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Compositionality-Aware
Graph Representation Learning∗

Takeshi D. Itoh

Abstract

Graph neural networks (GNNs) have been widely used to learn vector repre-
sentations of graph-structured data and have achieved better task performance
than conventional graph machine learning methods. The foundation of GNNs
is the message passing procedure, which propagates information from a node to
its neighbors. Therefore, message passing GNNs can exploit the stationarity and
locality of graphs.

However, existing GNN methods have limitations in capturing and exploiting
the compositionality of graphs while learning graph representations. Because
message passing is executed one step at a time for each layer, the range of the
information propagation among nodes is small in the lower layers, and it expands
toward the higher layers. Therefore, a GNN model must be deep enough to
capture the global structural information in a graph. By contrast, it is known
that deep GNN models suffer from performance degradation because they lose the
local information of nodes, which would be essential for good model performance,
because of the large number of message passing steps. In other words, there is
a trade-off between using deep GNNs to capture global graph information and
using shallow ones to focus on local information.

In this dissertation, we propose multi-level attention pooling (MLAP) for
graph representation learning (GRL), which can adapt to both local and global
structural information in a graph. It has an attention pooling layer for each mes-
sage passing step and computes the final graph representation by unifying layer-
wise graph representations. The MLAP architecture allows models to utilize the
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structural information in graphs with multiple levels of localities because it pre-
serves layer-wise information before losing them. Results of our experiments show
that the MLAP architecture improves performance compared with the baseline ar-
chitectures, both in graph classification tasks and graph-to-sequence (graph2seq)
tasks. In addition, analyses of the layer-wise graph representations indicate that
aggregating information from multiple levels of localities is indeed beneficial for
learning discriminative graph representations. Although the exploitation of com-
positionality in neural network studies is just in its infancy, we believe that
analyzing compositionality is key to building high-performance and interpretable
machine learning models, both in GRL and other machine learning domains.

Keywords:

Graph representation learning (GRL), graph neural network (GNN), composi-
tionality, attention
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Chapter 1

Introduction

Graph-structured data can be found in many fields. A wide variety of natural
and artificial objects can be expressed with graphs, such as molecular structural
formulae, biochemical reaction pathways, brain connection networks, social net-5

works, and abstract syntax trees of computer programs. Similar to other forms of
natural data (e.g., images), graphs have three frequently observed properties: sta-
tionarity, locality, and compositionality [1, 2]. Stationarity implies that one can
observe similar statistical properties of the signal across the entire graph. Local-
ity indicates that we can extract certain information by looking at only a part of10

a graph. Compositionality implies that the global information on a graph is com-
posed of information from multiple local (smaller) subgraphs. In this dissertation,
we explore a graph representation learning (GRL) technique using graph neural
networks (GNNs) that makes more effective use of the compositional property of
graphs.15

As graphs are found ubiquitously around the world, machine learning tech-
niques on graphs have been intensively researched for decades. Owing to rich
information underlying the structure, graph machine learning techniques have
shown remarkable performances in various tasks. For example, the PageRank
algorithm [3] measures the importance of each node in a directed graph based20

on the number of inbound edges to the node. Shervashidze et al. [4] used a
graph kernel method [5] to predict chemical molecules’ toxicity as a graph clas-
sification task. Despite these promising applications, classical machine learning
techniques on graphs require difficult and costly processes for manually designing
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graph features or kernels.25

To solve the problem, the GRL approach has attracted the attention from
the research field [6]. A GRL model learns a mapping from a node or a graph
to a vector representation. The learned representation provided by the mapping
can then be used as an input feature for task-specific models (e.g., classifiers or
regressors) and thus a model becomes free from the problem of inflexible hand-30

crafted features. The mapping is trained so that the geometric relationships
among embedded representations reflect the similarity of structural information
in graphs; that is, nodes with similar local structures have similar representa-
tions [7, 8]. However, the early GRL techniques learned a unique vector for each
node without sharing parameters among nodes, leading to high computational35

costs and the risk of overfitting. Furthermore, as these techniques learn a specific
representation for each node, learned models cannot be applied for prediction on
novel graphs or nodes that do not appear in the training phase [9, Section 3.4].

Since around 2015, GNNs have rapidly gained interest as a new framework for
GRL (we refer readers to Zhang et al. [10] and Wu et al. [11] for review papers; see40

Section 2.2 for related works). Unlike aforementioned non-GNN GRL techniques,
which learn node-specific representations, GNNs learn how to compute the node
representation from the structural information around a node. Hence, GNNs do
not suffer from the problem faced by earlier GRL methods, where the computation
cost and the number of parameters increased linearly to the number of nodes.45

Furthermore, the learned models generalize to graphs or nodes that were unknown
during training.

The foundation of GNNs is the message passing procedure propagating the
information in a node to its neighbor nodes, each of which is directly connected
to the source node by an edge (Figure 1.1a; see Section 2.3.1 for detail). The mes-50

sage passing procedure is designed to function well when the signals on graphs
exhibit stationarity and locality. That is, stationarity allows same message pass-
ing parameters to be reused across the entire graph, resulting in reduction of the
number of parameters to be trained. Also, collecting information from neighbor
nodes for updating the node representation is possible because of the information55

locality.
However, existing message passing GNNs have suffered to capture the third
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Figure 1.1: a) Schematic illustration of the message passing procedure. The i-th node has
its original node information, hi (i = 1, . . . , 4), at the beginning (left). The message passing
procedure propagates node information between each pair of connected nodes (center). As a
result, each node has its own information and neighbors’information after the message pass-
ing (right). b) The scope of the information propagation expands along the message passing
process. The black node in the middle of a graph has only its original node information at the
beginning (left). This node obtains information in broader subgraphs through message passing,
i.e., dark gray nodes after one message passing step (center) and light gray nodes after two
message passing steps (right). M.P.: message passing.

property: the compositionality. As the procedure proceeds one step per layer, the
range of the information propagation among nodes is small in the lower layers, and
it expands toward the higher layers—i.e., the node representations in the higher60

layers collect information from broader subgraphs (Figure 1.1b). In other words,
each layer has hierarchically organized level of information locality. Existing GNN
architectures could not effectively utilize such hierarchy or compositionality of
the information in graphs because they commonly used the graph representation
after a fixed number of message-passing steps, ignoring the information in lower65

layers. It is difficult to determine an appropriate depth (number of layers) for a
GNN model that allows the model to capture both local and composited global
information. Hence, it may be beneficial to develop a GNN model capable of
using information at multiple levels in the compositionality.

3



Overall, our fundamental questions in this dissertation are as follows:70

• Does a compositionality-aware GNN architecture improve the performances
in graph machine learning tasks?

• Is it effective for GNNs to explicitly utilize the graph information from var-
ious levels of localities to learn more discriminative graph representations?

We answer “yes” to both of the questions by proposing multi-level attention75

pooling (MLAP) architecture.

1.1 Contributions
This dissertation makes the following contributions.

• It presents a novel compositionality-aware GNN architecture called multi-
level attention pooling (MLAP).80

• It demonstrates that the MLAP architecture is effective both in real-world
graph classification and graph to sequence (graph2seq) tasks.

• It provides detailed analyses of the layer-wise graph representations in
MLAP models and demonstrates the effectiveness of utilizing information
at multiple levels of localities.85

1.2 Outline
The rest of the dissertation consists of the following chapters: Chapter 2 intro-
duces the MLAP architecture and apply it to multiple synthetic and real-world
graph classification problems. It shows performance improvement by MLAP from
baseline architectures, as well as provides detailed analyses of the layer-wise graph90

representations. Chapter 3 extends the MLAP architecture for graph2seq tasks.
The application of the technique to a source code summarization task is dis-
cussed and it is demonstrated that our proposed model achieves the state-of-the-
art (SoTA) performance. Finally, Chapter 4 reviews the findings and the future
direction of the study, and then provides concluding statements.95
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Chapter 2

Multi-Level Attention Pooling
for Graph Classification

In this chapter, we introduce the multi-layer attention pooling (MLAP) ar-
chitecture for GNN, which utilizes the compositionality in graph information.100

We demonstrate that aggregating graph representations from multiple message-
passing layers improves the model performance in graph classification tasks.

2.1 Introduction
Initial stages of the machine learning research had focused on data in fixed form—
e.g., scalars, vectors, or matrices. However, there exist many types of data that105

can take arbitrary and unfixed form. Graphs and networks are the most important
examples of such arbitrary-shaped data. Even though we need machine learning
techniques specifically designed to deal with graphs having unfixed form, they
would benefit from rich information in their structure in addition to the signals
on graphs.110

Discriminating graphs into multiple classes is one of the most fundamental
problems in graph machine learning. Judging toxicity of a molecule from the
chemical formula, determining the type of an object from point cloud, or finding
attributes of a person from a subgraph of social networks are all good examples
of real-world graph classification tasks. As we discussed in Chapter 1, message115

passing GNN has been designed to perform well when graphs have stationarity
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and locality, and it certainly has achieved a significant success in this field [10, 11].
However, there exists a well-known problem with GNNs where the model per-

formance degrades as the number of layers increases. This is because deep GNN
models lose the nodes’ local information, which would be essential for good model120

performance, during many message-passing steps. This phenomenon is known as
oversmoothing [12]. Because graphs are compositional, a GNN model needs to
be capable of capturing both local structural information and global structural
information. Capturing global structural information requires a GNN model to
be deep (i.e., having many message passing steps), but oversmoothing prohibits125

a model from being deep. In other words, there has been a tradeoff between
making deep GNNs to capture global graph information and using shallow ones
to focus on local information.

In this chapter, we present a compositionality-aware GNN technique to learn
more discriminative graph representation by using multiple graph representations130

in different localities. Previous studies typically computed the graph represen-
tation by a graph pooling layer that collects node representations after the last
message passing layer. Therefore, deeper models cannot utilize nodes’ local infor-
mation in computing the graph representation because local information is lost
through many message-passing steps due to oversmoothing. Although many pre-135

vious methods have addressed the oversmoothing problem (see Section 2.2.2), our
approach—using information with multiple levels of localities to compute graph
representations—does not aim to directly solve the oversmoothing problem itself,
but rather focuses on improving the discriminability of learned representations
by explicitly utilizing the compositionality.140

To this end, we propose the multi-level attention pooling (MLAP) archi-
tecture. In summary, the MLAP architecture introduces an attention pooling
layer [13] for each message passing step to compute layer-wise graph represen-
tations. Then, it aggregates them to compute the final graph representation,
inspired by the jumping knowledge network [14]. As a result, the MLAP ar-145

chitecture can focus on different nodes (or different subgraphs) in each layer
with different levels of information localities, which leads to better modeling of
both local structural information and global structural information. In other
words, introducing layer-wise attention pooling prior to aggregating layer-wise
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representation would improve the graph-level classification performance. Our150

experiments show performance improvements in GNN models with the MLAP
architecture. Furthermore, analyses on the layer-wise graph representations sug-
gest that MLAP has the potential to learn graph representations with improved
class discriminability by aggregating information with multiple levels of localities.

The rest of this chapter is organized as follows: Section 2.2 summarizes re-155

lated studies on graph neural networks, Section 2.3 introduces the MLAP frame-
work, Section 2.4 describes the experimental setups, Section 2.5 demonstrates
the results, and Section 2.6 discusses the findings and concludes this chapter by
highlighting the contributions of the study.

2.2 Related Works160

Gori et al. [15] and Scarselli et al. [16] first introduced the idea of GNNs, and
Bruna et al. [17] and Defferrard et al. [1] elaborated the formulation in the graph
Fourier domain using spectral filtering. Based on these early works, Kipf and
Welling [18] proposed the graph convolution network (GCN), which made a foun-
dation of today’s various GNN models [19–23]. Gilmer et al. [24] summarized165

these methods as a framework named neural message passing, which computes
node representations iteratively by collecting neighbor nodes’ representation us-
ing differentiable functions (Figure 1.1a, see Section 2.3.1 for mathematical for-
mulation).

In this study, we focus on methods for computing the graph representation170

from node-wise representations in GNN models. We first summarize the studies
on graph pooling methods and then review the recent trends in deep GNN studies.
Finally, we summarize previous studies that aggregate layer-wise representation
to compute the final node or graph representation and elaborate the idea behind
our proposed method.175

2.2.1 Graph Pooling Methods
Techniques for learning graph representations are usually based on techniques for
learning node representations. A graph-level model first computes the representa-
tion for each node in a graph and then collects the node-wise representations into
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a single graph representation vector. This collection procedure is called a pool-180

ing operation. Although there are various pooling methods, they can be divided
into two categories: the global pooling approach and the hierarchical pooling
approach.

The global pooling approach collects all node representations in a single com-
putation. The simplest example of the global pooling method is sum pooling,185

which merely computes the sum of all node representations. Duvenaud et al. [19]
introduced sum pooling to learn embedded representations of molecules from a
graph where each node represents an atom. Similarly, we can compute an aver-
age or take the maximum elements as a pooling method. Li et al. [13] introduced
attention pooling, which computes a weighted sum of node representations based190

on a softmax attention mechanism [25]. Vinyals et al. [26] proposed set2set by
extending the sequence to sequence (seq2seq) approach for a set without ordering.
Zhang et al. [27] introduced the SortPooling, which sorts the node representations
according to their topological features and applies one-dimensional convolution.
These global pooling methods are simple and computationally lightweight, but195

they cannot use the structural information of graphs in the pooling operation.
By contrast, hierarchical pooling methods segment the entire graph into a

set of subgraphs hierarchically and compute the representations of subgraphs it-
eratively. Bruna et al. [17] introduced the idea of hierarchical pooling, or graph
coarsening, based on hierarchical agglomerative clustering. Although some previ-200

ous studies such as Defferrard et al. [1] also applied similar approaches, clustering-
based hierarchical pooling requires the clustering algorithm to be deterministic—
that is, the hierarchy of subgraphs is fixed throughout the training. To overcome
this limitation, Ying et al. [28] proposed DiffPool, which learns the subgraph hi-
erarchy itself along with the message passing functions. They proposed to use a205

neural network to estimate which subgraph a node should belong to in the next
layer. Gao and Ji [29] extended U-Net [30] for graph structure to propose graph
U-Nets. Original U-Net introduced down-sampling and up-sampling procedures
for semantic image segmentation tasks. Based on the U-Net, graph U-Nets are
composed of a gPool network to shrink the graph size hierarchically and a gUn-210

pool network to restore the original graph structure. Furthermore, Lee et al. [31]
employed a self-attention mechanism to define a hierarchy of subgraph structures.

8



Hierarchical pooling can adapt to multiple localities of graph substructures dur-
ing step-wise shrinkage of graphs. Although these hierarchical pooling methods
effectively utilize the compositionality in graphs, they are often computationally215

heavy because, as discussed in Cangea et al. [32], they have to learn the dense
assignment matrix for each layer, relating a node in a layer to a node in the
shrunk graph in the next layer. Thus, they require longer computational time
and consume more memory.

2.2.2 Oversmoothing in Deep Graph Neural Networks220

Kipf and Welling [18] first reported that deep GNN models with many message
passing layers performed worse than shallower models. Li et al. [12] investigated
this phenomenon and found that deep GNN models converged to an equilibrium
point where connected nodes have similar representations. As the nodes with
similar representations are indistinguishable from each other, such convergence225

degrades the performance in node-level prediction tasks. This problem is called
oversmoothing. In graph-level prediction tasks, oversmoothing occurs indepen-
dently for each graph. Oversmoothing in each graph damages GNN models’
expressivity and results in performance degradation [33, 34].

