植物 mRNA の翻訳機構に関する研究

山崎 将太朗 奈良先端科学技術大学院大学 バイオサイエンス研究科 植物代謝制御研究室 (出村 拓 教授)

平成 28 年 2 月 16 日 提出

目次

緒論4
第一章 植物の成長・発達段階における翻訳状態の解析
1-1. 序論
1.2 材料と方法 9
1-2-1 使田植物冬供 9
1-2-7 プリソーム解析 9
122. ポリソーム/マイクロアレイ解析 9
1-2-4. ポリソーム/定量 RT-PCR 解析によるマイクロアレイデータの検証13
1-3. 結果
1-3-1. 成長・発達段階における全体的な翻訳状態17
1-3-2. 発芽 2、21 日目、未展開、展開葉でのゲノムワイドな翻訳状態の解析19
1-3-3. 発芽 2、21 日目、未展開、展開葉での個別 mRNA の翻訳状態
1-3-4. 成長段階間、葉の発達段階間での個別 mRNA の翻訳状態の違い24
1-3-5. 成長・発達を通した mRNA 蓄積量変化と翻訳状態変化の関連性27
1-3-6. 特定のタンパク質機能をコードする mRNA 種集団の翻訳状態の傾向31
1-3-7. 様々な条件下での翻訳状態及びその変化の類似性と特異性
1-4. まとめ及び考察
1-4-1. 植物の成長・発達段階での各 mRNA の翻訳状態40
1-4-2. 翻訳段階の生理的な役割40
1-4-3. 植物 mRNA の翻訳状態の決定機構42
第二章 翻訳状態の決定に関わる 5'UTR の配列的特徴の解明
2-1. 序論
2-2. 材料と方法
2-2-1. 使用植物体および培養細胞46
2-2-2. Cap Analysis of Gene Expression (CAGE)46
2-2-3. Partial Least Squares Regression (PLS)モデルの構築48
2-2-4. DNA 一過性発現実験

2-3. 結果	63
2-3-1. CAGE によるゲノムワイドな転写開始点の解析	63
2-3-2. 転写開始点の分散と変化	67
2-3-3. 転写開始点前後の配列における塩基含量の解析	71
2-3-4. 転写開始点の分散・変化と翻訳の関連性	75
2-3-5. 5'UTR の配列的特徴によって翻訳状態を説明できる PLS モデル	の構築77
2-3-6. 未展開葉での PLS モデルから示された重要な配列的特徴	83
2-3-7. 一過性発現実験による未展開葉に関する PLS モデルの検証	85
2-3-8. 塩基置換による PLS モデルで示された重要な配列的特徴の検証	91
2-3-9. 様々な条件下での PLS モデルの構築とその比較	97

2-4. まとめ及び考察	
2-4-1. CAGE による 5'UTR 配列の特定	
2-4-2. 翻訳状態の決定に関わる配列的特徴	
2-4-3. TSS の収束/分散と mRNA の翻訳状態	110

