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Language-aware Code-switching
Speech Recognition∗

Sahoko Nakayama

Abstract

The phenomenon where a speaker mixes two or more languages within the
same conversation is called code-switching (CS). Handling CS is challenging for
automatic speech recognition (ASR) because it requires coping with multilingual
input. There are many challenges for the CS ASR, but this thesis focuses on
the following three problems for the CS ASR’s development: language coverage,
training mechanism, and usability.

The first is the language coverage. Most of the previous researches only fo-
cused on a single-pair CS. However, when we want to handle multi-pair CS be-
yond a single-pair CS, developing multiple systems per single-pair CS can be an
exhausting task. Therefore, the unified system for multi-pair CS is desirable to
simplify the process of training, deploying, maintaining, and the recognition task.
To realize the multi-pair CS system, we introduce the language-aware mechanism
by utilizing a language identification system. It enables to handle multi-pair CS
better by providing language information. Various approaches utilizing language
identification systems were investigated.

The second is the training mechanism. The datasets of CS speech and the
corresponding CS transcriptions are hard to obtain. To solve the CS data prob-
lem, we utilize the framework called the machine speech chain. The machine
speech chain is the mechanism inspired by the human communication mechanism
called the speech chain. It enables ASR and TTS to assist each other when they
receive unpaired data since it allows them to infer the missing pair and optimize
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the models with reconstruction loss. In addition, we also integrate language iden-
tification into the ASR and language embedding into the TTS of the CS machine
speech chain.

The third problem is usability. The common aim of developing a CS ASR
is merely for transcribing CS-speech utterances into CS-text sentences, where
we assume only dialogues between the same CS speakers. In contrast, in this
study, we address the situational context that happens during dialogues between
CS and non-CS (monolingual) speakers and support monolingual speakers who
want to understand CS speakers. We construct a system that can recognize code-
switching speech and translate it into monolingual texts to support monolingual
speakers who are trying to understand CS speakers. We investigate several ap-
proaches, including a cascade of ASR and neural machine translation (NMT), a
cascade of ASR and a Bidirectional Encoder Representations from Transformers
(BERT), a single-task speech translation, and a multi-task speech translation.

Keywords:

ASR, Code-switching, Language identification, Semi-supervised learning, TTS,
Machine speech chain
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Chapter 1

Introduction

1.1 Bilingualism and Code-switching Phenom-
ena

The number of Japanese-English bilingual speakers continues to increase. Accord-
ing to a Ministry of Health, Labour and Welfare (MHLW) survey, the number
of children in Japan with at least one non-Japanese parent has risen gradually
over the past 25 years [1]. The Japanese Ministry of Education, Culture, Sports,
Science, and Technology (MEXT) also reported that the number of school-age
children who have lived abroad was reported that more than doubled in 2015 [2].
Moreover, the number of Japanese students who study abroad has nearly tripled
in the past ten years, as reported by the Japan Student Services Organization
(JASSO) [3]. These changes are affecting how people communicate with each
other. Bilingual speakers sometimes mix two or more languages while speaking,
which is called code-switching.

Code-switching (CS) is formally defined as the phenomenon of alternating or
mixing two or more languages in discourse (often with no change of interlocutor
or topic). It is a hallmark of bilingual communities worldwide [4]. CS has been
studied for several decades. Most researchers agree that it plays a vital role
in bilingualism and is more than a random phenomenon [5]. Nakamura (2005)
surveyed the code-switching of a Japanese child who lived in the United States and
found that 179 switches occurred during a one-hour conversation with his mother
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Figure 1.1: The statistics of bilingual population growth in Japan.

[6]. Fotos investigated four hours of conversations of four bilingual children in
Japan with at least one American parent and observed 153 code-switchings [7].
Both reports reveal that people actually use Japanese-English CS in everyday
life.

1.2 Challenges of Handling Code-switching Con-
versation

Handling code-switching speech is challenging for automatic speech recognition
(ASR). There are the following difficulties.

1.2.1 Switching Positions

The units and locations of switches may vary widely. It can be categorized into
two main categories: intra-sentential and inter-sentential. In intra-sentential CS,
the language shift occurs within a sentence. The intra-sentential CS may be
inserted from the length of a single word to phrases that exceed the loanwords.
In inter-sentential CS, language switching occurs at the sentence boundaries. We
show some Japanese-English CS examples collected from a bilingual CS user:

2



• Intra-sentential CS:

– Word-level CS:
“国会が the Equal Employment Opportunity Law に罰則を 設けな
かったので、空文だという意見があります.”
(Since the Diet did not put any teeth into the Equal Employment Op-
portunity Law, some believe that it is merely a scrap of paper.)

– Phrase-level CS:
“If I could make a suggestion, この議題についての討議を昼食まで
に終えて頂ければと思いますが.”
(If I could make a suggestion, why do not we finish discussing this
subject by lunch?)

• Inter-sentential CS:
“In the end, he quit his job and followed in his father’s footsteps, taking
over the family business. やっぱりかえるの子はかえるだね.”
(His son’s a chip off the old block, all right. In the end, he quit his job and
followed in his father’s footsteps, taking over the family business.)

However, there are some cases not to be considered as CS. Loanwords, which
are borrowed from a foreign language, may not be included in intra-sentential CS.
Quotations, which borrow part of another’s text or speech, may not be included
in the intra-sentential phrase-level CS.

• Loan words:
“中間言語を使った時のメリットに何があるか ?”
(What is the merit of using an interlingual?)

• Quotations:
“What do you think of the Japanese saying, うそつきは泥棒の始まり ?”
(What do you think of the Japanese saying, “Show me a liar and I’ll show
you a thief”?)

A CS utterance can include not only two languages but also more than two
languages. For example, Fig. 1.2 (a) shows the CS of two languages, English and
Japanese, and Fig. 1.2 (b) shows the CS of more than two languages, English,

3



Chinese and Japanese. The CS of two languages is more common than that
of more than two languages. A survey [8] revealed that even trilingual speakers
mostly use only the CS of two languages. It showed that only 33% of 60 trilingual
speakers used the CS of three languages even though 100% of them used the CS
of two languages.

Then a CS utterance is basically spoken by a single speaker. It is not switched
by multi-speakers within one utterance.

If this shirt doesn't fit, 取り替えて
もらえますか?

(a)

If this shirt 不合身, 取り替えても
らえますか?

(b)

Figure 1.2: One CS utterance of (a) two languages and (b) more than two lan-
guages.

1.2.2 Language Coverage and Proficiency

There are several kinds of bilingual speakers, such as English-Japanese, English-
Korean, and Japanese-Chinese. Therefore, the system for single-pair CS, which
covers only the same pairs of two languages (Fig. 1.3 (a)), is not enough to support
all bilingual speakers. The ASR for multi-pair CS, which covers different pairs
of two languages (Fig. 1.3 (b)), is required for covering all bilingual speakers.
Besides, tackling the CS with different pairs of more than two languages (Fig. 1.3
(c)) would be more desirable for recognizing all CS conversations.

4



試験が終わって, I breathed 
a sigh of relief.

If this shirt doesn't fit,取
り替えてもらえますか?

EN+JA 

EN+JA

Same pairs of
two languages,
English and Japanese

(a)

試験が終わって, I breathed 
a sigh of relief.

如果这件衬衫不合身, will 
you exchange it?

EN+JA

ZH+EN

Different pairs of
two languages

(b)

試験が结束了, I breathed a 
sigh of relief. EN+ZH+JA

If this shirt 不合身, allez-
vous me l'echanger? EN+FR+ZH

Different pairs of
more than two languages

(c)

Figure 1.3: The overview of (a) single-pair CS with same pairs of two languages,
(b) multi-pair CS with different pairs of two languages, and (c) CS with different
pairs of more than two languages.

Then the CS proficiency level varies from beginners to near-native speakers
since CS switches between the first language (L1) and the second language (L2),
where only one of the languages is the mother tongue. We categorize CS into
native CS and non-native CS based on the L2 proficiency level. The native
CS is near-native speaker level, and the non-native CS holds non-native sounds.
Handling them together may degrade the ASR performance since it causes a
mismatch between speech and acoustic models [9]. Therefore, it is also necessary
to develop the CS system to cover native and non-native.

5



1.2.3 Training Mechanism

The primary method for training CS ASR is supervised learning. Supervised
learning is a more straightforward method since it can train with the target
labels. However, this method requires a large amount of labeled data for training
the model, which takes money and time. Especially, the datasets of CS speech
and the corresponding CS transcriptions are difficult to obtain. The CS’s existing
corpus is limited to some language pairs and accents. Moreover, collecting new
corpus is not easy since we have to prepare the special speakers and situations
for CS conversations, and CS annotation requires high language skills. Therefore,
we need to seek the training mechanism trainable with fewer labeled CS data.

1.2.4 Usability

The common aim of developing a CS ASR is merely for transcribing CS-speech
utterances into CS-text sentences, where we assume only dialogues between the
same CS speakers. However, we need to suppose the situational context during
dialogues between CS and non-CS (monolingual) speakers and support monolin-
gual speakers who want to understand CS speakers.

1.3 Scope of This Thesis

In this thesis, we handle the following:

1. Switching Positions
We handle several kinds of CS, including intra-sentential CS and inter-
sentential CS. Although loan words and quotations may not be CS in prin-
ciple, we include them in our CS targets because we want to recognize all
words in multilingual conversations.

This thesis assumes that the CS can allow only two languages for one utter-
ance since we could not obtain the CS including more than two languages.
In addition, one CS utterance should be basically spoken by a single speaker
as Fig. 1.4 (a) shows, but we sometimes permit the CS to be switched
by multi-speakers within an utterance to cover low-resourced CS data as

6



Fig. 1.4 (b) shows. It is the case when we utilize the synthesized speech gen-
erated using the corresponding language’s TTS, where English words are
synthesized with English TTS by an English speaker, and Japanese words
are synthesized with Japanese TTS by a Japanese speaker.

If this shirt doesn't fit, 取り替えて
もらえますか?

(a)

Japanese TTSEnglish TTS

If this shirt doesn't fit,  取り替えてもらえますか?

(b)

Figure 1.4: One CS utterance by (a) a single speaker and (b) multi-speakers of
TTS.

2. Language Coverage and Proficiency
This thesis covers multi-pair CS as well as single-pair CS. Developing multi-
ple systems per single-pair CS can be exhausting when handling multi-pair
CS beyond a single-pair CS. Therefore, we developed a unified system for
multi-pair CS to simplify the process of training, deploying, maintaining,
and the recognition task. In our research, single-pair CS means one sen-
tence has only two languages and there are only the same language pairs
in that data. Fig. 1.3 (a) showed the single-pair CS, which had the same
pairs of two languages, English and Japanese. The multi-pair CS means
one sentence has only two languages and there are different language pairs
in that data. Fig. 1.3 (b) showed the multi-pair CS, which had different
pairs of two languages, English and Japanese or Chinese and English. Both
single-pair CS and multi-pair CS have only two languages in one sentence.
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This thesis does not handle the CS with different pairs of more than two
languages (see Fig. 1.3 (c)). We also handle native CS and non-native CS,
respectively.

3. Training Mechanism
We seek an efficient training mechanism with fewer labeled CS data to
solve the CS data problem. In this thesis, we investigate one of the semi-
supervised learning methods, where we train the CS ASR with unpaired
CS data (speech or text only). Pairs of CS speech and corresponding CS
transcriptions are scarce and difficult to obtain, but either CS text or CS
speech may be found on social media.

4. Usability
This study addresses the situational context that happens during dialogues
between CS and non-CS (monolingual) speakers and supports monolingual
speakers who want to understand CS speakers.

1.4 Thesis Objective and Contribution

1. Language Coverage
The objective is to increase the language coverage without reducing the
performance. The contribution is developing the language-aware system.
By incorporating the language-aware system, we expect to handle multi-
pair CS better given the language information.

2. Training Mechanism
The objective is to seek an efficient training mechanism with less CS data.
The contribution is investigating a semi-supervised approach of the machine
speech chain [10,11] and improving it for CS tasks with the language-aware
mechanism.

3. Usability
The objective is to consider the situational context during dialogues between
CS and non-CS (monolingual) speakers and support non-CS speakers trying
to understand CS speakers. The contribution is constructing a system that
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can recognize CS speech and translate it into monolingual texts. We inves-
tigate several approaches, including a cascade of ASR and neural machine
translation (NMT), a cascade of ASR and a Bidirectional Encoder Repre-
sentations from Transformers (BERT), a single-task speech translation, and
a multi-task speech translation.

1.5 Thesis Outline

This thesis is organized as follows:
In Chapter 2, we introduce the mechanism of spoken language technologies.
We first see the overview of the learning algorithm and explain the end-to-end
sequence-to-sequence modeling. Chapter 3 is about all of the datasets used in
our experiments. Chapter 4 is about the language-aware code-switching ASR,
where we compare the proposed LID approach with the other LID approaches.
Chapter 5 explains the semi-supervised approach for CS ASR and CS TTS with
the machine speech chain. Chapter 6 is about code-switching speech translation.
We show the experimental results of several approaches for code-switching speech
translations and discuss them. Finally, we close the thesis with a conclusion and
a discussion on the future direction of the study in Chapter 7.
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Chapter 2

Spoken Language Technologies

This chapter shows the overview of the learning algorithm and explains the end-
to-end sequence-to-sequence modeling.

2.1 Overview of Learning Algorithm

2.1.1 Supervised Learning

Supervised learning is the primary method for machine learning. Fig. 2.1 shows
the overview of supervised learning on classification. We are given a dataset
with category labels, and the learning algorithm derives the function classifying
the data and maps new input variables into the categories. Supervised learning
problems can be applied to the regression problems as well as those classification
problems. Supervised learning is a straightforward method to train but needs a
lot of labeled data, so it costs money and time for preparing the datasets.

2.1.2 Unsupervised Learning

Unsupervised learning does not teach the target output given the input. Fig. 2.2
shows the data without any labels. The learning algorithm derives the struc-
ture by clustering the data based on relationships among the variables in the
data. Unsupervised learning does not need any labels, thereby solving the time-
consuming and expensive problems of data labeling. However, the performance
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Figure 2.1: Supervised learning. We are given a dataset with category labels.
The learning algorithm derives the function classifying the data and maps new
input variables into the categories.

might be less accurate as it has to predict without any prior knowledge.

2.1.3 Semi-supervised Learning

Semi-supervised learning combines supervised and unsupervised learning. It re-
quires some of the labeled data, but the others are allowed to be unlabeled data.
While the labeled data costs time and money to collect, the unlabeled data is
comparatively easier to obtain. Therefore, semi-supervised learning is useful for
situations where we cannot prepare enough data with only labeled data but can be
enough by adding unlabeled data. The semi-supervised approaches conduct su-
pervised learning with labeled data and continue the training with unlabeled data
in an unsupervised way. Common semi-supervised methods adopt pseudo-labels
for unsupervised learning, where the pseudo-labels are inferred using the initially
trained supervised model. It may make the performance unstable because of the
unreliable labels. However, the semi-supervised approach is still helpful since it
saves the effort for collecting labels and can be expected to perform better than
unsupervised learning.
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Figure 2.2: Unsupervised learning. The data does not have any labels. The learn-
ing algorithm derives the structure by clustering the data based on relationships
among the variables in the data.

2.2 End-to-end Sequence-to-sequence Modeling

2.2.1 Overview

Sequence-to-sequence (seq2seq) is one of the deep learning approaches for spoken
language technologies. We adopt this framework throughout our researches, so
we describe it in detail in this chapter.

Sequence-to-sequence Framework

Sequence-to-sequence (seq2seq) model [12, 13] refers to the system that can con-
vert an input sequence to a target sequence.The sequences will be lists of speech
features or lists of characters, which have variable lengths. When we define
the input sequence as x = (x1, x2, · · · , xS) and the target sequence as y =
(y1, y2, · · · , yT ), we can denote the seq2seq model as

p(y|x) =
T∏
t=1

p(yt|y1, y2, · · · , yt−1,x). (2.1)

At time t, it predicts the target yt with the previous output sequences y<t as well
as the input.
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The seq2seq model architecture consists of an encoder and a decoder. The
encoder converts the input vector to a fixed dimensional vector representation,
and the decoder predicts the output sequence from the vector. An attention
mechanism [14] can map between the encoder and the decoder. It calculates
context vector ct using attention weights αts, which obtain the most relevant
encoder representation to the decoder state:

ct =
S∑
s=0

αtshs, (2.2)

αts = exp(ets)∑T
k=1 exp(etk)

, (2.3)

ets = Score(st, hs). (2.4)

The Score function determines how the encoder and decoder outputs are related,
where st is the decoder’s hidden vector and hs is the encoder’s hidden vector.
One of the calculating methods is the multilayer perceptron (MLP) [15]:

Score(st, hs) = wT
a tanh(Wa[st, hs]), (2.5)

where wa,Wa is the weight vector and tanh is an activation function.

Training and Decoding

The role of the encoder in the training and decoding phase is the same. Given the
input sequence, it outputs the vector representation and sends it to the decoder.
On the other hand, the decoder has a different way between the training and
testing phase. The training approach called “Teacher forcing” uses the ground-
truth of the previous time step ytruet−1 to predict the output of the current time step
ypredt as Fig. 2.3 shows. The loss between the hypothesis ypredt and the ground-
truth ytruet is calculated at each time step, and the parameters are updated with
back-propagation by the cumulative loss through time sequence.
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Figure 2.3: Teacher-forcing approach using the previous ground-truth ytruet−1 as
input to predict ypredt at time t.

In the decoder of the test phase, since we can not use the ground-truth, we
use the predicted output of the previous time step to input the current time step.
The simplest decoding strategy is greedy search. The greedy search approach
searches for the token with a maximum conditional probability per time step.

ŷt = arg max
yt

p(yt|y1, y2, · · · , yt−1,x). (2.6)

The search continues until the output sequence has reached the length of
target sequence T . The greedy search method (Fig. (a)) only considers the max-
imum conditional probability under each step, but the result sequence is not
always optimal. If we want to guarantee the optimal sequence, we have to search
by exhaustive search. The exhaustive search approach searches all the possible
sequences with their conditional probabilities, and the sequences with the maxi-
mum conditional probability will be the final result. However, the computational
cost is too high. When the number of possible sequences is S, the computa-
tional cost is O(ST ). The computational cost of the greedy search is O(T ), so
the computational cost of the exhaustive search is too expensive. On the other
hand, the beam search (Fig. (b)) is a trade-off method between computational
cost and accuracy. Using a hyperparameter called beam size, k, it selects the
top-k tokens with high conditional probabilities at each time step. The following
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(a) (b)

Figure 2.4: (a) greedy search algorithm considering the maximum conditional
probability under each time step and (b) beam search algorithm selecting the
top-k tokens with high conditional probabilities at each time step.

steps further search top-k tokens with high conditional probabilities based on the
previous candidates. If we use the priority queue to sort the candidates, we can
expand only top-k candidates at every step. Finally, the computational cost is
O(kT ), much smaller than the exhaustive search. Therefore, we mainly adopt
the beam-search decoding for our experiments of this thesis.

2.2.2 Sequence-to-sequence ASR

In the case of ASR, the input sequence x for the seq2seq model is speech fea-
tures. Speech feature refers to the feature vector that extracts the important
information for speech recognition from the speech signal. The speech feature
has several variations, such as Mel-spectrogram and MFCC. They have usually
multi-dimensional, not 1-dim. Then each time step in x = (x1, x2, · · · , xS) is each
frame. It means that one input sequence x consists of speech feature dimension
and speech frame lengths. Output y is speech transcription, where each time
step equals to be each token.

One of the seq2seq ASR model is an attention-based encoder-decoder model
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Figure 2.5: Attention-based encoder-decoder.

[16, 17]. It is composed of encoder, decoder, and attention. Fig. 2.5 shows the
basic architecture. In the encoder, from the input sequences of speech features
x = (x1, x2, · · · , xS), it outputs hidden vectors through bidirectional LSTM lay-
ers:

hfs = LSTM(hfs−1, xs), (2.7)

hbs = LSTM(hbs+1, xs), (2.8)

where hfs is a forward hidden vector at time s and hbs is a backward hidden
vector hbs at time s. The final hidden vector concatenated hfs and hbs, which is
then denoted as hs at time s. Then an attention module described in Sect. 2.2.1
produces context vector.

The decoder generates output yt with all the previously predicted words
y1, y2, · · · , yt−1 and context vector ct:

p(yt|y1, y2, · · · , yt−1, ct) = g(st, yt−1, ct), (2.9)
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where g is an activation function that calculates the probability of yt. The decoder
hidden vector st is calculated with the LSTM layer:

st = LSTM(st−1, yt−1, ct). (2.10)

Finally, the softmax layer outputs the probability score for the target label.

p(yt|y<t,x) = Softmax(st). (2.11)

For optimizing ASR, we attempt to decrease the cross entropy loss function to
maximize the probability of target sequence y with the context vector of decoder
input c and previous output y1:t−1:

LASR = −
1
T

T∑
t=1

logP (yt|ct, y1:t−1), (2.12)

where posterior probability P (yt|ct, y1:t−1) is calculated by a softmax function.

2.2.3 Sequence-to-sequence TTS

Seq2seq model for TTS takes sequences of tokens as input and outputs sequences
of speech features, which is just inverse with input and output of the seq2seq
ASR. Tacotron [18] is one of the popular seq2seq TTS models. Fig. 2.6 shows the
overview architecture. Given the input text consisting of character (or phoneme)
sequences, it embeds it to character vector, and the character vector goes through
the CBHG (1-D Convolution Bank + Highway network + bidirectional GRU).
Then the CBHG module produces the final encoder state.

The attention module plays the role of bridging between encoder and decoder
as we described in Sect. 2.2.1. On the decoder side, the recurrent neural network
(RNN) such as GRU or LSTM produces a Mel-scale spectrogram, and then the
decoder CBHG module converts it to a linear-scale log magnitude spectrogram.

The decoder can have a process that predicts the speech’s end frame when
it produces the Mel-scale spectrogram. It helps the Tacotron determine the end
of the speech. The speech’s end frame is decided by the binary prediction of
the Mel-spectrogram and the context vector from the attention module. The
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Figure 2.6: Tacotron-based TTS with speech’s end frame prediction.

loss function for training TTS used a combination of mean squared error (MSE)
in the Mel-spectrogram and MSE in the log magnitude spectrogram and binary
cross-entropy in the prediction for the speech’s end frame as follows:

LTTS =
1
T

T∑
t=1
{(mt − m̂t)2 + (rt − r̂t)2 (2.13)

− (bt log (b̂t) + (1− bt) log (1− b̂t))}, (2.14)

where the first term of the summation is the MSE between target Mel-spectrogram
mt and predicted Mel-spectrogram m̂t at time t, the second term is the MSE
between target log magnitude spectrogram rt and predicted log magnitude spec-
trogram r̂t at time t, and the third term is the binary cross-entropy between the
target probability end frame of speech bt and predicted probability end frame of
speech b̂t at time t.

Since the original Tacotron is a single speaker model and cannot deal with
multi-speakers, we generate speaker vectors with the DNN-based speaker recogni-
tion (SPKREC) DeepSpeaker [19] and take them into Tacotron. In DeepSpeaker,
the DNN architectures extracted the frame features from the utterances. After
converting the frame features to a speaker representation for an utterance unit, it
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Figure 2.7: Tacotron-based TTS for multi-speakers.

is embedded into a vector representation. The embedding vectors are normalized
to the unit norm and by cosine similarity between two embedding vectors:

cos(xi, xj) = xixj, (2.15)

where xi, and xj are the embedding vectors.
Finally, the model is trained using the following loss function, which max-

imizes the cosine similarities of the embedding vectors from the same speaker
while minimizing those from different speakers for N triplets:

Ltriplet =
N∑
i=0

max((sani − s
ap
i + α), 0), (2.16)

where sapi is the cosine similarity between an utterance a of a speaker and another
utterance p of the same speaker in triplet i. sani is the cosine similarity between
an utterance a of a speaker and an utterance n of another speaker in triplet i.

