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Takumi Aotani

Abstract

Multi-agent systems (MASs) are expected to be applied to various real-world
problems where a single agent cannot accomplish given tasks. Due to the inherent
complexity and uncertainty in the real-world MASs, the manual design of group
behaviors of agents is intractable. Multi-agent reinforcement learning (MARL),
which is a framework for multiple agents in the same environment to learn their
policies adaptively, would be a promising methodology. The conventional MARL
methods, however, target a limited class of MASs assuming a common task and
a centralized system.

In this study, we propose “bottom-up MARL” as an autonomous distributed
framework in which agents have their own tasks. Compared to the conventional
MARL, the agents’ own tasks increase the complexity of group behaviors, and
the autonomous distributed manner increases the uncertainty that threatens safe
learning. Hence, this study addresses these issues by developing i) a reward shap-
ing algorithm for the group behaviors, and ii) a meta-optimization method for
the bias-variance trade-off in the model learning. These are elemental techniques
for learning the group behaviors safely, using the predictive models of the re-
wards and the dynamics, and the reshaped reward, in model-based reinforcement
learning.

i) In order to learn the group behaviors, the rewards of all agents are shared
and predicted. Each agent obtains a reshaped reward for the group be-
haviors based on the prediction for its own state. The proposed algorithm
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consists of four components: reward prediction, promotion of exploration,
classification of interests, and reward shaping. The effectiveness of the pro-
posed method is verified by the simulations and the experiments using real
robots.

ii) For long-term safety assurance in uncertain environments, avoiding the pre-
dictions with large errors by the dynamics model, is necessary. In this
study, we formulate the bias-variance trade-off as a multi-objective opti-
mization problem and develop a meta-optimization method to adjust the
trade-off simultaneously with model training. The effectiveness of the pro-
posed method is verified by the simulations.

Keywords:

Multi-agent reinforcement learning, distributed autonomous system, reward shap-
ing, model learning, bias-variance trade-off, meta-optimization
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1 Introduction

1.1 Background
The field of distributed intelligence or distributed robotics has been studied since
the late 1980s [1–3]. This trend is due to the fact that multi-agent systems
(MASs), in which multiple agents work together, have several advantages over
single-agent systems. MASs can be expected to solve many problems efficiently
in terms of time efficiency, flexibility, and robustness [2]. In parallel with the
development of such theoretical research, the application of MASs is being con-
sidered in various domains due to the increasing complexity of the real-world
problems in recent years [4].

In many cases, the practical application of MASs requires learning the policies
for the group behaviors. When considering a MAS such as a robot team with large
scale or physical interactions, the environment becomes complex, and designing
the appropriate group behaviors in advance, is difficult [5]. With the recent de-
velopment in the field of machine learning, there has been a lot of research on
multi-agent reinforcement learning (MARL) for MASs to learn the group behav-
iors based on reinforcement learning [5]. Although MARL is a promising learning
method for acquiring the group behaviors in an unknown environment, an anal-
ysis of conventional methods shows that in many cases it implicitly assumes a
“top-down” structure. Specifically, a common task is set for the entire MAS, or re-
wards, which are reinforcement signals, are distributed from a centralized system
to each agent. When considering general MASs, each agent is, however, consid-
ered to have a primitive task to solve the problem in an autonomous distributed
manner. In addition, a centralized system that monitors the entire system and
communicates with all agents is contrary to the ideal of distributed problem solv-
ing, and is unrealistic in terms of computation and communication costs for the

1



large-scale MAS.
Hence, this dissertation focuses on the development of a general-purpose, highly

autonomous and decentralized MARL that avoids the common task and the cen-
tralized systems. The assumption of a common task means that the learning of
the group behavior is aimed at a clear goal for the entire MAS. On the other
hand, the group behaviors emerged by assuming a primitive task for each agent
is not necessarily clear. Depending on the contents of the primitive task given to
each agent, assuming not only the case where cooperation with other agents is
necessary but also the case where competitive behavior should be selected, is pos-
sible. Since the MAS is only a system whose overall capability can be improved
by taking advantage of the fact that multiple agents exist in the same environ-
ment, each agent should not pursue only the primitive task. The relationships
between agents, therefore, need to be acquired adaptively. Although to handle
a general class of MAS with mixed cooperative and competitive relationships, is
possible, the complexity of the group behaviors is expected to increase. An al-
gorithm is needed that can take into account such the complex group behaviors,
under MARL.

In addition, the absence of a centralized system poses inherent challenges in
MARL. When a centralized system is not assumed, each agent has only its own
state and action space, and to determine whether rewards and state transitions
are due to its own state and actions, is difficult. This condition is meant to
increase the uncertainty of the environment for the agent. Since multiple agents
exist in the same environment in the MAS, the increase in uncertainty is directly
related to safety issues. Each agent needs to execute MARL while considering
the uncertainty and satisfying the safety constraints. Ensuring safety (or risk
avoidance) during learning has been the focus of attention not only in MARL
but also in the context of reinforcement learning. In particular, we focus on
model-base reinforcement learning, which can be used for planning with the state
transition model because of the need to account for uncertainty in the state
transitions.

As described above, in order to abandon the common task and centralized
system and propose an autonomous decentralized MARL, to cope with complex
collective behavior and to ensure safety considering uncertainty, are necessary.
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Figure 1.1: Overview of contribution

1.2 Contribution
This dissertation proposes “bottom-up MARL”, which is an algorithm that avoids
a centralized system to obtain the group behaviors under the assumption that
each agent has its own task. Fig. 1.1 shows the overview of the contributions of the
proposal. In the bottom-up MARL framework, by definition, the system require-
ments "primitive tasks" and "distributed systems" are satisfied. As mentioned
above, coping with complex group behaviors and risk avoidance considering un-
certainty are the requirements to be satisfied. These issues are resolved step by
step in Chapter 2 and Chapter 3.

The proposed framework, bottom-up MARL, intrinsically satisfies the require-
ments of the premitive tasks and the autonomous distributed system. However,
if each agent learns a policy to accomplish only its own primitive task, the group
behaviors of the MAS will not be able to achieve. As described in detail in Chap-
ter 2, this study develops a reward shaping algorithm that allows each agent to
obtain a learning reward for the group behaviors. Agents share rewards with
each other and learn a reward prediction model for each agent’s own state. The
proposed algorithm specifically includes a component that distinguishes between
interests among the agents, which emerges by assuming the primitive tasks. One
of the major contributions of this research is that the proposed algorithm en-
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ables the acquisition of complex group behaviors that are emerged bottom-up
based on primitive tasks. The effectiveness of the proposed method is verified by
simulations and experiments with cooperative and competitive tasks.

In addition, this study considers how to deal with the uncertainty that becomes
more pronounced with the elimination of centralized systems from the perspective
of safety learning. Since each agent learns the policy by reinforcement learning
based only on its own state and action space, the risks such as collision is high,
especially in the exploration phase. Although the risk in the exploration has
been pointed out in reinforcement learning for single-agent systems, it appears
as a more intrinsic uncertainty in MASs where other learning agents exist in the
same environment. In this study, we focus on model-based reinforcement learning,
which is expected to provide safe learning by using dynamics models for planning.
We specifically aims to explicitly consider the bias-variance trade-off in learning
the stochastic model using state transition data. An increase in bias will result in
a deterioration of the average prediction accuracy, while an increase in variance
may produce outliers in the long-term prediction. As described in detail in Chap-
ter 3, this study proposes a method to optimize the trade-off simultaneously with
stochastic model learning, under a meta-objective. The multi-objective optimiza-
tion problem developed in the proposed method provides a new formulation of
the bias-variance decomposition, which is significant in the theoretical aspect of
model learning. Another major contribution of this research is the development
of a general-purpose and efficient meta-optimization method. The effectiveness
of the proposed method is verified by two simulations for the environments with
uncertainty due to human operation and presence of other agents.

1.3 Dissertation outline
The rest of the dissertation is as follows. Chapter 2 provides details on bottom-up
MARL and the proposed reward shaping for learning the group behaviors. Chap-
ter 3 gives the proposed meta-optimization method for adjusting the bias-variance
trade-off in stochastic model learning. Finally, we summarize the dissertation and
describe the future work in Chapter 4.
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2 Bottom-up Multi-agent
Reinforcement Learning by
Reward Shaping

2.1 Introduction
As systems, which humans have to handle recently, become large-scale and com-
plicated, their tasks to develop/achieve new outcomes are basically tackled by
teams consisting of so many people. In such scenes of the real world, multiple
robots are expected to alternate with humans or help us accomplish dangerous
tasks as multi-agent systems (MASs) [6]: for example, coordinated transporta-
tion in a warehouse [7]; and satellite constellations for earth observation [8]. A
purpose of the MAS is to resolve the tasks, where even a high-performance single
robot would fail, by cooperation between agents with simple limited functions.
As can be imagined, however, predesign of the MAS is infeasible due to the wide
range of possibilities caused by interactions between the agents, although the
cases with a few agents have been addressed [9].

To make the MAS feasible, multi-agent reinforcement learning (MARL) is a
promising methodology [10], in which each agent in the MAS adaptively learns its
own policy according to reinforcement learning (RL) [11], since it estimates the
interactions between the agents from their experiences (not from our insufficient
domain knowledge). MARL has open problems different from the normal RL with
a single agent, such as how to cooperate with each other, and therefore, various
algorithms have been developed and applied to simple robot systems [12, 13].
With the recent remarkable development of deep RL [14, 15], many new ideas
have been further proposed to overcome the complexity of MARL: e.g., learning
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communication signals between agents [16]; extending the state-of-the-art RL
algorithms to the scalable MARL [17]; sharing rewards to find best one [18]; and
inferring others’ hidden states [19]. In particular, scalability has an important role
in recent MARL so as to allow it to apply real large-scale systems as mentioned
in the above.

However, such previous work basically assumes that a “top-down” MARL,
where all the agents have a common task given by designers/operators. In that
case, reward should be distributed to all the agents by judging their contributions
(i.e., their state and action). Such a reward generator/distributor is naturally
under a centralized system, which is the most fundamental obstacle to scalability
of MARL. Although Lowe et al. [20] proposed a quasi-decentralized MARL by
providing a server-side value function estimator, which is utilized only during
learning phase, truly decentralized MAS (and MARL) would be difficult as long
as the common task is explicitly given. Applying this method to agents that
have their own tasks, is difficult. As another approach, shaping the reward of
each agent in a form suitable for group behavior, is conceivable. Devlin et al. [21]
show that the optimal group behaviors can be realized without prior knowledge
of a problem domain, by using potential-based reward shaping [22], which is
one of the typical reward shaping methods and the difference rewards [23] as
contribution degree of the global reward. This method does not change the Nash
equilibrium for the set global reward theoretically, however, the common task is
still assumed.

To resolve this scalability problem, we have proposed to convert the framework
of MARL from “top-down” to a “bottom-up” [24]. The “bottom-up” framework
gives all the agents primitive tasks, and has no centralized systems to gener-
ate/distribute reward based on the common task, even though it does not nec-
essarily promise to improve learning performance compared to “top-down”. It is
therefore regarded as a decentralized system potentially, while each agent would
learn selfish policy if no tricks are implemented. As a novel trick to emerge group
behaviors, the previous work has proposed a reward shaping algorithm from re-
wards communicated with each other [24]. The idea of this trick is to specify
the part of the social reward that depends on the agent’s own state, which is
the same as difference rewards [23]. However, the framework of the proposed
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method differs from the conventional research in that the global task is acquired
by a bottom-up manner, instead of the common task given by a top-down man-
ner. Since the proposed reward shaping algorithm does not intervene in the RL
algorithm, our framework allows each agent to use arbitrary single-agent RL al-
gorithms. Autonomy and decentralization are therefore guaranteed in that the
learning algorithm used in our framework does not need to be specialized in MAS.
As a further advantage, since the proposed method has higher autonomous decen-
tralization than the conventional methods, it can be applied to tasks for which the
conventional methods cannot be applied. The proposed algorithm has been ver-
ified in dynamical simulations with the heterogeneous agents under cooperative
relationships.

As a fatal problem that limits applications of the MAS, the previous work im-
plicitly assumed that it is utilized only the cooperative tasks (and agents). Only
when each agent know the interests between agent in advance, the previous work
on the top-down MARL succeeded in handling both cooperative and competitive
tasks [20, 25]. This chapter therefore addresses the extended reward shaping al-
gorithm to allow all the agents not to know their relationships (i.e., interests).
Here, we suppose that the interests among the agents are hidden in their rewards,
as implied in the literature [25]. All the agents therefore estimate their interests
as correlation coefficients of the agents’ rewards in the scalable manner, as illus-
trated in Fig. 2.1. The estimated interests can be classified into the cooperative,
competitive, and irrelevant relationships, and they are integrated to the reward
shaping algorithm numerically to emphasize the reward of the cooperative agents.
Here, competitive relationships do not have the meaning of hostility. The reward
sharing with competing agents can be assumed, since interests mean relationships
between tasks that cannot be known in advance.

The effectiveness of the proposed algorithm is verified by both simulations and
real robot experiments without knowledge of the interests between all the agents.
In the simulations, the proposed algorithm can distinguish the enemies (i.e., the
competitive agents) and the allies (i.e., the cooperative agents) simultaneously
regardless of RL algorithm. In the real experiments, it enables two types of
behaviors to emerge according to the given primitive tasks. As consequence, we
show that the bottom-up MARL with the proposed reward shaping algorithm
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Cooperative Unknown

Competitive

Conventional Proposal

Assumption Before learning After learning

Figure 2.1: Concept of the proposed algorithm: the interests among all the agents
are assumed to be cooperative (orange lines); in the proposal, they
are unknown (dashed gray lines) at first, but are estimated online as
correlation coefficients of the agents’ rewards; as a result, it is expected
that all the agents correctly classify their interests from competitive
(green lines) to cooperative (orange lines) ones.

allows all the agents to acquire the selectively cooperative group behaviors in the
decentralized manner.

2.2 Related work
Using a decentralized autonomous method is necessary to resolve large-scale and
complex multi-agent problems in the real world. In the recent MARL domain,
new methods have been developed that aim to resolve such problems. However,
they have partially satisfied autonomy and/or decentralization. We consider “het-
erogeneous agents”, “partial observation”, “primitive tasks”, and “decentralized
learning” as indices for the decentralized autonomous systems, in this study. The
importance of these indicators for decentralization of MARL has been pointed out
in related work [5,26,27]. Based on these indices, the methods recently proposed
are summarized in Table 2.1.