総括	112
謝辞	114
研究成果の公表	115
参考文献	117

緒論

遺伝子の大部分はタンパク質として発現しており、この遺伝子がタンパク質に至 るまでには、転写、転写後、翻訳、翻訳後といった複数の過程が存在している。こ れまでに、遺伝子の発現を理解する目的で、非常に多くの転写段階での研究が行わ れ報告されてきた。特に近年では、マイクロアレイや次世代シークエンサーといっ た解析を用いて、mRNA の蓄積量をゲノムワイドに解析することが容易となり、遺 伝子発現ネットワークの解析や生理的な応答などを解明するために利用されている。 しかしながら、mRNA とタンパク質の蓄積量の間での相関は必ずしも高くはないこ とが報告されており(Maier et al. 2009)、最終的なタンパク質の量を決定する翻訳と 翻訳後の段階もまた非常に重要な過程であることが示されている。このような転写 段階以降の重要性が示される中で、近年では実際に生体内で働くタンパク質そのも のについての関心が高まっており、大規模なプロテオーム解析等が精力的に行われ るようになってきている (Yamana et al. 2013, Galland et al. 2014)。こうして得られつ つあるタンパク質の発現プロファイルによって、代謝等の様々な生理的な経路の理 解が強く期待されるとともに、それらの研究を通して発現プロファイルを決定して いる各制御過程の重要性が再確認されている。一例として、動物細胞を用いて遺伝 子発現における各過程の関連性を解析した研究では、mRNA の翻訳効率の差が最終 的なタンパク質の量に与える影響は非常に大きく、転写効率のそれに匹敵するとい うことが報告されている (Schwanhäusser et al. 2011)。言い換えると、単位 DNA 当 たりに転写される mRNA 量が遺伝子ごとに異なるように、単位 mRNA 当たりに翻 訳されるタンパク質の量も mRNA 種ごとに大きく異なっており、転写段階だけでな く翻訳段階を研究することは、最終的なタンパク質の量としての遺伝子発現を正確 に理解するためには必要不可欠であると言える。加えて翻訳段階は、生体内外での 様々な状況への応答にも深く関わっていることが報告されており、例えば環境スト レス下などでは、大部分のmRNAからの翻訳が速やかに抑制される(Kawaguchi et al. 2004, Matsuura et al. 2010)。翻訳反応では多量の ATP が消費されるため、その消費 を抑えているのではないかと思われる。一方で、ストレス応答に関連するタンパク 質をコードする mRNA は、その翻訳がストレスにおいても維持されるなど選択的な 翻訳制御が行われていることが分かっている (Matsuura et al. 2010, Ueda et al. 2012)。 この様に、各 mRNA の翻訳効率は状況に応じて制御されていると考えられ、遺伝子 発現全体の中で翻訳過程が持つ役割や、その機構をより詳細に解析する必要がある。 しかし、植物において個別 mRNA に関する報告は複数あるものの、各 mRNA の翻 訳効率をゲノムワイドに解析した研究は非常に限られているのが現状であり、翻訳 過程のより深い理解への大きな障害となっている。

翻訳過程は、開始、伸長、終結の3つの段階に分けることができ、他の真核生物 と同様に、植物においても翻訳の開始反応がタンパク質合成の律速と考えられてお

4

り(Gebauer and Hentze, 2004)、mRNAの5'末端非翻訳領域(5'UTR)が重要な役割を 担っている。この翻訳の開始は、主に 5'UTR の 5'末端に存在している Cap 構造 (m⁷GpppN)に依存しており、Cap 構造と複数の翻訳開始因子 (eukaryotic initiation) factor: eIF)との相互作用を介して行われる(Gingras et al. 1999)。この Cap 構造に依存 した翻訳機構のモデルでは、まず Cap 構造を認識する eIF4E と足場タンパク質であ る eIF4G の複合体 (eIF4F) を介して、40S リボソームサブユニットが mRNA に結 合し、その後、開始前複合体を形成する。次いで開始前複合体が mRNA の 5'UTR 上をスキャニングすることによって開始コドンである AUG を認識し、60S リボソー ムサブユニットと結合してタンパク質合成を開始すると考えられている。この翻訳 の開始を調節する機構として、主に eIF4E 等の mRNA への結合及び開始前複合体形 成の阻害・促進、eIF2α等のいくつかの eIF 及びそれらと相互作用するタンパク質 のリン酸化状態、5'UTR 内の uORF や二次構造等による本来の ORF への開始前複合 体の到達の阻害などの複数の機構が存在している(Sonenberg et al. 2009)。それら複 数の機構の中でも、翻訳の開始となる mRNA へのリボソームのリクルートに中心的 な役割を担う eIF4E の制御は、多くの mRNA の翻訳開始に影響を与える重要な機構 であると考えられている。哺乳類や酵母においては、この eIF4E に結合し、Cap 構 造との相互作用を阻害する 4E 結合タンパク質(4E-BP)の存在が知られており、こ の4E-BPを介した翻訳制御モデルは非常に研究が進んでいる制御機構の一つである