After the DeepSpeaker models are trained, we generate speaker embedding
vector s. The generated speaker vector is used in the speaker embedding of the
multi-speakers Tacotron (Fig. 2.7). The speaker vector is concatenated with the
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encoder output and goes through the decoder. In the loss function, we use the
extension of Eq. (2.13) by adding the formula of speaker loss for handling multiple
speakers as follows:

LTTSspeaker =
1
T

T∑
t=1
{γ1((mt − m̂t)2 + (rt − r̂t)2)

− γ2((bt log (b̂t) + (1− bt) log (1− b̂t)))}

+ γ3(1−
s · ŝ

‖s‖2 · ‖ŝ‖2
),

(2.17)

where the first term is an MSE that compares target Mel-spectrogram mt with
predicted Mel-spectrogram m̂t at time t, the second term is an MSE that compares
target log magnitude spectrogram rt with predicted log magnitude spectrogram
r̂t at time t, the third term is the binary cross-entropy comparing target speech’s
end probability bt with predicted speech’s end probability b̂t at time t, and the
last term is the cosine distance comparing target speaker vector s with predicted
speaker vector ŝ. γ1, γ2, γ3 are hyperparameters that adjust the balance among
the three losses.
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Chapter 3

Datasets

This chapter explains all of our datasets to use in our experiments. We also show
how to construct synthetic code-switching.

Code-switching speech datasets for training ASR and TTS exist in some lan-
guage pairs. For example, there are code-switching speech corpora of Hindi-
English [20], Chinese-English [21,22], Cantonese-English [23], Frisian-Dutch [24],
isiZulu-English [25]. However, this thesis focuses mainly on the language pairs
consisting of Japanese, English, and Chinese. Most of their language pairs are
unavailable or low-resource, so we utilize monolingual corpora to support them.
We also augment the data by constructing the synthetic CS corpora from mono-
lingual datasets.

3.1 Existing Corpora

In this section, we show the existing corpora that are available for our experi-
ments. We first introduce the monolingual corpora for supporting low-resourced
CS data and then the CS corpora.

3.1.1 Monolingual Corpora

BTEC

The ATR Basic Travel Expression Corpus (BTEC) [26,27] covers basic conversa-
tions in travel domains, such as sightseeing, restaurants, hotels, etc. Its sentences
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Table 3.1: Basic statistics of BTEC text data [26].
BTEC 1 BTEC 2 BTEC 3 BTEC 4

Number of sentences 172k 46k 198k 74k
Number of Japanese word tokens 1,174k 341k 1,434k 548k
Number of Japanese word types 28k 20k 43k 22k

were collected by bilingual travel experts from Japanese/English sentence pairs
in travel domain phrasebooks. The BTEC has been translated into French, Ger-
man, Italian, Chinese, and Korean. Table 3.1 lists the basic statistics of BTEC
text data called BTEC 1, 2, 3, and 4. We synthesized the text using Google
TTS [28].

LibriSpeech

LibriSpeech [29] is the open-source English read speech corpus. It is derived from
free public domain LibriVox’s audiobooks∗ read by volunteers, and most of the
text is based on the Project Gutenberg†. This corpus contains approximately
1000 hours of speech, but we choose an officially prepared 100-hour subset with
251 speakers as our training data and use it for supporting SEAME data.

AISHELL-1

AISHELL-1 [30] is a read Mandarin speech corpus. Most of its speakers are
from Northern China, and some are from Southern China, Guangdong-Guangxi-
Fujian, and others. It contains 150 hours of speech recorded by 340 speakers for
the training set. We use 100 hours of speech consisting of the same 340 speakers,
and use it for supporting the SEAME data.

∗https://librivox.org/
†http://www.gutenberg.org
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Table 3.2: Statistics of SEAME corpus [31].

Subset Speakers Hours
Duration Ratio

Mandarin English CS
train 134 101.1 16% 16% 68%
devman 10 7.5 14% 7% 79%
devsge 10 3.9 6% 41% 53%

3.1.2 Code-switching Corpora

SEAME

SEAME [22] is a conversational Mandarin-English code-switching corpus, col-
lected from Singaporean and Malaysian speakers. Previous works [31] prepared
the subsets of train, devman, and devsge. The devman is a test set dominated by
Mandarin words, and the devsge is a test set dominated by English words. Each
subset contains monolingual Mandarin and monolingual English utterances not
only code-switching utterances. Table 3.2 lists the statistics.

3.2 Code-switching Data Augmentation

Next, we show how to construct the augmented CS data.

3.2.1 Related Works

Since obtaining a large amount of data takes time and money, some researchers
have utilized synthetic data to improve the quality of their systems. Jia et al. [32]
used synthetic data and machine translation for improving end-to-end speech-to-
text translation models. Hasegawa-Johnson et al. [33] trained image-to-speech
models with SPEECH-COCO [34], a synthetic speech corpus generated by TTS.
Synthetic data were also used for training ASR and TTS [10]. They conducted
experiments with synthetic data as well as natural data, and both sets of results
showed the same tendency of their proposed model to improve the ASR and TTS
performances. Therefore, synthetic data can be utilized for covering low-resourced
data.
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Figure 3.1: Japanese-English CS text data construction [40].

CS is one of the low-resourced data. The existing corpora are limited to some
language pairs and accents, and difficult to collect a new corpus of natural CS.
Although we may find either CS speech or CS text in social media, the annotation
for CS data requires high language skills. Therefore, some researchers actually
utilized synthetic CS data to improve their CS system’s quality [35, 36]. In the
same way, we utilize synthetic data to cover low-resourced CS data.

For generating synthetic code-switching, there are some previous approaches.
Gupta et al. [37] investigated the semi-supervised approach for generating code-
switching data from the parallel sentences. Another approach is mBERT based
method [38]. Based on the fine-tuning mBERT [39], it predicts words to switch in
a monolingual sentence and generates the switched words from the parallel data.
In this way, several approaches exist, but we adopt simpler methods utilizing
machine translation and TTS.

From the transcriptions of BTEC corpus [26, 27], we created the synthetic
speech CS utilizing machine translation and TTS. We also collected natural
speech CS, which bilingual speakers created manually from the BTEC corpus.
All of them are intra-sentential CS because intra-sentential CS is more challeng-
ing for CS ASR and the main target in our research. We constructed word-level
and phrase-level intra-sentential CS.
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3.2.2 Synthetic Speech Code-switching

Fig. 3.1 shows an overview of the construction of the CS text data [40], which
shows the Japanese-English code-switching cases created from Japanese sen-
tences. We first selected words or phrases from the BTEC text data based on
the rules described later. Then we translated the chosen words or phrases us-
ing Google translation API. Finally, code-switching sentences were created by
inserting the translated words or phrases into the original sentences. All the con-
structed CS text are synthesized using Google TTS [28]. The followings describe
the switching rules of intra-sentential word-level CS, intra-sentential phrase-level
CS I, and intra-sentential phrase-level CS II:

Intra-sentential Word-level CS
The switching positions for word-level CS is a noun. We chose just one
noun word, translated it by machine translation, and inserted it into the
original sentence. It produced intra-sentential word-level code-switching
sentences. Table 3.3 shows the resulting examples of “JaEnCS” created
from a Japanese sentence and “EnJaCS” made from an English sentence.
After constructing the data, we investigated the percentage of English and
Japanese words included in the code-switching. The investigation results
on the datasets used in this thesis are shown in Table 3.4.

Table 3.3: Examples of the constructed intra-sentential word-level CS sentences.
JaEnCS 観光バスの pamphlet はありますか?

(Do you have any brochures for the sightseeing bus?)
EnJaCS The size of 人形 is about two-thirds the size of a real person.

(The size of a puppet is about two-thirds the size of a real person.)

Table 3.4: Statistics of intra-sentential word-level code-switching.
Utterances Japanese words English words

JaEnCS 51k 87% 13%
EnJaCS 21k 22% 78%
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Table 3.5: Examples of the constructed intra-sentential phrase-level CS I.
JaEnCS どこでガソリンを do you want to buy?

(Where do you want to buy gasoline?)
JaZhCS 気象状況が思わしくありませんので请系好安全带.

(The weather condition is uncertain, so please fasten your seat belt.)
EnJaCS Did i fill out このカードでいいですか?

(Did i fill out this card, okay?)
EnZhCS Western-style beds are becoming 比以前普及多了.

(Western-style beds are becoming more common than before.)

Table 3.6: Statistics of intra-sentential phrase-level CS I.
Utterances Japanese words English words Chinese words

JaEnCS 51k 48% 52% 0%
JaZhCS 51k 48% 0% 52%
EnJaCS 30k 30% 70% 0%
EnZhCS 51k 0% 46% 54%

Intra-sentential Phrase-level CS I
The switching position of intra-sentential phrase-level CS I for JaEnCS is a
postpositional particle. In contrast with the word-level code-switching case,
we selected phrases beyond the length of the loanword units after the post-
positional particles appeared. Here, to produce natural conversations, we
referred to the actual examples that were reported in existing studies [6], es-
pecially a switching pattern from Japanese-to-English phrases. The JaZhCS
case is also chosen the postpositional particles as the switching position.
The switching position for EnJaCS chose verb mainly, referring to the top
switching positions of our collected natural speech CS (see Table 3.10).
The phrases between the chosen position and period were translated by
machine translation and inserted into the original sentence. The JaEnCS
case is also chosen mainly verb as the switching position. They produced
intra-sentential phrase-level code-switching. Table 3.5 shows examples of
resulting sentences. The statistics of the intra-sentential phrase-level CS I
used in this thesis are shown in Table 3.6.
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Intra-sentential Phrase-level CS II
We created another intra-sentential phrase-level CS. The switching posi-
tion is a comma. We selected phrases following a comma, translated them,
and inserted them into the original sentences. The code-switching exam-
ples are shown in Table 3.7. From BTEC Japanese, English, and Chinese,
we constructed an English-Japanese CS “EnJaCS,” a Japanese-Chinese
CS “JaZhCS,” a Chinese-English CS “ZhEnCS.” We also constructed an
English-French CS “EnFrCS” from BTEC English and French. All of them
are intra-sentential phrase-level CS. The statistics of the constructed intra-
sentential phrase-level code-switching are shown in Table 3.8.

Table 3.7: Examples of intra-sentential phrase-level CS II.
EnJaCS If this shirt doesn’t fit, 取り替えてもらえますか.
JaZhCS このシャツが体に合わなかったら, 可以换吗?
ZhEnCS 如果这件衬衫不合身, will you exchange it?
EnFrCS If this shirt doesn’t fit, allez-vous me l’echanger?

Table 3.8: Statistics of intra-sentential phrase-level CS II.

Utterances
Words

Japanese English Chinese French
EnJaCS 11k 70% 30% 0% 0%
JaZhCS 11k 38% 0% 62% 0%
ZhEnCS 11k 0% 57% 43% 0%
EnFrCS 10k 0% 40% 0% 60%

3.2.3 Natural Speech Code-switching

The natural speech CS is the intra-sentential phrase-level CS created by Japanese-
English bilingual speakers. First, a bilingual speaker made the CS text from
parallel Japanese-English sentences. Although he lives in an English-speaking
country, he speaks with his Japanese family in Japanese and has studied in Japan
for one year. Therefore, he often uses code-switching in his daily life. We gave
him 1000 pairs of Japanese-English sentences from the BTEC, from which he
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made phrase-level CS sentences. After that, we asked another bilingual speaker
to read and record the constructed natural CS text. He recorded in a quiet room.

Table 3.9 shows one example of the created CS text. In the whole words
of 1000 created CS text, Japanese words have 3251 (24%), and English words
have 10214 (76%). Of the total CS text, the CS starting from Japanese words
(JaEnCS) is 57% and the CS starting from English words (EnJaCS) is 43%. Ta-
ble 3.10 shows the statistics of the part-of-speech (POS) tags in the switching
positions. In the JaEnCS, the postpositional particle is the majority of switching
positions. The EnJaCS often switches at the noun and verb. Of the 1000 utter-
ances created, 900 utterances were used for the training set, and 100 utterances
were used for the test set.

Table 3.9: A natural CS sentence created from a pair of Japanese-English BTEC.
Japanese sentence このごろ披露宴では花嫁さんが二度もお色直しをして，

派手らしいですね．

English sentence I hear that nowadays the bride changes her clothes as often
as twice during the reception and that the reception is
luxurious.

Result CS このごろ披露宴では花嫁さん changes her clothes as often
as twice during the reception and that the reception is 派手
らしいですね．
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Table 3.10: The statistics of the created CS switching positions.
JaEnCS

POS Ratio(%)
Postpositional particle 77

Noun 12
Auxiliary verb 5

Verb 2
Adverb 2

Conjunction 1
End punctuation 1

EnJaCS
POS Ratio(%)
Noun 33
Verb 15

Conjunction 15
End punctuation 12

Preposition 6
Adverb 6

Determiner 6
Adjective 4
Pronoun 3

3.3 Feature Extraction

We sampled all the speech signals at a sampling rate of 16kHz. Then we applied
pre-emphasis and normalized the speech signals between -1 and 1. We extracted
the spectrogram features using a Short-Time Fourier Transform (STFT) with
the Librosa library [41]. The frame had a 50-ms length and a 12.5-ms shift, and
the FFT points are 2048. From the spectrogram, we computed the magnitude
spectrogram and mapped it to the Mel-scale spectrogram. Those features were
transformed to log-scale and normalized into 0 mean and unit variances. Finally,
we got 80 dimensions of log Mel-spectrogram features and 1025 dimensions of log
magnitude spectrograms.
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Chapter 4

Proposed Language-aware
Code-switching ASR

This chapter is about the language-aware code-switching ASR, where we compare
the proposed LID approach with the other LID approaches.

4.1 Introduction

Several studies have addressed ASR for the CS of specific language pairs, such as
Mandarin-English [42–44], English-Malay [45], and Frisian-Dutch [46]. However,
most previous works only focused on single-pair CS, and multi-pair CS is still
difficult. Compared to developing a system per single-pair CS, the unified system
for multi-pair CS can simplify the process of training, deploying, maintaining,
and the recognition task. Moreover, the same language composing CS can be
expected to improve the performance of multi-pair CS each other. In this work,
to solve the multi-pair CS problem, we incorporate language identification (LID),
which predicts the language ID. It can be expected to enable to handle multi-pair
CS better by providing language information and preventing the predicting error,
which is caused by failing to predict the switching time and recognizing speech
chunk as the inappropriate language. In this chapter, we investigate the best
approach for the LID system.
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4.2 Related Works

The LID has two types. One predicts the language per utterance for identifying
the language of multilingual or inter-sentential CS utterances. Another identifies
the language per token within an utterance for intra-sentential CS.

The LID system per utterance mainly uses the cascade approach. It first
predicts what language is per utterance and subsequently sends the input speech
into the corresponding monolingual’s ASR. There are several methods for identify-
ing the language. For example, phone recognition followed by language modeling
(PRLM) and parallel phone recognition followed by language modeling (PPRLM)
are proposed [47]. The PRLM first recognizes the phones from the speech fea-
tures using a given language’s phoneme recognizer. Then based on the phoneme
sequences, the likelihood score is calculated using the n-gram language models
to hypothesize the language. In the case of PPRLM, it uses multiple languages’
phoneme recognizers in parallel. Another method is the prosody-based LID. It
identifies the language by the prosodic speech features such as using i-vector [48].
Recently, DNN-based LID is shown that it has better performance than the i-
vector-based LID system [49]. In any case, those methods are used only for the
cascade approach.

For the LID within an utterance, Lyu et al. compared the cascade approach
with the direct approach [50]. The direct approach only uses one model trained
with CS data. The cascade approach for the CS task identifies the language
boundary at first, and then the identified monolingual fragments are recognized
by the corresponding monolingual ASRs. The comparison result is that the direct
approach is superior to the cascade approach since the un-recover LID error dam-
ages the cascade approach. Therefore, the current primary approach for CS ASR
is the direct approach. However, the language information is useful additional
information. It can prevent the predicting error caused by failing to predict the
switching time and recognizing speech chunks as inappropriate language. There-
fore, the LID is used as the cascade or the direct approach. As the cascade
approach, Li et al. multiply the ASR posteriors with the loss of LID model dur-
ing decoding [51]. As the direct approach, the approach using the tag of language
ID [52] and the approach using multi-task learning are proposed [31,44].

Our proposed LID system adopts the multi-task approach using two softmax
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layers. Moreover, we investigate the best approach for language identification by
comparing it with other approaches.

4.3 Proposed Approaches

This section explains the details of several LID approaches used in our experi-
ments, including the proposed LID system. Those approaches are mainly classi-
fied into two types: Cascade and Direct approaches. Direct approach and Cascade
approach are already appeared in Sect. 4.2 and explained shortly, but we clearly
distinguish the Cascade approach and the Direct approach from multi-task and
single-task here. The Cascade approach uses multiple monolingual ASRs, and
there are multiple passes connected to ASRs from LID, as Fig. 4.1 (a) shows.
On the other hand, the Direct approach uses one multilingual ASR model, and
the number of passes connected to ASR is one, as Fig. 4.1 (b) shows. Therefore,
the number of ASRs is the main difference between the Direct approach and the
Cascade approach. On the other hand, single-task and multi-task learning refer
to the number of tasks within one model. Single-task learning has a single task,
such as predicting character sequences. The multi-task has multiple tasks, such as
predicting character sequences and language sequences using two decoders. The
proposed LID system adopts the multi-task approach using two softmax layers
with a Direct approach. Then we describe the detail of the LID approaches one
by one.

4.3.1 Cascade Approaches

The Cascade approach is the traditional approach, which identifies the language
and then selects the corresponding language’s monolingual ASR. It uses multiple
models trained separately with monolingual data. Here, the LID output is text,
but ASR input is the speech based on the LID results. So, the LID needs to
estimate speech length for the input speech of subsequent monolingual ASR. For
that, we adopt the frame-level LID estimating language ID per speech frame since
the speech consists of several frames. The input is each speech frame, but it is
difficult to predict language ID with only one frame, so frames within the index
range of plus-minus i are also inputted together, as Fig. 4.3 shows. For example,
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Japanese
ASR

LID English
ASR

➕

𝑥 =	
CS speech

𝑦 = "𝐽𝑎	𝑐ℎ𝑟“

𝑦 = "𝐸𝑛	𝑐ℎ𝑟“

Chinese
ASR

𝑦 = "𝑍ℎ	𝑐ℎ𝑟“
➕

(a)

Multilingual
ASR𝑥 =	

CS speech
𝑦 = "𝐶𝑆	𝑐ℎ𝑟“

(b)

Figure 4.1: Overview of the (a) Cascade approach using multiple monolingual
ASRs and (b) Direct approach using one multilingual ASR.

Japanese
ASR

LID English
ASR

➕

𝑥 =	
CS speech

𝑦 = "𝐽𝑎	𝑐ℎ𝑟“

𝑦 = "𝐸𝑛	𝑐ℎ𝑟“

LID output is text, but ASR input is the 
speech based on the LID resultsFrame	𝑥!

𝑥"
𝑥#

Chinese
ASR

𝑦 = "𝑍ℎ	𝑐ℎ𝑟“
➕

Figure 4.2: A Cascade approach using the frame-level LID. Given CS speech, the
LID predicts language ID per frame, and the monolingual speech fragments are
estimated based on the LID results. Given the speech fragments, the monolingual
ASRs generate the transcription. Finally, those monolingual transcriptions form
the CS transcription.

when it predicts the language ID y11 from x11 speech, if we select plus-minus ten
as the frame index range, the input is 21 frames from x1 to x21. Fig. 4.2 shows
the overview of the Cascade approach.
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𝑥! 𝑥𝟐 𝑥𝟑 … 𝑥𝟏𝟏 𝑥𝟏𝟐 𝑥𝟏𝟑 𝑥𝟐𝟏 𝑥𝟐𝟐 𝑥𝟐𝟑

𝑦!!

…

𝑦!%
𝑦!&

Speech frames

Input
𝑥𝒕±𝟏𝟎

Output
𝑦𝒕

(Language ID of 𝑥𝒕)

Figure 4.3: Example of input and output in the LID of the Cascade approach.
When it predicts the language ID y11 from x11 speech, if we select plus-minus ten
as the frame index range, the input is 21 frames from x1 to x21.

Cascade MLP LID+ASRs

This approach uses a multilayer perceptron (MLP) [53] for the LID model in the
Cascade system. The MLP is one of the most common neural network models.
The basic structure comprises an input layer to receive the input features, an
output layer that predicts the target from the input, and a hidden layer between
those two.

The loss function is cross-entropy as follows:

LMLP = −
N∑
n=1

1ŷn∈yn log (pŷn,yn), (4.1)

where N is the number of class languages (JA, EN, ZH); pŷn,yn is the probability
of the predicted output ŷn belonging to the target yn.
The monolingual ASRs use the basic single-task ASR we already described in
Sect. 2.2.2, so the loss function is Eq. (2.12).

Cascade LSTM LID+ASRs

This approach uses Long-short term memory (LSTM) [54] for the LID system of
Cascade approach. LSTM is a kind of Recurrent Neural Network (RNN), which
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can consider the previous outputs with iterating process recursively, and LSTM
can find and exploit long-range context better.

The loss function for LSTM LID is also cross-entropy as follows:

LLSTM = −
N∑
n=1

1ŷn∈yn log (pŷn,yn), (4.2)

where N is the number of class languages (JA, EN, ZH); and pŷn,yn is the proba-
bility of the predicted output ŷn belonging to the target yn.
The monolingual ASRs use the basic single-task ASR we already described in
Sect. 2.2.2, so the loss function is Eq. (2.12).

4.3.2 Direct Approaches

Direct ASR (No LID)

The Direct ASR (No LID) approach uses only one multilingual model trained
with multiple monolingual data. It also does not incorporate any language iden-
tification. The input is speech sequence per utterance. The output style is a
character (a, b, c, . . . , z). The overview and the output example are shown in
Fig. 4.4.

Multilingual
ASR𝑥 =	

CS speech
𝑦 = "𝐶𝑆	𝑐ℎ𝑟“

Output "𝐶𝑆	𝑐ℎ𝑟“ example of ( If you discount, 買ってもいい。)
i f y o u d    i s    c    o    u    n   t k  a    t    t   e m  o i i

Figure 4.4: Overview of the Direct ASR (no LID) approach. Given CS speech, it
hypothesizes CS character sequences without identifying the language.

The ASR use the basic single-task ASR we already described in Sect. 2.2.2, so
the loss function is Eq. (2.12).
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Direct ASR (LngChr)

The Direct ASR (LngChr) approach also uses only one multilingual model, and
the input is speech sequence per utterance, but it outputs the language infor-
mation with a character together like (JA-a, JA-b, JA-c, ..., JA-z, EN-a, EN-b,
EN-c, ..., EN-z, ZH-a, ZH-b, ZH-c, ..., ZH-z). The overview and the output
example are shown in Fig. 4.5.

Multilingual
ASR𝑥 =	

CS speech
𝑦 = "𝐶𝑆	𝑙𝑛𝑔𝑐ℎ𝑟“

Output "𝐶𝑆	𝑙𝑛𝑔𝑐ℎ𝑟“ example of ( If you discount, 買ってもいい。)
EN-i EN-f EN-y  EN-o  EN-u EN-d   EN-i EN-s    EN-c   EN-o   EN-u   EN-n   EN-t

JA-k  JA-a    JA-t    JA-t    JA-e JA-m    JA-o JA-i JA-i

Figure 4.5: Overview of the Direct ASR (LngChr) approach. Given CS speech, it
outputs the language information with a CS character together like “JA-a, JA-b,
..., ZH-z.”

The ASR use the basic single-task ASR we already described in Sect. 2.2.2, so
the loss function is Eq. (2.12).

Direct ASR (TagLID)

The Direct ASR (TagLID) approach also uses only one multilingual model, and
the input is speech sequence per utterance, but it predicts language ID followed
by the corresponding character sequence. For example, it predicts language ID
tag “[EN]” followed by English character sequence. The overview and the output
example are shown in Fig. 4.6.
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Multilingual
ASR𝑥 =	

CS speech
𝑦 = "𝑇𝑎𝑔	 + 𝐶𝑆	𝑐ℎ𝑟“

Output "𝑇𝑎𝑔	 + 	𝐶𝑆	𝑐ℎ𝑟“ example of ( If you discount, 買ってもいい。)

i f y o u d i s c o u n t k a t t e

m o i i

[EN] [JA]

Figure 4.6: Overview of the Direct ASR (TagLID) approach. Given CS speech,
it predicts language ID tag like “[EN]” every switching position, followed by the
corresponding monolingual character sequences.

The ASR use the basic single-task ASR we already described in Sect. 2.2.2, so
the loss function is Eq. (2.12).

Direct ASR (Proposed LID)

The Direct ASR (Proposed LID) approach also uses only one multilingual model,
and the input is speech sequence per utterance, but it outputs the language
information (JA, EN, ZH) and character sequences (a, b, c, . . . , z), respectively.
This architecture has the advantage of dictionary size, which is smaller than
LngChr and TagLID approaches. The overview and the output example are
shown in Fig. 4.7.