Heterogeneous agents: The essential issues of MARL on the decentralized au-
tonomous systems are to handle various RL algorithms under a partially observed
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Markov decision process (POMDP). Many of the conventional MARL methods
only consider POMDP. The MARL methods in [19,27–30], however, allow respec-
tive agents to use multiple kinds of RL algorithms, and can handle heterogeneous
agents in terms of the heterogeneity of action space. In these methods, no com-
mon parameters are assumed for agents, and only the basic framework of RL are
shared. They share high-dimensional vectors (e.g. actions [19], parameters of the
value network [27]), that is, in terms of communication cost, they are not scalable
enough.

Partial observation: The causes of POMDP include partial state observation
and probabilistic policies of other agents. The non-stationarity of the reward
for the agent’s own state and action is also one of the causes, in the case of each
agent has a primitive task. Many conventional methods simply assume a complete
observation of the state in order to avoid POMDP [19, 25, 27–31]. POMDP can
therefore be relaxed even when handling individual tasks. However, complete
observation of the state means observation of the environment by a centralized
system, and lacks decentralization.

Primitive tasks: Instead, as shown in Table 2.1, all of the conventional meth-
ods that do not assume complete observation of the state, assumes a common
task [16, 26, 32]. This assumption of a common task implicitly assumes a cen-
tralized system that sets a common reward somehow. Hence, they are also not
suitable for the decentralized autonomous systems.

Decentralized learning: Finally, learning mechanism needs to be decentral-
ized, not just during action execution, to adapt agents to the non-stationary real
world. Some methods achieve decentralized learning [25–28,31]. Zhang et al. [27]
and Yang et al. [31], however, used values and actions of other agents as input of
value functions, respectively. Each agent learns own policy by itself, but the cost
of sharing high-dimensional data is high. Foester et al. [28] and Silva et al. [26]
realized decentralized learning under the condition where the MAS contained
two homogeneous agents. Tampuu et al. [25] investigated decentralized learning
when interests between agents were adjusted by hand. In this study, however, no
algorithm for improving the result has been presented.
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Proposal: All of the recent MARL methods mentioned above have problems
from the viewpoint of both autonomy and decentralization. This study therefore
proposes a new MARL method for MAS that needs to satisfy all the indices listed
in Table 2.1.

Our proposed method can handle heterogeneous agents by only sharing rewards
that always appear in the RL algorithm and are scalar values with low communi-
cation cost [11,24]. Indeed, the total communication cost is a few bytes multiplied
by the number of agents, which is smaller and more tractable than the case with
state communication that may be consist of high-dimensional images. Since each
agent find the parts of rewards related to itself, POMDP can be relaxed. Each
agent naturally has specific primitive task. In addition, no centralized learning
mechanism is required, namely, each agent optimizes own policy according to
reshaped reward, which includes the other agents’ rewards if they are related to
it.

Our method is a kind of reward shaping and independent on RL algorithm. In
other words, the latest RL algorithm can be employed easily. In fact, we have
adopted one of the state-of-the-art algorithms, called Proximal Policy Optimiza-
tion (PPO) [33] for RL.
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2.3 Preliminaries

2.3.1 Reinforcement learning

Reinforcement learning (RL) is a framework for learning the optimal policy, which
maximizes the sum of rewards given over the future [11]. In reinforcement learn-
ing, an agent interacts with environment under Markov decision process (MDP)
as a precondition to guarantee the agent’s learning. MDP can be represented
by a tuple ⟨S,A,P ,R⟩, where S is state space, A is action space, P is a set of
state transition probabilities, and R is a reward function. The reward function
is defined as R : S ×A× S 7→ R. In this study, the reward set mapped from S
and A is represented as R(S,A).

Specifically, when the agent observes a state st at time t, it samples an action at

from the policy π(at | st) according to st. The agent acts at on the environment,
then the state transits to a new one st+1 over the state transition probability
pT (st+1 | st, at), and a reward rt is given from a reward function r(st, at, st+1) at
the same time. The sum of rewards given over the future, so-called the return, is
defined as Rt = ∑∞

k=0 γkrt+k+1 with a discount factor γ ∈ [0, 1). The agent aims
to maximize Rt by optimizing the policy to π∗.

In this research, we focus on the reward shaping, which only controls R in
MDP. That is, all the RL algorithms are acceptable. For simplicity, an actor-
critic algorithm [34] combined with true online TD(λ) [35] (see the literature [36]),
which is one of the representative algorithms with continuous state and action
spaces, is employed.

2.3.2 Multi-agent reinforcement learning

Instead of MDP, multi-agent reinforcement learning (MARL) assumes a Markov
game, where N agents exist in the same environment. That is, the Markov
game can be represented by a tuple ⟨N ,S,A1, . . . ,AN ,P ,R1, . . . ,RN⟩. Here,
N = {1, . . . , N} is a set of agents, Ai denotes the subspace of A that can
be handled by the agent i, and Ri also denotes the reward function for the
agent i. Ri maps a subset of the reward set mapped by R. Although the
basic definition of the Markov game is given in the above tuple, each agent

12



Group behaviors

Reward generation 
system

・・・
Action

Information
Reward

Agent

Common task

(a) Top-down MARL

Group behaviors

・・・

Reward 
generator

Reward 
generator

Reward 
generator

Task

Action

InformationReward

Agent

Task Task

Reward 
function

Reward 
function

Reward 
function
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Figure 2.2: Two types of configurations of MARL: (a) in top-down MARL, a
reward generation system is centralized to achieve a common task ex-
plicitly; (b) in bottom-up MARL, all the agents have their own reward
functions corresponding to individual tasks; the bottom-up MARL is
a scalable configuration due to no centralized systems, although it
requires to achieve group behaviors implicitly.

cannot observe the states of other agents generally. That is, MARL would es-
sentially be a partial observation problem as represented by a following tuple
⟨S1, . . . ,Sn,A1, . . . ,An,P ,R1, . . . ,RN⟩ with Si the subspace of S that can be
observed by the agent i.

From the point of view of each agent, in this case, the environment (i.e., the
state transition P) is regarded as non-stationary until the policies of the other
agents converge on the deterministic ones, and the environment is considered
non-MDP for each agent. Hence, each agent cannot learn its policy efficiently
since it cannot judge whether the new state and reward is yielded by its own
action. This problem is well known as concurrent learning problem [5,26], which
is one of the causes that adversely affect of MARL.

To allow the policies to converge on the deterministic ones, it is practically
important for all the agent to be under the assumption of a partially observable
MDP (POMDP). That is, an appropriate reward function Ri : Si×Ai×Si 7→ R
should be designed to understand relationship between the rewards gained and

13



the agent’s behaviors.
In the top-down MARL as shown in Fig. 2.2(a), a centralized reward generation

system distributes the appropriate reward ri ∈ Ri(Si,Ai) from a set of common
rewards R(S,A) indicating the group behaviors explicitly. To this end, the way
to extract Ri(Si,Ai) from R(S,A) is main difficulty. This configuration is not
suitable for large and complicated problems since they would need intractable
calculation (exploration) time in R(S,A) to extract Ri(Si,Ai).

In contrast, our bottom-up MARL [24] as shown in Fig. 2.2(b) has Ri that
maps Si and Ai, explicitly. It is regarded as an individual task (or objective)
for the agent i. Only with this configuration, however, each agent selfishly pur-
sues only its own reward, thereby not achieving the group behaviors. The agent
therefore extracts the subset Ri

j(Si,Ai) ⊆ Rj(Sj,Aj), and aims to maximize the
sum of rewards from ∪N

j=1Ri
j(Si,Ai). This configuration is still in POMDP and

Ri
j(Si,Ai) can be extracted in the decentralized manner with tractable calcula-

tion (exploration) time in Rj(Sj,Aj).
In summary, the bottom-up MARL would be scalable to the state and action

space (i.e., the number of agents) due to its decentralized system. As a draw-
back, however, it has no common task for generating the group behaviors explic-
itly. From the next section, therefore, we propose the way to extract Ri

j(Si,Ai)
numerically and to reshape the reward for each agent, which implies the group
behaviors.

2.4 Reward Shaping Algorithm for Bottom-up
MARL

2.4.1 Overview

As mentioned in the above, the way to extract Ri
j(Si,Ai) is the key issue for

the bottom-up MARL. Analysis of all the subsets in offline is however undesired
from a practical point of view. All the agent needs to extract them numerically
from a few communication with each other to maintain the decentralized system.
We have proposed a reward shaping algorithm to extract Ri

j(Si,Ai), which is
utilized to reshape the reward to be maximized [24]. This study further improves
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Reinforcement learning

iv) Reward shaping

i) Reward prediction

ii) Promotion of
exploration

iii) Classification of
interests

Environment
(including other agents)

Inside agent

Figure 2.3: Reward shaping algorithm: rewards for all the agents are predicted at
first with uncertainty, which is a key factor to represent the subsets;
to improve the reward prediction, an exploration bonus is added; to
avoid interference with irrelevant and competitive agents, interests
among the agents are classified; finally, all the values in the above are
integrated as a new reward to be maximized, which would imply the
group behaviors.

the previous algorithm by considering interests among the other agents to avoid
interference with irrelevant and competitive objectives. The improved algorithm
is illustrated in Fig. 2.3 and its pseudo code is summarized in Alg. 1.

Here, let us briefly follow roles of respective components in the algorithm in
order (details are from the next section). As a prerequisite, all the agents can
communicate only their rewards to each other (although not always necessary).
According to this communication, the agent i learns i) a stochastic predictor of
all the agents’ rewards with regard to its state (and its action). Here, the pre-
diction uncertainty is revealed as variance, so if the predicted reward is sampled
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from Ri
j(Si,Ai), it should be with low variance; otherwise, with high variance.

This uncertainty however consists of a lack of learning and the information from
which the reward is sampled. To eliminate adverse effects of the lack of learning,
ii) an exploration bonus is added in practice. Next, the rewards from irrelevant
and competitive agents would be obstacles to learn the group behaviors. They
are therefore identified based on iii) correlations between the predicted rewards.
Finally, iv) a reshaped reward for the agent i is derived according to the above
three types of information. This reward shaping implicitly and numerically ex-
tracts (or prioritizes) Ri

j(Si,Ai) while avoiding the adverse effects by (ii) and
(iii).

2.4.2 i) Reward prediction

In this component, the agent i predicts the rewards of all the agents {1, . . . , N} at
every time t, rt = [r1,t, . . . , rN,t]⊤, as r̂i,t using a neural network (NN) with regard
to its own state si,t ∈ Si (and action ai,t ∈ Ai). As a stochastic output from NN,
student-t distribution T parameterized by location µ ∈ RN , scale σ ∈ RN

+ , and
degree of freedom ν ∈ R+ is employed as follows:

r̂i,t ∼ p(r | si,t; ηi)
= T (r | µ(si,t; ηi), diag(σ2(si,t; ηi)), ν(si,t; ηi)) (2.1)

where ηi denotes parameter set of NN.
All the agents can communicate the rewards with communication noise ϵ, r̃i,t =

rt + ϵ, with each other. r̃i,t are utilized as supervisory signals to update NN. A
loss function of NN Li to be minimized by updating ηi is given by negative log
likelihood.

Li,t =
∑

k

− log p(r̃i,k | si,k; ηi) (2.2)

Although it is acceptable to store all the communicated rewards from the begin-
ning, in this study, only the latest ones are used as streaming data.

2.4.3 ii) Exploration bonus

This component aims to eliminate the variance caused by the lack of learning. To
this end, we focus on the fact that the parameter to be optimized would be largely
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Algorithm 1 Learning algorithm for agent i
1: Initialize reward predictor ηi and policy πi

2: for n← 1, Nepisodes do
3: Initialize state si,0 and time t = 0
4: while NOT meet end conditions do
5: Sample action ai,t ∼ πi(a | si,t)
6: Execute action ai,t

7: Observe state si,t+1 and reward ri,t

8: Publish reward ri,t to other agents
9: if t = 0 then

10: r̃i,t−1 ← 0
11: else
12: Subscribe rewards r̃i,t−1

13: end if
14: i) Predict rewards r̂i,t according to eq. (2.1)
15: ii) Calculate exploration bonus ρ̄i,t according to eqs. (2.3)–(2.5)
16: iii) Calculate correlation coefficients ζi,t according to eq. (2.6)
17: iv) Calculate utility ui,t according to eq. (2.8)
18: Update policy πi using (si,t, ai,t, si,t+1, ui,t)
19: Update reward predictor ηi using r̃i,t−1 and eq. (2.2)
20: Increment time t+ = 1
21: end while
22: end for

changed before convergence of learning. In other words, divergence between the
stochastic models represented by ηold

i the parameter set one step before and ηi

would be large during such periods. By giving an exploration bonus to such
periods (and such states), the lack of learning would be resolved.

According to this fact, we define the following exploration bonus ρ̄i,t based on
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Kullback-Leibler divergence KL(· | ·) like other literature [37].

ρ̄i,t = α1

max(1, βi,t)
ρi,t (2.3)

ρi,t = KL(p(· | si,t; ηi) | p(· | si,t; ηold
i )) (2.4)

βi,t = α2βi,t−1 + (1− α2)ρi,t (2.5)

where β means the scaling factor to suppress the too much large exploration
bonus. α1 and α2 denote hyperparameters that represent the scale of the explo-
ration bonus and the ratio of the exponential moving average, respectively.

2.4.4 iii) Classification of interests

The tasks of all the agents are not necessarily cooperative, and there is the possi-
bility that they are irrelevant or competitive and would interfere with each other.
Alternatively, competitive tasks such as sports competition are also considered.
To success in achieving the group behaviors even in such cases, active considera-
tion of interests among the agents is effective as proposed in this component.

Here, the tasks of all the agents are represented by their rewards, although
all the agents do not necessarily gain them via communication. Instead, all the
agents have the predicted rewards, which can be used to calculate the correlation
coefficients between them.

Static interests: At time t, therefore, the agent i performs online calculation
of correlation coefficients between its reward and j-th agent’s one according to
the following equation [38].

ζi,j,t =
σ̄2

i,j,t

σ̄2
i,i,tσ̄

2
j,j,t

(2.6)

where,

σ̄2
i,j,t = 1

t̄
{(t̄− 1)σ̄2

i,j,t−1 + (µj(si,t; ηi)− µ̄i,j,t−1)2}

µ̄i,j,t = 1
t̄
{(t̄− 1)µi,j,t−1 + µj(si,t; ηi)}

t̄ = min(t, tmax)
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t̄ restricts the maximum number of samples (i.e., tmax) for the above calculation
to mitigate adverse effects of the bad prediction accuracy at the early stage of
learning.