(Sonenberg et al. 2009, Thoreen et al. 2012)。栄養飢餓や環境ストレス、成長因子の 欠如などによって 4E-BP はリン酸化され eIF4E に結合し、Cap 構造を介したリボソ ームのリクルートを阻害することで大部分の mRNA からの翻訳を抑制する。しかし、 植物には 4E-BP のオルソログが存在せず (Browning 2004)、他の真核生物では主要 なこの分子モデルを植物細胞に当てはめることはできない。また、真核生物では Cap 構造に依存せず直接的に開始前複合体を開始コドンに導く Internal Ribosome Entry Sites (IRES) という配列構造が知られており、IRES 構造を持つ mRNA の場合、上 記のような翻訳開始因子が Cap 構造を認識できないような状況でも翻訳が維持され ることが知られている (Schneider et al. 2001, Komar et al. 2012)。この IRES 構造は真 核生物 mRNA の 5'UTR において数多く見出されているが、植物では諸説あるがそ の確かな存在は報告されていない。この様に、植物においても他の真核生物同様に、 mRNA 種によって翻訳効率は異なり、植物が置かれた状況によってその翻訳効率が 変化することは知られているが、mRNA 種によって異なる翻訳を引き起こす分子機 構は、他の真核生物と比較すると大きく異なっているのではないかと考えられる。 しかし、少なくとも mRNA の翻訳効率の決定には、その 5'UTR 配列が重要である ことは報告されており (Roy et al. 2013, Kawaguchi et al. 2005, Branco-Price et al. 2005, Matsuura et al. 2013)、5'UTR 配列内の翻訳効率に影響を与えている配列的特徴など を特定することによって、植物 mRNA の翻訳における分子機構の解明が大きく進む と考えられる。

本研究では、植物 mRNA の翻訳機構への理解を深めることを目的とし、各 mRNA

5

の翻訳効率の指標値として植物体におけるリボソームローディング(翻訳状態)を 解析し、それに関わる 5'UTR の配列的特徴の詳細を明らかにした。第一章では、植 物体の各成長・発達段階における mRNA の翻訳状態をポリソーム/マイクロアレイ によりゲノムワイドに解析し、各 mRNA の翻訳状態の違いを評価した。また、コー ドするタンパク質の機能別解析より、mRNAの翻訳状態と mRNA がコードするタン パク質機能との関連性について調べることで、その生理的な意義を考察した。加え て、これまでに報告されている様々な状況における各 mRNA の翻訳状態を比較する ことで、そこに存在すると考えられる共通する翻訳機構と条件特異的な翻訳機構に ついても考察を行った。第二章では、翻訳状態の決定に関わる 5'UTR の配列的特徴 に焦点を当て、まずは正確な 5'UTR 配列を Cap Analysis of Gene Expression(CAGE) を用いて網羅的に決定した。そして、第一章にて評価した翻訳状態と決定した5'UTR 配列の 2 つのゲノムワイドデータを用いた in silico 解析、Partial Least Squares Regression (PLS)モデルの構築を行うことで、多くの mRNA を対象として複数要素の 複合的な解析を行い、翻訳状態を決定する 5'UTR の配列的特徴を明らかにした。ま た、構築した PLS モデルの信頼性を一過性発現実験にて評価し確認した。加えて、 様々な条件下での翻訳状態についても PLS モデルを構築し、それぞれで重要な配列 的特徴をモデル間で比較することで、条件間で共通する翻訳機構と条件特異的な翻 訳機構について考察した。

