(P-1 \geq i \geq 0)$ and $s\left(a_{q}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{P}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{q}, C_{t_{j+1}^{\prime}}\right)=m^{*}$ holds. a_{P}^{\prime} and a_{q}^{\prime} interact at $\hat{C}_{z+1}^{j+1} \rightarrow \hat{C}_{z+2}^{j+1}$ and $\hat{C}_{z+2}^{j+1} \rightarrow C_{t_{j+1}^{\prime}}^{\prime}$. By the assumption of m^{*}, if two agents with m^{*} interact twice, they keep their state m^{*}. Since a_{P}^{\prime} and a_{q}^{\prime} have state m^{*} in \hat{C}_{z+1}^{j+1}, they also have state m^{*} in $C_{t_{j+1}^{\prime}}^{\prime}$, and thus, \hat{C}_{z+1}^{j+1} is equal to $C_{t_{j+1}^{\prime}}^{\prime}$. Thus, $s\left(a_{i}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=s\left(a_{i}, C_{t_{j+1}^{\prime}}\right)$ holds for any $i(P-1 \geq i \geq 0)$ and $s\left(a_{q}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=s\left(a_{P}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=s\left(a_{q}, C_{t_{j+1}^{\prime}}\right)=m^{*}$ holds. When $j+1$ is odd, during execution segment $C_{t_{j}^{\prime}}^{\prime}, \hat{C}_{1}^{j+1}, \hat{C}_{2}^{j+1}, \ldots, \hat{C}_{z+1}^{j+1}, a_{P}^{\prime}$ interacts instead of a_{q}^{\prime}, and agents in $V^{\prime}-\left\{a_{q}^{\prime}\right\}$ behave similarly to $C_{t_{j-1}^{\prime}}, e_{j}, C_{t_{j}^{\prime}}$. Hence, $s\left(a_{i}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{i}, C_{t_{j+1}^{\prime}}\right)$ holds for any $i(P-1 \geq i \geq 0)$ and $s\left(a_{q}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{P}^{\prime}, \hat{C}_{z+1}^{j+1}\right)=s\left(a_{q}, C_{t_{j+1}^{\prime}}\right)=m^{*}$ holds. Similarly, a_{P}^{\prime} and a_{q}^{\prime} interact at $\hat{C}_{z+1}^{j+1} \rightarrow \hat{C}_{z+2}^{j+1}$ and $\hat{C}_{z+2}^{j+1} \rightarrow C_{t_{j+1}^{\prime}}^{\prime}$, and they keep their state m^{*}. Thus, $s\left(a_{i}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=s\left(a_{i}, C_{t_{j+1}^{\prime}}\right)$ holds for any $i(P-1 \geq i \geq 0)$ and $s\left(a_{q}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=s\left(a_{P}^{\prime}, C_{t_{j+1}^{\prime}}^{\prime}\right)=s\left(a_{q}, C_{t_{j+1}^{\prime}}^{\prime}\right)=m^{*}$ holds. By the assumption, for any j, the number of $\gamma\left(m^{*}\right)$-agents is one more than the number of $\overline{\gamma\left(m^{*}\right)}$-agents in $C_{t_{j}^{\prime}}$. Thus, for any j, the number of $\gamma\left(m^{*}\right)$-agents is two more than the number of $\overline{\gamma\left(m^{*}\right)}$-agents in $C_{t_{j}^{\prime}}^{\prime}$. Hence, Ξ^{\prime} never converges to a stable configuration. During the execution segment $C_{t_{j-1}^{\prime}}^{\prime}, e_{j}^{\prime}$, when j is even, for every pair of agents a and b in $V^{\prime}-\left\{a_{P}^{\prime}\right\}, a$ interacts with b. Similarly, when j is odd, for every pair of agents a
and b in $V^{\prime}-\left\{a_{q}^{\prime}\right\}, a$ interacts with b. Moreover, for $j>0$, at $\hat{C}_{z+1}^{j} \rightarrow \hat{C}_{z+2}^{j}$ (resp., $\left.\hat{C}_{z+2}^{j} \rightarrow C_{t_{j}^{\prime}}^{\prime}\right), a_{P}^{\prime}$ (resp., a_{q}^{\prime}) interacts with a_{q}^{\prime} (resp., a_{P}^{\prime}). Thus, although Ξ^{\prime} is weakly fair, Ξ^{\prime} cannot solve the problem. This is a contradiction. Therefore, the lemma holds.

By Lemma 13, there exists either a sink pair or sink state. However, in both cases, $A l g_{\text {sym }}$ does not work. Therefore, we have proved the theorem.

4.2 Upper Bounds for Initialized Base Station

In this section, we propose both asymmetric and symmetric protocols for the uniform k-partition problem. The asymmetric protocol requires P states and the symmetric protocol requires $P+1$ states. By the lower bounds, these protocols are space-optimal.

4.2.1 Upper Bound for Asymmetric Protocols

In this subsection, we describe a P-state asymmetric protocol for the uniform partition problem. The idea of the protocol is to assign states $0,1, \ldots, n-1$ to n agents individually and then regard an agent with state s as a member of the (s $\bmod k$)-th group. One may think that, to implement this idea, we can directly use a naming protocol [23], where the naming protocol assigns different states to agents using P states if $n \leq P$ holds. In fact, if $n=P$ holds, the naming protocol assigns states $0,1, \ldots, P-1$ to P agents individually and hence it achieves the uniform partition. However, if $n<P$ holds, the naming protocol does not always achieve the uniform partition. For example, in the case of $(n-1) k<P$, the naming protocol may assign states $0, k, 2 k, \ldots,(n-1) k$ to n agents individually, which implies that all agents are in the 0 -th group.

Algorithm 2 shows a P-state asymmetric protocol for the uniform k-partition problem. Note that this protocol does not take into account whether an agent is an initiator or responder if two agents with different states interact. If two agents with the same state interact (line 8), one of them may change its state. In the protocol, the base station assigns states $0,1, \ldots, n-1$ to n agents individually. To do this, the base station maintains variable M, which represents the state the base station will assign next. The base station sets $M=0$ initially, and

```
Algorithm 2 Asymmetric uniform \(k\)-partition protocol
A variable at the base station
    \(M\) : The state that the base station assigns next, initialized to 0
A variable at an agent \(a\) :
    \(S_{a} \in\{0,1,2, \ldots, P-1\}\) : The agent state, initialized arbitrarily. Agent \(a\)
    belongs to the \(\left(S_{a} \bmod k\right)\)-th group.
    when an agent \(a\) and the base station interact do
        if \(M \leq S_{a}\) then
            \(S_{a}=M\)
            \(M=M+1\)
        end if
    end
    when two agents \(a\) and \(b\) interact do
        if \(S_{a}=S_{b}\) and \(S_{a}<P-1\) then
            \(S_{a}=S_{a}+1\)
        end if
    end
```

increments M whenever it assigns M to an agent. We consider an interaction between the base station and an agent with state x. If x is smaller than M, the base station identifies that it has already assigned a state to the agent, and hence it does not update the state. If x is M or larger, the base station assigns state M to the agent and increments M. When the base station assigns state x to an agent, there may exist another agent with state x because of arbitrary initial states. To consider this case, when two agents with the same state x interact, one enters state $x+1$ and the other keeps its state x. By repeating such interactions, eventually, exactly one agent has state x. Using this behavior, the base station eventually assigns states $0,1, \ldots, n-1$ to n agents individually, and hence the protocol achieves the uniform k-partition.

As a result, we obtain the following theorem.
Theorem 13. Algorithm 2 solves the uniform k-partition problem. This means that, in the model with an initialized base station, there exists an asymmetric protocol with P states and arbitrary initial states that solves the uniform k-partition problem under weak fairness, where P is the known upper bound of the number of agents.

To prove the theorem, we show the following two lemmas.

Lemma 20. Let $\Xi=C_{0}, C_{1}, \ldots$ be a weakly-fair execution of Algorithm 2. In configuration $C_{i}(i \geq 0)$, for any s with $0 \leq s \leq M-1$, at least one agent with state s exists.

Proof. We prove the lemma by induction on the index of a configuration in execution Ξ. The base case is vacuously true because M is initialized to 0 in the initial configuration C_{0}. For the induction step, we assume that the lemma holds at $C_{k}(0 \leq k)$; that is, at C_{k}, at least one agent with state s exists for any s with $0 \leq s \leq M-1$. We consider two cases of interaction at transition $C_{k} \rightarrow C_{k+1}$. First, we consider the case in which the base station joins the interaction. If the base station interacts with an agent with state less than M, the base station and the agent do not change their states. If the base station interacts with an agent with state M or more, the base station assigns M to the agent and then increases M. Thus, the lemma holds at C_{k+1}. Next, we consider the case in which the base station does not join the interaction. When two agents interact, at least one agent keeps its state. Because M is not changed, the lemma holds at C_{k+1}.

Lemma 21. Let $\Xi=C_{0}, C_{1}, \ldots$ be a weakly-fair execution of Algorithm 2. There exists a configuration C_{i} such that $M=n$ holds.

Proof. By way of contradiction, we assume that M does not become n in Ξ. Because M is monotonically increasing, the base station eventually stops updating M. Let $l<n$ be the last value of M, and C_{j} be the first configuration with $M=l$. First, we can say that all agents have states less than l after C_{j}; otherwise; some agent a^{\prime} with state $l^{\prime}\left(l^{\prime} \geq l\right)$ exists after C_{j}. From the algorithm, a^{\prime} never decreases its state unless a^{\prime} and the base station interact. Because Ξ is weakly fair, a^{\prime} and the base station eventually interact. At that time, a^{\prime} has state at least $l^{\prime} \geq l=M$, and consequently, the base station increases M. This contradicts the assumption. From Lemma 20, for each s with $0 \leq s \leq l-1$, at least one agent with state s exists at configuration C_{j}. Additionally, because each agent has one of states 0 to $l-1$ with $l<n$, at least two agents have state q for some $q<l$. From the algorithm, an agent with state less than $l(=M)$ changes its state only by an interaction with the homonyms. Hence, two agents with state q eventually interact, and then one of them enters state $q+1$. If $q+1 \leq l-1$ holds, at least two agents with state $q+1$ exist and similarly, one of them enters state $q+2$. Hence, eventually, some agent enters state l. This is a contradiction.

From Lemma 21, the base station eventually sets $M=n$. From Lemma 20, when $M=n$ holds, for each s with $0 \leq s \leq n-1$, exactly one agent has state s. This implies that, after $M=n$ holds, line 2 of the pseudocode is never executed, and thus the base station never updates M. Clearly, the configuration achieves the uniform partition and no agent subsequently updates its state. Therefore, Theorem 13 holds.
Remark. Interestingly, when P is odd, Algorithm 2 solves the uniform 2partition, even if the number of agent states is $P-1$. Specifically, let $S_{a} \in$ $\{1,2,3, \ldots, P-1\}$ be a set of agent states, and initialize variable M to 1 . Then, Algorithm 2 converges to a configuration such that there exist two agents with state $P-1$ (and other states are held by exactly one agent). This is because, in the algorithm, the base station assigns $P-1$ agents to $P-1$ states individually, and because the algorithm works under weak fairness, the remaining agent shifts its state until state $P-1$. In the configuration, the difference in the numbers of red and blue agents is one. Moreover, each agent does not change its state after the configuration. Hence, the uniform 2-partition is solved.

4.2.2 Upper Bound for Symmetric Protocols

In this subsection, we propose a $(P+1)$-state symmetric protocol for the uniform partition problem. We can easily obtain the protocol using a scheme proposed in [15]. In [15], a P-state symmetric protocol for the counting problem was proposed. The counting protocol assigns different states in $\{1, \ldots, n\}$ to n agents and keeps the configuration if $n<P$ holds. Hence, by regarding $P+1$ as the upper bound of the number of agents and allowing $P+1$ states, the protocol assigns different states in $\{1, \ldots, n\}$ to n agents for any $n \leq P$. This implies that, as in the previous subsection, the protocol can achieve the uniform partition by regarding an agent with x as a member of the $(x \bmod k)$-th group.

Theorem 14. In the model with an initialized base station, there exists a symmetric protocol with $P+1$ states and arbitrary initial states that solves the uniform k-partition problem under weak fairness, where P is the known upper bound of the number of agents.

4.3 Impossibility with No Base Station and Designated Initial States for Symmetric Protocols

In the following, we show that the problem cannot be solved with no base station and designated initial states for symmetric protocols.

Theorem 15. In the model with no base station, no symmetric protocol with designated initial states solves the 2-partition problem with size difference $x \geq 1$ under weak fairness.

Proof. By way of contradiction, we assume such a protocol Alg exists. We assume the state set of agents is $Q_{p}=\left\{s_{1}, s_{2}, \ldots\right\}$. We consider population $V=\left\{a_{1}, \ldots\right.$, $\left.a_{n}\right\}$ of n agents, where n is even and at least $x+1$. Let $s_{i_{1}}$ be the designated initial state of all agents; that is, $s\left(a_{i}\right)=s_{i_{1}}$ holds for any $i(1 \leq i \leq n)$ at the initial configuration. Clearly, the symmetric protocol Alg has transition $\left(s_{i_{1}}, s_{i_{1}}\right) \rightarrow$ $\left(s_{i_{2}}, s_{i_{2}}\right)$ for some $s_{i_{2}}$. This implies that if all pairs of agents in state $s_{i_{1}}$ interact, all agents transition to $s_{i_{2}}$. Similarly, if all pairs of agents in state $s_{i_{2}}$ interact, all agents transition to the same state (say $s_{i_{3}}$).

When the above execution is repeated, configurations such that all agents have the same state appear infinitely often. By changing pairs of agents, we can perform the above execution under weak fairness. If all agents are in the same state, such a configuration is not stable because n is at least $x+1$. This is a contradiction.

5. Uniform k-partition under Global Fairness on Complete Graphs

In this section, we consider the solvability of the uniform k-partition problem. More concretely, we prove that, with initialized base station and designated initial states on complete graphs, there is no asymmetric protocols with k states. Moreover, we propose a symmetric uniform k-partition protocol with designated initial states under global fairness on complete graphs.

5.1 Lower Bound for Initialized Base Station with Designated Initial States

Here we show $k+1$ states are necessary to construct an asymmetric protocol with initialized base station and designated initial states. We prove the impossibility similarly to Theorem 3 .

Theorem 16. In the model with an initialized base station, no asymmetric protocol with k states and designated initial states solves the k-partition problem with size difference $x \geq 1$ under global fairness on complete graphs.

Proof. For contradiction, we assume such a protocol Alg exists. Without loss of generality, we assume $Q_{p}=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, and the designated initial state of all agents is s_{1}. Let n be a number such that $n=i k$ holds for some $i \geq x+1$. We consider the following three cases.

First, for population V of a single base station and n (non base station) agents $a_{1}, a_{2}, \ldots, a_{n}$, consider an execution $\Xi=C_{0}, C_{1}, \ldots$ of Alg . According to the definition, there exists a stable configuration C_{t}. That is, after C_{t}, the state of each agent does not change even if the base station and agents in states s_{1}, s_{2}, \ldots, s_{k} interact in any order.

Next, for population V^{\prime} of a single base station and $n+2 x+1$ agents a_{1}, a_{2}, $\ldots, a_{n+2 x+1}$, we define an execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{t}^{\prime}, C_{t+1}^{\prime}, \ldots$ of $A l g$ as follows.

- From C_{0}^{\prime} to C_{t}^{\prime}, the base station and n agents $a_{1}, a_{2}, \ldots, a_{n}$ interact in the same order as the execution Ξ.
- After C_{t}^{\prime}, the base station and $n+2 x+1$ agents interact so as to satisfy global fairness.

Since the base station and agents a_{1}, \ldots, a_{n} change their states similarly to Ξ from C_{0}^{\prime} to C_{t}^{\prime}, the number of agents in state s_{1} is $x+1$ or more than the number of agents in state s_{y} for $2 \leq y \leq k$ at C_{t}^{\prime}. Moreover, the state of the base station at C_{t}^{\prime} is the same as the state of the base station at C_{t}. However, since the difference in the numbers of agents with s_{1} and other states is at least $x+1, C_{t}^{\prime}$ is not a stable configuration. Consequently, after C_{t}^{\prime}, some agent changes its state in execution Ξ^{\prime}.

Lastly, we consider execution Ξ for population V again. Here, we consider interactions after stable configuration C_{t}, and apply interactions in Ξ^{\prime} to execution Ξ. That is, we consider the following execution after $C_{t}: 1$) when the base station and an agent in state $s \in\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ interact at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}(u \geq t)$ in Ξ^{\prime}, the base station and an agent in state s interact at $C_{u} \rightarrow C_{u+1}$ in Ξ, and 2) when two agents in states $s \in\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and $s^{\prime} \in\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ interact at $C_{u}^{\prime} \rightarrow C_{u+1}^{\prime}$ $(u \geq t)$ in Ξ^{\prime}, two agents in states s and s^{\prime} interact at $C_{u} \rightarrow C_{u+1}$ in Ξ. We can construct such an execution because, after stable configuration C_{t}, at least two agents have each $s_{1}, s_{2}, \ldots, s_{k}$. In this execution Ξ, since interactions occur similarly to Ξ^{\prime}, some agent changes its state similarly to Ξ^{\prime} after C_{t}. This is a contradiction because C_{t} is a stable configuration.

5.2 Upper Bound for Uniform k-partition Protocol

Here we show a symmetric uniform k-partition protocol with designated initial states under global fairness on complete graphs. The summary of the protocol is given in Algorithm 3.

In this protocol, a set of agent states is divided into four subsets, i.e., $Q=$ $I \cup G \cup M \cup D$, where $I=\{$ initial, initial $\}, G=\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}, M=\left\{m_{2}, m_{3}\right.$, $\left.\ldots, m_{k-1}\right\}$, and $D=\left\{d_{1}, d_{2}, \ldots, d_{k-2}\right\}$. The designated initial state of agents is initial, that is, the state of every agent is initial in the initial configuration. State g_{i} in G indicates that the agent belongs to the i-th group, that is, $\gamma\left(g_{i}\right)=i$ holds for any $g_{i} \in G$. For other state s, we define $\gamma(s)$ as follows:

- $\gamma(i n i)=1$ holds for any $i n i \in I$.
- $\gamma\left(d_{i}\right)=1$ holds for any $d_{i} \in D$.
- $\gamma\left(m_{i}\right)=i$ holds for any $m_{i} \in M$.

We say an agent is free if its state is in I. We define $\overline{\text { initial }}=$ initial $^{\prime}$ and $\overline{\text { initial' }^{\prime}}=$ initial.

We will describe the details of the protocol in Sections 5.2.1 and 5.2.2. In the basic strategy (Section 5.2.1), the protocol makes k agents enter states $g_{1}, g_{2}, \ldots, g_{k}$ by using states in M as intermediate states. However, this strategy may increase

```
Algorithm 3 Uniform \(k\)-partition protocol
A state set
    \(Q=I \cup G \cup M \cup D\) where
        \(I=\{\) initial, initial' \(\}\),
        \(G=\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\),
        \(M=\left\{m_{2}, m_{3}, \ldots, m_{k-1}\right\}\), and
        \(D=\left\{d_{1}, d_{2}, \ldots, d_{k-2}\right\}\).
A mapping function to groups
    \(\gamma(i n i)=1\) holds for any \(i n i \in I\).
    \(\gamma\left(g_{i}\right)=i\) holds for any \(g_{i} \in G\).
    \(\gamma\left(m_{i}\right)=i\) holds for any \(m_{i} \in M\).
    \(\gamma\left(d_{i}\right)=1\) holds for any \(d_{i} \in D\).
Transition rules
            1. \((\) initial, initial \() \rightarrow\left(\right.\) initial \(^{\prime}\), initial \(\left.^{\prime}\right)\)
            2. \(\left(\right.\) initial \(^{\prime}\), initial \(\left.^{\prime}\right) \rightarrow(\) initial, initial \()\)
            3. \(\left(d_{i}, i n i\right) \rightarrow\left(d_{i}, \overline{i n i}\right)\left(d_{i} \in D\right.\) and \(\left.i n i \in I\right)\)
            4. \(\left(g_{i}, i n i\right) \rightarrow\left(g_{i}, \overline{i n i}\right)\left(g_{i} \in G\right.\) and \(\left.i n i \in I\right)\)
            5. \(\left(\right.\) initial, initial \(\left.^{\prime}\right) \rightarrow\left(g_{1}, m_{2}\right)\)
            6. \(\left(i n i, m_{i}\right) \rightarrow\left(g_{i}, m_{i+1}\right)(i n i \in I\) and \(2 \leq i \leq k-2)\)
            7. \(\left(\right.\) ini,\(\left.m_{k-1}\right) \rightarrow\left(g_{k-1}, g_{k}\right)(i n i \in I)\)
            8. \(\left(m_{i}, m_{j}\right) \rightarrow\left(d_{i-1}, d_{j-1}\right)(2 \leq i, j \leq k-1)\)
            9. \(\left(d_{i}, g_{i}\right) \rightarrow\left(d_{i-1}\right.\), initial \()(2 \leq i \leq k-2)\)
    10. \(\left(d_{1}, g_{1}\right) \rightarrow(\) initial, initial \()\)
```

the number of agents in some groups beyond n / k. In Section 5.2.2, we overcome such a situation by using states in D.

5.2.1 Basic strategy

The basic strategy of the protocol is as follows: First two free agents transition to states g_{1} and m_{2}. After that, for each $i(2 \leq i \leq k-2)$, when an agent in state m_{i} and a free agent interact, they transition to states m_{i+1} and g_{i}, respectively. Lastly, when an agent in state m_{k-1} and a free agent interact, they transition to states g_{k} and g_{k-1}. By this behavior, k free agents can change their states to $g_{1}, g_{2}, \ldots, g_{k}$. That is, the size of each group is increased by one. To achieve this, the protocol includes the following transitions.

1. $($ initial, initial $) \rightarrow\left(\right.$ initial $^{\prime}$, initial $\left.^{\prime}\right)$
2. $\left(\right.$ initial $^{\prime}$, initial $\left.^{\prime}\right) \rightarrow($ initial, initial $)$
3. $\left(d_{i}, i n i\right) \rightarrow\left(d_{i}, \overline{i n i}\right)\left(d_{i} \in D\right.$ and $\left.i n i \in I\right)$
4. $\left(g_{i}, i n i\right) \rightarrow\left(g_{i}, \overline{i n i}\right)\left(g_{i} \in G\right.$ and $\left.i n i \in I\right)$
5. $\left(\right.$ initial, initial $\left.^{\prime}\right) \rightarrow\left(g_{1}, m_{2}\right)$
6. $\left(i n i, m_{i}\right) \rightarrow\left(g_{i}, m_{i+1}\right)(i n i \in I$ and $2 \leq i \leq k-2)$
7. $\left(\right.$ ini,$\left.m_{k-1}\right) \rightarrow\left(g_{k-1}, g_{k}\right)($ ini $\in I)$

First we explain transitions 1 to 5 , which make two free agents transition to states g_{1} and m_{2}. Recall that all agents are in state initial in the initial configuration. Since we consider symmetric protocols, two agents in state initial cannot transition to states g_{1} and m_{2} at one interaction. This is the reason why we introduce state initial $^{\prime}$. Each agent in state initial (resp., initial') transitions to initial ${ }^{\prime}$ (resp., initial) when it interacts with an agent in a state in $I \cup D \cup G$ (except for interaction between one in state initial and one in state initial'). Transition 5 implies that, when agents in states initial and initial' interact, they become g_{1} and m_{2}, respectively. From global fairness, if at least two free agents and no agents in a state in M exist, two free agents eventually enter states initial and initial', respectively, and then enter states g_{1} and m_{2} by an interaction. Transition 6 implies that, when a free agent and an agent in state m_{i} interact, they become g_{i} and m_{i+1}, respectively. By these transitions, free agents transition to states g_{1}, \ldots, g_{k-2} one by one. After that, from transition 7 , when a free agent and an agent in state m_{k-1} interact, they become g_{k-1} and g_{k}, respectively. From this behavior, the size of each group is increased by one.

Figure 3 is an example execution of the protocol for a population of six agents. Initially all agents are in state initial (Fig. 3 (a)). After interactions $\left(a_{1}, a_{2}\right)$, (a_{3}, a_{4}), and (a_{5}, a_{6}), all agents enter state initial' (Fig. 3 (b)). After interactions $\left(a_{1}, a_{6}\right),\left(a_{2}, a_{3}\right)$, and (a_{4}, a_{5}), all agents enter state initial (Fig. 3 (c)). If such interactions happen infinitely, the protocol never solves the uniform k-partition problem. However, under the global fairness, such interactions do not occur infinitely. This is because, if some configuration C occurs infinitely often, every

Figure 3. An example of k-partition
configuration reachable from C should occur. That is, eventually interactions $\left(a_{5}, a_{6}\right)$ and (a_{1}, a_{6}) happen in this order from such a configuration (Fig. 3 (d) and (e)). Then, a_{1} and a_{6} enter states g_{1} and m_{2}, respectively (Fig. 3 (e)). After that, if interactions $\left(a_{6}, a_{2}\right),\left(a_{6}, a_{3}\right),\left(a_{6}, a_{4}\right)$, and $\left(a_{6}, a_{5}\right)$ occur in this order, agent a_{6} changes its state from m_{2} to m_{3}, m_{4}, m_{5}, and g_{6}, and agents a_{2}, a_{3}, a_{4}, and a_{5} enter g_{2}, g_{3}, g_{4}, and g_{5}, respectively (Fig. 3 (f)).

5.2.2 A problem of the basic strategy and its solution

However, in the protocol of the basic strategy, $\lceil n / k\rceil$ or more agents in state m_{1} can appear. In this case, the above transitions do not achieve a uniform k partition. For example, in the case of $n=12$ and $k=4$, if four agents enter state m_{1}, agents can transition to states $g_{1}, g_{2}, m_{3}, g_{1}, g_{2}, m_{3}, g_{1}, g_{2}, m_{3}, g_{1}, g_{2}, m_{3}$. To solve this problem, we introduce states in D and add the following transitions.
8. $\left(m_{i}, m_{j}\right) \rightarrow\left(d_{i-1}, d_{j-1}\right)(2 \leq i, j \leq k-1)$
9. $\left(d_{i}, g_{i}\right) \rightarrow\left(d_{i-1}\right.$, initial $)(2 \leq i \leq k-2)$
10. $\left(d_{1}, g_{1}\right) \rightarrow($ initial, initial $)$

By transition 8, when two agents in states in m_{i} and m_{j} interact, they transition to states in d_{i-1} and d_{j-1}, respectively. Intuitively, an agent in state d_{i} makes agents in $g_{1}, g_{2}, \ldots, g_{i}$ go back to state initial. Recall that an agent in state m_{i+1} can enter state d_{i} and an agent in state m_{i+1} has made agents in states g_{1}, g_{2}, \ldots, g_{i}. This means an agent in state d_{i} initializes agents that it makes enter states $g_{1}, g_{2}, \ldots, g_{i}$. More concretely, an agent in a state in D works as follows:

Figure 4. Another example of k-partition

- For $2 \leq i \leq k-2$, when agents in states d_{i} and g_{i} interact, they become d_{i-1} and initial by transition 9 , respectively.
- After that, from transition 10, when agents in states d_{1} and g_{1} interact, they become initial.

Figure 4 is an example that shows the impact of states in D. Similarly to Fig. 3, agents can transition to a configuration in Fig. 4 (a). If interactions (a_{2}, a_{5}), $\left(a_{3}, a_{5}\right)$, and $\left(a_{4}, a_{5}\right)$ occur in this order from Fig. 4 (a), agents transition to a configuration in Fig. 4 (c). In this configuration, transitions of the basic strategy (transitions 1 to 7) are not applied. However, transition 8 can be applied, that is, interaction (a_{5}, a_{6}) eventually occurs. By the interaction, a_{5} and a_{6} enter states d_{3} and d_{1}, respectively (Fig. 4 (d)). After that, interactions $\left(a_{1}, a_{6}\right),\left(a_{4}, a_{5}\right)$, $\left(a_{3}, a_{5}\right)$ and (a_{2}, a_{5}) happen, and then all agents enter state initial (Fig. 4 (e)).

Clearly, agents can repeatedly enter state g_{i} and go back to initial many times. However, after an agent enters state g_{k}, one set of agents in states g_{1}, \ldots, g_{k} never goes back to initial. Thus, if there are h agents in state g_{k}, the number of agents in state g_{i} is at least h for each i. In addition, when there are h agents in state g_{k} and $n-k h \geq k$ holds, there is an execution that makes some agent enter state g_{k}. This implies that, from the global fairness, some agent eventually enters state g_{k}. When $n-k h=r<k$ holds, there is an execution that makes the remaining agents transition to $g_{1}, g_{2}, \ldots, m_{r}$. From the global fairness, the remaining agents eventually enter these states. In this configuration, agents achieve a uniform k-partition and after that all agents never change their states.

5.2.3 Correctness

In this section, we prove the correctness of the proposed protocol. If $k=2$, the protocol is exactly the same as a uniform 2-partition protocol in Section 3.2.2. Thus, the protocol solves the uniform k-partition problem for $k=2$. In the rest of this section, we assume that $k \geq 3$ holds.

First, we define the notations to consider the number of states at a configuration. We denote by $\# i n i$ the number of free agents (i.e., agents in states initial or initial'). We denote by $\# g_{x}, \# m_{p}$, and $\# d_{q}$ the numbers of agents in state g_{x}, m_{p}, and d_{q}, respectively $(1 \leq x \leq k, 2 \leq p \leq k-1,1 \leq q \leq k-2)$.

The first lemma gives invariants that hold for any configuration reachable from the initial configuration C_{0}. In the following, when configuration C is reachable from C_{0}, we simply say C is reachable.

Lemma 22. For any reachable configuration C, $\# g_{x}=\sum_{p=x+1}^{k-1} \# m_{p}+\sum_{q=x}^{k-2} \# d_{q}+$ $\# g_{k}$ holds for any $x(1 \leq x \leq k)$ at C.

Proof. First we intuitively explain the invariants. Let us fix x. An agent in state $m_{p}(2 \leq p \leq k-1)$ has made $p-1$ agents enter $g_{1}, g_{2}, \ldots, g_{p-1}$. Hence, for each agent in state m_{p} with $p>x$, there exists an agent in state g_{x} that corresponds to the agent. Consequently, there exist $\sum_{p=x+1}^{k-1} \# m_{p}$ agents in state g_{x} that correspond to agents in states in M. Since an agent in state d_{q} has changed its state from m_{q+1} to d_{q}, it has made q agents enter $g_{1}, g_{2}, \ldots, g_{q}$. Hence, for each agent in state d_{q} with $q \geq x$, there exists an agent in state g_{x} that corresponds to the agent. Consequently, there exist $\sum_{q=x}^{k-2} \# d_{q}$ agents in state g_{x} that correspond to agents in states in D. An agent in state g_{k} has made $k-1$ agents enter $g_{1}, g_{2}, \ldots, g_{k-1}$. Hence, there exist $\# g_{k}$ agents in state g_{x} that correspond to agents in state g_{k}. Therefore, we have the above invariants.

We prove the lemma formally by induction. First let us consider the initial configuration. Since $\# g_{x}=0, \# m_{p}=0$, and $\# d_{q}=0$ hold for any x, p, and q $(1 \leq x \leq k, 2 \leq p \leq k-1,1 \leq q \leq k-2)$, the lemma holds.

Next, assume that the lemma holds at some configuration C. We show that, for any C^{\prime} satisfying $C \rightarrow C^{\prime}$, the lemma holds at C^{\prime}. Clearly, if transition 1,2 , 3 , or 4 occurs in $C \rightarrow C^{\prime}$, the lemma holds at C^{\prime} because $\# g_{x}, \# m_{p}$, and $\# d_{q}$ do not change for any x, p, and $q(1 \leq x \leq k, 2 \leq p \leq k-1,1 \leq q \leq k-2)$. Hence, we
consider the remaining six transitions.
First, we consider the case of transition 5. This transition increases $\# g_{1}$ and $\# m_{2}$ by one, and consequently it affects the formula of $x=1$. Since the left and right sides of the formula increase by one, the lemma holds in this case.

Let us consider the case of transition 6. This transition increases $\# g_{i}$ and $\# m_{i+1}$ by one, and decreases $\# m_{i}$ by one. Consequently, it affects the formula of $x \leq i$. For $x<i$, since $\sum_{p=x+1}^{k-1} \# m_{p}$ and $\# g_{x}$ do not change, the left and right sides of the formula do not change. For $x=i$, both $\# g_{i}$ and $\sum_{p=i+1}^{k-1} \# m_{p}$ increase by one, the left and right sides of the formula increase by one. Hence, the lemma holds in this case.

Let us consider the case of transition 7. This transition increases $\# g_{k-1}$ and $\# g_{k}$ by one, and decreases $\# m_{k-1}$ by one. Consequently, it affects the formula of $x \leq k$. For $x<k-1$, since $\sum_{p=x+1}^{k-1} \# m_{p}$ decreases and $\# g_{k}$ increases by one, the left and right sides of the formula do not change. For $x=k-1$, both $\# g_{k}$ and $\# g_{k-1}$ increase by one and $\# m_{k-1}$ is not included in $\sum_{p=x+1}^{k-1} \# m_{p}$, the left and right sides of the formula increase by one. For $x=k$, the formula always holds. Hence, the lemma holds in this case.

Let us consider the case of transition 8. This transition increases $\# d_{i-1}$ and $\# d_{j-1}$ by one, and decreases $\# m_{i}$ and $\# m_{j}$ by one. Consequently, it affects the formula of $x \leq \max \{i, j\}-1$. Since this transition increases $\sum_{q=x}^{k-2} \# d_{q}$ and decreases $\sum_{p=x+1}^{k-1} \# m_{p}$ by the same number for any $x \leq \max \{i, j\}-1$, the lemma holds in this case.

Let us consider the case of transition 9. This transition increases $\# d_{i-1}$ by one, and decreases $\# d_{i}$ and $\# g_{i}$ by one. Consequently, it affects the formula of $x \leq i$. For $x<i-1$, since $\sum_{q=x}^{k-2} \# d_{q}$ and $\# g_{x}$ do not change, the left and right sides of the formula do not change. For $x=i$, both $\# g_{i}$ and $\sum_{q=x}^{k-2} \# d_{q}$ decrease by one, the left and right sides of the formula decrease by one. Hence, the lemma holds in this case.

Finally, consider the case of transition 10. Since this transition decreases $\# d_{1}$ and $\# g_{1}$ by one, it affects only formula of $x=1$. Clearly, the left and right sides of the formula decrease by one. Hence, the lemma holds in this case.

The invariants in Lemma 22 explain some properties of the proposed protocol. For example, $\# g_{x} \geq \# g_{k}$ holds for any $x(1 \leq x \leq k)$. This means the number
of agents in each group is at least $\# g_{k}$. Since $\# g_{k}$ is never decreased from the protocol, the number of agents in each group is never decreased below $\# g_{k}$ after that. By Lemmas 23 to 25 , we prove that $\# g_{k}$ eventually becomes $\lfloor n / k\rfloor$. That is, the number of agents in each group eventually becomes $\lfloor n / k\rfloor$.

Lemma 23. Let \mathcal{C}_{1} be a set of all reachable configurations such that $\# i n i \geq k$ holds. For any configuration C in \mathcal{C}_{1}, there exists C^{\prime} such that $C \xrightarrow{*} C^{\prime}$ holds and $\# g_{k}$ at C^{\prime} is increased by one from C.

Proof. If there exist no agents in state initial at C, there exist at least three agents in state initial' exist (because of $k \geq 3$). Consequently two of them enter state initial by interacting each other (transition 2). Similarly, if there exist no agents in state initial' at C, some agents can enter state initial' (transition 1). Hence, there exists a reachable configuration from C where at least one agent in state initial' and at least one agent in state initial. Let a_{1} and a_{2} be agents in state initial' and initial, respectively. After a_{1} and a_{2} interact, they become m_{2} and g_{1}, respectively (transition 5). At this moment, there exist at least $k-2$ agents in state initial or initial'. After that, these $k-2$ agents can interact with a_{2} one by one. As a result, these $k-2$ agents enter $g_{2}, g_{3}, \ldots, g_{k-1}$, and a_{2} enters g_{k} (transitions 6 and 7). Therefore, $\# g_{k}$ is increased by one from C.

Lemma 24. Let \mathcal{C}_{2} be a set of all reachable configurations such that $\# i n i<k$ and $n-k \cdot \# g_{k} \geq k$ hold. For any configuration C in \mathcal{C}_{2}, there exists C^{\prime} such that $C \xrightarrow{*} C^{\prime}$ holds and $\# g_{k}$ at C^{\prime} is increased by one from C.

Proof. We prove that, from C, there exists a transition such that 1) $\# g_{k}$ is increased by one or 2) $\# i n i$ is increased. In the former case, the lemma directly holds. In the latter case, since $\# g_{k}$ is not increased, $n-k \cdot \# g_{k} \geq k$ still holds. Consequently, we can repeatedly apply this claim, and eventually \#ini exceeds k or $\# g_{k}$ is increased by one. If $\# i n i$ exceeds $k, \# g_{k}$ is eventually increased from Lemma 23. Therefore, the lemma holds.

To prove the above claim, we divide \mathcal{C}_{2} into the following four sets of configurations $\mathcal{C}_{d}, \mathcal{C}_{m 2}, \mathcal{C}_{m 1}$, and $\mathcal{C}_{m 0}$.