Multilingual
ASR𝑥 =	

CS speech
𝑦 = ["𝐶𝑆	𝑐ℎ𝑟“, “𝑙𝑛𝑔”]

[𝐶𝑆	𝑐ℎ𝑟]
[𝑙𝑛𝑔]

Output "𝐶𝑆	𝑐ℎ𝑟“ and "𝑙𝑛𝑔“ example of ( If you discount, 買ってもいい。)
i f y o u d i s c o u n t k a t t e m o i i

EN EN EN EN EN EN EN EN EN EN EN EN EN JA JA JA JA JA JA JA JA JA

Figure 4.7: Overview of the Direct ASR (Proposed LID) approach. Given CS
speech, it outputs CS character sequences and language ID sequences using two
softmax layers.
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Encoder

Decoder

Attention

Softmax

𝑥 =	

𝑦 = "𝑐ℎ𝑟“

(a)

Encoder

Decoder

Attention

Softmax Softmax

𝑥 =	

𝑦!"# = "𝑐ℎ𝑟“ 𝑦$%& = "𝑙𝑛𝑔	“

(b)

Figure 4.8: Overview of the (a) single-task ASR predicting only character se-
quences and (b) multi-task ASR predicting both the language ID sequences and
character sequences with two softmax layers.

This architecture uses softmax-level multi-task learning. We show the differ-
ence with basic single-task learning. The basic single-task learning is the ASR we
already described in Sect. 2.2.2. The simplified figure is shown in Fig. 4.8 (a). The
ASRs of the basic single-task learning are used in the Cascade MLP LID+ASRs,
Cascade LSTM LID+ASRs, Direct ASR (No LID), Direct ASR (LngChr), Direct
ASR (Tag LID). On the other hand, the Direct ASR (Proposed LID) adopts the
multi-task architecture using two softmax layers shown in Fig. 4.8 (b). Using
softmax-level multi-task learning, it outputs the language information (JA, EN,
ZH) and character sequences (a, b, c, . . . , z) separately.

The loss function for optimizing ASR (Eq. (2.12)) changes to the following
function by the incorporating LID loss:

LLngAwrASR = λChrL
Chr
ASR + λLngL

Lng
ASR, (4.3)

where it’s a summation of two cross entropy, tuning those weights by the hyper-
parameters λChr and λLng. It can adjust the balance between LID training and
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Table 4.1: Statistics of datasets for a single-pair CS (synthetic speech; single
speaker).

Subset Hours Utterances
Train Mono Ja25k (JaTTS) 22.2 25000

En25k (EnTTS) 17.5 25000
CS JaEnCS20k (Ja+MixTTS) 18.4 20000

Test Mono TstJa(JaTTS) 0.7 500
TstEn(EnTTS) 0.6 500

CS TstJaEnCS(MixTTS) 0.7 500

character training using loss hyperparameters.

4.4 Experiments

4.4.1 Experimental Settings

We conducted the experiments on the following three scenarios: single-pair CS
(synthetic speech; single speaker), single-pair CS (natural speech; multi-speaker),
and multi-pair CS.

Dataset Composition

For the experiment on single-pair CS (synthetic speech; single speaker), we used
the intra-sentential word-level CS and phrase-level CS I of synthetic speech CS
(Sect. 3.2.2). From the synthetic speech CS, we chose 20-k sentences for training
sets and 500 sentences for test sets. They are denoted as JaTTS if synthesized
using Japanese TTS, as EnTTS synthesized using English TTS, and as MixTTS
if synthesized both using Japanese TTS and English TTS. Table 4.1 shows the
statistics of these datasets for a single-pair CS (synthetic speech; single speaker).
We used the JaEnCS20k (Ja+MixTTS) dataset for training the LID models of
Cascade approaches and Direct ASR models and used the Ja25k (JaTTS) and
En25k (EnTTS) for training ASRs of Cascade approaches.

For the experiments on single-pair CS (natural speech; multi-speaker), we

39



Table 4.2: Statistics of datasets for a single-pair CS (natural speech; multi-
speaker).

Subset Speakers Hours Utterances
Train Mono SEAME EN 134 15.8 21435

SEAME ZH 134 15.8 21476
CS SEAME CS 134 69.6 51027

Test devman mono 10 1.6 2228
CS 10 5.9 4303
all 10 7.5 6531

devsge mono 10 1.8 3156
CS 10 2.1 2165
all 10 3.9 5321

used SEAME CS corpus (Sect.-3.1.2). Table 4.2 shows the statistics for a single-
pair CS (natural speech; multi-speaker). We used the SEAME CS to train the
LID models of Cascade approaches and Direct ASR models and used the SEAME
EN and SEAME ZH to train ASRs of Cascade approaches. We evaluated them
on devman and devsge test sets.

For the experiments on multi-pair CS, we used the BTEC (Sect. 3.1.1) and
intra-sentential phrase-level CS II of synthetic speech CS (Sect. 3.2.2) and the
natural speech CS (Sect. 3.2.3). From the BTEC corpus, we randomly selected
25-k Japanese utterances, 25-k English utterances, and 25-k Chinese utterances,
and 500 sentences for each test set. From the synthetic speech CS, we used 10-k
sentences for each training set. We also selected 500 sentences for each test set.
They are synthesized using the corresponding language’s TTS, where Japanese
words are synthesized with Japanese TTS, English words are synthesized with
English TTS, and Chinese words are synthesized with Chinese TTS. From the
natural speech CS, we divided into 0.2k labeled data, 0.7k unlabeled data denoted
as “NatEnJaCS,” and 0.1k test data denoted as “TstNatEnJaCS.” The labeled
data were also divided between Japanese and English, which were used for mono-
lingual data as “NatJa” and “NatEn.” Table 4.3 shows the statistics of these
datasets. We investigated two scenarios using Ja25k+En25k+Zh25k and En-
JaCS10k+JaZhCS10k+NatEnJaCS0.7k. On the Ja25k+En25k+Zh25k scenario,
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Table 4.3: Statistics of datasets for multi-pair CS.
Subset Hours Utterances

Train Mono Ja25k 29.2 25000
En25k 22.7 25000
Zh25k 26.9 25000

NatJa0.2k 0.2 200
NatEn0.2k 0.2 200

CS EnJaCS10k 11.8 10000
JaZhCS10k 10.4 10000
ZhEnCS10k 10.9 10000

NatEnJaCS0.7k 1.1 700
Test Mono Ja 0.9 500

En 0.7 500
Zh 0.8 500

CS EnJaCS 0.8 500
JaZhCS 0.7 500
ZhEnCS 0.7 500

TstNatEnJaCS 0.2 100

we used Ja25k+En25k+Zh25k for training Direct ASRs and Ja25k, En25k, Zh25k
for training Cascade ASRs, and EnJaCS10k+JaZhCS10k+ZhEnCS10k for train-
ing Cascade LID models. On the EnJaCS10k+JaZhCS10k+NatEnJaCS0.7k sce-
nario, we used EnJaCS10k+JaZhCS10k+ZhEnCS10k+NatEnJaCS0.7k for train-
ing Direct ASRs and Cascade LID models, and used Ja25k+NatJa9.2k,
En25k+NatEn0.2k, Zh25k for training Cascade ASRs.

All the text characters were converted to lowercase letters, and punctuation
marks [, : ? .] were removed. We converted all characters into the lowercase
alphabet. For Japanese words, we applied a morphological analyzer Mecab [55] to
convert into katakana. Then we converted the katakana into English letters with
pykakasi [56]. We also used pypinyin to the Chinese characters [57] and converted
them into pinyin. The text not including any language identifier consists of 26
letters (a-z), one mark (-) for stretching Japanese sounds, and three tags that
denote the start of sentences (<s>), the end of sentences (</s>), and the spaces
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between words (<spc>). In the case of LibriSpeech, AISHELL-1, and SEAME,
we utilized PASM sub-word units, which is a sub-word unit optimized for accents
by taking alignments between phonemes and characters [58].

Model Details

Through all of our experiments in this chapter, our ASR system is an attention-
based encoder-decoder model [16] described in Sect. 2.2.2. We used the model,
which consists of three stacked BiLSTM encoders, a single layer LSTM, and
multilayer perceptron (MLP)-based attention [15] components. The activation
function is a LeakyReLU (l = 1e− 2) [59]. We did not use the language model.

The MLP of MLP LID+ASRs was set the hyperparameters with 100 hidden
layer sizes, Relu activation function, Adam solver, and 200 max iterations. The
LSTM of LSTM LID+ASRs used one hidden layer with 128 hidden units. We
used frames within the plus-minus ten index range for the LID input of the Cas-
cade approaches. In this chapter, we used 0.1 as λLng value and 0.9 as λChr value
of the loss hyperparameters for the Direct ASR (proposed LID). We implemented
all the models with the PyTorch python library [60]. For the MLP, we used the
MLPClassifier from the scikit-learn library [61].

4.4.2 Results

Results on Single-pair Code-switching

(Synthetic Speech; Single Speaker)
We investigated the performances of systems on single-pair CS (synthetic speech;
single speaker). First, we checked the LID performances on diarization error
rate (DER) [62]. The DER is the metric that is used for speaker diarization
experiments. It can measure the time ratio allocated to the wrong speaker and
the time ratio that is incorrectly detected or not detected speech. We calculate
the following formula:

DER = false alarm + missed detection + confusion
total , (4.4)
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Table 4.4: LID performance comparison on a single-pair CS (synthetic speech;
single speaker) between Cascade approaches and Direct approaches in DER%.
Direct ASR (proposed LID) was trained with λLng = 0.1 and λChr = 1− λLng.

Monolingual Code-switching
Train: TstJa TstEn TstJaEnCS
JaEnCS20k(Ja+MixTTS) (JaTTS) (EnTTS) (MixTTS)
Cascade MLP LID+ASRs 8.5 6.4 3.4
Cascade LSTM LID+ASRs 9.7 6.4 2.9
Direct ASR (No LID) - - -
Direct ASR (LngChr) 13.8 26.4 6.1
Direct ASR (Tag LID) 16.6 34.0 14.2
Direct ASR (Proposed LID) 11.5 23.0 4.3

where the false alarm is the duration of non-speech incorrectly detected speech,
the missed detection is the duration of speech incorrectly undetected speech, the
confusion is the length assigned to the wrong speaker, and the total is the total
length of the reference. In the case of our LID evaluation, we calculated as follows:
the false alarm is the language ID token length detected beyond the reference
length, the missed detection is the length detected nothing despite being within
the reference length, the confusion is the length assigned to the wrong language
ID, and the total is the total length of the reference. The higher DER, the better.

Table 4.4 shows the DER results. The LID performances of Cascade models
were good since it was an easier task with one-to-one classification. The Direct
ASR models were not better than the Cascade models on LID performances, but
the Direct ASR (Proposed LID) was still better among the Direct ASR models.
The Direct ASR models’ performance on TstEn was not good since we only used
CS data for training. However, the performance on TstJa was good as half of
the CS data used for training was synthesized using Japanese TTS for the whole
sentences, including English words. We were also surprised that the TstEn of the
Cascade models were not influenced by not including English training data. It
seems to be because the Cascade LID models train to predict language ID from
partial speech feature, where it did not matter whether the whole sequence is CS
or monolingual English utterance.
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Table 4.5: Comparison ASR performances on a single-pair CS (synthetic speech;
single speaker) between Cascade approaches and Direct approaches in CER%.
Direct ASR (proposed LID) was trained with λLng = 0.1 and λChr = 1 − λLng.
The p-values compared to the Cascade MLP LID+ASRs for statistical significance
are presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

Monolingual Code-switching
Train: TstJa TstEn TstJaEnCS
JaEnCS20k(Ja+MixTTS) (JaTTS) (EnTTS) (MixTTS)
Cascade MLP LID+ASRs 41.2 39.0 30.2
Cascade LSTM LID+ASRs 38.6∗∗∗ 33.4∗∗∗ 28.0∗∗

Direct ASR (No LID) 6.3∗∗∗ 47.6 7.8∗∗∗

Direct ASR (LngChr) 11.4∗∗∗ 48.1 6.9∗∗∗

Direct ASR (Tag LID) 11.9∗∗∗ 61.5 13.3∗∗∗

Direct ASR (Proposed LID) 5.8∗∗∗ 40.8 6.3∗∗∗

Table 4.5 shows the character error rate of the ASR performances. The char-
acter error rate is calculated by how many characters were mistaken. The smaller,
the better. The p-value shows the result of the statistical significance test com-
pared with one of the traditional approaches, Cascade MLP LID+ASRs. We
assessed the statistical significance by a matched-pair sentence-segment word er-
ror test [63]. The Cascade models’ performances were not good, although the LID
performance was good. Identifying the language for Cascade approaches seems
to be more difficult than for the Direct approach. It has to estimate language
per speech frame, which has much longer sequences than per character. The LID
error of the Cascade approach can cause more damage to the ASR than the Direct
approach since the wrong ASR cannot recognize at all, and even the right ASR
cannot recognize well if the input speech mistakenly starts from the middle of
words. The performance on TstEn was better than the Direct approaches since
the LID performances were good.

Compared between Cascade models, the Cascade LSTM LID+ASRs was bet-
ter than the Cascade MLP LID+ASRs. The mistakes of Cascade MLP LID+ASRs
occurred at the frame unit, so that it increased the number of switching times and
made the subsequent ASR difficult to predict. On the other hand, the Cascade
LSTM LID+ASRs could avoid the frame unit error since it included the previous
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(a) (b)

Figure 4.9: Attention alignment matrix between encoder and decoder by (a)
Direct ASR (Tag LID) and (b) Direct ASR (Proposed LID), where the source is
“最初にbeerをください (I’ll start with a beer).”

class output in deciding the current class output.
Compared among Direct approaches, with additional language information,

Direct ASR (Proposed LID) was better than Direct ASR (No LID). The Direct
ASR (Proposed LID) was better than the Direct ASR (LngChr) as well. Direct
ASR (LngChr) needs more dictionary sizes. The dictionary size of Direct ASR
(No LID) is 30, where the text consists of 26 letters (a-z), one mark (-) for stretch-
ing Japanese sounds, and three tags that denote the start of sentences (<s>), the
end of sentences (</s>), and the spaces between words (<spc>). The dictionary
size of Direct ASR (Tag LID) is 33 by adding the language tags ([JA], [EN], [ZH]).
The dictionary size of Direct ASR (Proposed LID) is 30, the same dictionary size
as the Direct ASR (No LID), although it has another dictionary for LID with
six sizes. On the other hand, the Direct ASR (LngChr) has bigger dictionary
sizes with 82 sizes, including three times of 26 letters (a-z) by adding language
identifier. Therefore, the Direct ASR (LngChr) got more difficult to correctly
predict the character among more candidates, which degraded the performance.
The Direct ASR (Tag LID) got more difficulty with attention alignments since
it predicted the language ID before the target sequences. Fig. 4.9 compares the
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Table 4.6: LID performance comparison on a single-pair CS (natural speech;
multi-speaker) between Cascade approaches and Direct approaches in DER%.
Direct ASR (proposed LID) was trained with λLng = 0.1 and λChr = 1− λLng.

devman devsge

Train: SEAME CS mono CS all mono CS all

Cascade MLP LID+ASRs 28.5 34.3 32.3 30.8 34.5 32.3
Cascade LSTM LID+ASRs 27.5 28.3 28.0 29.5 29.3 29.4
Direct ASR (No LID) - - - - - -
Direct ASR (LngChr) 32.1 23.3 26.3 21.7 25.2 23.1
Direct ASR (Tag LID) 38.0 21.3 27.0 24.2 23.1 23.8
Direct ASR (Proposed LID) 33.6 21.0 25.3 24.6 22.4 23.7

attention alignments between by Direct ASR (Tag LID) and by Direct ASR (Pro-
posed LID). The Direct ASR (Tag LID) could not take alignment well due to the
insertion of the language ID tag. On the other hand, the Direct ASR (Proposed
LID) could take alignment better due to omitting the unnecessary tokens within
the sequence. Therefore, the Direct ASR (Proposed LID) tended to have the best
performance.

(Natural Speech; Multi-speaker)
Table 4.6 shows the DER of CS ASR on single-pair CS (natural speech). Unlike
the case using synthetic speech, the DER of Cascade approaches was higher than
the Direct approaches. It seemed to be difficult to predict the language ID per
speech frame on the natural CS data. It may be because the sound between words
affected each other even beyond the language switching points on the natural CS
data. Among Direct approaches, Direct ASR (Proposed LID) is better than
Direct ASR (LngChr) and Direct ASR (Tag LID).

Table 4.7 shows the ASR performance results of the single-pair CS (natural
speech) language-aware CS ASR. For the evaluation matrix, we used token error
rate (TER). It is calculated by the Word Error Rate (WER) for English and the
Character Error Rate (CER) for Mandarin. It is frequently adopted for evaluating
the ASR of Mandarin-English CS because it is not affected by segmentation
algorithms. As Table 4.7 shows, the performances of Cascade approaches are not
good. It got more difficult by the increased LID error. Then in Direct approaches,
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Table 4.7: Comparison ASR performances on a single-pair CS (natural speech;
multi-speaker) between Cascade approaches and Direct approaches in TER%.
Direct ASR (proposed LID) was trained with λLng = 0.1 and λChr = 1 − λLng.
The p-values compared to the Cascade MLP LID+ASRs for statistical significance
are presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

devman devsge

Train: SEAME CS mono CS all mono CS all

Cascade MLP LID+ASRs 81.6 82.1 82.0 90.7 87.6 88.9
Cascade LSTM LID+ASRs 74.5∗ 74.6∗ 74.6∗ 87.8 80.6∗∗∗ 83.6∗∗

Direct ASR (No LID) 37.2∗∗∗ 27.8∗∗∗ 29.6∗∗∗ 50.8∗∗∗ 36.9∗∗∗ 42.7∗∗∗

Direct ASR (LngChr) 37.4∗∗∗ 28.5∗∗∗ 30.2∗∗∗ 51.3∗∗∗ 38.2∗∗∗ 43.7∗∗∗

Direct ASR (Tag LID) 39.6∗∗∗ 27.6∗∗∗ 29.9∗∗∗ 51.6∗∗∗ 36.8∗∗∗ 43.0∗∗∗

Direct ASR (Proposed LID) 36.4∗∗∗ 27.3∗∗∗ 29.1∗∗∗ 51.0∗∗∗ 36.2∗∗∗ 42.3∗∗∗

the Direct ASR (LngChr) is comparatively good on the mono test set but not
good on the CS test set, so in total not better than other Direct approaches.
The Direct ASR (Tag LID) seems to suffer less from attention alignments than
on single-pair CS (synthetic speech; single speaker). However, it is still not better
than the Direct ASR (Proposed LID). The Direct ASR (Proposed LID) is better
than the Direct ASR (No LID) and tends to have the best performance.

Results on Multi-pair Code-switching

Next, we confirmed the experimental results on multi-pair CS. At first, we com-
pared the DERs among approaches. As Table 4.8 shows, the Cascade approach
could predict better than the Direct approach (but even 0.4% DER made mis-
takes 901 times). However, Cascade MLP LID+ASRs mistakes occurred at the
frame unit to increase the number of switching times. For example, as Fig. 4.10
shows, the reference has three straight English language IDs and three straight
Japanese language IDs, so the number of switching times is one time, but the
hypothesis inserted the wrong language ID. The number of switching times in-
creased to 5 times. On the other hand, the Cascade LSTM LID+ASRs seemed to
avoid the frame unit error since it included the previous class output in deciding
the current class output.

Then we investigated the character error rate in Table 4.9. The result shows

47



Table 4.8: LID performance comparison on a multi-pair CS between Cascade ap-
proaches and Direct approaches trained with monolingual data in DER%. Direct
ASR (proposed LID) was trained with λLng = 0.1 and λChr = 1− λLng.

Train: Monolingual Code-switching
Ja25k+En25k+Zh25k Ja En Zh EnJaCS JaZhCS ZhEnCS
Cascade MLP LID+ASRs 0.4 5.8 8.2 2.9 5.8 4.9
Cascade LSTM LID+ASRs 0.5 5.9 8.7 2.8 5.6 4.7
Direct ASR (No LID) - - - - - -
Direct ASR (LngChr) 1.9 2.0 0.7 10.9 20.2 14.2
Direct ASR (Tag LID) 2.1 1.6 0.6 25.5 29.3 27.3
Direct ASR (Proposed LID) 1.4 1.6 0.7 10.1 13.0 9.0

that the Cascade LSTM LID+ASRs was better than Cascade MLP LID+ASRs.
Although the language prediction of Cascade MLP LID+ASRs has similar per-
formance with the Cascade LSTM LID+ASRs, the mistakes of Cascade MLP
LID+ASRs occurred at the frame unit, so that it increased the number of switch-
ing times and made the subsequent ASR difficult to predict. On the other hand,
the Cascade LSTM LID+ASRs could consider the previous class output to decide
the current class output to avoid the frame unit error.

Next, we compared the results between the Cascade and Direct approaches.
The Cascade approach seems to be more influenced by language error than the
Direct approach. It has to estimate language per speech frame, which has much
longer sequences than per character. And the LID error of the Cascade approach
can cause more damage to the ASR than the Direct approach since the wrong
ASR cannot recognize at all, and even the right ASR cannot recognize well if the
input speech mistakenly starts from the middle of words.

Compared among Direct approaches, with additional language information,
Direct ASR (Proposed LID) was better than Direct ASR (No LID). Direct ASR
(LngChr) needs more dictionary sizes, which gets more difficult to predict char-
acters among more candidates correctly. The Direct ASR (Tag LID) has more
difficulty with attention alignments since it predicts the language ID before the
target sequences. Therefore, the Direct ASR (Proposed LID) tends to have the
best performance. Table 4.10 shows that the case using CS data for training also
has the same tendency.
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→ 1 times
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Figure 4.10: Example of frame unit error. The reference has three straight En-
glish language IDs and three straight Japanese language IDs, so the number of
switching times is one time. On the other hand, the hypothesis inserted the wrong
language ID “JA” between English language IDs or “ZH” between Japanese lan-
guage IDs, so the number of switching times increased to 5 times.

To wrap up, the Direct ASR (Proposed LID) had the best performance among
several LID approaches. The Direct approaches are better than the Cascade
approaches since the Cascade approaches are more influenced by language error
than the Direct approach. Comparison among the Direct approaches, the Direct
ASR (Proposed LID) tends to perform the best performance. The Direct ASR
(Proposed LID) has the advantage in terms of dictionary size, which is smaller
than Direct ASR (LngChr) and Direct ASR (Tag LID) and more manageable
with attention alignments than Direct ASR (Tag LID). Moreover, The Direct
ASR (Proposed LID) can adjust the balance between LID training and character
training using loss hyperparameters.

4.5 Summary

In this chapter, we investigated the best LID approaches for the language-aware
ASR among Cascade MLP LID+ASRs, Cascade LSTM LID+ASRs, Direct ASR
(No LID), Direct ASR (LngChr), Direct ASR (Tag LID), and Direct ASR (Pro-
posed LID). The Cascade approaches were good at the LID prediction on the
experiments with synthetic speech since their LID is an easier task with one-to-
one classification. However, in the experiments with natural speech, the LID of
Cascade approaches got more complicated. It seems to be challenging to predict
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Table 4.9: Comparison ASR performances on a multi-pair CS between Cascade
approaches and Direct approaches trained with monolingual data in CER%. Di-
rect ASR (proposed LID) was trained with λLng = 0.1 and λChr = 1− λLng. The
p-values compared to the Cascade MLP LID+ASRs for statistical significance are
presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

Train: Monolingual Code-switching
Ja25k+En25k+Zh25k Ja En Zh EnJaCS JaZhCS ZhEnCS
Cascade MLP LID+ASRs 20.7 31.2 48.9 25.6 23.2 34.9
Cascade LSTM LID+ASRs 16.9∗∗∗ 19.2∗∗∗ 46.5∗∗ 23.3∗∗∗ 17.7∗∗∗ 30.4∗∗∗

Direct ASR (No LID) 8.8∗∗∗ 9.1∗∗∗ 5.8∗∗∗ 11.5∗∗∗ 12.3∗∗∗ 13.3∗∗∗

Direct ASR (LngChr) 8.3∗∗∗ 9.1∗∗∗ 5.4∗∗∗ 14.9∗∗∗ 22.9 19.2∗∗∗

Direct ASR (Tag LID) 8.5∗∗∗ 7.3∗∗∗ 4.9∗∗∗ 13.1∗∗∗ 14.9∗∗∗ 14.6∗∗∗

Direct ASR (Proposed LID) 7.3∗∗∗ 7.3∗∗∗ 5.1∗∗∗ 10.1∗∗∗ 11.2∗∗∗ 11.4∗∗∗

the language ID per speech frame on the natural CS data. It may be because the
sound between words is affected by each other even beyond the language switch-
ing points. Although the language prediction of Cascade MLP LID+ASRs has
similar performance with the Cascade LSTM LID+ASRs, the mistakes of Cas-
cade MLP LID+ASRs occur at the frame unit, so that it increases the number of
switching times and makes the subsequent ASR difficult to predict. On the other
hand, the Cascade LSTM LID+ASRs can consider the previous class output to
decide the current class output to avoid the frame unit error.