Studies addressing the oversmoothing problem mainly fall into three cate-230

gories: modifying the message passing formulation, adding residual connections,
and normalization. Anyhow, the objective of these studies is to retain discrimi-
native representations even after many steps of message passing.

Studies modifying the message passing formulation aim to retain high-
frequency components in graph signals during message passing steps, whereas235

message passing among nodes generally acts as a low-pass filter for the signals.
Min et al. [35] proposed scattering GCN, which adds a circuit for band-pass filter-
ing of node representations. DropEdge [36] randomly removes some edges from
the input graph, alleviating the low-pass filtering effect of the graph convolu-
tion. In addition, although not explicitly stated, the graph attention network240

(GAT) [22] is known to mitigate the oversmoothing problem because it can focus
on specific nodes during message passing.

Adding residual connections is a more straightforward way to retain node-local
representation up to deeper layers. Residual connections, or ResNet architecture,

9



were first used in convolutional neural networks (CNNs) for computer vision tasks,245

where they achieved a SoTA performance [37]. Kipf and Welling [18] applied
the residual connections in the graph convolutional network and reported that
residual connections mitigated the performance degradation in deep GNN models.
Later, Li et al. [38], Zhang and Meng [39], and Chen et al. [40] applied similar
residual architectures on GNNs and showed performance improvement.250

Normalization in deep learning gained attention owing to the success of pre-
vious studies such as BatchNorm [41] and LayerNorm [42]. Although these gen-
eral normalization techniques are also applicable and effective in GNNs, graph-
specific normalization methods have been recently proposed. PairNorm [43],
NodeNorm [44], GraphNorm [45], and differentiable group normalization [46] are255

representative examples of graph-specific normalization methods.
These studies succeeded in overcoming the oversmoothing problem and allow-

ing deep GNN models to retain discriminative representations. However, directly
using local representations in computing the final graph representation would
lead to more performance improvement, owing to the compositionality in graph260

information.

2.2.3 Aggregating Layer-Wise Representations in GNN
The studies summarized in the previous subsection directly addressed the over-
smoothing problem. They sought techniques to retain discriminative represen-
tations even after multiple steps of message passing. Instead, we search for a265

technique to learn more discriminative representation by aggregating multiple
representations in different localities.

Jumping knowledge (JK) network [14] proposed to compute the final node rep-
resentation by aggregating intermediate layer-wise node representations. Thus,
JK can adapt the locality of the subgraph from which a node gathers information.270

After JK was proposed, many studies adopted JK-like aggregation of layer-wise
representation to improve the learned representation. Wang et al. [47] adopted
JK in recommendation tasks on knowledge graphs. Cangea et al. [32] adopted a
JK-like aggregation of layer-wise pooled representation on gPool [29] network to
learn graph-level tasks. A similar combination of hierarchical graph pooling and275

JK-like aggregation was also proposed by Ranjan et al. [48]. Dehmamy et al. [49]
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proposed aggregating layer-wise representation from a modified GCN architecture
and showed performance improvement.

Our proposed MLAP technique is motivated by the same idea of these stud-
ies that GNNs should be capable of aggregating information in multiple levels of280

localities. Here, we utilize an intuition on graph-level prediction tasks: a model
should focus on different nodes as the message passing proceeds through layers
and the locality of information extends. That is, the importance of a node in
global graph pooling would differ depending on the locality of the information.
Therefore, in this study, we propose a method that uses an attention-based global285

pooling in each layer and aggregates all layer-wise graph representations to com-
pute the final graph representation.

2.3 Methods
We propose the MLAP architecture, which aggregates graph representation from
multiple levels of localities. In this section, we first summarize the fundamentals290

of GNNs, particularly the message passing procedure, and then introduce the
MLAP architecture.

2.3.1 Preliminaries: Graph Neural Networks
Let G = (N , E) be a graph, where N is a set of nodes and E is a set of edges.
n ∈ N denotes a node and ensrc,ndst ∈ E denotes a directed edge from a source295

node nsrc to a destination node ndst. A graph may have either node features or
edge features, or both. If a graph has node features, each node n has a node
feature vector pn. Similarly, if a graph has edge features, each edge ensrc,ndst has
an edge feature vector qnsrc,ndst .

There are three types of tasks commonly studied for GNNs: graph-level pre-300

diction, node-level prediction, and edge-level prediction. In this study, we focus
on the graph-level prediction tasks. For a set of graph G =

{
G1, . . . , G|G|

}
and

their labels Y =
{
y1, . . . , y|G|

}
, we want to learn a graph representation vector

hG used for predicting the graph label ŷG = g (hG), where g denotes a predictor
function.305
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Suppose we have a GNN with L layers. Each layer in a GNN propagates the
node representation hn along the edges (message passing). Let h(l)

n ∈ Rd be the
representation of n after the message passing by the l-th layer, where d is the
dimension of the vector representations. In general, the propagation by the l-th
layer first computes the message m

(l)
n for each node n from its neighbor nodes310

NBR (n), as in

m(l)
n = f

(l)
col

({
f (l)

msg

(
h

(l−1)
n′ , qn′,n

) ∣∣∣ n′ ∈ NBR (n)
})

, (2.1)

where f (l)
msg is a message function to compute the message for each neighbor node

from the neighbor representation and the feature of the connecting edge, and f
(l)
col

is a function to collect the neighbor node-wise messages. Then, the layer updates315

the node representation h
(l)
n as

h(l)
n = f

(l)
upd

(
m(l)

n ,h(l−1)
n

)
, (2.2)

where f
(l)
upd is an update function.

After L steps of message passing, a graph pooling layer computes a graph
representation vector hG from the final node representations h(L)

n for each n ∈ N ,320

as in
hG = Pool

({
h(L)

n

∣∣ n ∈ N
})

. (2.3)

2.3.2 Multi-Level Attention Pooling
Graph-level prediction tasks require the models to use both local information in
nodes and global information as the entire graphs to achieve good performances.325

However, typical GNN implementations first execute the message passing among
nodes for a certain number of steps L and then pool the node representations into
a graph representation, as shown in Eq. (2.3) (Figure 2.1a). This formulation
damages GNN models’ expressivity because it can only use the information in a
fixed locality to compute the graph representation.330

To fix this problem, we introduce a novel GNN architecture named multi-
level attention pooling (MLAP; Figure 2.1c). In the MLAP architecture, each
message passing layer has a dedicated pooling layer to compute layer-wise graph
representations, as in

h
(l)
G = Pool(l)

({
h(l)

n

∣∣ n ∈ N
})

∀ l ∈ {1, . . . , L}. (2.4)335
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Figure 2.1: a) Naive GNN architecture. A pooling layer computes the graph representation
from the node representations after the last message passing. b) Jumping knowledge (JK)
network architecture. The aggregator collects the layer-wise node representation, and then
a pooling layer computes the graph representation from the aggregated node representation.
c) Proposed multi-level attention pooling (MLAP) architecture. There is a dedicated pooling
layer for each message passing layer to compute layer-wise graph representation. The aggrega-
tor computes the final graph representation from the layer-wise graph representations. M.P.:
message passing.

Here, we used the attention pooling [13] as the pooling layer. Thus,

h
(l)
G =

∑
n∈N

softmax
(
f
(l)
gate(h

(l)
n )

)
h(l)

n (2.5)

=
∑
n∈N

exp
(
f
(l)
gate(h

(l)
n )

)
∑

n′∈N exp
(
f
(l)
gate(h

(l)
n′ )

)h(l)
n , (2.6)

where f
(l)
gate is a function used to compute the attention score, for which a two-340

layer neural network was used. By introducing such layer-wise attention pooling
operations, MLAP can focus on different nodes at different information localities.

Then, an aggregation function computes the final graph representation by
unifying the layer-wise representations as follows:

hG = fagg

({
h

(l)
G

∣∣∣ l ∈ {1, . . . , L}
})

, (2.7)345
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where fagg is an aggregation function. We can use an arbitrary function for fagg.
In this study, we tested two types of aggregation functions: Sum and Weighted.

MLAP-Sum

One of the simplest ways to aggregate the layer-wise graph representations is to
calculate their sum, as in350

hG =
L∑
l=1

h
(l)
G . (2.8)

This formulation expresses an assumption that the representation in each layer
is equally important in computing the final graph representation.

MLAP-Weighted

Each layer-wise representation may have varied importance depending on the355

layer index. If this is the case, computing a weighted sum would be adequate to
learn the importance of layers, as in

hG =
L∑
l=1

w(l)h
(l)
G , (2.9)

where
{
w(l)

∣∣ l ∈ {1, . . . , L}
}
is a trainable weight vector.

2.4 Experiments360

Our experimental evaluation aims to answer these research questions:

RQ1 Does the MLAP architecture improve the GNN performance in graph clas-
sification tasks?

RQ2 Does aggregating representations from multiple layers aid in learning dis-
criminative graph representation?365

We conducted experiments using four graph classification datasets: a synthetic
dataset and three real-world datasets.
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Figure 2.2: a) A graph in the synthetic dataset. It consists of the center component (black
edges), five peripheral components (gray edges), and five additional random edges (dotted
edges). The class of this graph is determined by the combination of the types of the center
component (type A) and the peripheral components (type B). b) Basic structure of a compo-
nent. c–e) Three types of components.

2.4.1 Synthetic Dataset
We created a synthetic dataset to show the effectiveness of MLAP using multi-
level representation in a graph-level classification task. We designed the dataset370

in such a way that its graph features are represented in both local and global
graph structures.

A graph in the dataset consists of six 5-node components: one center com-
ponent surrounded by five peripheral components, each of which shares a node
with the center component (Figure 2.2a). The basic structure of a component375

is five sequentially connected nodes (Figure 2.2b) with an extra edge. Based
on how the extra edge is appended, there are three types of components (Fig-
ure 2.2c–e). The class of a graph is determined by the combination of the type
of the center component and the type of the peripheral components. We note
that the five peripheral components share the same type. Therefore, there are380

3 × 3 = 9 classes of graphs. With this design, accurately classifying the graphs
in this dataset requires a model to learn both the local substructures in a graph
and the global structure as an entire graph (i.e., the combination of the types of
local substructures). Neither nodes nor edges in the graphs have features.

We generated 1,000 unique graphs for each class by randomly appending five385
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edges between arbitrarily selected pairs of nodes. Hence, there were 9,000 in-
stances in the dataset in total, and we applied a random 8:1:1 split to provide
training, validation, and test sets. Model performance was evaluated by the error
rate (1− Accuracy).

2.4.2 Real-World Benchmark Datasets390

We used two datasets from the open graph benchmark (OGB) [50] and the MCF-7
dataset from the TU graph dataset collection [51].

ogbg-molhiv

ogbg-molhiv is a dataset for a molecular property prediction task, originally in-
troduced in Wu et al. [52]. Each graph in the dataset represents a molecule.395

Each node in a graph represents an atom and has a 9-dimensional discrete-valued
feature containing the atomic number and other atomic properties. Each edge
represents a chemical bond between two atoms and has a 3-dimensional discrete-
valued feature containing the bond type and other properties. This dataset has
a relatively small sample size (41,127 graphs in total), with 25.5 nodes and 27.5400

edges per graph on average. The task is a binary classification to identify whether
a molecule inhibits the human immunodeficiency virus (HIV) from replication.
Model performance is evaluated by the area under the curve value of the radar
operator characteristics curve (ROC-AUC). We followed the standard dataset
splitting procedure provided by the OGB.405

ogbg-ppa

The ogbg-ppa dataset contains a set of subgraphs extracted from protein-protein
association networks of species in 37 taxonomic groups, originally introduced in
Szklarczyk et al. [53]. Each node in a graph represents a protein without node
features. Each edge represents an association between two proteins and has a410

7-dimensional real-valued feature describing the biological meanings of the asso-
ciation. This dataset has a medium sample size (158,100 graphs in total), with
243.4 nodes and 2266.1 edges per graph on average. The task is a classification
to identify from which taxonomic group among 37 classes an association graph
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originates. The performance of a model is evaluated by the overall classification415

accuracy. We followed the standard dataset splitting procedure provided by the
OGB.

MCF-7

MCF-7 is a chemical molecule dataset originally extracted from PubChem1. Each
graph in the dataset represents a molecule, and the task is a binary classification420

of whether a molecule inhibits the growth of a human breast tumor cell line.
Each node in a graph represents an atom and has a 1-dimensional discrete-valued
feature describing the atomic number. Each edge represents a chemical bond
between two atoms and has a 1-dimensional discrete-valued feature describing
the bond type. This dataset has a relatively small sample size (27,770 graphs in425

total), with 26.4 nodes and 28.5 edges per graph on average. Model performance
is evaluated by ROC-AUC. Because the TU dataset does not provide a standard
data split, we applied a random 8:1:1 split into training, validation, and test sets.

2.4.3 Model Configurations
We used the graph isomorphism network (GIN) [23] as the message passing layer2430

following the OGB’s reference implementation shown in Hu et al. [50], i.e., in
Eqs. (2.1) and (2.2),

m(l)
n =

∑
n′∈NBR(n)

ReLU
(
h

(l−1)
n′ + f

(l)
edge(qn′,n)

)
, (2.10)

h(l)
n = f

(l)
NN

(
(1 + ϵ(l)) · h(l−1)

n +m(l)
n

)
, (2.11)

435

where f
(l)
edge is a trainable function to encode edge features into a vector, f (l)

NN is
a two-layer neural network for transforming node representations, and ϵ(l) is a
trainable scalar weight modifier.

We varied the number of GIN layers L from 1 to 10 to investigate the impact
of depth in model performance. We fixed the node representation dimension d440

1https://pubchem.ncbi.nlm.nih.gov
2We note that the MLAP architecture is applicable to any GNN models irrespective of the

type of message passing layers.
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to 200 and added a dropout layer for each GIN layer with a dropout ratio of 0.5.
In addition, each message passing operation is followed by a GraphNorm opera-
tion [45] before dropout under the GraphNorm (+) configuration. We optimized
the model using the Adam optimizer [54].

The dataset-specific settings are detailed below.445

Synthetic Dataset

As the graphs in the synthetic dataset do not have the node features or edge
features, we set pn = 0 and qnsrc,ndst = 0. Each GIN layer had an edge feature
encoder that returned a constant d-dimensional vector.

In addition to GNN, each model learned an embedded class representation450

matrix E ∈ R9×d. The probability with which a graph belongs to the class c was
computed by the softmax function:

P (c|G) = softmax (Ec · hG + bc) =
exp (Ec · hG + bc)∑9

c′=1 exp (Ec′ · hG + bc′)
, (2.12)

where Ec is the c-th row vector of E, and bc is the bias term for the class c.
The models were trained against a cross-entropy loss function for 65 epochs.455

The initial learning rate was set to 10−3 and decayed by ×0.2 for every 15 epochs.
The batch size was 50.

ogbg-molhiv

We used the OGB’s atom encoder for computing the initial node representation
h

(0)
n from the 9-dimensional node feature. We also used the OGB’s bond encoder460

as f (l)
edge, which takes the 3-dimensional edge feature as its input.
After computing the graph representation hG, a linear transformation layer

followed by a sigmoid function computes the probability with which each graph
belongs to the positive class, as in

P (positive|G) = σ (wprob · hG + b) , (2.13)465

where σ is a sigmoid function, and wprob is a trainable row vector with the same
dimension d as the graph representation vectors. b is the bias term.
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The models were trained against a binary cross-entropy loss function for 50
epochs. The initial learning rate was set to 10−4 and decayed by ×0.5 for every
15 epochs. The batch size was set to 20 to avoid overfitting.470

ogbg-ppa

We set pn = 0 because this dataset does not have node features. We used a
two-layer neural network as f (l)

edge to embed the edge feature.
The multi-class classification procedure and the hyperparameters for opti-

mization were identical to those used for the synthetic dataset, except that the475

number of classes was 37 and that the models were trained for 50 epochs.