第一章

植物の成長・発達段階における翻訳状態の解析

1-1. 序論

近年、遺伝子の発現を理解するための研究の中で、蓄積 mRNA 量と蓄積タンパク 質の量の間での相関が低いことが報告され、遺伝子発現全体を理解する上で、転写 だけではなく翻訳、翻訳後の過程も考慮されるようになってきた。中でも翻訳段階 がタンパク質の量に与える影響は転写段階に匹敵するほど大きく、翻訳段階もまた 重要であることが示されている(Schwanhäusser et al. 2011)。植物においても翻訳段 階の重要性は知られており、mRNA種によって翻訳効率は大きく異なっていること、 そして様々な状況に応じて各 mRNA 種の翻訳効率は多様な変化(違い)を示すこと がこれまでに報告されている。これらの解析の多くは、ポリソーム解析というショ 糖密度勾配を用いて mRNA に結合しているリボソームの数によって mRNA を分画 する手法であり、リボソームローディング(翻訳状態)を翻訳効率の指標値として用 いている(Davies and Abe, 1995)。この手法とゲノムワイドに mRNA の蓄積量を解 析するマイクロアレイや RNA-seq 等の手法を組み合わせることでゲノムワイドな 翻訳状態の解析が可能である(Melamed and Arava 2007)。加えて、近年ではリボソ ームフットプリント等の新たな解析手法の登場もあり(Ingolia et al. 2009)、生体内 での翻訳状態の実像が少しずつ明らかとなってきている。一例として、環境ストレ スによる翻訳状態(効率)の変化が知られており、高温、塩、乾燥、明暗といった幅 広い刺激におけるゲノムワイドな解析結果が報告されている(Matsuura et al. 2010, Yángüez et al. 2013, Kawaguchi et al. 2004, Juntawong and Bailey-Serres 2012, Liu et al. 2012, Liu et al. 2013)。これらの環境ストレス下では、非ストレス時と比べ翻訳状態 が変化しない mRNA 種から大きく抑制されるものまで、mRNA 種ごとの翻訳状態は 幅広い変化を示し、大部分の mRNA 種からの翻訳は抑制される。また、個別 mRNA を対象とした研究ではあるが、いくつかの mRNA 種の翻訳状態は、植物の発達段階 や細胞分化の過程によって大きく異なっていることが報告されている。例えば、花 器形成時において APETALA3、PISTILATA、SUPERMAN mRNA の翻訳は、活性化 されている可能性が報告されている(Tzeng et al. 2009)。またオーキシン応答因子 (ARF)は、特定のリボソームタンパク質によって翻訳状態が制御されており、そ の翻訳状態が成長や発達と関連することが示唆されている(Rosado et al. 2012)。加 えて、発芽時のリボソームタンパク質や(Jiménez-López et al. 2011)、花粉管発芽時 の NTP303 mRNA は (Hulzink et al. 2002)、その発達段階において特異的に高い翻訳 状態を示すことも報告されている。この様に、植物細胞が置かれた状況や、生理的 なプロセスに応答して翻訳状態は変化しており、これらの過程において、翻訳過程 での制御は生理的に重要な意味を持つことが示唆されている。さらに、花や葉、根の組織を細かく細胞種ごとに分けて、ポリソームを形成している mRNA 量を解析した研究からは、多くの遺伝子で細胞種特異的にポリソームを形成している mRNA 量が異なることが報告されている。そして、その細胞種間でのポリソーマル mRNA 量の差異の一部は、翻訳状態の違いに起因することが示唆されている(Jiao and Meyerowitz 2010)。加えて、酵母の減数分裂時の翻訳状態を、その胞子形成過程を通して詳細に解析した研究から、一部の mRNA 種の翻訳は発達段階特異的な制御を受けていることも報告されている(Brar et al. 2012)。