- \mathcal{C}_{d} is a set of configurations (in \mathcal{C}_{2}) such that $\# d_{q}>0$ holds for some q $(1 \leq q \leq k-2)$.
- $\mathcal{C}_{m 2}$ is a set of configurations (in \mathcal{C}_{2}) such that $d_{q}=0$ holds for any q $(1 \leq q \leq k-2)$ and $\sum_{p=2}^{k-1} \# m_{p} \geq 2$ holds.
- $\mathcal{C}_{m 1}$ is a set of configurations (in \mathcal{C}_{2}) such that $d_{q}=0$ holds for any q $(1 \leq q \leq k-2)$ and $\sum_{p=2}^{k-1} \# m_{p}=1$ holds.
- $\mathcal{C}_{m 0}$ is a set of configurations (in \mathcal{C}_{2}) such that $d_{q}=0$ holds for any q $(1 \leq q \leq k-2)$ and $\sum_{p=2}^{k-1} \# m_{p}=0$ holds.

First we consider a configuration $C \in \mathcal{C}_{d}$. Let q be an integer such that $d_{q}>0$ holds in C. From Lemma 22, $\# g_{q}>0$ holds. Consequently, when agents in states d_{q} and g_{q} interact, at least one of them enters initial by transition 9 or 10. Thus, $\# i n i$ is increased.

Next consider a configuration $C \in \mathcal{C}_{m 2}$. From the definition of $\mathcal{C}_{m 2}$, there exist two distinct agents a_{i} and a_{j} whose states are m_{i} and m_{j}, respectively. When a_{i} and a_{j} interact, they enter states d_{i-1} and d_{j-1} by transition 8 , respectively. This configuration belongs to \mathcal{C}_{d}, and thus $\# i n i$ is eventually increased.

Let us consider a configuration $C \in \mathcal{C}_{m 1}$. Let i be an integer such that $\# m_{i}=1$ holds. From Lemma 22, $\# g_{x}=1+\# g_{k}$ holds for $x \leq i-1$ and $\# g_{x}=\# g_{k}$ holds for $x \geq i$. Since a population consists of one agent in state m_{i} and agents in states $g_{x}(1 \leq x \leq k)$, initial, and initial', we have $\# i n i=n-1-\sum_{x=1}^{k} \# g_{x}=n-k \cdot \# g_{k}-i \geq$ $k-i$. Let a be the agent in state m_{i} and $a_{i}, a_{i+1}, \ldots, a_{k-1}$ be agents in state initial or initial'. If a interacts with $a_{i}, a_{i+1}, \ldots, a_{k-1}$ in this order, $a_{i}, a_{i+1}, \ldots, a_{k-1}$ transition to $g_{i}, g_{i+1}, \ldots, g_{k-1}$, respectively and a transitions to g_{k}. Thus, $\# g_{k}$ is increased by one.

Finally, we consider a configuration $C \in \mathcal{C}_{m 0}$. In this case, $\sum_{q=1}^{k} \# g_{q}+\# i n i$ $=n$ holds. From Lemma 22, $\# g_{x}=\# g_{k}$ holds for any $x(1 \leq x \leq k)$. That is, $\sum_{x=1}^{k} \# g_{x}+\# i n i=k \cdot \# g_{k}+\# i n i=n$ holds. Hence, $\# i n i=n-k \cdot \# g_{k} \geq k$ holds. This means no configuration is in $\mathcal{C}_{m 0}$.

Therefore, the lemma holds.
Lemma 25. For any execution $\Xi=C_{0}, C_{1}, \ldots$, there exists C_{t} such that $n-k \cdot \# g_{k}<$ k holds.

Proof. First, we show that, when $n-k \cdot \# g_{k} \geq k$ holds at a configuration C_{i}, $\# g_{k}$ is increased by one at C_{j} for some $j(j>i)$. For contradiction, we assume
that such C_{j} does not exist. Since $\# g_{k}$ is never decreased from the protocol, $\# g_{k}$ is never changed and $n-k \cdot \# g_{k} \geq k$ continuously holds after C_{i}. Since the number of such configurations is finite, some configuration C_{i}^{\prime} occurs infinitely often after C_{i} in Ξ. From Lemmas 23 and 24 , there exists C_{j}^{\prime} such that $C_{i}^{\prime} \xrightarrow{*} C_{j}^{\prime}$ and $\# g_{k}$ in C_{j}^{\prime} is increased by one from C_{i}^{\prime}. That is, there exists a sequence of configurations $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{l}^{\prime}$ such that $C_{i}^{\prime}=C_{1}^{\prime} \rightarrow C_{2}^{\prime} \rightarrow \cdots \rightarrow C_{l}^{\prime}=C_{j}^{\prime}$ holds. From global fairness, since $C_{i}^{\prime}=C_{1}^{\prime}$ occurs infinitely often, C_{2}^{\prime} occurs infinitely often. Similarly, $C_{3}^{\prime}, \ldots, C_{l}^{\prime}=C_{j}^{\prime}$ occur infinitely often. That is, $\# g_{k}$ at C_{j}^{\prime} is increased by one from C_{i}. This is a contradiction. Thus, if $n-k \cdot \# g_{k} \geq k$ holds, $\# g_{k}$ is eventually increased by one. Therefore, the lemma holds.

Note that, since $n \geq \sum_{x=1}^{k} \# g_{x} \geq k \cdot \# g_{k}$ holds from Lemma 22, $n-k \cdot \# g_{k}<k$ derives $\# g_{k}=\lfloor n / k\rfloor$. Hence, Lemma 25 implies that $\# g_{k}=\lfloor n / k\rfloor$ eventually holds. This implies that the number of agents in each group eventually becomes $\lfloor n / k\rfloor$ or $\lfloor n / k\rfloor+1$ from Lemma 22. Let $r=n-k \cdot\lfloor n / k\rfloor$. If $r=0$ holds, the uniform k-partition has been solved. If $r \geq 1$ holds, there exist r remaining agents. Lemma 26 shows resultant states of the remaining agents. If $r=1$ holds, the one remaining agent is in state initial or initial'. If $r \geq 2$ holds, r agents enter states $g_{1}, g_{2}, \ldots, g_{r-1}$ and m_{r}.

Lemma 26. Assume that $r=n-k \cdot\lfloor n / k\rfloor>0$ holds. Let \mathcal{C}_{3} be a set of reachable configurations such that $n-k \cdot \# g_{k}<k$ holds (i.e., $\# g_{k}=\lfloor n / k\rfloor$). For any configuration $C \in \mathcal{C}_{3}$, there exists C^{\prime} such that 1) $C \xrightarrow{*} C^{\prime}$ holds, 2) $\# g_{x}=\lfloor n / k\rfloor+1$ holds for any $x(1 \leq x \leq r-1)$, 3) $\# g_{x}=\lfloor n / k\rfloor$ holds for any $x(r \leq x \leq k)$, and 4) $\#$ ini $=1$ holds if $r=1$ and $\# m_{r}=1$ holds if $r \geq 2$.

Proof. From Lemma 22, $\# g_{x} \geq \# g_{k}=\lfloor n / k\rfloor$ holds for any $x(1 \leq x \leq k)$ at C. Let $V^{\prime} \subset V$ be a set of agents that include $\lfloor n / k\rfloor$ agents in state g_{x} at C for any x $(1 \leq x \leq k)$, and let $V_{r}=V-V^{\prime}$.

Let us consider the case of $r=1$. In this case V_{r} does not contain an agent in state m_{p} for any p because otherwise V_{r} also contains agents in state $g_{r}(r \leq p-1)$ from Lemma 22. Similarly, V_{r} does not contain an agent in state d_{q} for any q. Hence, V_{r} contains one agent in state initial or initial'. Thus, if $r=1$, the lemma holds.

In the following, we assume $r \geq 2$. Similarly to Lemma 24, we can prove that r agents in V_{r} transition to $g_{1}, g_{2}, \ldots, g_{r-1}$ and m_{r}. That is, we can easily observe the following facts. If all agents in V_{r} are in initial or initial', they can transition to $g_{1}, g_{2}, \ldots, g_{r-1}$ and m_{r} by interacting one by one. If an agent in state d_{q} exists in V_{r} for some q, it eventually transitions to initial. If two agents in states m_{i} and m_{j} exist in V_{r} for some i and j, they can transition to d_{i-1} and d_{j-1}. If V_{r} contains exactly one agent in state m_{p} for some p, V_{r} contains $p-1$ agents in states $g_{1}, g_{2}, \ldots, g_{p-1}$ and $r-p$ agents in states initial and initial'. In this case, agents in state m_{p}, initial, and initial' can transition to $g_{p}, g_{p+1}, \ldots, g_{r-1}$ and m_{r}.

Since V^{\prime} contains $\lfloor n / k\rfloor$ agents in state g_{x} for every x and V_{r} contains r agents in states $g_{1}, g_{2}, \ldots, g_{r-1}$ and m_{r}, the lemma holds.

Lemma 26 proved that a configuration specified in the lemma is reachable from a configuration specified in Lemma 25. Thus, similarly to Lemma 25, we can obtain the following lemma.

Lemma 27. Assume that $r=n-k \cdot\lfloor n / k\rfloor>0$ holds. For any execution $\Xi=$ C_{0}, C_{1}, \ldots, there exists C_{t} such that 1) $\# g_{x}=\lfloor n / k\rfloor+1$ holds for any $x(1 \leq x \leq$ $r-1)$, 2) $\# g_{x}=\lfloor n / k\rfloor$ holds for any $x(r \leq x \leq k)$, and 3) $\#$ ini $=1$ holds if $r=1$ and $\# m_{r}=1$ holds if $r \geq 2$.

Let $r=n-k \cdot\lfloor n / k\rfloor$. From Lemmas 25 and 27, a population eventually reaches a configuration C^{*} such that 1$) \# g_{x}=\lfloor n / k\rfloor+1$ holds for any $x(1 \leq x \leq r-1)$, 2) $\# g_{x}=\lfloor n / k\rfloor$ holds for any $x \geq r$, and 3$) \# i n i=1$ holds if $r=1$ and $\# m_{r}=1$ holds if $r \geq 2$. Since $\gamma\left(g_{x}\right)=x$ holds for $x(1 \leq x \leq k), \gamma\left(m_{p}\right)=p$ holds for p $(2 \leq p \leq k-1)$, and $\gamma($ ini $)=1$ holds for $i n i \in\{$ initial, initial $\}$, the number of agents in each group is $\lfloor n / k\rfloor$ or $\lfloor n / k\rfloor+1$. In addition, no transition can happen at C^{*}. This implies that C^{*} is stable. Therefore, we have the following theorem.

Theorem 17. The proposed protocol solves the uniform k-partition problem. That is, there exists a symmetric protocol with $3 k-2$ states and designated initial states that solves the uniform k-partition problem under global fairness.

5.2.4 Simulation Results

In this section, we discuss the time complexity of the proposed protocol by simulations. We evaluate the time complexity by the total number of interactions until

Figure 5. The number of interactions for $k \in\{4,6,8\}$ with changing the population size n
a population reaches a stable configuration. In the simulations, we construct an execution by selecting two agents uniformly at random in each configuration and making them interact. Note that, if we construct an infinite execution by this way, the execution satisfies global fairness with probability 1. For all simulation settings, we conduct a simulation 100 times and show the average values as the results.

Varying the population size n

Figure 5 shows the number of interactions for $k \in\{4,6,8\}$ with changing the population size (i.e., the number of agents) n. As n increases, the number of interactions tends to increase. However, the number of interactions sometimes decreases when n increases. We can observe that such a phenomenon is repeated with a period of a length of k. That is, $n \bmod k$ influences the number of interactions.

Figure 6. The number of interactions to achieve the i-th grouping

To observe the details of executions, we focus on the number of interactions required to construct one set of agents in states $g_{1}, g_{2}, \ldots, g_{k}$. We refer to this construction by grouping. Recall that, once an agent enters state g_{k}, the set of agents never goes back to initial. Let $N I_{i}$ be the number of interactions required to construct the i-th set of agents in states $g_{1}, g_{2}, \ldots, g_{k}$. We define $N I_{0}=0$. We count $N I_{i}^{\prime}=N I_{i}-N I_{i-1}$, i.e., the number of interactions to achieve the i-th grouping. We show the results in Figure 6. In this figure, we show $N I_{1}^{\prime}$ at the bottom of the figure (denoted by 1st-grouping), $N I_{2}^{\prime}$ at the second to the bottom (denoted by 2nd-grouping), and so on. Figure 6 shows that $N I_{1}^{\prime}<$ $N I_{2}^{\prime}<\cdots$ holds except for the last part (i.e., transitions of the remaining $n \bmod k$ agents). This is because, as the execution proceeds, the number of agents not in a group decreases and consequently agents require more interactions to achieve the grouping. In addition, we can observe that, for any positive integer c, when $n=c \cdot k+2, c \cdot k+3, \ldots, c \cdot k+(k+1)$ holds, the number of interactions to achieve the $(c+1)$-th grouping (shown in the top of each graph) increases steeply with n. In

Figure 7. The number of interactions for $k \in\{3,4,5,6\}$ with changing the population size n
addition, the number of interactions for the $(c+1)$-th grouping accounts for more than half of the total number of interactions for $n=c \cdot k+k$ and $n=c \cdot k+(k+1)$. These facts influence juggy forms of graphs in Figure 5.

Hereafter, to prevent the effect of $n \bmod k$, we execute simulations for the case where $n \bmod k=0$ holds.

Figure 7 shows the number of interactions for $k \in\{3,4,5,6\}$ with changing the population size n. We consider $n=120 \cdot n^{\prime}$ for $n^{\prime} \in\{1,2, \ldots, 8\}$ so that $n \bmod k=0$ holds. Figure 7 shows that, as n increases, the number of interactions also increases. The number of interactions seems to increase more than linearly but less than exponentially with n.

Varying the number of groups k

The logarithmic graph in Figure 8 shows the number of interactions for $n=960$ with changing k. To avoid the effect of $n \bmod k$, we show the results only for the case where $n \bmod k=0$ holds. Figure 8 shows that the number of interac-

Figure 8. The number of interactions for $n=960$ with changing k
tions seems to increase exponentially with k. This is because, to create a set of groups including agents with states g_{1} to g_{k}, a m_{2}-state agent interacts $k-2$ free agents (i.e., agents with state initial or initial') without interacting other m-state agents. Since interaction of initial and initial' agents creates a m-state agent, a non-negligible number of m-state agents exist. Hence, the possibility that an agent interacts $k-2$ free agents without interacting m-state agents becomes exponentially small when k becomes large. This increases the number of interactions exponentially with k.

6. Concluding Remarks

In this part, we focus on the uniform k-partition problem on complete graphs. We considered the problem under various assumptions such as the existence of a base station, fairness, symmetry of protocols, and initial states of agents. For the case of $k=2$, we clarified the solvability for each combination of assumptions. Moreover, for each solvable case, we proposed a space-optimal protocol (i.e., we clarified tight upper and lower bounds on the number of states per agent for each
case).
On the other hand, for the general case of an arbitrary number of partitions (the uniform k-partition), we clarified the solvability for most cases (23 out of 24 cases). Moreover, we clarified tight upper and lower bounds on the number of states per agent for many of solvable cases (10 out of 15 cases). Concretely, for 19 cases, we extended the results of the uniform 2-partition to results of the uniform k-partition, and we proposed a symmetric protocol with $3 k-2$ states and designated initial states that solves the uniform k-partition problem under global fairness (this protocol works for 2 cases). This symmetric protocol is asymptotically space-optimal because $\Omega(k)$ states are necessary for any uniform k-partition protocol. Moreover, we evaluated the time complexity of the protocol by simulations. From the simulation results, we can observe that the time complexity increases exponentially with k but not exponentially with n.

We show that our most results can be applied to the k-partition. That is, even for the k-partition, we clarified the solvability and space-complexity in many cases. Concretely, for the 2-partition, we clarified solvability for all cases and clarified tight upper and lower bounds on the number of states for 22 out of 24 cases, and, for the k-partition, we clarified solvability for 23 out of 24 cases and clarified tight upper and lower bounds on the number of states for 8 out of 15 solvable cases.

Part IV

Uniform 2-partition on Arbitrary Graphs

1. Introduction

In this part, we aim to clarify the space complexity of the uniform 2-partition on arbitrary graphs. In Part III, we have only dealt with the uniform k-partition on complete graphs. In the original population protocol model, Angluin et al. mainly studied computability of the model on complete communication graphs (i.e., all agents can interact with each other). Then, many subsequent papers also studied various problems on complete communication graphs. However, in recent years, researchers have studied problems on various communication graphs [$5,11,14,26,27,37,44]$. Actually, in realistic systems, the communication graph may not be a complete graph because low-performance devices may not move so wide. For example, in a sensor network system, sensors may be scattered over a large area and some of them may move only a short distance because sensors move passively. Because of this, some pair of sensors never communicate with each other and thus the communication graph is not a complete graph.

1.1 Our Contributions

A summary of the results is presented in Table 9. Let us first observe that, as complete communication graphs are a special case of arbitrary communication graphs, the impossibility results in Section 3.1.1 remain valid in our setting. With a base station (be it initialized or non-initialized) under global fairness, we extend the three states protocol with designated initial states in Section 3.1.1 from complete communication graphs to arbitrary communication graphs. With a non-initialized base station and designated initial states, we propose a new symmetric protocol with $3 P+1$ states that solves the problem under weak fairness with the assumption that an upper bound P of the number of agents is given to agents. These results yield identical upper bounds for the easier cases of

Table 9. Minimum number of states to solve the uniform 2-partition problem on arbitrary graphs under global fairness.

Base station	Initial states	Symmetry	Upper bound	Lower bound
Initialized base station	Designated	Asymmetric	3	3
		Symmetric	3	3
	Arbitrary	Asymmetric	-	4
		Symmetric	-	4
Non-initialized base station	Designated	Asymmetric	3	3
		Symmetric	3	3
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	
No base station	Designated	Asymmetric	4	4
		Symmetric	5	5
	Arbitrary	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	

Table 10. Minimum number of states to solve the uniform k-partition problem under weak fairness on complete graphs. P is a known upper bound of the number of agents, and $l \geq 3$ and h are positive integers.

Base station	Initial states	Symmetry	Upper bound	Lower bound
Initialized base station	Designated	Asymmetric Symmetric	$3 P+1$ $3 l+1$ for no $l \cdot h$ cycle	3
		Asymmetric	-	P
	Symmetric	-	$P+1$	
Non-initialized base station	Designated	Asymmetric Symmetric	$3 P+1$ $3 l+1$ for no $l \cdot h$ cycle	3
		Asymmetric	Unsolvable	
	Symmetric	Unsolvable		
No base station	Designated	Asymmetric	Unsolvable	
		Symmetric	Unsolvable	
	Asymmetric	Unsolvable		

asymmetric protocols and/or initialized base station. In addition, we also show a condition of communication graphs where the number of states in the protocol can be reduced from $3 P+1$ to constant. Concretely, we show that the number of states in the protocol can be reduced to $3 l+1$ if we assume communication graphs such that every cycle either includes the base station or its length is not a multiple of l, where l is a positive integer greater than three. With no base station and designated initial states, we prove that four and five states are necessary and sufficient to solve uniform 2-partition under global fairness with asymmetric and symmetric protocols, respectively. In the same setting, in complete graphs, three and four states are necessary and sufficient. So, one additional state enables us to solve the problem on arbitrary graphs. On the other hand, by changing the fairness assumption from global fairness to weak fairness, we prove that the problem cannot be solved, by using a similar argument as in the impossibility result for leader election by Fischer and Jiang [30]. Overall, we show the solvability of uniform 2-partition in a variety of settings for a population of agents assuming arbitrary communication graphs.

1.2 Problem Definition

Let $Y=\{$ red, blue $\}$ be an output set of the uniform 2-partition problem. Let $\gamma: Q_{p} \rightarrow\{$ red, blue $\}$ be a function that maps a state of an agent to Y. We define the color of an agent a as $\gamma(s(a))$. Then, we say that agent a is red (resp., blue) if $\gamma(s(a))=$ red (resp., $\gamma(s(a))=$ blue) holds. If an agent a has state s such that $\gamma(s)=$ red (resp., $\gamma(s)=$ blue), we call a a red agent (resp., a blue agent). For some population V, the number of red agents (resp., blue agents) in V is denoted by $\# \operatorname{red}(V)$ (resp., \#blue (V)). When V is clear from the context, we simply write \#red and \#blue.

A configuration C is stable with respect to the uniform 2-partition if there exists a partition $\left\{H_{r}, H_{b}\right\}$ of V_{p} that satisfies the following conditions:

1. $\left|\left|H_{r}\right|-\right| H_{b} \| \leq 1$ holds, and
2. For every configuration C^{\prime} such that $C \xrightarrow{*} C^{\prime}$, each agent in H_{r} (resp., H_{b}) remains red (resp., blue) in C^{\prime}.

An execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots$ solves the uniform 2-partition problem if Ξ includes a configuration C_{t} that is stable for uniform 2-partition. Finally, a protocol \mathcal{P} solves the uniform 2-partition problem if every possible execution Ξ of protocol \mathcal{P} solves the uniform 2-partition problem.

2. Upper Bounds with a Non-initialized Base Station and Designated Initial States

In this section, we prove some upper bounds on the number of states that are required to solve the uniform 2-partition problem on arbitrary graphs with designated initial states and a non-initialized base station. More concretely, with global fairness, we propose a symmetric deterministic protocol with three states by extending the protocol in Section 3.1.1 from a complete communication graph to an arbitrary communication graph. In the case of weak fairness, we present a symmetric protocol with $3 P+1$ states, where P is a known upper bound of the number of agents. Recall that we consider only deterministic protocols in this dissertation.

2.1 Upper Bound for Symmetric Protocols under Global Fairness

The state set of agents in this protocol is $Q_{p}=\{$ initial, red, blue $\}$, and we assume that $\gamma($ initial $)=\gamma($ red $)=$ red and $\gamma($ blue $)=$ blue hold. The designated initial state of agents is initial. The idea of the protocol is as follows: the base station assigns red and blue to agents whose state is initial alternately. As the base station cannot meet every agent (the communication graph is arbitrary), the positions of state initial are moved throughout the communication graph using transitions. Thus, if an agent with initial state exists somewhere in the network, the base station has infinitely many chances to interact with a neighboring agent with initial state. This implies that the base station is able to repeatedly assign red and blue to neighboring agents with initial state unless no agent anywhere in the network has initial state. Since the base station assigns red and blue alternately, the uniform 2-partition is completed after no agent has initial state.

To make red and blue alternately, the base station has a state set $Q_{b}=\left\{b_{r e d}\right.$, $\left.b_{\text {blue }}\right\}$. Using its current state, the base station decides which color to use for the next interaction with a neighboring agent with initial state. Now, to move the position of an initial state in the communication graph, if an agent with initial state and an agent with red (or blue) state interact, they exchange their states. This implies that eventually an agent adjacent to the base station has initial state and then the agent and the base station interact (global fairness guarantees that such interaction eventually happens). Transition rules of the protocol are the following (for each transition rule $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$, transition rule $(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)$ exists, but we omit the description).

1. $\left(b_{\text {red }}\right.$, initial $) \rightarrow\left(b_{\text {blue }}, r e d\right)$
2. $\left(b_{\text {blue }}\right.$, initial $) \rightarrow\left(b_{\text {red }}\right.$, blue $)$
3. $($ blue, initial $) \rightarrow($ initial, blue $)$
4. (red, initial) $\rightarrow($ initial, red $)$

From these transition rules, eventually each agent transitions to red or blue. Hence, there exist $\lceil n / 2\rceil$ red (resp., blue) agents, and $\lfloor n / 2\rfloor$ blue (resp., red) agents if the base station has $b_{\text {red }}$ (resp., $b_{\text {blue }}$) as an initial state. When no agent has initial state, the protocol converges (indeed, no interaction is defined when no agent has initial state). Therefore, the protocol solves the uniform 2-partition problem.

We now prove the correctness of the protocol.
Theorem 18. In the population protocol model with a non-initialized base station, there exists a symmetric protocol with three states per agent that solves the uniform 2-partition problem with designated initial states assuming global fairness in arbitrary communication graphs.

Proof. Recall that \#red (resp., \#blue) denotes the number of agents in state s such that $\gamma(s)=$ red (resp., $\gamma(s)=$ blue) holds, thus initially $\# r e d=n$ and $\# b l u e=0$ hold. We show that eventually $|\# r e d-\# b l u e| \leq 1$ holds and no agent ever changes its state afterwards. Transition rules 1 and 2 indicate that, if the
base station has state $b_{\text {red }}$ (resp., $b_{\text {blue }}$), and an agent with initial state interact, the agent state becomes red (resp., blue), and the base station state becomes $b_{\text {blue }}$ (resp., $b_{\text {red }}$). By repeating these transitions, agents are assigned red and blue alternately, and the number of agents in state initial decreases. This implies that, eventually $\mid \#$ red $-\# b l u e \mid \leq 1$ holds by alternating transition rules 1 and 2 (transition rules 1 and 2 are never enabled simultaneously, and executing one disables it while enabling the other). Transition rules 3 and 4 indicate that, if an agent with initial state and an agent with red (or blue) state interact, they exchange their states. From the global fairness hypothesis and transition rules 3 and 4, if there exists an agent with initial state, the base station and a neighboring agent with initial state eventually interact. Thus, transition rules 1 and 2 occur repeatedly unless no agent has initial. After all agents have red or blue state, no agent ever changes its color. Recall that agents are assigned red and blue alternately and thus $\mid \#$ red $-\# b l u e \mid \leq 1$ holds after those assignments. Moreover, the arguments do not depend on the initial state of the base station, and the proposed protocol is symmetric. Therefore, the theorem holds.

Note that, under weak fairness, this protocol does not solve the uniform 2partition problem. This is because we can construct a weakly-fair execution of this protocol such that some agents keep initial state infinitely often. For example, we can make an agent keep initial by constructing an execution as follows: If the agent (in initial) interacts with an agent in red or blue, the next interaction occurs between the same pair of agents.

2.2 Upper Bound for Symmetric Protocols under Weak Fairness

2.2.1 A protocol on arbitrary graphs

In this protocol, every agent x has variables color ${ }_{x} \in\{i n i, r, b\}$ and depth ${ }_{x} \in\{\perp$, $1,2, \ldots, P\}$. Variable color x_{x} represents the color of agent x. That is, for an agent x, if color $_{x}=$ ini or color $x=r$ holds, $\gamma(s(x))=$ red holds. On the other hand, if color $_{x}=b$ holds, $\gamma(s(x))=$ blue holds. The protocol is given in Algorithm 4.

The basic strategy of the protocol is the following.

```
Algorithm 4 Uniform 2-partition protocol with \(3 P+1\) states.
Variables at the base station:
    \(R B \in\{r, b\}\) : The state that the base station assigns next
Variables at an agent \(x\) :
    color \(_{x} \in\{\) ini, \(r, b\}\) : Color of the agent, initialized to ini
    depth \(_{x} \in\{\perp, 1,2,3, \ldots, P\}\) : Depth of agent \(x\) in a tree rooted at the base
    station, initialized to \(\perp\)
    when an agent \(x\) and the base station interact do
        if color \(_{x}=\) ini and depth \({ }_{x}=1\) then
            color \(_{x} \leftarrow R B\)
            \(R B \leftarrow \overline{R B}\)
        end if
        if depth \(_{x}=\perp\) then
            \(\operatorname{depth}_{x} \leftarrow 1\)
        end if
    end
    when two agents \(x\) and \(y\) interact do
        if depth \(_{y} \neq \perp\) and depth \(_{x}=\perp\) then
            depth \(_{x} \leftarrow\) depth \(_{y}+1\)
        else if depth \(h_{x} \neq \perp\) and depth \(_{y}=\perp\) then
            depth \(_{y} \leftarrow\) depth \(_{x}+1\)
        end if
        if depth \(_{x}<\) depth \(_{y}\) and color \(_{y}=\) ini then
            color \(_{y} \leftarrow\) color \(_{x}\)
            color \(_{x} \leftarrow\) ini
        end if
        if depth \(_{y}<\) depth \(_{x}\) and color \(_{x}=\) ini then
            color \(_{x} \leftarrow\) color \(_{y}\)
            color \(_{y} \leftarrow\) ini
        end if
    end
Note: If depth \(=\perp\) holds, color \(_{x}=\) ini holds.
```

1. Create a spanning tree rooted at the base station. Concretely, agent x assigns its depth in a tree rooted at the base station into variable depth h_{x}. Variable depth h_{x} is initialized to \perp. Variable depth h_{x} obtains the depth of x in the spanning tree as follows: If the base station and an agent p with depth $h_{p}=\perp$ interact, depth h_{p} becomes 1 . If an agent q with $d e p t h_{q} \neq \perp$ and an agent p with depth $=\perp$ interact, depth h_{p} becomes depth $h_{q}+1$. By these behaviors, for any agent x, eventually variable $d_{\text {epth }}^{x}$ has a depth of x in a tree rooted at the base station.
2. Using the spanning tree, carry the initial color ini toward the base station and make the base station assign r and b to agents one by one. Concretely, if agents x and y interact and both depthy $<\operatorname{depth}_{x}$ and color ${ }_{x}=i n i$ hold, x and y exchange their colors (i.e., ini is carried from x to y). Hence, since ini is always carried to a smaller depth, eventually an agent z with depth $_{z}=1$ obtains ini. After that, the base station and the agent z interact and the base station assigns r or b to z. Note that, if the base station assigns r (resp., b), the base station assigns b (resp., r) next.

Then, for any agent v, eventually color $_{v} \neq i n i$ holds. Hence, there exist $\lceil n / 2\rceil$ red (resp., blue) agents, and $\lfloor n / 2\rfloor$ blue (resp., red) agents if variable $R B$ in the base station has r (resp., b) as an initial value. Therefore, the protocol solves the uniform 2-partition problem.

From now, we demonstrate the correctness of the protocol. Let $\#$ ini $=\mid\{x \mid$ color $_{x}=$ ini $\}|, \# r=|\left\{x \mid\right.$ color $\left._{x}=r\right\} \mid$, and $\# b=\mid\left\{x \mid\right.$ color $\left._{x}=b\right\} \mid$. First of all, by the pseudocode, we can observe that $\# r, \# b$, and $\# i n i$ do not change except for an interaction between the base station and an agent v such that depth ${ }_{v}=1$ and color $_{v}=i n i$ hold. This is because $\# r, \# b$, and $\# i n i$ are changed only by lines 3-4.

Lemma 28. For any weakly-fair execution of Algorithm 4, unless an interaction occurs between the base station and an agent v such that depth ${ }_{v}=1$ and color $_{v}=$ ini hold, \#r, \#b, and \#ini do not change.

We now show three basic properties of variable depth. First, we have the following lemma because, in the pseudocode, agent v never changes depth ${ }_{v}$ if $\operatorname{depth}_{v} \neq \perp$ holds.

Lemma 29. For any agent v, when depth $\neq \perp$ holds in a configuration, depth v does not change afterwards.

Then, we show the remaining properties of variable depth.
Lemma 30. For any agent v, depth ${ }_{v} \neq \perp$ holds after some configuration in any weakly-fair execution of Algorithm 4.

Proof. By the weak fairness assumption, for any agent v_{0} adjacent to the base station, eventually v_{0} and the base station interact. By lines 6-7 of the pseudocode, $\operatorname{depth}_{v_{0}} \neq \perp$ holds after the interaction with the base station. From Lemma 29, for any agent v, once depth $h_{v} \neq$ holds, depth $v \neq \perp$ holds perpetually. As the graph is connected, if there is a pair of agents v and v^{\prime} such that depth $=\perp$ and $d e p t h_{v^{\prime}} \neq \perp$ hold, there is a pair of adjacent agents v_{a} and v_{b} such that depth $h_{v_{a}}=\perp$ and $\operatorname{depth}_{v_{b}} \neq \perp$ hold. Hence, eventually such agents v_{a} and v_{b} interact by the weak fairness assumption, and after the interaction occurs, depth ${v_{a}} \neq \perp$ holds. By using a similar argument, for any agent v, eventually $\operatorname{depth} h_{v} \neq$ holds.

Lemma 31. For any agent v_{1}, when depth ${v_{1}}$ is neither \perp nor one, then v_{1} is adjacent to an agent v_{2} such that depth ${v_{1}}=$ depth $_{v_{2}}+1$ holds. When depth $v_{v_{1}}$ is 1 , v_{1} is adjacent to the base station.

Proof. We focus on interactions such that an agent v assigns a value other than \perp to depth ${ }_{v}$. By Lemmas 29 and 30, the number of such interactions for a given agent is exactly one. We consider two cases.

First, we consider the case when depthv becomes one by the interaction. From the protocol, depth h_{v} can become one only if the base station and v interact. Hence, v is adjacent to the base station.

Next, we consider the case where depthv becomes neither \perp nor one by the interaction. From the protocol, if the interaction happens between v and an agent w, depth h_{v} becomes depth $h_{w}+1$ by the interaction. By Lemma 29, depth ${ }_{w}$ and depth h_{v} never change afterward. Thus, the lemma holds.

From the above lemmas, we show that eventually $\# i n i=0$ holds in any weakly-fair execution of the protocol.

Lemma 32. For any weakly-fair execution of Algorithm 4, \#ini $=0$ holds after finite time.

Proof. For the purpose of contradiction, let us assume that, after some configuration C, \#ini >0 never decreases. Let us consider a configuration C^{\prime} such that $\operatorname{depth}_{v} \neq \perp$ holds for any agent v in C^{\prime}, and C^{\prime} appears after C. By Lemma 30, such C^{\prime} exists. In C^{\prime}, let Ini $=\left\{x \mid\right.$ color $\left._{x}=i n i\right\}$, and let $v_{1} \in$ Ini be an agent such that depth ${v_{1}}=\min \left\{d e p t h_{x} \mid x \in I n i\right\}$ holds. By Lemma 31, either depth ${v_{1}}=1$ holds or v_{1} is adjacent to an agent v_{2} such that $\operatorname{depth}_{v_{2}}=\operatorname{depth}_{v_{1}}-1$.

First, we consider the case when depth ${v_{1}}=1$ holds. By Lemma 31, v_{1} is adjacent to the base station. Since depth $h_{v_{1}}=1$ holds, there is not an agent v_{2}^{\prime} such that depth $h_{v_{2}^{\prime}}<\operatorname{depth}_{v_{1}}$ holds. Hence, from the protocol, color $v_{v_{1}}$ keeps ini unless v_{1} and the base station interact. Thus, eventually v_{1} with color $r_{v_{1}}=i n i$ and the base station interact. Then, \#ini decreases in this case.

Next, we consider the case where v_{1} is adjacent to an agent v_{2} such that depth $_{v_{2}}=$ depth $_{v_{1}}-1$. From the protocol, since depth $_{v_{1}} \neq 1$ holds, color $v_{v_{1}}$ keeps ini unless an interaction happens between v_{1} and an agent v_{2}^{\prime} such that depth $h_{v_{2}^{\prime}}<$ depth $v_{v_{1}}$ holds. From the weak fairness, eventually v_{1} and such v_{2}^{\prime} interact and color $_{v_{2}^{\prime}}$ becomes ini. At that time, the smallest depth of agents with color ini decreases. By repeating this behavior similarly, eventually some agent v_{h} with depth $v_{v_{h}}=1$ obtains color ini. After that, v_{h} and the base station interact and \#ini decreases. This is a contradiction.

Next, we prove that $|\# r-\# b| \leq 1$ always holds in any weakly-fair execution of the protocol.

Lemma 33. For any configuration in any weakly-fair execution of Algorithm 4, (i) $0 \leq \# r-\# b \leq 1$ holds if $R B=b$ holds, and (ii) $0 \leq \# b-\# r \leq 1$ holds if $R B=r$ holds.

Proof. Let us consider an execution $\Xi=C_{0}, C_{1}, \ldots$ of the protocol. We prove the lemma by induction on the index of a configuration. In the base case $\left(C_{0}\right), \# r=$ $\# b=0$ holds and thus alternatives (i) and (ii) of the lemma hold immediately.

For the induction step, assume that there exists an integer $i \geq 0$ such that the lemma holds in C_{i}. Let us consider an interaction at $C_{i} \rightarrow C_{i+1}$. We consider two cases.

First, we consider the case where, for an agent v such that $\operatorname{depth}_{v}=1$ and color $_{v}=$ ini hold, the base station and v do not interact. By Lemma 28, when the base station and such v do not interact, $\# r, \# b$, and $\# i n i$ do not change. Moreover, from the protocol, $R B$ does not change at the interaction, and thus both alternatives (i) and (ii) of the lemma hold in this case.

Next, we consider the case where, for an agent v such that $\operatorname{depth}_{v}=1$ and color $_{v}=$ ini hold, the base station and v interact.

- In the case where $R B=r$ holds in C_{i} : After the interaction at $C_{i} \rightarrow C_{i+1}$, $\# r$ increases by one and $R B$ becomes b. By the induction assumption, since $0 \leq \# b-\# r \leq 1$ holds in $C_{i}, 0 \leq \# r-\# b \leq 1$ and $R B=b$ hold in C_{i+1}. Hence, alternatives (i) and (ii) of the lemma hold.
- In the case where $R B=b$ holds in C_{i} : After the interaction at $C_{i} \rightarrow C_{i+1}, \# b$ increases by one and $R B$ becomes r. By the induction assumption, since $0 \leq \# r-\# b \leq 1$ holds in $C_{i}, 0 \leq \# b-\# r \leq 1$ and $R B=r$ hold in C_{i+1}. Hence, alternatives (i) and (ii) of the lemma hold.

Thus, the lemma holds.
Using Lemmas 32 and 33, we show that the protocol solves the uniform 2partition problem.

Theorem 19. Algorithm 4 solves the uniform 2-partition problem. That is, there exists a protocol with $3 P+1$ states and designated initial states that solves the uniform 2-partition problem under weak fairness assuming arbitrary communication graphs with a non-initialized base station.