The Cascade approaches were sometimes good at the LID prediction, but their
character error rate was not good. They seem to be more influenced by language
error than the Direct approach. It has to estimate language per speech frame,
which has much longer sequences than per character. And the LID error of the
Cascade approach can cause more damage to the ASR than the Direct approach
since the wrong ASR cannot recognize at all, and even the right ASR cannot
recognize well if the input speech mistakenly starts from the middle of words.

Among Direct approaches, with additional language information, Direct ASR
(Proposed LID) was better than Direct ASR (No LID). Compared to other Di-
rect approaches using LID, Direct ASR (Proposed LID) was better. Direct ASR
(LngChr) needs more dictionary sizes, which gets more difficult to predict char-
acters among more candidates correctly. The Direct ASR (Tag LID) has more
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Table 4.10: Comparison ASR performances on a multi-pair CS among Direct
approaches trained with CS data in CER%. Direct ASR (proposed LID) was
trained with λLng = 0.1 and λChr = 1 − λLng. The p-values compared to the
Cascade MLP LID+ASRs for statistical significance are presented using ∗∗∗, ∗∗, ∗

and no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).
Train: Monolingual Code-switching
EnJaCS10k+JaZhCS10k TstNat
+NatEnJaCS0.7k Ja En Zh EnJaCS JaZhCS EnZhCS EnJaCS
Cascade MLP LID+ASRs 24.5 32.3 43.0 20.8 26.3 29.6 69.8
Cascade LSTM LID+ASRs 21.3∗∗ 30.7∗ 41.5∗∗ 19.0∗ 24.2∗ 27.2∗∗ 65.7∗∗∗

Direct ASR (No LID) 9.5∗∗∗ 30.6∗ 16.2∗∗∗ 13.1∗∗∗ 7.6∗∗∗ 13.2∗∗∗ 20.6∗∗∗

Direct ASR (LngChr) 20.7∗∗ 36.4 18.1∗∗∗ 20.3 8.9∗∗∗ 17.2∗∗∗ 29.4∗∗∗

Direct ASR (Tag LID) 22.2 49.5 44.8 22.6 12.4∗∗∗ 24.2∗∗∗ 30.8∗∗∗

Direct ASR (Proposed LID) 9.5∗∗∗ 29.9∗ 16.8∗∗∗ 12.9∗∗∗ 7.1∗∗∗ 11.9∗∗∗ 18.9∗∗∗

difficulty with attention alignments since it predicts the language ID before the
target sequences. Therefore, we confirmed that the Direct ASR (Proposed LID)
tended to have the best performance. The Direct ASR (Proposed LID) has the
advantage in dictionary size and is more manageable with attention alignments.
Therefore, the Direct ASR (Proposed LID) tended to show the best performance.
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Chapter 5

Proposed Machine Speech Chain
for Semi-supervised
Code-switching ASR and TTS

This chapter explains the semi-supervised approach for CS ASR and CS TTS
with the machine speech chain.

5.1 Introduction

Common methods of developing CS ASR and TTS rely on supervised learning
that requires large amounts of CS data for training models. However, pairs of
CS speech and corresponding CS transcriptions are scarce and difficult to obtain,
although either CS text or CS speech may be found on social media. Such a data
problem hinders the development of CS ASR.

On the other hand, recently, a framework called a machine speech chain [10,11]
was proposed to achieve semi-supervised learning for ASR and TTS, trainable
with labeled and unlabeled data. The machine speech chain mechanism has a
feedback loop between ASR and TTS, allowing them to support each other given
the available unpaired speech or text data (unlabeled data). However, the existing
works on machine speech chains [10, 11] have only addressed the monolingual
issue.

Therefore, in this study, we propose utilizing the machine speech chain for CS

52



tasks to handle not only monolingual but also bilingual. First, we train ASR and
TTS with the labeled monolingual data in supervised learning. Next, we perform
a machine speech chain with the semi-supervised learning with only CS text or
CS speech without requiring any labeled CS data. We also extend the machine
speech chain to handle CS better by integrating language embedding and language
identification (LID) and investigate our proposed model’s performance both on
a single-pair CS and multi-pair CS. The multi-pair CS includes the unknown CS
excluded from the training data. The task of predicting the unknown CS without
training is called a zero-shot CS. It is difficult to predict the switching points
and the language in that situation since the target CS is not used as training
data. We expect that language embedding and LID can solve these problems by
delivering language information in training.

Finally, we analyze it both on native CS and non-native CS. For non-native
CS, we use the natural Mandarin-English CS data, SEAME corpus [22]. We
control the accented problem better by utilizing efficient pronunciation-assisted
sub-word modeling (PASM) [58].

5.2 Related Works

Most previous researches suffer from one or more of the following disadvantages:
(a) developed on either only ASR or only TTS; (b) focused only on a single-pair
CS; (c) trained in supervised learning that requires a large amount of labeled
CS data in which the CS speech and corresponding CS transcriptions are hard
to obtain. In contrast, our study builds end-to-end encoder-decoder models for
both CS ASR and TTS and connects them so that they train each other. The
machine speech chain framework can train CS ASR and CS TTS together in
semi-supervised learning, even without labeled CS data.

The common semi-supervised approaches, such as label propagation [64], de-
code the unlabeled speech with supervised seed ASR and retrains the model using
the output text as pseudo-label. Semi-supervised CS ASR using pseudo-label is
proposed [65]. However, this method can be unstable performance because of the
unreliable labels. On the other hand, the machine speech chain utilizes TTS after
getting output text and compares the original speech with the output speech to
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train with reliable information. Therefore, we adopt the machine speech chain
approach.

We also handle multi-pair CS, not only a single-pair CS. We integrate language
embedding and LID into the machine speech chain and explore how well the model
performs on both a single-pair CS and multi-pair CS, including the unknown CS
excluded from the training data. We call the task predicting the unknown CS
excluded from the training data as zero-shot CS.

Zero-shot learning, which was initially proposed in the field of computer vision,
refers to the problem of recognizing objects that may not have appeared in the
training data in multiclass classification [66]. In machine translation, zero-shot
tasks faced the challenge of translating the language combinations that were
excluded in training sets [67]. Unfortunately, few studies have addressed CS ASR
and TTS, so this study has also contributed to the zero-shot CS ASR and TTS.

5.3 Proposed Approaches

5.3.1 Human Speech Chain

The human speech chain [68] is an essential mechanism for communication. We
communicate by expressing our thoughts and listening to others. This speaking
and listening cycle also occurs when we talk to ourselves. When we utter a word,
we aurally check whether we spoke it as we intended. We simultaneously improve
speaking and listening while alternately repeating sounds and words. The human
speech chain is defined by such a communication cycle.

5.3.2 Machine Speech Chain

Tjandra et al. developed a deep learning-based monolingual machine speech chain
[10,11,69], inspired by the human speech chain as Fig. 5.1 shows. Its framework
is illustrated in Fig. 5.2. It is composed of an end-to-end ASR [16, 17] and an
end-to-end TTS [18], and they are connected. The architecture can train ASR
and TTS with each other with their feedback. The monolingual machine speech
chain [10] improves the performance of monolingual ASR and TTS. The multi-
speaker machine speech chain [10, 11] is expanded to deal with multi-speakers
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TTS ASR

Figure 5.1: Overview of human speech chain [68]. The human speech chain
refers to a communication mechanism where a spoken message transmits from
the speaker’s brain to the listener’s brain. A speaker generates a speech sound
wave that travels through the air to the listener, and then the listener recognizes
the speaker’s message. The speakers can also be their own listeners with auditory
feedback from their mouths to their ears. The TTS corresponds to the speaker
(blue framed box), and the ASR corresponds to the listener (red framed box).
The mechanism realized the speech chain using ASR and TTS is the machine
speech chain [10].

by integrating speaker recognition (SPKREC) based on DeepSpeaker [19]. Still,
they are only for monolingual; they cannot handle CS. Therefore, in this study,
we expand it to handle CS.

5.3.3 Basic Code-switching Machine Speech Chain

The basic CS machine speech chain (Fig. 5.3) seeks to improve the ASR and
TTS performance on CS without any labeled CS data. The learning process is
as follows (In the case of handling multiple speakers, the speaker vector z =
SPKREC(x) is added to the input of the TTS decoder both during supervised
and semi-supervised processes):
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Speaking

Listening

Feedback

Speaking

Listening

Figure 5.2: The overview of machine speech chain framework [10]. The left figure
shows the TTS relevant to speaking and the ASR relevant to listening. The right
figure shows the closed-loop architecture of the ASR and TTS with feedback
interaction, that is, the machine speech chain framework.

1. Supervised learning of ASR and TTS with paired speech+text
monolingual data
First, ASR and TTS are trained in supervised learning with the paired
speech+text Japanese and English data or the paired speech+text Man-
darin and English data (mixed data of monolingual sets constituting a CS
language pair) as shown in Fig. 5.3(a). Once ASR receives the speech and
the corresponding text (xMono,yMono), ASR recognizes speech ŷMono using
teacher-forcing, which is an algorithm that trains efficiently and converges
faster by direct training with the target label. Then the loss between out-
put text ŷMono and reference text yMono is calculated LMono

ASR (ŷMono,yMono)
using Eq. (2.12). TTS also generates speech x̂Mono from the input text
yMono, and the loss between generated speech x̂Mono and reference speech
xMono is calculated LMono

TTS (x̂Mono,xMono), where the loss function in case of
single speaker is Eq. (2.13) and the loss function in case of multi-speaker
is Eq. (2.17). The parameters are tuned to decrease the loss with gradient
descent optimization.

2. Semi-supervised learning of ASR and TTS together in a machine
speech chain
We performed a machine speech chain, where we trained ASR and TTS to-
gether with an unpaired CS text or an unpaired CS speech data (Fig. 5.3(b)).

56



The learning process during the semi-supervised learning of the machine
speech chain consists of the following two processes:

(a) Loop connection from TTS to ASR with only unpaired CS
text data
This process (Fig. 5.3(c)) only uses unpaired CS text data yCS. TTS
outputs speech x̂CS from the input CS text yCS, and ASR also pre-
dicts text transcription ŷCS from the synthesized speech. Then loss
LCSASR(ŷCS,yCS) can be computed between output text ŷCS and input
text yCS to tune the ASR parameters.

(b) Loop connection from ASR to TTS with only unpaired CS
speech data
This process (Fig. 5.3(d)) only uses unpaired CS speech data xCS.
Once ASR receives speech xCS, ASR outputs predicted transcription
ŷCS, and TTS generates speech x̂CS from the text of the ASR output.
The loss between output speech x̂CS and original speech xCS can be
computed LCSTTS(x̂CS,xCS) for tuning the TTS parameters.

During the semi-supervised learning process, we also continue supervised
learning with monolingual data. The supervised learning loss and unsuper-
vised learning loss are integrated into a single loss:

LChain = α(LMono
ASR + LMono

TTS ) + β(LCSASR + LCSTTS), (5.1)

θASR = Optim(θASR,∇θASR
LChain), (5.2)

θTTS = Optim(θTTS,∇θT T S
LChain), (5.3)

where the hyperparameters α and β tune the balance of the losses. They bal-
ance the influence between the supervised and unsupervised, and between the
monolingual and CS data.
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Figure 5.3: Overview of the proposed framework based on [10, 70]: (a) Super-
vised learning of ASR and TTS with paired speech+text monolingual data of
two languages; (b) Semi-supervised learning of ASR and TTS together through
machine speech chain with unpaired CS text data or unpaired CS speech data;
(c) Loop connection from TTS to ASR with only unpaired CS text data; (d)
Loop connection from ASR to TTS with only unpaired CS speech data.
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5.3.4 Language-aware Code-switching Machine Speech Chain

Fig. 5.4 shows the differences among the following: (a) a basic CS machine speech
chain [70], (b) a multi-speaker CS machine speech chain that incorporates SP-
KREC for handling multiple speakers, and (c) a language-aware CS machine
speech chain [71].

𝑥 =	 𝑦% = "𝐶𝑆	𝑐ℎ𝑟"
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𝑥% =	
TTS
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CS	speech

CS	speech

CS	speech

CS	speech
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Figure 5.4: Comparison among CS machine speech chain models: (a) Basic CS
machine speech chain [70]; (b) Multi-speaker CS machine speech chain incorpo-
rating SPKREC; (c) Language-aware CS machine speech chain [71].

In a language-aware CS machine speech chain, we handle CS more efficiently
with language information. To achieve this, we put additional functions, LID for
ASR and language embedding for TTS. As Fig. 5.5 shows, the LID architecture
performs multi-task learning in the ASR softmax layers. The architecture trains
the projection between the speech input and the two outputs of the text tran-
scription and the language information with two softmax layers (Fig. 5.5). The
language information is given to each character by the language ID. For language
IDs, Japanese is denoted as “JA,” English is denoted as “EN,” Chinese is denoted
as “ZH,” and an unknown language is denoted as“<unk>.”

The language embedding of TTS maps a one-hot vector representing a lan-
guage ID into continuous vectors. Then it concatenates with the character
embedding and goes through the encoder LSTM, attention, decoder, and gen-
erates speech. In the case of handling multiple speakers, the speaker vector
z = SPKREC(x) is added to the input of the TTS decoder both during super-
vised and semi-supervised training.

The training process is almost the same as the basic CS machine speech chain,
but the language-aware CS machine speech chain trains language information.
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Figure 5.5: Language-aware code-switching machine speech chain. Given input
speech, the ASR outputs the character sequences and language ID sequences using
two softmax layers. Then the TTS embeds the character sequences language ID
sequences and concatenates them to go through processes.

The following is the training process:

1. Supervised learning of ASR and TTS with paired speech+text
monolingual data
As shown in Fig. 5.6(a), we first train the ASR and TTS systems with
the paired speech+text monolingual corpora from several languages using
English (En), Japanese (Ja), and Chinese (Zh). With paired speech+text
monolingual data (xMono,yMonoChr, and yMonoLng), ASR generates sequences
of characters ŷMonoChr and language information ŷMonoLng with teacher-
forcing and calculates the sum of losses LMonoChr

ASR (ŷMonoChr,yMonoChr) and
LMonoLng
ASR (ŷMonoLng,yMonoLng). The loss function for optimizing ASR changes

from Eq. (2.12) to the following function in accordance with the incorpo-
rating LID loss:

LLngAwrASR = λChrL
Chr
ASR + λLngL

Lng
ASR, (5.4)

where it’s a summation of two negative log-likelihood, tuning those weights
by the hyperparameters λChr and λLng. TTS generates speech features
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Figure 5.6: Training overview of language-aware CS machine speech chain [71]:
(a) supervised training of ASR or TTS with paired speech+text monolingual
data; (b) semi-supervised training of a machine speech chain with unpaired CS
text or CS speech data.

x̂Mono with teacher-forcing, and we calculate the loss LMono
TTS (x̂Mono,xMono).

The TTS loss function does not change from Eq. (2.17) since the TTS
output does not change. The parameters are tuned to reduce the loss with
gradient descent optimization.

2. Semi-supervised training of ASR and TTS together in a machine
speech chain

(a) Loop connection from TTS to ASR with only unpaired CS
text data of characters and language information
This process (Fig. 5.6(b), left side) uses only unpaired CS text data
of characters and language information [yCSChr, and yCSLng]. TTS
outputs speech x̂CS from the unpaired CS text data of the characters
and language information [yCSChr, yCSLng]. The generated speech is
transcribed by ASR to the CS text [ŷCSChr,ŷCSLng]. Then the sum
of losses LCSChrASR (ŷCSChr,yCSChr) and LCSLngASR (ŷCSLng,yCSLng) can be
computed to update the ASR parameters.

(b) Loop connection from ASR to TTS with only unpaired CS
speech data
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This process (Fig. 5.6(b), right side) only uses CS speech xCS as input.
With unlabeled CS speech xCS, ASR generates sequences of characters
ŷCSChr and language information ŷCSLng. TTS generates CS speech
x̂CS with output CS characters and language information from ASR.
Then TTS parameters are tuned to decrease loss LCSTTS(x̂CS,xCS).

In the end, the losses of the supervised monolingual and unsupervised CS
losses are combined into a single loss:

LLngAwrChain = α((λChrLMonoChr
ASR + λLngL

MonoLng
ASR )

+LMono
TTS )

+β((λChrLCSChrASR + λLngL
CSLng
ASR )

+LCSTTS),
(5.5)

θASR = Optim(θASR,∇θASR
LLngAwrChain ), (5.6)

θTTS = Optim(θTTS,∇θT T S
LLngAwrChain ), (5.7)

where the hyperparameters α and β tune the balance of the losses. They bal-
ance the influence between the supervised and unsupervised, and between the
monolingual and CS data. After training, we can perform the ASR and TTS on
zero-shot CS.

5.4 Experiments

5.4.1 Experimental Settings

We conducted the experiments on the following three scenarios: single-pair CS
(synthetic speech; single speaker), single-pair CS (natural speech; multi-speaker),
and multi-pair CS.
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Table 5.1: Statistics of datasets for a single-pair CS (synthetic speech; single
speaker).

Subset Hours Utterances
Train Mono Ja25k+En25k (JaTTS) 50.7 50000

Ja25k+En25k (MixTTS) 39.6 50000
CS JaEnCS10k (JaTTS) 9.5 10000

JaEnCS10k (MixTTS) 8.9 10000
JaEnCS20k (JaTTS) 19.0 20000
JaEnCS20k (MixTTS) 17.8 20000

JaEnCS20k (Ja+MixTTS) 18.4 20000
Test Mono TstJa(JaTTS) 0.7 500

TstEn(EnTTS) 0.6 500
CS TstJaEnCS(JaTTS) 1.1 500

TstJaEnCS(MixTTS) 0.7 500

Dataset Composition

For the experiment on single-pair CS (synthetic speech; single speaker), we used
the BTEC corpus (Sect. 3.1.1) and intra-sentential word-level CS and phrase-level
CS I of synthetic speech CS (Sect. 3.2.2). We randomly chose 50-k Japanese and
English sentences for training sets and 500 for test sets from BTEC1-4. From the
synthetic speech CS, we chose 10-k or 20-k sentences for training sets and 500
sentences for test sets. They are denoted as JaTTS if synthesized using Japanese
TTS, as EnTTS synthesized using English TTS, and as MixTTS if synthesized
both using Japanese TTS and English TTS. Table 5.1 shows the statistics of these
datasets for a single-pair CS (synthetic speech; single speaker).

For the experiments on single-pair CS (natural speech; multi-speaker), we
used LibriSpeech, AISHELL-1, and SEAME corpora (Sect. 3.1.1-3.1.2). Table 5.2
shows the statistics of these datasets for a single-pair CS (natural speech; multi-
speaker).

For the experiments on multi-pair CS, we used the BTEC corpus (Sect. 3.1.1)
and intra-sentential phrase-level CS II of synthetic speech CS (Sect. 3.2.2) and the
natural speech CS (Sect. 3.2.3). From the BTEC corpus, we randomly selected
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Table 5.2: Statistics of LibriSpeech, AISHELL-1, and SEAME for a single-pair
CS (natural speech; multi-speaker).

Subset Speakers Hours Utterances
Train Mono LibriSpeech 251 100.6 28539

AISHELL-1 340 100.0 80066
SEAME 134 31.5 42911
Total 725 232.1 151516

CS SEAME 134 69.6 51027
Test devman mono 10 1.6 2228

CS 10 5.9 4303
all 10 7.5 6531

devsge mono 10 1.8 3156
CS 10 2.1 2165
all 10 3.9 5321

25-k Japanese utterances, 25-k English utterances, and 25-k Chinese utterances:
“Ja25k+En25k+Zh25k,” and 500 sentences for each test set. From the synthetic
speech CS, we used 10-k sentences for each training set. We also selected 500 sen-
tences for each test set. They are synthesized using the corresponding language’s
TTS, where Japanese words are synthesized with Japanese TTS, English words
are synthesized with English TTS, and Chinese words are synthesized with Chi-
nese TTS. From the natural speech CS, we divided into 0.2k labeled data, 0.7k
unlabeled data denoted as “NatEnJaCS,” and 0.1k test data denoted as “Tst-
NatEnJaCS.” The labeled data were also divided between Japanese and English,
which can be used for monolingual data. Those data will be later called “NatJa”
and “NatEn.” Table 5.3 shows the statistics of these datasets for multi-pair CS.

All the text characters were converted to lowercase letters and punctuation
marks [, : ? .] were removed. We converted all BTEC characters into the
lowercase alphabet. For Japanese words, we applied a morphological analyzer
Mecab [55] to convert into katakana. Then we converted the katakana into En-
glish letters with pykakasi [56]. We also used pypinyin to the Chinese charac-
ters [57] and converted them into pinyin. The text not including any language
identifier consists of 26 letters (a-z), one mark (-) for stretching Japanese sounds,
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Table 5.3: Statistics of datasets for multi-pair CS.
Subset Hours Utterances

Train Mono Ja25k+En25k+Zh25k 78.8 75000
NatJa0.2k+NatEn0.2k 0.3 400

CS EnJaCS10k 11.8 10000
JaZhCS10k 10.4 10000
ZhEnCS10k 10.9 10000
EnFrCS10k 9.6 10000

NatEnJaCS0.7k 1.1 700
Test Mono Ja 0.9 500

En 0.7 500
Zh 0.8 500

CS EnJaCS 0.8 500
JaZhCS 0.7 500
ZhEnCS 0.7 500

TstNatEnJaCS 0.2 100

and three tags that denote the start of sentences (<s>), the end of sentences (</s>),
and the spaces between words (<spc>). In the case of LibriSpeech, AISHELL-1,
and SEAME, we utilized PASM sub-word units, which is a sub-word unit opti-
mized for accents by taking alignments between phonemes and characters [58].

Model Details

Our ASR system is an attention-based encoder-decoder model [16] described in
Sect. 2.2.2. We used the model, which consists of three stacked BiLSTM layers
on the encoder, a single LSTM layer on the decoder, and multilayer perceptron
(MLP)-based attention [15] components. The decoder has two softmax layers for
predicting the language ID and character sequences in the language-aware CS
machine speech chain. The activation function is a LeakyReLU (l = 1e− 2) [59].
We did not use the language model.

For the TTS system, our model is based on a sequence-to-sequence TTS
(Tacotron) [18] described in Sect. 2.2.3. Although its hyperparameters are almost
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the same as the original Tacotron, we used LeakyReLU instead of ReLU. Also, on
the encoder, although the original Tacotron uses 16 sets of convolutional filters
in the CBHG module, we used eight sets of different filter banks to reduce the
GPU memory consumption. In the language-aware CS machine speech chain, the
encoder has a language-embedding layer as well as a character-embedding layer.
The decoder changed the GRU into two stacked LSTMs with 256 hidden units.
For the multi-speaker scenario on single-pair CS (natural speech; multi-speaker)
and multi-pair CS, we used a DNN-based speaker recognition model called Deep
Speaker [19]. We generated a speaker vector from the trained Deep Speaker model
and incorporated a speaker-embedding layer into the Tacotron decoder. The hy-
perparameters of weighting the losses in multi-speaker Tacotron (Eq. (2.17)) are
set γ1 = 1, γ2 = 1, γ3 = 0.25.

For the α and β hyperparameters of the machine speech chain loss in Eq. (5.1)
and Eq. (5.5), we used the same α = 0.5, β = 1 for most of our experiments. We
implemented both the ASR and TTS models with the PyTorch library [60].

5.4.2 Results

Results on Single-pair Code-switching

(Synthetic Speech; Single Speaker)
The experimental results on single-pair CS (synthetic speech; single speaker) are
described separately in the baseline and proposed systems.

Baseline Systems
We had four types of test sets for our evaluation: (1) TstJa (JaTTS): a
Monolingual Japanese test set generated using a Japanese TTS; (2) Tst-
JaEnCS (JaTTS): a Japanese-English intra-sentential CS test set, where
both the Japanese part and the English part of the TstJaEnCS are generated
using a Japanese TTS; (3) TstJaEnCS (MixTTS): a Japanese-English
intra-sentential CS test set generated using a mixed Japanese-English TTS,
where we concatenated the speech generated by English TTS for the En-
glish part of CS and the speech generated by Japanese TTS for the Japanese
part of CS; (4) TstEn (EnTTS): a Monolingual English test set generated
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using an English TTS. Although we do not have an inter-sentential CS test
set, the TstJa (JaTTS) and TstEn (EnTTS) combination are identical to
the inter-sentential CS. We evaluated the generated transcription by the
character error rate (CER). CER is the edit distance between the reference
and the predicted transcription. We also assessed the statistical significance
compared to the baseline systems by a matched-pair sentence-segment word
error test [63]. For the TTS evaluation, we used the L2-norm squared of
the log-Mel spectrogram between the reference and the predicted speech
features.