この様に、翻訳過程での制御が細胞内で果たす役割は決して小さくはないことが 分かる。しかしながら、環境ストレス等の特殊な条件を除いて、植物体の発達段階 等の過程で、翻訳状態をゲノムワイドに解析した事例はなく、各 mRNA の翻訳状態 およびそれが発達等に伴ってどのように変化するかは不明であり、植物の翻訳機構 を理解する上での基盤情報が不足しているのが現状であった。そこで本章では、シ ロイヌナズナ植物体の各成長・発達段階に着目し、発芽2日目と21日目、発芽21 日目の未展開葉と展開葉における全 mRNA の翻訳状態をポリソーム/マイクロアレ イ法によりゲノムワイドに解析し、蓄積 mRNA に対するポリソームを形成している mRNA の比率を Polysome Ratio (PR)値として数値化した。その結果から、mRNA 種 間での翻訳状態の違いを解析するとともに、各 mRNA 種の成長段階、葉の発達段階 間における翻訳状態の違い(変化)についても解析を行い、植物 mRNA の翻訳機構 を理解する上での基盤情報を整備した。さらに、各 mRNA の翻訳状態の違いを、コ ードするタンパク質機能の観点から解析し、特定のタンパク質機能を有する mRNA 種は、特徴的な翻訳状態の偏りを示す傾向があることを明らかにし、各 mRNA の翻 訳状態の決定における生理的な意義について考察した。加えて、これまでに当研究 室で解析されたシロイヌナズナ培養細胞を用いた通常条件(培養3日目)・熱ストレ ス下・塩ストレス下における翻訳状態も含めた、異なる条件下での各 mRNA の翻訳 状態の比較を行い、様々な状況における翻訳状態を特徴づけることで、それを制御 している翻訳機構についても考察した。

1-2-1. 使用植物条件

本実験には、シロイヌナズナ(Arabidopsis thaliana Columbia-0 (Col-0))を使用した。 種子は 5%次亜塩素酸と 0.05% Triton-X の混合液で滅菌後、GM 培地に蒔き、3 日 間 4°C 暗所で低温処理を行った後、22°C 、16 時間明期/8 時間暗期条件で生育し た。低温処理後、生育条件に移行した日を発芽 0 日目とした。

1-2-2. ポリソーム解析

1-2-2-1. サンプリング

発芽2日目(2 day after germination: 2DAG)、発芽4日目(4DAG)、発芽7日目 (7DAG)、発芽14日目(14DAG)、発芽21日目(21DAG)、発芽35日目(35DAG) の植物を速やかに切り取り、液体窒素中で凍結させ、-80℃にて保存した。7DAG 以降の植物体については根を取り除いている。加えて、未展開葉: young leaves と して21DAGの植物より未展開葉から3枚を、展開葉: mature leaves として21DAG の植物より子葉を除いた古い葉から3枚を切り取り、同様に保存した。

1-2-2-2. ショ糖密度勾配遠心法を用いたポリソーム解析

ショ糖密度勾配遠心を利用したポリソーム分画は、若干の改変を加えた以外は 基本的に Davies らの方法に従って行った(Davies and Abe, 1995)。各サンプルを 乳棒と乳鉢を用いて液体窒素中で細かく破砕した後、破砕粉末におおよそ 2 倍量 の buffer U(200 mM Tris-HCl, pH8.5, 50 mM KCl, 25 mM MgCl₂, 2 mM EGTA, 100 µg/mL heparin, 100 µg/mL cycloheximide, 2% polyoxyethylene 10-tridecyl ether, and 1% sodium deoxycholate)を加え、緩やかに懸濁した。遠心(17,500 × g, 10 min, 4℃) により細胞残さを除き、これを粗抽出液とした。この粗抽出液を RNA 濃度 250 ng/µL に調節し、buffer B(50 mM Tris-HCl, pH8.5, 25 mM KCl, and 10 mM MgCl₂) により調整した 26.25-71.25% ショ糖密度勾配液 4.85 mL 上に 300 µL 重層し、超遠 心を行った(SW55Ti rotor, 55,000 rpm, 50 min, 4℃, brake-off)(Beckman Coulter, USA)。ピストン・グラジェント・フラクショネーター(BioComp, Canada)によ ってショ糖密度勾配の上部より約 1 mL/min の速さで吸引すると同時に、 BIO-MINI UV MONITOR AC-5200 (ATTO, Japan)を用いて 254 nm の吸光度を記録 した。重層した RNA 量の違いを考慮するために、吸光プロファイルの 60S リボ ソーム以降のピークの合計が等しくなるようにプロファイルを補正した。