MCF-7

We trained a vector embedding for node features as h
(0)
n and another vector

embedding for f (l)
edge in Eq. (2.10).

The binary classification procedure and the hyperparameters for optimization480

were identical to those used for ogbg-molhiv.

2.4.4 Performance Evaluation (RQ1)

Baseline Models

We compared the performance of GNN models using our MLAP framework (Fig-
ure 2.1c) with two baseline models. One was a naive GNN model that simply485

stacked GIN layers, wherein the representation of a graph was computed by pool-
ing the node representations after the last message passing (Figure 2.1a), as in

hG = Pool
({

h(L)
n

∣∣ n ∈ N
})

. (2.14)

We used the same attention pooling as MLAP, that is,

hG =
∑
n∈N

softmax
(
fgate(h

(L)
n )

)
h(L)

n . (2.15)490

The other was the JK architecture [14], which first computed the final node
representations by aggregating layer-wise node representations, and the graph
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representation was computed by pooling the aggregated node representations
(Figure 2.1b) [23], as in

hG = Pool
({

h(JK)
n

∣∣ n ∈ N
})

. (2.16)495

Here, h(JK)
n is the aggregated node representation computed from the layer-wise

node representation, as in

h(JK)
n = fJK

({
h(l)

n

∣∣ l ∈ {1, . . . , L}
})

, (2.17)

where fJK is the JK’s aggregation function, for which we tested all three variants
proposed in Xu et al. [14]—Concatenation, MaxPool, and LSTM-Attention—and500

Sum used in the OGB’s reference implementation, defined as

fJK
({

h(l)
n

∣∣ l ∈ {1, . . . , L}
})

=
L∑
l=1

h(l)
n . (2.18)

Finally, the graph representation was computed using the attention pooling, as
in

hG =
∑
n∈N

softmax
(
fgate(h

(JK)
n )

)
h(JK)

n . (2.19)505

For each architecture, we trained models with varying depth (1–10).

Statistical Analyses

We trained models using 30 different random seeds, except for ogbg-ppa, for
which we used 10 seeds because the dataset is bigger than others and requires a
long time for training. The performance of an architecture with a certain depth510

was evaluated by the mean and the standard error.
Among each of the naive, JK, and MLAP architecture, we selected the best

model configuration in terms of depth, type of aggregator, and GraphNorm (+)
or (−). Then, we compared the performance of the best MLAP model to the
best naive models and the best JK models using the Mann-Whitney U -test. In515

addition, we computed the effect size. Given the test statistic z from the U -test,
the effect size r was computed as r = z/

√
N , where N is the total number of

samples.

20



2.4.5 Analyses on Layer-Wise Representations (RQ2)
We analyzed the layer-wise graph representations to investigate the effectiveness520

of the MLAP architecture in learning discriminative graph representations. First,
we computed the layer-wise graph representations and the final graph represen-
tation after MLAP aggregation for each graph in the datasets. We conducted
two different analyses on these embedded representations.

t-SNE Visualization525

We visualized the distribution of those representations in a two-dimensional space
using t-SNE [55]. The t-SNE hyperparameters were as follows: the learning rate
was 50, the number of iterations was 3000, and the perplexity was 20.

Training Layer-Wise Classifiers

We trained layer-wise classifiers to evaluate the goodness of the layer-wise530

representations quantitatively. We followed the classifier implementations in
Eqs. (2.12) and (2.13), but the graph representation terms hG in those equations
were replaced by the layer-wise representations h(l)

G . These classifiers were trained
on the representations of the training set. The classification performances were
tested against the representations of the test set. The classifiers were optimized535

by the Adam optimizer for 30 epochs with a learning rate of 10−3.

2.5 Results

2.5.1 Model Performances (RQ1)
We first selected the best model in terms of depth, type of aggregator, and Graph-
Norm (+) or (−) based on the validation performance summarized in Figures 2.3–540

2.63. Then, we evaluated the selected models’ performances using the test set
(Table 2.1) and performed statistical analyses (Table 2.2).

3For legibility, we only plotted the results of naive architecture, the best one among four JK
architectures, and the best one between two MLAP architectures in Figures 2.3–2.6. The full
results are available in Appendix A.1.
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Figure 2.3: The validation performances for the synthetic dataset. Full results are provided
in Appendix Table A.2.

Figure 2.4: The validation performances for the ogbg-molhiv dataset. Full results are provided
in Appendix Table A.3.

Synthetic Dataset

The Synthetic column of Table 2.1 summarizes the test performance in the syn-
thetic dataset experiments. The 9-layer MLAP-Sum with GraphNorm model545

performed the best (0.0150 ± 0.0006). It was better than the best performance
of the baseline models: 0.0163 ± 0.0005 for 10-layer JK-LSTM-Attention with
GraphNorm. In other words, the error rate was decreased by 8.4%. The sta-
tistical tests showed that MLAP performed significantly better than both the
naive and the JK architectures (Table 2.2). The effect sizes (0.345 and 0.226)550
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Figure 2.5: The validation performances for the ogbg-ppa dataset. Full results are provided
in Appendix Table A.4.

Figure 2.6: The validation performances for the MCF-7 dataset. Full results are provided in
Appendix Table A.5.

were considered as moderate to small, according to the classification provided in
Cohen [56, Section 3.2].

ogbg-molhiv

The ogbg-molhiv column of Table 2.1 summarizes the test performance in the
ogbg-molhiv experiments. The best performance was achieved by the 2-layer JK-555

Sum with GraphNorm model (0.7708±0.0030). The performance of the JK model
was better than the best MLAP model (6-layer MLAP-Sum with GraphNorm,
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Synthetic ogbg-molhiv ogbg-ppa MCF-7
Aggregator (L) GN Aggregator (L) GN Aggregator (L) GN Aggregator (L) GN

Base Test perf. Test perf. Test perf. Test perf.

naive
- (9) (+) - (2) (+) - (1) (+) - (3) (+)

0.0175 ± 0.0007 0.7567 ± 0.0034 0.7184 ± 0.0011 0.8572 ± 0.0012

JK
LSTM-Att. (10) (+) Sum (2) (+) LSTM-Att. (1) (+) Sum (7) (+)

0.0163 ± 0.0005 0.7708 ± 0.0030 0.7198 ± 0.0013 0.8572 ± 0.0012

MLAP
Sum (9) (+) Sum (6) (+) Sum (1) (+) Sum (5) (+)
0.0150 ± 0.0006 0.7651 ± 0.0027 0.7183 ± 0.0012 0.8634 ± 0.0011

Table 2.1: The test performances (mean ± standard error) of the selected models. We chose
the best combination of the aggregator and the model depth. GN: GraphNorm; LSTM-Att.:
LSTM-Attention.

0.7651±0.0027), but the difference was not statistically significant, and the effect
size was small (0.153). MLAP performed significantly better than the naive model
(2-layer with GraphNorm, 0.7567± 0.0034).560

ogbg-ppa

The ogbg-ppa column of Table 2.1 summarizes the test performance in the ogbg-
ppa experiments. The best performance was 0.7198± 0.0013 (1-layer JK-LSTM-
Attention with GraphNorm). For this dataset, the single-layer model performed
the best within each architecture; hence, six out of seven types of models (naive,565

JK-Sum/-Concat/-MaxPool, and MLAP-Sum/-Weighted) have exactly the same
form. Only JK-LSTM-Attention has extra parameters, and thus it is reasonable
that it achieved the best performance owing to these parameters, rather than the
hierarchical graph representations.

MCF-7570

The MCF-7 column of Table 2.1 summarizes the test performance in the MCF-7
experiments. MLAP-Sum achieved the best test performance (L=5 with Graph-
Norm, 0.8634 ± 0.0011). These performances are significantly better than the
baseline performances with moderate to large effect sizes (0.407–0.418).
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Synthetic ogbg-molhiv ogbg-ppa MCF-7
Comparison p E.S. p E.S. p E.S. p E.S.
MLAP vs. naive *0.004 0.345 *0.039 0.229 0.367 −0.085 *< 10−3 0.418
MLAP vs. JK *0.039 0.226 0.120 −0.153 0.192 −0.203 *< 10−3 0.407

Table 2.2: The statistical analysis results. We compared the best performance among MLAP
models to naive models and JK models. p: p-value of the Mann-Whitney U -test. *: significant
difference. E.S.: effect size r. Note that the negative values mean that the naive architecture
or JK was better than MLAP.

2.5.2 Analyses on Layer-Wise Representations (RQ2)4575

Synthetic Dataset

We visualized the learned layer-wise and the aggregated graph representations by
a 10-layer MLAP-Sum model with a validation error rate of 0.9056 (Figure 2.7).
There were 3×3 = 9 classes of graphs in the dataset, determined by the combina-
tion of the center component type and the peripheral component type (top-right580

panel in Figure 2.7). The representations in the lower layers were highly dis-
criminative for the peripheral types shown by the brightness of the dots. For
the center types shown by the hue (i.e., red, green, and blue), the higher layers
(Layer 6–8) seemed to have slightly better discriminative representation than the
lower layers, although it was not as clear as peripheral types. The aggregated585

representations were clearly discriminative for both the center and the peripheral
types.

We quantitatively evaluated this observation using layer-wise classifiers for all
trained 10-layer models with 30 different random seeds. Figure 2.8a shows the
layer-wise classification performance on the training and the test sets. Although590

the test error rate for each layer-wise representation was not under 0.60, the
aggregated representation by MLAP achieved a significantly smaller error rate
(0.2093± 0.0096; U -test, p < 10−5 [Bonferroni corrected]).

In addition to the 9-class classifiers, Figure 2.8b shows the layer-wise clas-
sification performance under the 3-class settings—each classifier was trained to595

4In these analyses, we used GraphNorm (−) models so that we can avoid the interaction
between MLAP and GraphNorm.
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Figure 2.7: The layer-wise graph representations for the graphs in the synthetic dataset. They
are visualized in two-dimensional spaces using t-SNE. Dots in each color represent samples in
a class.

Figure 2.8: The training and test classification performances of the layer-wise representations
computed for the graphs in the synthetic dataset. The “Agg.” in the horizontal axis indicates
the classifier’s performance trained with the graph representations after MLAP aggregation. a)
9-class. b) 3-class (center or peripheral).

predict either the center type or the peripheral type. The results in Figure 2.8b
show the discriminability among three peripheral types had the peak at Layer
1–3, and aggregating those layer-wise representations resulted in an error rate
of almost 0. On the other hand, the discriminability among center types was
better in higher layers (Layer 5–9), but the layer-wise error rate (best: 0.5152)600

was higher than that of peripheral types. Nonetheless, the aggregated represen-
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Figure 2.9: The layer-wise graph representations for ogbg-molhiv graphs. They are visualized
in two-dimensional spaces using t-SNE. Each gray dot represents a negative sample, whereas
each black dot represents a positive sample.

Figure 2.10: The training and test classification performances of the layer-wise representa-
tions computed for ogbg-molhiv graphs. The “Aggregated” in the horizontal axis indicates the
classifier’s performance trained with the graph representations after MLAP aggregation.

tation achieved an error rate of 0.2142, which was much better than any of the
layer-wise representations. The 9-class classification performance (Figure 2.8a)
had its peak in middle layers (Layer 3–5), which was right in between the two
3-class classifiers. These results are consistent with the qualitative observation in605

Figure 2.7, which indicates that the graph structures in different level of locality
were captured in different MLAP layers.

ogbg-molhiv

In Figure 2.9, we show the layer-wise representations by a 5-layer MLAP-
Weighted model trained with the ogbg-molhiv dataset with a validation AUC610

27



Figure 2.11: The layer-wise graph representations for ogbg-ppa graphs. They are visualized
in two-dimensional spaces using t-SNE. Dots in each color represent samples in a class.

Figure 2.12: The training and test classification performances of the layer-wise representations
computed for ogbg-ppa graphs. The “Aggregated” in the horizontal axis indicates the classifier’s
performance trained with the graph representations after MLAP aggregation.

score of 0.8282. Each gray dot represents a negative sample, whereas each black
dot represents a positive sample. The discriminability between the two classes
was slightly better in the lower layers. Aggregating those representations by con-
sidering a weighted sum produced a more localized sample distribution than any
representations in the intermediate layers.615

The analysis using the layer-wise classifiers supported the intuition obtained
from the t-SNE visualization. Figure 2.10 shows the training and test AUC scores
for each layer-wise classifier. The best test score among the intermediate layers
(0.7378± 0.0038) was marked at Layer 3, and the score after MLAP aggregation
was better than this (0.7530±0.0031). The differences in discriminability between620
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Figure 2.13: The layer-wise graph representations for MCF-7 graphs. They are visualized in
two-dimensional spaces using t-SNE. Each gray dot represents a negative sample, whereas each
black dot represents a positive sample.

Figure 2.14: The training and test classification performances of the layer-wise representations
computed for MCF-7 graphs. The “Aggregated” in the horizontal axis indicates the classifier’s
performance trained with the graph representations after MLAP aggregation.

each layer-wise representation and the aggregated representation were significant
(U -test, p = 0.012 between Layer 3 and aggregated, p < 10−5 for other layers
[Bonferroni corrected]) with moderate to large effect sizes (r = 0.366–0.855).

ogbg-ppa

Figure 2.11 shows the t-SNE visualization results of the layer-wise representation625

by a 3-layer MLAP-Sum model (Accuracy = 0.6854). Layer 3 showed the best
discriminative representation, whereas representations in Layer 1 and 2 did not
seem clearly discriminative. Furthermore, the discriminability in the MLAP-

29



aggregated representation seemed at a similar level to Layer 3.
The layer-wise classifier analysis also showed similar results (Figure 2.12). The630

representations in Layer 3 achieved the best test score (0.6758 ± 0.0029). The
score for the aggregated representations was slightly better (0.6952 ± 0.0029),
whereas the differences in discriminability between each layer-wise representation
and the aggregated representation were significant (U -test, p = 0.001 between
Layer 3 and aggregated, p < 10−3 for other layers [Bonferroni corrected]) with635

large effect sizes (r = 0.761–0.845).

MCF-7

Figure 2.13 shows the layer-wise representation by a 4-layer MLAP-Sum model
(AUC = 0.8437). Layer 2 showed the best discriminative representation among
layers 1–4, and the discriminability in the aggregated representation was even640

better.
The layer-wise classifier analysis supported the qualitative results. The test

performance of the layer 2 and the aggregated representations were 0.7295±0.0040

and 0.8149 ± 0.0016, respectively, and the latter was significantly better than
any layer-wise representations (p < 10−5 [Bonferroni corrected], effect size r =645

0.859).