The baseline system performances of ASR and TTS are individually
shown in Fig. 5.7 and 5.8. The baseline systems were trained in super-
vised learning using an attention-based encoder-decoder model framework
without a machine speech chain framework. Four types of baselines were
evaluated: (1) Ja50k (JaTTS): ASR or TTS trained with 50-k Japanese
speech generated using a Japanese TTS; (2) Ja25k+En25k (JaTTS):
ASR or TTS trained with 25-k Japanese speech plus 25-k English speech
generated using a Japanese TTS (inter-sentential CS); (3) Ja25k+En25k
(MixTTS): ASR or TTS trained with 25-k Japanese speech generated us-
ing a Japanese TTS and 25-k English speech generated using an English
TTS (inter-sentential CS); (4) En50k (EnTTS): ASR or TTS trained with
50-k English speech generated using an English TTS.
As Fig. 5.7 shows, the CER of the Ja50k (JaTTS) ASR was low in the
Japanese test, but very high in the English test. In the same way, the CER
of the En50k (EnTTS) ASR was very low in the English test but increased
in the Japanese test. The Ja25k+En25k (JaTTS) learned English sentences
and Japanese sentences, but the English test performance remained unsat-
isfactory when the speech was generated using Japanese TTS. A similar
tendency was slightly shown in the TTS results. Ja25k+En25k (MixTTS),
which was trained using speech generated by a Japanese TTS and an
English TTS, controlled the balance well among the Japanese, English,
and Japanese-English CS test sets. Therefore, we use this Ja25k+En25k
(MixTTS) as our baseline model.
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Figure 5.7: ASR baseline performances of single-pair CS (synthetic speech; single
speaker) in CER.
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Figure 5.8: TTS baseline performances of single-pair CS (synthetic speech; single
speaker) in L2-norm squared of the log-Mel spectrogram.
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Table 5.4: ASR performances of a single-pair CS (synthetic speech; single speaker)
machine speech chain in CER% . The left side of arrows in the LID is λLng value
during the supervised learning process, and the right side is λLng value during the
semi-supervised learning process, where λChr = 1−λLng. The p-values compared
to the baseline system for statistical significance are presented using ∗∗∗, ∗∗, ∗ and
no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

Monolingual Code-switching
TstJa TstEn TstJaEnCS

Model LID type (JaTTS) (EnTTS) (MixTTS)
[Baseline] Supervised learning: labeled mono

Ja25k+En25k (MixTTS) No LID 1.7 3.0 18.1
[Proposed Machine Speech Chain] Semi-supervised learning:

labeled mono + unlabeled CS
+JaEnCS10k (JaTTS) No LID 1.9 4.8 19.7
+JaEnCS20k (JaTTS) No LID 1.9 4.7 17.2
+JaEnCS10k (MixTTS) No LID 1.8 3.7 5.4∗∗∗

+JaEnCS20k (MixTTS) No LID 1.9 3.6 5.5∗∗∗

+JaEnCS20k (Ja+MixTTS) No LID 1.8 4.1 5.1∗∗∗

+JaEnCS20k (Ja+MixTTS) LID (0.25→0.0) 1.7 3.2 3.7∗∗∗

+JaEnCS20k (Ja+MixTTS) LID (0.25→0.1) 1.7 3.3 3.4∗∗∗

[Topline] Supervised learning: labeled mono + labeled CS
+JaEnCS20k (Ja+MixTTS) No LID 5.1 9.8 3.5∗∗∗

Proposed Systems
Our proposed models aim to improve ASR and TTS to handle CS input
well even without labeled CS for training while keeping the performance
of the monolingual test. Table 5.4 shows the ASR and TTS performances
of the proposed CS machine speech chain framework. After we individu-
ally trained ASR and TTS using labeled monolingual Ja25k and En25k,
Ja25k+En25k (MixTTS), we carried out a machine speech chain on the fol-
lowing settings: (1) JaEnCS (JaTTS): semi-supervised learning with un-
labeled code-switching JaEnCS (JaTTS); (2) JaEnCS (MixTTS): semi-
supervised learning with unlabeled code-switching JaEnCS (Mix TTS);
(3) JaEnCS (Ja+MixTTS): a semi-supervised learning with unlabeled
code-switching JaEnCS (JaTTS) and unlabeled code-switching JaEnCS
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Table 5.5: Performance comparison between ASR systems trained in proposed
machine speech chain with different λLng (where λChr = 1−λLng) in CER %. The
left side of arrows is λLng value during the supervised learning process with labeled
Ja25k+En25k (MixTTS), and the right side is λLng value during semi-supervised
learning process with unlabeled JaEnCS20k (Ja+MixTTS).

Monolingual Code-switching
TstJa TstEn TstJaEnCS

λLng (JaTTS) (EnTTS) (MixTTS)
No LID 1.8 4.1 5.1
0.25→0.0 1.7 3.2 3.7
0.25→0.1 1.7 3.3 3.4
0.25→0.25 1.9 3.5 3.9
0.25→0.5 1.8 3.8 4.1
0.25→0.75 2.1 3.9 4.5
0.5→0.0 1.9 3.5 3.5
0.5→0.1 1.9 3.7 4.2
0.5→0.25 1.7 3.5 3.6
0.5→0.5 2.0 3.8 4.3
0.5→0.75 1.8 4.2 5.7

(MixTTS). We excluded TstJaEnCS (JaTTS) from the test sets because
many English words are pronounced as Japanese words generated by the
Japanese TTS.

Our results show that our proposed model with JaEnCS20k (Ja+MixTTS)
improved the ASR performance on the CS test, TstJaEnCS (MixTTS), from
18.1% CER to 5.1%, which reduced the absolute CER by 13.0%. It has a
statistically significant difference. Monolingual performances are often dam-
aged by optimizing the CS performance, but our proposed model maintained
its performance on the monolingual test. It only slightly changed from 1.7%
CER to 1.8% for the Japanese test and from 3.0% CER to 4.1% for the
monolingual English test. It also improved the TTS performance on the
CS test TstJaEnCS (MixTTS), where the L2-norm squared decreased from
0.489 to 0.372; the performance on the Japanese and monolingual English
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tests was maintained. Compared with the topline model that uses full-set
data (speech+text), the proposed model reached a similar performance.
Moreover, we investigated the performance of ASR trained by the language-
aware CS machine speech chain with unlabeled JaEnCS20k (Ja+MixTTS).
The performances among systems with some different hyperparameters λLng
are shown in Table 5.5. The best performance on TstJaEnCS (MixTTS) is
3.4% CER with λLng (0.25→0.1), which improved even more than the Basic
CS machine speech chain. The model with λLng (0.25→0.0) performed the
best performance on TstJa(JaTTS), so Table 5.4 shows both LID results of
(0.25→0.0) and (0.25→0.1). Here, 0.0 indicates that the language informa-
tion is used for character prediction of the semi-supervised learning process
while maintaining the language information trained during the supervised
learning process. Both cases of the LID showed a statistically significant
difference with p < .001.

(Natural Speech; Multi-speaker)
The experimental results on single-pair CS (natural speech; multi-speaker) are
described. We first evaluate our end-to-end ASR against previous research on
the single-pair CS (natural speech; multi-speaker) data and then investigate the
baseline and proposed system.

Evaluation of Our End-to-end ASR against Previous Researches
We compared our attention-based encoder-decoder models with Hybrid
CTC/attention approaches [31] using supervised learning of the SEAME
data. Following the counterpart’s evaluation criterion, in this experiment,
we evaluated a character-based model and a sub-word-based model with the
token error rate (TER). The TER, which is calculated by the Word Error
Rate (WER) for English and the Character Error Rate (CER) for Man-
darin, is frequently adopted for evaluating the ASR of Mandarin-English
CS because it is not affected by segmentation algorithms. For sub-words,
we utilized PASM [58], whose effectiveness has already been shown for over-
coming the byte-pair encoding (BPE) of sub-word units [72]. As shown in
Table 5.6, our encoder-decoder-based model can be similar performances as
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Table 5.6: ASR comparison between our attention-based encoder-decoder models
and Hybrid CTC/attention approaches with SEAME data (in TER %). Our
model with LID was trained with λLng = 0.1 and λChr = 1− λLng.

Model devman devsge

Hybrid CTC/attention char [31] 26.5 38.4
+LID [31] 25.6 37.0

Hybrid CTC/attention sub-word(BPE) [31] 26.4 36.1
+LID [31] 26.0 35.8

Att Enc-Dec char (ours) 26.2 37.8
Att Enc-Dec sub-word(PASM) (ours) 25.7 36.6

+LID 25.4 36.2

the CTC-based models.

Baseline and Proposed Systems
Next, we conducted machine speech chain experiments with the SEAME
data. We first trained the base model with LibriSpeech, AISHELL-1, and
the SEAME monolingual data. Then we performed a speech chain by the
unlabeled SEAME CS data while continuing the supervised training of Lib-
riSpeech and AISHELL-1 and the SEAME monolingual data. Table 5.7
shows the ASR results in TER. The baseline is the model trained with the
labeled monolingual data of LibriSpeech and AISHELL-1, and SEAME. The
proposed machine speech chain model improved the ASR performances on
both the CS test sets of devman and devsge more than the baseline perfor-
mances: from 47.7% to 37.4% and from 57.7% to 47.1%. Optimizing the
CS performances only slightly degraded the performances on the monolin-
gual evaluation sets. Still, our proposed model also improved the ASR on
the overall performances from 44.9% to 37.6% on devman and from 53.6%
to 49.5% on devsge. The topline is the model retrained with the labeled
SEAME CS data from the model trained with the labeled monolingual
data of LibriSpeech and AISHELL-1 and SEAME. Compared to the topline
model, the proposed model achieves similar performance, although it did
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Table 5.7: ASR performances of a single-pair CS (natural speech; multi-speaker)
machine speech chain in TER %. The left side of arrows in the LID is λLng value
during the supervised learning process, and the right side is λLng value during the
semi-supervised learning process, where λChr = 1−λLng. The p-values compared
to the baseline system for statistical significance are presented using ∗∗∗, ∗∗, ∗,
and no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

Model devman devsge

mono CS all mono CS all

Supervised learning: labeled mono
Baseline 33.3 47.7 44.9 47.8 57.7 53.6
Semi-supervised learning: labeled mono + unlabeled CS

Label propagation 37.7 48.4 46.4 54.6 59.2 57.3
Proposed speech chain 38.6 37.4∗∗∗ 37.6∗∗∗ 52.9 47.1∗∗∗ 49.5∗∗∗

+LID (0.25→0.0) 34.0 32.5∗∗∗ 32.8∗∗∗ 48.8 42.3∗∗∗ 45.0∗∗∗

+LID (0.25→0.1) 35.1 33.7∗∗∗ 33.9∗∗∗ 50.0 42.8∗∗∗ 45.8∗∗∗

Semi-supervised learning: labeled mono + labeled CS + unlabeled CS
Label propagation 34.5 45.4∗∗∗ 43.3∗∗∗ 50.7 54.5∗∗∗ 52.9

Supervised learning: labeled mono + labeled CS
Topline 34.4 28.6∗∗∗ 29.7∗∗∗ 51.4 39.1∗∗∗ 44.2∗∗∗

not use the labeled CS at all while the topline model used only labeled
data. Label propagation is a semi-supervised model retrained by newly la-
beling with the supervised model’s output. Label propagation without any
labeled CS data (semi-supervised learning: labeled mono + unlabeled CS)
performed the worst on all evaluation set of devman and devsge. It used the
CS label generated from the monolingual model, which does not know the
CS speech and text, for the retraining model. As a result, although the
performance on monolingual test sets is better than the proposed model
since it retrains with the hypothesis generated from the model based on
monolingual data, it degraded the performances both on mono and CS test
sets than the baseline model in TER. Therefore, we removed 300 utterances
as unlabeled CS and added 300 utterances (0.2% of the total CS) as labeled
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Table 5.8: ASR performances of a single-pair CS (natural speech; multi-speaker)
machine speech chain in CER %. The left side of arrows in the LID is λLng value
during the supervised learning process, and the right side is λLng value during the
semi-supervised learning process, where λChr = 1−λLng. The p-values compared
to the baseline system for statistical significance are presented using ∗∗∗, ∗∗, ∗ and
no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

Model devman devsge

mono CS all mono CS all

Supervised learning: labeled mono
Baseline 32.4 56.9 52.4 34.9 59.3 47.0
Semi-supervised learning: labeled mono + unlabeled CS

Label propagation 36.4 55.5∗∗∗ 52.0 40.9 59.3 50.1
Proposed speech chain 39.8 39.6∗∗∗ 39.6∗∗∗ 39.1 44.4∗∗∗ 41.7∗∗∗

+LID (0.25→0.0) 34.0 33.3∗∗∗ 33.5∗∗∗ 35.2 38.3∗∗∗ 36.7∗∗∗

+LID (0.25→0.1) 35.5 34.6∗∗∗ 34.7∗∗∗ 36.3 39.0∗∗∗ 37.6∗∗∗

Semi-supervised learning: labeled mono + labeled CS + unlabeled CS
Label propagation 33.4 53.1∗∗∗ 49.5∗∗∗ 37.0 55.4∗∗∗ 46.1∗

Supervised learning: labeled mono + labeled CS
Topline 35.2 28.7∗∗∗ 29.9∗∗∗ 37.9 36.5∗∗∗ 37.2∗∗∗

CS. The label propagation result (semi-supervised learning: labeled mono
+ labeled CS + unlabeled CS) improved slightly from the baseline on the
CS test, but it required labeled CS and was not better than the proposed
model. On the other hand, our proposed speech chain model improved the
ASR performance without any labeled CS. It showed statistically signifi-
cant improvements with p < .001 on CS and all of both evaluation sets.
Moreover, the performance with LID is even better. The LID(0.25→0.0)
produced 32.5% TER on devman CS and 42.3% TER on devsge CS.
We also checked the CER for the ASR performances (Table 5.8). It showed
the same tendency as the TER results. Therefore, the proposed machine
speech chain model improved the performance on SEAME data without
any labeled CS data.

74



Table 5.9: Comparison performance (in CER%) between ASR baselines
with/without LID. The p-values compared to the baseline system for statisti-
cal significance are presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001, ∗∗p < .01,
∗p < .05).

Train: Ja25k+En25k+Zh25k (λChr,λLng) Ja En Zh
ASR without LID [chr] No LID 8.8 9.1 5.8
ASR with LID [chr,lng] (1,1) 8.9 8.5 5.1
ASR with LID [chr,lng] (0.75,0.25) 7.3∗∗∗ 7.3∗∗∗ 5.1∗

Results on Multi-pair Code-switching

The experimental results on multi-pair CS are described separately in ASR and
TTS evaluations.

ASR Evaluation
First, we checked the influence of the additional LID architecture to confirm
whether that additional information hindered the original quality. We used
the baseline model, an ASR Ja25k+En25k+Zh25k (labeled) trained
with labeled monolingual data of 25-k Japanese and 25-k English and 25-k
Chinese. Table 5.9 shows the baseline performance of ASR without LID
that only generated character transcription and of ASR with LID that gen-
erated both character and language information sequences. In the case of
(λChr, λLng) = (1, 1), we found there was no statistically significant differ-
ence from ASR without LID in any of the tests. However, in the case of
(λChr, λLng) = (0.75, 0.25), which are the λ values during the supervised
learning process of the best model on a single CS (Table 5.5), the results
raised the possibility that the architecture with LID could assist the ASR
performance. Hereafter, we show only the λLng value such as (0.25) instead
of (0.75, 0.25), and use λChr = 1− λLng.
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Table 5.10: ASR performance in CER% of multi-pair CS machine speech chain
(The bold figures show the unused CS during training). The value inside the
LID brackets shows λLng value, where λChr = 1 − λLng. The left side of arrows
in the LID is λLng value during the supervised learning process, and the right
side of arrows is λLng value during the semi-supervised learning or fine-tuning
process. The p-values compared to the baseline system for statistical significance
are presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001, ∗∗p < .01, ∗p < .05).

Monolingual Code-switching
LID type Ja En Zh EnJa JaZh ZhEn

[Baseline] Supervised learning of only labeled monolingual data
Ja25k+En25k+Zh25k No LID 8.8 9.1 5.8 11.5 12.3 13.3

LID(0.25) 7.3∗∗∗ 7.3∗∗∗ 5.1∗ 10.1 11.2∗∗ 11.4∗∗∗

[Machine Speech Chain] Semi-supervised learning of unlabeled two CS data
+JaEnCS10k+JaZhCS10k No LID 8.8 9.7 5.9 8.2∗∗∗ 6.9∗∗∗ 7.7∗∗∗

LngChr 8.9 9.2 5.4 7.9∗∗∗ 7.2∗∗∗ 7.2∗∗∗

LID(0.25→0.0) 8.3 7.6 5.2 7.7∗∗∗ 6.7∗∗∗ 7.1∗∗∗

LID(0.25→0.1) 8.6 8.4 5.1 8.6∗∗∗ 6.9∗∗∗ 7.4∗∗∗

+EnJaCS10k+ZhEnCS10k No LID 8.9 9.9 5.9 8.5∗∗∗ 7.0∗∗∗ 7.5∗∗∗

LngChr 9.1 9.3 5.6 8.3∗∗∗ 7.1∗∗∗ 7.4∗∗∗

LID(0.25→0.0) 8.5 7.4 5.7 7.8∗∗∗ 6.8∗∗∗ 7.1∗∗∗

LID(0.25→0.1) 8.7 8.8 5.3 8.1∗∗∗ 7.4∗∗∗ 7.2∗∗∗

+ZhEnCS10k+JaZhCS10k No LID 9.0 10.2 5.9 8.6∗∗∗ 7.0∗∗∗ 7.6∗∗∗

LngChr 9.0 9.4 5.5 8.3∗∗∗ 6.9∗∗∗ 7.4∗∗∗

LID(0.25→0.0) 8.5 7.5 5.2 7.8∗∗∗ 6.8∗∗∗ 6.9∗∗∗

LID(0.25→0.1) 8.8 8.8 5.2 8.6∗∗∗ 7.0∗∗∗ 7.7∗∗∗

[Topline] Supervised learning of labeled two or three CS data
+EnJaCS10k+JaZhCS10k LID(0.25→0.0) 8.4 8.5 7.9 7.8∗∗∗ 6.4∗∗∗ 6.8∗∗∗

+EnJaCS10k+ZhEnCS10k LID(0.25→0.0) 8.3 8.0 7.2 7.7∗∗∗ 6.5∗∗∗ 6.6∗∗∗

+ZhEnCS10k+JaZhCS10k LID(0.25→0.0) 9.3 9.4 5.2 7.8∗∗∗ 6.6∗∗∗ 6.7∗∗∗

+EnJaCS10k+JaZhCS10k LID(0.25→0.0) 8.1 8.1 7.0 7.6∗∗∗ 6.4∗∗∗ 6.6∗∗∗

+ZhEnCS10k

Next, we investigated how our proposed approach performed on multi-pair
CS, including the unknown CS excluded from the training data. We indi-
vidually trained ASR and TTS using labeled monolingual Ja25k, En25k,
and Zh25k and carried out a machine speech chain on the following three
different scenarios: (1) EnJaCS10k+JaZhCS10k (unlabeled): semi-
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Table 5.11: ASR performance in CER% of multi-pair CS machine speech chain
using natural CS (The bold figures show the unused CS during training). The
value inside the LID brackets shows λLng value, where λChr = 1− λLng. The left
side of arrows in the LID is λLng value during the supervised learning process,
and the right side of arrows is λLng value during the semi-supervised learning or
fine-tuning process. The p-values compared to the baseline system for statistical
significance are presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001, ∗∗p < .01,
∗p < .05).

Monolingual Code-switching
LID type Ja En Zh EnJa JaZh ZhEn NatEnJa

[Baseline] Supervised learning of labeled monolingual data
Ja25k+En25k+Zh25k No LID 8.8 9.7 5.4 11.5 13.4 14.0 33.0
plus
NatJa0.2k+NatEn0.2k LID(0.25) 8.6 7.7 5.1 10.9 11.0∗∗∗ 11.0∗∗∗ 31.8

[Machine Speech Chain]
Semi-supervised learning of unlabeled two CS and one natural CS data

+EnJaCS10k No LID 9.2 12.1 5.4 9.3∗∗∗ 7.7∗∗∗ 8.7∗∗∗ 14.2∗∗∗

+JaZhCS10k plus LngChr 9.2 11.0 6.3 9.0∗∗∗ 8.0∗∗∗ 9.6∗∗∗ 14.0∗∗∗

NatEnJaCS0.7k LID(0.25→0.0) 8.8 10.1 5.6 8.7∗∗∗ 7.2∗∗∗ 7.9∗∗∗ 11.8∗∗∗

LID(0.25→0.1) 9.3 11.0 5.3 9.4∗∗∗ 9.1∗∗∗ 8.5∗∗∗ 13.7∗∗∗

[Topline] Supervised learning of labeled two CS and one natural CS data
+EnJaCS10k
+JaZhCS10k plus
NatEnJaCS0.7k

LID(0.25→0.0) 8.7 9.0 7.1 7.6∗∗∗ 6.8∗∗∗ 6.9∗∗∗ 9.6∗∗∗

supervised learning with unlabeled EnJaCS 10k and JaZhCS 10k (ZhEnCS
for a zero-shot target); (2)EnJaCS10k+ZhEnCS10k (unlabeled): semi-
supervised learning with unlabeled EnJaCS 10k and ZhEnCS 10k (JaZhCS
for a zero-shot target); (3)EnZhCS10k+ZhJaCS10k (unlabeled): semi-
supervised learning with unlabeled EnZhCS 10k and ZhJaCS 10k (EnJaCS
for a zero-shot target).
There are four types for LID: (1) the “No LID” systems without using

language information; (2) “LngChr” systems, which output the language
information with character together like (Jp-a, Jp-b, Jp-c, ..., Jp-z, En-a,
En-b, En-c, ..., En-z, Zh-a, Zh-b, Zh-c, ..., Zh-z); (3) LID (0.25→0.0), where
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0.25 is λLng value during supervised learning process and 0.0 is λLng value
during semi-supervised learning process; (4) LID (0.25→0.1), where 0.25 is
λLng value during supervised learning process and 0.1 is λLng value during
semi-supervised learning process.

As Table 5.10 shows, compared to the baseline model, our proposed
model of any language pairs improved the ASR performance on all CS,
including zero-shot CS. Compared to the No LID and LngChr, the LID
(0.25→0.0) overcame them on all CS test sets. All of the machine speech
chain models showed statistical significance with p < .001.

We also investigated whether our proposed machine speech chain im-
proved the ASR performance on multi-pair CS, including the natural speech
CS. We applied the last model among the trained models of 60 epochs since
we could not include the natural speech CS in the development sets. Since
natural CS may switch multiple times within a single utterance, it tends
to be more complicated than synthetic one. Besides, the natural CS was
just only 1k, which is insufficient for training. As shown in Table 5.11, the
performances were not as good as only the synthetic data. However, our
proposed machine speech chain model improved ASR, showing statistical
significance in the multi-pair CS, including the natural speech CS.

We also investigated French and Chinese CS (FrZhCS) performance with
French as an unknown language. Since the system has never been trained
with French data in supervised learning, it did not have a chance to learn the
relation between French speech and the corresponding transcription. Ta-
ble 5.12 shows the ASR performance. The results reveal that the proposed
model still improved the ASR performance on the FrZhCS test data even
though no monolingual French labeled data are available, and even though
the French language is unknown. In the “+EnJaCS10k+JaZhCS10k (unla-
beled)”, we performed the zero-shot CS using a completely new or unseen
language. We confirmed the improvement from baseline even in that case.
However, the model (No LID) was better than the proposed model with
LID since the LID could not learn the “unknown” label for the French
language. When we added the EnFrCS for semi-supervised training, the
proposed model with LID improved from that without LID. The LngChr
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model could not get a good result, showing it was difficult to handle the
unknown language. Moreover, it increased the error by adding the EnFrCS
training data. However, our proposed model improved the performance.
However, our proposed model improved the performance.