1-2-3. ポリソーム/マイクロアレイ解析

1-2-3-1. サンプリング

1-2-2-1. と同様に行い、2DAG, 21DAG, young leaves, mature leaves を得た。

1-2-3-2. ショ糖密度勾配遠心法を用いたポリソーム解析

1-2-2-2. と同様に行った。

1-2-3-3. マイクロアレイ解析用 RNA の抽出

超遠心後のショ糖密度勾配液を8つの画分に分画した場合の、5-8番目の画分 (底側が8番)を混合したポリソーム画分と1-8番目を混合したトータル画分か ら、それぞれ polysome fraction RNA、total fraction RNA を抽出した。それぞれの 画分には終濃度 5.5 M になるように 8 M グアニジン塩酸塩を予め加えたチューブ に回収した。この時、Two-Color RNA Spike-In Kit (Agilent Technologies, USA) に 含まれる spike mix A をポリソーム画分に、spike mix B をトータル画分にそれぞれ 加えた。それぞれの spike mix には、*in vitro* 合成されたポリ A 配列を持つ 10 種類 の転写産物が、200倍のダイナミックレンジでかつ既知の量比で混合されている。 また、それらの転写産物に対応するスポットが本研究で使用した Agilentoligoarray (Arabidopsis 4 oligo microarray 44K; Agilent Technologies) に存在する。RNA spike-in はショ糖密度勾配遠心液を回収すると同時に加えているため、その後の RNA 精製やラベリング、ハイブリダイゼーション(後述)などの過程を経ること になる。従って、RNA spike-in に対応するスポットのシグナル値を用いた補正を 行うことにより、ショ糖密度勾配における実際の RNA 比率(polysome fraction RNA) vs. total fraction RNA) を試算することが可能となる (Melamed and Arava, 2007)。 ショ糖溶液及びグアニジン塩酸塩の混合液に対し等量の100%エタノールを加え、 -20℃にて一晩冷却した後、遠心操作(15,000×g, 90 min, 4℃)を行った。得られ たペレットを 85% エタノールにて一度洗浄した後、RNeasy kit (Qiagen, Germany) に含まれる buffer RLT にてペレットを溶解し、以降は付属のプロトコールに従い

RNeasy kit を用いて **RNA** 精製を行った。その後、更に LiCl 沈殿による精製を行った。**RNA** の品質は、Agilent Bioanalyzer 2100 (Agilent Technologies) を用いたオンチップ電気泳動法により検定した。

1-2-3-4. total RNA の抽出(蓄積転写産物解析用)

1-2-3-2.で得られた粗抽出液 500 μL を終濃度 5.5 M になるように 8 M グアニジン塩酸塩を予め加えておいたチューブに回収し、以降は 1-2-3-3.と同様に行った。

1-2-3-5. マイクロアレイハイブリダイゼーション

1-2-3-3. で抽出した polysome fraction RNA 及び total fraction RNA は 2 色法、
1-2-3-4. で抽出した total RNA は 1 色法でのマイクロアレイハイブリダイゼーションに用いた。RNA の増幅及び蛍光標識には、Low Input Quick Amp Labeling Kit (Agilent Technologies)を使用した。まず、500 ng の RNA を鋳型に、リンカー配列として T7 プロモーター配列を含むオリゴ dT プライマーを用いた逆転写反応を