Proof. By Lemmas 32 and $33,|\# r-\# b| \leq 1$ holds in any weakly-fair execution of the protocol and eventually $\# i n i=0$ holds in the execution. Moreover, from the protocol, when there exists no agent v such that color ${ }_{v}=i n i$, any agent x does not change its color $_{x}$. Thus, the protocol solves the problem. Additionally, the protocol works with $2 P+(P+1)$ states. This is because, if depth $h_{x}=\perp$ holds, color $_{x}=i n i$ holds. That is, depth h_{x} takes $\perp, 1,2, \ldots, P$ for ini, and takes $1,2, \ldots$, P for r and b.

Therefore, the theorem holds.

2.2.2 A protocol with constant states on a restricted class of graphs

In this subsection, we show that the space complexity of Algorithm 4 can be reduced to constant for communication graphs such that every cycle either includes the base station or its length is not a multiple of l, where l is a positive integer at least three.

We modify Algorithm 4 as follows. Each agent maintains the distance from the base station by computing modulo l plus 1 . That is, we change lines 12 and 14 in Algorithm 4 to depth ${ }_{x} \leftarrow$ depth $_{y} \bmod l+1$ and depth $h_{y} \leftarrow$ depth $_{x} \bmod l+1$, respectively. Now depth $\left.\operatorname{den}_{x} \in \perp, 1,2,3, \ldots, l\right\}$ holds for any agent x. Then we define the relation depth ${ }_{x}<$ depth $_{y}$ as follow: depth $h_{x}<$ depth $_{y}$ holds if and only if $d^{\text {depth }}{ }_{y}-$ depth $_{x} \bmod l=1$ holds, and we use depth $h_{x}<$ depth $_{y}$ instead of depth $h_{x}<$ $d^{2} p t h_{y}$ in lines 16 and 20.

We can easily observe that these modifications do not change the essence of Algorithm 4. For two agents x and y, we say $x<y$ if depth $h_{x}<d e p t h_{y}$ holds. Each agent x eventually assigns a depth of x minus 1 modulo l plus 1 to depth h_{x}, and at that time there exists a path $x_{0}, x_{1}, \ldots, x_{h}$ such that x_{0} is a neighbor of the base station, $x=x_{h}$ holds, and $x_{i}<x_{i+1}$ holds for any $0 \leq i<h$. In addition, there exists no cycle $x_{0}, x_{1}, \ldots, x_{h}=x_{0}$ such that $x_{i}<x_{i+1}$ holds for any $0 \leq i<h$. This is because, from the definition of relation ' $<$ ', the length of such a cycle should be a multiple of l, but we assume that underlying communication graphs do not include a cycle of agents in V_{p} whose length is a multiple of l. Hence, similarly to Algorithm 4, we can carry the initial color ini toward the base station and make the base station assign r and b to agents one by one.

Corollary 7. There exists a protocol with $3 l+1$ states and designated initial states that solves the uniform 2-partition problem under weak fairness assuming arbitrary communication graphs with a non-initialized base station if, for any cycle of the communication graphs, it either includes the base station or its length is not a multiple of l, where l is a positive integer at least three.

```
Algorithm 5 Uniform 2-partition protocol with four states.
A state set
    \(Q=\left\{r^{\omega}, b^{\omega}, r, b\right\}\)
A mapping to colors
    \(\gamma\left(r^{\omega}\right)=\gamma(r)=r e d\)
    \(\gamma\left(b^{\omega}\right)=\gamma(b)=\) blue
Transition rules
1. \(\left(r^{\omega}, r^{\omega}\right) \rightarrow(r, b)\)
2. \(\left(r^{\omega}, b^{\omega}\right) \rightarrow(b, b)\)
3. \(\left(r^{\omega}, r\right) \rightarrow\left(r, r^{\omega}\right)\)
4. \(\left(b^{\omega}, b\right) \rightarrow\left(b, b^{\omega}\right)\)
5. \(\left(r^{\omega}, b\right) \rightarrow\left(r, b^{\omega}\right)\)
6. \(\left(b^{\omega}, r\right) \rightarrow\left(b, r^{\omega}\right)\)
```


3. Upper and Lower Bounds with No Base Station and Designated Initial States

In this section, we show upper and lower bounds of the number of states to solve the uniform 2-partition problem with no base station and designated initial states on arbitrary communication graphs. Concretely, under global fairness, we prove that the minimum number of states for asymmetric deterministic protocols is four, and the minimum number of states for symmetric protocols is five. Under weak fairness, we prove that the uniform 2-partition problem cannot be solved without a base station using proof techniques similar to those Fischer and Jiang [30] used to show the impossibility of leader election. Recall that we consider only deterministic protocols in this dissertation.

3.1 Upper Bound for Asymmetric Protocols under Global Fairness

In this subsection, on arbitrary graphs with designated initial states and no base station under global fairness, we give an asymmetric protocol with four states.

We define a state set of agents as $Q=\left\{r^{\omega}, b^{\omega}, r, b\right\}$, and function γ as follows: $\gamma\left(r^{\omega}\right)=\gamma(r)=$ red and $\gamma\left(b^{\omega}\right)=\gamma(b)=b l u e$. We say an agent has a token if its state is r^{ω} or b^{ω}. Initially, every agent has state r^{ω}, that is, every agent is red and
has a token. The transition rules are given in Algorithm 5 (for each transition rule $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ except for transition rule 1 , transition rule $(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)$ exists, but we omit the description).

The basic strategy of the protocol is as follows. When two agents with tokens interact and one of them is red, a red agent transitions to blue and the two tokens are deleted (transition rules 1 and 2). Since n tokens exist initially and the number of tokens decreases by two in an interaction, $\lfloor n / 2\rfloor$ blue agents appear and $\lceil n / 2\rceil$ red agents remain after all tokens (except one token for the case of odd n) disappear. To make such interactions, the protocol moves a token when agents with and without a token interact (transition rules 3, 4, 5, and 6). Global fairness guarantees that, if two tokens exist, an interaction of transition rule 1 or 2 happens eventually. Therefore, the uniform 2-partition is achieved by the protocol.

From now, we prove the correctness of the protocol. We define $\# r, \# b, \# r^{\omega}$, $\# b^{\omega}$ as the number of agents that have state $r, b, r^{\omega}, b^{\omega}$, respectively. Let $\#$ red $=\# r+\# r^{\omega}$ and $\# b l u e=\# b+\# b^{\omega}$ be the number of red and blue agents, respectively. Let $\# t o k e n=\# r^{\omega}+\# b^{\omega}$ be the number of agents with tokens.

Lemma 34. In any globally-fair execution of Algorithm 5, $\# r=\# b+2 \cdot \# b^{\omega}$ holds in any configuration.

Proof. Let us consider an execution $\Xi=C_{0}, C_{1}, \ldots$ of the protocol. We prove the equation by induction on the index of a configuration. The base case is the case of C_{0}. In this case, the equation holds because all agents have r^{ω} initially. For the induction step, assume that the equation holds in $C_{i}(0 \leq i)$. Let us consider an interaction at $C_{i} \rightarrow C_{i+1}$ for each transition rule.

- Transition rule 1: When the transition rule 1 occurs at $C_{i} \rightarrow C_{i+1}, \# r$ and $\# b$ increase by one.
- Transition rule 2: When the transition rule 2 occurs at $C_{i} \rightarrow C_{i+1}$, \#b ${ }^{\omega}$ decreases by one, and \#b increases by two.
- Transitions rule 3 and 4: When the transition rule 3 or 4 occurs at $C_{i} \rightarrow C_{i+1}$, $\# r, \# b$, and $\# b^{\omega}$ do not change.
- Transition rule 5: When the transition rule 5 occurs at $C_{i} \rightarrow C_{i+1}, \# b$ decreases by one, and $\# r$ and $\# b^{\omega}$ increase by one.
- Transition rule 6: When the transition rule 6 occurs at $C_{i} \rightarrow C_{i+1}, \# b$ increases by one, and $\# r$ and $\# b^{\omega}$ decrease by one.

For every case, $\# r=\# b+2 * \# b^{\omega}$ holds in C_{i+1}. Therefore, the lemma holds.
Lemma 35. For any globally-fair execution of the Algorithm 5, \#token ≤ 1 holds after finite time.

Proof. First of all, there is no transition rule that increases \#token. This implies that, if \#token ≤ 1 holds at some configuration, \#token ≤ 1 holds thereafter. Hence, for the purpose of contradiction, we assume that there exists a globallyfair execution Ξ of the protocol where \#token $=x>1$ continuously holds after some configuration.

Let us consider a configuration C that occurs infinitely often in Ξ. Note that C is stable and satisfies \#token $=x$. First, we show that a blue agent exists in C. In the initial configuration, all agents have r^{ω}. Thus, by the first interaction, an agent with b occurs by transition rule 1 . Since there is no transition that decreases the number of blue agents, there exists a blue agent in C. In addition, since $\# r=\# b+2 \cdot \# b^{\omega}$ holds by Lemma 34, a red agent exists in C. Let us consider two agents a_{1} and a_{2} such that a_{1} is adjacent to a_{2}, and a_{1} is red, and a_{2} is blue in C.

Since tokens can move through a graph without changing colors by swapping states (transition rules $3,4,5$, and 6), a configuration C^{\prime} such that a_{1} and a_{2} have a token is reachable from C. When a_{1} and a_{2} interact at $C^{\prime} \rightarrow C^{\prime \prime}$, \#token $=x-2$ holds in $C^{\prime \prime}$. From the global fairness assumption, since C occurs infinitely often in $\Xi, C^{\prime \prime}$ also occurs infinitely often. Since \#token $=x$ continuously holds after some configuration, this is a contradiction.

Next, by using these lemmas, we show that Algorithm 5 solves the problem under the assumptions.

Theorem 20. Algorithm 5 solves the uniform 2-partition problem. That is, there exists a protocol with four states and designated initial states that solves the
uniform 2-partition problem under global fairness on arbitrary communication graphs.

Proof. Since \#token is reduced only by transition rules 1 and 2 , \#token is reduced by two in an interaction. This implies that, by Lemma 35, when n is even (resp., odd), \#token $=0($ resp., \#token $=1$) holds after some configuration C.

First, we consider the case where n is even. By Lemma 34, if \#token $=0$ holds, $\# r=\# b$ holds. Hence, since $n=\# r+\# b+\#$ token holds, $\# r=\# b=n / 2$ holds at C. Moreover, since agents can change their colors only if \#token ≥ 2 holds, they do not change their colors after C. Hence C is a stable configuration, and thus the uniform 2-partition is completed.

Next, we consider the case where n is odd. When \#token $=1$ holds, we consider two cases. If an agent in state r^{ω} exists at C, by Lemma 34, $\# r=\# b$ holds and thus $\# r e d=\# r+\# r^{\omega}=\# b+1=\# b l u e+1$ holds. If an agent in state b^{ω} exists at C, by Lemma 34, $\# r=\# b+2$ holds and thus $\# r e d=\# r=\# b+\# b^{\omega}+1=$ $\# b l u e+1$ holds. Hence, in both cases, \#red $-\# b l u e=1$ holds at C. Since agents can change their colors only if $\# t o k e n \geq 2$ holds, they do not change their colors after C. Hence C is a stable configuration, and thus the uniform 2-partition is completed.

3.2 Upper Bound for Symmetric Protocols under Global Fairness

In this subsection, with arbitrary communication graphs with designated initial states and no base station under global fairness, we give a symmetric protocol with five states. We obtain the symmetric protocol by applying a transformer proposed in [22] to the protocol in subsection 3.1. The transformer simulates an asymmetric protocol on a symmetric protocol. To do this, the transformer requires additional states. Moreover, the transformer works with a complete communication graphs. We show that one additional state is sufficient to transform from the asymmetric uniform 2-partition protocol to symmetric one even if we assume arbitrary graphs.

Observe that, with designated initial states and no base station, clearly no symmetric protocol can solve the problem if the number of agents n is two (the state of the two agents is the same in the initial state, so symmetry is never

```
Algorithm 6 Uniform 2-partition protocol with five states.
A state set
    \(Q=\left\{r_{0}^{\omega}, r_{1}^{\omega}, b^{\omega}, r, b\right\}\)
A mapping to colors
    \(\gamma\left(r_{0}^{\omega}\right)=\gamma\left(r_{1}^{\omega}\right)=\gamma(r)=r e d\)
    \(\gamma\left(b^{\omega}\right)=\gamma(b)=b l u e\)
```


Transition rules

```
1. \(\left(r_{0}^{\omega}, r_{0}^{\omega}\right) \rightarrow\left(r_{1}^{\omega}, r_{1}^{\omega}\right)\)
2. \(\left(r_{1}^{\omega}, r_{1}^{\omega}\right) \rightarrow\left(r_{0}^{\omega}, r_{0}^{\omega}\right)\)
3. \(\left(r_{0}^{\omega}, r_{1}^{\omega}\right) \rightarrow(r, b)\)
4. \(\left(r_{0}^{\omega}, b^{\omega}\right) \rightarrow(b, b)\)
5. \(\left(r_{1}^{\omega}, b^{\omega}\right) \rightarrow(b, b)\)
6. \(\left(r_{0}^{\omega}, r\right) \rightarrow\left(r, r_{0}^{\omega}\right)\)
7. \(\left(r_{1}^{\omega}, r\right) \rightarrow\left(r, r_{0}^{\omega}\right)\)
8. \(\left(b^{\omega}, b\right) \rightarrow\left(b, b^{\omega}\right)\)
9. \(\left(r_{0}^{\omega}, b\right) \rightarrow\left(r, b^{\omega}\right)\)
10. \(\left(r_{1}^{\omega}, b\right) \rightarrow\left(r, b^{\omega}\right)\)
11. \(\left(b^{\omega}, r\right) \rightarrow\left(b, r_{0}^{\omega}\right)\)
```

broken and uniform 2-partition cannot occur). Thus, we assume that $n \geq 3$ holds.
We define a state set of agents as $Q=\left\{r_{0}^{\omega}, r_{1}^{\omega}, b^{\omega}, r, b\right\}$, and function γ as follows: $\gamma\left(r_{0}^{\omega}\right)=\gamma\left(r_{1}^{\omega}\right)=\gamma(r)=$ red and $\gamma\left(b^{\omega}\right)=\gamma(b)=$ blue. We say an agent has a token if its state is $r_{0}^{\omega}, r_{1}^{\omega}$, or b^{ω}. Initially, every agent has state r_{0}^{ω}, that is, every agent is red and has a token. The transition rules are given in Algorithm 6.

The idea of Algorithm 6 is similar to Algorithm 5. That is, when two agents with tokens interact and one of them is red, a red agent transitions to blue, and the two tokens are deleted. Then, eventually $\lfloor n / 2\rfloor$ blue agents appear and $\lceil n / 2\rceil$ red agents remain after all tokens (except one token for the case of odd n) disappear. However, to make a red agent transition to a blue agent in the first place, Algorithm 5 includes transition rule 1 that makes agents with the same states transition to different states. This implies that Algorithm 5 is not symmetric. Hence, by borrowing the technique proposed in [22], we improve Algorithm 5 so that the new protocol (Algorithm 6) makes a red agent transition to a blue agent without such a transition (and two tokens are deleted at that
time). Concretely, we achieve it as follows. In Algorithm 6, there are two states r_{0}^{ω} and r_{1}^{ω} that are red and have a token. When two agents with r_{0}^{ω} interact, they transition to r_{1}^{ω}, and vice versa (transition rules 1 and 2). Thus, under global fairness, eventually an agent with r_{0}^{ω} interacts with an agent with r_{1}^{ω} and then one of them transitions to blue, and two tokens are deleted (transition rule 3). Observe that these transitions do not affect the essence of Algorithm 5. This is because the numbers of blue agents, red agents, and tokens do not change after transition rules 1 and 2, and a red agent transitions to blue, and two tokens are deleted at transition rule 3 .

We now prove the correctness of Algorithm 6 along the proof in subsection 3.1. We define $\# r, \# b, \# r_{0}^{\omega}, \# r_{1}^{\omega}, \# b^{\omega}$ as the number of agents that have state $r, b, r_{0}^{\omega}, r_{1}^{\omega}, b^{\omega}$, respectively. Let $\# r e d=\# r+\# r_{0}^{\omega}+\# r_{1}^{\omega}$ and $\# b l u e=\# b+\# b^{\omega}$ be the number of red and blue agents, respectively. Let $\# t o k e n=\# r_{0}^{\omega}+\# r_{1}^{\omega}+\# b^{\omega}$ be the number of agents with tokens.

Recall that a mechanism of symmetry breaking (transition rules 1,2 , and 3) does not affect the essence of Algorithm 5. In particular, if $r_{0}^{\omega}=r_{1}^{\omega}\left(=r^{\omega}\right)$ holds, Algorithm 6 is equal to Algorithm 5. Thus, since an equation of Lemma 34 holds in any configuration of any execution of Algorithm 6 and $\# r^{\omega}$ is not related to the equation, the following corollary holds.

Corollary 8. In any globally-fair execution of Algorithm 6, $\# r=\# b+2 \cdot \# b^{\omega}$ holds in any configuration.

If a blue agent occurs, both red agent and blue agent exist afterwards with Algorithm 6. This is because, similarly to Algorithm 5, there is no transition rule that decreases the number of blue agents in Algorithm 6, and red agents also exist by Corollary 8.

Now, we simply show that eventually a blue agent occurs in any execution Ξ. When $n=\# r_{0}^{\omega}+\# r_{1}^{\omega}$ holds, only transition rules 1,2 , and 3 can occur. Hence, from the global fairness assumption, there is a configuration C such that, for some adjacent agents x and y, x has r_{0}^{ω} and y has r_{1}^{ω} in C and C occurs infinitely often in Ξ. Then, eventually x with r_{0}^{ω} and y with r_{1}^{ω} interact. By the interaction, transition rule 3 happens and thus one blue agent occurs.

Thus, we can observe that both red agent and blue agent exist after some configuration. Then, clearly we can obtain the following lemma by the same
argument as in Lemma 35.
Lemma 36. For any globally-fair execution of Algorithm 6, \#token ≤ 1 holds after some configuration.

Finally, we show, similarly to Theorem 20, that Algorithm 6 solves the uniform 2-partition problem.

Theorem 21. Algorithm 6 solves the uniform 2-partition problem. That is, there exists a symmetric protocol with five states and designated initial states that solves the uniform 2-partition problem under global fairness with arbitrary communication graphs.

Proof. Since \#token is reduced only in transition rules 3, 4, and 5, \#token is reduced by two in an interaction. This implies that, by Lemma 36, when n is even (resp., odd), \#token = 0 (resp., \#token = 1) holds after some configuration C.

After \#token ≤ 1 holds, Algorithm 6 is substantially the same as Algorithm 5 because transition rules 1,2 , and 3 do not occur if \#token ≤ 1 holds. Thus, we can prove the remaining part in the same way as Theorem 20 by using Corollary 8 instead of Lemma 34.

3.3 Lower Bound for Asymmetric Protocols under Global Fairness

In this section, we show that, on arbitrary graphs with designated initial states and no base station under global fairness, there exists no asymmetric protocol with three states.

To prove this, we first show that, when the number of agents n is odd and no more than $P / 2$, each agent changes its own state to another state infinitely often in any globally-fair execution Ξ of any uniform 2-partition protocol, where P is a known upper bound of the number of agents. This proposition holds regardless of the number of states in a protocol.

After that, we prove impossibility of an asymmetric protocol with three states. From the above proposition, in any globally-fair execution of any uniform 2partition protocol, agents change their states infinitely often. Now, since the
number of states is three, the number of red states or the number of blue states is one. This implies that some agents change their color after a stable configuration. Thus, no protocol can solve the uniform 2-partition problem.

From now, we show that, in any globally-fair execution Ξ of a protocol $A l g$ solving uniform 2-partition on an arbitrary communication graph such that the number of agents $n<P / 2$ is odd, all agents transition their own state to another state infinitely often.

Lemma 37. Assume that there exists a uniform 2-partition protocol Alg with designated initial states on arbitrary communication graphs assuming global fairness. Let us consider a graph $G=(V, E)$ such that the number of agents n is odd and no more than $P / 2$. In any globally-fair execution $\Xi=C_{0}, C_{1}, \ldots$ of Alg on G, each agent changes its state infinitely often.

Proof. Let $V=\left\{v_{0}, v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}\right\}$. Assume, for the purpose of contradiction, that there exists v_{α} that does not change its state after some stable configuration C_{h} in globally-fair execution Ξ. Let s_{α} be a state that v_{α} has after C_{h}. Since the number of states is finite, in Ξ, there exists a stable configuration C_{t} that appears infinitely often after C_{h}. Without loss of generality, \#red $(V)-\# b l u e(V)=1$ holds after C_{h}. Let v_{β} be an agent that is adjacent to v_{α}. Let S_{β} be a set of states that v_{β} has after C_{h}.

Next, consider a communication graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ that satisfies the following.

- $V^{\prime}=V_{1}^{\prime} \cup V_{2}^{\prime}$, where $V_{1}^{\prime}=\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n-1}^{\prime}\right\}$ and $V_{2}^{\prime}=\left\{v_{n}^{\prime}, v_{n+1}^{\prime}, v_{n+2}^{\prime}, \ldots\right.$, $\left.v_{2 n-1}^{\prime}\right\}$.
- $E^{\prime}=\left\{\left(v_{x}^{\prime}, v_{y}^{\prime}\right),\left(v_{x+n}^{\prime}, v_{y+n}^{\prime}\right) \in V^{\prime} \times V^{\prime} \mid\left(v_{x}, v_{y}\right) \in E\right\} \cup\left\{\left(v_{\alpha}^{\prime}, v_{n+\beta}^{\prime}\right)\right\}$.

An example $(n=5)$ of G and G^{\prime} is shown in Figure 9.
Over G^{\prime}, we construct an execution Ξ^{\prime} such that, agents in V_{1}^{\prime} and V_{2}^{\prime} behave similarly to Ξ until states of agents in V_{1}^{\prime} and V_{2}^{\prime} converge, and then make interactions so that Ξ^{\prime} satisfies global fairness. Concretely, consider a globally-fair execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, \ldots$ on G^{\prime} as follows:

- For $i \leq t$, when v_{x} interacts with v_{y} at $C_{i} \rightarrow C_{i+1}, v_{x}^{\prime}$ interacts with v_{y}^{\prime} at $C_{2 i}^{\prime} \rightarrow C_{2 i+1}^{\prime}$, and v_{x+n}^{\prime} interacts with v_{y+n}^{\prime} at $C_{2 i+1}^{\prime} \rightarrow C_{2 i+2}^{\prime}$.

Figure 9. An example of communication graphs G and $G^{\prime}(n=5)$.

- After $C_{2 t}^{\prime}$, agents make interactions so that Ξ^{\prime} satisfies global fairness.

The outline of the remaining part of the proof is as follows. Since Ξ is globallyfair, we can show that the following facts hold after states of agents in V_{1}^{\prime} and V_{2}^{\prime} converge in Ξ^{\prime}.

- v_{α}^{\prime} has state s_{α} as long as $v_{n+\beta}^{\prime}$ has a state in S_{β}.
- $v_{n+\beta}^{\prime}$ has a state in S_{β} as long as v_{α}^{\prime} has state s_{α}.

From these facts, in $\Xi^{\prime}, v_{\alpha}^{\prime}$ continues to have state s_{α} and $v_{n+\beta}^{\prime}$ continues to have a state in S_{β}. Hence, in Ξ^{\prime}, each agent in V_{1}^{\prime} cannot notice the existence of agents in V_{2}^{\prime}, and vice versa. Thus, since we assume, without loss of generality, that $\# \operatorname{red}(V)-\# b l u e(V)=1$ holds in stable configuration C_{h} of Ξ, \#red $\left(V^{\prime}\right)-$ \#blue $\left(V^{\prime}\right)=2$ holds in a stable configuration of Ξ^{\prime}.

Now, we show the details of the proof.
In the following, for configuration C^{\prime} in Ξ^{\prime} and configuration C in Ξ, we say C^{\prime} of V_{1}^{\prime} (resp., V_{2}^{\prime}) is equivalent to C if $s\left(v_{x}^{\prime}, C^{\prime}\right)=s\left(v_{x}, C\right)$ (resp., $s\left(v_{x+n}^{\prime}, C^{\prime}\right)=$ $\left.s\left(v_{x}, C\right)\right)$ holds for any $v_{x} \in V$. Observe that, by the definition of $\Xi^{\prime}, C_{2 t}^{\prime}$ of V_{1}^{\prime} and V_{2}^{\prime} is equivalent to C_{t}.

From now, by induction on the index of configuration, we prove the proposition that, for any configuration C_{m}^{\prime} that occurs after $C_{2 t}^{\prime}$, there is a configuration C_{a} (resp., C_{b}) such that 1) C_{m}^{\prime} of V_{1}^{\prime} (resp., V_{2}^{\prime}) is equivalent to C_{a} (resp., C_{b}) and 2) C_{a} (resp., C_{b}) appears infinitely often in Ξ.

The base case is $C_{m}^{\prime}=C_{2 t}^{\prime}$. Since C_{t} appears infinitely often in Ξ and $C_{2 t}^{\prime}$ of V_{1}^{\prime} and V_{2}^{\prime} is equivalent to C_{t}, the base case holds.

For the induction step, assume that, for $C_{m}^{\prime}(m \geq 2 t)$, there are configurations C_{a} and C_{b} that satisfy the conditions. We consider two cases for an interaction
at $C_{m}^{\prime} \rightarrow C_{m+1}^{\prime}$. The first case considers an interaction of v_{α}^{\prime} and $v_{n+\beta}^{\prime}$, and the second case considers other interactions.

First, we consider the case where v_{α}^{\prime} and $v_{n+\beta}^{\prime}$ interact at $C_{m}^{\prime} \rightarrow C_{m+1}^{\prime}$. By the assumption, we have $s\left(v_{\alpha}^{\prime}, C_{m}^{\prime}\right)=s\left(v_{\alpha}, C_{a}\right)=s_{\alpha}, s\left(v_{n+\alpha}^{\prime}, C_{m}^{\prime}\right)=s\left(v_{\alpha}, C_{b}\right)=s_{\alpha}$, and $s\left(v_{n+\beta}^{\prime}, C_{m}^{\prime}\right)=s\left(v_{\beta}, C_{b}\right)$. Hence, since v_{α} does not change its state even when it interacts with v_{β} at C_{b}, any transition rule is of the form $\left(s\left(v_{\beta}, C_{b}\right), s_{\alpha}\right) \rightarrow\left(s, s_{\alpha}\right)$, where s is some state. This implies that, when v_{α}^{\prime} and $v_{n+\beta}^{\prime}$ interact at $C_{m}^{\prime}, v_{\alpha}^{\prime}$ keeps the state s_{α}. Thus, C_{m+1}^{\prime} of V_{1}^{\prime} is still equivalent to C_{a}. Additionally, since $s\left(v_{\alpha}^{\prime}, C_{m}^{\prime}\right)=s\left(v_{n+\alpha}^{\prime}, C_{m}^{\prime}\right)=s\left(v_{\alpha}, C_{b}\right)=s_{\alpha}$ and $s\left(v_{n+\beta}^{\prime}, C_{m}^{\prime}\right)=s\left(v_{\beta}, C_{b}\right)$ hold, $v_{n+\beta}^{\prime}$ changes its state similarly to the case where v_{β} interacts with v_{α} in C_{b}. That is, letting $C_{b^{\prime}}$ be a configuration immediately after v_{α} and v_{β} interact at C_{b}, C_{m+1}^{\prime} of V_{2}^{\prime} is equivalent to $C_{b^{\prime}}$. Since C_{b} occurs infinitely often in Ξ and Ξ is globally fair, $C_{b^{\prime}}$ occurs infinitely often in Ξ. Thus, the proposition holds for C_{m+1}^{\prime}.

Next, we consider the case where at least one agent other than v_{α}^{\prime} and $v_{n+\beta}^{\prime}$ joins an interaction at $C_{m}^{\prime} \rightarrow C_{m+1}^{\prime}$. By the definition, no edge other than $\left(v_{\alpha}^{\prime}, v_{n+\beta}^{\prime}\right)$ connects V_{1}^{\prime} and V_{2}^{\prime}. Hence, if v_{i}^{\prime} and v_{j}^{\prime} interact at $C_{m}^{\prime} \rightarrow C_{m+1}^{\prime}$, either $v_{i}^{\prime} \in V_{1}^{\prime} \wedge v_{j}^{\prime} \in V_{1}^{\prime}$ or $v_{i}^{\prime} \in V_{2}^{\prime} \wedge v_{j}^{\prime} \in V_{2}^{\prime}$ holds. In the former case, letting $C_{a^{\prime}}$ be the configuration immediately after v_{i} and v_{j} interact at C_{a}, C_{m+1}^{\prime} of V_{1}^{\prime} is equivalent to $C_{a^{\prime}}$ and C_{m+1}^{\prime} of V_{2}^{\prime} is still equivalent to C_{b}. In the latter case, letting $C_{b^{\prime}}$ be the configuration immediately after v_{i-n} and v_{j-n} interact at C_{b}, C_{m+1}^{\prime} of V_{1}^{\prime} is still equivalent to C_{a} and C_{m+1}^{\prime} of V_{2}^{\prime} is equivalent to $C_{b^{\prime}}$. Since C_{a} and C_{b} occur infinitely often in Ξ and Ξ is globally fair, such $C_{a^{\prime}}$ and $C_{b^{\prime}}$ occur infinitely often in Ξ and thus the proposition holds in the case.

Recall that, we assumed that $\# \operatorname{red}(V)-\# b l u e(V)=1$ after C_{h} in Ξ. Hence, $\# \operatorname{red}\left(V_{1}^{\prime}\right)-\# b l u e\left(V_{1}^{\prime}\right)=1$ and $\# \operatorname{red}\left(V_{2}^{\prime}\right)-\# b l u e\left(V_{2}^{\prime}\right)=1$ holds after $C_{2 t}^{\prime}$ in Ξ^{\prime}. Thus, \#red $\left(V^{\prime}\right)-\# b l u e\left(V^{\prime}\right)=2$ holds after $C_{2 t}^{\prime}$ in Ξ^{\prime}. Since Ξ^{\prime} is globally fair, this is a contradiction.

From now, by using Lemma 37, we show the theorem.
Theorem 22. There exists no uniform 2-partition protocol with three states and designated initial states on arbitrary communication graphs assuming global fairness when the upper bound of the number of agents $P \geq 6$ is given.

Proof. For the purpose of contradiction, we assume that such a protocol Alg
exists.
Let $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ be a state set of agents. Without loss of generality, $\gamma\left(s_{1}\right)=$ $\gamma\left(s_{2}\right)=$ red and $\gamma\left(s_{3}\right)=$ blue hold. Let us consider a globally-fair execution Ξ of $A l g$ on graph G such that the number of agents is odd and no more than $P / 2$. By Lemma 37, after some stable configuration C_{t} in Ξ, each agent changes its state infinitely often. This implies that each agent with s_{3} transitions to s_{1} or s_{2} after C_{t}. That is, each blue agent transitions to red state after C_{t}. Since C_{t} is stable, this is a contradiction.

Furthermore, by Lemma 37, we can obtain the following corollary.
Corollary 9. Assume that there exists a uniform 2-partition protocol with designated initial states on arbitrary communication graphs assuming global fairness (when the upper bound P of the number of agents is not given). Let us consider a graph $G=(V, E)$ such that the number of agents n is odd. In any globallyfair execution $\Xi=C_{0}, C_{1}, \ldots$ of the protocol on G, each agent changes its state infinitely often.

By this corollary, we have the following theorem by the same argument as in Theorem 22.

Theorem 23. There exists no uniform 2-partition protocol with three states and designated initial states on arbitrary communication graphs assuming global fairness (when the upper bound P of the number of agents is not given).

3.4 Lower Bound for Symmetric Protocols under Global Fairness

In this section, we show that, with arbitrary communication graphs, designated initial states, and no base station assuming global fairness, there exists no symmetric protocol with four states. Recall that, with designated initial states and no base station, clearly any symmetric protocol never solves the problem if the number of agents n is two. Thus, we assume that $3 \leq n \leq P$ holds, where P is a known upper bound of the number of agents. Note that the symmetric protocol proposed in subsection 3.2 solves the problem for $3 \leq n \leq P$.

In this subsection, we newly define $q \stackrel{s y m}{\sim} q^{\prime}$ as follows:

- For states q and q^{\prime}, we say $q \stackrel{s y m}{\sim} q^{\prime}$ if there exists a sequence of states $q=q_{0}, q_{1}, \cdots, q_{k}=q^{\prime}$ such that, for any $i(0 \leq i<k)$, transition rule $\left(q_{i}, q_{i}\right) \rightarrow$ (q_{i+1}, q_{i+1}) exists.

Moreover, we say two agents are homonyms if they have the same state. Intuitively, $q \stackrel{\text { sym }}{\sim} q^{\prime}$ means that an agent in state q can transition to q^{\prime} by a sequence of interactions with homonyms.

Theorem 24. There exists no symmetric protocol for the uniform 2-partition with four states and designated initial states on arbitrary graph assuming global fairness when P is fourteen or more.

For the purpose of contradiction, suppose that there exists such a protocol $A l g$. To begin with, we give a roadmap of the proof. In this proof, by using a property of symmetry, fist we prove some lemmas to show the existence of a state $i n i_{r}$ that satisfies the following conditions.

1. State $i n i_{r}$ is an initial state of each agent, and, for a state $i n i_{b}$, there are transition rules $\left(i n i_{r}, i n i_{r}\right) \rightarrow\left(i n i_{b}, i n i_{b}\right)$ and $\left(i n i_{b}, i n i_{b}\right) \rightarrow\left(i n i_{r}, i n i_{r}\right)$.
2. There is no transition rule that increases the number of agents with $i n i_{r}$ or $i_{i n}{ }_{b}$.
3. If a given graph is a complete graph, the number of agents with $i n i_{r}$ or $i n i_{b}$ converges to at most 1 .
4. Agents can change their colors only if an agent with $s_{1} \in\left\{i n i_{r}, i n i_{b}\right\}$ and an agent with $s_{2} \in\left\{i n i_{r}, i n i_{b}\right\}$ interact.
5. If a given graph is a complete graph with three agents, there exists a stable configuration such that there exists exactly one agent with $s \in\left\{i n i_{r}, i n i_{b}\right\}$ and other agents have different color from a color of s.

Then, we consider a graph G^{\prime} shown as the right side of Figure 10. On the graph, we consider four subgraphs $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$, and G_{4}^{\prime}. By making interactions on each subgraph, we make a configuration such that, agents on subgraph G_{5}^{\prime} have $s \in\left\{i n i_{r}, i n i_{b}\right\}$, and other agents have different color from a color of s and have neither $i n i_{r}$ nor $i n i_{b}$ (this is possible by the above conditions 3 and 5). Then,

Figure 10. An image of graphs G and G^{\prime}.
we make agents on G_{5}^{\prime} transition to an initial state (this is possible by the above condition 1). After that, we make interactions on G_{5}^{\prime} until agents converge. Let C be a resulting configuration. By the above condition 3, in C, the number of agents with $i n i_{r}$ or $i n i_{b}$ on G_{5}^{\prime} is at most 1. Moreover, in C, other agents (agents not on G_{5}^{\prime}) have neither $i n i_{r}$ nor $i n i_{b}$. Thus, by the above condition 2 , the number of agents with $i n i_{r}$ or $i n i_{b}$ on G^{\prime} is at most 1 after C. By the above condition 4, agents do not change their colors after C. Since agents not on G_{5}^{\prime} have different color from a color of s, they have the same color. Thus, after C, there are at least eight agents with the same color whereas the number of agents is twelve. Therefore, the uniform 2-partition problem cannot be solved.

Now, we show the details of the proof. Let R (resp., B) be a state set such that, for any $s \in R$ (resp., $\left.s^{\prime} \in B\right), \gamma(s)=$ red (resp., $\gamma\left(s^{\prime}\right)=$ blue) holds. First, we show that the following lemma holds from Lemma 37.

Lemma 38. $|R|=|B|=2$ holds.
Proof. Assume, for the purpose of contradiction, that $|R| \neq|B|$ holds. Without loss of generality, assume that $|R|=1$ and $|B|=3$ hold (clearly $R \neq \varnothing$ holds and thus only this combination is valid), and let r be the state belonging to R.

Let us consider a graph G such that the number of agents is odd and no more than $P / 2$. At least one agent stabilizes to r in a globally-fair execution of Alg
with G. By Lemma 37, the agent changes its state to a state in B afterwards. This is a contradiction.

Let $i n i_{r}$ and r (resp., $i n i_{b}$ and b) be states belonging to R (resp., B). In addition, without loss of generality, assume that $i n i_{r}$ is the initial state of agents.

From the property of symmetry, the following lemma holds.
Lemma 39. Let us consider a symmetric transition sequence (ini i_{r}, ini $\left._{r}\right) \rightarrow\left(p_{1}, p_{1}\right)$, $\left(p_{1}, p_{1}\right) \rightarrow\left(p_{2}, p_{2}\right),\left(p_{2}, p_{2}\right) \rightarrow\left(p_{3}, p_{3}\right), \ldots$ starting from ini i_{r}. For any $i, p_{i} \neq p_{i+1}$ holds.

Proof. For the purpose of contradiction, suppose that $p_{i}=p_{i+1}$ holds for some i. Let us consider a complete communication graph $G=(V, E)$ such that the number of agents n is four, where $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

Let us consider a globally-fair execution Ξ as follows:

- v_{1} (resp., v_{3}) interacts with $v_{2}\left(\right.$ resp., $\left.v_{4}\right) i$ times.
- After that, make interactions so that Ξ satisfies global fairness.