According to ζi,j,t, we can easily classify the interest of the agent j from the
viewpoint of the agent i.

1. ζi,j,t ≃ 1: cooperative relationship

2. ζi,j,t ≃ 0: irrelevant relationship

3. ζi,j,t ≃ −1: competitive relationship

Note that, due to the use of the predicted reward, ζi,j,t is not equal to ζj,i,t,
although it is natural even for human to have asymmetry in the interest from
limited perception.

State-dependent interests: The interests are not only static, but can also
change depending on the situation (state). In the above method, the correlation
coefficients are calculated based on the predicted rewards for all states reached
during learning, and the interests of each state are not classified.

Therefore, a method is proposed to classify state-dependent interests in each
agent, as shown in Fig. 2.4. The same neural network as the reward predictor
shown in Section 2.4.2 is used to learn the correlation coefficients between each
agent with respect to the agent’s own state. The correlation coefficients using
the mean µj(si,t; ηi) (j = 1, . . . , N) of predicted reward by the agent i can be cal-
culated sequentially with eq. 2.6. By adjusting tmax, emphasizing the prediction
µj(si,t; ηi) for the current state is possible. Furthermore, by using the exponential
moving average under the parameter cζ , the teacher signal ζ̄i,j,t of the correlation
coefficient can be obtained using the previous information, as shown in the fol-
lowing equation.

ζ̄i,j,t = cζ · ζ̄i,j,t−1 + (1− cζ) · ζj(si,t; ηi) (2.7)

In order to use the outputs of the neural network to be trained as the state-
dependent correlation coefficients, the outputs are normalized by the tanh func-
tion.
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Figure 2.4: Concept of learning the state-dependent interests: by learning state-
dependent interests, a method will be developed that can be applied
not only to tasks with only static interests, but also to more general
tasks where interests change depending on the situation.

2.4.5 iv) Reward shaping

This component integrates all the return values from the above three compo-
nents: i) the predicted rewards µ(si,t; ηi) with their uncertainties σ(si,t; ηi) (and
ν(si,t; ηi)); ii) the exploration bonus ρ̄i,t; and iii) the correlation coefficients ζi,t =
[ζi,1,t, . . . , ζi,N,t]⊤. In particular, σ(si,t; ηi) would have an important role to nu-
merically extract (or prioritize) the subsets of the j-th (j = 1, . . . , N) agent’s
reward set for the agent i, Ri

j(Si,Ai). This is because the reward sampled from
Ri

j(Si,Ai) has low variance; otherwise, high variance.
This concept can be implemented according to a random effects model [39],

which is a method to generate a new mean that takes into account the differences
in the populations of samples and gives priority to the means with the small
variances. Combining it and the other values, ρ̄i,t and ζi,t, a new reward to be
maximized by RL, so-called utility ui,t, is given as follows:

ui,t =
(w∗

i,t)⊤µ∗
i,t

1⊤w∗
i,t

+ ρ̄i,t (2.8)
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where,

µ∗
i,t = ζi,t ⊙ µ(si,t; ηi)

w∗
i,t = 1

(w′
i,t)−1 + τ 2

i,t

w′
i,t =

{
ν(si,t; ηi)

ν(si,t; ηi)− 2
σ2(si,t; ηi)

}−1

τi,t =
(w′

i,t)⊤
(

µ∗
i,t −

1⊤µ∗
i,t

N

)2
− (N − 1)

1⊤w′
i,t −

∥w′
i,t∥2

2
1⊤w′

i,t

Please note that ⊙ denotes element-wise multiplication and 1⊤x denotes the
summation of vector x. In short, ui,t prioritizes the rewards of the agents with
clear interests and high confidence, and ignores others.

2.5 Numerical simulations
Since this study assumes application to the real-world MAS, decentralized learn-
ing is supposed for all the following tasks.

2.5.1 Verification of ability to classify static interests

From this section, the effectiveness of the proposed reward shaping algorithm is
verified. First, a simulation environment with four agents (robots) and a ball
(see Fig. 2.5) is developed based on OpenAI Gym [40]. It can be downloaded
from Github: https://github.com/kbys-t/gym_MA. Note that the components
except iii) the classification of the interests among the agents have been verified
in previous work [24], and therefore, this study particularly focuses on it. This
section deals with static interests.

2.5.1.1 Conditions

The state and action spaces for all the agents are the same for simplicity, although
heterogeneous spaces are acceptable. The state space is six-dimensional: two-
dimensional position of the agent; and two-dimensional position and velocity
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Agent 1 Agent 2 Agent 3 Agent 4
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Figure 2.5: Simulation environment: four agents work in the same environment;
a ball bounces when it hits walls on four edges of the environment or
the agents.

of the ball. The action space is two-dimensional velocity of the agent. The
movable ranges of agents 1–4 in the x-axis direction are set to [−xmax,−xmax/2],
[−xmax/2, 0], [0, xmax/2], and [xmax/2, xmax], respectively. Since the positions of
the other agents cannot be observed, this task is under “partial observation” (see
Table 2.1).

For “primitive tasks” shown in Table 2.1, the agents’ tasks and the correspond-
ing reward functions are respectively given as follows:

• A left team (i.e., agents 1 and 2) aims to push a ball to the right side,
namely, its reward function is defined using x-axis position of the ball, xball,
and a half width of the simulation area, xmax.

rleft = xball

xmax
(2.9)

• A right team (i.e., agents 3 and 4) aims to push the ball to the left side
with the following reward:

rright = − xball

xmax
(2.10)

As can be seen in the above, the intra-team agents are in cooperative relationships
and the inter-team agents are in competitive relationship, although all the agents
do not know such relationships in advance. In addition, such reward design
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Table 2.2: Hyperparameters for each agent

Symbol Meaning Value
Nres Number of neurons in reservoir computing 700
α Learning rate of reservoir computing 0.0005
γ Discount factor of the return 0.99
α1 Scale of the exploration bonus 0.5
α2 Moving average weight of the exploration bonus 0.9

tmax Maximum time for calculation of correlation coefficients 100

yields zero-sum game, so they will fail to learn special policies if they cannot
consider/find the interests among them.

In addition to the above conditions, the sizes of the left team’s agents are larger
than ones of the right team’s agents. Therefore, MAS should satisfy “heteroge-
neous agents” in Table 2.1 in this sense. Since the left team is easier to hit the
ball than the right team, we expect that the left team will win the right team
if they appropriately learn their policies from the utility while considering the
interests among the agents.

As shown above, this task is one of the simple examples to which the conven-
tional methods cannot be applied because it requires three indicators in Table 2.1
for MARL, and only our method satisfies all of them.

Each agent learns its own policy to maximize the return (i.e., the sum of the
utility). To this end, each agent approximate its policy with θ and value func-
tion with ϕ according to the actor-critic algorithm combined with true online
TD(λ) [36] in addition to the reward shaping algorithm with η. The parameter
sets θ, ϕ, and η are given as reservoir computing [41] with Nres neurons. In this
study, the reservoir computing updates its parameters by stochastic gradient de-
cent with α learning rate to minimize the loss function. Table 2.2 summarizes
the hyperparameters used for the implemented algorithms. They were designed
based on the general knowledge about reinforcement learning [11], reservoir com-
puting [41], and our previous work [24]. Only tmax is additionally given in this
study (the effect of its setting is discussed later).
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2.5.1.2 Results

To mainly verify the component for the classification of the interests, two kinds
of simulations are performed: with/without that component. In both cases, the
maximum time in every episode is 100, and the number of total episodes is 500.
If the ball position is | xball |> 0.9xmax, the episode will end even if the time is
less than the maximum time. That is of one trial, and in total, fifty trials are
performed for each.

The learning curves and the 95% confidence intervals of respective agents were
depicted in Figs. 2.6(a) and (b). The average of the policy scale in the final
episode were shown in Figs. 2.7(a) and (b). As can be seen in the case without
the classification of the interests (see Fig. 2.6(a)), all the agents did not gain the
positive rewards stably. This is because the reward functions given to the agents
represent a zero-sum game, and therefore, the utility without the correlation
coefficients would always be almost zero. In other words, all the agents attempted
to make the others including the enemy team win, although there were no optimal
policies satisfying such objectives. As a result, the policy of each agent did not
converge to deterministic one as shown in Fig. 2.7(a).

In contrast, thanks to the classification of the interests, the average rewards
of the agents 1 and 2 (i.e., the left team) converged to higher values than the
agents 3 and 4 (i.e., the right team), as shown in Fig. 2.6(b). This might be due
to the correct estimation of the interests among the agents. Actually, Figs. 2.8(a)
and (b) showed the matrix that combined the correlation coefficients estimated
by the agents at the first and final episodes, respectively. We found that all the
agents successfully distinguished the enemies (i.e., ζi,j,t ≃ −1) and the allies (i.e.,
ζi,j,t ≃ 1). That is, according to the utility defined in eq. (2.8), the agents learned
their policies in cooperation with the allies to defeat the enemies, and the left
team succeeded in doing so by making full use of their body sizes. As a result,
the policies of the left team converged to the deterministic one for winning, but
the right team were still exploring the policies, as shown in Fig. 2.7(b). For
agents 1 and 2, the differences between the scales of the cases without and with
the classification of the interests were verified by t-test. As a result, the p-values
were sufficiently smaller than 0.05 (agent 1: p ≃ 3×10−25, agent 2: p ≃ 1×10−26),
and a significant differences were confirmed.
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Table 2.3: Hyperparameters for each agent

Symbol Meaning Value
Nres Number of neurons in reservoir computing 700
α Learning rate of reservoir computing 0.0005
γ Discount factor of the return 0.99
α1 Scale of the exploration bonus 0.5
α2 Moving average weight of the exploration bonus 0.9

tmax Maximum time for calculation of correlation coefficients 3
cζ Hyperparameter for exponential moving averages 0.99

In summary, the component for the classification of the interests among the
agents allows the agents without any knowledge about the other agents to numer-
ically estimate the interests between themselves and the others as the correlation
coefficients. Such classification is reflected to the utility to be maximized by
RL. As a result, the agents emerge the group behaviors in cooperation with the
cooperative agents while defeating/ignoring the competitive/irrelevant agents.

2.5.2 Valification of effectiveness to learn state-dependent
interests

Next, the effectiveness of the learning method for state-dependent interests is
valified. In the conventional context of MARL, the common task are mostly
assumed, and state-dependent interests have not been sufficiently considered. In
the original simulation environment shown below, the task that require selective
cooperation is set. Therefore, to distinguish the interests appropriately depending
on the state, is necessary.

2.5.2.1 Conditions

The simulation environment is shown in Fig. 2.9. Each agent’s state is its own
absolute position and velocity and the relative position of the other, and its action
is acceleration. The absolute values of the maximum velocity and acceleration
of the agent 2 are larger than those of the agent 1. The agent 1’s task is to
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reduce the distance to agent 2. The agent 2’s task is also basically to reduce
the distance between agents, but in personal space, the smaller the distance, the
lower the reward. Therefore, the interests of both agents are cooperative outside
the personal space and competitive inside. Without a state-dependent distinction
of interests, the MAS cannot achieve a group behaviors that takes into account
each task, with both agents approaching each other outside the personal space
and the agent 2 moving away inside. Table 2.3 summarizes the hyperparameters
used for the implemented algorithms.

2.5.2.2 Results

The maximum time in every episode is 700, and the number of total episodes is
500. This one trial are repeated ten times.

The learning curves and the 95% confidence intervals of respective agents were
depicted in Fig. 2.10. Fig. 2.10 shows that the agent 2’s reward has improved,
and the two agents are able to keep close to the outer loop of the personal space.
On the other hand, the agent 1’s reward is decreasing, which confirms that the
agent 2 with higher ability is prioritizing its own task.

The transition between the environment and the prediction of the correlation
coefficient by the agent 2 in the final episode is shown in Fig.2.11. Fig.2.11 shows
that the correlation coefficient is predicted to be close to +1 when the agent 1 is
outside the personal space (as shown in the scene (1)), and close to −1 when it
is inside the personal space (as shown in the scene (2)). In the steady state, the
distance is about the same as the outer loop of the personal space, as shown in
the scene (3).

These results show numerically that the proposed method can predict the in-
terests that change depending on the state.

2.5.3 Verification of versatility

Since the proposed method is for reshaping rewards in the decentralized manner,
it is versatile for MAS problems (e.g., whether state-action spaces are discrete
or continuous) and the algorithms to learn the agents’ policies. In this section,
therefore, the proposed method is additionally applied to Predetor-Prey problem,
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which is one of the benchmarks for MAS [20, 42–44]. This problem has discrete
action space, and therefore, Deep Q-Network (DQN) [14] can be applied instead
of the actor-critic algorithm we used in the above.

2.5.3.1 Conditions

This environment based on [20] consists of four agents and two objects, which
are randomly placed at the beginning of each episode, under our setup (see
Fig. 2.12). The source codes of the environment can be downloaded from Github:
https://github.com/openai/multiagent-particle-envs). The state space of
the agents 1-3 (predators) is sixteen-dimensional: absolute position and velocity
of itself; relative positions of other agents and objects; and velocity of the agent
4 (prey). The state space of the agent 4 (prey) is fourteen-dimensional: abso-
lute position and velocity of itself; relative positions of other agents and objects.
Each agent has a discrete action space that determines the moving direction
(up/down/left/right) of each step. Partially observations are assumed because
each agent does not share the actions of all agents and the agent 4 does not know
the objects’ positions.

The respective tasks and the corresponding reward functions are given as fol-
lows:

• Predators (i.e., the agents 1-3) aims to to approach and collide with agent4.

rpredator = −0.1 ·
3∑

i=1

√
(x4 − xi)2 + (y4 − yi)2 + 10 ·

3∑
i=1

ci (2.11)

where, xi, yi (i = 1, . . . , 4) are x-axis and y-axis position of i-th agent and
ci takes 1 when the agent 4 collides with i-th agent (otherwise, 0).