Table 5.12: ASR performance (in CER%) of a multi-pair CS machine speech
chain on the zero-shot CS with the unknown language, where labeled monolingual
French data are unavailable, and the French language is unknown. The value
inside the LID brackets shows λLng value, where λChr = 1 − λLng. The left
side of arrows in the LID is λLng value during the supervised learning process,
and the right side of arrows is λLng value during the semi-supervised learning or
fine-tuning process. The p-values compared to the baseline system for statistical
significance are presented using ∗∗∗, ∗∗, ∗ and no-star (∗∗∗p < .001, ∗∗p < .01,
∗p < .05).

Unknown
Train data LID type FrZhCS

[Baseline] Supervised learning of labeled monolingual data
Ja25k+En25k+Zh25k (labeled) No LID 33.7

LID (0.25) 33.0
[Machine Speech Chain] Semi-supervised learning of unlabeled CS data
+EnJaCS10k+JaZhCS10k (unlabeled) No LID 25.4∗∗∗

LngChr 35.8
LID(0.25→0.0) 26.3∗∗∗

LID(0.25→0.1) 27.6∗∗∗

+EnJaCS10k+JaZhCS10k+EnFrCS10k (unlabeled) No LID 24.0∗∗∗

LngChr 44.8
LID(0.25→0.0) 22.4∗∗∗

LID(0.25→0.1) 21.6∗∗∗

[Topline] Supervised learning of labeled CS data
+EnJaCS10k+JaZhCS10k+EnFrCS10k (labeled) LID (0.25→0.0) 16.4∗∗∗

TTS Evaluation
We evaluated the zero-shot CS speech generated by the TTS of the proposed
multilingual and zero-shot CS machine speech chain. We conducted an AB
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Without LngEmb Same Proposed (With LngEmb)

Figure 5.9: Comparison of AB preference subjective evaluation between generated
zero-shot CS speech from the model with/without language-embedding.

preference subjective evaluation between the generated zero-shot CS speech
from the model with/without language-embedding [yCSChr, yCSLng]. All
language pairs of the zero-shot CS were evaluated by ten bilingual speakers
who compared two speech utterances while looking at the transcription and
chose which speech was better in terms of being more native. They were also
given the option to admit they could not determine which sounded more
native. They compared 20 pairs shown randomly. The results (Fig. 5.9)
show our method supports the quality of synthesized speech; particularly
on the switching places between two languages.

5.5 Summary

In this chapter, we introduced a machine speech chain for semi-supervised learning
of CS ASR and TTS. Unfortunately, common methods of developing CS ASR and
TTS are separate training, where just CS ASR or CS TTS is developed. Moreover,
it relies on supervised learning that requires large amounts of CS data for training
models. Although either CS text or CS speech may be found on social media,
pairs of CS speech and corresponding CS transcriptions are scarce and difficult
to obtain. Such a data problem hinders the development of CS ASR. Therefore,
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we proposed utilizing the machine speech chain framework for CS tasks. The
machine speech chain is the mechanism trainable with semi-supervised learning
using labeled and unlabeled data.

We beforehand confirmed that the Japanese ASR could not perform well on
the English test, and the English ASR could not perform well on the Japanese
test. The multilingual ASR trained with Japanese and English data controlled
the balance well among the Japanese, English, and Japanese-English CS test
set. Therefore, we set its multilingual ASR as the baseline model and aimed to
improve ASR to handle CS input better without any labeled CS data utilizing
semi-supervised learning of the machine speech chain.

For the machine speech chain training, we first individually trained ASR and
TTS systems with labeled monolingual data in supervised learning. Then we
carried out a machine speech chain with semi-supervised learning of either CS
text or CS speech.

We investigated CS ASR and TTS improvements on single-pair CS (synthetic
speech; single speaker), single-pair CS (natural speech; multi-speaker), and multi-
pair CS. Our results revealed that such a mutually complementary architecture
of machine speech chain trains ASR and TTS together and improves performance
even without any labeled CS data on all the scenarios. Although monolingual
performances are often damaged by optimizing the CS performance, our proposed
machine speech chain model improved the CS ASR and CS TTS’s performance
while maintaining the monolingual input’s performance.

We also introduced a language-aware CS machine speech chain. We expanded
our model to handle CS better by integrating language embedding and LID into
the machine speech chain. Although we had to tune the weight value of the LID
loss parameter, we confirmed that the machine speech chain model with language
embedding and LID could produce satisfactory performances both on a single-
pair CS and multi-pair CS. On the multi-pair CS, we also challenged the zero-shot
CS. Zero-shot CS refers to the task predicting the unknown CS not included in
the training data. We confirmed the proposed language-aware CS machine speech
chain also performed well on the zero-shot CS, where we investigated the zero-
shot CS that composed of the language pairs not only from the known language
used during supervised learning but also the unknown language. The proposed
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model was also compared with the LngChr model, which model uses the output
character added the language identifier, and we found that the proposed model
handled the unknown language better than the LngChr model. In addition to
that, we also investigated the speech quality of the zero-shot CS generated from
the proposed language-aware CS machine speech chain, and we confirmed that
it could maintain the quality of native sounds with the help of the language
information.
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Chapter 6

Proposed Code-switching Speech
Translation

This chapter is about code-switching speech translation. We show the experi-
mental results of several approaches for code-switching speech translations and
discuss them.

6.1 Introduction

The common aim of developing a CS ASR is merely for transcribing CS-speech
utterances into CS-text sentences, where we assume only dialogues between the

ASR
“父の手術には there is 
a high degree of risk.”

Monolingual 
speakers

CS-speech

(There is a high degree of risk 
in my father's operation)

CS speakers
CS-text

Figure 6.1: CS ASR assuming only dialogues between the same CS speakers.
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ASR

“There is a high degree of
risk in my father's operation.” Monolingual 

speakers

Monolingual-text

“父の手術には there is 
a high degree of risk.”

CS-text

(there is a high degree of risk in 
my father's operation)CS-speech

CS speakers

Figure 6.2: CS ASR supporting monolingual speakers.

same CS speakers as Fig. 6.1 shows. In contrast, our study addresses the situa-
tional context during dialogues between CS and non-CS (monolingual) speakers
to support monolingual speakers trying to understand CS speakers as Fig. 6.2
shows. CS is also used during interactions between CS and non-CS speakers. For
example, more than half of the immigrant children in the U.S. have at least one
parent who cannot speak English well [73]. The children can become bilingual
since they speak English at school and speak their native language at home. In
such cases, their parents cannot understand when their children talk to them
in English. Therefore, we need to construct a system that recognizes the CS
speech and translates it to monolingual text so that the monolingual speakers
can understand CS speakers.

6.2 Related Works

If we assume text-to-text translation, there are several studies for CS transla-
tion. Sinha et al. developed text-to-text CS translation by separating CS text to
monolingual fragments [74]. However, it cannot consider the context beyond lan-
guages. Johnson et al. proposed the text-to-text multilingual translation, which
translates to the desired language by designating the target language in input,
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and it implied the possibility for text-to-text CS translation [67]. However, in the
case of applying it to speech-to-text translation, we have to concatenate speech
with the text designating the target language, and it degrades the performance
without applying the normalization. Moreover, if we train the multiple target
languages with the same decoder model, the bias between mutual languages de-
grades the performance. Menacer et al. attempted several approaches for trans-
lating Arabic-English CS text [75]. The best system with a high BLEU score
was copying the input text to output text for the part which does not have to
be translated, and the rest parts were translated with the model trained using
multilingual languages. However, in the case of speech-to-text translation, we
cannot copy the input to output. Moreover, translating the whole input sentence
using the multilingual model without copying had the lowest BLEU score among
their compared approaches.

Anyway, this work attempts to realize the speech-to-text CS translation, not
text-to-text translation. To address the problems, we investigate several ap-
proaches: a cascade of neural machine translation (NMT) from ASR, a cascade
of Bidirectional Encoder Representations from Transformers (BERT) from ASR,
a direct single-task speech translation, and a direct multi-task speech translation.
We evaluate and discuss these four ways on a Japanese-English CS to English
monolingual task and on a Japanese-English CS to Japanese monolingual task.

6.3 Proposed Approaches

We propose two cascade approaches and two direct approaches to perform speech
translation ST from CS speech to monolingual text. The two cascade approaches
are the methods of machine translation using BERT or NMT for CS text tran-
scribed from CS speech by ASR. The two direct approaches output monolingual
text from CS speech directly in single-task or multi-task without going through
the process of transcribing to CS text by ASR. We introduce these proposed
methods one by one.
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Figure 6.3: Model architecture of Cascade ASR+BERT.
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Output
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Token
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Attention

LSTM
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BiLSTM
Encoder …

始めなきゃI have to ダイエット

…
…

…

Figure 6.4: Model architecture of ASR.

6.3.1 Cascade Approaches

Cascade ASR+BERT

A first cascade approach is an approach that uses BERT. The cascade structure
is depicted in Fig. 6.3. From CS speech, a neural ASR produces CS text. Then
we mask the part to be translated in CS text, and the BERT model recovers the
monolingual text from it. Fig. 6.4 shows the ASR system, a standard attention-
based encoder-decoder ASR [16, 17]. The encoder has BiLSTM layers, and the
decoder has an embedding layer and LSTM layer. The attention module maps
between encoder and decoder. The ASR system is the same as Chap. 2.2.2, so
the loss function is Eq. (2.12).

The BERT model architecture is depicted in Fig. 6.5. It consists of Trans-
formers [76]. BERT [39] is a language understanding model that has a deeper
sense of language context than traditional language models (LMs). Traditional
LMs are based on a single-directional (left-to-right) approach that predicts the
next word given a sequence. Unfortunately, such an approach limits the learning
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on

[MASK]

Input CS
Text

[MASK]

diet

Figure 6.5: Model architecture of BERT for CS translation.

of context. On the other hand, BERT learns context bi-directionally (left-to-right
and right-to-left) with Transformer.

BERT has two training phases: (1) pre-training with a dataset for language
representation and (2) fine-tuning on a specific task, such as sentiment analysis
[77], question answering [78], name entity recognition [79]. In the pre-training
phase, BERT randomly replaces some tokens with [MASK] tokens. It predicts the
original tokens hidden under the [MASK] by learning the representations using
other tokens. Ghazvininejad et al. also utilized conditional masked language
models like BERT for translation tasks by introducing a new mask-prediction
algorithm [80] that repeatedly selects the new positions of the mask tokens and
predicts them at each iteration. We also utilized the pre-trained BERT that
leverages a masked language model (Masked LM). In our case, given a CS text

Table 6.1: Example of the monolingual text recovered by BERT.
Source CS i have to ダイエット 始め なきゃ before my belly explodes
Masked text i have to [MASK] [MASK] [MASK] [MASK] [MASK]

before my belly explodes
Label i have to go on a diet [PAD] before my belly explodes

Target English i have to go on a diet before my belly explodes
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that mixed words from the 1st and 2nd languages, we masked unwanted words
from the 2nd language and used BERT to recover complete sentences in the
monolingual text of the 1st language. Since we do not know exactly how many
words should be replaced, we put several [MASK] tokens in the positions of
unwanted words. Then the model is filled with tokens [PAD] if the original target
token size is smaller than the number of [MASK] tokens. Table 6.1 shows an
example of monolingual text recovery using a BERT.

Cascade ASR+NMT

Another cascade approach uses NMT. Fig. 6.6 shows the cascade structure. Given
CS speech, we first perform a neural ASR and produce the CS text. After that,
we utilize NMT to translate from CS text to monolingual text. The ASR system
is the same architecture as Fig. 6.4. Our NMT system is a standard attention-
based encoder-decoder model [16, 17] as with the ASR system. The encoder has
BiLSTM layers, and the decoder has LSTM layers. The model architecture is
depicted in Fig. 6.7, and the loss function is the same as Eq. (2.12).

6.3.2 Direct Approaches

Direct Single-task Speech Translation

Direct single-task speech translation (Direct single-task ST) is the speech trans-
lation system directly predicting monolingual text from CS speech. We trained
the model directly predicting monolingual text from CS speech using the same
architecture as the ASR system. Fig. 6.8 shows this architecture, and the loss
function is the same as Eq. (2.12).

Output
Monolingual

Text
NMTASR

Pose-processing

Output
CS Text

Input CS
Speech

Figure 6.6: Model architecture of Cascade ASR+NMT.
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Figure 6.8: Model architecture of Direct single-task speech translation.

Direct Multi-task Speech Translation

Direct multi-task speech translation (Direct multi-task ST) is the speech trans-
lation system while training monolingual text and CS text from CS speech with
multi-task learning. Multi-task learning has variations, but we adopted the typ-
ical multi-task learning [81] having two decoders with shared an encoder. The
first decoder outputs CS text, and the second outputs monolingual text. This
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Figure 6.9: Model architecture of Direct multi-task speech translation.

model architecture is depicted in Fig. 6.9. The loss function is the following:

LMTL = (1− λ)LASR + λLNMT , (6.1)

where LASR is the loss of CS text and LNMT is the loss of monolingual text. λ is
the hyperparameter to balance the weight between LASR and LNMT .
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Figure 6.10: Model architecture of Direct multi-task+LID speech translation.

Direct multi-task+LID speech translation (Direct multi-task+LID ST) is the
speech translation system incorporating the LID system into the above Direct
multi-task ST. As Fig. 6.10 shows, it shares the encoder and has two decoders for
multi-task learning. The two decoders predict CS text and monolingual text as
the same as the Direct multi-task ST. In addition to that, the first decoder also
identifies language (LID) using two softmax layers, which LID architecture is the
same as the proposed LID system in Chap. 4 and Chap. 5. The loss function is
extended to the following from that of Direct multi-task ST:

LMTL+LID = (1− λ)((1− λLID)LASR + λLIDLLID) + λLNMT , (6.2)

where LLID is the loss of output language ID text. λ and λLID are the hyperpa-
rameters to balance the weight between LASR, LLID, and LNMT .
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6.4 Experiments

6.4.1 Experimental Settings

Dataset Composition

We used the intra-sentential word-level CS and intra-sentential phrase-level CS I
of synthetic speech CS (Sect. 3.2.2). They are synthesized using the corresponding
language’s TTS, where Japanese words are synthesized with Japanese TTS, and
English words are synthesized with English TTS. We prepared “All artificial CS”
and “Mix natural CS,” where “All artificial CS” corpus includes only synthetic
speech CS, and “Mix natural CS” corpus added natural speech CS to the “All
artificial CS” corpus. We applied the data augmentation approach with speed
perturbation to natural speech CS since it has only 900 utterances for training
set [82, 83]. We applied the speed perturbation on 90%, 100%, 110% so that we
got triple-valued 2700 utterances.

Table 6.2 shows the statistics of the training and evaluation corpora for a
single-pair CS experiment. We used EnJaCS for the CS-to-English translation
tasks and used JaEnCS for the CS-to-Japanese translation tasks.

For the multi-pair CS experiment, we added the Japanese-Chinese CS of intra-
sentential phrase-level CS I. They are also synthesized using the corresponding
language’s TTS, where Japanese words are synthesized with Japanese TTS, and
Chinese words are synthesized with Chinese TTS. Table 6.3 shows the statistics
of training and evaluation data for multi-pair CS speech to English text, and
Table 6.4 shows the statistics of training and evaluation data for multi-pair CS
speech to Japanese text.

We tokenized all the text. We applied a morphological analyzer Mecab [55]
for Japanese sentences and applied WordPiece [84] for English sentences. The
WordPiece is a subword unit for efficiently reducing the unknown words.
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Table 6.2: Statistics of the training and evaluation corpora for single-pair CS
speech translation.

Hours
Utterances

Synthetic Natural
Total

Subsets speech speech
Train EnJaCS All artificial CS 76 50k - 50k

Mix natural CS 81 50k 900x3 52.7k
JaEnCS All artificial CS 95 100k - 100k

Mix natural CS 100 100k 900x3 102.7k
Test EnJaCS All artificial CS 0.8 500 - 500

Mix natural CS 0.8 400 100 500
JaEnCS All artificial CS 1.1 500 - 500

Mix natural CS 1.2 400 100 500

Table 6.3: Statistics of the training and evaluation corpora for translation from
multi-pair CS speech to English text.

Hours

Utterances
Synthetic Natural

Totalspeech speech
EnJaCS EnZhCS

Train All artificial CS 152 50k 50k - 100k
Mix natural CS 157 50k 50k 900x3 102.7k

Test All artificial CS EnJaCS 0.8 500 - - 500
EnZhCS 0.8 - 500 - 500

Mix natural CS 0.8 400 - 100 500
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Table 6.4: Statistics of the training and evaluation corpora for translation from
multi-pair CS speech to Japanese text.

Hours

Utterances
Synthetic Natural

Totalspeech speech
JaEnCS JaZhCS

Train All artificial CS 183 100k 50k - 150k
Mix natural CS 188 100k 50k 900x3 152.7k

Test All artificial CS JaEnCS 1.1 500 - - 500
JaZhCS 0.9 - 500 - 500

Mix natural CS 1.2 400 - 100 500

Model Details

Our ASR system is an attention-based encoder-decoder ASR [16,17] in Chap. 2.2.2.
The encoder has three stacked BiLSTM layers that have 256 hidden units for each
direction. The decoder has a 128-dims embedding layer and one LSTM layer with
512 hidden units. We used a log-scaled Mel-spectrogram as an input features and
used a LeakyReLU (l = 1e − 2) [59] as an activation function. The alignment
score of the attention module mapping between encoder and decoder is calculated
with MLP [15].

Our NMT system is a standard attention-based encoder-decoder model [16,17]
as with the ASR system. The encoder has two stacked BiLSTM layers with 256
hidden units for each direction (512 hidden units in both directions). The decoder
has two LSTM layers with 512 hidden units.

In the Direct multi-task speech translation, the shared encoder and ASR de-
coder have the same hyperparameters as the ASR model. The translation decoder
has the same hyperparameters as the decoder of the NMT model. For the λ value
of Eq. (6.1) and Eq. (6.2), we mainly took the value of 0.5. The λLID of Eq. (6.2)
mainly took the value of 0.1.

For the BERT model, we followed the hyperparameters and the weight ini-
tialization scheme to the BERTBase model, which is a publicly available BERT
English model [39]. It consists of Transformers [76] with 12 layers, 768 hidden
sizes, and 110-M parameters.
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Table 6.5: WER%↓ of BERT and NMT translation from CS text to English text.
BERT model

All Mix
Test artificial CS natural CS

All artificial CS 11.14 12.14
Mix natural CS 20.61 19.53

NMT model
All Mix

Test artificial CS natural CS
All artificial CS 7.47 6.56
Mix natural CS 37.56 17.94

Table 6.6: BLEU↑ of BERT and NMT translation from CS text to English text.
BERT model

All Mix
Test artificial CS natural CS

All artificial CS 78.46 79.42
Mix natural CS 72.03 73.11

NMT model
All Mix

Test artificial CS natural CS
All artificial CS 86.54 88.11
Mix natural CS 57.46 77.86

6.4.2 Results

We conduct experiments on single-pair CS and multi-pair CS. Evaluation matrix
uses word error rate (WER) and BLEU score [85]. The lower WER, the better.
The higher BLEU, the better.

Results on Single-pair Code-switching

On single-pair CS, we first conduct the text-to-text translation from CS text
to monolingual English text as preliminary experiments and then perform the
speech-to-text translation experiments from CS speech to English and Japanese
text.

Code-switching Text to Monolingual Text
Although our final goal is the evaluation for speech translation, we also
evaluated the text-to-text translation to investigate the effect of ASR error.
Table 6.5 and Table 6.6 show the result of BERT and NMT translation per-
formance from CS text to English text in WER and BLEU, respectively.
Compared between BERT and NMT, the NMT model tends to be better.
However, only the Mix natural CS evaluation on the All artificial CS, the
BERT model has higher performance than the NMT model. In the BERT,
the part not to be translated in CS is copied from the input text, so the
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performance can be good if the input text does not include an error from
ASR. Therefore, from the next, we investigate the scenarios with the ASR
error.
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Figure 6.11: WER%↓ of Cascade ASR+BERT and Cascade ASR+NMT in CS
speech to English translation.
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Figure 6.12: BLEU↑ of Cascade ASR+BERT and Cascade ASR+NMT in CS
speech to English translation.
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Figure 6.13: WER%↓ of CS output in CS speech to English translation.

Code-switching Speech to Monolingual Text
Fig. 6.11 and Fig. 6.12 show the result of the speech translation with the
Cascade ASR+BERT and the Cascade ASR+NMT from CS speech in WER
and BLEU, respectively. Compared between the Cascade ASR+BERT and
the Cascade ASR+NMT, the Cascade ASR+NMT is better than the Cas-
cade ASR+BERT in all cases. It seems the task became too hard for BERT,
as the ASR error increased the number of [MASK] tokens.

Then we compared the ASR performances between the Cascade and
Direct multi-task approaches. Fig. 6.13 shows the comparison result. Al-
though the Direct multi-task approaches have the additional task of trans-
lating to monolingual, it does not much seem to hinder the ASR quality.
Moreover, it even had the possibility of helping the performance. For ex-
ample, the test case of Mix natural CS test by All artificial CS model is
the most challenging case since the All artificial CS model has not seen
the natural speech CS yet, so it increased the ASR error. However, the
multi-task settings did not increase the error as much as the ASR for Cas-
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Figure 6.14: WER%↓ of English output in CS speech to English translation in
Cascade and Direct approaches. P-values compared to Direct single-task ST are
shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.

cade. It might be thanks to training together in multi-task learning. If
so, the translation task can also be better with the help of CS recognition.
Moreover, since the CS recognition result can be regarded as the middle
result for the speech translation, the translation task is expected to be even
better with the help of the CS recognition task. The CS text is the middle
result in the sense that it is the transcription of the input speech and also
the parallel translation of the target monolingual. Therefore, we expected
that multi-task learning could improve the translation performance with
the help of the CS recognition task.

From the following paragraphs, we compare the Cascade ASR+NMT, the
Direct single-task ST, Direct multi-task ST, and Direct multi-task+LID ST
on the translation task from CS speech to English and Japanese text. Our
proposed approach is the Direct multi-task ST, and we further confirm if
the LID architecture can help the performance. We conduct the statistical
significance test, where we compare the systems with the most straightfor-
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Figure 6.15: BLEU↑ of English output in CS speech to English translation in
Cascade and Direct approaches. P-values compared to Direct single-task ST are
shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.

ward method, Direct single-task ST. We assessed the statistical significance
by a matched-pair sentence-segment word error test [63] and the paired
bootstrap test [86].

Fig. 6.14 and Fig. 6.15 show the comparisons of translation performance
from CS speech to English text between Cascade and Direct approaches in
WER and BLEU, respectively. Compared among the Cascade ASR+NMT,
the Direct single-task ST, and the Direct multi-task ST, The Direct single-
task ST tends to perform the worst, and the Direct multi-task ST tends
to perform the best. First, the Direct single-task ST seems to be more
difficult than other models since it needs to transcribe directly from CS
speech into monolingual English transcriptions. Table 6.7 shows that only
the Direct single-task ST could not grasp the keyword “homework.” On
the other hand, the Direct multi-task ST could predict “homework” despite
being the same Direct approach. In the Direct multi-task ST, we guessed
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Table 6.7: Output examples showing that the Direct single-task ST is more dif-
ficult in CS to English translation.
(1) Source text if you want to watch tv , you should 宿宿宿題題題 は

終え た ほう が いい です よ .
Reference text if you want to watch tv , you should finish

your homework first .
Output Cascade ASR+NMT if you want to watch tv , you should go to you

homework .
Direct single-task ST if you want to watch tv , you should be able to

talk .
Direct multi-task ST if you want to watch tv , you should have any

homework .
Direct multi-task+LID ST if you want to watch tv , you should give up

some homework .

that transcribing CS text assisted in translating into monolingual English
transcriptions. Therefore, Direct multi-task ST could predict better than
Direct single-task ST.