Since the initial state of agents is $i n i_{r}$, all agents have p_{i} after the i interactions. By the assumption, since $\left(p_{i}, p_{i}\right) \rightarrow\left(p_{i}, p_{i}\right)$ holds, every agent keeps state p_{i} after that. Hence, Ξ cannot reach a stable configuration. Since Ξ is globally fair, this is a contradiction.

Additionally, we can extend Lemma 39 as follows (we show the detail of this proof later):

Lemma 40. There exists some state $s_{b} \in B$ such that $\left(\right.$ ini i_{r}, ini $\left._{r}\right) \rightarrow\left(s_{b}, s_{b}\right)$ and $\left(s_{b}, s_{b}\right) \rightarrow\left(\right.$ ini $\left._{r}, i n i_{r}\right) h o l d$.

Without loss of generality, assume that $\left(i n i_{r}, i n i_{r}\right) \rightarrow\left(i n i_{b}, i n i_{b}\right)$ and $\left(i n i_{b}\right.$, $\left.i n i_{b}\right) \rightarrow\left(i n i_{r}, i n i_{r}\right)$ exist. For some population V, we denote the number of agents with $i n i_{r}$ (resp., $i n i_{b}$) belonging to V as $\# i n i_{r}(V)$ (resp., \#ini (V)). Moreover, let $\# i n i(V)$ be the sum of $\# i n i_{r}(V)$ and $\# i n i_{b}(V)$. When V is clear from the context, we simply denote them as \#ini i_{r} \#ini i_{b}, and \#ini, respectively.

From now, we show that Theorem 24 holds if the following lemmas and corollary hold. We show the detail of these intermediate proofs later (To show Lemma 41, P must be fourteen or more).

Lemma 41. There does not exist a transition rule such that \#ini increases after the transition.

Lemma 42. Let us consider a globally-fair execution Ξ of Alg with some complete communication graph G. After some configuration in Ξ, $\#$ ini ≤ 1 holds.

Corollary 10. Let us consider a state set Ini $=\left\{\right.$ ini $_{r}$, ini $\left.i_{b}\right\}$. When $s_{1} \notin$ Ini or $s_{2} \notin$ Ini holds, if transition rule $\left(s_{1}, s_{2}\right) \rightarrow\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ exists then $\gamma\left(s_{1}\right)=\gamma\left(s_{1}^{\prime}\right)$ and $\gamma\left(s_{2}\right)=\gamma\left(s_{2}^{\prime}\right)$ hold.

We consider a globally-fair execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots$ of $A l g$ with a complete communication graph $G=(V, E)$ such that the number of agents is three, where $V=\left\{v_{0}, v_{1}, v_{2}\right\}$. In a stable configuration of Ξ, either $\# b l u e(V)-\# r e d(V)=1$ or $\# \operatorname{red}(V)-\# b l u e(V)=1$ holds.

First, we consider the case of $\# b l u e(V)-\# \operatorname{red}(V)=1$.
Since $|V| \leq P / 2$ holds and $|V|$ is odd, by Lemma 37 red agents keep exchanging r for $i n i_{r}$ in Ξ. Hence, there exists a stable configuration C_{t} of Ξ such that there exists exactly one agent that has $i n i_{r}$. Without loss of generality, we assume that the agent is v_{0}.

We consider the communication graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ that includes four copies of G. The details of G^{\prime} are as follows:

- Let $V^{\prime}=\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{11}^{\prime}\right\}$. We define a partition of V^{\prime} as $V_{1}^{\prime}=\left\{v_{0}^{\prime}\right.$, $\left.v_{1}^{\prime}, v_{2}^{\prime}\right\}, V_{2}^{\prime}=\left\{v_{3}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}\right\}, V_{3}^{\prime}=\left\{v_{6}^{\prime}, v_{7}^{\prime}, v_{8}^{\prime}\right\}$, and $V_{4}^{\prime}=\left\{v_{9}^{\prime}, v_{10}^{\prime}, v_{11}^{\prime}\right\}$. Let $V_{\text {red }}^{\prime}=\left\{v_{0}^{\prime}, v_{3}^{\prime}, v_{6}^{\prime}, v_{9}^{\prime}\right\}$.
- $E^{\prime}=\left\{\left(v_{x}^{\prime}, v_{y}^{\prime}\right),\left(v_{x+3}^{\prime}, v_{y+3}^{\prime}\right),\left(v_{x+6}^{\prime}, v_{y+6}^{\prime}\right),\left(v_{x+9}^{\prime}, v_{y+9}^{\prime}\right) \in V^{\prime} \times V^{\prime} \mid\left(v_{x}, v_{y}\right) \in\right.$ $E\} \cup\left\{\left(v_{x}^{\prime}, v_{y}^{\prime}\right) \in V^{\prime} \times V^{\prime} \mid x, y \in\{0,3,6,9\}\right\}$.

An image of G and G^{\prime} is shown in Figure 10.
We consider the following execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots$ of $A l g$ with $G^{\prime}=$ (V^{\prime}, E^{\prime}).

- For $i \leq t$, when v_{x} interacts with v_{y} at $C_{i} \rightarrow C_{i+1}, v_{x}^{\prime}$ interacts with v_{y}^{\prime} at $C_{4 i}^{\prime} \rightarrow C_{4 i+1}^{\prime}, v_{x+3}^{\prime}$ interacts with v_{y+3}^{\prime} at $C_{4 i+1}^{\prime} \rightarrow C_{4 i+2}^{\prime}, v_{x+6}^{\prime}$ interacts with v_{y+6}^{\prime} at $C_{4 i+2}^{\prime} \rightarrow C_{4 i+3}^{\prime}$, and v_{x+9}^{\prime} interacts with v_{y+9}^{\prime} at $C_{4 i+3}^{\prime} \rightarrow C_{4 i+4}^{\prime}$.
- After $C_{4 t}^{\prime}$, make interactions between agents in $V_{r e d}^{\prime}$ until states of agents in $V_{\text {red }}^{\prime}$ converge and $\# i n i\left(V_{\text {red }}^{\prime}\right) \leq 1$ holds. We call the configuration $C_{t^{\prime}}^{\prime}$.
- After $C_{t^{\prime}}^{\prime}$, make interactions so that Ξ^{\prime} satisfies global fairness.

Until $C_{4 t}^{\prime}$, agents in $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$, and V_{4}^{\prime} behave similarly to agents in V from C_{0} to C_{t}. This implies that, in $C_{4 t}^{\prime}$, every agent in $V_{\text {red }}^{\prime}$ has state $i n i_{r}$. From Lemma 42, since $i n i_{r}$ is the initial state of agents, it is possible to make interactions between agents in $V_{r e d}^{\prime}$ until states of agents in $V_{r e d}^{\prime}$ converge and \#ini $\left(V_{r e d}^{\prime}\right) \leq 1$ holds. Moreover, since v_{0} is the only agent that has $i n i_{r}$ in C_{t}, no agent in $V_{i}^{\prime} \backslash V_{r e d}^{\prime}(1 \leq i \leq 4)$ has state $i n i_{r}$ or $i n i_{b}$ in $C_{4 t}^{\prime}$. Hence, $\# i n i \leq 1$ holds in $C_{t^{\prime}}^{\prime}$. By Corollary 10, if $\# i n i \geq 2$ does not hold, no agent can change its color. Thus, since $\#$ ini ≤ 1 holds after $C_{t^{\prime}}^{\prime}$ by Lemma 41, no agent can change its color after $C_{t^{\prime}}^{\prime}$. Since v_{1} and v_{2} are blue in $C_{t}, v_{1}^{\prime}, v_{2}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}, v_{7}^{\prime}, v_{8}^{\prime}, v_{10}^{\prime}$, and v_{11}^{\prime} are blue in $C_{t^{\prime}}^{\prime}$. In addition, \#blue $\left(V_{\text {red }}^{\prime}\right)=\# \operatorname{red}\left(V_{\text {red }}^{\prime}\right)$ holds. Hence, \#blue $\left(V^{\prime}\right)-\# r e d\left(V^{\prime}\right)=8$ holds. Since no agent can change its color after $C_{t^{\prime}}^{\prime}$ and Ξ^{\prime} is globally-fair, this is a contradiction.

Next, consider the case of $\# r e d(V)-\# b l u e(V)=1$. In this case, we can prove in the same way as the case of $\# b l u e(V)-\# r e d(V)=1$. However, in the case, we focus on $i n i_{b}$ instead of $i n i_{r}$. That is, we assume that agents in $V_{r e d}^{\prime}$ (i.e., v_{0}^{\prime}, $v_{3}^{\prime}, v_{6}^{\prime}$, and v_{9}^{\prime}) have $i n i_{b}$ in $C_{4 t}^{\prime}$. From $C_{4 t}^{\prime}$, we make v_{0}^{\prime} (resp., v_{6}^{\prime}) interact with v_{3}^{\prime} (resp., v_{9}^{\prime}) once. Then, by Lemma 40, all of them transition to $i n i_{r}$. After that, since all agents in $V_{\text {red }}^{\prime}$ have $i n i_{r}$, we can construct an execution such that only agents in $V_{r e d}^{\prime}$ interact and eventually $\# i n i\left(V_{r e d}^{\prime}\right) \leq 1$ holds. As a result, we can lead to contradiction in the same way as the case of $\# b l u e(V)-\# \operatorname{red}(V)=1$.

Proofs of Lemmas 40, 41, and 42, and Corollary 10

From now, we prove Lemmas 40, 41, and 42, and Corollary 10. First, we show the proof of Lemma 40.

Lemma 40. There exists some state $s_{b} \in B$ such that $\left(\right.$ ini $_{r}$, ini $\left._{r}\right) \rightarrow\left(s_{b}, s_{b}\right)$ and $\left(s_{b}, s_{b}\right) \rightarrow\left(i n i_{r}, i n i_{r}\right) h o l d$.

Proof. Let us consider a globally-fair execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots$ of Alg with a complete communication graph G such that the number of agents n is six. First,
we consider a state q such that there are two or more agents with q in a stable configuration C_{t} of Ξ. Observe that, for any state q^{\prime} such that $q \stackrel{s y m}{\sim} q^{\prime}$ holds, $\gamma(q)=\gamma\left(q^{\prime}\right)$ holds. This is because, if such equation does not hold, it contradicts the definition of the stable configuration (i.e., it contradicts the fact that each agent cannot change its own color after a stable configuration). Using this fact, we show that the lemma holds.

Since the number of states is four and Lemma 39 holds, there are three possible symmetric transition sequences starting from $i n i_{r}$ as follows:

1. For distinct states $i n i_{r}, p_{1}, p_{2}$, and p_{3}, there exists a transition sequence

$$
\left(i n i_{r}, i n i_{r}\right) \rightarrow\left(p_{1}, p_{1}\right),\left(p_{1}, p_{1}\right) \rightarrow\left(p_{2}, p_{2}\right),\left(p_{2}, p_{2}\right) \rightarrow\left(p_{3}, p_{3}\right),\left(p_{3}, p_{3}\right) \rightarrow
$$

$$
(x, x), \ldots, \text { where } x \in\left\{i n i_{r}, p_{1}, p_{2}\right\} .
$$

2. For distinct states $i n i_{r}, p_{1}$, and p_{2}, there exists a transition sequence ($i n i_{r}$,

$$
\left.i n i_{r}\right) \rightarrow\left(p_{1}, p_{1}\right),\left(p_{1}, p_{1}\right) \rightarrow\left(p_{2}, p_{2}\right),\left(p_{2}, p_{2}\right) \rightarrow(y, y), \ldots, \text { where } y \in\left\{i n i_{r}, p_{1}\right\}
$$

3. For distinct states $i n i_{r}$ and p_{1}, there exists a transition sequence ($i n i_{r}, i n i_{r}$) $\rightarrow\left(p_{1}, p_{1}\right),\left(p_{1}, p_{1}\right) \rightarrow\left(i n i_{r}, i n i_{r}\right),\left(i n i_{r}, i n i_{r}\right) \rightarrow\left(p_{1}, p_{1}\right), \ldots$

Case 1: Assume, for the purpose of contradiction, that the transition sequence 1 holds. Let $p \in\left\{p_{1}, p_{2}, p_{3}\right\}$ be a state such that $\gamma(p)=$ red holds. By the assumption, in a stable configuration C_{t} of Ξ, \#red is three. This implies that there exist two agents with $i n i_{r}$ or p. If there exist two agents with $i n i_{r}$ in C_{t}, they can transition to $p^{\prime} \in\left\{p_{1}, p_{2}, p_{3}\right\}$ such that $\gamma\left(p^{\prime}\right)=b l u e \neq \gamma\left(i n i_{r}\right)$ holds by a sequence of interactions with homonyms. Hence, by the definition of stable configurations, there exists at most one agent with $i n i_{r}$ in C_{t} and thus there exist two or more agents with p.

We consider cases of $p=p_{3}, p=p_{2}$, and $p=p_{1}$. In the case of $p=p_{3}$, $\gamma\left(p_{1}\right)=\gamma\left(p_{2}\right)=$ blue holds. By the transition sequence $1, p$ can transition to p_{2} by a sequence of interactions with homonyms. By the definition of stable configurations, since $\gamma(p) \neq \gamma\left(p_{2}\right)$ holds, this case this case cannot occur. In the case of $p=p_{2}$ or $p=p_{1}, \gamma\left(p_{3}\right)=$ blue holds. By the transition sequence $1, p$ can transition to p_{3} by a sequence of interactions with homonyms. By the definition of stable configurations, since $\gamma(p) \neq \gamma\left(p_{3}\right)$ holds, this case cannot occur. Thus, the transition sequence 1 does not hold.

Case 2: Assume, for the purpose of contradiction, that the transition sequence 2 holds. We show that 1) $\gamma\left(p_{1}\right)=\gamma\left(p_{2}\right)=$ blue holds and 2) $y=p_{1}$ holds. After that, from these facts, we show that 3) the transition sequence 2 does not hold.

First we show 1) $\gamma\left(p_{1}\right)=\gamma\left(p_{2}\right)=$ blue holds. Assume, for the purpose of contradiction, that either p_{1} or p_{2} is a red state and the other is a blue state (since $i n i_{r}$ is red state, either p_{1} or p_{2} is blue state). In this case, since $i n i_{r}$ can transition to blue state by a sequence of interactions with homonyms, there exists at most one agent with $i n i_{r}$ in C_{t} of Ξ. Hence, in C_{t}, there exists two red agents with p_{1} or p_{2}. By the transition sequence 2 , p_{1} (resp., p_{2}) can transition to p_{2} (resp., p_{1}) by a sequence of interactions with homonyms. Since $\gamma\left(p_{1}\right) \neq \gamma\left(p_{2}\right)$ holds, this contradicts the definition of stable configuration.

Next, we show 2) $y=p_{1}$ holds. For the purpose of contradiction, assume that $y=i n i_{r}$ holds. In this case, p_{1} and p_{2} can transition to $i n i_{r}$ by a sequence of interactions with homonyms. In addition, $\gamma\left(\right.$ ini $\left.i_{r}\right)=$ red holds. From 1) $\gamma\left(p_{1}\right)=$ $\gamma\left(p_{2}\right)=$ blue, since \#blue is three in a stable configuration C_{t} of Ξ, there exist two agents with p_{1} or p_{2}. These facts contradict the definition of stable configuration.

Finally, we show 3) the transition sequence 2 does not hold.
Let us consider a complete communication graph $\hat{G}=(\hat{V}, \hat{E})$ such that the number of agents n is six, where $\hat{V}=\left\{\hat{v_{0}}, \hat{v_{1}}, \hat{v_{2}}, \ldots, \hat{v_{5}}\right\}$. Moreover, consider a globally-fair execution $\hat{\Xi}$ as follows:

- $\hat{v_{0}}, \hat{v_{1}}$, and $\hat{v_{2}}$ interact with $\hat{v_{3}}, \hat{v}_{4}$, and $\hat{v_{5}}$ once, respectively.
- After that, make interactions so that $\hat{\Xi}$ satisfies global fairness.

After the first item, all agents have p_{1}. Hence, from 1) $\gamma\left(p_{1}\right)=\gamma\left(p_{2}\right)=$ blue and 2) $y=p_{1}$ (i.e., $\left(p_{1}, p_{1}\right) \rightarrow\left(p_{2}, p_{2}\right)$ and $\left(p_{2}, p_{2}\right) \rightarrow\left(p_{1}, p_{1}\right)$ hold), there exists transition rule $\left(p_{1}, p_{2}\right) \rightarrow\left(s_{r 1}, s_{r 2}\right)$ such that $\gamma\left(s_{r 1}\right)=\gamma\left(s_{r 2}\right)=$ blue does not hold. Since transition rules $\left(p_{1}, p_{1}\right) \rightarrow\left(p_{2}, p_{2}\right)$ and $\left(p_{2}, p_{2}\right) \rightarrow\left(p_{1}, p_{1}\right)$ exist and only p_{1} and p_{2} are blue states, a stable configuration \hat{C}_{t} of $\hat{\Xi}$ can reach $\hat{C}_{t^{\prime}}$ such that both p_{1} and p_{2} exist in $\hat{C_{t^{\prime}}}$. Additionally, since $\left(p_{1}, p_{2}\right) \rightarrow\left(s_{r 1}, s_{r 2}\right)$ exists, some agent can change its color after $\hat{C}_{t^{\prime}}$. Since \hat{C}_{t} is stable, this is a contradiction. Thus, the transition sequence 2 does not hold.
Case 3: Since Cases 1 and 2 do not hold, Case 3 holds. Thus, by proving that $\gamma\left(p_{1}\right)=$ blue holds, we can obtain the lemma. We assume, for the pur-
pose of contradiction, that $\gamma\left(p_{1}\right)=$ red holds. Let us consider a globally-fair execution Ξ^{\prime} of $A l g$ with a complete communication graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that the number of agents is six. Since transition rules $\left(i n i_{r}, i n i_{r}\right) \rightarrow\left(p_{1}, p_{1}\right)$ and $\left(p_{1}, p_{1}\right) \rightarrow\left(i n i_{r}, i n i_{r}\right)$ exist and $\gamma\left(i n i_{r}\right)=\gamma\left(p_{1}\right)=$ red holds, there exists transition rule $\left(i n i_{r}, p_{1}\right) \rightarrow\left(s_{b 1}, s_{b 2}\right)$ such that $\gamma\left(s_{b 1}\right)=\gamma\left(s_{b 2}\right)=$ red does not hold. Since transition rules $\left(i n i_{r}, i n i_{r}\right) \rightarrow\left(p_{1}, p_{1}\right)$ and $\left(p_{1}, p_{1}\right) \rightarrow\left(i n i_{r}, i n i_{r}\right)$ exist and only $i n i_{r}$ and p_{1} are red state (and the number of red agents is three in any stable configuration), a stable configuration C_{t}^{\prime} of Ξ^{\prime} can reach $C_{t^{\prime}}^{\prime}$ such that both p_{1} and $i n i_{r}$ exist in $C_{t^{\prime}}^{\prime}$. In addition, since $\left(i n i_{r}, p_{1}\right) \rightarrow\left(s_{b 1}, s_{b 2}\right)$ exists, some agent can change its color from $C_{t^{\prime}}^{\prime}$. Since C_{t}^{\prime} is stable, this is a contradiction. Therefore, $\gamma\left(p_{1}\right)=$ blue holds and thus the lemma holds.

Next, from Lemmas 37 and 40, we prove the following lemmas.
Lemma 43. Let us consider a globally-fair execution Ξ of Alg with some complete communication graph $G=(V, E)$. In any stable configuration of Ξ, there is at most one agent with ini i_{r} and at most one agent with ini i_{b}.

Proof. For the purpose of contradiction, assume that there exists a stable configuration C_{t} of Ξ such that there are more than one agent with ini (or more than one agent with $\left.i n i_{b}\right)$. Since $G=(V, E)$ is a complete communication graph, two agents with $i n i_{r}$ (or two agents with $i n i_{b}$) can interact. By Lemma 40, ini_{r} (resp., $i n i_{b}$) transitions to $i n i_{b}$ (resp., $i n i_{r}$). Since $\gamma\left(i n i_{r}\right) \neq \gamma\left(i n i_{b}\right)$ holds and C_{t} is stable, this is a contradiction.

Lemma 44. Let us consider a globally-fair execution Ξ of Alg with a complete communication graph $G=(V, E)$ such that the number of agents n is odd and no more than $P / 2$. There exists a stable configuration $C_{t_{1}}$ (resp., $C_{t_{2}}$) such that there exists exactly one agent with ini i_{r} (resp., ini ${ }_{b}$), and $C_{t_{1}}$ (resp., $C_{t_{2}}$) occurs infinitely often in Ξ.

Proof. Let us consider a globally-fair execution Ξ of $A l g$ with a complete communication graph $G=(V, E)$ such that the number of agents n is odd and no more than $P / 2$. From Lemma 43, if some agent change its state to $i n i_{r}$ (resp., ini i_{b}) in a stable configuration of Ξ, there exists exactly one agent with $i n i_{r}$ (resp., $i n i_{b}$) in the resulting configuration. Thus, from Lemma 37, since red agents (resp.,
blue agents) keep exchanging r for $i n i_{r}$ (resp., b for $i n i_{b}$) in Ξ, there is a stable configuration $C_{t_{1}}$ (resp., $C_{t_{2}}$) of Ξ such that there exists exactly one agent with $i n i_{r}$ (resp., ini i_{b}) and $C_{t_{1}}$ (resp., $C_{t_{2}}$) occurs infinitely often in Ξ.

Lemma 45. There exist transition rules $(r, r) \rightarrow(r, r),(b, b) \rightarrow(b, b)$, and $(r, b) \rightarrow$ (r, b).

Proof. Let us consider a globally-fair execution Ξ of $A l g$ with a complete communication graph $G=(V, E)$ such that the number of agents n is seven. Let us consider a stable configuration $C_{t_{1}}$ (resp., $C_{t_{2}}$) of Ξ such that there exists exactly one agent with $i n i_{r}$ (resp., $i n i_{b}$) and $C_{t_{1}}$ (resp., $C_{t_{2}}$) occurs infinitely often in Ξ. From Lemma 44, such $C_{t_{1}}$ and $C_{t_{2}}$ exist. Note that, since we assume that $P \geq 14$ holds, we can use Lemma 44 (because $n=7 \leq P / 2$ holds and n is odd). Since the number of agents n is seven, there exist at least two agents with r and at least two agents with b in $C_{t_{1}}$ and $C_{t_{2}}$. Hence, since G is a complete graph and $C_{t_{1}}$ and $C_{t_{2}}$ are stable, we can say the following.

- If $(r, r) \rightarrow\left(r^{\prime}, r^{\prime}\right)$ exists, $\gamma(r)=\gamma\left(r^{\prime}\right)$ holds.
- If $(b, b) \rightarrow\left(b^{\prime}, b^{\prime}\right)$ exists, $\gamma(b)=\gamma\left(b^{\prime}\right)$ holds.
- If $(r, b) \rightarrow\left(r^{\prime \prime}, b^{\prime \prime}\right)$ exists, $\gamma(r)=\gamma\left(r^{\prime \prime}\right)$ and $\gamma(b)=\gamma\left(b^{\prime \prime}\right)$ hold.

In addition, by Lemma 43, r^{\prime} and $r^{\prime \prime}$ are not $i n i_{r}$, and, b^{\prime} and $b^{\prime \prime}$ are not $i n i_{b}$. Therefore, the lemma holds.

From these lemmas, we can prove Lemma 41.
Lemma 41. There does not exist a transition rule such that \#ini increases after the transition.

Proof. For the purpose of contradiction, assume that such a transition rule exists. By Lemma 45, transition rules $(r, r) \rightarrow(r, r),(b, b) \rightarrow(b, b)$, and $(r, b) \rightarrow$ (r, b) exist and these transition rules do not increase \#ini. Hence, there exists $(r b, i n i) \rightarrow\left(i n i_{1}, i n i_{2}\right)$ such that $r b \in\{r, b\}$, and $i n i$, $i n i_{1}, i n i_{2} \in\left\{i n i_{r}, i n i_{b}\right\}^{3}$ hold.

Let us consider a globally-fair execution Ξ of $A l g$ with a complete graph $G=(V, E)$ such that the number of agents n is five. Moreover, consider a stable configuration $C_{t_{1}}$ (resp., $C_{t_{2}}$) such that there exists exactly one agent with $i n i_{r}$
(resp., $i n i_{b}$) and $C_{t_{1}}$ (resp., $C_{t_{2}}$) occurs infinitely often in Ξ. From Lemma 44, such $C_{t_{1}}$ and $C_{t_{2}}$ exist. Note that, because $n=5 \leq P / 2$ and n is odd, we can use Lemma 44. Since the number of agents n is five, there exists at least one agent with r and at least one agent with b in $C_{t_{1}}$ and $C_{t_{2}}$. This implies that, an agent with $i n i_{r}$ (resp., $i n i_{b}$) can interact with an agent with r in $C_{t_{1}}$ (resp., $C_{t_{2}}$). Similarly, an agent with $i n i_{r}$ (resp., ini $_{b}$) can interact with an agent with b in $C_{t_{1}}$ (resp., $C_{t_{2}}$). Moreover, since G is a complete graph and Ξ is globally fair, those interactions happen infinitely often.

First, we consider the case where $i n i=i n i_{r}$ and $r b=r$ hold. Let us consider an interaction between an agent with $i n i_{r}$ and an agent with r in $C_{t_{1}}$. Since any agent cannot change its color in a stable configuration, both agents transition to $i n i_{r}$ by the interaction. However, by Lemma 43, two agents cannot have $i n i_{r}$ in any stable configuration. This is a contradiction. Thus, ini $=i n i_{r}$ and $r b=r$ do not hold. In a similar way, $i n i=i n i_{b}$ and $r b=b$ do not hold.

Next, we consider the case where $i n i=i n i_{r}$ and $r b=b$ hold. Let us consider an interaction between an agent with $i n i_{r}$ and an agent with b in $C_{t_{1}}$. Let $C_{t_{1}^{\prime}}$ be configuration that can be obtained from $C_{t_{1}}$ by the interaction. Since any agent cannot change its color after a stable configuration, one $i n i_{r}$ and one $i n i_{b}$ occur by the interaction. By Lemma 43, there exist exactly one $i n i_{r}$ and exactly one $i n i_{b}$ in $C_{t_{1}^{\prime}}$. This implies that, since $C_{t_{1}^{\prime}}$ is stable and n is five, there exists at least one agent with b and thus an agent with $i n i_{r}$ can interact with an agent with b in $C_{t_{1}^{\prime}}$. Hence, we can obtain $C_{t_{1}^{\prime \prime}}$ from $C_{t_{1}^{\prime}}$ by making interaction between an agent with $i n i_{r}$ and an agent with b. Clearly, in $C_{t_{1}^{\prime \prime}}$, there exist two agents with $i n i_{b}$. This contradicts Lemma 43 and thus $i n i=i n i_{r}$ and $r b=b$ do not hold. In a similar way, we can prove that $i n i=i n i_{b}$ and $r b=r$ do not hold. Hence, for any $r b \in\{r, b\}$ and $i n i \in\left\{i n i_{r}, i n i_{b}\right\}$, transition rule $(r b, i n i) \rightarrow\left(i n i_{1}, i n i_{2}\right)$ with $i n i_{1}$, $i n i_{2} \in\left\{i n i_{r}, i n i_{b}\right\}$ does not exist. Consequently the lemma holds.

By the existence of $\left(i n i_{r}, i n i_{r}\right) \rightarrow\left(i n i_{b}, i n i_{b}\right)$ and $\left(i n i_{b}, i n i_{b}\right) \rightarrow\left(i n i_{r}, i n i_{r}\right)$, we can prove the following lemma.

Lemma 46. There exists a transition rule $\left(\right.$ ini $_{r}$, ini $\left._{b}\right) \rightarrow(x, y)$ such that $x \in\{r, b\}$ or $y \in\{r, b\}$ holds.

Proof. For the purpose of contradiction, assume that, if there is $\left(i n i_{r}, i n i_{b}\right) \rightarrow$
$(x, y), x \in\left\{i n i_{r}, i n i_{b}\right\}$ and $y \in\left\{i n i_{r}, i n i_{b}\right\}$ hold.
Let us consider a globally-fair execution Ξ of $A l g$ with a complete communication graph $G=(V, E)$ such that the number of agents is three. By Lemma 43, there exists at most one agent with $i n i_{r}$ and at most one agent with $i n i_{b}$ in a stable configuration of Ξ. However, by the assumption and the existence of $\left(i n i_{r}, i n i_{r}\right) \rightarrow\left(i n i_{b}, i n i_{b}\right)$ and $\left(i n i_{b}, i n i_{b}\right) \rightarrow\left(i n i_{r}, i n i_{r}\right)$, all agents have $i n i_{r}$ or $i n i_{b}$ permanently in Ξ. This is a contradiction.

By Lemmas 41, 43, and 46, we show the proof of Lemma 42.
Lemma 42. Let us consider a globally-fair execution Ξ of Alg with some complete communication graph G. After some configuration in Ξ, $\#$ ini ≤ 1 holds.

Proof. Let us consider C_{t} such that $\# i n i \leq 2$ holds in C_{t} and C_{t} occurs infinitely often in Ξ. By Lemma 43, such a configuration exists. Moreover, by Lemma 41, $\# i n i \leq 2$ holds even after C_{t}. First, we consider the case where $\# i n i \leq 1$ holds in C_{t}. By Lemma 41, \#ini ≤ 1 holds after C_{t} and thus the lemma holds immediately in this case. Next, consider the case where $\# i n i=2$ holds in C_{t}. By Lemma 43, in C_{t}, there exists an agent v_{1} (resp., v_{2}) with $i n i_{r}$ (resp., $i n i_{b}$). By Lemma 46, when v_{1} interacts with v_{2} at $C_{t} \rightarrow C_{t+1}$, \#ini ≤ 1 holds in C_{t+1}. By global fairness, C_{t+1} occurs infinitely often in Ξ. By Lemma 41, \#ini ≤ 1 holds after C_{t+1} and thus the lemma holds.

From Lemmas 43 and 44, we can obtain the following lemma.
Lemma 47. Let ini $\in\left\{\right.$ ini $\left._{r}, i n i_{b}\right\}$ and $r b \in\{r, b\}$. If $(i n i, r b) \rightarrow(x, y)$ exists, $\gamma($ ini $)=\gamma(x)$ and $\gamma(r b)=\gamma(y)$ hold.

Proof. We assume, for the purpose of contradiction, that there exists $(i n i, r b) \rightarrow$ (x, y) such that $\gamma(i n i) \neq \gamma(x)$ or $\gamma(r b) \neq \gamma(y)$ holds.

Let us consider a globally-fair execution Ξ of $A l g$ with a complete communication graph $G=(V, E)$ such that the number of agents n is five. Because $n=5 \leq P / 2$ and n is odd, we can use Lemma 44. Hence, by Lemmas 43 and 44, there exists a stable configuration $C_{t_{1}}$ (resp., $C_{t_{2}}$) of Ξ such that there is v_{r} (resp., v_{b}), which is the only agent with $i n i_{r}$ (resp., inib) in $C_{t_{1}}$ (resp., $C_{t_{2}}$) and there is $v_{r b}$ with $r b$. By the assumption, when v_{r} (resp., v_{b}) interacts with $v_{r b}$ at
$C_{t_{1}} \rightarrow C_{t_{1}+1}$ (resp., $C_{t_{2}} \rightarrow C_{t_{2}+1}$), v_{r} (resp., v_{b}) or $v_{r b}$ changes its color. Since $C_{t_{1}}$ and $C_{t_{2}}$ are stable, this is a contradiction.

From Lemmas 45 and 47, we can obtain the following corollary.
Corollary 10. Let us consider a state set Ini $=\left\{\right.$ ini $_{r}$, ini $\left._{b}\right\}$. When $s_{1} \notin \operatorname{Ini}$ or $s_{2} \notin$ Ini holds, if transition rule $\left(s_{1}, s_{2}\right) \rightarrow\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ exists then $\gamma\left(s_{1}\right)=\gamma\left(s_{1}^{\prime}\right)$ and $\gamma\left(s_{2}\right)=\gamma\left(s_{2}^{\prime}\right)$ hold.

3.5 Impossibility under Weak Fairness

In this subsection, assuming arbitrary communication graphs and designated initial states and no base station, we show that there is no protocol that solves the problem under weak fairness. Fischer and Jiang [30] proved the impossibility of leader election for a ring communication graph. We borrow their proof technique and apply it to the impossibility proof of a uniform 2-partition problem.

Theorem 25. There exists no protocol that solves the uniform 2-partition problem with designated initial states and no base station under weak fairness assuming arbitrary communication graphs.

Proof. For the purpose of contradiction, let us assume that there exists such a protocol Alg.

First, we consider a complete graph G with three agents v_{0}, v_{1}, and v_{2}. Let $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right)$, and $\left(v_{2}, v_{0}\right)$ be the edges of G. Furthermore, let $\Xi=C_{0}, C_{1}, C_{2}$, \ldots, C_{t}, \ldots be an execution of $A l g$, where C_{t} is a stable configuration. Without loss of generality, we assume that $\#$ red $=1$ and $\# b l u e=2$ hold in C_{t}.

Next, consider a ring G^{\prime} with six agents such that two copies of G are combined to form G^{\prime}. Let $v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, v_{4}^{\prime}$, and v_{5}^{\prime} be agents of G^{\prime}, and let $\left(v_{0}^{\prime}, v_{1}^{\prime}\right),\left(v_{1}^{\prime}\right.$, $\left.v_{5}^{\prime}\right),\left(v_{5}^{\prime}, v_{3}^{\prime}\right),\left(v_{3}^{\prime}, v_{4}^{\prime}\right),\left(v_{4}^{\prime}, v_{2}^{\prime}\right)$, and $\left(v_{2}^{\prime}, v_{0}^{\prime}\right)$ be edges of G^{\prime} (see Figure 11).

Now, let us construct the following execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime} \ldots$

- For x and y such that either $x=0$ or $y=0$ holds, when v_{x} interacts with v_{y} at $C_{i} \rightarrow C_{i+1}, v_{x}^{\prime}$ interacts with v_{y}^{\prime} at $C_{2 i}^{\prime} \rightarrow C_{2 i+1}^{\prime}$, and v_{x+3}^{\prime} interacts with v_{y+3}^{\prime} at $C_{2 i+1}^{\prime} \rightarrow C_{2 i+2}^{\prime}$.

Figure 11. Graphs G and G^{\prime}.

- When v_{1} interacts with v_{2} at $C_{i} \rightarrow C_{i+1}, v_{1}^{\prime}$ interacts with v_{5}^{\prime} at $C_{2 i}^{\prime} \rightarrow C_{2 i+1}^{\prime}$, and v_{4}^{\prime} interacts with v_{2}^{\prime} at $C_{2 i+1}^{\prime} \rightarrow C_{2 i+2}^{\prime}$. Similarly, when v_{2} interacts with v_{1} at $C_{i} \rightarrow C_{i+1}, v_{5}^{\prime}$ interacts with v_{1}^{\prime} at $C_{2 i}^{\prime} \rightarrow C_{2 i+1}^{\prime}$, and v_{2}^{\prime} interacts with v_{4}^{\prime} at $C_{2 i+1}^{\prime} \rightarrow C_{2 i+2}^{\prime}$.

If configurations C of G and C^{\prime} of G^{\prime} satisfy the following condition, we say that those configurations are equivalent.

- For $i(0 \leq i \leq 2), s\left(v_{i}, C\right)=s\left(v_{i}^{\prime}, C^{\prime}\right)=s\left(v_{i+3}^{\prime}, C^{\prime}\right)$ holds.

From now, by induction on the index of configuration, we show that C_{r} and $C_{2 r}^{\prime}$ are equivalent for any $r \geq 0$. Clearly C_{0} and C_{0}^{\prime} are equivalent, so the base case holds immediately. For the induction step, we assume that C_{l} and $C_{2 l}^{\prime}$ are equivalent, and then consider two cases of interaction at $C_{l} \rightarrow C_{l+1}$.

First we consider the case where, for x and y such that either $x=0$ or $y=0$ holds, v_{x} interacts with v_{y} at $C_{l} \rightarrow C_{l+1}$. In this case, at $C_{2 l}^{\prime} \rightarrow C_{2 l+1}^{\prime}, v_{x}^{\prime}$ interacts with v_{y}^{\prime} and, at $C_{2 l+1}^{\prime} \rightarrow C_{2 l+2}^{\prime}, v_{x+3}^{\prime}$ interacts with v_{y+3}^{\prime}. By the induction assumption, $s\left(v_{x}, C_{l}\right)=s\left(v_{x}^{\prime}, C_{2 l}^{\prime}\right)=s\left(v_{x+3}^{\prime}, C_{2 l}^{\prime}\right)$ and $s\left(v_{y}, C_{l}\right)=s\left(v_{y}^{\prime}, C_{2 l}^{\prime}\right)=s\left(v_{y+3}^{\prime}, C_{2 l}^{\prime}\right)$ hold. Thus, agents v_{x}^{\prime} and v_{x+3}^{\prime} change their state similarly to v_{x}, and agents v_{y}^{\prime} and v_{y+3}^{\prime} change their state similarly to v_{y}. Hence, C_{l+1} and $C_{2 l+2}^{\prime}$ are equivalent in this case.