2.6 Discussion
In this study, we proposed a compositionality-aware GNN architecture called
MLAP, which introduces layer-wise attentional graph pooling layers and com-
putes the final graph representation by unifying the layer-wise graph represen-650

tations. Experiments showed that our MLAP framework, which uses the struc-
tural information of graphs from multiple levels of localities, significantly im-
proved the classification performance in two out of four tested datasets, and it
showed less inferior performances to baseline methods in other two datasets. The
performance of the naive architecture tended to degrade as the number of lay-655

ers increased. This is because the deep naive models lost the local structural
information through many message passing steps due to oversmoothing, even
though the GraphNorm might mediate the effect of oversmoothing. On the other
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hand, the difference in performance between MLAP and JK would be because
of the operation order between the graph pooling and the information aggrega-660

tion from multiple levels of localities. MLAP computes the graph representations
by fagg

(
Pool(l)(h(l)

n )
)
, whereas JK computes them by Pool

(
fJK(h

(l)
n )

)
. As JK

aggregates the node representations from multiple levels of localities before the
pooling, it may be difficult for the attention mechanism to learn which node to
focus on. In other words, structural information in a specific locality might be665

squashed before the pooling operation. By contrast, the MLAP architecture can
tune the attention on nodes specifically in each information locality because it
preserves the representations in each locality independently. It is also supported
by the observation that, for datasets with hierarchical nature, MLAP performed
better than JK even if JK has an aggregator with high expressivity such as670

LSTM-Attention5.
The analyses on the layer-wise graph representations supported our motiva-

tion behind MLAP—GNN performance can be improved by aggregating represen-
tations in different levels of localities. In the analyses using the synthetic dataset,
the discriminability of the representations in the higher layers were worse than675

that in the lower layers (Figure 2.8). However, using 3-class classifier analyses,
we showed that the learned representations had better discriminability of the pe-
ripheral types in the lower layers, whereas the discriminability of the center type
was better in higher layers. These results indicated that, even though the ap-
parent classification performances in higher layers were low, those layers indeed680

had essential information to classify the graphs in the dataset correctly. Aggre-
gating layer-wise representations from multiple steps of message passing has the
potential to reflect all the necessary information from various levels of localities
in the final graph representation, resulting in performance improvement. The
results from real-world dataset experiments were also supportive. For the molec-685

ular datasets (ogbg-molhiv and MCF-7), the performance improvement by MLAP
would be because of the hierarchical structure of biochemical molecules, whose
function is determined by the combination of commonly observed substructures
such as carbohydrate chains and amino groups. The MLAP architecture would

5In addition, it is provable that MLAP encompasses JK under certain conditions. See A.2
for the proof.
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effectively capture such patterns in lower layers and their combinations in higher690

layers. Similarly, MLAP also performed well for ogbg-ppa datasets when the
model did not have GraphNorm. This might be because protein-protein associa-
tion graphs have fractal characteristics [57], for which aggregating multi-locality
features would be beneficial. These results imply that MLAP can use the compo-
sitional nature of the graphs—the feature of a whole graph is determined based695

on the combination of the features of smaller subgraphs.
The aggregation mechanism of the layer-wise representations in JK and

MLAP has the advantage of being able to coincide with nearly any other GNN
technique. For example, we can apply JK or MLAP for any backbone GNN
architecture (e.g., GCN, GIN, GAT). In addition, they can co-exist with the700

residual connection architectures or normalization techniques. The aggregation
mechanism potentially improves the performance of GNN models coordinately
with these techniques. Many previous GRL studies have adopted JK architec-
ture in their models and reported performance improvement. In this study, we
followed the idea to aggregate layer-wise representations, and we showed that705

combining the aggregation mechanism with layer-wise attention pooling can fur-
ther improve the learned graph representation for graph-level classification tasks.
Our experimental results validated that MLAP can be used with GraphNorm [45].
The performance of MLAP + GraphNorm was significantly better than naive +
GraphNorm and JK + GraphNorm for the synthetic and MCF-7 dataset, al-710

though it was comparable to the baselines for the OGB datasets. Comparing
these results to those observed in without-GraphNorm configuration, the advan-
tage of MLAP over naive and JK was relatively weakened under the existence
of GraphNorm. We consider that it is because GraphNorm normalizes the node
representation across the entire graph, which might prevent MLAP from learning715

the representation of the local structures.
Another interesting observation is that MLAP-Weighted performed worse than

MLAP-Sum in some datasets. We speculate that having weight parameters for
layers in the aggregation process might induce instability in the training phase.
A.3 provides preliminary results supporting this hypothesis. We will continue720

analyzing the cause of this phenomenon, and it may provide new insights toward
further improvements in the MLAP architecture.
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2.6.1 Concluding Remarks
In this study, we proposed the MLAP architecture for GNN models, that explic-
itly makes use of the compositionality in graphs. The results suggested that the725

proposed architecture was effective to learn graph representations with high dis-
criminability. There are many kinds of real-world networks whose properties are
represented in the substructures with multiple levels of localities, and applying
MLAP may improve the performances of GRL models.
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Chapter 3730

MLAP for graph2seq: Utilizing
Compositionality in Generating
Sequence from Graph

We proposed the MLAP architecture for GNNs and demonstrated how it improves
the model performance in graph classification tasks in the previous chapter. In735

this chapter, we extend the MLAP architecture for generating sequences from
graphs (graph2seq learning). As a real-world example, we apply it in a source
code summarization task and demonstrate that it achieves a SoTA performance.

3.1 Introduction
Graphs are a type of data structure that is capable of encoding a set of rich740

pairwise information among elements. However, in exchange for the expressiv-
ity of a complex graph, it is often difficult for humans to find patterns in such
a graph. Therefore, there exists a growing interest in learning to generate a
human-interpretable output from a graph. In this study, we focus on generating
a sequence of discrete symbols from a graph, known as graph2seq tasks. For ex-745

ample, if we could generate a natural question from knowledge graphs, we could
use them to develop an artificial intelligent agent that can interact with peo-
ple [58, 59]. Furthermore, we could solve a path-planning problem as an instance
of graph2seq tasks when we regard the input map as a graph [60].
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Moreover, traditional sequence to sequence (seq2seq) tasks, like neural ma-750

chine translation (NMT), could benefit from transforming them into graph2seq
tasks. Seq2seq studies have achieved significant successes by introducing the
encoder-decoder architecture. Pioneering studies applied recurrent neural net-
works to encode the input sequence [61, 62], and later transformer-based archi-
tectures dominated the field [63, 64]. Either way, the input to the models are755

processed as one-dimensional sequences. On the other hand, many kinds of input
sequences in seq2seq tasks can actually be represented as graphs with enriched
information. In many cases, we can derive rule-based conversions from raw in-
put sequences to graphs by considering the context and the compositionality
in the sequence—e.g., we can convert a natural language sentence to a graph760

by analyzing its grammatical structure and dependency relations. Because of
such additional information, we can expect that graph2seq models utilizing graph
structures in seq2seq tasks have a potential to learn improved representations [65].

Therefore, developing a graph2seq model using GNNs has recently piqued the
interest. For example, Marcheggiani and Perez-Beltrachini [66] introduced a sim-765

ple graph2seq model that combines a GCN encoder and an LSTM decoder to gen-
erate a text description from a resource description framework graph or a semantic
dependency graph. Xu et al. [67] proposed an attention-based graph2seq model
for graph reasoning tasks like bAbI or shortest path search. Chen et al. [68] and
Wei et al. [69] applied similar attentional graph2seq techniques in question gener-770

ation and opinionated text summarization tasks, respectively. Zhu et al. [70] and
Cai and Lam [71] proposed graph-transformer-based graph2seq methods, which
consider the relationship not only between neighbor nodes but also between dis-
tant nodes. However, these methods did not consider the compositionality and
hierarchy of the relations among nodes. Chen et al. [68] proposed the Hetero-775

geneous Graph Transformer, that explicitly considers the hierarchy in the input
graphs. It splits the original graph into multiple subgraphs and computes the
graph representation by aggregating the subgraph representations. It improved
the performances of multiple text generation tasks including NMT, owing to its
ability to utilize the compositional nature of graphs. However, HetGT only con-780

siders single-level hierarchy.
Our assumption in this study is that considering multi-level compositionality

35



in the graphs is effective to learn good representation for generating sequences.
The output sequences of graph2seq tasks often have multi-level compositional
nature. For example, words in a sentence form local phrases—e.g., an adjective785

generally modifies a noun next to the adjective—and then phrases link each other
and form longer parts. Here, we speculate that the compositionality in a graph
can be associated to the compositionality of the output sequence.

In this study, we apply the MLAP architecture for graph2seq learning, and
demonstrate that the compositionality-aware GNN architecture is effective to790

learn graph representations for generating sequence. As a real-world example,
we take up the “extreme source code summarization” task—generating a short
natural language summary of a software program snippet [72]. Although program
source code is usually written in a programming language (e.g., C, Java, Python)
and represented as a sequence of tokens, it can be converted into graphs by syn-795

tactic rules of the language (see Section 3.2.2). Also, each function in source
code has a name summarizing the behavior of the part of program. Therefore,
a task to estimate the function name from a program graph is a good example
of graph2seq learning. Representation learning on source code itself has a rich
literature (we refer readers to Section 3.2 for related studies). However, many800

of the methods proposed in those studies do not explicitly consider the compo-
sitionality of source code at all, or if they do, they consider only a part of it.
Program graphs have both short and long dependencies in them, that is, short
dependencies form individual operations and longer ones structure complex al-
gorithms. Therefore, considering compositionality in the graphs can improve the805

performance. In this study, we train a MLAP model on a source code dataset
and show that our proposed method outperforms the SoTA model.

The rest of this chapter is organized as follows: Section 3.2 summarizes related
studies on machine learning techniques for source code, Section 3.3 extends the
MLAP framework for graph2seq learning, Section 3.4 describes the setup for810

the source code summarization experiments, and Section 3.5 and Section 2.6
demonstrates and discusses the results.
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3.2 Related Works
One of the primary goals of software engineering research is to develop methods
and tools that reduce the complexity of the software development process and815

thus the mental burden on programmers. To achieve this goal, initial studies
for artificial program comprehension focused on formal methods based on pred-
icate logic (see D’silva et al. [73] for a review paper and Bérard et al. [74] for
an introductory book). Although these formal logic-based techniques achieved
remarkable success in program verification and bug finding, the lack of flexibility820

in those techniques restricted the real-world application.
Rather than formal analyses, researchers started seeking techniques to learn

representation models of source code. The open-source software (OSS) ecosystem
has grown rapidly in recent years , providing software engineering researchers with
a plethora of freely-available real-world-oriented source code. Using these source825

code, machine learning models learn how to embed source code into vector rep-
resentations and use them to solve software engineering tasks. Hindle et al. [75]
facilitated this idea by introducing the naturalness of source code, assuming that
common styles to write natural programs can be modeled as statistical distri-
butions. Subsequently, Allamanis et al. [76] named this research trend machine830

learning for big code.
In this section, we review the recent big code studies in terms of how they

compute the code representation. These studies can be classified into two cate-
gories: one using natural language processing (NLP) techniques, and the other
using GNNs.835

3.2.1 Natural Language Processing-Based Methods for
Big Code

Many big code studies adopted methods developed for NLP because source code is
written as sequences of tokens. For example, Movshovitz-Attias and Cohen [77]
used n-gram topic models to predict class-level comments. Corley et al. [78]840

and Bavishi et al. [79] used token contexts, which comprise neighbor tokens of a
token, to learn the token-wise representation. Allamanis et al. [80] also used token
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contexts, but they trained method- and class-level representations for predicting
their names. Dam et al. [81] used long short-term memory (LSTM) to learn the
representation of source code snippets.845

In NLP, the attention mechanism introduced by Bahdanau et al. [25] demon-
strates a drastic performance improvement, and thus majority of the recent NLP
models adopted it. Led by the success in NLP, program comprehension models
have applied the attention mechanism as well. Iyer et al. [82] trained an LSTM
model with the attention mechanism to generate a natural language summary for850

an input source code. Jiang et al. [83] also used an attentional recurrent neural
network (RNN) model to generate a summary given a set of code changes. Xu
et al. [84] proposed a hierarchical attentional RNN model to improve the code
representation. They first divided a function to multiple basic blocks6 and then
trained a model composed of a token-level RNN and a block-level RNN. They855

demonstrated that the hierarchical attention architecture improved the model
performance in the function naming task. Rather than using RNN, Allamanis
et al. [72] proposed to compute the code representation as an attention-weighted
sum of token embeddings. They used a one-dimensional CNN over the token
sequence to compute the attention weight in a context-dependent way.860

Of late, Vaswani et al. [63] proposed a model called transformer. Rather than
using RNNs to process sentence as sequences, the transformer model considers
a sentence as a set of words and computes the representation entirely using the
attention mechanism. Based on the transformer, massively pretrained models
have dominated the field of NLP. These pretrained models—BERT [64], GPT [85],865

or XLNet [86]—learn embedded representations of sentences in an unsupervised
manner, and then they are fine-tuned against specific tasks. Big code studies
instantly adopted these techniques. Kanade et al. [87] applied the BERT to
Python code dataset, and demonstrated the improved performance in multiple
classification tasks. Feng et al. [88] trained a bimodal BERT model of source code870

and natural language to generate natural language summaries for given source
code. Svyatkovskiy et al. [89] applied GPT-2 [90] on the source code dataset for
a code completion task. In addition, Roziere et al. [91] proposed a transformer-
based encoder-decoder model to translate source code written in one programming

6A basic block is a set of sequentially executed statements without jumps.
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if (arg � 0) {
    x = func();
} else {
    x = 42;
}

if

equals

arg 0

assign

x call

func

assign

x 42

a) b)

Figure 3.1: An example of an abstract syntax tree. The syntactic properties expressed in the
code snippet (a) is equally represented as an AST (b), emphasizing the compositionality of the
source code and discarding the minor syntactic details like brackets or semicolons.

language to another, such as C to Java.875

These studies have been developed utilizing a rich literature in NLP research.
However, as they process source code as sequences of tokens, they find difficul-
ties in capturing the compositionality in source code. As a result, those models,
particularly recent transformer-based ones, require hundreds of millions of param-
eters to solve the tasks. Programming languages have strictly defined syntaxes,880

unlike natural languages which have ambiguities, and thus we should be able to
take advantage of this property.

3.2.2 Using Graph Structures in Programs
Although source code is commonly written as a linear sequence of tokens, a
compiler or an interpreter internally converts the source code into graphs repre-885

senting the context and the compositionality of the source code. For example,
an abstract syntax tree (AST) represents the syntactic structure of source code
(Figure 3.1). Source code can be hierarchically decomposed into modules, func-
tions, statements, expressions, etc.; an AST represents such compositionality in
the source code. Each non-leaf node represents a syntactic element (e.g., a for890

statement or a variable assignment) whereas each leaf node represents an operand
(e.g., a variable name or a constant). Another example is a control flow graph
(CFG) representing all possible computation paths that can be traversed during
program execution. A CFG is a directed acyclic graph wherein each node repre-
sents a statement or a block of statements that are executed sequentially without895

branching. Hence, a CFG represents the context of computation of a program.
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Several pioneering studies showed that machine learning models for big code
can greatly benefit from such data structures, because the structures allow mod-
els to focus on the core semantics of programs [92–94]. Hence, recent big code
studies actively explore methods to incorporate the program graphs (e.g., ASTs900

or CFGs) to improve the embedded representation of code. These studies can
be divided into two categories: 1) linearlize the graphs to avoid direct handling
of the structures in indeterminate forms, or 2) use neural networks designed for
graph structures, including but not limited to GNNs.