The Cascade ASR+NMT was not so different from the Direct multi-
task ST. However, the Cascade ASR+NMT degraded the performance, es-
pecially on the Mix natural CS test by the All artificial CS model. The
Cascade ASR+NMT may degrade the performance because of the ASR er-
ror propagation. Table 6.8 shows that the Cascade ASR+NMT translated
“手荷物事故報告書 (property irregularity report)” wrongly to “tennis.” It
seems to be error propagation from ASR since the ASR recognizes mistak-
enly “テニス (tennis).” Other approaches also have difficulty translating the
compound words, but they do not have much ASR error propagation thanks
to direct prediction. Therefore, the Direct multi-task ST tends to have a
better performance. The Direct multi-task+LID ST generally showed even
more improvement of the performance. However, when we first tried the
experiments, the Direct multi-task+LID ST was not better than the Direct
multi-task ST on the Mix natural CS model, although it was better on the
All artificial CS model. We guessed that the LID could not train enough
since natural speech CS data is few. Therefore, we first trained the model
with only synthetic speech CS data with the LID loss λLID 0.1, and then
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Table 6.8: Output examples of the case where Cascade ASR+NMT has ASR
error propagation in CS to English translation.
(2) Source text i ’ ll do my best to find your baggage but first

i ’ d like you to fill in this 手 荷物 事故 報告 書 .
Reference text i ’ ll do my best to find your baggage , but first i ’ d

like you to fill in this property irregularity report .
Output ASR i ’ ll do my best to find your baggage but first i ’ d

like you to fill in this テテテニニニススス も 時 を 報告 し う .
Cascade ASR+NMT i ’ ll do my best to find your baggage but first

i ’ d like you to fill in this tennis .
Direct single-task ST i ’ ll do my best to fly your baggage , but first i ’ d

like you to fill in this morning , so i ’ ll do you ’ ll
be in the kanto person .

Direct multi-task ST i ’ ll do my best to find your baggage , but first i
like you to fill in this form to yourself in japan .

Direct multi-task+LID i ’ ll do my best to find your baggage , but first
ST i ’ d like you to fill in this to my uncle ’ s parents .

fine-tuned the model with synthetic speech CS + natural speech CS with
the LID loss λLID 0.0. As a result, the performance improved a little bit.
We expect that it can improve more if we could get more amount of natural
speech CS. The BLEU score shown in Fig. 6.15 has the same tendency as
WER. The tendency is that the Direct multi-task ST performs better than
other approaches.

We also investigated which sentence is difficult for CS translation be-
yond system comparisons. Table 6.9 shows the additional output examples
of speech translation from CS speech to English text. The sentences where
the translation part can work as one sentence like (3) “どう し たら い
いん でしょ う ? (what should i do?)” could be translated well. On the
other hand, the sentences which translation part is inserted into another
language’s phrases such as “you should宿題は終えたほうがいいです
よ (you should finish your homework)” of Table 6.7 (1) tend to be difficult.
The sentences that consist of the combination of words such as (4)“現金
です か , カード です か ? (cash or charge)” can be translated relatively
easily, but the compound words that bridge over the multiple tokens such
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Table 6.9: Output examples of speech translation from CS speech to English text
on Mix natural CS test.
(3) Source text oh , no . i don ’ t have any change so , どう し

たら いいん でしょ う ?
Reference text oh , no . i don ’ t have any change so , what

should i do ?
Output Cascade ASR+NMT oh , no . i don ’ t have any change so , what

should i do ?
Direct single-task ST oh , no . i don ’ t have any change so , what

should i do ?
Direct multi-task ST oh , no . i don ’ t have any change so , what

should i do ?
Direct multi-task+LID ST oh , no . i don ’ t have any change . what should

i do ?
(4) Source text how would you like to pay 現金 です か ,

カード です か ?
Reference text how would you like to pay , cash or charge ?
Output Cascade ASR+NMT how would you like to pay , cash or charge ?

Direct single-task ST how would you like to pay , cash or charge ?
Direct multi-task ST how would you like to pay , cash or charge ?
Direct multi-task+LID ST how would you like to pay , cash or charge ?

as “手 荷物 事故 報告 書 (property irregularity report)” of Table 6.8 (2)
seem to be difficult to translate.
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Figure 6.16: WER%↓ of Japanese output in CS speech to Japanese translation
in Cascade and Direct approaches. P-values compared to Direct single-task ST
are shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.
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Figure 6.17: BLEU↑ of Japanese output in CS speech to Japanese translation in
Cascade and Direct approaches. P-values compared to Direct single-task ST are
shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.

Fig. 6.16 and Fig. 6.17 show the comparison of translation performance
from CS speech to Japanese text between Cascade and Direct approaches in
WER and BLEU, respectively. Compared among the Cascade ASR+NMT,
Direct single-task ST, Direct multi-task ST, the Direct single-task ST tends
to have the worst performance, and the Direct multi-task ST tends to have
the best performance. In the same way as the translation toward English,
the Direct single-task ST seems to be more difficult than other models
since it needs to transcribe directly from CS speech into monolingual En-
glish transcriptions. Table 6.10 shows that only single-task ST could not
grasp “パン (bread).” On the other hand, the Direct multi-task ST could
predict well since the CS text prediction of multi-task learning assisted the
translation task. Therefore, Direct multi-task ST could predict better than
Direct single-task ST.
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Table 6.10: Output examples showing that the Direct single-task ST is more
difficult in CS to Japanese translation.
(1) Source text ゆで 卵 一 個 と orange juice and bread please .

Reference text ゆで 卵 一 個 と オレンジ ジュース と パパパンンン を

お願い し ます .
(How would you like the boiled egg?)

Output Cascade ASR+NMT ゆで 卵 一 個 と オレンジ ジュース と

パパパンンン を ください .
Direct single-task ST ゆで 卵 一 個 と オレンジ ジュース 二つ

お願い し ます .
Direct multi-task ST ゆで 卵 一 個 と オレンジ ジュース と パパパンンン

を お願い し ます .
Direct multi-task+LID ST ゆで 卵 一 個 と オレンジ ジュース と パパパンンン

を お願い し ます .

Then the Cascade ASR+NMT degraded the performance, especially on
the Mix natural CS test by the All artificial CS model since the Cascade
ASR+NMT has ASR error propagation. Table 6.11 shows that the Cascade
ASR+NMT outputs wrongly “素材 (material)” although it should be “不
在 (be not at home).” It seems to be error propagation from ASR. On the
other hand, the Direct multi-task ST has a fewer ASR error propagation,
so it tends to perform better.

Moreover, the Direct multi-task+LID ST generally further improved the
performance from the Direct multi-task ST on the BLEU score. However,
in the same way as the translation to English, when we first tried the ex-
periments, the Direct multi-task+LID ST was not better than the Direct
multi-task ST on the Mix natural CS model, although it was better on the
All artificial CS model. Therefore, we first trained the model with only syn-
thetic speech CS data with the LID loss λLID 0.1, and then fine-tuned the
model with synthetic speech CS + natural speech CS with the LID loss λLID
0.0. As a result, the performance improved a little bit, which result is shown
in Fig. 6.16. Although the WER on Mix natural CS test of the Mix natural
CS model are not better than the Direct multi-task ST, we expect that it
can improve more if we get more natural speech CS. It will be a future task.
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Table 6.11: Output examples of the case where Cascade ASR+NMT has ASR
error propagation in CS to Japanese translation.

(2) Source text あいにく 今 不在 です 六 時 に

he said that he would go back .
Reference text あいにく 今 不不不在在在 です 六 時 に は 戻る と

いっ て い まし た . (He isn’t at home.
He said that he would go back by six.)

Output ASR あいにく 今 素素素材材材 です 六 時 に

he said that he would go back .
Cascade ASR+NMT あいにく 今 素素素材材材 です 六 時 に

言っ て もらい たい と 思っ た .
Direct single-task ST あいにく 今 不在 です 六 時 に

戻っ た そう です

Direct multi-task ST あいにく 今 不在 です 六 時 に

戻っ て き て と 言っ て .
Direct multi-task+LID ST あいにく 今 不在 です 六 時 に

戻っ て き た と 思い ます .

The additional output examples of the Japanese target are shown in Ta-
ble 6.12. The sentences where the translation part can work as one sentence
such as (3) “please give me two pieces” seem to be easy. The phrases con-
sisting of the combination of words can also be translated well such as
Table 6.10 (1) “orange juice and bread please.” On the other hand, the
compound words like (4) “24 points five centimeters” seem to be difficult
to translate.
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Table 6.12: Output examples of speech translation from CS speech to Japanese
text on Mix natural CS.
(3) Source text 七月 二 十 日 二 回 目 公演 の エー 指定 席

券 を please give me two pieces .
Reference text 七月 二 十 日 二 回 目 公演 の エー 指定 席 券

を 二 枚 ください .
(Can I have two A reserved seats for the second
performance on July twentieth?)

Output Cascade ASR+NMT 七月 二 十 日 二 回 目 の エー 指定 席 券 を

二 枚 ください .
Direct single-task ST 七月 二 十 日 二 回 公園 の エー 席 券 を

二 枚 ください .
Direct multi-task ST 七月 二 十 日 二 回 目 公演 の エー 指定 席

券 を 二 枚 ください .
Direct multi-task+LID 七月 二 十 日 二 回 目 公演 の エー 指定 席

ST 券 を 二 枚 ください .
(4) Source text サイズ の 番号 は わかり ませ ん が the size of

the foot is 24 points five centimeters .
Reference text サイズ の 番号 は わかり ませ ん が 足 の 大き

さ は 二 十 四 点 五 センチ です .
(I don’t know the size number, but my foot is 24
points five centimeters.)

Output Cascade ASR+NMT サイズ の 番号 は わかり ませ ん が 二 十

五 点 六 六 円 です .
Direct single-task ST サイズ の 番号 は わかり ませ ん が 五 十 四

センチ の 名前 は .
Direct multi-task ST サイズ の 番号 は わかり ませ ん が 残念

ながら 二 十 四 点 五 十 センチ です .
Direct multi-task+LID サイズ の 番号 は わかり ませ ん が 二 十

ST センチ の サイズ です .

Results on Multi-pair Code-switching

Fig. 6.18 and Fig. 6.19 show the performance results for translation from multi-
pair CS speech to English text in WER and BLEU, respectively. Among a Cas-
cade ASR+NMT, a Direct single-task ST, and a Direct multi-task ST, the Direct
multi-task ST tends to have the best performance since it has fewer ASR er-
ror propagation and the translation is assisted by multi-task learning of CS text
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prediction. Moreover, the Direct multi-task ST also has the possibility of more
performance improvement with LID. For Mix natural CS model of Direct multi-
task+LID ST, we first trained the model with only synthetic speech CS data with
the LID loss λLID 0.1 and then fine-tuned the model with synthetic speech CS
+ natural speech CS with the LID loss λLID 0.0. As a result, the performance
improved by incorporating LID architecture both on the All artificial CS model
and the Mix natural CS model. We expect that it can improve more if we could
get more amount of natural CS.
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Figure 6.18: WER%↓ of English output in multi-pair CS speech to English trans-
lation in Cascade and Direct approaches. P-values compared to Direct single-task
ST are shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.
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Figure 6.19: BLEU↑ of English output in multi-pair CS speech to English trans-
lation in Cascade and Direct approaches. P-values compared to Direct single-task
ST are shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.
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Fig. 6.20 and Fig. 6.21 show the performance results for translation from
multi-pair CS speech to Japanese text in WER and BLEU, respectively. As
the same with the case of the translation toward English text, among a Cas-
cade ASR+NMT, a Direct single-task ST, and a Direct multi-task ST, the Direct
multi-task ST tends to have the best performance. It has fewer ASR error propa-
gation and has translation assistance by multi-task learning of CS text prediction.
Moreover, the Direct multi-task ST also has the possibility of more performance
improvement with LID. We expect that it can improve more if we could get more
amount of natural CS.
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Figure 6.20: WER%↓ of Japanese output in multi-pair CS speech to Japanese
translation in Cascade and Direct approaches. P-values compared to Direct
single-task ST are shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.
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Figure 6.21: BLEU↑ of Japanese output in multi-pair CS speech to Japanese
translation in Cascade and Direct approaches. P-values compared to Direct
single-task ST are shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.

6.5 Summary

This chapter investigated the system that can recognize code-switching speech
and translate it into monolingual texts to support monolingual speakers trying
to understand CS speakers. The common aim of developing a CS ASR is merely
for transcribing CS-speech utterances into CS-text sentences, where we assume
only dialogues between the same CS speakers. In contrast, this study addresses
the situational context during dialogues between CS and non-CS (monolingual)
speakers and supports monolingual speakers who want to understand CS speakers.
We investigated several approaches, including a Cascade ASR+NMT, a Cascade
ASR+BERT, a Direct single-task ST, and a Direct multi-task ST.

As the result of comparisons between systems, we found that the Direct multi-
task ST tended to perform the best. The Cascade ASR+BERT model became
too hard as the ASR error increased the number of [MASK] tokens. The Direct
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single-task ST is a difficult task since it has to transcribe directly from CS speech
to monolingual text. The Cascade ASR+NMT has an ASR error propagation.
On the other hand, the Direct multi-task ST has a fewer ASR error propagation
and CS text prediction helps the translation into monolingual text, so it tends
to have the best performance. The Direct multi-task ST improved statistically
significant from the most straightforward method single-task ST, about 5% WER
improvement on mix natural CS test. Moreover, the Direct multi-task+LID ST
showed the possibility of even more improvement by the language information.
These findings appeared both on the experiments for translation toward English
and Japanese and on single-pair CS and multi-pair CS.
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Chapter 7

Conclusion and Future Directions

This last chapter concludes our thesis and discusses future directions for our
proposed framework.

7.1 Problem Reiteration

As the bilingual community grows, we have to handle CS on the ASR system
to recognize all conversations. However, handling CS is challenging for auto-
matic speech recognition (ASR) because it requires coping with multilingual in-
put. There are many challenges for the CS ASR, but this thesis has focused on
the following three problems for the CS ASR’s development: language coverage,
training mechanism, and usability.

For the problem of language coverage, to support several kinds of bilingual
speakers, such as English-Japanese, English-Korean, and Japanese-Chinese, the
system for multi-pair CS, which covers multiple pairs of languages, is necessary
to recognize all CS conversations. Moreover, the CS proficiency level varies from
beginners to near-native speakers. Therefore, developing the system handling
non-native CS well is also required.

For the problem of training mechanism, although the primary method for
training CS ASR is supervised learning, the datasets of CS speech and the cor-
responding CS transcriptions are difficult to obtain. Therefore, we need to seek
the training mechanism trainable with fewer labeled CS data.

For the problem of usability, the common aim of developing a CS ASR is
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merely for transcribing CS-speech utterances into CS-text sentences, where we
assume only dialogues between the same CS speakers. Therefore, we need to
suppose the situational context during conversations between CS and non-CS
(monolingual) speakers and support monolingual speakers who want to under-
stand CS speakers.

7.2 Conclusion

This section reviews our work from the perspective of language coverage, training
mechanism, and usability.

7.2.1 Language Coverage

For the problem of language coverage, we introduced a language-aware mecha-
nism, enabling handling multi-pair CS better by providing language information.
Our proposed language-aware ASR adopts the Direct approach predicting the tar-
get text directly, and it predicts language ID sequences together with two softmax
layers in a multi-task way. When we compared the Direct ASR (Proposed LID)
with other LID approaches, our proposed system significantly improved more
than 10% error rate on most of the CS test sets from the traditional Cascade
approaches and was better than other Direct approaches. We could confirm the
improvements not only on single-pair CS but also on multi-pair CS. For the prob-
lem of covering non-native CS, although we handled native CS and non-native
CS individually, we have to seek the method for handling non-native CS with
various proficiency-level in future work.

7.2.2 Training Mechanism

For the problem of the training mechanism, we utilized the semi-supervised ar-
chitecture called the machine speech chain. The machine speech chain is the
mechanism inspired by the speech chain of the human communication mecha-
nism. It enables ASR and TTS to assist each other when they receive unpaired
data (speech or text only) since it allows them to infer the missing pair and
optimize the models with reconstruction loss. We applied the machine speech
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chain framework to the CS task, enabling the CS ASR to develop without any
labeled CS data. Our results on single-pair CS (synthetic speech; single speaker)
showed that our proposed model improved the ASR performance on the CS test,
from 18.1% CER to 5.1%, which reduced the absolute CER by 13.0%. Our pro-
posed model also improved more than 10% error rate from the baseline system on
single-pair CS (natural speech; multi-speaker) scenario and about 5% error rate
on multi-pair CS scenario. They showed statistically significant improvements
with p < .001. In addition, we integrated language identification into the ASR
and language embedding into the TTS of the CS machine speech chain. We con-
firmed that the machine speech chain model with language embedding and LID
could produce satisfactory performances both on single-pair CS and multi-pair
CS.

7.2.3 Usability

For the problem of usability, we investigated the system that recognized and
translated CS speech, supporting monolingual speakers trying to understand CS
speakers. We explored several approaches, including a cascade of ASR and NMT,
a cascade of ASR and BERT, a single-task speech translation, and a multi-task
speech translation. As a result, we found that the Direct multi-task ST tends
to achieve the best. The Direct single-task ST is difficult since it has to tran-
scribe directly from CS speech to monolingual text. The Cascade ASR+NMT
has an ASR error propagation. On the other hand, the Direct multi-task ST has
a fewer ASR error propagation, and CS text prediction assists the translation
into monolingual text, so it tends to have the best performance. It improved sta-
tistically significantly from the most straightforward method single-task ST. The
Direct multi-task ST showed the possibility of more performance improvement
with LID. We also confirmed the same tendency on single-pair CS and multi-pair
CS, where the Direct multi-task ST tended to have the best performance.

7.3 Future Directions

Despite all the contributions listed in Sect. 7.2, there are still several things that
our proposed systems cannot do, such as:
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• Performing the CS holding more than two languages within one
utterance spoken by a single speaker
This thesis assumes that the CS can allow only two languages in one sen-
tence. Therefore, in this research, single-pair CS means one sentence has
only two languages and there are only the same language pairs in that data
(see Fig. 1.3 (a)). The multi-pair CS means one sentence has only two
languages and there are different language pairs in that data (see Fig. 1.3
(b)). Both single-pair CS and multi-pair CS have only two languages in
one sentence. However, we can think of a case that includes more than
two languages in one sentence. Therefore, tackling the CS with different
language pairs of more than two languages (see Fig. 1.3 (c)) will be future
work.

This thesis also allowed the CS switched by multi-speakers within one ut-
terance due to covering low-resource CS data with synthetic CS speech,
but the future work will be done only using natural CS speech spoken by a
single speaker within one utterance.

• Performing the completely unknown zero-shot CS
Zero-shot learning originally refers to recognizing objects excluded in the
training data, where the target is usually unavailable at all. However, in
this thesis, our zero-shot CS means the CS language pair is unknown, but
one monolingual element of CS may be available as labeled (with speech-
text data) or unlabeled data (only speech or only text) like Fig. 7.1 (a). We
confirmed that our proposed model could perform the zero-shot CS using
ONE completely unseen language as Fig. 7.1 (b) shows. However, it has
not yet realized the zero-shot CS where ALL the comprised languages are
unavailable as Fig. 7.1 (c) shows. It will be challenging for the future.
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如果这件衬衫不合身, allez-vous me l'echanger? ZH+FR

Target zero-shot CS

EN+ZH

If this shirt doesn't fit, allez-
vous me l'echanger? EN+FR

All languages in CS
are available, 
Chinese and French

如果这件衬衫不合身, will you 
exchange it?

(a)

If this shirt doesn't fit,取り替え
てもらえますか?

このシャツが体に合わなかった
ら,可以换吗?

EN+JA

JA+ZH

One language in CS
is available, Chinese

(b)

If this shirt doesn't fit,取り替え
てもらえますか?

EN+JA

このシャツが体に合わなかった
ら, will you exchange it?

EN+JA

All languages in CS
are unavailable

(c)

Figure 7.1: Zero-shot situations, where (a) all languages in CS are available, (b)
one language in CS is available, and (c) all languages in CS are unavailable. We
challenged (a) and (b), but (c) is future work.

• Performing natural CS data as a zero-shot target
We challenged the zero-shot CS in the easier situation using intra-sentential
phrase-level CS II. The CS’s switching points are a comma, and the CS has
parallel translation settings between language pairs of CS. For example,
“If this shirt doesn’t fit, 取り替えてもらえますか” and “If this shirt
doesn’t fit, allez-vous me l’echanger?” are parallel translation settings in the
meaning of “If this shirt doesn’t fit, will you exchange it?.” It can be easier
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for zero-shot CS since they can share the monolingual beyond particular
language pairs of CS. Although we also conducted the experiments using
natural speech CS data, we could not target the natural speech CS data as
zero-shot CS. Therefore, challenging the zero-shot CS of natural CS data
will be future work.

• CS translation providing multiple monolingual outputs
Normally, the system should provide two or more monolingual outputs us-
ing a single system since the CS is composed of multiple monolinguals.
However, in this thesis, the system only provides one monolingual output.
The target speaker is fixed in English or Japanese, and the system cannot
handle multiple monolingual users. We still need to build multiple systems
to handle multiple monolingual users. Therefore, future work will handle
multiple monolingual users by a single system.

• Satisfactory quality
Although the performance has improved from the baseline through all ex-
periments, the overall quality may not be satisfied. For example, the per-
formance of ASR in single-pair CS (natural speech; multi-speaker) is still
around 30-40% TER. With the speech chain for semi-supervised learning,
the performance of ASR in single-pair CS (natural speech; multi-speaker)
is still around 30-50% TER. Therefore, we have to seek performance im-
provement in future work.

Our system has the above issues, but there are several solutions that we can
consider. They are as follows:

• To challenge the CS including three or more languages within one
utterance spoken by a single speaker
To tackle the CS that includes three or more languages within one utterance
spoken by a single speaker, we first have to collect the data since we have not
found the corpus handling such CS yet. Based on the data collection method
of SEAME corpus [22], we have to design the trigger question of CS. Even if
participants are multilingual speakers, they may answer only in Japanese if
we ask a question only in Japanese. Therefore, we will design the question
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to trigger the CS that includes three or more languages. After collecting
the CS, we will try to perform it on our proposed model, incorporating the
language information.

• To challenge the completely unknown zero-shot CS
Challenging the completely unknown zero-shot CS will be a considerably
difficult task, but we can investigate the zero-shot cross-lingual approaches.
Based on the zero-shot cross-lingual approach [87], wav2vec-based feature
extraction [88], phoneme inventory masking [89], and the language encoder
offering the similarity with other languages, can be helpful to recognize the
unseen languages. Therefore, we will incorporate those architectures into
our system for totally unknown zero-shot CS.

• To challenge the zero-shot CS of natural CS data
The current system may be challenging to perform the zero-shot CS of
natural CS data. Therefore, as with the previous paragraph, we incorporate
the wav2vec-based feature extraction, the phoneme inventory masking, and
the language encoder, based on the zero-shot cross-lingual approach [87].
By combining them, we expect to perform the zero-shot CS of natural CS
data well.

• To realize the CS translation providing multiple monolingual out-
puts
In a previous experiment, the CS starting from Japanese could not trans-
late to monolingual English well, and the CS starting from English could
not translate to monolingual Japanese well. For that reason, we could not
implement the single system translating multiple monolingual outputs. The
performance degradation may be caused by the monotonic switching rule
in the synthetic CS used for training. The result may change if I train with
many natural CS data holding various switching rules. In this work, I have
not investigated it yet since I could not obtain a lot of natural CS data
for the translation tasks, but it would be future work. I also have a plan
to adopt the pre-ordering models. The pre-ordering models rearrange the
word order of the source language to the word order of the target language
beforehand. By incorporating the pre-ordering models, we expect the sys-
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tem to translate to multiple monolingual outputs without being unaffected
by the source language’s word order.

• To improve the performance
To improve the performance, we can try some approaches. For example,
data augmentation approaches increasing the amount of training data can
effectively improve performance. Since we have already applied the speed
perturbation [82, 83], we can try another data augmentation approaches
such as SpecAugment [90]. We can also consider using more powerful mod-
els such as Transformer [76] or Conformer (Convolution-augmented Trans-
former) [91] instead of an attention-based encoder-decoder model. Using
a language model can also be helpful. To improve the performance of the
non-native CS, we can also consider incorporating accent embedding and
accent classification into the architectures. We will later describe the detail
about the accent embedding and accent classification architecture when we
describe the future directions for the non-native CS ASR.

We also still have several things to do for the extension researches of CS ASR.
Fig. 7.2 shows the research roadmap towards future works. From the viewpoint
of the language coverage, we have already investigated the CS ASR on single-
pair CS and multi-pair CS. We have also investigated the system to translate to
monolingual for supporting monolingual listeners both from the speech of single-
pair CS and multi-pair CS speakers. Therefore, in future works, we will challenge
to develop the CS ASR for non-native CS (single/multi-pair languages) speakers
and listeners.

In terms of data necessity, we have already done the CS ASR with paired
CS data (speech+text) using supervised learning and with unpaired CS data
(speech/text only) using semi-supervised learning. However, achieving without
any CS data (monolingual speech+text) using supervised/semi-supervised learn-
ing will be future work.