• Prey (i.e., the agent 4) aims to avoid the collisions with the predators and
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to stay in the screen.

rprey =− 10 ·
3∑

i=1
ci

−


0 (|x4| < 0.9)

10 · (|x4| − 0.9) (|x4| < 1)

min(exp(2|x4| − 2), 10) (|x4| ≥ 1)

−


0 (|y4| < 0.9)

10 · (|y4| − 0.9) (|y4| < 1)

min(exp(2|y4| − 2), 10) (|y4| ≥ 1)

(2.12)

where, the second and third terms are for the penalty if the prey goes
outside of the screen.

To solve this task without the knowledge of these primitive tasks, only our method
satisfies the conditions in Table 2.1.

Table 2.4 summarizes the hyperparameters used for the learning. The other
hyperparameters are the same as the cases for the above simulation summarized
in Table 2.2. Reservoir computing is used for the reward prediction, and DQN
is used for the learning the action-value function, which can be converted to the
policy. The rewards in the batch for DQN are obtained by the latest reward
prediction network.

2.5.3.2 Results

The learning results are shown in Fig. 2.13. The maximum time in every episode
is 30, and the number of total episodes is 250. As shown in Fig. 2.13, the rewards
of the agents 1-3 (i.e., the predators) were increased. The reward of the agent
4, the prey, was decreased. That is, the predators could collide with the prey
somehow. Indeed, the snapshots of the environment in the final episode are
shown in Fig. 2.14. The predators seemed to cooperate with each other well and
finally caught the prey.

To confirm whether the predators were in cooperation, the correlation matrices
before and after learning are illustrated in Figs. 2.15(a) and (b). As expected,
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Table 2.4: Hyperparameters for each agent

Symbol Meaning Value
Nlayer Number of DQN layers 3
Ndqn Number of neurons in each DQN hidden layer 100
αdqn Learning rate of DQN 0.0005

the predators were recognized as cooperative relationships with each other. In
contrast, the the correlation coefficients between the predators and the prey were
enough small to ignore the predators’ rewards, but still positive. That is because
the reward does not always have a negative correlation in this task. For example,
when either of the predators and the prey are close enough without collision in
the screen, both of them get no rewards. The correlation would be positive when
the prey moves outside of the screen while being away from the predators.

2.6 Experiments
We verify that the proposed algorithm works properly and learns the target tasks
even in the MAS with real robots. Since this study assumes application to the
real-world MAS, decentralized learning is supposed for all the following tasks.

2.6.1 Environment

A whole image of the experimental environment is shown in Fig. 2.16. Two robots
are prepared as the agents summarized in Table 2.5. The agent 1 is a two-wheeled
mobile robot, named TurtleBot 2 (or Kobuki), developed by Yujin Robot Co. (see
Fig. 2.17(a)); and the agent 2 is a four-axis manipulator, named Dobot Magician,
manufactured by Dobot (see Fig. 2.17(b)). Their movement direction is restricted
to one dimension (i.e., longitudinal direction) by hardware and software settings.
They can detect AR markers (and their distances) via web cameras.

The state and action spaces of each agent are specified as follows:

• Agent 1: the two-wheeled mobile robot
It has three-dimensional state space: distances from its base to the agent 2
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Table 2.5: Specifications of robot systems
Robot name TurtleBot 2 Dobot Magician

(Company name) (YUJIN ROBOT) (DOBOT)
Type Two-wheeled mobile base Four-axis manipulator
CPU Intel Core i5-2557M Intel Core i7-7700K

(1.70 GHz) (4.20 GHz)
RAM 4 GB 16 GB
OS Ubuntu 16.04 Ubuntu 16.04

Software platform ROS Kinetic ROS Kinetic
Sensor Web camera Web camera

(640×480 pixel, 30 fps) (1920×1080 pixel, 30 fps)

and the obstacle; and longitudinal velocity. It controls longitudinal accel-
eration, namely, it has one-dimensional action space.

• Agent 2: the four-axis manipulator
It has three-dimensional state space: distances from its base to the agent
1 and the obstacle; and position of its end-effector. The end-effector is
controlled by adding movement amount as one-dimensional action space.

Note that noise would be included in the measured distance using the web camera,
and therefore, exponential moving average with 0.8 a gain is applied as its low-
pass filter.

Both robots are controlled using robot operating system (ROS) [45], which
is a middleware making software easily communicate with hardware. ROS also
allows the robots to communicate rewards with each other. That is, both robots
can learn the reward predictor and the correlation coefficients in online. Note
that their hyperparameters are the same as the cases for the above simulation
summarized in Table 2.2 except the number of neurons in learning rate: α = 0.001
and reservoir computing: Nres = 1000. This increase in Nres is because the real
experiment is basically more difficult than the simulations.

An obstacle is placed between the two agents. It prohibits the mobile robot
from approaching the manipulator since the robot is restricted not to push it.
In contrast, it is connected to the manipulator via a string. The manipulator is
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therefore able to pull it, but not to push it. This irreversibility makes given tasks
introduced in the next section difficult.

2.6.2 Task settings

By giving two kinds of reward functions, following cooperative and competitive
tasks are performed. Note that these tasks also need to be learned by the MARL
algorithm, which satisfies all the indicators in Table 2.1, as in Section 2.5.

2.6.2.1 Cooperative task

In this case, the agents 1 and 2 aim to achieve the following tasks independently.

• The agent 1’s task is to approach the agent 2, that is represented by the
following reward function r1

coop.

r1
coop = 2 exp (−0.15d1,2)− 1 (2.13)

where d1,2 is the distance from the agent 1 to the agent 2 observed by the
agent 1.

• The agent 2’s task is to make the agent 1 close to itself, that is represented
by the following reward function r2

coop.

r2
coop = 2 exp (−0.15d2,1)− 1 (2.14)

where d2,1 is the distance from the agent 2 to the agent 1 observed by the
agent 2.

Note that d1,2 and d2,1 are theoretically in symmetric, but in practice, they would
not match due to the observation noise.

The agent 1 cannot approach to the agent 2 due to the obstacle in the initial
state. In addition, the agent 2 cannot gain high reward unless the agent 1 is
closer to it than the initial position of the obstacle. That is, both agents will gain
high rewards only if the agent 2 pulls the obstacle and the agent 1 moves forward
to approach the agent 2.
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2.6.2.2 Competitive task

In this case, the tasks for the agents 1 and 2 are designed as follows:

• As well as the cooperative task, the agent 1’s task is to approach the agent
2, that is represented by the following reward function r1

comp.

r1
comp = 2 exp (−0.15d1,2)− 1 = r1

coop (2.15)

• As oppose to the cooperative task, the agent 2’s task is to prohibit the
agent 1 from being close to itself, that is represented by the following reward
function r2

comp.

r2
comp = r = 1− 2 exp (−0.15d2,1) = −r2

coop (2.16)

As can be seen in the above, only the reward function for the agent 2 is inverted
from the cooperative task. The objectives of both agents are absolutely in conflict,
but the agent 2 takes the lead since only it can move the obstacle that prohibits
the agent 1 approaching. That is, it is expected that the agent 2 gain higher
reward than the agent 1 due to its initiative in this competition.

2.6.3 Results

Both cooperative and competitive tasks terminate every episode after 100 time
steps, and conduct 100 episodes in total. This one trial are repeated three times
for each. The behaviors of the two robots after learning is illustrated in an
attached video and Figs. 2.19 and 2.20, which are extracted scenes from the
video.

2.6.3.1 Cooperative task

First, the experimental results for the cooperative task are shown below. The
learning curves and the 95% confidence intervals of respective agents were de-
picted in Fig. 2.21: (a) denotes the average reward indicating the performance
of RL; and (b) denotes the average loss indicating the accuracy of the reward
predictor. As can be seen in Fig. 2.21(a), both agents gained the high average
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reward finally, that means, they could find the cooperative way. In addition,
their reward predictors gained negative losses, that means, they were with good
accuracy to predict their rewards with small variance (see Fig. 2.21(b)).

These two results suggested that both robots could correctly estimate the cor-
relation coefficients between them and consider each other to be in a coopera-
tive relationship. To confirm this suggestion, the correlation coefficients with the
episodes as x-axis were plotted in Fig. 2.22. Note again that they can be in asym-
metric since each agent estimates them from the output of each reward predictor,
although the true ones should be absolutely symmetric. In each agent, the corre-
lation coefficients for itself and the other agent converged around 1, which means
the cooperative relationship, within 20 episodes. Actually, after 20 episodes, the
learning curves in Fig. 2.21(a) started to be increased since the group objective
to be learned became clear.

2.6.3.2 Competitive task

Next, the experimental results for the competitive task are shown below. The
learning curves and the 95% confidence intervals of respective agents were de-
picted in Fig. 2.23: as well as Fig. 2.21, (a) and (b) denote the average reward
and loss, respectively. Apart from the results of the cooperative task, only the
agent 2 (i.e., the four-axis manipulator) gained the high reward, and the agent
1’s reward were decreased rather than the early stage of learning. The reward
predictors of both agents were however with good accuracy sufficiently.

From this results, as expected in advance, it is suggested that the agent 2 no-
ticed their competitive relationship at least, and actively blocked the approach
of the agent 1. To confirm this suggestion, the correlation coefficients were again
plotted in Fig. 2.24. In each agent, the correlation coefficients for itself and
the other agent converged around −1, which means the competitive relationship,
within 20 episodes. Note that, in the first 20 episodes, the wide confidence inter-
vals of the average rewards imply that both agents confirmed their relationship.
That is, not only the agent 1 but also the agent 2 were aware that they are in
the competitive relationship. The agent 1 however took the lead as expected,
and as a consequence, only the agent 1 could acquire the optimal policy to block
the agent 2. In contrast, the agent 2 never gained high reward no matter how
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it moves, so it repeated back and forth movement to find new states (see the
attached video and Fig. 2.20).

2.6.3.3 Discussion

In summary, we verified that the proposed reward shaping algorithm can find
the interests among the agents autonomously even in the experiments with real
robots, and using the estimated results, all the agents can finally emerge the group
behaviors suitable for the tasks given to them independently (and environment).
This task is one of the cases, where the conventional methods with insufficient
satisfaction of the indicators in Table 2.1 cannot be applied. In other words, it
is also an example of belonging to a class that only the proposed algorithm can
tackle. These results claim that the proposed reward shaping algorithm signifi-
cantly improved the previous work without the classification of the interests [24].
In addition, this improvement would naturally extend the feasible applications by
the MAS with the bottom-up manner to the cases even without knowledge about
the interests among the agents in the MAS. This extension certainly reduces the
burden on users when building large MASs.

However, our proposal still have two open problems: state-dependent interests
and; learning convergence and stability. Regarding the first problem, the interests
between the agents in the above experiments (and the simulations) are stationary
and can be regarded as constant correlation coefficients when the environment
and tasks are set. Under such the stationary environments, fine-tuning of the
hyperparameter tmax existing in the proposed method on the correlation coeffi-
cient prediction, is not needed. In real problems, however, the interests would
be changed according to interactions between the agents and their situations. In
such the non-stationary environments, if tmax is larger than the rate of change
of the correlation, the change cannot be expressed; and vice versa. Assuming in
advance the rate of change in the interests, is necessary in the proposed method.
An idea to resolve this open problem is the classification of the interests with
regard to the observed state (and the performed action), although it is difficult
to learn due to no supervisory signals.

Regarding the second problem, analyzing the convergence and stability in
MARL for non-stationary environments is generally difficult. The spaces used
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by each agent in RL are MDP (POMDP until the probabilistic policies of the
other agents converge on the deterministic ones) since the reshaped reward by
the proposed algorithm is finally mapped only by Si × Ai × Si. At that time,
it would be theoretically proved that the policy of each agent converges to the
optimal policy for the reshaped reward. The proposed method, however, learns
the reward prediction and the policy simultaneously. The agents, therefore, are
likely to learn the policies at the stage where the accuracy of reward prediction
is insufficient. This process has the risk to update the policies towards wrong
directions. At least, the reward prediction should be acquired with high accuracy
before making the policy get stuck in the wrong local optima. Although the re-
ward prediction is acquired in the supervised manner, which would be faster than
the case of reinforcement learning, we have to regulate the order of learning.

2.7 Conclusion
This chapter proposed the reward shaping algorithm for bottom-up MARL to
achieve the group behaviors from the agents’ own tasks independently given. The
proposed algorithm is designed as the decentralized system as long as possible
except the communication of rewards (scalar real values) between the agents,
which can be omitted after learning phase. Specifically, each agent predicts the
rewards of the other agents as a stochastic model with location (i.e., mean) and
scale (i.e, variance) parameters by sharing the rewards during the learning. By
learning this predictor, each agent knows the dependencies of the other agents’
tasks on its own state (and action) from the variance of the predicted rewards,
which is revealed by the exploration bonus. As a further improvement from
the previous work [24] to manage the MAS with unknown interests among the
agents, they are classified online based on the correlation coefficients between the
means of predicted rewards. Finally, the new reward, named utility, is derived
by integrating the stochastic model of the agents’ rewards and the correlation
coefficients. The above implementation was verified through the simulations and
the real experiments. In all the cases, all the agents found the interests among
the others and acquired the cooperative/competitive tasks, although the previous
algorithm failed to do so.
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(b) With the classification of interests

Figure 2.6: Learning curves summarizing fifty trials: (a) without the classification
of the interests among the agents, all the agents could not distinguish
the enemies and the allies, thereby failing to learn the competitive
task; (b) thanks to the classification of the interests, they found the
team organization correctly, and as a consequence, the left team de-
feated the right team by making full use of their body sizes.
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Figure 2.7: Scale parameters in the policies at the final episode summarizing fifty
trials: the dashed line means the initial policy scale; (a) the scales
of all the agents kept large values to explore the optimal policy that
does not exist; (b) thanks to the classification of the interests, the left
team could find the deterministic policies for winning, on the other
hand, the right team could not.
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(b) After final episode

Figure 2.8: Correlation matrices: they were obtained by merging the agents’ es-
timations; (a) the accurate correlation matrix was not found due to
insufficient data; (b) finally, all the agents correctly distinguished the
enemies and the allies.
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Personal space

Orbit

Figure 2.9: Simulation environment: two agents work in the same environment;
both agents move on the orbiter; the agent 2 has a personal space set.
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Figure 2.10: Learning curves summarizing ten trials: the reward of the agent 1
decreases with the increase of rewards of the agent 2.
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Figure 2.11: Group behaviors after learning: (1) Classified as a cooperative rela-
tionship; (1) Classified as a competitive relationship; (1) Classified
as a irrelevant.
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Figure 2.12: Simulation environment: four agents work in the same environment;
the task of agents 1-3 (predators) is to catch agent 4 (prey); the task
of agent 4 is to escape from agent 1-3 on the screen.
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Figure 2.13: Learning curves summarizing twenty trials: the reward of the agent
4 decreases with the increase of rewards of the agents 1-3.