Graph Linearization905

DeFreez et al. [95] proposed FUNC2vec, which used a random walker to linearize
pushdown system graphs (similar to CFGs). The random walker samples the
valid control paths during execution which we can use for representing the be-
havior of the program under a specific context. Using the set of control paths,
representation of the program is trained by the continuous bag-of-words method910

proposed for word2vec [96]. Code2vec [97] and code2seq [98] defined the path
contexts to linearlize ASTs. A path context is composed of a pair of leaf nodes
in an AST and the sequence of non-leaf nodes on the path connecting those two
leaves. Code2vec and code2seq first compute the representation for each path
context and then the final code representation by aggregating path context rep-915

resentations using attention mechanism.
Methods based on graph linearization are useful because one can build their

models upon the rich resources of standard machine learning techniques. How-
ever, extracting linearized paths from graphs is often computationally expensive.
For example, path contexts used in code2vec and code2seq can be defined for any920

pair of leaf nodes [97, 98]. Thus, there are N2 possible paths for an AST with N

leaves, which can be an impractically large number for large code snippets. Al-
though Alon et al. [97] claimed that sampling a small proportion of possible paths
is enough to train a good model, this kind of sampling may damage the model
expressivity, particularly for large code snippets. In addition, the linearization925

procedure often occludes the compositionality of the structured data.
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Neural Network Methods for Graphs

Recent big code studies focused more on processing program graphs as is us-
ing specially tailored neural network techniques, rather than linearizing them.
Peng et al. [99] and Mou et al. [100] introduced tree-based convolutional neural930

networks (TBCNNs) for ASTs. TBCNNs recursively compute the vector rep-
resentation of nodes from the leaves of an AST to the root by aggregating the
child nodes’ representations; hence it can be regarded as a special case of recent
message-passing GNN where a graph does not have cycles. Subsequently, Zhang
et al. [101] used TBCNN to compute statement-wise representation in a func-935

tion and learn function representation by aggregating the sequence of statement
representations using gated recurrent unit [61].

Rather than building these kinds of tailored neural network models, use of
GNNs has become popular (see Section 2.2 for the history of GNN). These ap-
proaches can also be seen as graph2seq applications in big code studies. Program940

comprehension studies using GNNs commonly used augmented ASTs, because
using GNNs on tree data structure—which is a very sparse graph structure—is
inefficient. Allamanis et al. [102] and Fernandes et al. [65] trained gated graph
neural network [13] on ASTs augmented with edges connecting consecutive tokens
and those representing variable dependency. Based on these studies, Cvitkovic945

et al. [103] further augmented ASTs with a vocabulary cache, which helps the
model to detect the semantic connection between variables. Liu et al. [104] used
a retrieval database, which connects the input source code to a set of similar
source code, to augment ASTs and applied a novel hybrid graph2seq model.

Using program graphs as the inputs might help the models to capture the950

compositionality of programs, but they can only do so in implicit manners because
they use the graph representations after fixed numbers of message passing steps.
Therefore, in this study, we apply MLAP to a source code summarization task and
show that explicitly considering the compositionality of program graphs improves
the learned representation.955
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3.3 Methods—MLAP for graph2seq Learning
In this section, we extend the MLAP architecture introduced in Section 2.3 for
graph2seq tasks. We evaluate two types of sequence decoder in this study: Linear
and LSTM. The former selects elements in a sequence independently, whereas the
latter considers the context through the sequence.960

In both the cases, suppose we have computed the layer-wise representations
h

(l)
G (l = 1, . . . , L) and the final graph representation hG in Eq. (2.5) and Eq.

(2.7), respectively.

3.3.1 Linear Decoder
The most simple implementation of a decoder uses a linear word classifier solely965

based on the final graph representation, independently for each position in the
decoded sequence. That is, we use five independent classifiers if we want to decode
five-word sequences.

The model learns position-wise embedded representation matrix for the target
vocabularyEvoc

i ∈ RNvoc×d for each position i, whereNvoc is the size of vocabulary970

that consists the generated sequence. Here, the words in the vocabulary with ids
0, 1, and 2 have special meanings: the start of a sentence (SOS), an unknown
word (UNK), and the end of a sentence (EOS).

The selection probability for a word w from vocabulary in each position is
computed as975

pi,w = softmax
(
hG ·Evoc

i,w + bi,w
)

∀ i ∈ {1, . . . , I}, (3.1)

where bi is a bias parameter and I is the length of decoded sequences. If one or
more classifiers select the word EOS for any positions, the words after the first
EOS are ignored.

3.3.2 LSTM Decoder980

The aforementioned Linear decoder is rather naive, and each word is decoded in-
dependent of other words. Thus, it cannot consider the context among decoded
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words. Instead, we can use a LSTM-based decoder with an attention mecha-
nism [105] to generate a sequence from those representations.

In this case, the model learns an position-invariant embedded representation985

matrix for the target vocabulary Evoc ∈ RNvoc×d.
We first initialize the LSTM state hdec

0 and the memory cell mdec
0 using the

aggregated graph representation as

hdec
0 = hG, (3.2)

mdec
0 = hG. (3.3)990

At the step t (t = 1, . . . , T ), the state and the memory cell are updated by a
standard LSTM [106].

hdec
t ,mdec

t = LSTM(xdec
t ,hdec

t−1,m
dec
t−1), (3.4)

xdec
t =

Evoc
SOS if t = 0,

ydec
t−1 otherwise.

(3.5)995

Here, ydec
t is the output of the decoder at t (see following).

To determine the output, the model first compute a context vector using an
attention mechanism over the layer-wise and final graph representations. Here,
for notation simplicity, we consider h(L+1)

G be hG, and then the computation is as1000

cdec
t =

L+1∑
l=1

softmax
(
h

(l)
G · hdec

t

)
h

(l)
G . (3.6)

Then, it computes the output as follows.

ydec
t = tanh

(
LayerNorm

(
W dec · [cdec

t ;hdec
t ] + bdec)) , (3.7)

where W dec and bdec are trainable parameters. The selection probability for each
word in the vocabulary at t is computed as1005

pt,w = softmax
(
ydec
t ·Evoc

w + bw
)
, (3.8)

where bw is a bias parameter. The LSTM decoder stops when the word EOS is
generated or the step t reaches the maximum step T .

43



Figure 3.2: A schematic illustration of the extreme code summarization task. A source code
snippet with a masked function name, is provided as the input. The snippet is converted into
an AST, and then augmented with additional types of edges in preprocess. Models are trained
to recover the original function name (get_mean).

3.4 Experiments

3.4.1 Task and Dataset1010

To evaluate the MLAP-graph2seq model, we employed the “extreme source code
summarization” task [72], wherein a model predicted the function name for given
source code snippet (Figure 3.2). Because a function is commonly named in such a
way that the name describes the behavior of the function, recovering the function
name from its body would be one of the fundamental tasks that evaluates the1015

models’ capability to understand source code semantics.
Here, we used the ogbg-code2 dataset from OGB collection [50]. It contains

452,741 ASTs, each of which contains 125.2 nodes and 124.2 edges on average,
extracted from 13,587 OSS projects. The average length of the ground-truth
sequence is 2.25. Each node has a 3-dimensional discrete-valued feature contain-1020

ing the depth of node counted from the root of the AST, the type of AST node
(e.g., If or Num), and the node attribute. Here, only the leaf nodes have node
attributes, usually the token string associated to the node. Non-leaf nodes have
blank attributes.

3.4.2 Preprocess1025

As introduced in Allamanis et al. [102], we augmented the AST graph with addi-
tional types of edges. The original graphs in the ogbg-code2 dataset only have one
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type of edges that point from parent nodes to child nodes, and thus models suffer
from low efficiency in information diffusion during message passing. Therefore,
we added three additional types of edges to the graphs (Figure 3.2):1030

1. Edges pointing from child nodes to parent nodes (reverse edges of original
AST edges).

2. Edges pointing from preceding tokens to following tokens (NextToken
edges [102]; only among leaf nodes).

3. Edges pointing from following tokens to preceding tokens (reverse NextTo-1035

ken edges).

3.4.3 Model Configuration
We used MLAP-Weighted architecture throughout the experiment, and evaluated
both Linear and LSTM decoders. We set the maximum length of the decoded
sequence (I or T ) as 5.1040

We trained a vector embedding for node features as h(0)
n and another vector

embedding for edge types as f (l)
edge in Eq. (2.10).

As described in Section 2.4.3, we used GIN as the message passing layer. For
each decoder type (Linear or LSTM), we selected the best model configuration
among these conditions: number of layers (5 or 6), residual connection (+ or −),1045

and GraphNorm [45] (+ or −). If a model has residual connection, the node
presentation before message passing is added to the node representation after
dropout, as in

h(l)
n = DropOut

(
ReLU

(
GraphNorm

(
GIN

({
h

(l−1)
n′

∣∣∣n′ ∈ N
}))))

+ h(l−1)
n .

We optimized the model using the Adam optimizer [54]. The models were1050

trained for 50 epochs against a cross-entropy loss computed for each word in the
output sequence. The initial learning rate was set to 5 × 10−4 and decayed by
×0.2 after 3 epochs without improvement in the validation F1 score. The batch
size was 256.
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3.4.4 Performance Evaluation1055

As proposed by Alon et al. [97], we used an F1 score between predicted words and
ground-truth words to evaluate the model performance. Given the unique and
order-agnostic sets of predicted words Sp and ground-truth words St, we defined
the metric as

TP = |Sp ∩ St|, FP = |Sp \ St|, FN = |St \ Sp|,1060

precision =
TP

TP+ FP , recall = TP
TP+ FN , F1 =

2× precision× recall
precision+ recall .

We calculated an F1 score for each graph and calculated average over the dataset.
We trained 10 models with different random seeds, and evaluate the performance
by the mean and the unbiased standard deviation.1065

As baseline models, we compared the performance of our model to the naive
GIN architecture without MLAP, code2seq [98], and Graph Multi-head Attention
Neural Network (GMAN) [107], which is the SoTA model in the OGB’s leader-
board to date7. We trained the naive GIN and code2seq models ourselves because
there are no available pre-trained models. Note that the definition of the F1 score1070

used in original code2seq code is different from OGB (code2seq first sums up TP,
FP, and FN over the dataset and then computes precision, accuracy, and F1),
and we replaced the definition with that of OGB. Also, we trained the code2vec
models for 100 epochs because of slow convergence. For GMAN, we referred to
the performance on the OGB’s leaderboard.1075

3.5 Results
Table 3.1 summarizes the model performance on the ogbg-code2 dataset. We
selected the best models according to the validation performance. The MLAP-
Weighted model with the Linear decoder achieved the test F1 score of 0.1792 ±
0.0016. It outperformed the current SoTA GNN model (GMAN; 0.1770 ± 0.0012)1080

or non-GNN model (code2seq; 0.1549 ± 0.0009).
7https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-code2, accessed November

21, 2021.
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Decoder Model Configuration #Params Validation F1 Test F1

Linear
MLAP-Weighted L = 6, Res (+), GN (−) 8.6M 0.1649 ± 0.0014 0.1792 ± 0.0017
naive L = 6, Res (+), GN (−) 8.3M 0.1622 ± 0.0018 0.1768 ± 0.0019

LSTM
MLAP-Weighted L = 5, Res (+), GN (+) 5.0M 0.1602 ± 0.0021 0.1762 ± 0.0037
naive L = 6, Res (+), GN (+) 4.6M 0.1596 ± 0.0024 0.1744 ± 0.0030

GMAN [107] 63.7M 0.1631 ± 0.0090 0.1770 ± 0.0012
code2seq [98] 26.7M 0.1495 ± 0.0010 0.1549 ± 0.0010

Table 3.1: Summary of the model performance (mean ± unbiased standard deviation) on
ogbg-code2. Res (+/−): with or without residual connection; GN (+/−): with or without
GraphNorm; #Params: number of trainable parameters.

Comparison p E.S.
MLAP-Weighted-Linear vs. naive-Linear *0.007 1.37
MLAP-Weighted-Linear vs. GMAN [107] *0.003 1.53
MLAP-Weighted-Linear vs. code2seq [98] *< 10−5 17.7

Table 3.2: The statistical analysis results. We compared the performance of MLAP-Weighted
model with the Linear decoder to other models. p: p-value of the t-test. *: significant difference.
E.S.: effect size (Cohen’s d).

For the tested ogbg-code2 dataset, the LSTM decoder did not perform as good
as the Linear decoder. Nevertheless, the MLAP-Weighted model outperformed
the naive architecture.

We statistically compared the performance of the MLAP-Weighted model1085

with the Linear decoder to other models (Table 3.2). As a result, it was revealed
that our proposed model performed significantly better than the baseline models.
Also, the effect size evaluated by Cohen’s d [56] demonstrated the performance
difference between our model and others were large.

3.6 Discussion1090

In this study, we extended the MLAP architecture for graph2seq tasks. Our
proposed model outperformed the naive architecture and GMAN in the extreme
source code summarization task and outperformed the current SoTA model. It
indicates that explicitly using the compositional graph information is beneficial
in learning to generate sequences from graphs. Here, we emphasize that our best1095
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model using MLAP has only 8.6 million parameters, which is less than a seventh
of the current SoTA model. It further supports our hypothesis that utilizing the
compositionality helps the model to capture the structural information in graphs.

Code2seq, which is one of the best non-GNN program comprehension model
to the best of our knowledge, performed worse than both our model and GMAN,1100

even though code2seq is designed to exploit the domain knowledge in software
engineering as much as possible. We could consider the “domain knowledge” used
in code2seq or other ML-based program comprehension studies as a set of human
experiences in which human programmers mentally construct and interpret the
program graph like ASTs. Therefore, it may be enough to use GNNs, which are1105

highly capable of capturing the graph structure, rather than building program
comprehension-specific model full of domain knowledge.

Under the current experimental settings, the Linear decoder consistently per-
formed better than the LSTM decoder. We can consider several hypotheses that
explain the reason of the results. First, our hyperparameter tuning for the LSTM1110

decoder might not be sufficient. As observed in Table 3.1, the number of pa-
rameters of the model using LSTM decoder is smaller than that with Linear
decoder. This would limit the expressivity of the LSTM decoder, and we should
be able to further improve the performance in this regard (e.g., adopting bidi-
rectional LSTM decoder [108]). Second, the comparably complex LSTM decoder1115

is harder to train with a medium-sized ogbg-code2 dataset. It only contains ap-
proximately 4.5× 105 data points, with each ground-truth sequence having only
2.25 words, which may not be enough for LSTM to capture the context in the
output sequences. By contrast, the LSTM decoder should be better than the
Linear decoder for tasks that require the models to generate longer sequences.1120

To further improve the performance of MLAP-graph2seq models, seeking for
various decoder implementation would be needed. For example, instead of uni-
directional LSTM used in this study, we may use bi-directional LSTM as the
decoder [108], which might be beneficial in capturing the context of the output
sequences. Furthermore, using transformer-like architecture [63] can be another1125

option.
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3.6.1 Concluding Remarks
In this chapter, we propose a graph2seq model using the MLAP architecture.
Utilizing the compositionality, our model outperformed the current SoTA model
in an extreme source code summarization task with a greatly smaller number of1130

parameters. We will further evaluate the capabilities of our model with wider
variety of tasks, including natural language processing.
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Chapter 4

Discussion and Perspectives

To conclude the dissertation, let us recall the fundamental questions we raised in1135

Chapter 1:

• Does a compositionality-aware GNN architecture improve the performances
in graph machine learning tasks?