Next, we consider the case where v_{1} and v_{2} interact at $C_{l} \rightarrow C_{l+1}$. When v_{1} interacts with v_{2} at $C_{l} \rightarrow C_{l+1}, v_{1}^{\prime}$ interacts with v_{5}^{\prime} at $C_{2 l}^{\prime} \rightarrow C_{2 l+1}^{\prime}$ and v_{4}^{\prime} interacts with v_{2}^{\prime} at $C_{2 l+1}^{\prime} \rightarrow C_{2 l+2}^{\prime}$. When v_{2} interacts with v_{1} at $C_{l} \rightarrow C_{l+1}, v_{5}^{\prime}$ interacts with v_{1}^{\prime} at $C_{2 l}^{\prime} \rightarrow C_{2 l+1}^{\prime}$ and v_{2}^{\prime} interacts with v_{4}^{\prime} at $C_{2 l+1}^{\prime} \rightarrow C_{2 l+2}^{\prime}$. By the induction assumption, $s\left(v_{1}, C_{l}\right)=s\left(v_{1}^{\prime}, C_{2 l}^{\prime}\right)=s\left(v_{4}^{\prime}, C_{2 l}^{\prime}\right)$ and $s\left(v_{2}, C_{l}\right)=s\left(v_{2}^{\prime}, C_{2 l}^{\prime}\right)=s\left(v_{5}^{\prime}, C_{2 l}^{\prime}\right)$ hold. Thus, agents v_{1}^{\prime} and v_{4}^{\prime} change their state similarly to v_{1}, and agents v_{2}^{\prime} and
v_{5}^{\prime} change their state similarly to v_{2}. Hence, C_{l+1} and $C_{2 l+2}^{\prime}$ are equivalent in this case.

Thus, C_{r} and $C_{2 r}^{\prime}$ are equivalent for any $r \geq 0$.
This implies that, after $C_{2 t}^{\prime}$, \#red = 2 and \#blue $=4$ hold. Moreover, since Ξ is weakly fair, clearly Ξ^{\prime} is weakly fair. This is a contradiction.

4. Concluding Remarks

In this part, we considered the uniform 2-partition problem assuming arbitrary communication graphs. We investigated the problem solvability under various assumptions such as the existence of the base station, initial states of agents, fairness, and symmetry. Concretely, with no base station under global fairness, we proved that four is the minimum number of states per agent to enable asymmetric protocols, and five is the minimum number of states per agent to enable symmetric protocols. With the base station, we showed that three is the minimum number of states per agent. Hence, we clarified that, for the uniform 2-partition under global fairness, there is a difference of just two states between the protocol with and without the base station.

Under weak fairness, we proved the impossibility to obtain an asymmetric protocol with no base station. With a base station, we proposed a symmetric protocol with $3 P+1$ states under weak fairness.

Part V

Graph Class Identification Protocols

1. Introduction

In this part, we aim to clarify the space complexity of the graph class identification problems under various assumptions such as initial states of agents, fairness of the execution, and an initial knowledge of agents. In the population protocol model, Angluin et al. proposed various graph class identification protocols [6]. However, they focused on graph class identification protocols for directed graphs. In this part, we propose graph class identification protocols for undirected graphs. To the best of our knowledge, this is first research that deals with graph class identification problems for undirected graphs.

We remark that some protocols in [6] for directed graphs can be easily extended to undirected graphs with designated initial states under global fairness (see Table 11). Concretely, graph class identification protocols for directed lines, directed rings, and directed stars can be easily extended to protocols for undirected lines, undirected rings, and undirected stars, respectively. In addition, the graph class identification protocol for bipartite graphs can be deduced from the protocol that decides whether a given graph contains a directed cycle of odd length. This is because, if we replace each edge of an undirected non-bipartite graph with two opposite directed edges, the directed non-bipartite graph always contains a directed cycle of odd length. On the other hand, the graph class identification protocol for directed trees cannot work for undirected trees because the protocol uses a property of directed trees such that in-degree (resp., out-degree) of each agent is at most one on an out-directed tree (resp., an in-directed tree). Note that agents can identify trees if they understand the graph contains no cycle. However, the graph class identification protocol for graphs containing a directed cycle in directed graphs cannot be used to identify a (simple) cycle in undirected graphs. This is because, if we replace an undirected edge with two

Table 11. The number of states to solve the graph class identification problems. n is the number of agents and P is an upper bound of the number of agents

Model			Graph Properties					
Initial states	Fairness	Initial knowledge	Line	Ring	Bipartite	Tree	k-regular	Star
Designated	Global	n	$O(1) \dagger$	$O(1) \dagger$	$O(1) \dagger$	$O(1)^{*}$	$O(k \log n)^{*}$	$O(1) \dagger$
		P	$O(1) \dagger$	$O(1) \dagger$	$O(1) \dagger$	$O(1)^{*}$	$O(k \log P)^{*}$	$O(1) \dagger$
		None	$O(1) \dagger$	$O(1) \dagger$	$O(1) \dagger$	$O(1)^{*}$	-	$O(1) \dagger$
	Weak	n	Unsolvable*					$O(n) *$
		$P /$ None	Unsolvable*					
Arbitrary	Global Weak	$n / P /$ None	Unsolvable*					

opposite directed edges, the two directed edges compose a directed cycle.

1.1 Our Contributions

In this part, we clarify the computability of graph class identification problems for undirected graphs under various assumptions. A summary of our results is given in Table 11. Under global fairness, we propose two graph class identification protocols. One is a graph class identification protocol for trees with designated initial states. This protocol works with constant number of states even if no initial knowledge is given. The other is a graph class identification protocol for k-regular graphs with designated initial states and the initial knowledge of the upper bound P of the number of agents. On the other hand, under weak fairness, we show that there exists no graph class identification protocol for lines, rings, k-regular graphs, stars, trees, or bipartite graphs even if the upper bound P of the number of agents is given. In the case where the number of agents n is given, we propose a graph class identification protocol for stars and prove that there exists no graph class identification protocol for lines, rings, k-regular graphs, trees, or bipartite graphs. With arbitrary initial states, we prove that there is no protocol for lines, rings, k-regular graphs, stars, trees, or bipartite graphs.

2. Graph Properties and Problem Definitions

We define graph properties treated in this dissertation as follows:

- A graph G satisfies property tree if there is no cycle on graph G.
- A graph $G=(V, E)$ satisfies property k-regular if the degree of every agent in V is k.
- A graph G satisfies property star if G is a tree with one internal agent and $n-1$ leaves.
- A graph $G=(V, E)$ satisfies property bipartite if V can be divided into two disjoint and independent sets U and W (i.e., $U \cap W=\varnothing$ holds and there is no edge connecting two agents in U or W).
- A graph $G=(V, E)$ satisfies property line if $E=\left\{\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right)\right.$, $\left.\ldots,\left(v_{n-1}, v_{n}\right)\right\}$ for $V=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$.
- A graph $G=(V, E)$ satisfies property ring if the degree of every agent in V is 2 .

Let $g p$ be an arbitrary graph property. The $g p$ identification problem aims to decide whether a given communication graph G satisfies property $g p$. In the $g p$ identification problem, the output set is $Y=\{y e s, n o\}$. Recall that the output function γ maps a state of an agent to an output symbol in Y (i.e., yes or no). A configuration C is stable if C satisfies the following conditions: There exists $y n \in\{y e s, n o\}$ such that 1) $\forall a \in V: \gamma(s(a, C))=y n$ holds, and 2) for every configuration C^{\prime} such that $C \xrightarrow{*} C^{\prime}, \forall a \in V: \gamma\left(s\left(a, C^{\prime}\right)\right)=y n$ holds.

An execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots$ solves the $g p$ identification problem if Ξ includes a stable configuration C_{t} that satisfies the following conditions.

1. If a given graph $G=(V, E)$ satisfies graph property $g p, \forall a \in V: \gamma\left(s\left(a, C_{t}\right)\right)=$ yes holds.
2. If a given graph $G=(V, E)$ does not satisfy graph property $g p, \forall a \in V$: $\gamma\left(s\left(a, C_{t}\right)\right)=n o$ holds.

A protocol \mathcal{P} solves the $g p$ identification problem if every possible execution Ξ of protocol \mathcal{P} solves the $g p$ identification problem.

3. Graph Class Identification Protocols

3.1 Tree Identification Protocol with No Initial Knowledge under Global Fairness

In this section, we give a tree identification protocol (hereinafter referred to as "TI protocol") with 18 states and designated initial states under global fairness.

The basic strategy of the protocol is as follows. First, agents elect one leader token, one right token, and one left token. Agents carry these tokens on a graph by interactions as if each token moves freely on the graph. After the election, agents repeatedly execute a trial to detect a cycle by using the tokens. The trial starts when two adjacent agents x and y have the right token and the left token, respectively. During the trial, x and y hold the right token and the left token, respectively. To detect a cycle, agents use the right token and the left token as a single landmark. The right token and the left token correspond to a right side and a left side of the landmark, respectively. If agents can carry the leader token from the right side of the landmark to the left side of the landmark without passing through the landmark, the trial succeeds. Clearly, when the trial succeeds, there is a cycle. In this case, an agent with the leader token recognizes the success of the trial and decides that there is a cycle and thus the given graph is not a tree. Then, the decision is conveyed to all agents by the leader token and thus all agents decide that the given graph is not a tree. Initially, all agents think that the given graph is a tree. Hence, unless the trial succeeds, all agents continue to think that the given graph is a tree. Therefore, the protocol solves the problem.

Before we explain the details of the protocol, first we introduce variables at agent a.

- $L F_{a} \in\left\{L_{s e}, L_{l}, L_{r}, L_{s e}^{t}, L_{s e^{\prime}}^{t}, L_{s e^{\prime}}, L_{l}^{t}, L_{r}^{t}, \phi\right\}$: Variable $L F_{a}$, initialized to L_{r}, represents a token held by agent a. If $L F_{a}$ is not ϕ, agent a has $L F_{a}$ token. There are three types of tokens: a leader token $\left(L_{s e}, L_{s e}^{t}, L_{s e^{\prime}}^{t}\right.$, and $\left.L_{s e^{\prime}}\right)$, a left token (L_{l} and L_{l}^{t}), and a right token (L_{r} and L_{r}^{t}). We show the details of them later. ϕ represents no token.
- $\operatorname{tre}_{a} \in\{y e s$, no $\}:$ Variable tre e_{a}, initialized to yes, represents a decision of the tree. If tre $e_{a}=$ yes holds for agent a, then $\gamma\left(s_{a}\right)=$ yes holds (i.e., a
decides that the given graph is a tree). If $\operatorname{tr} e_{a}=$ no holds, then $\gamma\left(s_{a}\right)=n o$ holds (i.e., a decides that the given graph is not a tree).

The protocol uses 18 states because the number of values taken by variable $L F_{a}$ is 9 and the number of values taken by variable $\operatorname{tr} e_{a}$ is 2 .

From now, we explain the details of the protocol. The protocol is given in Algorithms 7 and 1.

Election of three tokens (lines 2-8) Initially, each agent has a right token. When two agents with right tokens interact, the agents change one of the tokens to a left token (lines 2-3). When two agents with left tokens interact, the agents change one of the tokens to a leader token (lines 4-5). When two agents with leader tokens interact, the agents delete one of the tokens (lines 6-7). As we explain later, agents carry a token on a graph by interactions as if a token moves freely on the graph. Thus, by the above behaviors, eventually agents elect one right token, one left token, and one leader token.

In the cycle detection part, we will just show behaviors after agents complete the token election (i.e., agents elect one right token, one left token, and one leader token). However, in this protocol, agents may make a wrong decision before agents complete the token election. Agents overcome this problem by the following behaviors.

- Agents behave as if the leader token has the decision, and agents follow the decision. Concretely, when agent a moves the leader token to agent b by an interaction, agent b copies tre_{a} to tre_{b}. Since the leader token moves freely on the graph, finally all agents follow the decision of the leader token.
- When two agents with leader tokens interact and agents delete one of them, the agents reset tre of the remaining leader token. That is, if agent a has the remaining leader token, it assigns yes to tre e_{a} (line 8).

Note that the last token is elected by an interaction between agents with the leader tokens (i.e., the last interaction in this election part occurs between agents with the leader tokens). By this interaction, the elected leader token resets its tre to yes. Hence, tre of the leader token is yes just after agents complete the token election, and all agents follow tre of the leader token. Thus, because agents

```
Algorithm 7 A TI protocol (1/2)
Variables at an agent \(a\) :
    \(L F_{a} \in\left\{L_{s e}, L_{l}, L_{r}, L_{s e}^{t}, L_{s e^{\prime}}^{t}, L_{s e^{\prime}}, L_{l}^{t}, L_{r}^{t}, \phi\right\}\) : Token held by the agent,
    initialized to \(L_{r}\).
    \(\operatorname{tre}_{a} \in\{y e s, n o\}:\) Decision of the tree, initialized to yes.
    when agent \(a\) interacts with agent \(b\) do
    \{The election of tokens \}
        if \(L F_{a}, L F_{b} \in\left\{L_{r}^{t}, L_{r}\right\}\) then
            \(L F_{b} \leftarrow L_{l}\)
        else if \(L F_{a}, L F_{b} \in\left\{L_{l}^{t}, L_{l}\right\}\) then
            \(L F_{b} \leftarrow L_{s e}\)
        else if \(L F_{a}, L F_{b} \in\left\{L_{s e}, L_{s e}^{t}, L_{s e^{\prime}}^{t}, L_{s e^{\prime}}\right\}\) then
            \(L F_{a} \leftarrow L_{s e}, L F_{b} \leftarrow \phi\)
            tre \({ }_{a} \leftarrow y e s\)
    \{ Movement of tokens \}
        else if \(L F_{a} \neq \phi \wedge L F_{b}=\phi\) then
            if \(L F_{a} \in\left\{L_{s e}, L_{s e}^{t}, L_{s e^{\prime}}^{t}, L_{s e^{\prime}}\right\}\) then
                \(t r e_{b} \leftarrow t r e_{a}\)
            end if
            if \(L F_{a}=L_{\kappa}^{t}\) for \(\kappa \in\{l, r\}\) then
                \(L F_{a} \leftarrow L_{\kappa}\)
            else if \(L F_{a}=L_{s e^{\prime}} \vee L F_{a}=L_{s e^{\prime}}^{t}\) then
                \(L F_{a} \leftarrow L_{s e}\)
            end if
            \(L F_{a} \leftrightarrow L F_{b} *\)
    \{ Decision \}
            else if \(L F_{a}=L_{s e} \wedge L F_{b}=L_{l}\) then
            \(L F_{a} \leftarrow L_{l}^{t}, L F_{b} \leftarrow L_{s e^{\prime}}\)
            \(t r e_{b} \leftarrow t r e_{a}\)
        else if \(L F_{a}=L_{s e^{\prime}} \wedge L F_{b}=L_{r}\) then
            \(L F_{a} \leftarrow L_{r}^{t}, L F_{b} \leftarrow L_{s e}^{t}\)
            \(t r e_{b} \leftarrow t r e_{a}\)
            else if \(L F_{a}=L_{s e}^{t} \wedge L F_{b}=L_{l}^{t}\) then
            \(L F_{a} \leftarrow L_{l}, L F_{b} \leftarrow L_{s e^{\prime}}^{t}\)
            \(\operatorname{tre}_{b} \leftarrow\) tre \(_{a}\)
            else if \(L F_{a}=L_{s e^{\prime}}^{t} \wedge L F_{b}=L_{r}^{t}\) then
            \(L F_{a} \leftarrow L_{r}, L F_{b} \leftarrow L_{s e}\)
            \(t r e_{b} \leftarrow n o\)
    * \(p \leftrightarrow q\) means that \(p\) and \(q\) exchange values.
    \(\triangleright\) Continued on the next page
```

```
Algorithm 1 A TI protocol (2/2)
    else if \(L F_{a} \neq \phi \wedge L F_{b} \neq \phi\) then
            if \(L F_{a b} \in\left\{L_{s e}, L_{s e}^{t}, L_{s e^{\prime}}^{t}, L_{s e^{\prime}}\right\}\) for \(a b \in\{a, b\}\) then
                tre \(e_{a} \leftarrow t r e_{a b}\), tre \(_{b} \leftarrow t r e_{a b}\)
            end if
            if \(L F_{a b}=L_{\kappa}^{t}\) for \(a b \in\{a, b\}\) and \(\kappa \in\{l, r\}\) then
                \(L F_{a b} \leftarrow L_{\kappa}\)
            end if
            if \(L F_{a b}=L_{s e^{\prime}} \vee L F_{a b}=L_{s e}^{t} \vee L F_{a b}=L_{s e^{\prime}}^{t}\) for \(a b \in\{a, b\}\) then
                \(L F_{a b} \leftarrow L_{s e}\)
            end if
            \(L F_{a} \leftrightarrow L F_{b}\)
        end if
    end
```

correctly detect a cycle after the token election (we will show this later), agents are not affected by the wrong decision.

Movement of tokens (lines 9-18) When an agent having a token interacts with an agent having no token, the agents move the token (lines 9-18). Concretely, the token moves by a behavior of line 18 . In lines $10-12$, tre of the leader token is conveyed. We will explain the behavior of lines $13-17$ after the explanation of the trial of the cycle detection.

The trial of the cycle detection (lines 19-43) In this paragraph, we show that, by a trial of the cycle detection, agents correctly detect a cycle after agents complete the token election. To begin with, we explain the start of the trial. To start the trial, agents place the left token and the right token next to each other. To distinguish between a moving token and a placed token, we use a trial mode. Agents regard right and left tokens in a trial mode as placed tokens. Thus, when agents place the right token and the left token, agents make the right token and the left token transition to the trial mode. An L_{r}^{t} token (resp., an L_{l}^{t} token) represents the right token (resp., the left token) in the trial mode. An L_{r} token (resp., an L_{l} token) represents the right token (resp., the left token) in a non-trial mode.

An image of the start of the trial is shown in Figure 12. Figures 12(a) and $12(\mathrm{~b})$ show the behavior such that agents make the left token and the right token
transition to the trial mode. First, an agent with an $L_{s e}$ token changes an L_{l} token to an L_{l}^{t} token by an interaction (Figure 12(a)), where the $L_{\text {se }}$ token represents the default leader token. By the interaction, the agents exchange their tokens and the $L_{s e}$ token transitions to an $L_{s e^{\prime}}$ token, where the $L_{s e^{\prime}}$ token represents the leader token next to the L_{l}^{t} token. This behavior appears in lines 19-21. Then, an agent with the $L_{s e^{\prime}}$ token changes the right token to a trial mode by an interaction (Figure 12(b)). By the interaction, the agents exchange their tokens. Thus, since the $L_{s e^{\prime}}$ token represents the leader token next to the L_{l}^{t} token, agents place an L_{r}^{t} token next to the L_{l}^{t} token by the interaction. Hence, by the interaction, agents place the tokens in the following order: the L_{l}^{t} token, the L_{r}^{t} token, the leader token (Figure 12(c)). Moreover, by the interaction, the $L_{s e^{\prime}}$ token transitions to an $L_{s e}^{t}$ token, where the $L_{s e}^{t}$ token represents the leader token trying to detect a cycle. This behavior appears in lines 22-24. When agents place all tokens as shown in Figure 12(c), a trial of the cycle detection starts.

From now, we explain the main behavior of the cycle detection (Figure 13 and 14). Let x (resp., y) be an agent having the L_{r}^{t} token (resp., the L_{l}^{t} token). Let \mathcal{X} (resp., \mathcal{Y}) be a set of agents adjacent to x (resp., y). Let $\mathcal{X}^{\prime}=\mathcal{X} \backslash\{y\}$ and $\mathcal{Y}^{\prime}=\mathcal{Y} \backslash\{x\}$. In a trial, agents try to carry the leader token from an agent in \mathcal{X}^{\prime} to an agent in \mathcal{Y}^{\prime} without using the edge between x and y.

First, we explain the case where a trial succeeds (Figure 13). In the trial, agents carry the $L_{s e}^{t}$ token while the L_{r}^{t} token and the L_{l}^{t} token are placed at x and y, respectively. Concretely, if the following procedure occurs, the trial succeeds.

1. Agents carry the $L_{\text {se }}^{t}$ token from an agent in \mathcal{X}^{\prime} to an agent in \mathcal{Y}^{\prime} without using the edge between x and y (Figure 13(c)).
2. An agent having the $L_{s e}^{t}$ token interacts with agent y having the L_{l}^{t} token. By the interaction, agents exchange their tokens and the $L_{s e}^{t}$ token transitions to an $L_{s e^{\prime}}^{t}$ token (Figure 13(d)). In addition, by the interaction, agents confirm that the L_{l}^{t} token was placed at y while agents move the leader token to an agent in \mathcal{Y}^{\prime}. The $L_{s e^{\prime}}^{t}$ token represents the leader token that confirmed it. This behavior appears in lines 25-27.
3. Agent y having the $L_{s e^{\prime}}^{t}$ token interacts with agent x having the L_{r}^{t} token
(Figure 13(e)). By the interaction, agents confirm that the L_{r}^{t} token was placed at x while agents move the leader token to an agent in \mathcal{Y}^{\prime}. This behavior appears in lines 28-30.

Clearly, if there is no cycle, agents do not perform this procedure. Thus, if agents perform this procedure, an agent with the leader token decides that there is a cycle and thus the given graph is not a tree (Figure 13(f)). Concretely, the agent with the leader token changes its tre to no (line 30).

Next, we explain the case where a trial fails (Figure 14). There are three cases where the trial fails: (1) An agent having the $L_{s e^{\prime}}$ or $L_{s e^{\prime}}^{t}$ token fails to interact with the right token, (2) an agent having the L_{l}^{t} or L_{r}^{t} token fails to wait for the leader token, and (3) an agent having the $L_{s e}^{t}$ token fails to interact with an agent having the L_{l}^{t} token. Case (1) is that an agent having the $L_{s e^{\prime}}$ token (resp., the $L_{s e^{\prime}}^{t}$ token) interacts with an agent that does not have the L_{r} token (resp., the L_{r}^{t} token). Figure $14(\mathrm{~A}-1)$ and (B-1) shows an example of case (1). By the interaction, agents make the token transition to the $L_{s e}$ token (lines 9-17 and 31-43). If agents make the $L_{s e^{\prime}}$ token transition to the $L_{s e}$ token, the condition in line 22 is never satisfied in the trial. If agents make the $L_{s e^{\prime}}^{t}$ token transition to the $L_{s e}$ token, the condition in line 28 is never satisfied in the trial. Case (2) is that an agent having an L_{l}^{t} token (resp., an L_{r}^{t} token) interacts with an agent that does not have the $L_{s e}^{t}$ token (resp., the $L_{s e^{\prime}}^{t}$ token). Figure 14(A-2) and (B-2) shows an example of case (2). By the interaction, agents make the L_{l}^{t} token (resp., the L_{r}^{t} token) transition to an L_{l} token (resp., an L_{r} token) by the behavior of lines 13-14 or 31-37, and thus the condition in line 25 or 28 is never satisfied in the trial. Case (3) is that an agent having the $L_{s e}^{t}$ token interacts with an agent having a token that is not the L_{l}^{t} token. Figure 14(A-3) and (B-3) shows an example of case (3). By the interaction, agents make the $L_{s e}^{t}$ token transition to the $L_{s e}$ token (lines 31-43). If agents make the $L_{s e}^{t}$ token transition to the $L_{s e}$ token, the condition in line 25 is never satisfied in the trial.

Agents have an infinite number of chances of the trial. This is because agents can make the leader token, the left token, and the right token transition to the $L_{s e}$ token, the L_{l} token, and the L_{r} token, respectively, from any configuration (lines 9-18 and 31-43). Hence, from global fairness, eventually agents make the left and right tokens transition to the trial mode on the cycle and then agents

(a)

(b)

(c)

Figure 12. An image of the start of the trial

(c)

(d)

(e)

Figure 13. An image of the success of the trial
find the cycle by the leader token. Thus, eventually a trial succeeds if there is a cycle.

By the behaviors of the trial, since tre of the leader token is yes just after agents complete the token election, tre of the leader token converges to a correct value. Since eventually all agents follow the decision of the leader token, all agents correctly decide whether the given graph is a tree or not.

Correctness

First of all, if the number of agents n is less than 3, clearly a leader token is not generated in Algorithm 7. Hence, in the case, tre $_{a}$ of each agent a converges to yes. Thus, since the given graph with $n<3$ is a tree, each agent make a correct decision in this case. From now on, we consider the case where the number of agents n is at least 3 .

To begin with, we define some notions for the numbers of the leader, left, and right tokens as follows:

Definition 19. The number of agents with L_{r} or L_{r}^{t} tokens is denoted by $\# L_{r}$.

(A-1)

(B-1)

(A-2)

(B-2)

(A-3)

(B-3)

Figure 14. Images of the fail of the trial

The number of agents with L_{l} or L_{l}^{t} tokens is denoted by $\# L_{l}$. The number of agents with $L_{s e}, L_{s e}^{t}, L_{s e^{\prime}}^{t}$, or $L_{s e^{\prime}}$ tokens is denoted by $\# L_{s e}$.

Next, we define a configuration where agents complete the token election.
Definition 20. For an execution $\Xi=C_{0}, C_{1}, \ldots$, we say that agents complete the token election at C_{i} if $\# L_{r}>1, \# L_{l}>1$, or $\# L_{s e}>1$ holds in C_{i-1}, and $\# L_{r}=1$, $\# L_{l}=1$, and $\# L_{s e}=1$ hold in C_{i}.

From now, we show that agents eventually complete the token election, and, for agent a with the leader token, $\operatorname{tre}_{a}=y e s$ hold just after the election.

Lemma 48. For any globally-fair execution $\Xi=C_{0}, C_{1}, \ldots$, there is a configuration C_{i} at which agents complete the token election.

In C_{i}, there exists an agent a that has an $L_{s e}$ token and tre ${ }_{a}$ is yes. Moreover, in any configuration after $C_{i}, \# L_{r}=1, \# L_{l}=1$, and $\# L_{s e}=1$ hold.

Proof. Consider a globally-fair execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots$. From the pseudocode, when an agent having a leader token interacts with an agent having no leader token, agents move the leader token. Similarly, when an agent having a left token (resp., a right token) interacts with an agent having no left token (resp., no right token), agents move the token. Only if an agent having a leader
token interacts with an agent having a leader token, the number of leader tokens decreases. Similarly, only if an agent having a left token (resp., a right token) interacts with an agent having a left token (resp., a right token), the number of the tokens decreases. These imply that, from global fairness, if there are two or more tokens of the same type (leader, left, or right), eventually adjacent agents have the tokens and then they interact.

Hence, from global fairness, because there is no behavior to increase $\# L_{r}$, $\# L_{r}$ continues to decrease as long as $\# L_{r} \geq 2$ holds, by the behavior of lines $2-3$. Thus, after some configuration, $\# L_{r}=1$ holds and the behavior of lines $2-3$ does not occur. After that, because there is no behavior to increase $\# L_{l}$ except for the behavior of lines $2-3, \# L_{l}$ continues to decrease as long as $\# L_{l} \geq 2$ holds, by the behavior of lines $4-5$. Thus, after some configuration, $\# L_{l}=1$ holds and the behavior of lines $4-5$ does not occur. After that, because there is no behavior to increase $\# L_{l}$ except for the behavior of lines $4-5$, $\# L_{s e}$ continues to decrease as long as $\# L_{s e} \geq 2$ holds, by the behavior of lines 6-7. Thus, after some configuration, $\# L_{s e}=1$ holds. Hence, there exists a configuration C_{i} such that $\# L_{r}=1, \# L_{l}=1$, and $\# L_{s e}=1$ hold after C_{i} and $\# L_{r}>1, \# L_{l}>1$, or $\# L_{s e}>1$ holds in C_{i-1}.

If $n>3$ holds, agents execute lines $6-8$ of the pseudocode at transition $C_{i-1} \rightarrow$ C_{i} because only the behavior of lines 6-8 decreases the number of leader tokens. For an agent a with the leader token, the leader token transitions to an $L_{s e}$ token and $\operatorname{tr} e_{a}$ transitions to yes when agents execute lines 6-8. If $n=3$ holds, agents execute lines $4-5$ of the pseudocode at transition $C_{i-1} \rightarrow C_{i}$, and the first leader token is generated by this transition (and hence the leader token is the $L_{s e}$ token and $\operatorname{tre} e_{a}=y e s$ for an agent a with the $L_{s e}$ token). These imply that, in C_{i}, there exists an agent a that has the $L_{s e}$ token and tre e_{a} is yes. Therefore, the lemma holds.

From Lemma 48, after agents complete the token election, only one leader token remains. From now on, we define tre of the leader token as tre $_{a}$ such that agent a has the leader token.

From the pseudocode, tre of the leader token is conveyed to all agents. This implies that, after tre of the leader token converges, tre of each agent also converges to the same value as tre of the leader token. Hence, from now, we show
that tre of the leader token converges to no (resp., yes) if there is a cycle (resp., no cycle) on the graph.

First, we show that tre of the leader token converges to yes if there is no cycle on the graph.

Lemma 49. For any globally-fair execution Ξ, if there is no cycle on a given communication graph, tre of the leader token converges to yes.

Proof. Variable tre of the leader token transitions to no only if agents execute lines 28-30. From Lemma 48, when agents complete the token election, tre of the leader token transitions to yes. Thus, for the purpose of contradiction, we assume that, for a globally-fair execution Ξ with a graph G containing no cycle, agents execute lines 28-30 after agents complete the token election. From now, let us consider the configuration after agents complete the token election. We first prove that, to execute lines 28-30, agents execute the following procedure.

1. By executing lines 19-21, an $L_{s e^{\prime}}$ token and an L_{l}^{t} token are generated.
2. By executing lines $22-24$, an $L_{s e}^{t}$ token and an L_{r}^{t} token are generated.
3. By executing lines $25-27$, an $L_{s e^{\prime}}^{t}$ token is generated.
4. Agents execute lines 28-30.

From now, we show why agents execute the above procedure to execute lines $28-$ 30. To execute lines 28-30, an $L_{s e^{\prime}}^{t}$ token is required (line 28). Recall that, when agents complete the token election, the leader token is $L_{s e}$. Hence, to generate an $L_{s e^{\prime}}^{t}$ token, agents need to execute lines 25-27 (i.e., the item 3 of the procedure is necessary). This is because the behavior of lines $25-27$ is the only way to generate an $L_{s e^{\prime}}^{t}$ token. To execute lines 25-27, an $L_{s e}^{t}$ token is required (line 25). To generate an $L_{s e}^{t}$ token, agents need to execute lines $22-24$ (i.e., the item 2 of the procedure is necessary) because the behavior of lines $22-24$ is the only way to generate an $L_{s e}^{t}$ token. Similarly, to execute lines $22-24$, an $L_{s e^{\prime}}$ token is required (line 22), and, to generate an $L_{s e^{\prime}}$ token, agents need to execute lines 19-21 (i.e., the item 1 of the procedure is necessary) because the behavior of lines 19-21 is the only way to generate an $L_{s e^{\prime}}$ token.

In the procedure, agents may perform the behaviors of some items multiple times by resetting the leader token to a $L_{s e}$ token (e.g., agents may perform the behaviors of items $1,2,3$, and 4 after performing the behaviors of items 1 and 2). However, we can observe that agents finally execute a procedure such that agents perform the behavior of each item only once in the procedure. From now on, we consider only such a procedure.

From the pseudocode, to execute lines 28-30, the following three conditions should hold during the procedure. Note that, after agents complete the token election, $\# L_{r}=1, \# L_{l}=1$, and $\# L_{\text {se }}=1$ hold.

- After executing lines 19-21, an agent having an $L_{s e^{\prime}}$ token does not interact with other agents until the agent interacts with an agent having an L_{r} token (i.e., the agent interacts only when agents execute lines 22-24). Otherwise, agents make the $L_{s e^{\prime}}$ token transition to an $L_{s e}$ token and cannot execute lines 22-24 (i.e., the item 2 of the procedure cannot be executed).
- After executing lines 19-21, an agent having an L_{l}^{t} token does not interact with other agents until the agent interacts with an agent having an $L_{\text {se }}^{t}$ token (i.e., the agent interacts only when agents execute lines 25-27). Otherwise, agents make the L_{l}^{t} token transition to an L_{l} token and cannot execute lines 25-27 (i.e., the item 3 of the procedure cannot be executed).
- After executing lines $22-24$, an agent having an L_{r}^{t} token does not interact with other agents until the agent interacts with an agent having an $L_{s e^{\prime}}^{t}$ token (i.e., the agent interacts only when agents execute lines 28-30). Otherwise, agents make the L_{r}^{t} token transition to an L_{r} token and cannot execute lines 28-30 (i.e., the item 4 of the procedure cannot be executed).

From items 1 and 2, an L_{l}^{t} token exists next to an $L_{s e^{\prime}}$ token when agents execute lines 22-24. Hence, from the pseudocode, an L_{r}^{t} token and an L_{l}^{t} token are next to each other just after agents execute lines $22-24$. In addition, an $L_{s e}^{t}$ token and the L_{r}^{t} token are also next to each other just after agents execute lines 22-24. To execute lines 25-27, an agent having the $L_{\text {se }}^{t}$ token must interact with the agent having the L_{l}^{t} token without meeting the agent having the L_{r}^{t} token. Furthermore, the agent having the L_{r}^{t} token must not interact with other agents
until agents execute lines $28-30$. By the assumption, since agents execute lines 28-30, there are two paths from the agent having the $L_{s e}^{t}$ token to the agent having the L_{l}^{t} token just after agents execute lines $22-24$. One of the paths is the path via the agent having the L_{r}^{t} token. The other is the path without passing through the agent having the L_{r}^{t} token. Therefore, there is a cycle in G. This is a contradiction.

Next, we show that tre of the leader token converges to no if there is a cycle on the graph.

Lemma 50. For any globally-fair execution Ξ, if there is a cycle on a given communication graph, tre of the leader token converges to no.

Proof. Consider a globally-fair execution Ξ with a graph G containing a cycle. In Ξ, let C be a configuration such that C occurs infinitely often. From Lemma 48, eventually agents complete the token election and thus C occurs infinitely often after agents complete the token election.

Clearly, each condition in lines $2-8$ is not satisfied after C. Thus, from the pseudocode, a token moves by any interaction (except for null transitions) after C. This implies that tokens can move freely on G after C. Hence, from global fairness, a configuration C^{\prime} such that all tokens are on a cycle occurs. Moreover, there exists a configuration $C^{\prime \prime}$ such that $C^{\prime \prime}$ is reachable from C^{\prime} and $L_{s e}, L_{l}$, and L_{r} tokens are on the cycle in $C^{\prime \prime}$. This is because $C^{\prime \prime}$ occurs if the following behaviors occur from C^{\prime}.

1. Making L_{l} and L_{r} tokens: If an agent having an L_{l}^{t} (or L_{l}) token and an agent having an L_{r}^{t} (or L_{r}) token can interact in C^{\prime}, they interact and then an L_{l} token and an L_{r} token are generated by the behavior of lines 31-43. Otherwise, since the left token and the right token are on a cycle in C^{\prime} (and hence an agent with the token has at least two edges), each agent having the token can interact with an agent having no token. In the case, an agent having an L_{l}^{t} token (resp., an L_{r}^{t} token) interacts with an agent having no token, and an L_{l} token (resp., an L_{r} token) is generated.
2. Making an $L_{s e}$ token: If the leader token is an $L_{s e^{\prime}}$ token or an $L_{s e^{\prime}}^{t}$ token, an agent having the token interacts with an agent having an L_{l} token or no
token. As a result, an $L_{s e}$ token is generated. If the leader token is an $L_{s e}^{t}$ token, the $L_{s e}^{t}$ token moves to an agent that is on a cycle and is adjacent to an agent with an L_{l} token (or an L_{r} token). Then, an agent having the $L_{s e}^{t}$ token interacts with an agent having the L_{l} token (or the L_{r} token) and then an $L_{s e}$ token is generated.

There exists a configuration such that the configuration is reachable from $C^{\prime \prime}$ and, on a cycle, an agent having an $L_{s e}$ token is adjacent to an agent having an L_{l} token in the configuration. This is because tokens can move freely on a graph. In the configuration, agents can execute lines 19-21. If agents execute lines 19-21, the configuration transitions to a configuration such that $L_{s e^{\prime}}, L_{l}^{t}$, and L_{r} tokens exist in a cycle. From the configuration, the L_{r} token can move to an agent next to an agent with the $L_{s e^{\prime}}$ token while an agent with the $L_{s e^{\prime}}$ token and an agent with the L_{l}^{t} token do not interact with any agent. This is because they are on a cycle and the L_{r} token can move along the cycle. Then, an agent having the $L_{s e^{\prime}}$ token can interact with an agent having the L_{r} token and then agents execute lines 22-24. Such behavior causes a configuration such that $L_{s e}^{t}$, L_{l}^{t}, and L_{r}^{t} tokens are on a cycle. From the configuration, the $L_{s e}^{t}$ token can move to an agent next to an agent having the L_{l}^{t} token while an agent having the L_{r}^{t} token and an agent having the L_{l}^{t} token do not interact with any agent. This is because they are on a cycle and the $L_{s e}^{t}$ token can move along the cycle. Then, an agent having the $L_{s e}^{t}$ token can interact with an agent having the L_{l}^{t} token and agents can execute lines 25-27. After that, an agent having an $L_{s e^{\prime}}^{t}$ token can interact with an agent having the L_{r}^{t} token and agents can execute lines 2830. Hence, from global fairness, since each of the configurations occurs infinitely often, agents execute lines 28-30 infinitely often and agents assign no to tre of the leader token infinitely often. Although tre of the leader token transitions to yes if agents execute line 8, agents does not execute line 8 after C. Therefore, the lemma holds.

From Lemmas 48, 49, and 50, we prove the following theorem.
Theorem 26. Algorithms 7 and 1 solve the tree identification problem. That is, there exists a protocol with constant states and designated initial states that solves the tree identification problem under global fairness.