~ step 1 ~ step 10 ~ step 20 ~ step 30

Figure 2.14: Snapshots of the demonstration task: the agents 1-3 were moving to
surround the agent 4; thanks to that behaviors, escaping from the
agents 1-3 is difficult for the agent 4.
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(b) After final episode

Figure 2.15: Correlation matrices before and after learning: they were obtained
by merging the agents’ estimations; (a) the accurate correlation ma-
trix was not found due to insufficient data; (b) finally, all the agents
correctly distinguished the allies, and calculated the small correla-
tion coefficients with the enemies.

Agent 1 (TurtleBot 2)

Agent 2 (Dobot Magician)

Obstacle

Figure 2.16: Experimental environment: two agents are in this environment; a
mobile robot can move along the front-back direction while stopping
in front of an obstacle; a four-axis manipulator is connected to the
obstacle by a string, so it can move the obstacle nonlinearly; each
agent has a web camera to recognize AR markers.
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AR marker
Web camera

(a) Agent 1: TurtleBot 2

AR marker

Web camera

(b) Agent 2: Dobot Magician

Figure 2.17: Robots as agents: a two-wheeled mobile robot and a four-axis ma-
nipulator are employed as the agents in this experiment; they have
web cameras to recognize AR markers, which provide distance infor-
mation.

AR marker

(a) View from the agent 1

AR marker

(b) View from the agent 2

Figure 2.18: Obstacle design: it can be pulled by the manipulator via the string;
AR markers on both sides allow the agents to detect this obstacle.

42



~ 0 sec ~ 5 sec ~ 10 sec

Figure 2.19: Snapshots of the cooperative task: the manipulator pulled the ob-
stacle to make the mobile robot close to itself; according to that
behavior, the mobile robot approached to the manipulator rapidly.

~ 0 sec ~ 25 sec ~ 45 sec

Figure 2.20: Snapshots of the competitive task: the manipulator prohibited the
mobile robot approaching by not pulling the obstacle; the mobile
robot repeated exploratory actions to find new states with high re-
wards, even though they did not exist.
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(a) Learning curves of average reward
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Figure 2.21: Learning curves of the cooperative task: (a) the average rewards of
both agents were increased as the episode went on (in particular, af-
ter 20 episodes); as a result, they emerged the cooperative behaviors
as shown in Fig. 2.19; (b) the average loss of the reward predictors in
both agents were decreased and became negative, that is, the reward
predictors acquired the high accuracy with low variance.
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(a) Estimation by the agent 1

0 20 40 60 80 100
Episode

−1.0

−0.5

0.0

0.5

1.0

A
ve

ra
ge

co
rr

el
at

io
n

co
effi

ci
en

t

Agent 1 Agent 2

(b) Estimation by the agent 2

Figure 2.22: The correlation coefficients of the cooperative task: in both agents,
the correlation coefficients between themselves and the others con-
verged around 1 within 20 episodes.
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(a) Learning curves of average reward
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(b) Learning curves of average loss

Figure 2.23: Learning curves of the competitive task: (a) the average rewards of
only the agent 2 were increased as the episode went on (in partic-
ular, after 20 episodes); as a result, they emerged the competitive
behaviors as shown in Fig. 2.20; (b) the average loss of the reward
predictors in both agents were decreased and became negative, that
is, the reward predictors acquired the high accuracy with low vari-
ance.
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(a) Estimation by the agent 1
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(b) Estimation by the agent 2

Figure 2.24: The correlation coefficients of the competitive task: in both agents,
the correlation coefficients between themselves and the others con-
verged around −1 within 20 episodes.
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3 Meta-Optimization of
Bias-Variance Trade-off in
Stochastic Model Learning

3.1 Introduction
Reinforcement learning (RL) [46] is one of the promising methods for robots to
adaptively acquire their own policies in the real world. In recent years, RL has
been applied in environments with high uncertainty, where there are multiple
actors (eg. human-containing systems [47, 48] and multi-agent systems [49, 50]).
RL-based agents attempt stochastic actions during exploration, which may have
a negative impact on the environment. Safe learning, which mitigates risk during
exploration such as collision, is required in these environments.

Model-based RL is expected to take safety into account by using stochastic
dynamics models in planning. One such approach is model predictive shielding
(MPS), which utilizes an idea called shielding [51, 52]. MPS uses the stochastic
dynamics model, and shielding intervenes in the agent’s action to ensure that
state transitions satisfy safety constraints. Intervention by shielding is triggered
when the agent is prone to go into the states outside of the safety constraints
(predicted by the dynamics model). Similarly, tube model predictive control (tube
MPC) is another model-based planning method that explicitly considers safety.
Uncertainty in dynamics prediction propagates in a time-evolving manner. The
region surrounding a possible transition state is called tube, and planning within
this tube is performed in tube MPC [53–55]. However, these methods do not
provide how to obtain the accurate dynamics model for the target environment,
while that is mandatory in them.
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Learning with the deep neural networks (DNNs) is widely applied to achieve the
stochastic model prediction in recent years. The objective function for training
is generally formulated as the minimization problem of expected prediction loss
for the next state. The expectation is regarded as a first-order moment, namely,
this approach does not optimize higher-order moments, such as variance. Hence,
if a large prediction error occurs even once during the prediction of a long-term
trajectory, all subsequent states will become outliers. With the fact that the
prediction model can be given as a probability distribution, Bayesian theory has
been appropriately utilized to consider the uncertainty of the model [56, 57]. In
particular, Chua et al. [57] has proven a simple ensemble method, in which mul-
tiple models are prepared and trained simultaneously. In their work for the latest
model-based RL, the learned models made stable planning possible. The models
are however approximated with DNNs, hence the number of parameters would be
huge if multiple models are used. In addition, the number of models required for
the target environment must be determined empirically. Although robust control
theory that explicitly considers model uncertainty or input uncertainty have been
proposed [58,59], they assume linearity and cannot be directly applied to nonlin-
ear stochastic models. A learning method that predicts the stochastic nonlinear
dynamics by DNNs with limited size is required for practical use.

If DNNs with limited size try to reduce the uncertainty of model, a well-known
problem in regression, called the bias-variance trade-off [60], cannot be ignored.
While the bias can be reduced by the conventional minimization problem of
the expected loss, that raises the risk degrading the generalization performance
caused by the increase of the variance. On the other hand, if the variance is
somehow reduced excessively, the average prediction performance would be de-
teriorated. Even though both bias and variance can be reduced in DNNs with
sufficiently large size [61,62], the bias-variance trade-off still need to be considered
for practical use. We notice the important fact that the optimal balance of the
trade-off is task-dependent and basically non-trivial. With the same awareness
of the issue, various bias-variance decompositions for regression problems have
been proposed [63–66]. The conventional methods, however, cannot be applied
to model training with DNNs for model-based RL. Therefore, a new decomposi-
tion suitable for sequential training of the deep neural networks is needed.
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In this study, we propose a comprehensive algorithm to obtain an optimal
balance between bias and variance for the meta-objective required in model-based
RL. We first attempt to formulate the bias-variance trade-off as a multi-objective
optimization (MOO) problem. From a statistical point of view on the loss of the
entire dataset, we note that the bias and variance can be represented by the mean
loss and the worst loss. The argument begins with the fact that the expected loss
function of the minimization problem for a given dataset is an equally-weighted
sum of the losses for each data. In other words, the conventional method can
be interpreted as a method to obtain a Pareto solution by evaluating the loss of
each data equivalently. The optimization based on scalarization with the linear
weighted sum, however, cannot obtain Pareto solutions on the non-convex part.
Therefore, we apply the augmented weighted Tchebycheff scalarization [67, 68],
which can effectively find non-convex Pareto frontiers, to each data loss. The
weighted sum of the mean loss and the worst loss is derived as a new minimization
target in this scalarization. That is, the next step is to apply the augmented
weighted Tchebycheff scalarization again so that arbitrary Pareto solutions among
the statistics (i.e. mean and worst) can be found.

The balance between the bias and the variance can be adjusted using a hyper-
parameter given by the above process. The Pareto solution to be used, called
the preferred solution, is therefore selected by tuning this hyperparameter from
the set of Pareto solutions according to the higher-level objective in general. The
simplest way to find a preferred solution is brute-force exploration of the re-
lated hyperparameter(s), although this approach is computationally expensive as
a matter of course. As a more advanced method, meta-optimization of parame-
ters included in lower-level objectives [69] has been developed with several forms:
e.g. gradient descent (GD) [70–73]; RL [74–76]; evolutionary search (ES) [77–79];
and Bayesian optimization (BO) [80, 81]. However, these conventional methods
have the limitation of assuming the differentiability of the meta objective and/or
requiring multiple lower-level learning trials.

Hence, we propose a general-purpose and efficient meta-optimization method
based on a policy gradient method [82]. Specifically, the proposed method learns
a policy that outputs hyperparameters stochastically. In each epoch, twin models
are trained using the mean and sampled values of the policy, respectively, and
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the trained models are validated against the meta objective. The difference in
the validation results would be related to only the sampled hyperparameters,
not the training results, and therefore, the log-likelihood of the policy with the
sampled hyperparameters, weighted by the difference in the validation results,
can be maximized so as to optimize the meta objective. Before starting the next
epoch, the twin models are remade from either of the old twins. In this method,
the meta objective is not differentiated, and multiple trials are not necessary since
the hyperparameters are optimized at the same time as the DNNs parameters.

The contributions in this study are three folds:

1. Formulation of the bias-variance trade-off as a MOO problem

2. Development of a general-purpose and efficient meta-optimization method

3. Numerical verification of the proposed formulation with the meta-optimization
on two simulations for the environments with uncertainty due to human op-
eration and presence of other agents

3.2 Related work

3.2.1 Bias-variance decomposition

Traditionally, the problem of bias-variance trade-off has been pointed out in data-
driven learning. Various bias-variance decompositions are presented for several
loss functions (e.g. mean-squared loss [60,83], zero-one loss [83], and log-likelihood
type loss [84]) used in regression. For the selection of regression models to avoid
overfitting, the bias-variance have been decomposed as accuracy and complexity
according to the information criterion [85]. In recent years, several bias-variance
decompositions have been proposed to treat the trade-off as a MOO problem. In
this section, we characterize the proposed decomposition method by comparing
it with conventional methods.

A semi-parametric Gaussian copula regression that is robust to multiple datasets
is proposed [65]. In generating the cumulative distribution function used for the
prior distribution, the parameters of the quantile estimate adjust the bias and

51



variance. However, the idea is not directly applicable to model training with
neural networks.

A decomposition method has been proposed for model selection of Bayesian
networks, where the evaluation function is defined by the accuracy and complexity
using the minimal description length (MDL) [63]. Applying MDL to general
DNNs where each node (neuron) has a real number of outputs and is large in
scale, is, however, difficult. Since the data is sampled online, selecting the best
model in advance, is also not suitable for the model-based RL.

Several methods have been presented for RL, focusing on the bias-variance
trade-off of the policy gradient estimation. The method of using regularization
by a Kullback–Leibler divergence for variance reduction [64] is discussed by re-
stricting the problem to hyperparameters used in RL. A method that deals with
the merge of gradients appearing in off-policy and on-policy learning [66] is also
a decomposition method unique to RL.

Although various bias-variance decompositions have been proposed as described
above, the methods suitable for safe model learning used in model-based RL,
which is the target of this method, have not been well investigated. The pro-
posed method does not analyze existing loss functions such as [60, 83, 84], but
defines a new loss function by providing a decomposition that deals with the bias
and variance of the loss values themselves. By focusing on DNNs, which have been
traditionally used for learning stochastic models of dynamics, the loss function
is defined in a form that is easy to handle in model-based RL. Furthermore, the
proposed loss function is naturally derived by interpreting the conventional loss
function as a MOO problem, and is not applied at the model selection stage as
in [63]. This feature is an essential condition for model-based RL, which assumes
online learning.

3.2.2 Meta-optimization
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A learning algorithm trains DNNs based on a task-specific (low-level) loss func-
tion. According to a user-desired (high-level) meta-objective (e.g. generalizing
across different tasks and long-term prediction accuracy like our setting), meta-
optimization methods aim to optimize hyperparameters in the learning algorithm
and/or the low-level loss function. The reason why various methods have been
proposed is that the conditions to be satisfied differ depending on the problem.
In this section, we qualitatively check the performance of the conventional and
proposed meta-optimization methods while summarizing the necessary require-
ments for general meta-optimization. The comparison results are summarized in
Table 3.1.

First, minimization of the low-level loss function is generally with high com-
putational cost due to large dataset for training DNNs. The meta-optimization
methods should be, therefore, highly efficient. The number of hyperparmeters
to be optimized is problem-dependent (e.g. one in our case and hundreds in op-
timization of the architecture of DNNs), and therefore, scalability is important.
Furthermore, versatility is also important to employ arbitrary meta-objective,
loss function, architecture of DNNs, and so on. In particular, differentiability of
meta-objective function over hyperparameters cannot be assumed since it abso-
lutely limits the applicable problems. Hence, the following four requirements are
raised: i) high efficiency; ii) high scalability; iii) arbitrariness of target; and iv)
no use of gradient.

High efficiency Since meta-optimization is performed at a higher layer of the
low-level learning, using the results of low-level learning is generally necessary [69].
While meta-optimization may aim to improve the efficiency of low-level learning,
improving the efficiency of meta-optimization itself is also important, in order to
reduce time cost and computational resources. In this evaluation, we examine
whether or not to complete meta-optimization is possible from a single trial of a
limited number of low-level learners.

GD-based methods [70–73] directly optimize the target hyperparameters, and
thus have higher efficiency. RL-based methods are fundamentally less efficient
because they require wide exploration and many trials [74]. Some methods [75,
76], however, achieved high efficiency with using the gradient of meta-objective
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or low-level loss, by limiting the application to RL. BO can also achieved high
efficiency by finding the points to be explored. On the other hand, ES-based
methods [77–79] are well known as less efficient because they use multiple trials
or many low-level learners.

High scalability When meta-optimization methods are applied to optimize
a large number of hyperparameters, the complexity of search space increases
combinatorially. Since the order of computational complexity with respect to
the number of hyperparameters is directly related to the versatility, a scalable
method is desired to be developed.