• Is it effective for GNNs to explicitly utilize the graph information from var-
ious levels of localities to learn more discriminative graph representations?1140

The answer to the first question is “yes.” In this study, we proposed a
compositionality-aware GNN architecture, named MLAP, which aggregates graph
representations from multiple levels of localities. We demonstrated the benefit
from utilizing the compositionality through the experimental evaluation using
graph classification tasks and a graph2seq task.1145

The answer to the second question is also “yes.” We showed in Chapter 2
that there was information from different scale of localities, represented in dif-
ferent GNN layer, and aggregating them resulted in a more discriminative graph
representations. Owing to the aggregation, MLAP can focus on any level in the
information compositionality of graphs, from the local information around specific1150

nodes to the global information as the entire graphs.
From the standpoint of parameter optimization, MLAP’s skip connection from

each layer to the aggregator would serve as a countermeasure to the gradient
vanishing or explosion problem [109]. MLAP’s skip connections, as well as those
used in JK networks [14], send the gradient signal directly from the output layer1155
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to each intermediate layer during back propagation. Therefore, we conjecture
that such skip connections would stabilize the gradient signal to each layer and
thus the learning process.

It is argued that sequentially stacking multiple attention layer (like transform-
ers) would lose the local signals very rapidly [110]. Hence, existing transformer1160

architectures avoid this problem by adding residual connections around the atten-
tion layer to retain local signal. By contrast, our MLAP architecture introduces
the attention pooling for each layer in parallel. Therefore, the model could focus
on node-wise signal in each layer without losing them through the attentional
operations. This approach may benefit studies analyzing the behavior of trans-1165

former and improves the architecture.
Contrasting the MLAP architecture with the neural mechanism of biological

cognitive systems offers an interesting insight. The multi-level attention mech-
anism introduced in the MLAP architecture can also be seen as an analogy of
the attention mechanism in the cognitive system of humans or other primates.1170

Biological cognitive systems, particularly the visual perception mechanism, are
hierarchically organized and accompanied by hierarchical attention mechanisms.
For example, the ventral visual pathway contributes to the hierarchical compu-
tation of object recognition mechanisms [111]. In the ventral visual pathway,
the neural information in the area V1 represents the raw visual inputs, and the1175

representations are hierarchically abstracted and composited toward the inferior
temporal cortices as the receptive field (i.e., locality) of the information is ex-
panded. DeWeerd et al. [112] found that lesions in the cortical areas V4 and
TEO, both of which are components in the ventral pathway, contribute to the
attentional processing in receptive fields with different sizes. Brain-inspired neu-1180

ral network architectures can improve the performance or the efficiency of the
models, whereas the computational studies on neural networks may contribute
to neuroscience research. Hence, neuroscience and artificial neural networks will
continue to affect each other and develop in tandem.
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4.1 Future Prospects1185

There are several interesting research directions to expand the proposed methods.
Exploring other aggregator functions than those proposed in this study, i.e.,

Sum and Weighted, is needed. For example, it is possible to design an aggre-
gator that models the relationships among layer-wise representations, whereas
the proposed aggregators treated the layer-wise representations as independent1190

of each other. Furthermore, one can design an aggregator that only uses the rep-
resentations in a subset of layers to reduce the computational cost, although the
proposed aggregators required the layer-wise representations in all of the GNN
layers.

Multi-stage training of the models with MLAP architecture would be benefi-1195

cial. Rather than training the entire GNN models with MLAP at once as we did
in this study, one can first train the GNN backbone without MLAP and then fine-
tune the model with the MLAP. This kind of multi-stage training would stabilize
the learning process, particularly when using the MLAP with an aggregator that
has additional trainable parameters, such as the MLAP-Weighted architecture.1200

Our MLAP architecture can be applied to arbitrary deep learning models,
not limited to GNNs. For example, CNNs for computer vision would be good
candidates. Some CNN studies, such as U-Net [30], have already considered
the hierarchy of the information processed in the neural networks. Adopting the
hierarchical attention mechanism to such models may improve their performance.1205

Finally, we are interested in the potential of MLAP in unsupervised machine
learning problems. Unsupervised representation learning based on contrastive
learning has drawn significant attention [113], which aims to learn representa-
tions invariant across different views of an instance. Instead, Wang et al. [114]
advocated to learn representations invariant across instances in a category. Owing1210

to the information aggregation from multiple levels of localities, we expect that
MLAP could extract representations associated to a certain pattern observed in
a category. Thus, combining contrastive learning techniques with MLAP would
help a model to improve the acquired representations.
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4.2 Concluding Remarks1215

This dissertation proposed a compositionality-aware GRL technique using MLAP
and demonstrated its benefits both in task performance and the acquired repre-
sentation itself. Existing message-passing-based GNN methods effectively uti-
lized the stationarity and locality in graphs, and this study improved the learned
representations in GNN models by utilizing the compositionality—aggregating1220

graph information from multiple levels of localities. Although the utilization of
the compositionality in neural network studies is still in its infancy, we believe
that analyzing compositionality is a key to building high-performance and in-
terpretable machine learning models, both in GRL and other machine learning
domains.1225
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Appendix A

Additional Data and Discussion
for Chapter 21600

A.1 Full Validation Performances of the Trained
Models

In Figures 2.3–2.6, we only plotted a part of validation performances for legibility.
Here, we provide a summary of the validation performances in Table A.1 and the
full validation performances in Tables A.2–A.5.1605
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GN Architecture Synthetic (L) ogbg-molhiv (L) ogbg-ppa (L) MCF-7 (L)

(−)

naive 0.5116 ± 0.0154 (4) 0.8090 ± 0.0014 (4) 0.6676 ± 0.0015 (1) 0.8023 ± 0.0011 (2)
JK-Sum 0.2347 ± 0.0082 (4) 0.7926 ± 0.0021 (4) 0.6681 ± 0.0018 (1) 0.7924 ± 0.0007 (2)
JK-Concat. 0.2357 ± 0.0091 (10) 0.7786 ± 0.0019 (4) 0.6666 ± 0.0024 (1) 0.7893 ± 0.0009 (8)
JK-MaxPool 0.2779 ± 0.0183 (4) 0.7791 ± 0.0019 (2) 0.6668 ± 0.0016 (1) 0.7901 ± 0.0016 (3)
JK-LSTM-Att. 0.4109 ± 0.0215 (7) 0.7799 ± 0.0016 (8) 0.6667 ± 0.0015 (1) 0.7862 ± 0.0013 (2)
MLAP-Sum *0.1930 ± 0.0093 (10) 0.8096 ± 0.0020 (3) *0.6691 ± 0.0050 (3) *0.8269 ± 0.0018 (4)
MLAP-Weighted 0.2836 ± 0.0174 (6) *0.8129 ± 0.0017 (5) 0.6687 ± 0.0013 (1) 0.8081 ± 0.0013 (3)

(+)

naive 0.0086 ± 0.0003 (9) 0.8156 ± 0.0022 (2) 0.6772 ± 0.0017 (1) 0.8616 ± 0.0014 (3)
JK-Sum 0.0096 ± 0.0004 (9) *0.8241 ± 0.0022 (2) 0.6797 ± 0.0024 (1) 0.8692 ± 0.0012 (7)
JK-Concat. 0.0094 ± 0.0005 (7) 0.8241 ± 0.0026 (2) 0.6700 ± 0.0026 (1) 0.8686 ± 0.0012 (5)
JK-MaxPool 0.0089 ± 0.0004 (9) 0.8206 ± 0.0034 (3) 0.6760 ± 0.0021 (1) 0.8665 ± 0.0009 (5)
JK-LSTM-Att. 0.0086 ± 0.0004 (10) 0.8115 ± 0.0018 (2) *0.6815 ± 0.0015 (1) 0.8616 ± 0.0013 (3)
MLAP-Sum *0.0075 ± 0.0004 (9) 0.8221 ± 0.0023 (6) 0.6783 ± 0.0015 (1) *0.8720 ± 0.0011 (5)
MLAP-Weighted 0.0100 ± 0.0004 (9) 0.8115 ± 0.0035 (2) 0.6776 ± 0.0018 (1) 0.8634 ± 0.0013 (4)

Table A.1: The summary of the validation performances for model selection. Each cell shows
the best performance of an architecture for a dataset in mean ± standard error. The numbers
in the parentheses are the number of layers of the best performing models. We used these
validation performances for model selection. GN: GraphNorm; JK-Concat.: JK-Concatenation;
JK-LSTM-Att.: JK-LSTM-Attention.
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Number of Layers

GN Architecture
1 2 3 4 5
6 7 8 9 10

(−)

naive
0.7426 ± 0.0008 0.5654 ± 0.0026 0.5382 ± 0.0173 0.5116 ± 0.0154 0.5186 ± 0.0164
0.5300 ± 0.015 0.5213 ± 0.0167 0.5346 ± 0.0112 0.5342 ± 0.0140 0.5423 ± 0.0137

JK-Sum
0.7418 ± 0.0007 0.5074 ± 0.0077 0.2521 ± 0.0083 0.2347 ± 0.0082 0.2838 ± 0.0184
0.3278 ± 0.0183 0.4009 ± 0.0111 0.3947 ± 0.0098 0.3864 ± 0.0107 0.3769 ± 0.0084

JK-Concatenation
0.7233 ± 0.0081 0.5447 ± 0.0092 0.3924 ± 0.0230 0.3329 ± 0.0192 0.3119 ± 0.0216
0.2936 ± 0.0217 0.3123 ± 0.0285 0.2440 ± 0.0172 0.2436 ± 0.0149 0.2357 ± 0.0091

JK-MaxPool
0.7384 ± 0.0042 0.5314 ± 0.0025 0.3304 ± 0.0074 0.2779 ± 0.0183 0.3240 ± 0.0177
0.3441 ± 0.0175 0.3678 ± 0.0172 0.3969 ± 0.0132 0.4163 ± 0.0112 0.4229 ± 0.0116

JK-LSTM-Attention
0.7418 ± 0.0008 0.5869 ± 0.0119 0.4654 ± 0.0202 0.4601 ± 0.0198 0.4418 ± 0.0169
0.4199 ± 0.0236 0.4109 ± 0.0215 0.4204 ± 0.0190 0.4126 ± 0.0185 0.4530 ± 0.0148

MLAP-Sum
0.7423 ± 0.0009 0.5391 ± 0.0055 0.4564 ± 0.0150 0.3453 ± 0.0173 0.2906 ± 0.0145
0.2250 ± 0.0107 0.2240 ± 0.0110 0.1953 ± 0.0093 0.2016 ± 0.0098 0.1930 ± 0.0093

MLAP-Weighted
0.7431 ± 0.0007 0.5539 ± 0.0088 0.4821 ± 0.0181 0.4112 ± 0.0198 0.3536 ± 0.0197
0.2836 ± 0.0174 0.3029 ± 0.0189 0.2896 ± 0.0143 0.2908 ± 0.0142 0.2861 ± 0.0170

(+)

naive
0.5846 ± 0.0017 0.2763 ± 0.0092 0.0597 ± 0.0023 0.0237 ± 0.0008 0.0148 ± 0.0004
0.0106 ± 0.0005 0.0093 ± 0.0004 0.0094 ± 0.0005 0.0086 ± 0.0003 0.0087 ± 0.0005

JK-Sum
0.5886 ± 0.0019 0.2549 ± 0.0054 0.0576 ± 0.0014 0.0236 ± 0.0007 0.0141 ± 0.0004
0.0106 ± 0.0004 0.0109 ± 0.0004 0.0099 ± 0.0004 0.0096 ± 0.0004 0.0097 ± 0.0004

JK-Concatenation
0.5880 ± 0.0032 0.2634 ± 0.0068 0.0554 ± 0.0011 0.0225 ± 0.0006 0.0172 ± 0.0005
0.0114 ± 0.0004 0.0094 ± 0.0005 0.0097 ± 0.0004 0.0100 ± 0.0005 0.0106 ± 0.0004

JK-MaxPool
0.5880 ± 0.0020 0.3203 ± 0.0025 0.0760 ± 0.0011 0.0250 ± 0.0007 0.0146 ± 0.0005
0.0110 ± 0.0005 0.0090 ± 0.0004 0.0091 ± 0.0004 0.0089 ± 0.0004 0.0090 ± 0.0004

JK-LSTM-Attention
0.5874 ± 0.0019 0.2693 ± 0.0064 0.0615 ± 0.0021 0.0251 ± 0.0010 0.0144 ± 0.0004
0.0100 ± 0.0005 0.0097 ± 0.0004 0.0090 ± 0.0004 0.0087 ± 0.0005 0.0086 ± 0.0004

MLAP-Sum
0.5878 ± 0.0019 0.2669 ± 0.0075 0.0574 ± 0.0018 0.0220 ± 0.0011 0.0153 ± 0.0006
0.0101 ± 0.0003 0.0091 ± 0.0005 0.0086 ± 0.0004 *0.0075 ± 0.0004 0.0085 ± 0.0004

MLAP-Weighted
0.5868 ± 0.0018 0.2840 ± 0.0090 0.0696 ± 0.0021 0.0284 ± 0.0006 0.0161 ± 0.0006
0.0126 ± 0.0005 0.0103 ± 0.0004 0.0104 ± 0.0004 0.0100 ± 0.0004 0.0100 ± 0.0005

Table A.2: Full validation performances in the synthetic dataset experiments for model se-
lection. bold: best performance in an (aggregator, GraphNorm [+/−]) combination; *: the
overall best performance.
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Number of Layers

GN Architecture
1 2 3 4 5
6 7 8 9 10

(−)

naive
0.7467 ± 0.0020 0.7731 ± 0.0028 0.8014 ± 0.0014 0.8090 ± 0.0014 0.8052 ± 0.0013
0.7909 ± 0.0013 0.7820 ± 0.0013 0.7664 ± 0.0041 0.7599 ± 0.0042 0.7631 ± 0.0022

JK-Sum
0.7446 ± 0.0022 0.7735 ± 0.0016 0.7885 ± 0.0016 0.7926 ± 0.0021 0.7775 ± 0.0020
0.7726 ± 0.0018 0.7753 ± 0.0021 0.7738 ± 0.0017 0.7706 ± 0.0018 0.7720 ± 0.0022

JK-Concatenation
0.7538 ± 0.0025 0.7677 ± 0.0028 0.7772 ± 0.0019 0.7786 ± 0.0019 0.7713 ± 0.0021
0.7732 ± 0.0018 0.7731 ± 0.0019 0.7746 ± 0.0018 0.7693 ± 0.0024 0.7681 ± 0.0023

JK-MaxPool
0.7436 ± 0.0018 0.7791 ± 0.0019 0.7723 ± 0.0017 0.7753 ± 0.0030 0.7689 ± 0.0020
0.7667 ± 0.0025 0.7699 ± 0.0020 0.7655 ± 0.0016 0.7661 ± 0.0021 0.7667 ± 0.0021

JK-LSTM-Attention
0.7464 ± 0.0022 0.7619 ± 0.0022 0.7661 ± 0.0013 0.7711 ± 0.0017 0.7689 ± 0.0018
0.7741 ± 0.0017 0.7735 ± 0.0015 0.7799 ± 0.0016 0.7788 ± 0.0024 0.7738 ± 0.0025