Proof. From Lemma 48, there is a configuration C such that tre of the leader token is yes in C and agents complete the token election at C. Hence, from Lemmas 49 and 50, if there is a cycle (resp., no cycle) in a given communication graph, tre of the leader token converges to no (resp., yes). From the pseudocode, since each token can move freely on the graph, tre of each agent converges to the same value of tre of the leader token. Thus, if there is a cycle (resp., no cycle) in a given communication graph, tre of each agent converges to no (resp., yes). Therefore, the theorem holds.

$3.2 k$-regular Identification Protocol with Knowledge of P under Global Fairness

In this subsection, we give a k-regular identification protocol (hereinafter referred to as " k RI protocol") with $O(k \log P)$ states and designated initial states under global fairness. In this protocol, the upper bound P of the number of agents is given. However, we also show that the protocol solves the problem with $O(k \log n)$ states if the number of agents n is given.

From now, we explain the basic strategy of the protocol. First, agents elect a leader token. In this protocol, agents with leader tokens leave some information in agents. To keep only the information that is left after completion of the election, we introduce level of an agent. If an agent at level i has the leader token, we say that the leader token is at level i. Agents with leader tokens leave the information with their levels. Before agents complete the election of leader tokens, agents keep increasing their levels (we explain later how to increase the level), and agents discard the information with smaller levels when agents increase their levels. When agents complete the election of leader tokens, the agent with the leader token is the only agent that has the largest level. Then, all agents eventually converge to the level. Hence, since agents discard the information with smaller levels, agents virtually discard any information that was left before agents complete the election. From now on, we consider configurations after agents elect a leader token and discard any outdated information.

Now, we explain how the protocol solves the k-regular identification problem by using the leader token. Concretely, each agent examines whether its degree
is at least k, and whether its degree is at least $k+1$. If an agent confirms that its degree is at least k but does not confirm that its degree is at least $k+1$, then the agent thinks that its degree is k. Each agent examines whether its degree is at least k as follows: An agent a with the leader token checks whether a can interact with k different agents. To check it, agent a with the leader token marks adjacent agents and counts how many times a has marked. Concretely, when agent a having the leader token interacts with an agent b, agent a marks agent b by making b change to a marked state. Agent a counts how many times a interacts with an agent having a non-marked state (hereinafter referred to as "a non-marked agent"). If agent a having the leader token interacts with k nonmarked agents successively, a decides that a can interact with k different agents (i.e., its degree is at least k).

If an agent confirms that its degree is at least k, the agent stores this information locally. To do this, we introduce a variable $l o c_{a}$ at agent a : Variable $l o c_{a} \in\{y e s, n o\}$, initialized to no, represents whether the degree of agent a is at least k. If $l o c_{a}=y e s$ holds, agent a thinks that its degree is at least k. If an agent a confirms that its degree is at least k, agent a stores this information locally by making $l o c_{a}$ transition from no to yes.

Next, we show how agents decide whether the graph is k-regular. In this protocol, first an agent with the leader token decides whether the graph is k regular, and then the decision is conveyed to all agents by the leader token. We use variable $r e g_{a}$ at agent a for the decision: Variable $r e g_{a} \in\{y e s, n o\}$, initialized to $n o$, represents the decision of the k-regular graph. If $r e g_{a}=$ yes holds for agent a, then $\gamma\left(s_{a}\right)=$ yes holds. If $r e g_{a}=n o$ holds, then $\gamma\left(s_{a}\right)=n o$ holds. Whenever an agent a with the leader token makes $l o c_{a}$ transition to yes, agent a makes $r e g_{a}$ transition to yes. If an agent a with the leader token finds an agent b such that $l o c_{b}=n o$ or its degree is at least $k+1$, agents reset $r e g_{a}$ to no. Note that, since all agents follow the decision of the leader token, this behavior practically resets reg of each agent. If there is such agent b, agent a with the leader token eventually finds agent b since the leader token moves freely on the graph. Hence, if the graph is not k-regular, reg of the leader token (i.e., rega such that agent a has the leader token) transitions to no infinitely often. On the other hand, if the graph is k-regular, eventually $l o c_{a}$ of each agent a transitions from no to
yes. Let us consider a configuration where loc of each agent other than an agent x is yes and $l o c_{x}$ is no. After the configuration, when agent x makes $l o c_{x}$ and $r e g_{x}$ transition to yes, agent x has the leader token (i.e., reg of the leader token transitions to yes). Hence, since there is no agent such that its loc is no or its degree is at least $k+1$, reg of the leader token never transitions to no afterwards and thus reg of the leader token converges to yes. Thus, since agents convey the decision of the leader token to all agents, eventually all agents make a correct decision.

Before we explain the details of the protocol, first we introduce other variables at agent a.

- $L F_{a} \in\left\{L_{0}, L_{1}, \ldots, L_{k}, \phi, \phi^{\prime}\right\}$: Variable $L F_{a}$, initialized to L_{0}, represents states for a leader token and marked agents. If $L F_{a}$ is neither ϕ nor ϕ^{\prime}, agent a has a leader token. In particular, if $L F_{a}=L_{i}(i \in\{0,1, \ldots, k\})$ holds, agent a has an L_{i} token. Moreover, $L F_{a}=L_{i}$ represents that agent a has interacted with i different non-marked agents (i.e., agent a has at least i edges). If $L F_{a}=\phi$ holds, agent a has no leader token. If $L F_{a}=\phi^{\prime}$ holds, agent a has no leader token and a is marked by other agents.
- level $_{a} \in\{0,1,2, \ldots,\lfloor\log P\rfloor\}$: Variable level $_{a}$, initialized to 0 , represents the level of agent a.

The protocol uses $O(k \log P)$ states because the number of values taken by variable $L F_{a}$ is $k+2$, the number of values taken by variable level l_{a} is $\lfloor\log P\rfloor+1$, and the number of values taken by other variables $\left(l o c_{a}\right.$ and $\left.r e g_{a}\right)$ is constant.

Now, we explain the details of the protocol. The protocol is given in Algorithm 2.

The election of leader tokens with levels (lines $2-7$ and $26-30$ of the

 pseudocode) Initially, each agent has the leader token and the level of each agent is 0 . If two agents with leader tokens at the same level interact, agents delete one of the leader tokens and increase the level of the agent with the remaining leader token by one (lines 2-5). Moreover, $l o c_{a}$ and $r e g_{a}$ transition to no (lines $6-7$), where agent a is the agent with the remaining leader token. Next, we consider the case where two agents at different levels interact. If an agent a at```
Algorithm 2 A \(k\) RI protocol
Variables at an agent \(a\) :
 \(L F_{a} \in\left\{L_{0}, L_{1}, \ldots, L_{k}, \phi, \phi^{\prime}\right\}\) : States for a leader token and marked agents,
 initialized to \(L_{0}\).
 level \(_{a} \in\{0,1,2, \ldots,\lfloor\log P\rfloor\}\) : States for the level of agent \(a\), initialized to 0 .
 \(l o c_{a} \in\{y e s, n o\}:\) States representing whether the degree of agent \(a\) is at least
 \(k\), initialized to no.
 \(r e g_{a} \in\{y e s, n o\}:\) Decision of the \(k\)-regular graph, initialized to no.
 when agent \(a\) interacts with agent \(b\) do
 《 The behavior when agents have the same level 》
 if level \(_{a}=\) level \(_{b}\) then
 \{ The election of leader tokens \}
 if \(L F_{a}=L_{x} \wedge L F_{b}=L_{y}(x, y \in\{0,1,2, \ldots, k\})\) then
 level \(_{a} \leftarrow\) level \(_{a}+1\)
 \(L F_{a} \leftarrow L_{0}, L F_{b} \leftarrow \phi\)
 \(r e g_{a} \leftarrow n o\)
 \(l o c_{a} \leftarrow n o\)
 \{ Decision and movement of the token \}
 else if \(L F_{a}=L_{x} \wedge L F_{b}=\phi(x \in\{0,1,2, \ldots, k-2\})\) then
 \(L F_{a} \leftarrow L_{x+1}, L F_{b} \leftarrow \phi^{\prime}\)
 else if \(L F_{a}=L_{x} \wedge L F_{b}=\phi^{\prime}(x \in\{0,1,2, \ldots, k\})\) then
 \(L F_{a} \leftarrow \phi, L F_{b} \leftarrow L_{0}\)
 \(r e g_{b} \leftarrow r e g_{a}\)
 else if \(L F_{a}=L_{k-1} \wedge L F_{b}=\phi\) then
 \(L F_{a} \leftarrow L_{k}, L F_{b} \leftarrow \phi^{\prime}\)
 if \(l o c_{a}=n o\) then
 \(r e g_{a} \leftarrow y e s\)
 \(l o c_{a} \leftarrow y e s\)
 end if
 \{ Reset of reg of the leader token (the degree of agent \(a\) is at least \(k+1\)) \}
 else if \(L F_{a}=L_{k} \wedge L F_{b}=\phi\) then
 \(L F_{a} \leftarrow L_{0}, L F_{b} \leftarrow \phi^{\prime}\)
 \(r e g_{a} \leftarrow n o\)
 end if
 \{ Reset of reg of the leader token \(\left(l o c_{a}\right.\) or \(l o c_{b}\) is \(\left.n o\right)\) \}
 if \(l o c_{a}=n o \vee l o c_{b}=n o\) then
 \(r e g_{a} \leftarrow n o, r e g_{b} \leftarrow n o\)
 end if
 《 The behavior when agents have different levels 》
 else if level \(_{a}>\) level \(_{b}\) then
 level \(_{b} \leftarrow\) level \(_{a}\)
 \(l o c_{b} \leftarrow n o\)
 \(L F_{b} \leftarrow \phi\)
 end if
 end
```

the larger level interacts with an agent $b$ at the smaller level, agent $b$ update its level to the same level as the larger level (regardless of possession of the leader token). This behavior appears in lines 26-27. Furthermore, at the interaction, agent $b$ resets $l o c_{b}$ to no (line 28), and agent $b$ deletes its leader token if agent $b$ has the leader token (line 29). We can observe that there is level lev_last such that all agents converge to level lev_last, because agents update their levels by only above behaviors and there is no behavior that increases the number of leader tokens. Since an agent at the largest level updates its level only if the agent has the leader token, there is an agent with the leader token at the largest level in any configuration. Thus, since each agent converges to level lev_last and the leader token moves freely among agents at the same level (we will show this movement behavior later), eventually agents elect a leader token by above behaviors.

Agents at the largest level delete the leader token only by the behavior of lines 3-7. This implies that, if at least two agents at the largest level have the leader token, eventually agents at the largest level with the leader tokens interact and then the largest level is updated. Hence, only one leader token can obtain level lev_last. When an agent $a$ with the leader token updates its level to level lev_last by the behavior of lines 3-7, agent $a$ resets $l o c_{a}$ and $r e g_{a}$ to no. Since other agents are at levels smaller than level lev_last just after the interaction, other agents will reset their loc to no by the behavior of line 28 . From these facts, the interaction causes a configuration such that 1) the number of agents with the leader token at level lev_last is one, 2) reg $a_{a}=n o$ and $l o c_{a}=n o$ hold for the agent $a$ with the leader token at level lev_last, and 3) other agents will reset their loc after the configuration.

Note that, since agents delete one leader token by the behavior of lines 3-7, at most half of leader tokens at level $i$ update their level to $i+1$ for $0 \leq i$. Thus, since there is no behavior that increases the number of leader tokens, the maximum level is at most $\lfloor\log n\rfloor$. In this protocol, since only the upper bound $P$ of the number of agents is given, the maximum level is at most $[\log P]$.

Search for an agent whose degree is at least $k$ or at least $k+1$ with levels (lines $\mathbf{8} \mathbf{- 1 8}$ of the pseudocode) First of all, this search behavior is performed only on the same level (line 2). Recall that eventually all agents converge to the
same level (and agents discard the information at other levels).
In this behavior, to examine degrees of agents, agents use the leader token. An agent having the leader token confirms whether the agent can interact with $k$ different agents, so that the agent confirms that its degree is at least $k$. To confirm it, the agent marks adjacent agents one by one and counts how many times the agent interacts with a non-marked agent. Concretely, when an agent $a$ having the $L_{i}$ token interacts with an agent $b$ having $\phi$, agent $a$ marks agent $b$ (i.e., $L F_{b}$ transitions to $\phi^{\prime}$ ). At the interaction, $a$ makes the $L_{i}$ token transition to the $L_{i+1}$ token. These behaviors appear in lines 8-9. If agent $a$ obtains the $L_{j}$ token by such an interaction, agent $a$ has interacted with $j$ different agents because $a$ has marked $j$ non-marked agents. Thus, when agent $a$ having the $L_{k-1}$ token interacts with an agent with $\phi$, agent $a$ notices that $a$ has at least $k$ edges and thus $a$ updates $l o c_{a}$ and $r e g_{a}$ to yes (lines 13-18). Similarly, when agent $a$ having the $L_{k}$ token interacts with an agent with $\phi$, agent $a$ notices that $a$ has at least $k+1$ edges and thus $a$ updates $r e g_{a}$ to no (lines 19-22).

When agent $a$ having the $L_{i}$ token interacts with a marked agent $b$ (i.e., agent $b$ with $\phi^{\prime}$ ), agent $a$ resets the $L_{i}$ token to the $L_{0}$ token. Moreover, at the interaction, $a$ deletes a mark of $b$ and carries the $L_{0}$ token to $b$ (i.e., $L F_{b}=\phi^{\prime}$ transitions to $L_{0}$ and $L F_{a}$ transitions to $\phi$ ). These behaviors appear in lines $10-12$. By these behaviors, the leader token can move freely on a graph because an agent having the leader token can mark any adjacent agent by an interaction. Note that, after the leader token moves, some agents may remain as marked agents. However, even in the case, eventually agents correctly detect an agent whose degree is at least $k$ or $k+1$ because an agent with the leader token can delete marks of adjacent agents freely. Concretely, an agent $a$ having the leader token deletes a mark of the adjacent agent $b$ by making interaction between $a$ and $b$ three times. Figure 15 shows the example of the three interactions. By the interactions, the agents carry the leader token from $a$ to $b$ and then agent $b$ returns the leader token to $a$. As a result, agent $a$ has the leader token again and the marked agent $b$ transitions to a non-marked agent.

By the above behaviors, eventually each agent with degree $k$ makes its loc transition to yes. If agents find some agent $a$ with $l o c_{a}=n o$, agents make reg of the leader token transition to no (lines 23-25). Thus, if there is an agent whose


Figure 15. The example of deleting a mark
degree is not $k$, reg of the leader token converges to no. On the other hand, if the degree of each agent is $k$, eventually each agent makes its loc transition to yes, and there is no behavior that makes reg of the leader token transition to no afterwards. Hence, since loc and reg of the leader token transition to yes simultaneously by lines $15-18$, reg of the leader token converges to yes in the case. When agents move the leader token, agents convey reg of the leader token (line 12). Therefore, eventually each agent makes a correct decision.

## Correctness

First of all, we define some notations for the level. Let $\operatorname{lev}(a, C)$ be level of agent $a$ in a configuration $C$. For a set of all agents $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and a configuration $C$, let lev_max $(C)=\max _{a \in V}\{\operatorname{lev}(a, C)\}$.

To begin with, we show that, in any execution of Algorithm 2, the behavior of line 4 is not performed by agent $a$ such that level ${ }_{a}=\lfloor\log n\rfloor$ holds. This implies that the domain of variable level is valid. Note that each agent $a$ increases its level $_{a}$ one by one.

Lemma 51. In any execution, agent a does not increase level ${ }_{a}$ if level ${ }_{a}=\lfloor\log n\rfloor$ holds.

Proof. First of all, from the pseudocode, there is no behavior that decreases the number of leader tokens, and there is no behavior that decreases the level of an agent.

From now, we show that, in any execution, at most one leader token at level $\lfloor\log n\rfloor$ can occur. From the pseudocode, the number of leader tokens at some level increases only if the behavior of lines $3-7$ occurs. Hence, by the behavior of lines $3-7$, if the number of leader tokens at level $i$ increases by one, agents delete
two leader tokens at level $i-1$. Thus, since an initial level of each agent is 0 and the initial number of leader tokens is $n$, at most one leader token at level $\lfloor\log n\rfloor$ can occur.

From the pseudocode, the behavior of line 4 occurs only if two agents with leader tokens at the same level interact. Hence, if level ${ }_{a}=\lfloor\log n\rfloor$ holds, agent $a$ cannot increase level ${ }_{a}$ and thus the lemma holds.

From now, we show that Algorithm 2 solves the problem. First, we prove that, in any configuration $C$ of any execution, there exists an agent with the leader token at level lev_max $(C)$.

Lemma 52. Let us consider a graph $G=(V, E)$, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For any configuration $C$ of any execution $\Xi$ with $G$, there exists an agent $v_{m}$ with the leader token such that lev $\left(v_{m}, C\right)=l e v \_m a x(C)$ holds.

Proof. For any graph $G=(V, E)$, let us consider an execution $\Xi=C_{0}, C_{1}, C_{2}, \ldots$ of the protocol, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We prove the lemma by induction on the index of a configuration. In the base case $\left(C_{0}\right)$, clearly level $l_{v_{1}}=$ level $_{v_{2}}=\cdots=$ level $_{v_{n}}=l e v \_\max \left(C_{0}\right)=0$ holds. For the induction step, we assume that, there exists an agent $v_{m}$ with the leader token such that $\operatorname{lev}\left(v_{m}, C_{k}\right)=l e v \_\max \left(C_{k}\right)$. Let us consider an interaction at $C_{k} \rightarrow C_{k+1}$ for four cases.

- Case where the behavior of lines $3-7,10-12$, or $26-30$ does not occur at $C_{k} \rightarrow C_{k+1}$ : From the pseudocode, by the interaction, agents do not update level $_{v_{i}}$ for $1 \leq i \leq n$. In addition, by the interaction, agents do not move the leader token, and the number of leader tokens is not changed. Hence, in this case, agent $v_{m}$ with the leader token satisfies that $\operatorname{lev}\left(v_{m}, C_{k+1}\right)=$ $l e v \_\max \left(C_{k+1}\right)$.
- Case where the behavior of lines $3-7$ occurs at $C_{k} \rightarrow C_{k+1}$ : From the pseudocode, if an agent increases its level by the interaction, the agent has the leader token after the interaction. Hence, if lev_max $\left(C_{k+1}\right)=$ lev_max $\left(C_{k}\right)$ holds, agent $v_{m}$ does not join the interaction and thus $\operatorname{lev}\left(v_{m}, C_{k+1}\right)=$ lev_max $\left(C_{k+1}\right)$ holds and agent $v_{m}$ has the leader token in $C_{k+1}$. On the other hand, if lev_max $\left(C_{k+1}\right)>$ lev_max $\left(C_{k}\right)$ holds, one of the interacting agents $v_{m}^{\prime}$ with the leader token satisfies $l e v\left(v_{m^{\prime}}, C_{k+1}\right)=l e v \_\max \left(C_{k+1}\right)$.
- Case where the behavior of lines $10-12$ occurs at $C_{k} \rightarrow C_{k+1}$ : From the pseudocode, by the interaction, agents move the leader token from an interacting agent to the other interacting agent. The interacting agents have the same level before the interaction. Moreover, by the interaction, agents do not change their level and thus lev_max $\left(C_{k+1}\right)=l e v \_m a x\left(C_{k}\right)$ holds. Hence, if agent $v_{m}$ does not join the interaction, $\operatorname{lev}\left(v_{m}, C_{k+1}\right)=$ lev_max $\left(C_{k+1}\right)$ holds and agent $v_{m}$ has the leader token in $C_{k+1}$. If agent $v_{m}$ joins the interaction, other interacting agent $v_{m^{\prime}}$ with the leader token satisfies lev $\left(v_{m^{\prime}}, C_{k+1}\right)=l e v \_\max \left(C_{k+1}\right)$.
- Case where the behavior of lines 26-30 occurs at $C_{k} \rightarrow C_{k+1}$ : From the pseudocode, by the interaction, an interacting agent $a$ at the larger level do not change its variables, and the other interacting agent $b$ at the smaller level becomes the same level as the level of agent $a$. Hence, in this case, agent $v_{m}$ with the leader token satisfies that lev $\left(v_{m}, C_{k+1}\right)=l e v \_\max \left(C_{k+1}\right)$ (whether $v_{m}$ joins the interaction or not).

In each case, there exists an agent $v_{m}$ with the leader token such that $\operatorname{lev}\left(v_{m}, C_{k+1}\right)=$ $l e v \_\max \left(C_{k+1}\right)$. Therefore, the lemma holds.

Next, we show that, in any execution, the level of each agent converges to the same value.

Lemma 53. For any execution $\Xi$ with some graph $G$, there exist a configuration $C$ and lev_last $\left(0 \leq l e v_{-} l a s t \leq\lfloor\log n\rfloor\right)$ such that level ${ }_{a}=$ lev_last holds for each agent a after $C$.

Proof. Let us consider a graph $G=(V, E)$ and an execution $\Xi=C_{0}, C_{1}, \ldots$ with $G$, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. From the pseudocode, since there is no behavior that increases the number of leader tokens, the number of leader tokens does not change after some configuration $C_{i}$. This implies that, after $C_{i}$, the behavior of lines $3-7$ does not occur. Thus, no agent can obtain the level larger than lev_max $\left(C_{i}\right)$. Let us consider two agents $v_{x}$ and $v_{y}$ that interact at $C_{j} \rightarrow$ $C_{j+1}$ for $j \geq i$. If $\operatorname{lev}\left(v_{x}, C_{j}\right)>\operatorname{lev}\left(v_{y}, C_{j}\right)$ holds, $\operatorname{lev}\left(v_{y}, C_{j+1}\right)=\operatorname{lev}\left(v_{x}, C_{j+1}\right)=$ $\operatorname{lev}\left(v_{x}, C_{j}\right)$ holds by the behavior of lines 26-30. Hence, since there is no behavior that decreases level of an agent, $\operatorname{lev}\left(v_{1}, C_{k}\right)=\operatorname{lev}\left(v_{2}, C_{k}\right)=\cdots=\operatorname{lev}\left(v_{n}, C_{k}\right)=$
lev_max $\left(C_{i}\right)$ holds for a configuration $C_{k}(k \geq i)$ from global fairness. Since each agent maintains lev_max $\left(C_{i}\right)$ after $C_{k}$, the lemma holds.

Let us consider some execution $\Xi^{*}$ with some graph $G$. Let lev_last be level such that level $_{a}=$ lev_last holds for each agent $a$ after some configuration of $\Xi^{*}$. From Lemma 53, such lev_last exists. From now, we show some properties about $\Xi^{*}$ and lev_last. First, we prove that, in $\Xi^{*}$, after some of agents obtains level lev_last, there is only one leader token that is at level lev_last.

Lemma 54. In $\Xi^{*}$, after some of agents obtains level lev_last, there is only one leader token that is at level lev_last.

Proof. Let $C$ be a configuration in $\Xi^{*}$ such that the first agent at level lev_last appears (i.e., there is an agent at level lev_last in $C$ and there is no agent that is at level lev_last before $C$ ). We show that there is only one leader token that is at level lev_last after C. First of all, from Lemma 52, after $C$, there is at least one leader token that is at level lev_last. Thus, for the purpose of contradiction, we assume that there exists a configuration $C^{\prime}$ of $\Xi^{*}$ such that there are two or more leader tokens that are at level lev_last in $C^{\prime}$ and $C^{\prime}$ occurs after $C$. Let $\omega_{1}$ and $\omega_{2}$ be the leader tokens in $C^{\prime}$. Let us consider a configuration $C^{\prime \prime}$ such that level ${ }_{a}=$ lev_last holds for each agent $a$ after $C^{\prime \prime}$ and $C^{\prime \prime}$ occurs after $C^{\prime}$. If agents delete $\omega_{1}$ or $\omega_{2}$, the behavior of lines $3-7$ or 26-30 occurs. However, both behaviors must not occur from the definition of lev_last. Hence, there also exist $\omega_{1}$ and $\omega_{2}$ in $C^{\prime \prime}$.

After $C^{\prime \prime}$, when an agent having a leader token interacts with an agent having no leader token, agents move the leader token, or, by making an additional interaction between them, agents move the leader token. This implies that $\omega_{1}$ and $\omega_{2}$ can move to any agent after $C^{\prime \prime}$. Hence, from global fairness, eventually an agent having $\omega_{1}$ interacts with an agent having $\omega_{2}$ and then they update their levels to lev_last +1 by the behavior of lines 3-7. This contradicts the definition of lev_last.

In addition, since agents at level lev_last do not delete the leader token, Lemma 54 can be extended as follow.

Lemma 55. In $\Xi^{*}$, only one leader token can be at level lev_last.

Next, we show properties about an agent at level lev_last whose degree is less than $k+1$.

Lemma 56. In $\Xi^{*}$, an agent a at level lev_last does not perform the behavior of lines 15-18 if the degree of agent $a$ is less than $k$. Moreover, in $\Xi^{*}$, an agent $b$ at level lev_last does not perform the behavior of lines 19-22 if the degree of agent $b$ is less than $k+1$.

Proof. In $\Xi^{*}$, when an agent $c$ with the leader token updates its level from lev_last - 1 to lev_last by the behavior of lines 3-7, $L F_{c}$ transitions to $L_{0}$. Note that, from Lemma 55, only agent $c$ with the leader token at level lev_last updates its level from lev_last-1 to lev_last by the behavior of lines 3-7 in $\Xi^{*}$. Hence, when other agents update its level to lev_last, the agents reset their LF to $\phi$.

From now, we consider interactions between agents at level lev_last. To execute lines $15-18$, it needs to occur $k$ times that an agent having the leader token interacts with a non-marked agent without moving the leader token. This is because the leader token transitions to $L_{0}$ when it moves. When an agent having the leader token interacts with a non-marked agent, the agent with the leader token marks the non-marked agent. From the pseudocode, unless the leader token moves, a marked agent at level lev_last never transitions to a non-marked agent. From these facts, since there is only one leader token, agents never execute lines $15-18$ if there is no agent whose degree is at least $k$. Similarly, agents never execute lines $19-22$ if there is no agent whose degree is at least $k+1$. Therefore, the lemma holds.

Now, we show properties about an agent whose degree is at least $k$. We prove that, if there is an agent whose degree is at least $k$ (resp., $k+1$ ), the agent performs the behavior of lines 13-18 (resp., lines 19-22) infinitely often.

Lemma 57. In $\Xi^{*}$, an agent a performs the behavior of lines 13-18 infinitely often if the degree of agent $a$ is at least $k$. Moreover, in $\Xi^{*}$, an agent $b$ performs the behavior of lines 19-22 infinitely often if the degree of agent $b$ is at least $k+1$.

Proof. From Lemmas 53 and 55, there exists a configuration $C$ in $\Xi^{*}$ such that there is only one leader token and each agent is at level lev_last after $C$. We
consider configurations after $C$. From the pseudocode, the leader token can move to any agent after $C$. Thus, from global fairness, there exists a configuration $C^{\prime}$ such that $C^{\prime}$ occurs infinitely often and agent $a$ whose degree is at least $k$ has the leader token in $C^{\prime}$.

In $C^{\prime}$, since there exists only one leader token, each agent adjacent to $a$ has $\phi$ or $\phi^{\prime}$. To make all $\phi^{\prime}$ adjacent to $a$ transition to $\phi$, we consider the following procedure.

1. Agent $a$ having the leader token interacts with an agent $c$ having $\phi^{\prime}$ three times. From the pseudocode, after the interactions, agent $a$ has the $L_{0}$ token and agent $c$ has $\phi$ (and other agents are the same states as before the interactions).
2. Agents repeat the above behavior until no agent adjacent to $a$ has $\phi^{\prime}$.

From global fairness, eventually agents perform the above procedure. Hence, there exists a configuration such that, for agent $a$ with the leader token, each agent adjacent to $a$ has $\phi$ and the configuration occurs infinitely often. Moreover, from the configuration, eventually agent $a$ interacts with each adjacent agent in a row. From the pseudocode, when such interactions occur, agents execute lines 13-18. Thus, if the degree of agent $a$ is at least $k$, agent $a$ performs the behavior of lines $13-18$ infinitely often. Similarly, if the degree of agent $b$ is at least $k+1$, agent $b$ performs the behavior of lines 19-22 infinitely often.

From Lemmas 53 and 55, eventually agents complete the election of leader tokens in $\Xi^{*}$. From now on, we define reg of the leader token as rega such that agent $a$ has the elected leader token. We show that reg of the leader token transitions to yes only a finite number of times in $\Xi^{*}$.

Lemma 58. In $\Xi^{*}$, reg of the leader token transitions to yes only a finite number of times.

Proof. From the pseudocode, reg of the leader token transitions to yes only by the behavior of lines 15-18. Hence, we prove that this behavior occurs only a finite number of times. From Lemmas 53 and 55, there exists a configuration $C$ in $\Xi^{*}$ such that there is only one leader token and each agent is at level lev_last.

From the pseudocode, $l o c_{a}$ of an agent $a$ transitions from yes to no only by the behaviors of lines 3-7 and 26-30. The behavior of lines $3-7$ occurs only if there are multiple leader tokens, and the behavior of lines 26-30 occurs only if there are agents at different levels. From these facts, $l o c_{a}$ of each agent $a$ transitions from yes to no a finite number of times in $\Xi^{*}$. Hence, from the condition of line 15 , the behavior of lines 15-18 occurs a finite number of times in $\Xi^{*}$. Therefore, the lemma holds.

By using the above lemmas, we show that the protocol solves the $k$-regular identification problem. First, we show that, if the given graph is not $k$-regular, $r e g_{a}$ of each agent $a$ converges to no.

Lemma 59. If the given communication graph is not $k$-regular, re $g_{a}$ of each agent a converges to no in any globally-fair execution.

Proof. Let $\Xi$ be an execution with a non $k$-regular graph. Let lev_last be level such that the level of each agent converges to level lev_last in $\Xi$. From Lemma 53 , such lev_last exists.

First, we show that, if there is an agent $a$ whose degree is less than $k$ on the graph, reg of the leader token converges to no in $\Xi$. From Lemma 56, if there is an agent $a$ whose degree is less than $k$ on the graph, agent $a$ never updates its $l o c_{a}$ from no to yes after agent $a$ obtains level lev_last. When agent $a$ obtains level lev_last, agent $a$ updates its $l o c_{a}$ to no by the behavior of lines 3-7 or 26-30. Hence, since $l o c_{a}$ converges to $n o$, reg of the leader token transitions to no infinitely often by the behavior of lines $23-25$. From Lemma 58, reg of the leader token transitions from no to yes only a finite number of times in $\Xi$. Thus, if there is an agent whose degree is less than $k$ on the graph, reg of the leader token converges to no in $\Xi$.

Next, we show that, if there is an agent whose degree is at least $k+1$ on the graph, reg of the leader token converges to no in $\Xi$. From Lemma 57, if there is an agent whose degree is at least $k+1$ on the graph, reg of the leader token transitions to no infinitely often in $\Xi$. Thus, if there is an agent whose degree is at least $k+1$ on the graph, reg of the leader token converges to no in $\Xi$.

Now, we show that $r e g_{a}$ of each agent $a$ converges to no in $\Xi$. Let $C$ be a configuration in $\Xi$ such that there is only one leader token and each agent is at
level lev_last after $C$. From Lemmas 53 and 55, such $C$ exists in $\Xi$. From the pseudocode, after $C$, the leader token moves freely on the graph and the decision of the leader token is conveyed to all agents. Thus, since reg of the leader token converges to no in $\Xi$, rega $_{a}$ of each agent $a$ converges to no in $\Xi$ from global fairness.

Next, we show that, if the given graph is $k$-regular, $r e g_{a}$ of each agent $a$ converges to yes.

Lemma 60. If the given communication graph is $k$-regular, rega of each agent $a$ converges to yes in any globally-fair execution.

Proof. Let $\Xi$ be an execution with a $k$-regular graph. In $\Xi$, let us consider a configuration $C$ such that 1) there is only one leader token, 2) each agent has some level lev_last after $C$, and 3) $l o c_{a}$ of some agent $a$ is no in $C$. From the pseudocode, when an agent $b$ increases its level, agent $b$ updates its $l o c_{b}$ to no. Thus, from Lemmas 53 and 55 , such $C$ exists in $\Xi$.

From Lemma 57, each agent performs the behavior of lines 13-18 infinitely often after $C$. Hence, eventually each agent $a$, such that $l o c_{a}=n o$ in $C$, makes $l o c_{a}$ transition to yes by the behavior of lines 15-18 after $C$. Since there is only one leader token and each agent is at level lev_last after $C$, the behaviors of lines 3-7 and 26-30 do not occur after $C$. This implies that, after $C$, $l o c_{a}$ of each agent $a$ keeps yes if $l o c_{a}=$ yes.

Let us consider the last agent that performs the behavior of lines 15-18. From Lemma 58, since reg of the leader token transitions to yes by the behavior of lines 15-18, the behavior of lines 15-18 occurs a finite number of times and thus such an agent exists. From the pseudocode, when the agent performs the behavior, reg of the leader token transitions to yes. After that, since $l o c_{a}$ of each agent $a$ is yes, the behavior of lines $23-25$ does not occur. Furthermore, from Lemma 56 , the behavior of lines 19-22 is not performed. Thus, reg of the leader token does not transition to no afterwards and thus $r e g_{a}$ of each agent $a$ converges to yes.

From Lemma 59, if the given communication graph is not $k$-regular, $r e g_{a}$ of each agent $a$ converges to no in any execution of the protocol. From Lemma 60,
if the given communication graph is $k$-regular, $r e g_{a}$ of each agent $a$ converges to yes in any execution of the protocol. Thus, we can obtain the following theorem.

Theorem 27. Algorithm 2 solves the $k$-regular identification problem. That is, if the upper bound $P$ of the number of agents is given, there exists a protocol with $O(k \log P)$ states and designated initial states that solves the $k$-regular identification problem under global fairness.

Clearly, when the number of agents $n$ is given, the protocol works even if the protocol uses variable level $_{a}=\{0,1,2, \ldots,\lfloor\log n\rfloor\}$ instead of level $_{a}=\{0,1,2$, $\ldots,\lfloor\log P\rfloor\}$. Therefore, we have the following theorem.

Theorem 28. If the number of agents $n$ is given, there exists a protocol with $O(k \log n)$ states and designated initial states that solves the $k$-regular identification problem under global fairness.

### 3.3 Star Identification Protocol with Knowledge of $n$ under Weak Fairness

In this subsection, we give a star identification protocol (hereinafter referred to as "SI protocol") with $O(n)$ states and designated initial states under weak fairness. In this protocol, the number of agents $n$ is given. Recall that, in this protocol under weak fairness, if a transition $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ exists for $p \neq q$, a transition $(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)$ also exists. Since a given graph is a star if $n \leq 2$ holds, we consider the case where $n$ is at least 3 .

The basic strategy of the protocol is as follows. Initially, each agent thinks that the given graph is not a star. First, agents elect an agent with degree two or more as a central agent (i.e., an agent that connects to all other agents in the star graph). Then, by counting the number of agents adjacent to the central agent, agents examine whether there is a star subgraph in the given graph such that the subgraph consists of $n$ agents. Concretely, if the central agent confirms by counting that there are $n-1$ adjacent agents, agents confirm that there is the subgraph. In this case, agents think that the given graph is a star. Then, if two agents other than the central agent interact, agents decide that the graph is not a star. If such an interaction does not occur, agents continue to think that the given graph is a star.

To explain the details, first we introduce variables at an agent $a$.

- $L F_{a} \in\left\{F, F^{\prime}, l^{\prime}, L_{2}, L_{3}, \ldots, L_{n-1}\right\}$ : Variable $L F_{a}$, initialized to $F$, represents a role of agent $a . L F_{a}=L_{i}$ means that a central agent $a$ has marked $i$ agents (i.e., agent $a$ has at least $i$ edges). $L F_{a}=l^{\prime}$ means that $a$ is a candidate of a central agent and is a marked agent. $L F_{a}=F$ means that agent $a$ is a non-marked agent. $L F_{a}=F^{\prime}$ means that agent $a$ is a marked agent. When $L F_{a}=x$ holds, we refer to $a$ as an $x$-agent.
- star $_{a} \in\{$ yes, no, never $\}$ : Variable star $_{a}$, initialized to no, represents a decision of a star. If star $_{a}=$ yes holds, $\gamma\left(s_{a}\right)=$ yes holds (i.e., $a$ decides that a given graph is a star). If star ${ }_{a}=$ no or $s t a r_{a}=$ never holds, $\gamma\left(s_{a}\right)=n o$ holds (i.e., $a$ decides that a given graph is not a star). star ${ }_{a}=$ never means the stronger decision of no. If agent $a$ with $\operatorname{star}_{a}=$ never interacts with agent $b$, star $_{b}$ transitions to never regardless of the value of $s t a r_{b}$.

The protocol is given in Algorithm 3. Algorithm 3 uses $3 n+3$ states because the number of values taken by variable $L F_{a}$ is $n+1$ and the number of values taken by variable star ${ }_{a}$ is 3 .

Now, we show the details of the protocol.

## Examination of the subgraph (lines 5-14 and 20-22 of the pseudocode)

First, agents elect a central agent. Initially, $L F_{a}$ of each agent $a$ is $F$. When two $F$-agents interact, both $F$-agents transition to $l^{\prime}$-agents (lines 5-6). When an $l^{\prime}$-agent interacts with an $F$-agent, the $l^{\prime}$-agent transitions to an $L_{2}$-agent (lines $7-8$ ). By these behaviors, we can observe that the $L_{2}$-agent is adjacent to at least two agents. Clearly, if the given graph is a star, agents correctly elect the central agent. If the given graph is not a star, agents may elect no central agent or multiple central agents. However, in both cases, star of each agent keeps no (we explain the details later).

Then, to confirm that the central agent is adjacent to $n-1$ agents, the central agent marks adjacent agents one by one and counts how many times the agent interacts with a non-marked agent. Concretely, for $2 \leq i \leq n-3$, when the $L_{i^{-}}$ agent interacts with an $F$-agent, the $L_{i}$-agent marks the $F$-agent (i.e., the $F$-agent transitions to an $F^{\prime}$-agent), and the $L_{i}$-agent transitions to the $L_{i+1}$-agent (lines