Methods that aim for local optima based on direct information, such as hyperparameter-
dependent gradients, generally have high scalability [70–76] by not using global
information in the search space. On the other hand, in heuristic methods [77–79],
it is intractable to find the optimal solution without many search points on large
search space. The convergence is sacrificed in exchange for not limiting the search
space, which is the reason for the reduced scalability. In addition, BO [80,81] uses
the Gaussian process [86] to estimate the model, the computational cost explodes
with respect to the number of search points because samples of various values
need to obtain the global shape of the objective function.

Arbitrariness of target When dealing with MOO problems such as the bias-
variance trade-off, the meta-objective for selecting one of the Pareto solution
sets cannot be assumed in advance.. A method that can handle arbitrary meta-
objective, rather than a method requiring the specific meta-objective format, is
essential.

Many methods specialize in the typical meta-objectives: domain generaliza-
tion [70, 71]; surrogate loss [72]; RL [75, 76, 78]; winning in games [79]; and low-
level learning loss itself [77]. The meta-heuristics used in ES-based methods (e.g.
CMA-ES [87] and evolution strategies [88]), however, can potentially be extended
to arbitrary targets. BO [80,81] is also suitable for handling the arbitrary targets
due to its statistically-generalized design. Some methods [73, 74] have been pro-
posed that can also handle a relatively wide range of meta-objectives, although
they still restrict the format of the meta-objectives and the information required.
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No use of gradient A meta-objective for extracting a preferred solution to a
MOO problem may be given only an evaluation value, and differentiability in the
hyperparameters of interest cannot be assumed. This metric is marked whether
the gradient with the target hyperparameter is used for meta-optimization.

In GD-based methods [70–73], the use of gradient is the key to meta-optimization.
One method [74] based on RL, however, avoids the differentiation of meta-objective
by using stochastic policy. ES-based methods [77–79] and BO [80,81] are sampling-
based and do not require gradient information.

Proposal The proposed method performs meta-optimization simultaneously
with low-level learning, and the low-level learning is limited to a single trial (but
with two learners). Both the conventional method [74] and the proposed method
use the stochastic policy for meta-optimization. However, the proposed method
avoids state-dependent exploration by using only a policy-gradient method in-
stead of RL. Another advantage of using only the policy-gradient method is that
there is no need to design the state on which the meta-objective depends. Two
ideas provide these advantages. The first is that the proposed method identifies
the local gradient direction from the difference in evaluation between the baseline
and the sample values. The other is to match the states of the two low-level learn-
ers at the beginning of each epoch, thus eliminating the need to take the states
into account for the difference in learning results. In addition, the meta-objective
only needs to be given a numerical scalar value as an evaluation of the low-level
learners, and there is no need to assume either type or differentiability.

3.3 Preliminaries

3.3.1 Stochastic model learning in Markov decision
processes

The stochastic dynamics of the environment including the agent is formulated by
a Markov decision process (MDP) in RL. Given a state st ∈ S ⊂ Rds and an action
at ∈ A ⊂ Rda at time t, the next state st+1 is assumed to be stochastically sampled
from the environment-specific state transition probability pe(st+1 | st, at). Here,
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ds and da are the dimension sizes of the state and the action, respectively. pe

is, however, generally unknown, and model-based RL approximates it to be a
model constructed DNNs parameterized by θ, pm(st+1 | st, at; θ). If pm is
accurately acquired, the agent can predict the future states according to the
performed actions, hence, can plan the best actions to maximize rewards from
the environment.

Therefore, the goal of a stochastic model learning is usually to fit pm to pe

through minimization of expectation of negative log-likelihood, ln pm, w.r.t. pe.
Since pe is a black-box, the expectation is replaced by Monte Carlo method as
sample mean over the dataset obtained from pe, D = {(sn, an), sn+1}N

n=1, with
N tuples. More specifically, θ is optimized toward θ∗, to minimize the following
formula.

θ∗ = arg min
θ

Li(θ), ∀i ∈ N

Li(θ) = 1
Ni

∑
si,ai,si+1∈Di

− ln pm(si+1 | si, ai; θ) (3.1)

where Di ⊂ D denotes i-th mini-batch with batch size Ni extracted from D.

3.3.2 Augmented weighted Tchebycheff scalarization

When considering the minimization of M objective functions g1, . . . , gM as a MOO
problem, the optimality of the solution is defined by dominance. The solution x

that satisfies the following formula dominates the solution x′ and is expressed as
x ≺ x′.

∀m, gm(x) ≤ gm(x′) ∧ ∃m, gm(x) < gm(x′) (3.2)

The solution that is not dominated by all other solutions is called the Pareto
solution. The set of Pareto solutions is called the Pareto frontier.

The goal of MOO is to find the Pareto solution or the Pareto frontier while
taking into account the trade-offs among the objective functions. To this end, in
most cases, a scalarization function h : RM → R with a weight vector w ∈ RM

makes the objective function vector g = [g1, . . . , gM ]⊤ scalar in order to transform
a MOO problem into a set of single-objective optimization problems. The simplest
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Figure 3.1: Illustration of the contour and the Pareto solution obtained by the
linearly weighted sum: the shape of the contour line is linear; (a)
the Pareto solution of the convex part of the Pareto frontier can be
obtained; (b) however, the Pareto solution of the non-convex part of
the Pareto frontier cannot be obtained.

scalarization function is the linear weighted sum in the following equation.

h(x) =
M∑

m=1
wmgm(x) (3.3)

In the case of scalarization by linear weighted sum, the contour line in the search
space is just a linear line. Therefore, the Pareto solution in the non-convex part
of the Pareto frontier cannot be obtained (see Figs. 3.1 (a), (b)).

The augmented weighted Tchebycheff scalarization, defined by the following
equation, is widely used as one of the scalarization functions that can deal with
non-convex Pareto frontiers [67,89].

h(x) = max
1≤m≤M

wm(gm(x)− um)

+ α
M∑

m=1
wm(gm(x)− um) (3.4)

where um is called a utopia point that strictly dominates gm. The contour line is
a linear combination of the L-shaped line from the first term and the linear line
from the second term with the hyperparameter α > 0 (see Figs. 3.2 (a), (b)). As
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Figure 3.2: Illustration of the contour and the Pareto solution obtained by the
augmented weighted Tchebycheff scalarization: The shape of the con-
tour line is a linear combination of the L-shaped line and the linear
line; (a) the Pareto solution of the convex part of the Pareto frontier
can be obtained; (b) and, the Pareto solution of the non-convex part
of the Pareto frontier can also be obtained.

for the choice of α, the effects are noted that too small α would cause a weak
Pareto solution because the effect of the second term is relatively insignificant,
and too large α would make the non-convex solutions unreachable because the
effect of the first term is weakened [68,90].

3.4 Meta-optimization of bias-variance trade-off

3.4.1 Overview

The state transition model with the parameter θ is optimized to minimize the
loss function, i.e. the expected value of the negative log-likelihood, defined in
eq. (3.1). Although this approach is effective when the stochastic behavior is
relatively small, it does not take into account the variance of losses and worst-
case scenarios, which are represented by higher-order moments, and thus can
lead to large prediction errors in reality. Particularly in the case of RL and
MPC applications, the resulting model is used for long-term prediction, and if
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Figure 3.3: Schematic of the proposed method: Two stochastic models are learned
using the training dataset, and based on the differences between them,
meta policy is simultaneously optimized under the meta objective
using the validation dataset.

the prediction fails even once during the period, subsequent predictions from that
point may fail. This problem is caused mainly by a bias-variance trade-off.

This study proposes a method to adjust the balance of the bias-variance trade-
off by simultaneously minimizing the expected loss and the worst loss, which are
theoretically derived later. In this case, since learning the state transition model
becomes a MOO problem, a loss function scalarized by the augmented weighted
Tchebycheff scalarization can be applied. In light of the fact that the size of the
Pareto solution set is generally innumerable, a general-purpose meta-optimization
method is also proposed to obtain the preferred solution depending on the given
meta-objective. A schematic diagram of the entire proposed method is shown in
Fig. 3.3.
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3.4.2 Formulation of MOO problem

3.4.2.1 Inter-data MOO: IDMO

To avoid complication, the loss function of the conventional method, eq. (3.1), is
redefined as follows:

Lmean
θ = 1

N

N∑
i=1

li,θ (3.5)

li,θ = − ln pm(si+1 | si, ai; θ)− u (3.6)

where u is a utopia point, which is given commonly to all data as u = min− ln pm(si+1 | si, ai; θ).
The above objective function can be interpreted as the linear weighted sum with
objectives for each data and equivalent weights wi = 1/N . That is, the conven-
tional way can be regarded as an inter-data multi-objective (IDMO) optimization
problem.

According to this interpretation, we formulate this IDMO optimization problem
based on the augmented weighted Tchebycheff scalarization that can obtain all
Pareto solutions.

θ∗ = arg min
θ

LIDMO
θ

LIDMO
θ = α̃

N

N∑
i=1

li,θ + 1
N

max
i

li,θ

∝ Lmean
θ + αLworst

θ (3.7)

where Lworst
θ = maxi li,θ is the worst loss, and α̃ is the hyperparameter in the

augmented weighted Tchebycheff scalarization. Since the solution is not changed
by constant multiplication of the loss function, eq. (3.7) can be used under α =
1/(α̃N).

As shown in the above formula, the application of the augmented weighted
Tchebycheff scalarization to the IDMO optimization naturally leads to a loss
function that explicitly considers the mean loss and the worst loss, which cor-
respond to the bias and the variance, respectively. Therefore, the bias-variance
trade-off can be adjusted by setting α appropriately.
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Table 3.2: Reachability to non-convex solutions

Loss Non-convex solutions
Inter data Statistics perspective

Vanilla loss Lmean
θ

Proposed loss LIDMO
θ ✓

Proposed loss LSPMO
θ ✓ ✓

3.4.2.2 Statistics-perspective MOO: SPMO

The loss LIDMO
θ obtained above can be again interpreted as a linear weighted sum

of the statistics Lmean
θ and Lworst

θ weighted by the ratio 1 : α. When the Pareto
frontier for Lmean

θ and Lworst
θ is non-convex, the Pareto solutions that cannot be

obtained at the statistical level would be worth considering.
We, therefore, apply the augmented weighted Tchebycheff scalarization again

to such a statistics-perspective multi-objective (SPMO) optimization problem as
follows:

LSPMO
θ = max

(
Lmean

θ , αLworst
θ

)
+ β

(
Lmean

θ + αLworst
θ

)
(3.8)

where β denotes the hyperparameter in the augmented weighted Tchebycheff
scalarization. Since each loss is non-negative, its statistics, Lmean

θ and Lworst
θ ,

are also non-negative, and no utopia point is needed. Note that, in the case of
α ≥ 1, the above formula is essentially equivalent to eq. (3.7) since the first term
is always Lworst

θ .

3.4.2.3 Summary of proposed losses

The properties of the loss functions based on the proposed multi-objective opti-
mization problems are summarized in Table 3.2.

First, from the perspective of IDMO, the conventional loss function, the mean
loss Lmean

θ , can be interpreted as a linear weighted sum of the objectives. Since
the linear weighted sum cannot yield non-convex solutions, a loss LIDMO

θ was
formulated based on the augmented weighted Tchebycheff scalarization.
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Furthermore, since LIDMO
θ was derived as a linear sum of the mean loss and

the worst loss, a loss LSPMO
θ was formulated by applying the augmented weighted

Tchebycheff scalarization to those statistics again. The loss LSPMO
θ implicitly

includes LIDMO
θ , and the non-convex solutions can be obtained even in IDMO.

3.4.3 Meta-optimization of hyperparameter

Even though the hyperparameter α of the loss functions (LIDMO
θ and LSPMO

θ )
shown in the previous section contributes significantly to the bias-variance trade-
off, no clear metric has been defined to determine its value. In this section, we
propose a general-purpose meta-optimization method for α under an arbitrary
meta-objective, Lmeta, given as a high-level design metric.

This meta-optimization problem can be formulated as follows:

α∗ = arg min
α

Lmeta(θ∗(α), Dval) (3.9)

s.t. θ∗(α) = arg min
θ

L{IDMO,SPMO}
θ (α, Dtrn)

where Dtrn and Dval are the training and validation datasets, respectively, and
are generated such that Dtrn ∩Dval = ∅, Dtrn ∪Dval = D are satisfied.

To solve this meta-optimization problem, we first suppose that α ∈ [0, 1] (this
restricted range is for distinguishing IDMO and SPMO) is sampled from a meta-
policy π(α; ϕ) constructed as a probability distribution parameterized by ϕ. The
purpose is converted to optimize ϕ to minimize Lmeta stochastically.

ϕ∗ = arg min
ϕ

Eα∼π(α; ϕ)[Lmeta(θ∗(α), Dval)] (3.10)

The gradient of the above objective function over ϕ can be computed following
the policy gradient method.

∇ϕEα∼π(α; ϕ)[Lmeta(θ∗(α), Dval)]
= Eα∼π(α; ϕ)[Lmeta(θ∗(α), Dval)∇ϕ ln π(α; ϕ)]
= Eα∼π(α; ϕ)[{Lmeta(θ∗(α), Dval)− b}∇ϕ ln π(α; ϕ)] (3.11)

where b denotes the baseline, which is not related to α. Since the expectation of
the term for b is zero, it can be added freely as long as it does not depend on α,
which greatly reduces the variance of the learning results.
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To design b, we provide twin models, pbase
m and psample

m , which are with exactly
the same θ before each epoch. In each epoch, they are trained with ᾱ = E[π(α; ϕ)]
and α ∼ π(α; ϕ), resulting in θbase and θsample, respectively. Since pbase

m is not
involved in α, Lmeta with θbase can be utilized as the baseline. In addition, we can
separate whether the variation in Lmeta comes from α or training, and extract
only the contribution of α by subtracting this baseline from Lmeta with θsample.

Hence, with Lmeta(θbase,sample, Dval) =: Lmeta
θbase,sample

, the meta-objective function
for ϕ, Jϕ, can be given as follows:

Jϕ = ∆Lmeta ln π(α; ϕ) (3.12)
∆Lmeta = Lmeta

θsample
− Lmeta

θbase
(3.13)

where the expectation operation in eq. (3.11) is eliminated by one-sample Monte
Carlo approximation as well as the standard policy gradient method.