MLAP-Sum
0.7452 ± 0.0023 0.7787 ± 0.0025 0.8096 ± 0.0020 0.8002 ± 0.0029 0.8003 ± 0.0024
0.8019 ± 0.0023 0.8007 ± 0.0025 0.8015 ± 0.0024 0.7971 ± 0.0018 0.8029 ± 0.0025

MLAP-Weighted
0.7457 ± 0.0024 0.7702 ± 0.0023 0.7987 ± 0.0019 0.8107 ± 0.0020 0.8129 ± 0.0017
0.8076 ± 0.0024 0.8019 ± 0.0023 0.7977 ± 0.0026 0.8040 ± 0.0024 0.8027 ± 0.0020

(+)

naive
0.8055 ± 0.0038 0.8159 ± 0.0022 0.8157 ± 0.0022 0.7958 ± 0.0031 0.7868 ± 0.0038
0.7852 ± 0.0035 0.7733 ± 0.0037 0.7736 ± 0.0035 0.7634 ± 0.0042 0.7638 ± 0.0042

JK-Sum
0.8041 ± 0.0026 *0.8241 ± 0.0022 0.8198 ± 0.0024 0.8157 ± 0.0023 0.8144 ± 0.0022
0.8120 ± 0.0026 0.8096 ± 0.0027 0.8028 ± 0.0026 0.8088 ± 0.0022 0.7994 ± 0.0023

JK-Concatenation
0.8042 ± 0.0028 0.8241 ± 0.0026 0.8201 ± 0.0023 0.8212 ± 0.0028 0.8217 ± 0.0025
0.8135 ± 0.0026 0.8095 ± 0.0031 0.8115 ± 0.0032 0.8099 ± 0.0027 0.8107 ± 0.0031

JK-MaxPool
0.8039 ± 0.0032 0.8144 ± 0.0030 0.8206 ± 0.0034 0.8155 ± 0.0030 0.8100 ± 0.0032
0.8068 ± 0.0027 0.8024 ± 0.0030 0.7979 ± 0.0030 0.7955 ± 0.0031 0.7954 ± 0.0031

JK-LSTM-Attention
0.8037 ± 0.0030 0.8115 ± 0.0018 0.8058 ± 0.0028 0.8043 ± 0.0034 0.8045 ± 0.0032
0.8082 ± 0.0027 0.8098 ± 0.0028 0.7874 ± 0.0040 0.7924 ± 0.0039 0.7791 ± 0.0033

MLAP-Sum
0.8070 ± 0.0035 0.8121 ± 0.0031 0.8149 ± 0.0027 0.8204 ± 0.0028 0.8190 ± 0.0024
0.8221 ± 0.0023 0.8178 ± 0.0037 0.8166 ± 0.0019 0.8140 ± 0.0023 0.8082 ± 0.0028

MLAP-Weighted
0.8027 ± 0.0031 0.8115 ± 0.0035 0.8065 ± 0.0029 0.8088 ± 0.0025 0.8045 ± 0.0029
0.8024 ± 0.0037 0.8015 ± 0.0020 0.8036 ± 0.0028 0.7947 ± 0.0037 0.7951 ± 0.0034

Table A.3: Full validation performances in the ogbg-molhiv experiments for model selection.
bold: best performance in an (aggregator, GraphNorm [+/−]) combination; *: the overall best
performance.
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Number of Layers

GN Architecture
1 2 3 4 5
6 7 8 9 10

(−)

naive
0.6676 ± 0.0015 0.6639 ± 0.0034 0.6622 ± 0.0048 0.6560 ± 0.0037 0.6395 ± 0.0029
0.6153 ± 0.0032 0.5936 ± 0.0054 0.5746 ± 0.0060 0.5442 ± 0.0099 0.4973 ± 0.0080

JK-Sum
0.6681 ± 0.0018 0.6610 ± 0.0042 0.6652 ± 0.0060 0.6569 ± 0.0052 0.6440 ± 0.0044
0.6229 ± 0.0059 0.6206 ± 0.0051 0.6123 ± 0.0052 0.5913 ± 0.0050 0.5622 ± 0.0090

JK-Concatenation
0.6666 ± 0.0024 0.6352 ± 0.0041 0.6636 ± 0.0100 0.6420 ± 0.0057 0.6467 ± 0.0066
0.6257 ± 0.0053 0.6219 ± 0.0096 0.6152 ± 0.0074 0.6011 ± 0.0064 0.5876 ± 0.0070

JK-MaxPool
0.6668 ± 0.0016 0.6076 ± 0.0031 0.6049 ± 0.0076 0.6070 ± 0.0088 0.5962 ± 0.0072
0.6041 ± 0.0057 0.6023 ± 0.0061 0.5838 ± 0.0055 0.5837 ± 0.0075 0.5292 ± 0.0104

JK-LSTM-Attention
0.6667 ± 0.0015 0.6127 ± 0.0019 0.5910 ± 0.0069 0.5888 ± 0.0048 0.5542 ± 0.0116
0.5020 ± 0.0333 0.4251 ± 0.0452 0.4237 ± 0.0479 0.4499 ± 0.0265 0.3046 ± 0.0305

MLAP-Sum
0.6665 ± 0.0014 0.6568 ± 0.0042 0.6691 ± 0.0050 0.6512 ± 0.0059 0.6529 ± 0.0052
0.6246 ± 0.0069 0.6144 ± 0.0068 0.5959 ± 0.0071 0.5732 ± 0.0106 0.5721 ± 0.0074

MLAP-Weighted
0.6687 ± 0.0013 0.6463 ± 0.0034 0.6542 ± 0.0078 0.6358 ± 0.0038 0.6305 ± 0.0047
0.6192 ± 0.0046 0.6023 ± 0.0079 0.5642 ± 0.0065 0.5583 ± 0.0096 0.5053 ± 0.0155

(+)

naive
0.6772 ± 0.0017 0.6388 ± 0.0031 0.6263 ± 0.0028 0.6379 ± 0.0022 0.6448 ± 0.0023
0.6403 ± 0.0023 0.6418 ± 0.0025 0.6427 ± 0.0017 0.6402 ± 0.0025 0.6441 ± 0.0027

JK-Sum
0.6797 ± 0.0024 0.6408 ± 0.0025 0.6370 ± 0.0034 0.6414 ± 0.0046 0.6415 ± 0.0045
0.6291 ± 0.0020 0.6315 ± 0.0039 0.6254 ± 0.0027 0.6295 ± 0.0026 0.6274 ± 0.0032

JK-Concatenation
0.6700 ± 0.0026 0.6496 ± 0.0039 0.6537 ± 0.0032 0.6517 ± 0.0040 0.6491 ± 0.0025
0.6516 ± 0.0036 0.6466 ± 0.0035 0.6465 ± 0.0034 0.6479 ± 0.0032 0.6429 ± 0.0030

JK-MaxPool
0.6760 ± 0.0021 0.6475 ± 0.0021 0.6415 ± 0.0029 0.6446 ± 0.0034 0.6349 ± 0.0015
0.6362 ± 0.0040 0.6313 ± 0.0030 0.6316 ± 0.0039 0.6382 ± 0.0055 0.6353 ± 0.0037

JK-LSTM-Attention
*0.6815 ± 0.0015 0.6522 ± 0.0049 0.6634 ± 0.0024 0.6630 ± 0.0016 0.6630 ± 0.0035
0.6629 ± 0.0020 0.6658 ± 0.0024 0.6627 ± 0.0021 0.6647 ± 0.0027 0.6642 ± 0.0025

MLAP-Sum
0.6783 ± 0.0015 0.6373 ± 0.0031 0.6362 ± 0.0030 0.6370 ± 0.0022 0.6353 ± 0.0030
0.6377 ± 0.0042 0.6326 ± 0.0026 0.6336 ± 0.0026 0.6359 ± 0.0025 0.6377 ± 0.0036

MLAP-Weighted
0.6776 ± 0.0018 0.6327 ± 0.0029 0.6538 ± 0.0017 0.6550 ± 0.0045 0.6475 ± 0.0036
0.6561 ± 0.0048 0.6598 ± 0.0048 0.6535 ± 0.0077 0.6443 ± 0.0055 0.6503 ± 0.0045

Table A.4: Full validation performances in the ogbg-ppa experiments for model selection.
bold: best performance in an (aggregator, GraphNorm [+/−]) combination; *: the overall best
performance.
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Number of Layers

GN Architecture
1 2 3 4 5
6 7 8 9 10

(−)

naive
0.7653 ± 0.0010 0.8023 ± 0.0011 0.7960 ± 0.0024 0.7996 ± 0.0011 0.7968 ± 0.0012
0.7689 ± 0.0033 0.7361 ± 0.0045 0.7101 ± 0.0045 0.7086 ± 0.0035 0.7097 ± 0.0049

JK-Sum
0.7641 ± 0.0011 0.7924 ± 0.0007 0.7836 ± 0.0015 0.7849 ± 0.0007 0.7884 ± 0.0013
0.7866 ± 0.0017 0.7853 ± 0.0013 0.7846 ± 0.0010 0.7859 ± 0.0016 0.7827 ± 0.0011

JK-Concatenation
0.7648 ± 0.0010 0.7868 ± 0.0008 0.7797 ± 0.0013 0.7857 ± 0.0007 0.7862 ± 0.0011
0.7884 ± 0.0016 0.7875 ± 0.0011 0.7893 ± 0.0009 0.7890 ± 0.0010 0.7881 ± 0.0011

JK-MaxPool
0.7639 ± 0.0011 0.7860 ± 0.0009 0.7901 ± 0.0016 0.7811 ± 0.0007 0.7825 ± 0.0010
0.7814 ± 0.0009 0.7802 ± 0.0009 0.7821 ± 0.0012 0.7808 ± 0.0010 0.7798 ± 0.0011

JK-LSTM-Attention
0.7651 ± 0.0013 0.7862 ± 0.0013 0.7794 ± 0.0009 0.7780 ± 0.0012 0.7770 ± 0.0014
0.7814 ± 0.0014 0.7787 ± 0.0010 0.7784 ± 0.0011 0.7775 ± 0.0015 0.7808 ± 0.0016

MLAP-Sum
0.7642 ± 0.0011 0.7790 ± 0.0011 0.8138 ± 0.0010 0.8269 ± 0.0018 0.8243 ± 0.0014
0.8216 ± 0.0014 0.8202 ± 0.0015 0.8200 ± 0.0012 0.8228 ± 0.0012 0.8223 ± 0.0012

MLAP-Weighted
0.7640 ± 0.0010 0.7738 ± 0.0012 0.8081 ± 0.0013 0.8002 ± 0.0012 0.8010 ± 0.0013
0.8029 ± 0.0015 0.7996 ± 0.0022 0.7985 ± 0.0016 0.8019 ± 0.0016 0.7996 ± 0.0018

(+)

naive
0.8271 ± 0.0015 0.8536 ± 0.0013 0.8616 ± 0.0014 0.8613 ± 0.0016 0.8574 ± 0.0020
0.8510 ± 0.0024 0.8438 ± 0.0021 0.8308 ± 0.0024 0.8265 ± 0.0027 0.8108 ± 0.0019

JK-Sum
0.8259 ± 0.0013 0.8564 ± 0.0010 0.8635 ± 0.0011 0.8650 ± 0.0012 0.8671 ± 0.0010
0.8664 ± 0.0015 0.8692 ± 0.0012 0.8611 ± 0.0022 0.8623 ± 0.0020 0.8611 ± 0.0025

JK-Concatenation
0.8301 ± 0.0016 0.8598 ± 0.0011 0.8664 ± 0.0011 0.8684 ± 0.0011 0.8686 ± 0.0012
0.8653 ± 0.0010 0.8613 ± 0.0010 0.8606 ± 0.0015 0.8563 ± 0.0013 0.8518 ± 0.0013

JK-MaxPool
0.8267 ± 0.0010 0.8558 ± 0.0012 0.8633 ± 0.0013 0.8622 ± 0.0013 0.8665 ± 0.0009
0.8629 ± 0.0014 0.8619 ± 0.0012 0.8583 ± 0.0019 0.8541 ± 0.0016 0.8484 ± 0.0019

JK-LSTM-Attention
0.8257 ± 0.0015 0.8552 ± 0.0010 0.8616 ± 0.0013 0.8578 ± 0.0014 0.8588 ± 0.0015
0.8572 ± 0.0019 0.8519 ± 0.0024 0.8469 ± 0.0027 0.8375 ± 0.0027 0.8369 ± 0.0024

MLAP-Sum
0.8267 ± 0.0012 0.8583 ± 0.0010 0.8653 ± 0.0010 0.8686 ± 0.0011 *0.8720 ± 0.0011
0.8695 ± 0.0011 0.8680 ± 0.0013 0.8668 ± 0.0012 0.8630 ± 0.0021 0.8634 ± 0.0014

MLAP-Weighted
0.8270 ± 0.0011 0.8555 ± 0.0013 0.8626 ± 0.0011 0.8634 ± 0.0013 0.8605 ± 0.0008
0.8552 ± 0.0013 0.8559 ± 0.0010 0.8497 ± 0.0015 0.8413 ± 0.0018 0.8357 ± 0.0017

Table A.5: Full results in the MCF-7 dataset experiments for model selection. bold: best
performance in an (aggregator, GraphNorm [+/−]) combination; *: the overall best perfor-
mance.
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A.2 MLAP encompasses JK given same linear
aggregator

If both an MLAP model and a JK model have linear aggregators of the same
form, we can prove that the MLAP model encompasses the JK model. Here, we
consider the relationship between MLAP-Sum and JK-Sum as an example.1610

From Eq. (2.19), a JK-Sum model computes the graph representation as

hG =
∑
n∈N

softmax
(
fgate(h

(JK)
n )

)
h(JK)

n . (A.1)

Let an = softmax(fgate(h
(JK)
n )) be the attention value for each node n. Then,

from Eqs. (2.17) and (2.18),

hG =
∑
n∈N

an

L∑
l=1

h(l)
n =

L∑
l=1

∑
n∈N

anh
(l)
n . (A.2)1615

By contrast, from Eqs. (2.5) and (2.8), MLAP-Sum computes the graph rep-
resentation as

hG =
L∑
l=1

∑
n∈N

softmax
(
f
(l)
gate(h

(l)
n )

)
h(l)

n . (A.3)

Therefore, when softmax(f (l)
gate(h

(l)
n )) for each l has exactly the same value as

an, Eq. (A.3) has the same form as Eq. (A.2). This indicates that a MLAP-Sum1620

model has greater expressivity than a JK-Sum model because softmax(f (l)
gate(h

(l)
n ))

can take different values for each l.
We can prove that MLAP encompasses JK using other linear aggregators,

e.g., Weighted or Concatenation8. Furthermore, we cannot directly apply the
same discussion for nonlinear aggregators like LSTM-Attention. Nonetheless,1625

our experiments showed that MLAP models with linear aggregators tended to
perform better than JK models with nonlinear aggregators.

8We have not evaluated JK-Weighted or MLAP-Concatenation in this study.
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A.3 Why does MLAP-Weighted perform worse
than MLAP-Sum in some datasets?