```
Algorithm 3 A SI protocol
A variable at an agent \(a\) :
 \(L F_{a} \in\left\{F, F^{\prime}, l^{\prime}, L_{2}, L_{3}, \ldots, L_{n-1}\right\}\) : States that represent roles of agents,
 initialized to \(F . L_{i}\) represents a central agent, \(l^{\prime}\) represents a candidate of the
 central agent, \(F^{\prime}\) represents a marked agent, and \(F\) represents a non-marked
 agent.
 star \(_{a} \in\{\) yes, no, never \(\}:\) Decision of a star, initialized to no.
 when agent \(a\) interacts with agent \(b\) do
 《 The behavior when star \(_{a}\) or star \(_{b}\) is never 》
 if star \(_{a}=\) never \(\vee\) star \(_{b}=\) never then
 star \(_{a} \leftarrow\) never, star \(_{b} \leftarrow\) never
 《 The behaviors when star \(_{a} \neq\) never and star \(_{b} \neq\) never holds 》
 else
 \{ The election of a central agent \}
 if \(L F_{a}=F \wedge L F_{b}=F\) then
 \(L F_{a} \leftarrow l^{\prime}, L F_{b} \leftarrow l^{\prime}\)
 else if \(L F_{a}=l^{\prime} \wedge L F_{b}=F\) then
 \(L F_{a} \leftarrow L_{2}, L F_{b} \leftarrow F^{\prime}\)
 \{ Counting the number of adjacent agents by the central agent \}
 else if \(L F_{a}=L_{i} \wedge L F_{b}=F(2 \leq i \leq n-2)\) then
 \(L F_{a} \leftarrow L_{i+1}, L F_{b} \leftarrow F^{\prime}\)
 end if
 if \(L F_{a}=L_{n-1}\) then
 star \(_{a} \leftarrow y e s\), star \(_{b} \leftarrow y e s\)
 end if
 \{ Decision of never \(\}\)
 if \(L F_{a}=F^{\prime} \wedge L F_{b}=F^{\prime}\) then
 star \(_{a} \leftarrow\) never, star \(_{b} \leftarrow\) never
 else if \(L F_{a}=F^{\prime} \wedge L F_{b}=l^{\prime}\) then
 star \(_{a} \leftarrow\) never, star \({ }_{b} \leftarrow\) never
 end if
 \{ Conveyance of yes \}
 if star \(_{a}=\) yes \(\vee\) star \(_{b}=\) yes then
 star \(_{a} \leftarrow y e s\), star \(_{b} \leftarrow\) yes
 end if
 end if
 end
```

9-11). Note that, when an agent becomes the central agent, the agent has already interacted two different agents. Thus, in this protocol, the agent marked the two agents by the interactions, and the agent starts as an $L_{2}$-agent (lines 5-8). Recall that an $l^{\prime}$-agent is a marked agent.

When an agent becomes an $L_{n-1}$-agent, the $L_{n-1}$-agent notices that the agent is adjacent to $n-1$ agents. Thus, agents notice that there is a star subgraph in the given graph such that the subgraph consists of $n$ agents. Hence, when an agent becomes an $L_{n-1}$-agent, the interacting agents make their star transition to yes (lines 12-14). When an agent $a$ with star $_{a}=y e s$ and an agent $b$ with $s t a r_{b}=n o$ interact, star ${ }_{b}$ transitions to yes (lines 20-22). By this behavior, eventually yes is conveyed to all agents.

When agents elect multiple central agents (resp., no central agent), star of each agent cannot transition to yes because the central agents cannot mark $n-1$ agents (resp., there is no agent that marks agents). Thus, since initially star of each agent is no, agents make their star keep no. In both cases, since clearly the given graph is not a star, agents make a correct decision.

Decision of never (lines 2-3 and 15-19 of the pseudocode) When two $F^{\prime}$-agents interact, they make their star transition to never (lines 15-16). When an $F^{\prime}$-agent interacts with an $l^{\prime}$-agent, they also make their star transition to never (lines 17-19).

From now, we show that 1) agents do not perform the above behaviors if the given graph is a star, and 2) agents perform the above behaviors or agents make their star keep no if the given graph is not a star.

If the given graph is a star, agents correctly elect the central agent. Thus, since agents other than the central agent can interact only with the $L_{i}$-agent, agents do not perform the above behaviors.

Next, let us consider the case where the given graph is not a star. In this case, if agents do not confirm the star subgraph that consists of $n$ agents, agents do not make their star transition to yes. Thus, agents make a correct decision because, if star $_{a}=$ no or star $_{a}=$ never holds, $\gamma\left(s_{a}\right)=$ no holds. On the other hand, if agents confirm the star subgraph that consists of $n$ agents, there is an agent that is not elected as the central agent and is adjacent to two or more agents.

Moreover, after agents confirm the subgraph, the agent is an $F^{\prime}$ - or $l^{\prime}$-agent and is adjacent to another $F^{\prime}$ - or $l^{\prime}$-agent. Hence, eventually two $F^{\prime}$-agents interact, or the $F^{\prime}$-agent interacts with the $l^{\prime}$-agent. By the interaction, the interacting agents make their star transition to never. When an agent $a$ with star ${ }_{a}=$ never and an agent $b$ interact, star ${ }_{b}$ transitions to never (lines 2-3). By this behavior, eventually never is conveyed to all agents. Note that, when this behavior occurs, the behavior of lines 20-22 does not occur. Thus, never has priority over yes.

From these facts, we can observe that agents make a correct decision in any case.

## Correctness

First, we define some notations.
Definition 21. The number of $F$-agents is denoted by $\# F$. The number of $F^{\prime}$ agents is denoted by $\# F^{\prime}$. The number of $L_{i}$-agents for $2 \leq i \leq n-1$ is denoted by $\# L_{i}$. Let $\# L=\# L_{2}+\# L_{3}+\cdots+\# L_{n-1}$.

Definition 22. A function $L(a, C)$ represents the number of agents counted by an agent $a$ in configuration $C$. Concretely, if $L F_{a}=L_{i}$ holds in $C, L(a, C)=i$ holds. If $L F_{a} \in\left\{F, F^{\prime}, l^{\prime}\right\}$ holds in $C, L(a, C)=0$ holds.

From now, we show an equation that holds in any execution of Algorithm 3.
Lemma 61. Let us consider an execution $\Xi$ with some graph $G=(V, E)$, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. In any configuration $C$ of $\Xi, L\left(v_{1}, C\right)+L\left(v_{2}, C\right)+\cdots+$ $L\left(v_{n}, C\right)=\# F^{\prime}+\# L$ holds.

Proof. Let us consider an execution $\Xi$ with a graph $G=(V, E)$, where $V=\left\{v_{1}\right.$, $\left.v_{2}, \ldots, v_{n}\right\}$. We prove the lemma by induction on the index of a configuration. In the base case $\left(C_{0}\right)$, clearly $L\left(v_{1}, C_{0}\right)+L\left(v_{2}, C_{0}\right)+\cdots+L\left(v_{n}, C_{0}\right)=\# F^{\prime}+\# L=0$ holds. For the induction step, we assume that the equation holds in $C_{k}$. Let us consider an interaction at $C_{k} \rightarrow C_{k+1}$ for three cases.

- Case where the behavior of lines 7-8 or 9-11 does not occur at $C_{k} \rightarrow C_{k+1}$ : In this case, clearly $L\left(v_{i}, C_{k+1}\right)=L\left(v_{i}, C_{k}\right)$ holds for $1 \leq i \leq n$. Moreover, by the interaction, $\# F^{\prime}$ and $\# L$ do not change. Thus, $L\left(v_{1}, C_{k+1}\right)+L\left(v_{2}, C_{k+1}\right)+$ $\cdots+L\left(v_{n}, C_{k+1}\right)=\# F^{\prime}+\# L$ holds in this case.
- Case where the behavior of lines 7-8 occurs at $C_{k} \rightarrow C_{k+1}$ : From the pseudocode, an $l^{\prime}$-agent (resp., an $F$-agent) transitions to an $L_{2}$-agent (resp., an $F^{\prime}$-agent) by the interaction. Hence, by the interaction, $L\left(v_{1}, C_{k+1}\right)+$ $L\left(v_{2}, C_{k+1}\right)+\cdots+L\left(v_{n}, C_{k+1}\right)=L\left(v_{1}, C_{k}\right)+L\left(v_{2}, C_{k}\right)+\cdots+L\left(v_{n}, C_{k}\right)+2$ holds. In addition, $\# F^{\prime}$ increases by one and $\# L$ increases by one. Thus, $L\left(v_{1}, C_{k+1}\right)+L\left(v_{2}, C_{k+1}\right)+\cdots+L\left(v_{n}, C_{k+1}\right)=\# F^{\prime}+\# L$ holds in this case.
- Case where the behavior of lines 9-11 occurs at $C_{k} \rightarrow C_{k+1}$ : From the pseudocode, an $L_{i}$-agent (resp., an $F$-agent) transitions to an $L_{i+1}$-agent (resp., an $F^{\prime}$-agent) by the interaction. Hence, by the interaction, $L\left(v_{1}, C_{k+1}\right)+$ $L\left(v_{2}, C_{k+1}\right)+\cdots+L\left(v_{n}, C_{k+1}\right)=L\left(v_{1}, C_{k}\right)+L\left(v_{2}, C_{k}\right)+\cdots+L\left(v_{n}, C_{k}\right)+1$ holds, and $\# F^{\prime}$ increases by one. Thus, $L\left(v_{1}, C_{k+1}\right)+L\left(v_{2}, C_{k+1}\right)+\cdots+L\left(v_{n}, C_{k+1}\right)=$ $\# F^{\prime}+\# L$ holds in this case.

In each case, the equation holds after the interaction. Therefore, the lemma holds.

Next, by using Lemma 61, we show that, if the given communication graph is a star, agents make a correct decision.

Lemma 62. If the given communication graph is a star, star ${ }_{a}$ of each agent a converges to yes for any weakly-fair execution $\Xi$.

Proof. First of all, by the property of the star graph, an agent $a$ with degree $n-1$ joins any interaction. In the first interaction, agent $a$ and another agent $b$ interact. From the pseudocode, agents $a$ and $b$ transition to $l^{\prime}$-agents. After that, since agents other than $a$ and $b$ are $F$-agents and agent $a$ with degree $n-1$ is the $l^{\prime}$-agent, agents can transition to other states only by the behavior of lines $7-8$. From weak fairness, eventually the behavior of lines $7-8$ occurs, and agent $a$ transitions to an $L_{2}$-agent.

After that, agent $a$ does not become an $F-, F^{\prime}$, or $l^{\prime}$-agent from the pseudocode. Thus, since agent $a$ always joins interactions, agent $b$ is always the $l^{\prime}$ agent, and any agent other than $a$ and $b$ is $F$ - or $F^{\prime}$-agent. Hence, from Lemma 61, if agent $a$ is the $L_{i}$-agent, $\# F^{\prime}$ is $i-1$ and $\# F$ is $n-2-(i-1)=n-i-1$. Then, from the pseudocode, agent $a$ and $F$-agents can update their $L F$ only by the behavior of line $9-11$. Thus, since agent $a$ is adjacent to each agent, the
behavior of line 9-11 occurs repeatedly from weak fairness until agent $a$ transitions to an $L_{n-1}$-agent. Note that, since $\# F$ is $n-i-1$ when $L F_{a}=L_{i}$ holds, eventually agent $a$ transitions to the $L_{n-1}$-agent. When agent $a$ transitions to the $L_{n-1}$-agent, star $r_{a}$ transitions to yes from the pseudocode. Then, agent $a$ is always the $L_{n-1}$-agent. Hence, since agents other than agent $a$ are adjacent only to agent a, star of any agent does not transition to never because the behaviors of lines 15-19 do not occur. Thus, from the pseudocode, star of each agent transitions to yes by the behavior of lines 20-22, and star of each agent does not update afterwards. Therefore, the lemma holds.

From now, we show that, even if the given communication graph is not a star, agents make a correct decision. To show this, we first show the property of a configuration such that there is an $L_{n-1}$-agent in the configuration.

Lemma 63. If there is an $L_{n-1}$-agent in a configuration, there is an $l^{\prime}$-agent and other $n-2$ agents are $F^{\prime}$-agents in the configuration. Furthermore, after the configuration, each agent a does not update its $L F_{a}$.

Proof. Let $C$ be a configuration in which there is an agent $a$ that is an $L_{n-1}$-agent.
First of all, clearly $\# F^{\prime}+\# L>n$ does not hold in any configuration. Hence, from Lemma 61, any agent other than $a$ is not an $L_{i}$-agent for $2 \leq i \leq n-1$ in $C$ (otherwise $\# F^{\prime}+\# L=n-1+i>n$ holds). Thus, since $\# F^{\prime}+\# L=n-1$ holds in $C, n-2$ agents are $F^{\prime}$-agents and one agent $b$ is an $F$ - or $l^{\prime}$-agent.

Now, we show that agent $b$ is an $l^{\prime}$-agent in $C$. From the pseudocode, if an agent is an $F^{\prime}$-agent in $C$, the agent is not an $l^{\prime}$-agent before and after $C$. Since an $l^{\prime}$-agent occurs only by the behavior of lines 5-6 and an $L_{n-1}$-agent exists in $C$, the behavior of lines 5-6 occurs before $C$. From these facts, agents $a$ and $b$ performed the behavior of lines $5-6$ before $C$. From the pseudocode, if an agent is an $l^{\prime}$-agent, the agent is not an $F$-agent afterwards. Hence, agent $b$ is an $l^{\prime}$-agent in $C$ and thus agent $a$ is the $L_{n-1}$-agent, agent $b$ is the $l^{\prime}$-agent, and other $n-2$ agents are $F^{\prime}$-agents in $C$.

From the pseudocode, clearly each agent $a$ does not update its $L F_{a}$ after $C$. Therefore, the lemma holds.

Now, by using Lemma 63, we show that agents make a correct decision even if the given communication graph is not a star.

Lemma 64. If the given communication graph is not a star, star $r_{a}$ of each agent a converges to no or never for any weakly-fair execution $\Xi$.

Proof. Let $\Xi$ be a weakly-fair execution with a non-star graph. Let us consider two cases: (1) star ${ }_{a}$ of some agent $a$ transitions to yes in $\Xi$, and (2) star of any agent does not transition to yes in $\Xi$.

In case (1), since the behavior of lines 12-14 occurs, an agent $a$ becomes an $L_{n-1}$-agent. Moreover, from the pseudocode, agent $a$ is always the $L_{n-1}$-agent afterwards. From now on, let us consider configurations after agent $a$ becomes the $L_{n-1}$-agent. Since the given graph is not a star, there are two agents whose degree is two or more. Hence, there is an agent $b$ that is adjacent to an agent other than $a$. From weak fairness, eventually agent $b$ interacts with the agent other than $a$. By the interaction, from Lemma 63, the behavior of lines 15-16 or 17-19 occurs and star ${ }_{b}$ transitions to never. After that, by the behavior of lines $2-3$, star of each agent transitions to never. Furthermore, after agents update their star to never, agents do not update their star. Thus, star of each agent converges to never in this case.

In case (2), if star of an agent transitions to never, star of each agent converges to never similarly to case (1); otherwise, since initially star of each agent is no, star of each agent converges to no. Therefore, the lemma holds.

From Lemma 62, if the given communication graph is a star, star $_{a}$ of each agent $a$ converges to yes in any execution of the protocol. From Lemma 64, if the given communication graph is not a star, $\operatorname{star}_{a}$ of each agent $a$ converges to no or never in any execution of the protocol. Thus, we can obtain the following theorem.

Theorem 29. Algorithm 3 solves the star identification problem. That is, there exists a protocol with $O(n)$ states and designated initial states that solves the star identification problem under weak fairness if the number of agents $n$ is given.

## 4. Impossibility Results

### 4.1 A Common Property of Graph Class Identification Protocols for Impossibility Results

In this subsection, we present a common property that holds for protocols with designated initial states under weak fairness.

With designated initial states under weak fairness, we assume that a protocol $\mathcal{P}$ solves some of the graph class identification problems. From now, we show that, with $\mathcal{P}$, there exists a case where agents cannot distinguish between some different connected graphs. Note that $\mathcal{P}$ has no constraints for an initial knowledge (i.e., for some integer $x, \mathcal{P}$ is $\mathcal{P}_{n=x}, \mathcal{P}_{P=x}$, or a protocol with no initial knowledge).

Lemma 65. Let us consider a communication graph $G=(V, E)$, where $V=\left\{v_{1}\right.$, $\left.v_{2}, v_{3}, \ldots, v_{n}\right\}$. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a communication graph that satisfies the following, where $V^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{2 n}^{\prime}\right\}$.

- $E^{\prime}=\left\{\left(v_{x}^{\prime}, v_{y}^{\prime}\right),\left(v_{x+n}^{\prime}, v_{y+n}^{\prime}\right) \in V^{\prime} \times V^{\prime} \mid\left(v_{x}, v_{y}\right) \in E\right\} \cup\left\{\left(v_{1}^{\prime}, v_{z+n}^{\prime}\right),\left(v_{1+n}^{\prime}, v_{z}^{\prime}\right) \in\right.$ $\left.V^{\prime} \times V^{\prime} \mid\left(v_{1}, v_{z}\right) \in E\right\}$ (Figure 16 shows an example of the graphs).

Let $\Xi$ be a weakly-fair execution of $\mathcal{P}$ with $G$. If there exists a configuration $C$ of $\Xi$ after which $\forall v \in V: \gamma(s(v))=y n \in\{y e s, n o\}$ holds, there exists an execution $\Xi^{\prime}$ of $\mathcal{P}$ with $G^{\prime}$ such that there exists a configuration $C^{\prime}$ of $\Xi^{\prime}$ after which $\forall v^{\prime} \in V^{\prime}: \gamma\left(s\left(v^{\prime}\right)\right)=$ yn holds.

Proof. First, we define a term that represents a relation between configurations. Let $C_{i}$ and $C_{j}^{\prime}$ be configurations with $G$ and $G^{\prime}$, respectively. If $s\left(v_{x}, C_{i}\right)=$ $s\left(v_{x}^{\prime}, C_{j}^{\prime}\right)=s\left(v_{x+n}^{\prime}, C_{j}^{\prime}\right)$ holds for $1 \leq x \leq n$, we say that $C_{i}$ and $C_{j}^{\prime}$ are equivalent.

Let $\Xi$ be a weakly-fair execution of $\mathcal{P}$ with $G$ such that there exists a configuration $C_{t}$ of $\Xi$ after which $\forall v \in V: \gamma(s(v))=y n \in\{y e s, n o\}$ holds. Without loss of generality, we assume $y n=$ yes.

Since $\Xi$ is weakly fair, $\Xi$ can be represented by the following $\Xi=C_{0}, C_{1}, C_{2}$, $\ldots, C_{t}, \ldots, C_{t_{0}^{\prime}}, \xi_{1}, C_{t_{1}^{\prime}}, \xi_{2}, C_{t_{2}^{\prime}}, \xi_{3}, \ldots$

- For $u \geq 0, C_{t_{u}^{\prime}}$ is a stable configuration such that $C_{t_{0}^{\prime}}=C_{t_{1}^{\prime}}=C_{t_{2}^{\prime}}=\cdots$ holds and $C_{t_{u}^{\prime}}$ occurs infinitely often.


Figure 16. An example of graphs $G$ and $G^{\prime}$

- For $j \geq 1, \xi_{j}$ is a sub-execution such that, in $C_{t_{j-1}^{\prime}}, \xi_{j}, C_{t_{j}^{\prime}}$, for each pair $(a, b)$ in $E$, agent $a$ interacts with agent $b$ and agent $b$ interacts with agent $a$, at least once.

Next, let us consider the following execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{2 t_{0}^{\prime}}^{\prime}, \xi_{1}^{\prime}$, $C_{2 t_{1}^{\prime}}^{\prime}, \xi_{2}^{\prime}, C_{2 t_{2}^{\prime}}^{\prime}, \xi_{3}^{\prime}, \ldots$ of $\mathcal{P}$ with $G^{\prime}$.

- For $0 \leq i<t_{0}^{\prime}$, when $v_{x}$ interacts with $v_{y}$ at $C_{i} \rightarrow C_{i+1}, v_{x}^{\prime}$ interacts with $v_{y}^{\prime}$ at $C_{i}^{\prime} \rightarrow C_{i+1}^{\prime}$, and $v_{x+n}^{\prime}$ interacts with $v_{y+n}^{\prime}$ at $C_{i+t_{0}^{\prime}}^{\prime} \rightarrow C_{i+t_{0}^{\prime}+1}^{\prime}$. Clearly, $v_{1}^{\prime}$, $\ldots, v_{n}^{\prime}$ and $v_{1+n}^{\prime}, \ldots, v_{2 n}^{\prime}$ behave similarly to $v_{1}, \ldots, v_{n}$ in $\Xi$ and thus $C_{t_{0}^{\prime}}$ and $C_{2 t_{0}^{\prime}}^{\prime}$ are equivalent.
- For $j \geq 1$, by using $\xi_{j}=C_{1}^{j}, C_{2}^{j}, C_{3}^{j}, \ldots, C_{m}^{j}$, we define $\xi_{j}^{\prime}=\hat{C}_{1}^{j}, \hat{C}_{2}^{j}, \hat{C}_{3}^{j}, \ldots$, $\hat{C}_{2 m+1}^{j}$ as follows (Figure 17 shows images of $C_{2 t_{j-1}^{\prime}}^{\prime}, \xi_{j}^{\prime}, C_{2 t_{j}^{\prime}}^{\prime}$ ).
- Case where $j$ is an even number: $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ and $v_{1+n}^{\prime}, \ldots, v_{2 n}^{\prime}$ behave similarly to $v_{1}, \ldots, v_{n}$ in $\Xi$. Concretely, for $1 \leq i<m$, when $v_{x}$ interacts with $v_{y}$ at $C_{i}^{j} \rightarrow C_{i+1}^{j}, v_{x}^{\prime}$ interacts with $v_{y}^{\prime}$ at $\hat{C}_{i}^{j} \rightarrow \hat{C}_{i+1}^{j}$, and $v_{x+n}^{\prime}$ interacts with $v_{y+n}^{\prime}$ at $\hat{C}_{i+m+1}^{j} \rightarrow \hat{C}_{i+m+2}^{j}$. When $v_{x}$ interacts with $v_{y}$ at $C_{t_{j-1}^{\prime}} \rightarrow C_{1}^{j}$ (resp., $C_{m}^{j} \rightarrow C_{t_{j}^{\prime}}$ ), $v_{x}^{\prime}$ interacts with $v_{y}^{\prime}$ at $C_{2 t_{j-1}^{\prime}}^{\prime} \rightarrow \hat{C}_{1}^{j}$ (resp., $\hat{C}_{m}^{j} \rightarrow \hat{C}_{m+1}^{j}$ ), and $v_{x+n}^{\prime}$ interacts with $v_{y+n}^{\prime}$ at $\hat{C}_{m+1}^{j} \rightarrow \hat{C}_{m+2}^{j}$ (resp., $\hat{C}_{2 m+1}^{j} \rightarrow C_{2 t_{j}^{\prime}}^{\prime}$ ).


Figure 17. Images of $C_{2 t_{j-1}^{\prime}}^{\prime}, \xi_{j}^{\prime}, C_{2 t_{j}^{\prime}}^{\prime}$. A solid line represents an edge on which interactions occur in $C_{2 t_{j-1}^{\prime}}^{\prime}, \xi_{j}^{\prime}, C_{2 t_{j}^{\prime}}^{\prime}$, and a dashed line represents an edge on which interactions do not occur in $C_{2 t_{j-1}^{\prime}}^{\prime}, \xi_{j}^{\prime}, C_{2 t_{j}^{\prime}}^{\prime}$

In this case, clearly $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ and $v_{1+n}^{\prime}, \ldots, v_{2 n}^{\prime}$ make transitions similarly to $v_{1}, \ldots, v_{n}$ in $\Xi$. Hence, if $C_{t_{j-1}^{\prime}}$ and $C_{2 t_{j-1}^{\prime}}^{\prime}$ are equivalent, $C_{t_{j}^{\prime}}$ and $C_{2 t_{j}^{\prime}}^{\prime}$ are equivalent.

- Case where $j$ is an odd number: $\left\{v_{1+n}^{\prime}\right\} \cup\left\{v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ and $\left\{v_{1}^{\prime}\right\} \cup\left\{v_{2+n}^{\prime}\right.$, $\left.\ldots, v_{2 n}^{\prime}\right\}$ behave similarly to $v_{1}, \ldots, v_{n}$ in $\Xi$. Concretely, for $1 \leq i<m$ and $x, y \neq 1$, when $v_{x}$ interacts with $v_{y}$ at $C_{i}^{j} \rightarrow C_{i+1}^{j}, v_{x}^{\prime}$ interacts with $v_{y}^{\prime}$ at $\hat{C}_{i}^{j} \rightarrow \hat{C}_{i+1}^{j}$, and $v_{x+n}^{\prime}$ interacts with $v_{y+n}^{\prime}$ at $\hat{C}_{i+m+1}^{j} \rightarrow \hat{C}_{i+m+2}^{j}$. When $v_{x}$ interacts with $v_{y}$ at $C_{t_{j-1}^{\prime}} \rightarrow C_{1}^{j}$ (resp., $C_{m}^{j} \rightarrow C_{t_{j}^{\prime}}$ ), $v_{x}^{\prime}$ interacts with $v_{y}^{\prime}$ at $C_{2 t_{j-1}^{\prime}}^{\prime} \rightarrow \hat{C}_{1}^{j}$ (resp., $\hat{C}_{m}^{j} \rightarrow \hat{C}_{m+1}^{j}$ ), and $v_{x+n}^{\prime}$ interacts with $v_{y+n}^{\prime}$ at $\hat{C}_{m+1}^{j} \rightarrow \hat{C}_{m+2}^{j}$ (resp., $\hat{C}_{2 m+1}^{j} \rightarrow C_{2 t_{j}^{\prime}}^{\prime}$ ).
For $1 \leq i<m$, when $v_{1}$ interacts with $v_{x}$ (resp., $v_{x}$ interacts with $v_{1}$ ) at $C_{i}^{j} \rightarrow C_{i+1}^{j}, v_{1+n}^{\prime}$ interacts with $v_{x}^{\prime}$ (resp., $v_{x}^{\prime}$ interacts with $v_{1+n}^{\prime}$ ) at $\hat{C}_{i}^{j} \rightarrow \hat{C}_{i+1}^{j}$, and $v_{1}^{\prime}$ interacts with $v_{x+n}^{\prime}$ (resp., $v_{x+n}^{\prime}$ interacts with $v_{1}^{\prime}$ ) at $\hat{C}_{i+m+1}^{j} \rightarrow \hat{C}_{i+m+2}^{j}$. When $v_{1}$ interacts with $v_{x}$ (resp., $v_{x}$ interacts with $v_{1}$ ) at $C_{t_{j-1}^{\prime}} \rightarrow C_{i}^{j}, v_{1+n}^{\prime}$ interacts with $v_{x}^{\prime}$ (resp., $v_{x}^{\prime}$ interacts with $v_{1+n}^{\prime}$ ) at $C_{2 t_{j-1}^{\prime}}^{\prime} \rightarrow \hat{C}_{i}^{j}$, and $v_{1}^{\prime}$ interacts with $v_{x+n}^{\prime}$ (resp., $v_{x+n}^{\prime}$ interacts with $v_{1}^{\prime}$ ) at $\hat{C}_{m+1}^{j} \rightarrow \hat{C}_{m+2}^{j}$. When $v_{1}$ interacts with $v_{x}$ (resp., $v_{x}$ interacts with $v_{1}$ ) at $C_{m}^{j} \rightarrow C_{t_{j}^{\prime}}, v_{1+n}^{\prime}$ interacts with $v_{x}^{\prime}$ (resp., $v_{x}^{\prime}$ interacts with
$v_{1+n}^{\prime}$ ) at $\hat{C}_{m}^{j} \rightarrow \hat{C}_{m+1}^{j}$, and $v_{1}^{\prime}$ interacts with $v_{x+n}^{\prime}$ (resp., $v_{x+n}^{\prime}$ interacts with $\left.v_{1}^{\prime}\right)$ at $\hat{C}_{2 m+1}^{j} \rightarrow C_{2 t_{j}^{\prime}}^{\prime}$.
In this case, $\left\{v_{1+n}^{\prime}\right\} \cup\left\{v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ and $\left\{v_{1}^{\prime}\right\} \cup\left\{v_{2+n}^{\prime}, \ldots, v_{2 n}^{\prime}\right\}$ make transitions similarly to $v_{1}, \ldots, v_{n}$ in $\Xi$. Hence, if $C_{t_{j-1}^{\prime}}$ and $C_{2 t_{j-1}^{\prime}}^{\prime}$ are equivalent, $C_{t_{j}^{\prime}}$ and $C_{2 t_{j}^{\prime}}^{\prime}$ are equivalent because $s\left(v_{1}, C_{t_{j-1}^{\prime}}\right)=s\left(v_{1}^{\prime}, C_{2 t_{j-1}^{\prime}}^{\prime}\right)=$ $s\left(v_{1+n}^{\prime}, C_{2 t_{j-1}^{\prime}}^{\prime}\right)$ holds.

Since $\Xi$ is weakly fair, clearly each pair of agents in $E^{\prime}$ interacts infinitely often in $\Xi^{\prime}$ and thus $\Xi^{\prime}$ satisfies weak fairness. By behaviors of $\Xi^{\prime}$, since $C_{2 t}^{\prime}$ and $C_{t}$ are equivalent and $\forall v \in V: \gamma(s(v))=$ yes holds after $C_{t}, \forall v^{\prime} \in V^{\prime}: \gamma\left(s\left(v^{\prime}\right)\right)=$ yes holds after $C_{2 t}^{\prime}$. From these facts, the lemma holds.

### 4.2 Impossibility with the Known Upper Bound of the Number of Agents under Weak Fairness

For the purpose of the contradiction, we assume that, for an integer $x$, there exists a protocol $\mathcal{P}_{P=x}$ that solves some of the graph class identification problems with designated initial states under weak fairness. We can apply Lemma 65 to $\mathcal{P}_{P=x}$ because we can apply the same protocol $\mathcal{P}_{P=x}$ to both $G$ and $G^{\prime}$ in Lemma 65 . Clearly, we can construct $G$ and $G^{\prime}$ in Lemma 65 such that, for any of properties line, ring, tree, $k$-regular, and star, $G$ is a graph that satisfies the property, and $G^{\prime}$ is a graph that does not satisfy the property. Therefore, we have the following theorem.

Theorem 30. Even if the upper bound of the number of agents is given, there exists no protocol that solves the line, ring, $k$-regular, star, or tree identification problem with the designated initial states under weak fairness.

Note that, in Theorem 30, the bipartite identification problem is not included. However, we show later that there is no protocol that solves the bipartite identification problem even if the number of agents is given.

### 4.3 Impossibility with the Known Number of Agents under Weak Fairness

In this subsection, we show that, even if the number of agents $n$ is given, there exists no protocol that solves the line, ring, $k$-regular, tree, or bipartite identification problem with designated initial states under weak fairness.

Case of Line, Ring, $k$-regular, and Tree First, we show that there exists no protocol that solves the line, ring, $k$-regular, or tree identification problem. Concretely, we show that there is a case where a line graph and a ring graph are not distinguishable. To show this, we first define a particular execution $\Xi$ with a line graph.

Let $G=(V, E)$ be a line graph with four agents, where $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right)\right\}$. Let $s_{0}$ be an initial state of agents. Let us consider a transition sequence $T=\left(s_{0}, s_{0}\right) \rightarrow\left(s_{a_{1}}, s_{b_{1}}\right),\left(s_{b_{1}}, s_{a_{1}}\right) \rightarrow\left(s_{b_{2}}, s_{a_{2}}\right)$, $\left(s_{a_{2}}, s_{b_{2}}\right) \rightarrow\left(s_{a_{3}}, s_{b_{3}}\right),\left(s_{b_{3}}, s_{a_{3}}\right) \rightarrow\left(s_{b_{4}}, s_{a_{4}}\right), \ldots$. Since the number of states is finite, there are $i$ and $j$ such that $s_{a_{i}}=s_{a_{j}}, s_{b_{i}}=s_{b_{j}}$, and $i<j$ hold. Let $s a$ and $s b$ be states such that $s a=s_{a_{i}}=s_{a_{j}}$ and $s b=s_{b_{i}}=s_{b_{j}}$ hold.

We define an execution $\Xi=C_{0}, \xi_{1}, C_{u_{1}}, \xi_{2}, C_{u_{2}}, \xi_{3}, C_{u_{3}}, \xi_{4}, C_{u_{4}}, \xi_{5}, \ldots$ of a protocol $\mathcal{P}$ with $G$ as follows, where $\xi_{m}$ is a sub-execution $(m \geq 1)$.

- In $C_{0}, \xi_{1}, C_{u_{1}}$, until $s\left(v_{1}\right)=s a$ and $s\left(v_{2}\right)=s b$ hold, agents repeat the following interactions: $v_{1}$ interacts with $v_{2}, v_{2}$ interacts with $v_{1}, v_{1}$ interacts with $v_{2} \ldots$. From the definition of the transition sequence $T$, this is possible.
- In $C_{u_{1}}, \xi_{2}, C_{u_{2}}$, until $s\left(v_{3}\right)=s a$ and $s\left(v_{4}\right)=s b$ hold, agents repeat the following interactions: $v_{3}$ interacts with $v_{4}, v_{4}$ interacts with $v_{3}, v_{3}$ interacts with $v_{4} \ldots$. Thus, $s\left(v_{1}, C_{u_{2}}\right)=s\left(v_{3}, C_{u_{2}}\right)=s a$ and $s\left(v_{2}, C_{u_{2}}\right)=s\left(v_{4}, C_{u_{2}}\right)=$ $s b$ hold.
- For $i \geq 2$, we construct the execution as follows:
- Case where $i \bmod 3=0$ holds: In $C_{u_{i}}, \xi_{i+1}, C_{u_{i+1}}$, until $s\left(v_{1}\right)=s a$ and $s\left(v_{2}\right)=s b$ hold, agents repeat the following interactions: $v_{1}$ interacts with $v_{2}, v_{2}$ interacts with $v_{1}, v_{1}$ interacts with $v_{2} \ldots$ To satisfy weak
fairness, we construct the interactions so that $v_{1}$ and $v_{2}$ interact at least twice.
- Case where $i \bmod 3=1$ holds: In $C_{u_{i}}, \xi_{i+1}, C_{u_{i+1}}$, until $s\left(v_{2}\right)=s b$ and $s\left(v_{3}\right)=s a$ hold, agents repeat the following interactions: $v_{3}$ interacts with $v_{2}, v_{2}$ interacts with $v_{3}, v_{3}$ interacts with $v_{2} \ldots$ To satisfy weak fairness, we construct the interactions so that $v_{2}$ and $v_{3}$ interact at least twice.
- Case where $i \bmod 3=2$ holds: In $C_{u_{i}}, \xi_{i+1}, C_{u_{i+1}}$, until $s\left(v_{3}\right)=s a$ and $s\left(v_{4}\right)=s b$ hold, agents repeat the following interactions: $v_{3}$ interacts with $v_{4}, v_{4}$ interacts with $v_{3}, v_{3}$ interacts with $v_{4} \ldots$ To satisfy weak fairness, we construct the interactions so that $v_{3}$ and $v_{4}$ interact at least twice.

For $i \geq 2$, if $s\left(v_{1}, C_{u_{i}}\right)=s\left(v_{3}, C_{u_{i}}\right)=s a$ and $s\left(v_{2}, C_{u_{i}}\right)=s\left(v_{4}, C_{u_{i}}\right)=s b$ hold, we can construct such interactions from the definition of the transition sequence $T$. Thus, since $s\left(v_{1}, C_{u_{2}}\right)=s\left(v_{3}, C_{u_{2}}\right)=s a$ and $s\left(v_{2}, C_{u_{2}}\right)=$ $s\left(v_{4}, C_{u_{2}}\right)=s b$ hold, $C_{u_{i}}=C_{u_{i+1}}$ holds for $i \geq 2$.

Since each pair of agents interact infinitely often in $\Xi, \Xi$ is weakly-fair. Since $\Xi$ is weakly-fair, $\gamma(s a)=\gamma(s b)=y n \in\{y e s, n o\}$ holds in a stable configuration of $\Xi$.

Now, we show that there is a case where a line graph and a ring graph are not distinguishable.

Lemma 66. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a ring graph with four agents, where $V^{\prime}=\left\{v_{1}^{\prime}\right.$, $\left.v_{2}^{\prime}, v_{3}^{\prime}, v_{4}^{\prime}\right\}$ and $E^{\prime}=\left\{\left(v_{1}^{\prime}, v_{2}^{\prime}\right),\left(v_{2}^{\prime}, v_{3}^{\prime}\right),\left(v_{3}^{\prime}, v_{4}^{\prime}\right),\left(v_{4}^{\prime}, v_{1}^{\prime}\right)\right\}$. There exists a weaklyfair execution $\Xi^{\prime}$ of $\mathcal{P}$ with $G^{\prime}$ such that $\forall v^{\prime} \in V^{\prime}: \gamma\left(s\left(v^{\prime}\right)\right)=y n$ holds in a stable configuration of $\Xi^{\prime}$.

Proof. Let us consider the following execution $\Xi^{\prime}=C_{0}^{\prime}, \xi_{1}^{\prime}, C_{u_{1}^{\prime}}^{\prime}, \xi_{2}^{\prime}, C_{u_{2}^{\prime}}^{\prime}, \xi_{3}^{\prime}, C_{u_{3}^{\prime}}^{\prime}$, $\xi_{4}^{\prime}, C_{u_{4}^{\prime}}^{\prime}, \xi_{5}^{\prime}, \ldots$ of $\mathcal{P}$ with $G^{\prime}$, where $\xi_{m}^{\prime}$ is a sub-execution $(m \geq 1)$.

- In $C_{0}^{\prime}, \xi_{1}^{\prime}, C_{u_{1}^{\prime}}^{\prime}$, until $s\left(v_{1}^{\prime}\right)=s a$ and $s\left(v_{2}^{\prime}\right)=s b$ hold, agents repeat the following interactions: $v_{1}^{\prime}$ interacts with $v_{2}^{\prime}, v_{2}^{\prime}$ interacts with $v_{1}^{\prime}, v_{1}^{\prime}$ interacts with $v_{2}^{\prime} \ldots$. From the definition of the transition sequence $T$, this is possible.
- In $C_{u_{1}^{\prime}}^{\prime}, \xi_{2}^{\prime}, C_{u_{2}^{\prime}}^{\prime}$, until $s\left(v_{3}^{\prime}\right)=s a$ and $s\left(v_{4}^{\prime}\right)=s b$ hold, agents repeat the following interactions: $v_{3}^{\prime}$ interacts with $v_{4}^{\prime}, v_{4}^{\prime}$ interacts with $v_{3}^{\prime}, v_{3}^{\prime}$ interacts with $v_{4}^{\prime} \ldots$. Thus, $s\left(v_{1}^{\prime}, C_{u_{2}^{\prime}}^{\prime}\right)=s\left(v_{3}^{\prime}, C_{u_{2}^{\prime}}^{\prime}\right)=s a$ and $s\left(v_{2}^{\prime}, C_{u_{2}^{\prime}}^{\prime}\right)=s\left(v_{4}^{\prime}, C_{u_{2}^{\prime}}^{\prime}\right)=$ $s b$ hold.
- For $i \geq 2$, we construct the execution as follows:
- Case where $i \bmod 4=0$ holds: In $C_{u_{i}^{\prime}}^{\prime}, \xi_{i+1}^{\prime}, C_{u_{i+1}^{\prime}}^{\prime}$, until $s\left(v_{1}^{\prime}\right)=s a$ and $s\left(v_{2}^{\prime}\right)=s b$ hold, agents repeat the following interactions: $v_{1}^{\prime}$ interacts with $v_{2}^{\prime}, v_{2}^{\prime}$ interacts with $v_{1}^{\prime}, v_{1}^{\prime}$ interacts with $v_{2}^{\prime} \ldots$. To satisfy weak fairness, we construct the interactions so that $v_{1}^{\prime}$ and $v_{2}^{\prime}$ interact at least twice.
- Case where $i \bmod 4=1$ holds: In $C_{u_{i}^{\prime}}^{\prime}, \xi_{i+1}^{\prime}, C_{u_{i+1}^{\prime}}^{\prime}$, until $s\left(v_{2}^{\prime}\right)=s b$ and $s\left(v_{3}^{\prime}\right)=s a$ hold, agents repeat the following interactions: $v_{3}^{\prime}$ interacts with $v_{2}^{\prime}, v_{2}^{\prime}$ interacts with $v_{3}^{\prime}, v_{3}^{\prime}$ interacts with $v_{2}^{\prime} \ldots$. To satisfy weak fairness, we construct the interactions so that $v_{2}^{\prime}$ and $v_{3}^{\prime}$ interact at least twice.