Afterwards, to start the new epoch with the twin models parameterized by the
same θ, they are renewed from the superior model.θbase ← θsample (∆Lmeta ≤ 0)

θsample ← θbase (∆Lmeta > 0)
(3.14)

The proposed method can perform the model learning and the meta-optimization
simultaneously at each epoch. In addition, the additional computational cost for
the meta-optimization is only to learn the twin model, resulting in sufficiently low
computational cost and high efficiency. There are no requirements on the learn-
ing algorithm, the meta-objectives, and so on. That is, the proposed method is
sufficiently versatile. Even if the number of hyperparameters is increased, the
computational cost of the policy gradient method is merely proportional to it,
keeping high scalability.

3.5 Experiments

3.5.1 Common conditions

In order to validate the effectiveness of the proposed method, model learning
with two types of meta-objective is conducted with datasets collected in numer-
ical simulations. One meta-objective is simply the minimization of the linear
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Figure 3.4: Human-operated single-agent environment: The robot is operated by
an expert (human); The expert aims to land the robot on the landing
field at zero speed.

weighted sum of the mean and worst losses to verify whether the proposed meta-
optimization method succeeds in making reasonable adjustments. Another is the
minimization of the negative log-likelihood in the long-term prediction as more
practical case. In the following, the proposed method combining IDMO/SPMO
and meta-optimization will be referred to as IDMO+MO/SPMO+MO, respec-
tively.

The model to learn the stochastic dynamics is configured as a three-layered
neural network with 100 neurons in each hidden layer, and the meta-policy is
configured as a one-layered neural network with 100 neurons in hidden layer,
in all trials. All hidden layers are configured as fully connected layers, and the
activation function is the ReLU (Rectified Linear Unit). These networks output a
multivariate diagonal Gaussian distribution and a Beta distribution, respectively,
and implemented by Pytorch. They are optimized with one of the state-of-the-art
stochastic GD optimizer, t-Adam [91], which is robust to noise and outliers in
dataset.

Two types of simulation environments are prepared: 1) a human-operated
single-agent environment; and 2) a multi-agent environment. Details of each
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Figure 3.5: Multi-agent environment: four agents work in the same environment;
the task of agents 1–3 (predators) is to catch an agent 4 (prey); the
task of the agent 4 is to run away from the agent 1-3 on the screen.

Table 3.3: Hyperparameters in human-operated single-agent environment

Hyperparameter Value
Learning rate of model predictor 0.0001

Batch size of model predictor 64
β for LSPMO

θ 0.0001
Learning rate of meta-policy 0.0001

environment is described below.
In both environments, their dataset were randomly divided in proportions such

that Ntrn : (Nval + Ntst) = 7 : 3 and Nval : Ntst = 7 : 3, where Ntrn, Nval, and
Ntst are the numbers of training, validation, and test data, respectively. For each
training condition, 10 trials of model learning in 200 epochs are performed with
different random seeds to confirm the statistical performance.
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Table 3.4: Hyperparameters in multi-agent environment

Hyperparameter Value
Learning rate of model predictor 0.00001

Batch size of model predictor 32
β for LSPMO

θ 0.0001
Learning rate of meta-policy 0.0001

3.5.1.1 Human-operated single-agent environment

This environment is “LunarLanderContinuou-v2” provided by OpenAI Gym [92]
(see Fig. 3.4). The robot moves in the environment by the thrust of the main
engine and the left and right engines. The state space of the robot is eight-
dimensional: two-dimensional absolute position and velocity; attitude and angu-
lar velocity; and two states of contact between the ground and each foot. The
action space of the robot is two-dimensional: thrust of main engine; and thrust
of left and right engines. The task to be accomplished is to softly land on the
landing field and stop.

To train the stochastic dynamics model, we manually collected state transition
data {(st, at), st+1}. The data collector generated the action sequences as an
expert with the aim of realizing the task. The number of data in this dataset D

is N = 70, 394. The manually-collected dataset would contain bias in the states
visited, and such a dataset is prone to bias and/or variance of the trained model.

In this environments, all the following trials are conducted with the hyperpa-
rameters shown in Table 3.3.

3.5.1.2 Multi-agent environment

This environment based on [93] consists of four agents and two objects, which
are randomly placed at the beginning of each episode (see Fig. 3.5). The source
codes of this environment can be downloaded from Github: https://github.
com/openai/multiagent-particle-envs). The state space of the agents 1–3
(predators) is 16-dimensional: two-dimensional absolute position and velocity of
itself; two-dimensional relative positions of the other agents and objects; and two-
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dimensional velocity of the agent 4 (prey). The state space of the agent 4 (prey)
is fourteen-dimensional: two-dimensional absolute position and velocity of itself;
and two-dimensional relative positions of other agents. Each agent has a discrete
action space for determining the moving direction (up/down/left/right).

This experiment can be regarded as a partially observable MDP (POMDP),
where each agent does not share the actions of all the agents and the agent 4
does not know the positions of two objects. As a result, it is difficult to infer the
true dynamics pe from the observable states of each agent, and the model pm will
always contain uncertainty. Therefore, higher-order moments (the worst loss in
our case) must be properly considered.

To make the dataset for this environment, the action of each agent at each time
was designed as follows:

• Predator (i.e., the agents i ∈ {1, 2, 3}) pursues the agent 4.

ai =



aleft |dh
i,4| ≥ |dv

i,4| & dh
i,4 ≤ 0

aright |dh
i,4| ≥ |dv

i,4| & dh
i,4 > 0

adown |dh
i,4| < |dv

i,4| & dv
i,4 ≤ 0

aup |dh
i,4| < |dv

i,4| & dv
i,4 > 0

(3.15)

• Prey (i.e., the agent 4) run away from the agents 1–3.

a4 =



aleft |dh
4,ih

min
| ≤ |dv

4,iv
min
| & dh

4,ih
min

> 0

aright |dh
4,ih

min
| ≤ |dv

4,iv
min
| & dh

4,ih
min
≤ 0

adown |dh
4,ih

min
| > |dv

4,iv
min
| & dv

4,iv
min

> 0

aup |dh
4,ih

min
| > |dv

4,iv
min
| & dv

4,iv
min
≤ 0

, (3.16)

ih
min = arg min

i
|dh

4,i|, iv
min = arg min

i
|dv

4,i|

where a{left,right,down,up} represents left, right, down, up movement, d
{h,v}
i,j is the

relative position of the agent j in the horizontal, vertical direction from the agent
i. The action of each agent is collected to keep each agent within 90% of the
vertical and horizontal limits of the screen. With such ad-hoc controllers, the
dataset D is collected with N = 30, 000.
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In this environment, all the following trials are conducted with the hyper-
parameters shown in Table 3.4. Note that all the agents are with the same
hyperparameters, although the results of random initialization are different.

3.5.2 Meta-objective: linear weighted sum of mean and
worst losses

In this validation, the meta objective is defined as the linear weighted sum of the
mean and worst losses for the validation dataset Dval, as shown in the following
equation.

Lmeta
θ = (1− wwm)Lmean

θ (Dval) + wwmLworst
θ (Dval) (3.17)

where wwm ∈ [0, 1] denotes the priority of the worst loss. Bias and variance
must be adjusted for optimization of this meta-objective. The proposed method
is applied to each of the 21 loss functions generated by varying wwm with 0.05
increments in the range [0, 1], thereby validating the meta-optimization for α,
which should be positively correlated with (but not linearly proportional to)
wwm.

3.5.2.1 Human-operated single-agent environment

The learning results by the proposed method in human-operated single-agent
environment are shown below. Each value in the following graphs represents the
mean and 95 % confidence interval over 10 trials of the values obtained in the
final five epochs.

The transition of the learned α with evenly-spaced wwm is shown in Fig. 3.6.
As can be seen in Fig. 3.6, α tends to increase with the increase of wwm for
both IDMO+MO and SPMO+MO methods. In other words, the proposed meta-
optimization was able to capture the positive correlation between the two vari-
ables α and wwm.

The transitions of mean and worst losses shown in Figs. 3.7 (a) and (b), show
that the learning results converge to different values depending on the change of
α. Since minimizing the mean loss of the validation data is close to the meta-
objective with small wwm, the stochastic model was trained to focus on the mean
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Figure 3.6: Learning results of α on human-operated single-agent environment
and eq. (3.17): as wwm increased, the α approached 1, and vice versa;
the positive correlation between wwm and α was captured.

loss at the expense of the worst loss, and vice versa. Compared to SPMO+MO,
IDMO+MO shows less variation in the learning results, even though α varies in a
similar range. This is because SPMO can cover all Pareto solutions in α ∈ [0, 1],
whereas IDMO is affected by the mean loss even in α = 1. Probably thanks to
this capability of SPMO, it succeeded in minimizing the mean loss with small
wwm less than one of IDMO, and the worst loss with large wwm more stably than
IDMO (i.e. smaller confidence interval).

A simple simulation with the meta-objective of minimizing the weighted sum
of the mean and worst losses for the validation data shows numerically that
the proposed meta-optimization method can adaptively adjust the bias-variance
trade-off at the same as model learning. Since the simulation environment is
human-operated single-agent environment, the proposed method would be effec-
tive in dealing with uncertainty in human-involved biased datasets. In particular,
the comparison results show that SPMO+MO can handle a wider range of trade-
off than IDMO+MO.
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Figure 3.7: Learning results of the mean and worst losses on human-operated
single-agent environment and eq. (3.17): (a) the mean loss was de-
creased as wwm increased; (b) the worst loss was increased as wwm

increased; as a result, a model suitable for the meta-objective was
learned.

3.5.2.2 Multi-agent environment

The results of applying the proposed method into the multi-agent environment
are shown below, as well in the previous section.

The transition of the learned α with evenly-spaced wwm is shown in Fig. 3.6.
As well in the human-operated single-agent environment, the proposed meta-
optimization method was able to captured the positive correlation between α and
wwm in both model learning methods. However, α saturated near 1 even when
wwm was relatively small compared to Fig. 3.6, suggesting that this environment
is prone to large variance.

The mean and worst losses of the learning results (see Fig. 3.9) also show the
similar tendency to Fig. 3.7, although the range of change in the case with IDMO
was increased since the variance would be dominant. In addition, it can be seen
that the model accuracy of SPMO was inferior to that of IDMO in both mean
and worst losses when prioritizing the worst loss with large wwm. This is probably
because IDMO always uses the gradients of both the mean and worst losses, while
SPMO uses either of them per batch depending on the max operator. Therefore,
even with the same epochs, the number of uses of data to update the parameters
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Figure 3.8: Learning results of α on multi-agent environment and eq. (3.17): as
wwm increased, the α approached 1, and vice versa; the positive cor-
relation between wwm and α was captured.

is reduced, resulting in delaying the model learning itself. This drawback may be
mitigated by annealing β from the large initial value, for example.

3.5.3 Meta-objective: accuracy of long-term prediction

In this validation, the meta-objective is defined as the mean loss in long-term
prediction for the validation dataset Dval, as shown in the following equation.

Lmeta
θ = 1

K

K∑
k=1

l
(H,k)
θ (3.18)

l
(h,k)
θ = − ln pm(stk+h+1 | s̄tk+h, atk+h; θ)− u

s̄tk+h =

stk
h = 0

E[pm(· | s̄tk+h−1, atk+h−1; θ)] otherwise

where H denotes the horizon of the prediction period and K denotes the number
of sequences. Namely, it predicts the state sequence based on the state at t and
the action sequence from t in the dataset, and the prediction accuracy at the end
of the prediction period is employed as the meta-objective.
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Figure 3.9: Learning results of the mean and worst losses on multi-agent envi-
ronment and eq. (3.17): (a) the mean loss was decreased as wwm

increased; (b) the worst loss was increased as wwm increased; as a
result, a model suitable for the meta-objective was learned.

In such a long-term prediction, the stochastic model is desired to be trained not
only to improve the accuracy of the one-step prediction, but also to avoid outliers
during the prediction period. This meta-objective, therefore, requires the optimal
balance of the bias-variance trade-off, which is difficult to be revealed analytically.
In order to verify whether the proposed meta-optimization method on SPMO can
properly find the optimal balance, we experiment with H = {1, 10} as below.

3.5.3.1 Human-operated single-agent environment

The learning results as box plots for the values obtained in the final five epochs
in the human-operated single-agent environment are shown below.

First, the results for the time-horizon H = 10 are shown. Fig. 3.10 shows the
results for meta-learned α. In both the SPMO+MO and IDMO+MO cases, α

converged to around 1, indicating that the meta-optimization was done in a way
that emphasized the worst loss.

The meta-objective obtained by the baseline model is shown in Fig. 3.11.
Fig. 3.11 shows that smaller meta-objective is obtained by using SPMO+MO.
The reason for this can be understood from the results of the mean and worst
losses for each method shown in Figs. 3.12 (a) and (b). In the case of IDMO+MO,
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Figure 3.10: Learning results of α on human-operated single-agent environment
and eq. (3.18) with H = 10: α was learned to be close to 1; the worst
loss was emphasized in the long-term prediction in this environment.

the mean loss was still minimized even under α ≃ 1, and the gap between it and
the worst loss was enlarged. This gap would cause overlearning to the mean loss,
and induced outliers during the long-term prediction. In contrast, SPMO+MO
obtained the larger mean loss than that of IDMO+MO, but the gap between it
and the worst loss and the variance of their losses were smaller, thereby achieving
the stable prediction without overlearning. In addition, Fig. 3.13 shows that,
both proposed methods reduce the meta-objective more than the conventional
method using mean loss (Mean). Only SPMO+MO resulted in the same degree
of reduction as the case of using the worst loss (Worst).

Next, the results for the time-horizon H = 1 are described below. According to
the minimization results for α shown in Fig. 3.14, the smaller α, i.e. prioritizing
the mean loss, would be better for this setting. This is a reasonable result because
the meta-objective is the same as the low-level loss for model training when α = 0,
namely the worst loss is no longer considered. SPMO+MO succeeded in obtaining
the smaller α than one of IDMO+MO, which may yield a slightly better result
in the meta-objective shown in Fig. 3.15.