In the synthetic dataset and ogbg-ppa, the MLAP-Weighted architecture per-1630

formed worse than MLAP-Sum. However, intuitively, establishing balance across
layers using the weight parameters sounds reasonable and effective. In this ap-
pendix section, we show the results of preliminary analyses on the cause of this
phenomenon.

Figure A.1 shows the weight values in the trained 10-layer models with 301635

different random seeds for the synthetic dataset, and Figure A.2 shows the weights
in 5-layer ogbg-molhiv models with 30 seeds. The weight values for the synthetic
dataset, where MLAP-Weighted was inferior to MLAP-Sum, had big variances,
and the weight distribution covered the “constant weight” line (dashed horizontal
line; an MLAP-Weighted model is virtually equivalent to an MLAP-Sum model1640

if the weight parameters are equal to this value). It is expected that the desirable
weight for each layer is not largely different from the constant weight. Therefore,
the weight parameters did not modify the model output effectively. However,
having such weight parameters with big variance indicates instability during the
model training.1645

By contrast, the weight values for ogbg-molhiv, where MLAP-Weighted per-
formed better than MLAP-Sum, had smaller variances, and the distribution devi-
ated from the constant weight line, particularly in Layers 1 and 5. It is expected
that the desirable weight for those layers differed from the constant weight, and
the model might adapt to the balance across layers.1650

This preliminary analyses suggest that, depending on some properties of the
datasets, the MLAP-Weighted architecture can excel MLAP-Sum. We will con-
tinue working on the analyses to identify the suitability of each MLAP aggregator
to a certain dataset.
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Figure A.1: Weight parameters of 10-layer MLAP-Weighted models for the synthetic dataset.
A line shows the weight vector in a model (30 lines in total). The dashed horizontal line shows
the weight when all layers contribute to the final graph representation equally.

Figure A.2: Weight parameters of 6-layer MLAP-Weighted models for ogbg-molhiv. A line
shows the weight vector in a model (30 lines in total). The dashed horizontal line shows the
weight when all layers contribute to the final graph representation equally.
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Appendix B1655

Visual Attention Map for Source
Code

We were interested in the attentional behavior of the human programmers while
developing an MLAP source code summarization model in Chapter 3. We devised
a method to quantify the human attention using a machine learning (ML) model1660

with an attention mechanism. In this appendix chapter, we present a technique to
visualize the ML attention in a two-dimensional space, called attention map, and
present the preliminary results comparing the attention map and gaze behavior
of a novice human programmer.

B.1 Introduction1665

Program comprehension is a dominant process in software development and main-
tenance. Programmers spent 50 to 60 % of their time on program comprehension
in a large-scale field study [115]. The study has also shown that the senior pro-
grammers spent less time on program comprehension. In other words, the time
for program comprehension can be reduced through appropriate experience or1670

education. Such efficient program comprehension might lead to productivity en-
hancement of the software development process.

The gaze behavior of experts could provide an insight on how to improve
the efficiency of program comprehension. We consider that expert programmers
can comprehend source code efficiently by directing their gaze, or attention, to1675
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important components in it. In previous studies, researchers conducted gaze
measurement experiments with programmers to identify the attended targets.
Uwano et al. [116] analyzed individual performance in reviewing source code
of computer programs with gaze data. Their result showed that the subjects
with high performance were likely to first read the whole lines of the source1680

code from the top to the bottom briefly, and then concentrate their gaze to
some specific areas. Crosby et al. [117] conducted gaze experiments to examine
how programmers from different experience levels understood source code. Their
results showed that the experienced programmers were more likely to focus their
gaze on complex statements. However, reflecting the importance of components1685

remains an issue in gaze behavior analysis for source code comprehension.
Apart from program comprehension, visual attention has been modeled to

clarify its underlying mechanism. One of the representative studies of visual
attention modeling is the saliency map as an indicator of stimulus-driven visual
selection [118, 119]. The saliency map has been proposed by mimicking the1690

neural mechanism of the early visual system of humans. In the saliency map
theory, visual attention is assumed to be guided by high contrast locations of
three elementary features: color, intensity, and orientation. Koide et al. [120]
investigated the relationship between art-related expertise and the saliency map.
They recorded the gaze behavior of artists and novices during the free viewing1695

of various abstract paintings, and evaluated the consistency between the gaze
distribution and the saliency map. The gaze distributions of artists were less
consistent with the saliency map than novices. This discrepancy between the
experts’ gaze behavior and the saliency map, which is a bottom-up attention
model, could be explained by the existence of top-down, goal-oriented attention1700

mechanism, which can be modified by experience or education.
This study aims to develop a visual attention map that can identify impor-

tant components of source code in a top-down, goal-oriented manner. To demon-
strate this, we used code2vec, a neural network model for classification of source
code with an attention mechanism, to identify important components in source1705

code [97]. We conducted preliminary gaze experiments and a comparison analy-
sis between the gaze behavior of a human subject and the visual attention map
generated with our proposed method. Here, we assume the consistency between
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the attention map and gaze distribution could be the support for the feasibility
of this method to identify important factors.1710

The rest of this appendix chapter is organized as follows: Section B.2 reviews
the mechanism of code2vec program summarization model and introduces our
idea on how the attention map on top of code2vec’s attention model contributes
to analyzing programmers’ gaze behavior. Section B.3 explains the procedure
to generate the attention map and gaze experiment design using human sub-1715

jects. Section B.4 summarizes the results of preliminary experiments. Finally,
Section B.5 concludes this proposal and provides outlooks.

B.2 Attention Map for Source Code
Code2vec [97] is a machine learning model to learn a vector embedding of source
code, called a code vector. Code2vec has an attention mechanism to recognize1720

important components in source code for accurate name discrimination. The
model has shown good performance in discriminating function names, which con-
cisely represent their functionalities, and the authors showed that the attention
mechanism is necessary for achieving good performance.

The left half of Figure B.1 illustrates how code2vec estimates the code vectors1725

and how its attention mechanism defines the importance of source code compo-
nents. First, the input source code is converted into an abstract syntax tree
(AST), which is a tree data structure representing normalized syntactic infor-
mation. Then, code2vec extracts path contexts from the AST. A path context
consists of three elements: two terminal nodes (leaves) in the AST and the route1730

connecting those terminal nodes. Code2vec extracts up to 200 path contexts and
estimates a path context vector for each, and finally, the code vector is computed
as a weighted sum of these path context vector (this step is not depicted in Fig-
ure B.1). The attention of code2vec defines this weight for the path contexts. A
higher attention value means the correspondent path context contains important1735

information for discriminating function name, and hence, the path context vector
for such path context greatly affects the final code vector.

In this study, we assume the expertise of a programmer could be represented
using the consistency between the code2vec’s attention and a programmer’s gaze
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Figure B.1: Attention estimation by code2vec (left) and proposed attention map generation
procedure (right). The set of orange edges in AST shows an example of a path, and the path
attention value (0.19) is assigned to the tokens in the path (orange shadows in the original code).
The attention values for each token are summed up for all paths by repeating this procedure.

focus. Based on this assumption, we evaluate how much a programmer focuses1740

on the source code components that are estimated as important by code2vec’s
attention mechanism. However, code2vec’s attention on linearized AST path
contexts is difficult to directly compare with subjects’ spatial gaze distribution.

To fill this gap, we propose a method to generate visual attention map, which
quantifies the importance of each component in the provided source code, using1745

the attention value estimated by code2vec. As code2vec computes the attention
for each path context in the given AST of source code, we reconstructed a visual
attention map based on the attention value of each path context. The right half
of Figure B.1 illustrates the attention map generation procedure. In summary,
we first computed attention values of the nodes appearing in the given AST, then1750
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generated a spatial map over a source code image using those node attention
values.

First, each path context was decomposed into a list of nodes in the AST. Then,
the attention value for each path context was added to the attention value of each
node in this list. Repeating this procedure for each path context, the attention1755

distribution over the set of AST nodes was obtained. Then, we converted this
node attention distribution into a visual attention map as a mixture of Gaussian
functions. Some of the nodes had their correspondent tokens in the source code,
like if for IfStmt, and > symbol for GreaterThan. For those correspondent tokens,
a two-dimensional Gaussian function was allocated to each token such that1760

1. its center was located at the coordinate of the center of the token in the
stimulus image,

2. its maximum height was equal to the attention value defined in the attention
distribution over AST nodes, and

3. its variance corresponded to the spatial size of the token in an image.1765

The attention map was obtained as the summation of these Gaussian functions
for all tokens.

B.3 Preliminary Experiments

B.3.1 Acquisition of source code
To test the feasibility of visual attention map generation, we conducted a prelim-1770

inary experiment using a set of code snippets implementing fundamental algo-
rithms. Based on two popular textbooks about computer algorithms [121, 122],
we first selected eleven fundamental algorithms: binary search, linear search, bub-
ble sort, selection sort, insertion sort, greatest common divisor, power, primality
testing, run-length encoding, string sort, and substring search. We then collected1775

1251 Java code snippets implementing the selected algorithms from an open code
set provided by AIZU ONLINE JUDGE9. In this study, we used a set of 72 code

9http://judge.u-aizu.ac.jp/onlinejudge/
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snippets with minimum deviations of superficial characteristics, i.e., lines of code
(LOC) and characters per line (CPL). To further mitigate non-semantic visual
variations, the indentation styles of all code snippets were normalized by replac-1780

ing a tab-space with two white spaces. For keeping algorithmic diversity, the
selected code set included six snippets for each algorithm and twelve snippets for
linear search. The code set allowed us to examine the feasibility of our proposed
method based on a variety of fundamental algorithms.

B.3.2 Gaze Experiment1785

For the aforementioned spatial attention map, the consistency between the map
and the programmer’s gaze distribution was quantified. We recorded a program-
mer’s gaze distribution using Tobii Pro TX300 (Tobii Technology, Sweden) during
presenting the source code image as visual stimuli (see Section B.3.1). The de-
vice has a 23-inch display of full HD resolution (1920 px in width and 1080 px in1790

height). We recorded the subject’s gaze points with the sampling rate of 120 Hz.
The experimental procedure was controlled by PsychoPy [123].

After the experiment, the stimulus images were clipped into squares 840 px
on a side prior to the further analysis to avoid excessively high consistency due to
the inclusion of the blank area in the images. Outliers in the recorded gaze data1795

that exceeded these square boundaries were removed. The proportion of removed
gaze points against the whole data was less than 0.1 %.

B.3.3 Evaluation
To quantify the consistency, we adopted an evaluation method proposed in [120].
The receiver operating characteristics (ROC) curve was calculated by defining1800

the ground truth as the subject’s gaze distribution and the estimation as the
binarized attention map computed with code2vec. With a attention threshold,
the code2vec attention map C was binarized into Cbin:

Cbin
x,y =

1 if Cx,y > threshold
0 otherwise,

(B.1)
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where Cx,y and Cbin
x,y represent the attention value for pixel (x, y) in C and Cbin,1805

respectively. With this binarized attention map, the true positive rate (TPR)
and the false positive rate (FPR) for a gaze distribution are calculated as follows.

TPR =

∑
x,y G

+ ◦ Cbin∑
x,y G

+
, (B.2)

FPR =

∑
x,y G

− ◦ Cbin∑
x,y G

− , (B.3)
1810

where G+ is the gaze distribution which counts the gaze point per pixel, whereas
G− is a binary negation of G+, s.t. G−

x,y = 1 ⇔ G+
x,y = 0 and G−

x,y = 0 ⇔ G+
x,y >

0. Also, ◦ denotes the Hadamard product (pixel-wise product) of two maps or
distributions. ROC curve was obtained by computing these TPR and FPR with
varying the threshold and plotting those values.1815

After calculating the ROC curve, the area under the curve (AUC) was ob-
tained. The AUC quantifies the consistency between the subject’s gaze distri-
bution and the attention map. A higher AUC value indicates that the subject
strongly focused their gaze on important components in source code, and is thus,
assumed to represent their expertise in reading source code.1820

B.4 Results
As a preliminary experiment, we quantified the attention maps for the tar-

get source code (see Section B.3.1), and evaluated the consistency of those maps
against gaze distributions recorded from a human subject. The rest of this sec-
tion describes a representative result obtained using a substring search algorithm1825

depicted in Listing B.1.
Figure B.2a shows the estimated spatial attention map for the source code.

The attention map was sparse, and there were only a few tokens with high atten-
tion value (deep orange color). Table B.1 lists the top 5 of those highly attended
tokens. This source code implements a substring search algorithm that counts the1830

number of words until the word “END_OF_TEXT” appears, and these highly
attended tokens—especially the tokens if, while, and "END_OF_TEXT"—match
our intuitive evaluation of token importance.
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1 public class Main {
2 public static void main(String[] args) {
3 Scanner in = new Scanner(System.in);
4 String word = in.next();
5 int count = 0;
6
7 word = word.toLowerCase();
8
9 while (true) {

10 String str = in.next();
11 if (str.equals("END_OF_TEXT")) {
12 break;
13 }
14 str = str.toLowerCase();
15 if (str.equals(word)) {
16 count++;
17 }
18 }
19 System.out.println(count);
20 }
21 }

Listing B.1: A substring search algorithm written in Java

# Line number Token Attention value
1 11 if 1.33
2 11 "END_OF_TEXT" 1.31
3 9 while 1.17
4 2 args 0.89
5 7 word(∗) 0.48

Table B.1: Top 5 tokens with strong attention. *: The one at the left-hand side of the equal
symbol.

We recorded the gaze behavior of a research student in the information science
division who had a little experience in Java programming (i.e., not an expert1835

programmer). Figure B.2b shows the raw recorded gaze data. Each blue dot
represents a gaze point. The subject scanned the entire code region without
noticeable focuses.

After recording the gaze distribution, we evaluated the coincidence between
the gaze distribution and attention map. The calculated ROC curve is shown in1840

Figure B.2c. The AUC of this ROC curve was 0.85, and this was regarded as
moderate consistency.
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Figure B.2: Preliminary result of a gaze experiment on a novice programmer. a) Spatial
attention map computed from the code2vec’s attention. b) Raw gaze distribution recorded for
a novice programmer. c) ROC curve showing the consistency between the attention map and
subject’s gaze distribution (AUC = 0.85).

B.5 Discussion
We proposed the visual attention map for source code using code2vec and eval-
uated the consistency between the attention map and gaze distribution recorded1845

with a subject. The AUC of 0.85 can be regarded as moderate consistency. This
result supports the feasibility of our proposed method as the attention model to
some extent. The proposed method enables us to evaluate the behavior related to
higher cognitive function like program comprehension. This approach may also
be applicable to other higher cognitive functions.1850

The generated visual attention map showed sparser distribution rather than
the gaze distribution. Because the subject in this preliminary experiment was
not an expert programmer, gaze distribution was not so concentrated. Expert
programmers may have sparser gaze distributions as fewer gaze points may lead to
a reduction of the time for program comprehension. For the future experiments,1855

we will recruit multiple expert programmers and novices to show the validity of
this attention map.

Other attention models, like code2seq [98], can be alternatives to generate
different types of attention maps. For example, the seq2seq type attention model
like code2seq can model the dynamic transition of attention although this study1860

considered static attention [124]. By providing attended words as the output
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of a decoder, it may be possible to model actual dynamic attention. Note that
introducing attended words to attention in a model is different from the current
study as this study merely evaluated the correspondence of gaze distribution and
attention weights of code2vec. In the future, we will develop such models in1865

parallel with the aforementioned experimental study.
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