行った。合成された cDNA を鋳型に、T7 RNA polymerase *in vitro* 転写反応により、 Cy3 (polysome fraction RNA, total RNA) あるいは Cy5 (total fraction RNA) で標識 された CTP を取り込んだ cRNA を合成した。合成された cRNA の精製は RNeasy kit を用いて行った。2 色法での解析では polysome fraction RNA と total fraction RNA 由来の cRNA をそれぞれ 825 ng ずつ混合し、Agilent oligoarray(Arabidopsis 4 oligo microarray 44K; Agilent Technologies)を用いた 65°Cで 17 時間のハイブリダイゼ ーション反応に供した。1 色法での解析では total RNA 由来の cRNA 1.65 $\mu g \epsilon$ 、 Agilent oligoarrayを用いた 65°Cで 17 時間のハイブリダイゼーション反応に供した。 Arabidopsis 4 oligo microarray には、シロイヌナズナ由来の転写産物や前述の RNA spike-in などの塩基配列から選択された、60 mer のオリゴ DNA が 44000 スポット プリントされている。スライドを洗浄した後、Agilent Technologies Microarray Scanner (Agilent Technologies) を用いてスキャニングを行い、Cy3 及び Cy5 のシ グナルを検出した。解析はそれぞれ独立した生物学的 2 反復を用いて行った。

1-2-3-6. マイクロアレイデータ解析

スキャニング画像からデータの抽出には、Feature extraction software (Agilent Technologies) を用いて行った。Feature extraction software の設定基準に従って立 てられたフラグを基に、Cy3、Cy5 いずれかについてシグナル値が飽和している スポット (glsSaturated, rlsSaturated)、スポット内のシグナルが不均一なスポット (glsFeatNonUnifOL, rlsFeatNonUnifOL)、シグナルとバックグラウンドに優位さが ないスポット (glsPosAndSignif, rlsPosAndSignif) (glsWellAboveBG, rlsWellAboveBG) を、以降の解析から除いた。正規化には、RNA spike-in に対応するスポットを基 に行う方法もしくは Feature extraction software (Agilent technologies) における標 準的な正規化方法である Liner&LOWESS 法 (Locally Weighted Liner Regression) を用いた。解析対象として残ったスポットに関して、以下の計算を行った。

使用した略語の説明を以下に示す。

Polysome_Fraction_[sample_name]: 各サンプルから抽出した polysome fraction RNA 由来のマイクロアレイデータにおける正規化後の Cy3 シグナル値。

Total_Fraction_[sample_name]: 各サンプルから抽出した total fraction RNA 由来のマイクロアレイデータにおける正規化後の Cy5 シグナル値。

Total_[sample_name]: 各サンプルから抽出した total RNA 由来のマイクロアレイ データにおける正規化後の Cy3 シグナル値

翻訳状態を評価するための指標として、Polysome Ratio (polysome fraction RNA の total fraction RNA に対する割合)を各スポットについて求めた。 Polysome ratio (PR)

PR_2DAG = Polysome_Fraction_2DAG / Total_Fraction_2DAG PR_21DAG = Polysome_Fraction_21DAG / Total_Fraction_21DAG PR_young_leaves =

Polysome_Fraction_young_leaves / Total_Fraction_young_leaves

 $PR_mature_leaves =$

Polysome_Fraction_mature_leaves / Total_Fraction_mature_leaves

異なるサンプル間での翻訳状態の差(変化)を評価するための指標であるΔPR 値を各スポットにおいて算出した。

 Δ PR_growth = log₁₀ (PR_21DAG / PR_2DAG)

 Δ PR_leaf = log₁₀ (PR_mature_leaves / PR_young_leaves)

異なるサンプル間での蓄積転写産物量の差を示す指標である Expression score (ES)の算出を各スポットについて行った。

Expression score (ES)

ES_growth = Total_21DAG / Total_2DAG

ES_leaf = Total_mature_leaves / Total_young_leaves

Arabidopsis 4 oligo microarray の各スポットには、gene name あるいは systematic name (e.g. AGI code [The Arabidopsis Genome Initiative gene code]) が付与されている。基本的に一つの gene name (systematic name) には一つのスポットが対応しているが、複数のスポットが対応している gene name (systematic name) もいくつか存在する。各マイクロアレイデータより上記データ処理の基準を満たし、AGI code を有するものについて、複数スポットにマップされたものは平均値を計算した後、生物学的 2 反復の値を平均し、以降の解析に用いた。上記計算はすべて Microsoft Excel を使用して行った。