- Case where $i \bmod 4=2$ holds: In $C_{u_{i}^{\prime}}^{\prime}, \xi_{i+1}^{\prime}, C_{u_{i+1}^{\prime}}^{\prime}$, until $s\left(v_{3}^{\prime}\right)=s a$ and $s\left(v_{4}^{\prime}\right)=s b$ hold, agents repeat the following interactions: $v_{3}^{\prime}$ interacts with $v_{4}^{\prime}, v_{4}^{\prime}$ interacts with $v_{3}^{\prime}, v_{3}^{\prime}$ interacts with $v_{4}^{\prime} \ldots$. To satisfy weak fairness, we construct the interactions so that $v_{3}^{\prime}$ and $v_{4}^{\prime}$ interact at least twice.
- Case where $i \bmod 4=3$ holds: In $C_{u_{i}^{\prime}}^{\prime}, \xi_{i+1}^{\prime}, C_{u_{i+1}^{\prime}}^{\prime}$, until $s\left(v_{4}^{\prime}\right)=s b$ and $s\left(v_{1}^{\prime}\right)=s a$ hold, agents repeat the following interactions: $v_{1}^{\prime}$ interacts with $v_{4}^{\prime}, v_{4}^{\prime}$ interacts with $v_{1}^{\prime}, v_{1}^{\prime}$ interacts with $v_{4}^{\prime} \ldots$. To satisfy weak fairness, we construct the interactions so that $v_{1}^{\prime}$ and $v_{4}^{\prime}$ interact at least twice.

For $i \geq 2$, if $s\left(v_{1}^{\prime}, C_{u_{i}^{\prime}}^{\prime}\right)=s\left(v_{3}^{\prime}, C_{u_{i}^{\prime}}^{\prime}\right)=s a$ and $s\left(v_{2}^{\prime}, C_{u_{i}^{\prime}}^{\prime}\right)=s\left(v_{4}^{\prime}, C_{u_{i}^{\prime}}^{\prime}\right)=s b$ hold, we can construct such interactions from the definition of the transition sequence $T$. Thus, since $s\left(v_{1}^{\prime}, C_{u_{2}^{\prime}}^{\prime}\right)=s\left(v_{3}^{\prime}, C_{u_{2}^{\prime}}^{\prime}\right)=s a$ and $s\left(v_{2}^{\prime}, C_{u_{2}^{\prime}}^{\prime}\right)=$ $s\left(v_{4}^{\prime}, C_{u_{2}^{\prime}}^{\prime}\right)=s b$ hold, $C_{u_{i}^{\prime}}^{\prime}=C_{u_{i+1}^{\prime}}^{\prime}$ holds for $i \geq 2$.
Since each pair of agents interact infinitely often in $\Xi^{\prime}, \Xi^{\prime}$ is weakly-fair. From these facts, since $\gamma(s a)=\gamma(s b)=y n$ holds, $\forall v^{\prime} \in V^{\prime}: \gamma\left(s\left(v^{\prime}\right)\right)=y n$ holds in a
stable configuration in $\Xi^{\prime}$. Thus, the lemma holds.
Note that, even if the number of agents is given, Lemma 66 holds because $|V|=\left|V^{\prime}\right|=4$ holds in the lemma. In Lemma 66, $G$ is a line graph and a tree graph whereas $G^{\prime}$ is neither a line graph nor a tree graph. Furthermore, $G^{\prime}$ is a ring graph and a 2-regular graph whereas $G$ is neither a ring graph nor a 2-regular graph. Hence, by Lemma 66, there is no protocol that solves the line, ring, tree, or $k$-regular identification problem, and thus we have the following theorem.

Theorem 31. Even if the number of agents $n$ is given, there exists no protocol that solves the line, ring, $k$-regular, or tree identification problem with designated initial states under weak fairness.

Case of Bipartite Next, we show that there exists no protocol that solves the bipartite identification problem. For the purpose of the contradiction, we assume that there exists a protocol $\mathcal{P}_{n=6}$ that solves the bipartite identification problem with designated initial states under weak fairness if the number of agents 6 is given.

We define a ring graph $G=(V, E)$ with three agents, a ring graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with 6 agents, and a graph $G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ with 6 agents as follows:

- $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $E=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{1}\right)\right\}$.
- $V^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}\right\}$ and $E^{\prime}=\left\{\left(v_{1}^{\prime}, v_{2}^{\prime}\right),\left(v_{2}^{\prime}, v_{6}^{\prime}\right),\left(v_{6}^{\prime}, v_{4}^{\prime}\right),\left(v_{4}^{\prime}, v_{5}^{\prime}\right)\right.$, $\left.\left(v_{5}^{\prime}, v_{3}^{\prime}\right),\left(v_{3}^{\prime}, v_{1}^{\prime}\right)\right\}$.
- $V^{\prime \prime}=\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}, v_{4}^{\prime \prime}, v_{5}^{\prime \prime}, v_{6}^{\prime \prime}\right\}$ and $E^{\prime \prime}=\left\{\left(v_{x}^{\prime \prime}, v_{y}^{\prime \prime}\right),\left(v_{x+n}^{\prime \prime}, v_{y+n}^{\prime \prime}\right) \in V^{\prime \prime} \times V^{\prime \prime} \mid\right.$ $\left.\left(v_{x}, v_{y}\right) \in E\right\} \cup\left\{\left(v_{1}^{\prime \prime}, v_{5}^{\prime \prime}\right),\left(v_{1}^{\prime \prime}, v_{6}^{\prime \prime}\right),\left(v_{4}^{\prime \prime}, v_{2}^{\prime \prime}\right),\left(v_{4}^{\prime \prime}, v_{3}^{\prime \prime}\right)\right\}$.

Figure 18 shows graphs $G, G^{\prime}$, and $G^{\prime \prime}$.
From now, we show that there exists an execution $\Xi^{\prime \prime}$ of $\mathcal{P}_{n=6}$ with $G^{\prime \prime}$ such that all agents converge to yes whereas $G^{\prime \prime}$ does not satisfy bipartite. To show this, we first show that, in any execution $\Xi$ of $\mathcal{P}_{n=6}$ with $G$ (i.e., the protocol for 6 agents is applied to a population consisting of 3 agents), all agents converge to yes. To prove this, we borrow the proof technique in [30]. In [30], Fischer and Jiang proved the impossibility of leader election for a ring graph.


Figure 18. Graphs $G, G^{\prime}$, and $G^{\prime \prime}$

Lemma 67. In any weakly-fair execution $\Xi$ of $\mathcal{P}_{n=6}$ with $G$, all agents converge to yes. That is, in $\Xi$, there exists $C_{t}$ such that $\forall v \in V: \gamma\left(s\left(v, C_{i}\right)\right)=$ yes holds for $i \geq t$.

Proof. Let $\Xi=C_{0}, C_{1}, C_{2}$ be a weakly-fair execution of $\mathcal{P}_{n=6}$ with $G$. Let us consider the following execution $\Xi^{\prime}=D_{0}, D_{0}^{\prime}, D_{1}, D_{1}^{\prime} \ldots$ of $\mathcal{P}_{n=6}$ with $G^{\prime}$.

- For $x$ and $y$ such that either $x=1$ or $y=1$ holds, when $v_{x}$ interacts with $v_{y}$ at $C_{i} \rightarrow C_{i+1}, v_{x}^{\prime}$ interacts with $v_{y}^{\prime}$ at $D_{i} \rightarrow D_{i}^{\prime}$, and $v_{x+3}^{\prime}$ interacts with $v_{y+3}^{\prime}$ at $D_{i}^{\prime} \rightarrow D_{i+1}$.
- For $x \in\{2,3\}$ and $y \in\{2,3\}$ such that $x \neq y$ holds, when $v_{x}$ interacts with $v_{y}$ at $C_{i} \rightarrow C_{i+1}, v_{x}^{\prime}$ interacts with $v_{y+3}^{\prime}$ at $D_{i} \rightarrow D_{i}^{\prime}$, and $v_{x+3}^{\prime}$ interacts with $v_{y}^{\prime}$ at $D_{i}^{\prime} \rightarrow D_{i+1}$.

For a configuration $C$ of $G$ and a configuration $D$ of $G^{\prime}$, if $s\left(v_{i}, C\right)=s\left(v_{i}^{\prime}, D\right)=$ $s\left(v_{i+3}^{\prime}, D\right)$ holds for $i(1 \leq i \leq 3)$, we say that $C$ and $D$ are equivalent.

From now, we show, by induction on the index of configuration, that $C_{r}$ and $D_{r}$ are equivalent for any $r \geq 0$. Since clearly $C_{0}$ and $D_{0}$ are equivalent, the base case holds. For the induction step, we assume that $C_{l}$ and $D_{l}$ are equivalent, and then consider two cases of interaction at $C_{l} \rightarrow C_{l+1}$.

First we consider the case where, for $x$ and $y$ such that either $x=1$ or $y=1$ holds, agents $v_{x}$ interacts with $v_{y}$ at $C_{l} \rightarrow C_{l+1}$. In this case, $v_{x}^{\prime}$ interacts with $v_{y}^{\prime}$ at $D_{l} \rightarrow D_{l}^{\prime}$, and $v_{x+3}^{\prime}$ interacts with $v_{y+3}^{\prime}$ at $D_{l}^{\prime} \rightarrow D_{l+1}$. By the induction assumption, $s\left(v_{x}, C_{l}\right)=s\left(v_{x}^{\prime}, D_{l}\right)=s\left(v_{x+3}^{\prime}, D_{l}\right)$ and $s\left(v_{y}, C_{l}\right)=s\left(v_{y}^{\prime}, D_{l}\right)=s\left(v_{y+3}^{\prime}, D_{l}\right)$ hold. Hence, agents $v_{x}^{\prime}$ and $v_{x+3}^{\prime}$ (resp., $v_{y}^{\prime}$ and $v_{y+3}^{\prime}$ ) update their states similarly to $v_{x}$ (resp., $v_{y}$ ), and thus $C_{l+1}$ and $D_{l+1}$ are equivalent in this case.

Next, we consider the case where, for $x \in\{2,3\}$ and $y \in\{2,3\}$ such that $x \neq y$ holds, agents $v_{x}$ interacts with $v_{y}$ at $C_{l} \rightarrow C_{l+1}$. In this case, $v_{x}^{\prime}$ interacts with $v_{y+3}^{\prime}$ at $D_{l} \rightarrow D_{l}^{\prime}$, and $v_{x+3}^{\prime}$ interacts with $v_{y}^{\prime}$ at $D_{l}^{\prime} \rightarrow D_{l+1}$. By the induction assumption, $s\left(v_{x}, C_{l}\right)=s\left(v_{x}^{\prime}, D_{l}\right)=s\left(v_{x+3}^{\prime}, D_{l}\right)$ and $s\left(v_{y}, C_{l}\right)=s\left(v_{y}^{\prime}, D_{l}\right)=s\left(v_{y+3}^{\prime}, D_{l}\right)$ hold. Hence, agents $v_{x}^{\prime}$ and $v_{x+3}^{\prime}$ (resp., $v_{y}^{\prime}$ and $v_{y+3}^{\prime}$ ) update their states similarly to $v_{x}$ (resp., $v_{y}$ ), and thus $C_{l+1}$ and $D_{l+1}$ are equivalent in this case. Thus, $C_{r}$ and $D_{r}$ are equivalent for any $r \geq 0$.

In $\Xi^{\prime}$, since the number of agents is given correctly, a stable configuration exists, and $\forall v^{\prime} \in V^{\prime}: \gamma\left(s\left(v^{\prime}\right)\right)=$ yes holds in the configuration because $G^{\prime}$ satisfies bipartite. Since $C_{r}$ and $D_{r}$ are equivalent for any $r \geq 0, \forall v \in V: \gamma(s(v))=$ yes holds after some configuration in $\Xi$. Thus, the lemma holds.

Now, we show that there exists execution $\Xi^{\prime \prime}$ of $\mathcal{P}_{n=6}$ with $G^{\prime \prime}$ such that all agents converge to yes.

Lemma 68. With the designated initial states, there exists a weakly-fair execution $\Xi^{\prime \prime}$ of $\mathcal{P}_{n=6}$ with $G^{\prime \prime}$ such that $\forall v^{\prime \prime} \in V^{\prime \prime}: \gamma\left(s\left(v^{\prime \prime}\right)\right)=$ yes in a stable configuration.

Proof. By Lemma 67, there exists a weakly-fair execution of $\mathcal{P}_{n=6}$ with $G$ such that all agents converge to yes in the execution even if $2 n$ is given as the number of agents whereas the number of agents is $n$. This implies that we can apply Lemma 65 to protocol $\mathcal{P}_{n=6}$ and graphs $G$ and $G^{\prime \prime}$. This is because $G$ and $G^{\prime \prime}$ satisfy the condition of $G$ and $G^{\prime}$ in Lemma 65, and the protocol $\mathcal{P}_{n=6}$ satisfies the condition of protocol $\mathcal{P}$ in Lemma 65. Hence, there exists a weakly-fair execution $\Xi^{\prime \prime}$ of $\mathcal{P}_{n=6}$ with $G^{\prime \prime}$ such that $\forall v^{\prime \prime} \in V^{\prime}: \gamma\left(s\left(v^{\prime \prime}\right)\right)=$ yes holds in a stable configuration of $\Xi^{\prime \prime}$. Thus, the lemma holds.

Graph $G^{\prime \prime}$ does not satisfy bipartite. Thus, from Lemma $68, \mathcal{P}_{n=6}$ is incorrect. Therefore, we have the following theorem.

Theorem 32. Even if the number of agents $n$ is given, there exists no protocol that solves the bipartite identification problem with the designated initial states under weak fairness.

### 4.4 Impossibility with Arbitrary Initial States

In this subsection, we show that, even if the number of agents $n$ is given, there exists no protocol that solves the line, ring, $k$-regular, star, tree, or bipartite identification problem with arbitrary initial states under global fairness.

For the purpose of the contradiction, we assume that there exists a protocol $\mathcal{P}$ that solves some of the above graph class identification problems with arbitrary initial states under global fairness if the number of agents $n$ is given. From now, we show that there are two executions $\Xi$ and $\Xi^{\prime}$ of $\mathcal{P}$ such that the decision of all agents in the executions converges to the same value whereas $\Xi$ and $\Xi^{\prime}$ are for graphs $G$ and $G^{\prime}(\neq G)$, respectively.

Lemma 69. Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be connected graphs that satisfy the following condition, where $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $V^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{n}^{\prime}\right\}$.

- For some edge $\left(v_{\alpha}, v_{\beta}\right)$ in $E, E^{\prime}=\left\{\left(v_{x}^{\prime}, v_{y}^{\prime}\right) \in V^{\prime} \times V^{\prime} \mid\left(v_{x}, v_{y}\right) \in E\right\} \backslash\left\{\left(v_{\alpha}^{\prime}, v_{\beta}^{\prime}\right)\right\}$.

If there exists a globally-fair execution $\Xi$ of $\mathcal{P}$ with $G$ such that $\forall v \in V: \gamma(s(v))=$ $y n \in\{y e s, n o\}$ holds in a stable configuration of $\Xi$, there exists a globally-fair execution $\Xi^{\prime}$ of $\mathcal{P}$ with $G^{\prime}$ such that $\forall v^{\prime} \in V^{\prime}: \gamma\left(s\left(v^{\prime}\right)\right)=y n$ holds in a stable configuration of $\Xi^{\prime}$.

Proof. Let $\Xi=C_{0}, C_{1}, C_{2}, \ldots$ be a globally-fair execution of $\mathcal{P}$ with $G$ such that $\forall v \in V: \gamma(s(v))=y n \in\{y e s, n o\}$ holds in a stable configuration. Let $C_{t}$ be a stable configuration in $\Xi$. For the purpose of the contradiction, we assume that there exists no execution of $\mathcal{P}$ with $G^{\prime}$ such that $\forall v^{\prime} \in V^{\prime}: \gamma\left(s\left(v^{\prime}\right)\right)=y n$ holds in a stable configuration.

Let us consider an execution $\Xi^{\prime}=C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t^{\prime}}^{\prime}, \ldots$ of $\mathcal{P}$ with $G^{\prime}$ as follows:

- For $1 \leq i \leq n, s\left(v_{i}^{\prime}, C_{0}^{\prime}\right)=s\left(v_{i}, C_{t}\right)$ holds.
- $C_{t^{\prime}}^{\prime}$ is a stable configuration.

By the assumption, $\exists v_{z}^{\prime} \in V^{\prime}: \gamma\left(s\left(v_{z}^{\prime}, C_{t^{\prime}}^{\prime}\right)\right)=y n^{\prime}(\neq y n)$ holds.
Next, let us consider an execution $\Xi^{\prime \prime}=C_{0}^{\prime \prime}, C_{1}^{\prime \prime}, C_{2}^{\prime \prime}, \ldots, C_{t}^{\prime \prime}, \ldots$ of $\mathcal{P}$ with $G$ as follows:

- For $0 \leq i \leq t, C_{i}^{\prime \prime}=C_{i}$ holds (i.e., agents behave similarly to $\Xi$ ).
- For $t<i \leq t+t^{\prime}$, when $v_{x}^{\prime}$ interacts with $v_{y}^{\prime}$ at $C_{i-t-1}^{\prime} \rightarrow C_{i-t}^{\prime}, v_{x}$ interacts with $v_{y}$ at $C_{i-1}^{\prime \prime} \rightarrow C_{i}^{\prime \prime}$. This is possible because $E^{\prime} \subset E$ holds.

Since $C_{t}$ is a stable configuration, $C_{t}^{\prime \prime}$ is also a stable configuration and $\forall v \in$ $V: \gamma\left(s\left(v, C_{t}^{\prime \prime}\right)\right)=y n$ holds. Since agents behave similarly to $\Xi^{\prime}$ after $C_{t}^{\prime \prime}$, $\gamma\left(s\left(v_{z}, C_{t+t^{\prime}}^{\prime \prime}\right)\right)=y n^{\prime}$ holds. This contradicts the fact that $C_{t}^{\prime \prime}$ is a stable configuration.

We can construct a non-line graph, a non-ring graph, a non-star graph, and a non-tree graph by adding an edge to a line graph, a ring graph, a star graph, and a tree graph, respectively. Moreover, we can construct a bipartite graph, and a $k$-regular graph by adding an edge to some non-bipartite graph, and some non-$k$-regular graph, respectively. From Lemma 69, there is a case where the decision of all agents converges to the same value for each pair of graphs. Therefore, we have the following theorem.

Theorem 33. There exists no protocol that solves the line, ring, $k$-regular, star, tree, or bipartite identification problem with arbitrary initial states under global fairness.

## 5. Concluding Remarks

In this part, we considered the graph class identification problems on various assumptions such as initial states of agents, fairness, and initial knowledge of agents. With designated initial states, we proposed graph class identification protocols for trees, $k$-regular graphs, and stars under global fairness. In particular, the star identification protocol works even under weak fairness. Moreover, we showed that, even if agents know the number of agents $n$, there is no graph class identification protocol for lines, rings, $k$-regular graphs, trees, or bipartite graphs under weak fairness, and no graph class identification for lines, rings, $k$-regular graphs, stars, trees, or bipartite graphs with arbitrary initial states. Overall, we clarified the solvability of the graph class identification problems for each combination of assumptions except for one case of $k$-regular graph.

## Part VI

## Conclusion

In this dissertation, we dealt with a distributed system for low performance devices. Concretely, we used the population protocol model as a model of a distributed system for low-performance devices. In the population protocol model, we tackled with two significant challenges: (1) Handling multiple tasks and (2) Efficient task execution. Concretely, we studied the uniform $k$-partition problem to achieve handling multiple tasks, and studied graph class identification problems to achieve efficient task execution.

In Part III and IV, we dealt with the uniform $k$-partition problem which aims to divide a population into $k$ groups of equal size. We considered the problem on complete communication graphs in Part III, and considered the problem on arbitrary communication graphs in Part IV. On complete communication graphs, all agents can interact with each other. This implies that this case is for an environment in which the devices (agents) have a wide range of movement (because, on the population protocol model, agents can communicate only when the agents sufficiently close). While such an environment is feasible, there may be cases where devices do not move so wide. Thus, we also considered the problem on arbitrary communication graphs.

In Part III, as a first step, we considered the uniform 2-partition problem on complete graphs. As a result, we clarified the solvability of the uniform 2partition for each combination of assumptions ( 24 out of 24 cases). Moreover, if it is solvable, we clarified tight upper and lower bounds on the number of states per agent. On the other hand, for the uniform $k$-partition problem, we clarified the solvability for most combinations of assumptions ( 23 out of 24 cases), and we clarified tight upper and lower bounds on the number of states per agent for 10 out of 15 solvable cases.

In Part IV, we clarified the solvability of the uniform 2-partition on arbitrary graphs in variety of cases ( 20 out of 24 cases), and we clarified tight upper and lower bounds on the number of states per agent for 6 out of 10 solvable cases.

In Part V, we focused on graph class identification problems which aim to
decide whether the given communication graph is in desired class (e.g., whether the given graph is a ring graph). We consider graph class identification problems for basic graphs under various assumptions. Concretely, with designated initial states, we proposed graph class identification protocols for trees and $k$-regular graphs under global fairness, and we proposed the star identification protocol under weak fairness. As impossibility results, for lines, rings, $k$-regular graphs, trees, or bipartite graphs, we proved that there is no protocol under weak fairness. With arbitrary initial states, we proved that there is no graph class identification protocol for lines, rings, $k$-regular graphs, stars, trees, or bipartite graphs.

From now, we show future directions of our works. One of the important tasks is to study the time complexity of the problems. In our works, except for the uniform $k$-partition protocol in Part III, we only considered the space complexity. In order to increase the versatility and applicability, we should study the time complexity of the problems. Another important future task is to investigate the relationship with other basic problems. Concretely, we should consider what is possible by combining our protocols with other protocols, and investigate whether there is a problem which can be solved efficiently by using our protocols as subroutine.

## Acknowledgements

Thankfully, I have had the support of many people. First of all, I deeply would like to appreciate Professor Michiko Inoue for her guidance and continuous support. She gave me useful comments to improve my papers and presentations. Secondly, I am grateful to Professor Shoji Kasahara for precious comments on this dissertation. He has left very valuable comments on the dissertation even though it is a bit far from his research field. I express our sincere thanks to Associate Professor Fukuhito Ooshita. He always cooperated with me and gave me various technical comments and encouragements. I would like to greatly thank Assistant Professor Michihiro Shintani for guidance and useful comments on this dissertation. Despite his busy schedule, he provides effective comments on this dissertation. I would like to extremely appreciate Professor Sébastien Tixeuil for his kind supports and thoughtful comments. He has devotedly supported me, and he always cared about my research. Finally, I would also like to thank the members of Dependable System Laboratory for helpful supports.

## References

[1] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L Rivest. Time-space trade-offs in population protocols. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 25602579, 2017.
[2] Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population protocols. In Proceedings of the Twenty-Ninth Annual ACMSIAM Symposium on Discrete Algorithms, pages 2221-2239, 2018.
[3] Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population protocols. In Proceedings of the $42 n d$ International Colloquium on Automata, Languages, and Programming, pages 479-491, 2015.
[4] Dan Alistarh and Rati Gelashvili. Recent algorithmic advances in population protocols. ACM SIGACT News, 49(3):63-73, 2018.
[5] Dan Alistarh, Rati Gelashvili, and Joel Rybicki. Fast graphical population protocols. arXiv preprint arXiv:2102.08808, 2021.
[6] Dana Angluin, James Aspnes, Melody Chan, Michael J Fischer, Hong Jiang, and René Peralta. Stably computable properties of network graphs. In Proceedings of International Conference on Distributed Computing in Sensor Systems, pages 63-74, 2005.
[7] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J Fischer, and René Peralta. Computation in networks of passively mobile finite-state sensors. Distributed computing, 18(4):235-253, 2006.
[8] Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for fast robust approximate majority. Distributed Computing, 21(2):87102, 2008.
[9] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power of population protocols. Distributed Computing, 20(4):279304, 2007.
[10] Dana Angluin, James Aspnes, Michael J Fischer, and Hong Jiang. Selfstabilizing population protocols. In International Conference On Principles Of Distributed Systems, pages 103-117, 2005.
[11] Dana Angluin, James Aspnes, Michael J Fischer, and Hong Jiang. Selfstabilizing population protocols. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 3(4):13, 2008.
[12] James Aspnes, Joffroy Beauquier, Janna Burman, and Devan Sohier. Time and space optimal counting in population protocols. In Proceedings of International Conference on Principles of Distributed Systems, pages 13:1-13:17, 2016.
[13] James Aspnes and Eric Ruppert. An introduction to population protocols. In Middleware for Network Eccentric and Mobile Applications, pages 97-120, 2009.
[14] Joffroy Beauquier, Peva Blanchard, and Janna Burman. Self-stabilizing leader election in population protocols over arbitrary communication graphs. In International Conference on Principles of Distributed Systems, pages 3852, 2013.
[15] Joffroy Beauquier, Janna Burman, Simon Claviere, and Devan Sohier. Spaceoptimal counting in population protocols. In Proceedings of International Symposium on Distributed Computing, pages 631-646, 2015.
[16] Joffroy Beauquier, Julien Clement, Stephane Messika, Laurent Rosaz, and Brigitte Rozoy. Self-stabilizing counting in mobile sensor networks with a base station. In Proceedings of International Symposium on Distributed Computing, pages 63-76, 2007.
[17] Stav Ben-Nun, Tsvi Kopelowitz, Matan Kraus, and Ely Porat. An o (log3/2 n) parallel time population protocol for majority with o (logn) states. In Proceedings of the 39th Symposium on Principles of Distributed Computing, pages 191-199, 2020.
[18] Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz Radzik. A population protocol for exact majority with $\mathrm{o}(\log 5 / 3 \mathrm{n})$ stabilization time and theta $(\log \mathrm{n})$ states. In Proceedings of International Symposium on Distributed Computing.
[19] Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz Radzik. Time-space trade-offs in population protocols for the majority problem. Distributed Computing, pages 1-21, 2020.
[20] Petra Berenbrink, George Giakkoupis, and Peter Kling. Optimal time and space leader election in population protocols. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 119-129, 2020.
[21] Petra Berenbrink, Dominik Kaaser, and Tomasz Radzik. On counting the population size. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pages 43-52, 2019.
[22] Olivier Bournez, Jérémie Chalopin, Johanne Cohen, Xavier Koegler, and Mikael Rabie. Population protocols that correspond to symmetric games. International Journal of Unconventional Computing, 9, 2013.
[23] Janna Burman, Joffroy Beauquier, and Devan Sohier. Brief announcement: Space-optimal naming in population protocols. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, pages 479-481, 2018.
[24] Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility under global fairness: On space complexity of self-stabilizing leader election on a population protocol model. Theory of Computing Systems, 50(3):433445, 2012.
[25] Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis.
[26] Hsueh-Ping Chen and Ho-Lin Chen. Self-stabilizing leader election. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pages 53-59, 2019.
[27] Hsueh-Ping Chen and Ho-Lin Chen. Self-stabilizing leader election in regular graphs. In Proceedings of the 39th Symposium on Principles of Distributed Computing, pages 210-217, 2020.
[28] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Eric Ruppert. When birds die: Making population protocols fault-tolerant. Distributed Computing in Sensor Systems, pages 51-66, 2006.
[29] David Doty and David Soloveichik. Stable leader election in population protocols requires linear time. Distributed Computing, 31(4):257-271, 2018.
[30] Michael Fischer and Hong Jiang. Self-stabilizing leader election in networks of finite-state anonymous agents. In International Conference On Principles Of Distributed Systems, pages 395-409, 2006.
[31] Leszek Gaasieniec, David Hamilton, Russell Martin, Paul G Spirakis, and Grzegorz Stachowiak. Deterministic population protocols for exact majority and plurality. In Proceedings of International Conference on Principles of Distributed Systems, pages 14:1-14:14, 2016.
[32] Leszek Gąsieniec, Grzegorz Stachowiak, and Przemyslaw Uznanski. Almost logarithmic-time space optimal leader election in population protocols. In The 31st ACM on Symposium on Parallelism in Algorithms and Architectures, pages 93-102, 2019.
[33] Taisuke Izumi. On space and time complexity of loosely-stabilizing leader election. In Proceedings of International Colloquium on Structural Information and Communication Complexity, pages 299-312, 2015.
[34] Tomoko Izumi, Keigo Kinpara, Taisuke Izumi, and Koichi Wada. Spaceefficient self-stabilizing counting population protocols on mobile sensor networks. Theoretical Computer Science, 552:99-108, 2014.
[35] Adrian Kosowski and Przemyslaw Uznanski. Brief announcement: Population protocols are fast. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, pages 475-477, 2018.
[36] Anissa Lamani and Masafumi Yamashita. Realization of periodic functions by self-stabilizing population protocols with synchronous handshakes. In Proceedings of International Conference on Theory and Practice of Natural Computing, pages 21-33, 2016.
[37] George B Mertzios, Sotiris E Nikoletseas, Christoforos L Raptopoulos, and Paul G Spirakis. Determining majority in networks with local interactions and very small local memory. In International Colloquium on Automata, Languages, and Programming, pages 871-882, 2014.
[38] Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. Mediated population protocols. Theoretical Computer Science, 412(22):2434-2450, 2011.
[39] Satoshi Murata, Akihiko Konagaya, Satoshi Kobayashi, Hirohide Saito, and Masami Hagiya. Molecular robotics: A new paradigm for artifacts. New Generation Computing, 31(1):27-45, 2013.
[40] Yuichi Sudo, Ryota Eguchi, Taisuke Izumi, and Toshimitsu Masuzawa. Timeoptimal loosely-stabilizing leader election in population protocols. arXiv preprint arXiv:2005.09944, 2020.
[41] Yuichi Sudo, Toshimitsu Masuzawa, Ajoy K Datta, and Lawrence L Larmore. The same speed timer in population protocols. In Proceedings of International Conference on Distributed Computing Systems, pages 252-261, 2016.
[42] Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Loosely-stabilizing leader election in a population protocol model. Theoretical Computer Science, 444:100112, 2012.
[43] Yuichi Sudo, Fukuhito Ooshita, Taisuke Izumi, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Time-optimal leader election in population protocols. IEEE Transactions on Parallel and Distributed Systems, 2020.
[44] Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Loosely-stabilizing leader election on arbitrary graphs in population protocols. In International Conference on Principles of Distributed Systems, pages 339-354, 2014.
[45] Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Loosely stabilizing leader election on arbitrary graphs in population protocols without identifiers or random numbers. IEICE Transactions on Information and Systems, 103(3):489-499, 2020.
[46] Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, Toshimitsu Masuzawa, Ajoy K Datta, and Lawrence L Larmore. Loosely-stabilizing leader election with polylogarithmic convergence time. Theoretical Computer Science, 806:617-631, 2020.
[47] Yuichi Sudo, Masahiro Shibata, Junya Nakamura, Yonghwan Kim, and Toshimitsu Masuzawa. Self-stabilizing population protocols with global knowledge. IEEE Transactions on Parallel and Distributed Systems, 2021.

## Publication list

## Peer-Reviewed Journal Papers

[1] Hiroto Yasumi, Fukuhito Ooshita, Ken'ichi Yamaguchi, and Michiko Inoue, Space-optimal population protocols for uniform bipartition under global fairness, IEICE Transactions on Information and Systems, 102(3):454-463, 2019.
[2] Hiroto Yasumi, Naoki Kitamura, Fukuhito Ooshita, Taisuke Izumi, and Michiko Inoue, A population protocol for uniform k-partition under global fairness, International Journal of Networking and Computing, 9(1):97-110, 2019.
[3] Hiroto Yasumi, Fukuhito Ooshita, Michiko Inoue, and Sebastien Tixeuil, Uniform bipartition in the population protocol model with arbitrary graphs, Theoretical Computer Science, 892:187-207, 2021.

## Peer-Reviewed Conference Papers

[1] Hiroto Yasumi, Fukuhito Ooshita, Ken’ichi Yamaguchi, and Michiko Inoue, Constant-space population protocols for uniform bipartition, Proceedings of International Conference on Principles of Distributed Systems, 2017.
[2] Hiroto Yasumi, Naoki Kitamura, Fukuhito Ooshita, Taisuke Izumi, and Michiko Inoue, A population protocol for uniform k-partition under global fairness, Proceedings of Workshop on Advances in Parallel and Distributed Computational Models, pages 813-819, 2018.
[3] Hiroto Yasumi, Fukuhito Ooshita, and Michiko Inoue, Uniform partition in population protocol model under weak fairness, Proceedings of International Conference on Principles of Distributed Systems, 2019.
[4] Hiroto Yasumi, Fukuhito Ooshita, Michiko Inoue, and Sébastien Tixeuil, Uniform Bipartition in the Population Protocol Model with Arbitrary Communication Graphs, Proceedings of International Conference on Principles of Distributed Systems, 2020.
[5] Hiroto Yasumi, Fukuhito Ooshita, and Michiko Inoue, Population Protocols for Graph Class Identification Problems, Proceedings of International Conference on Principles of Distributed Systems, 2021.


[^1]:    ${ }^{1}$ We use this definition only for the lower bound under weak fairness. For the upper bound, we use a slightly weaker assumption. We show that our proposed protocol for weak fairness works if, for any adjacent agents $a$ and $a^{\prime}, a$ and $a^{\prime}$ interact infinitely often (i.e., it is possible that, for any interaction between some adjacent agents $a$ and $a^{\prime}, a$ becomes an initiator and $a^{\prime}$ never becomes an initiator). Note that, in the protocol, if a transition $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ exists for $p \neq q$, a transition $(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)$ also exists.

[^2]:    ${ }^{2}$ Strictly speaking, this violates the definition of an execution because no interaction occurs at $C_{l}^{\prime} \rightarrow C_{l+1}^{\prime}$. However, by removing $C_{l+1}^{\prime}$ from $e^{\prime}$, we can construct execution $e^{\prime}$ that satisfies the definition of an execution. This modification does not affect the following proofs.