We have another remaining task. We conducted experiments both with syn-
thetic and natural speech. However, some experiments used the mixed data of
the natural speech and the synthetic speech since we could not have enough nat-
ural speech data. Therefore, improving the performance enough only on natural
speech will also be future work.
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Accordingly, the potential future works are the following tasks: (1)To develop
the CS ASR for non-native CS; (2)To realize the CS ASR without any CS data
using only monolingual data; and (3)To verify the performance using natural CS
speech data. We describe the detail of them one by one.
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Developing the CS ASR for non-native CS speakers and non-native CS
listeners
As we described in Sect. 1.2.2, there are native CS and non-native CS in CS. In
this thesis, we handled separately native CS (synthetic speech and our collected
CS utterances) and non-native CS (SEAME corpus [22]) but have not yet handled
them together. Handling them together is difficult for ASR since it causes a
mismatch between the input speech and trained model [9].

As a solution, based on the previous research [92], we can try the approach
using accent embedding, and multi-task with accent recognition as Fig. 7.3 shows.
We first train the accent recognition model and generate an accent vector in
advance. Then in the ASR model, we embed the accent vector with speech
features together. In the decoder of the ASR model, we conduct multi-task
training of character recognition and accent recognition. As a result, we expect
it can handle native CS and non-native CS well.

Encoder

Decoder

Character
output

Speech feature
+

Accent vector

Decoder

Accent 
classification

Figure 7.3: A multi-task model with accent classification and accent embedding.
It embeds speech feature and accent vector, proceeds those concatenated vec-
tors, then predicts character sequences and accent classification with multi-task
learning.

Realizing the CS ASR without any CS data (only monolingual data)
We have investigated the semi-supervised learning approach regarding the CS
data problem, but it still uses CS data. We need to investigate the CS ASR with
only monolingual data, which is more available than CS data. Although Chap. 4
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Ja ASR

En ASR

Zh ASR

LID

CS Speech	

Parallel
monolingual ASRs

+LID

Ja   Ja   Ja   Ja     Zh Zh Zh

Figure 7.4: Parallel monolingual ASRs and LID. It decodes monolingual ASRs
and LID at the same time. After decoding, we choose a sequence based on the
LID output.

shows the CS ASR trained with only monolingual data (Ja25k+En25k+Zh25k),
we can consider a more efficient approach. The approach uses parallel mono-
lingual ASRs and LID, as Fig. 7.4 shows. The idea comes from the related
works [45,93]. It is also similar to the Cascade approach we introduced in Sect. 4.3,
but they are different. The Cascade approach has non-recoverable damage from
LID error, but it does not have such damage since it conducts ASRs and LID
simultaneously. We first train monolingual ASRs, where we also train them to
predict the start frame and end frame for each word to get alignment. We also
train the LID system with multilingual data. Then we decode the CS speech us-
ing the monolingual ASRs and LID. After decoding, we choose a sequence based
on the LID output. Finally, we can realize the CS ASR using the model trained
with only monolingual data. We will also realize it with semi-supervised learning,
utilizing a machine speech chain.

Verification of the performance using natural CS speech data
We validated the performance using natural CS speech data with SEAME corpus
[22] for a single CS. However, we have not yet validated the performance using
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natural CS speech for multi-pair CS and CS speech translation since we have not
obtained enough natural speech data for those tasks. So far, for those tasks, we
used the natural speech CS created by bilinguals, but it does not have enough,
so we used it by mixing it with synthetic data. Therefore, the data collection of
natural CS speech for multi-pair (zero-shot) CS and CS speech translation and
the performance verification using natural CS speech data will be our future task.

125



Appendix
A Detailed Results on Code-switching Speech

Translation

In Chap. 6, we investigated the code-switching speech translation. In this ap-
pendix, we show the detailed results. The column of “Source text against ref-
erence text” shows the WER, CER, and BLEU of source text against reference
text, which means how close the source text is to the reference text. We compare
the score of the translation results with those values since it means to be closer
to the reference by the translation if the WER and CER get lower or BLEU get
higher. However, these comparisons can fluctuate according to the training data
size, so we focused on comparing the systems. We also calculate the score of the
“CS part” and “non-CS part.” The “CS part” is the different language’s part
from the target language in the source CS text, and the “non-CS part” is the
same language’s part from the target language in the source CS text. We confirm
how well it can translate the CS part and the non-CS part, respectively.

Results on Single-pair Code-switching

Code-switching Text to Monolingual Text
As we see Table A.1, the “CS part” WER and CER in the “Source text against
reference text” were over 100%. This is because the number of insertion, substi-
tution, and deletion to source “CS part” was more than the length of reference
“CS part.”

The BERT language model has lower WER and CER and higher BLEU than
“Source text against reference text,” so it became closer to the reference text
by the performance. Similarly, the NMT model has lower WER and CER and
higher BLEU than “Source text against reference text” excepting the Mix nat-
ural CS test on the All artificial CS model, so it became closer to the reference
text by the performance. Compared between BERT and NMT, the NMT model
tends to be better both on “All” and “CS part.” Only the Mix natural CS “All”
evaluation on the All artificial CS, the BERT model has higher performance than
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the NMT model. However, the NMT model is better than the BERT model on
“CS part,” which means that the BERT “All” performance is good by “non-CS
part” performance. The BERT “non-CS part” is copied from the input text, so
the performance can be good if the input text does not include an error from ASR.
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Table A.1: BERT and NMT translation performance from CS text to English
text.

Model
Source text against BERT

Test reference text All artificial CS Mix natural CS
All WER%↓ All 27.43 11.14 12.14

artificial CS part 179.52 60.11 66.40
CS non-CS part 0.11 5.17 5.20

CER%↓ All 19.79 12.01 12.62
CS part 106.66 61.98 65.29

non-CS part 0.07 1.03 1.09
BLEU↑ All 66.36 78.46 79.42

Mix WER%↓ All 35.23 20.61 19.53
natural CS part 164.96 83.06 72.02
CS non-CS part 3.44 8.67 8.77

CER%↓ All 24.80 19.31 18.56
CS part 104.94 74.72 68.44

non-CS part 2.54 3.69 3.92
BLEU↑ All 61.85 72.03 73.11

Model
Source text against NMT

Test reference text All artificial CS Mix natural CS
All WER%↓ All 27.43 7.47 6.56

artificial CS part 179.52 34.31 35.11
CS non-CS part 0.11 2.64 1.43

CER%↓ All 19.79 8.87 7.94
CS part 106.66 32.92 33.35

non-CS part 0.07 3.39 2.08
BLEU↑ All 66.36 86.54 88.11

Mix WER%↓ All 35.23 37.56 17.94
natural CS part 164.96 60.69 57.88
CS non-CS part 3.44 28.18 6.64

CER%↓ All 24.80 28.87 17.72
CS part 104.94 50.59 49.96

non-CS part 2.54 22.37 7.16
BLEU↑ All 61.85 57.46 77.86
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Table A.2: Comparison between cascade ASR+BERT and cascade ASR+NMT
from CS speech to English text.

Source Model
text All artificial CS Mix natural CS

against Cascade Cascade
reference ASR+ ASR+ ASR+ ASR+

Test text BERT NMT BERT NMT
All WER%↓ All 27.43 16.16 10.76 15.80 9.20

artificial CS part 179.52 66.76 36.08 69.15 34.13
CS non-CS part 0.11 8.74 6.16 8.52 5.37

CER%↓ All 19.79 15.83 9.73 14.97 8.92
CS part 106.66 65.74 33.39 67.11 31.86

non-CS part 0.07 4.76 4.22 3.65 3.31
BLEU↑ All 66.36 71.48 80.79 73.17 82.08

Mix WER%↓ All 35.23 46.42 41.94 25.61 22.34
natural CS part 164.96 89.67 56.50 74.23 57.15
CS non-CS part 3.44 32.61 32.73 14.76 13.17

CER%↓ All 24.80 36.95 31.56 22.46 20.23
CS part 104.94 77.12 49.97 69.91 49.26

non-CS part 2.54 24.36 24.35 8.85 10.28
BLEU↑ All 61.85 47.89 54.43 64.24 69.82

Code-switching Speech to Monolingual Text
Table A.2 shows the detailed result of the speech translation with the Cascade
ASR+BERT and the Cascade ASR+NMT from CS speech. First, when we com-
pare those models’ performance with “Source text against reference text,” al-
though the Mix natural CS test on the All artificial CS model was hard, the
other cases improved the WER, CER, and BLUE. Compared between the Cas-
cade ASR+BERT and the Cascade ASR+NMT, the Cascade ASR+NMT is bet-
ter than the Cascade ASR+BERT in all cases. Even if we see the “CS part”
performance, the Cascade ASR+NMT is better than the Cascade ASR+BERT
in all cases. It seems the task became too hard for BERT, as the ASR error
increased the number of [MASK] tokens.

Table A.3 shows the comparison of translation performance from CS speech
to English text between cascade and direct approaches. First, when we compare
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those models’ performance with “Source text against reference text,” except for
the Mix natural CS test on the All artificial CS model, the “All” and “CS part”
of almost all models improved the score of WER, CER, and BLUE. Although the
CER of Direct single-task ST on the Mix natural CS test of the Mix natural CS
model is higher than the “Source text against reference text,” the WER is lower.
Compared among the Cascade ASR+NMT, the Direct single-task ST, and the
Direct multi-task ST, the Direct multi-task ST tends to perform the best. The
Direct single-task ST seems to be more difficult than other models since it needs
to transcribe directly from CS speech into monolingual English transcriptions.
The Direct multi-task ST is better on the “CS part,” even where “All” WER and
CER of the Cascade ASR+NMT are better than the Direct multi-task ST on the
Mix natural CS test of the Mix natural CS model. Therefore, the Direct multi-
task ST tends the best performance. The Direct multi-task+LID ST generally
showed even more improvement of the performance.
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Table A.3: CS speech translation performances toward English text. P-values
compared to Direct single-task ST are shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.

Source Model
text All artificial CS

against Cascade Direct Direct Direct
reference ASR+ single-task multi-task multi-task

Test text NMT ST ST +LID ST
All WER%↓ All 27.43 10.76 11.13 10.15 9.63∗

artificial CS part 179.52 36.08 40.96 34.40 33.87
CS non-CS part 0.11 6.16 5.73 5.73 5.24

CER%↓ All 19.79 9.73 9.69 8.85∗ 9.08
CS part 106.66 33.39 34.52 31.14 32.14

non-CS part 0.07 4.22 3.88 3.71 3.67
BLEU↑ All 66.36 80.79 80.82 81.99 83.02∗

Mix WER%↓ All 35.23 41.94 38.87 34.56 30.35∗∗

natural CS part 164.96 56.50 60.69 55.85 52.38∗

CS non-CS part 3.44 32.73 29.77 26.16 23.80
CER%↓ All 24.80 31.56 29.42 28.26 29.67

CS part 104.94 49.97 50.59 48.91 50.96
non-CS part 2.54 24.35 23.08 21.66 22.96

BLEU↑ All 61.85 54.43 56.72 58.28 61.68∗∗

Source Model
text Mix Natural CS

against Cascade Direct Direct Direct
reference ASR+ single-task multi-task multi-task

Test text NMT ST ST +LID ST
All WER%↓ All 27.43 9.20 13.04 8.71∗ 8.68∗

artificial CS part 179.52 34.13∗ 37.59 33.16∗∗ 33.25∗∗

CS non-CS part 0.11 5.37 8.60 4.95∗ 4.94∗

CER%↓ All 19.79 8.92∗∗∗ 10.83 8.50∗∗∗ 8.36∗∗∗

CS part 106.66 31.86∗ 34.43 30.60∗∗ 31.62∗∗

non-CS part 0.07 3.31 5.16 2.99∗ 3.20∗

BLEU↑ All 66.36 82.08∗ 78.67 82.87∗ 83.38∗

Mix WER%↓ All 35.23 22.34∗∗∗ 29.63 23.21∗∗ 23.28∗∗

natural CS part 164.96 57.15 61.20 56.79∗ 56.65∗

CS non-CS part 3.44 13.17∗∗∗ 19.79 14.78∗ 14.92∗

CER%↓ All 24.80 20.23∗∗∗ 24.98 21.55∗∗∗ 21.44∗∗∗

CS part 104.94 49.26 53.43 49.05∗ 51.71
non-CS part 2.54 10.28∗∗∗ 16.00 12.54∗ 12.19∗

BLEU↑ All 61.85 69.82∗ 64.38 68.46∗ 69.70∗
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Table A.4 shows that the translated and CS output examples of Direct multi-
task ST. The translated and CS output seem to be almost the same in English
transcriptions, though example (2) is slightly different.

Table A.4: Translated and CS output examples of Direct multi-task ST.
(1) Source text if you want to watch tv , you should 宿題 は

終え た ほう が いい です よ .
Reference text if you want to watch tv , you should finish

your homework first .
Direct multi-task ST Translated output if you want to watch tv , you should have

any homework .
CS output if you want to watch tv , you should 宿題 は

壊れ た ほう が いい です よ .
(2) Source text i ’ ll do my best to find your baggage but first

i ’ d like you to fill in this 手 荷物 事故 報告 書 .
Reference text i ’ ll do my best to find your baggage , but first i ’ d

like you to fill in this property irregularity report .
Direct multi-task ST Translated output i ’ ll do my best to find your baggage , but first i

like you to fill in this form to yourself in japan .
CS output i ’ ll do my best to find your baggage but first i ’ d

like you to fill it this place も 一 時 も 報告 書 .
(3) Source text oh , no . i don ’ t have any change so , どう し

たら いいん でしょ う ?
Reference text oh , no . i don ’ t have any change so , what

should i do ?
Direct multi-task ST Translated output oh , no . i don ’ t have any change so , what

should i do ?
CS output oh , no . i don ’ t have any change . どう し

たら いいん でしょ う ?
(4) Source text how would you like to pay 現金 です か ,

カード です か ?
Reference text how would you like to pay , cash or charge ?
Direct multi-task ST Translated output how would you like to pay , cash or charge ?

CS output how would you like to pay 現金 です か ,
カード です か ?

Table A.5 shows the comparison of translation performance from CS speech
to Japanese text between cascade and direct approaches. The WER and CER
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of “All” and “CS part” improved from the score of “Source text against ref-
erence text” in almost all test cases. However, the Cascade ASR+NMT and
Direct single-task ST have a higher WER and CER than the score of “Source
text against reference text” in the “All” of the Mix natural CS test on the All
artificial CS model. It seems to be because the untrained Mix natural CS test
was difficult. The Direct single-task ST has a higher WER than the “Source text
against reference text” in the Mix natural CS test on the Mix natural CS model.
It transcribes both English and Japanese speech into the same Japanese tran-
scriptions without distinction, so the model performance degraded and increased
the error. The Direct single-task ST also has a lower BLEU than the “Source
text against reference text” in the Mix natural CS test on the All artificial CS
model and the Mix natural CS model for the same reason. Compared among
the Cascade ASR+NMT, Direct single-task ST, Direct multi-task ST, the Direct
single-task ST tends to have the worst performance, and the Direct multi-task
ST tends to have the best performance. However, the Cascade ASR+NMT tends
to be better in the “All” and “CS part” of the All artificial CS test on the All
artificial CS model. It seems to be because it has a fewer ASR error propagation
since it is a comparatively easier task owing to that the JaEnCS includes one
word CS with the only noun. In the WER of the Mix natural CS test on the Mix
natural CS model, the Direct multi-task ST is better on the “All.” Although the
Cascade ASR+NMT is better on the “CS part” in WER, it is a slight difference
due to the difference of the tokenization since the Direct multi-task ST is better
in the case of CER. In addition to that, the Direct multi-task ST has the best
performance both on the “All” and “CS part” in the Mix natural CS test on the
All artificial CS model and the All artificial CS test on the Mix natural CS model.
The Direct multi-task+LID ST generally further improved the performance from
the Direct multi-task ST on the BLEU score.
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Table A.5: CS speech translation performances toward Japanese text. P-values
compared to Direct single-task ST are shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.

Source Model
text All artificial CS

against Cascade Direct Direct Direct
reference ASR+NMT single-task multi-task multi-task

Test text ST ST +LID ST
All WER%↓ All 17.52 13.11∗∗∗ 19.96 13.88∗∗∗ 13.33∗∗∗

artificial CS part 106.42 32.59∗∗∗ 42.25 36.40∗∗ 35.01∗∗∗

CS non-CS part 0.61 9.19∗∗∗ 15.51 9.44∗∗∗ 9.14∗∗∗

CER%↓ All 35.23 12.10∗∗∗ 18.93 13.10∗∗∗ 13.23∗∗∗

CS part 187.66 27.32∗∗∗ 36.05 30.85∗∗∗ 30.91∗∗∗

non-CS part 0.53 9.05∗∗∗ 15.55 9.40∗∗∗ 9.65∗∗∗

BLEU↑ All 74.14 77.42∗∗∗ 68.14 77.35∗∗∗ 78.19∗∗∗

Mix WER%↓ All 28.67 41.80 44.81 27.51∗∗∗ 27.48∗∗∗

natural CS part 104.56 61.46∗∗∗ 68.67 61.18∗∗∗ 62.13∗∗∗

CS non-CS part 3.66 25.78∗∗∗ 33.85 16.31∗∗∗ 16.37∗∗∗

CER%↓ All 54.29 33.97∗∗ 46.70 25.69∗∗∗ 27.71∗∗∗

CS part 202.69 56.87∗∗∗ 66.90 54.98∗∗∗ 61.43∗∗∗

non-CS part 1.90 20.85∗∗∗ 35.65 15.95∗∗∗ 17.40∗∗∗

BLEU↑ All 64.64 59.02∗∗ 52.81 64.47∗∗∗ 65.48∗∗∗

Source Model
text Mix natural CS

against Cascade Direct Direct Direct
reference ASR+NMT single-task multi-task multi-task

Test text ST ST +LID ST
All WER%↓ All 17.52 12.94∗∗∗ 16.25 12.05∗∗∗ 11.89∗∗∗

artificial CS part 106.42 33.48∗ 36.28 31.96∗∗∗ 33.16∗

CS non-CS part 0.61 8.90∗∗∗ 12.29 8.18∗∗∗ 7.78∗∗∗

CER%↓ All 35.23 12.23∗∗∗ 15.38 11.68∗∗∗ 11.59∗∗∗

CS part 187.66 28.59∗ 31.10 26.92∗∗∗ 28.71∗

non-CS part 0.53 8.86∗∗∗ 12.34 8.41∗∗∗ 8.20∗∗∗

BLEU↑ All 74.14 77.77∗∗∗ 72.31 79.36∗∗∗ 80.18∗∗∗

Mix WER%↓ All 28.67 25.77∗∗∗ 30.51 25.52∗∗∗ 25.64∗∗∗

natural CS part 104.56 60.40∗∗ 63.44 61.67 61.75
CS non-CS part 3.66 14.41∗∗∗ 19.04 13.46∗∗∗ 13.39∗∗∗

CER%↓ All 54.29 23.85∗∗∗ 28.04 22.98∗∗∗ 23.45∗∗∗

CS part 202.69 53.88∗∗ 57.72 53.43 54.54
non-CS part 1.90 14.29∗∗∗ 18.91 13.18∗∗∗ 13.53∗∗∗

BLEU↑ All 64.64 65.75∗∗∗ 60.32 67.24∗∗∗ 68.38∗∗∗
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Results on Multi-pair Code-switching

Table A.6 shows the performance results for translation from multi-pair CS speech
to English text. As it shows, among a cascade of ASR and NMT, a Direct single-
task ST, and a Direct multi-task ST, the Direct multi-task ST tends to have the
best performance. Moreover, the Direct multi-task ST also has the possibility of
more performance improvement with LID.

Table A.7 shows the performance results for translation from multi-pair CS
speech to Japanese text. As the same with the case of the translation toward
English text, among a cascade of ASR and NMT, a Direct single-task ST, and
a Direct multi-task ST, the Direct multi-task ST tends to have the best per-
formance. Moreover, the Direct multi-task ST also has the possibility of more
performance improvement with LID.
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Table A.6: Comparison of translation performance from multi-pair CS speech
to English text between cascade and direct approaches. P-values compared to
Direct single-task ST are shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.

Source Model
text All artificial CS

against Cascade Direct Direct Direct
reference ASR+ single-task multi-task multi-task

Test text NMT ST ST +LID ST
All WER%↓ EnJaCS 27.43 10.95 11.20 9.49∗∗∗ 9.34∗∗∗

artificial EnZhCS 50.88 22.91∗∗∗ 26.06 22.23∗∗∗ 21.31∗∗∗

CS CER%↓ EnJaCS 19.79 9.04 9.17 7.88∗∗∗ 7.85∗∗∗

EnZhCS 44.92 19.90∗∗∗ 22.86 19.34∗∗∗ 18.17∗∗∗

BLEU↑ EnJaCS 66.36 82.75 81.89 84.43∗∗∗ 84.53∗∗∗

EnZhCS 49.70 72.85∗∗∗ 68.97 74.16∗∗∗ 75.08∗∗∗

Mix WER%↓ EnJaCS 35.23 45.43 44.58 42.22∗∗∗ 42.71∗∗∗

natural CER%↓ EnJaCS 24.80 33.51 35.71 30.26∗∗∗ 30.05∗∗∗

CS BLEU↑ EnJaCS 61.85 55.26 52.47 57.21∗∗ 57.06∗∗

Source Model
text Mix natural CS

against Cascade Direct Direct Direct
reference ASR+ single-task multi-task multi-task

Test text NMT ST ST +LID ST
All WER%↓ EnJaCS 27.43 9.87 11.19 9.85∗ 9.79∗

artificial EnZhCS 50.88 21.78∗∗ 23.65 22.58 19.14∗∗∗

CS CER%↓ EnJaCS 19.79 8.18∗ 8.87 8.19∗ 8.01∗∗

EnZhCS 44.92 19.12 20.04 19.65 16.33∗∗∗

BLEU↑ EnJaCS 66.36 83.60∗ 82.23 84.00∗ 84.30∗∗

EnZhCS 49.70 73.07 72.51 73.36 77.33∗∗∗

Mix WER%↓ EnJaCS 35.23 26.28 26.79 25.90 25.27
natural CER%↓ EnJaCS 24.80 20.88 21.03 21.35 20.81
CS BLEU↑ EnJaCS 61.85 68.30 68.36 69.22 70.23∗
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Table A.7: Comparison of translation performance from multi-pair CS speech
to Japanese text between cascade and direct approaches. P-values compared to
Direct single-task ST are shown with ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.

Source Model
text All artificial CS

against Cascade Direct Direct Direct
reference ASR+ single-task multi-task multi-task

Test text NMT ST ST +LID ST
All WER%↓ JaEnCS 17.52 8.02 7.28 5.37∗∗∗ 5.23∗∗∗

artificial JaZhCS 56.82 8.63∗∗∗ 12.96 10.90∗∗∗ 10.63∗∗∗

CS CER%↓ JaEnCS 35.23 7.27 6.76 4.99∗∗∗ 5.00∗∗∗

JaZhCS 48.98 8.00∗∗∗ 11.74 9.70∗ 9.58∗∗

BLEU↑ JaEnCS 74.14 87.20 89.30 91.82∗∗∗ 92.36∗∗∗

JaZhCS 46.71 89.05∗∗∗ 84.02 86.46∗∗∗ 86.73∗∗∗

Mix WER%↓ JaEnCS 28.67 25.47 22.52 22.08 21.05∗∗∗

natural CER%↓ JaEnCS 54.29 24.25 21.51 20.67 20.15∗∗∗

CS BLEU↑ JaEnCS 64.64 72.91 74.87 76.60∗∗∗ 77.46∗∗∗

Source Model
text Mix natural CS

against Cascade Direct Direct Direct
reference ASR+ single-task multi-task multi-task

Test text NMT ST ST +LID ST
All WER%↓ JaEnCS 17.52 6.90 7.10 5.11∗∗∗ 4.68∗∗∗

artificial JaZhCS 56.82 8.56∗∗∗ 10.90 9.60∗ 7.39∗∗∗

CS CER%↓ JaEnCS 35.23 6.48 6.35 4.99∗∗∗ 4.41∗∗∗

JaZhCS 48.98 7.83∗∗∗ 9.79 8.69∗ 6.67∗∗∗

BLEU↑ JaEnCS 74.14 89.29 89.85 92.62∗∗∗ 93.39∗∗∗

JaZhCS 46.71 89.08∗∗∗ 86.18 88.10∗∗ 90.58∗∗∗

Mix WER%↓ JaEnCS 28.67 20.62∗∗∗ 24.30 19.84∗∗∗ 19.36∗∗∗

natural CER%↓ JaEnCS 54.29 18.73∗∗∗ 20.17 17.32∗∗∗ 16.76∗∗∗

CS BLEU↑ JaEnCS 64.64 75.79 75.23 78.92∗∗∗ 79.39∗∗∗
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