It is clear from Fig. 3.16, which shows the mean and worst losses with H = 1,
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Figure 3.11: The results of the scores on human-operated single-agent environ-
ment and eq. (3.18) with H = 10: the score was reduced more in
the case of SPMO+MO than in the case of IDMO+MO; namely,
SPMO+MO improved the meta-objective.

and Fig. 3.12 why α was not sufficiently small in IDMO+MO. That is, although
IDMO+MO obtained the different α, the mean and worst losses were almost the
same, indicating a low dependency on α. On the other hand, in SPMO+MO, the
mean loss was minimized to the same level as in IDMO+MO, and the worst loss
was explicitly ignored instead. Such a high dependency on α enables SPMO+MO
to find the preferred solution that satisfies the meta-objective as much as possible.
Fig. 3.17 shows that, both proposed methods reduce the meta-objective more
than Mean and Worst. This indicates that the proposed methods can obtain
the learning results with less meta loss by using the intermediate Pareto solution
between Mean and Worst. Since Mean lowers the meta loss more than Worst, α

converged to a value that emphasizes mean loss, is reasonable.

3.5.3.2 Multi-agent environment

The learning results in the multi-agent environment are shown below. As well
as the case of the human-operated environment, the results for the time-horizon
H = 10 depicted in Fig. 3.18 obtained α ≃ 1. In addition, as shown in Fig.3.19,

75



long-logprob-h10-shuffle

−30

−25

−20

−15

−10

−5

0

M
ea

n 
lo

ss

IDMO+MO SPMO+MO

(a) Mean loss
long-logprob-h10-shuffle

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

W
or

st
 lo

ss

IDMO+MO SPMO+MO

(b) Worst loss

Figure 3.12: Learning results of the mean and worst losses on human-operated
single-agent environment and eq. (3.18) with H = 10: IDMO+MO
obtained the large difference between the mean and worst losses,
which means that the variance of the learned stochastic model was
large; in contrast, SPMO+MO succeeded in keeping the difference
between the mean and worst losses small, resulting in that fatal
errors in long-term prediction were less likely to occur, as indicated
in Fig. 3.11.

SPMO+MO could minimize the meta-objective much more than IDMO+MO.
The reason for this result is also the same as for the previous environment:
i.e. SPMO+MO acquired the generalized model by appropriate suppression of
overlearning confirmed from a small gap between the mean and worse losses
in Fig.3.20, while IDMO+MO did not. Note that both losses were smaller in
IDMO+MO, but they were computed for the training data. In addition, Fig. 3.21
shows that, only SPMO+MO reduces the meta-objective to the same level as
Worst.

On the other hand, even under the meta-objective with H = 1, α was adjusted
toward 1 to emphasize the worst loss in both methods (see Fig. 3.22). As a
result, Figs. 3.23 and 3.24 indicate that SPMO+MO and IDMO+MO obtained
comparable performance. Fig. 3.25 shows that, both proposed methods reduce
the meta-objective slightly more than Mean and Worst. Contrary to the case of
the human-operated single-agent environment, since Worst lowers the meta loss
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Figure 3.13: The comparison of the scores on human-operated single-agent envi-
ronment and eq. (3.18) with H = 10: the scores of both SPMO+MO
and IDMO+MO were reduced more in the cases of the maen loss,
and only SPMO yielded results comparable to the case of the worst
loss; namely, the proposed methods leads to a better Pareto solution
than the conventional method, and the results suggest that conver-
gence to the worst loss was the optimal solution.

more than Mean, α converged to a value that emphasizes worst loss, is reasonable.
The reason why α was optimized to be close to 1 even with H = 1 comes from

the fact that this environment is partially observable (i.e. POMDP). Specifically,
state transitions that occur in response to unobservable states are unavoidably
expressed as uncertainty, hence the uncertainty of state transitions is inherently
large in POMDP. The model trained with the mean loss cannot capture this
uncertainty, and therefore it lacks generality to the validation and test data even
if it is consistent with the meta-objective. To reduce the number of unexpected
events as much as possible, the worst loss can be useful to make the variance of
the model wider.
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Figure 3.14: Learning results of α on human-operated single-agent environment
and eq. (3.18) with H = 1: α was adjusted to be close to 0; the mean
loss was emphasized to predict only the next step (H = 1 with the
validation dataset.

3.5.4 Discussion

As investigated above, the optimal hyperparameters that lead to the preferred
solution depend not only on the meta-objective but also on the contents of the
dataset and the model architecture, hence it is not infeasible to give them analyt-
ically in advance. The proposed meta-optimization method based on the policy
gradient allows us to obtain the preferred solution by adjusting the hyperparame-
ters in a data-driven manner at the same time as learning the model. In addition,
adjusting all hyperparameters will have little effect, namely we must make sure
that which hyperparameters have the capability to find the Pareto frontier, as
like α in SPMO.

One of the concerns is the exploration performance of the meta-optimization
methods. Although the augmented weighted Tchebycheff scalarization theoret-
ically guarantees the reachability of all Pareto solutions, optimizing the hyper-
parameters with the policy gradient method may lead to local solutions in the
meta-objective. To address this open issue, adding an auxiliary term to the meta-
objective function defined in eq. (3.12) to facilitate the exploration (e.g. entropy
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Figure 3.15: The results of the scores on human-operated single-agent environ-
ment and eq. (3.18) with H = 1: The scores obtained from the
meta-optimization were comparable for both methods.

of the meta-policy [94]) may increase the reachability of the global optimal solu-
tion.

Another concern is the effect of the variation of the optimization target on the
stochastic model learning. In the proposed method, the loss function, which is
defined as a MOO problem used in stochastic model learning, is modified at each
epoch due to the simultaneous low-level learning and meta-optimization. As in
curriculum learning [95], adaptive changes in the optimization target sometimes
provide opportunity to escape from the local solutions, but vice versa. In com-
bination with the exploration facilitation described above, this problem may be
solved in practice, but deeper investigation is necessary.

Finally, this study has developed the meta-optimization method starting from
model learning for the model-based RL. Although this model learning is done in
an offline manner with datasets already constructed, the model-based RL often
involves planning and adding data using the model even in the process of learn-
ing [96, 97]. How the proposed method affects such online applications remains
an open issue.
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Figure 3.16: Learning results of the mean and worst losses on human-operated
single-agent environment and eq. (3.18) with H = 1: since the
worst loss was not needed to be minimized in this configuration,
SPMO+MO ignored it to prioritize the mean loss.

3.6 Conclusion
This chapter proposed a stochastic model learning method that is adjustable
the bias-variance trade-off of the stochastic model according to higher-level ob-
jective. The proposed method consists of the loss function derived from the
two-step MOO problem with inter-data and statistic-perspective objectives, and
the meta-optimization of the hyperparameter in the loss function. Specifically,
we first pointed out that the conventional loss for model learning is described as
the inter-data MOO problem. The inter-data MOO was reformulated as the mul-
tiple single objective optimizations using the augmented weighted Tchebycheff
scalarization. Furthermore, by applying the augmented weighted Tchebycheff
scalarization again to the weighted sum of the mean and worst losses naturally
obtained above, we defined the loss function as the stochastic-perspective MOO
problem. The meta-optimization method was newly developed to balance the
bias and the variance of the resulting stochastic model by adjusting the hyperpa-
rameter in the proposed loss function. Inspired by the policy-gradient method,
that can be accomplished simultaneously with model learning only during a sin-
gle trial with two model learners. The proposed method was applied to the
human-operated single-agent and multi-agent environments with different types
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Figure 3.17: The comparison of the scores on human-operated single-agent envi-
ronment and eq. (3.18) with H = 1: the scores of both SPMO+MO
and IDMO+MO were reduced more in the cases of the maen loss
and the worst loss; namely, the proposed methods leads to a better
Pareto solution than the conventional method.

of uncertainty. First, the weighted sum of the mean loss and the worst loss was
used as the meta-objective. The results showed that the hyperparameter was able
to be adjusted according to the weight between the mean and worst loss with pos-
itive correlation. Next, the long-term prediction accuracy was used as another
practical meta-objective. We found that the proposed method can improve the
long-term prediction accuracy by revealing the best balance of the bias-variance
trade-off and avoiding overfitting to the training data.
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Figure 3.18: Learning results of α on multi-agent environment and eq. (3.18) with
H = 10: α was trained to be close to 1; the worst loss was emphasized
in the long-term prediction in this environment, as in the case of the
human-operated single-agent environment.
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Figure 3.19: The results of the scores on multi-agent environment and eq. (3.18)
with H = 10: the score was reduced more in the case of SPMO+MO
than in the case of IDMO+MO, as in the case of the human-operated
single-agent environment.
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(b) Worst loss

Figure 3.20: Learning results of the mean and worst losses on multi-agent environ-
ment and eq. (3.18) with H = 10: SPMO+MO succeeded in keeping
the difference between the mean and worst losses smaller than that
of IDMO+MO, as in the case of the human-operated single-agent
environment.
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Figure 3.21: The comparison of the scores on multi-agent environment and
eq. (3.18) with H = 10: the score of SPMO+MO was almost the
same level as that of in the cases of the worst loss; namely, the
results suggest that convergence to the worst loss was the optimal
solution.
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Figure 3.22: Learning results of α on multi-agent environment and eq. (3.18) with
H = 1: α was optimized towards 1 unlike the case of the human-
operated single-agent environment; this result suggested that the
multi-agent environment was with high uncertainty and required the
larger variance to cover it.
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Figure 3.23: The results of the scores on multi-agent environment and eq. (3.18)
with H = 1: the scores obtained from the meta-optimization were
comparable for both methods.
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Figure 3.24: Learning results of the mean and worst losses on multi-agent environ-
ment and eq. (3.18) with H = 1: (a) the mean loss was kept at the
same level for both methods; (b) the worst loss was also comparable
for both methods.
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Figure 3.25: The comparison of the scores on multi-agent environment and
eq. (3.18) with H = 1: the scores of both SPMO+MO and
IDMO+MO were reduced slightly in the cases of the maen loss and
the worst loss; namely, the proposed methods leads to a little better
Pareto solution than the conventional method.
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4 Conclusion

4.1 Summary
This dissertation focuses on the development of bottom-up MARL, which is an
autonomous distributed MARL in which each agent has a primitive task. By
assuming the primitive tasks, the relationship between agents can take various
forms, and therefore the algorithm that can handle the complex group behaviors is
needed. In addition, the absence of a centralized system requires risk avoidance
that takes into account the uncertainty of state transitions. We proposed the
reward-shaping algorithm for acquiring the complex group behaviors, and the
meta-optimization method for the bias-variance trade-off in the model learning
for safety learning under the uncertainty of state transitions.

In Chapter 2, the reward shaping algorithm for the group behaviors based
on the rewards shared among agents in bottom-up MARL, is proposed. The
algorithm includes a component that classifies interests from the correlation co-
efficients of the rewards between agents. This enabled the agents to adaptively
acquire complex group behaviors in which cooperative and competitive relation-
ships are mixed. The Simulations and the experiments show that the proposed
method enables each agent to acquire the appropriate group behaviors in both
cooperative and competitive task settings.

In Chapter 3, the meta-optimization method to adjust the bias-variance trade-
off is proposed for application to model-based reinforcement learning. The pro-
posed method consists of a formulation of the bias-variance tradeoff as a multi-
objective optimization problem and a versatile and efficient meta-optimization
method for its Pareto solution. The meta-optimization method is realized based
on the measure gradient method. The proposed method can optimize the balance
between bias and variance according to the uncertainty of the environment under
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a meta-objective, is numerically demonstrated by the simulations.
For the application of bottom-up MARL to real-world MAS, fundamental tech-

niques have been developed to account for the complexity and the uncertainty.

4.2 Future work

4.2.1 Improvements in the proposed reward shaping
algorithm

In the proposed method, training of the reward predictor and reinforcement learn-
ing are performed simultaneously. When the learning of the reward predictor is
slow, the policy becomes deterministic under uncertain predicted rewards. To
adjust the learning speed of the reward prediction and/or the policy, the reg-
ularization techniques are also required for stable convergence of the proposed
method.

Although the proposed method aims at a decentralized system, the reward
sharing network is still assumed to be fully coupled. Designing a sparse network
for communication of reward is important to apply the proposed algorithm to
a truly large-scale MAS, in terms of communication and calculation costs. For
example, agents with uncorrelated tasks can be identified from the variance of
predicted rewards, and communication with such agents is not required.

Furthermore, the current algorithm does not have a mechanism to consider
the task accomplishment of each agent or the entire the MAS. The problem
may be that agents with tasks that are easy to accomplish are given preferential
treatment, or that agents who should contribute to the overall system prioritize
their own tasks. To solve such problems, developping a bottom-up MARL method
that can incorporate constraints on the minimum tasks to be accomplished in the
entire MAS as conditions, is expected.

We will challenge to control really complicated MASs by resolving the above
issues.
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4.2.2 Improvements in the proposed meta-optimization
algorithm

As mentioned in Section 3.5.4, the exploration performance should be guaranteed
in order to acquire global solution.

The analysis of the learning dynamics during meta-optimization is not com-
pleted yet. Since the proposed method performs model learning and meta-
learning simultaneously, balancing the convergence speed of each, is important.
If the model learning is too fast, the predictive model will become deterministic
before arriving at the meta-optimal Pareto solution. On the other hand, if the
meta-optimization is too fast, not enough samples can be considered.

Furthermore, by extending the proposed method in an online learning manner,
it can be integrated with model-based RL. However, when sampling is simply
based on reinforcement learning, to achieve risk avoidance until a sufficient model
is trained, is difficult. For example, pre-collection of samples by experts should
be used to ensure the security of learning from the initial stage.

4.2.3 Safety bottom-up multi-agent reinforcement
learning

An important task is to apply the proposed methods in Chapter 3 to model-based
reinforcement learning and to validate its effectiveness. In particular, to verify
whether agents can safely design planning for learning in uncertain environments,
is important. Then, by applying it to bottom-up MARL including reward shap-
ing as described in Chapter 2, we develop a safety MARL method under the
framework of model-based reinforcement learning. Model-based reinforcement
learning requires the reward prediction as well as the state prediction, and as
shown in Chapter 2, the agents learn a predictive model of reward in the process
of the proposed reward shaping. By applying meta-optimization methods to this
reward prediction, considering the bias-variance trade-off for all predicted values
is possible.

In addition, and related to Sec. 4.2.1, constraints on rewards could be imposed
in order to take into account the minimum tasks to be accomplished by the
entire MAS. The reward in reinforcement learning is only a reinforcement signal,
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but by using a reward predictor, for example, a threshold can be given as a
condition to be satisfied. By planning the predictive rewards corresponding to
agents with tasks to be cooperated so that they retain sufficient values during
long-term prediction, we believe that model-based MARL that takes into account
the known cooperation conditions is possible.
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