1-2-3-7. 遺伝子の機能分類

遺伝子がコードするタンパク質の機能分類には、MapMan (version 3.5.1) software (Thimm et al. 2004, Usadel et al. 2005, http://mapman.gabipd.org/web/ guest/mapman) と PageMan (version 0.12) (Usadel et al. 2006, http://mapman.gabipd.org/web/guest/pageman) とを用いた。MapMan と PageMan の マッピングには Ath_AGI_TAIR10 (http://mapman.gabipd.org/web/guest/ mapmanstore)を用いた。統計解析は個々の機能集団ごとに Wilcoxon tests を行い、 Benjamini and Hochberg による補正を行った。有意水準は1%とした。この計算は MapMan のアプリケーションを使用した。

1-2-3-8. Matsuura らが評価した培養細胞における翻訳状態の補正

培養細胞を用いた熱ストレス時と塩ストレス時の各 mRNA の翻訳状態をゲノ ムワイドに解析した結果が報告されている(Matsuura et al. 2010)。これらの翻訳状 態は本研究で用いた PR と類似した Polysome Score (PS)として計算されている。それらの PS 値を PR 値に変換した後に、本研究で得られた PR 値との比較等に用いた。計算式を以下に示す。

PR 値と PS 値は以下のように算出される。Non_Polysome_Fraction_RNA はモ ノソームを形成した mRNA と遊離の mRNA が含まれる画分から得られた RNA である(本研究のポリソーム解析における 1~3 番目の画分に相当)。

PR = Polysome_Fraction_RNA / Total_Fraction_RNA

PS = Polysome_Fraction_RNA / Non_Polysome_Fraction_RNA

Total_Fraction_RNA はポリソーム及びモノソームを形成した mRNA と遊離の mRNA を含む全ての画分から得られた RNA であり、以下のように定義できる。

Total_Fraction_RNA

= Polysome_Fraction_RNA + Non_Polysome_Fraction_RNA

よって PR 値は以下のように算出することができる。

PR = Polysome_Fraction_RNA

/ (Polysome_Fraction_RNA + Non_Polysome_Fraction_RNA)

= PS / (PS + 1)

算出した PR 値と PS 値の対応と、環境ストレス下における翻訳状態変化を評価するための指標である Δ PR 値の計算式を以下に示す。

PR_22℃: PS₂₂、培養細胞 22℃コントロール条件下での翻訳状態。 PR_37℃: PS₃₇、培養細胞 37℃熱ストレス条件下での翻訳状態。 PR_0_mM: PS₀、培養細胞 NaCl 0 mM コントロール条件下での翻訳状態。 PR_200_mM: PS₂₀₀、培養細胞 NaCl 200 mM 塩ストレス条件下での翻訳状態。 Δ PR_HS = log₁₀ (PR_37℃ / PR_22℃) Δ PR_SS = log₁₀ (PR_200_mM / PR_0_mM)

1-2-4. ポリソーム/定量 RT-PCR 解析によるマイクロアレイデータの検証 1-2-4-1. サンプリング

1-2-2-1. と同様に行い、2DAG, 21DAG, young leaves, mature leaves を得た。

1-2-4-2. ショ糖密度勾配遠心法を用いたポリソーム解析

1-2-2-2. と同様に行った。

1-2-4-3. ショ糖密度勾配液からの RNA 精製

超遠心後のショ糖密度勾配液を 8 つの画分に分画し、それぞれから RNA を抽 出した。加えて 5-8 番目の画分(底側が 8 番)を混合したポリソーム画分と 1-8 番目を混合したトータル画分から、それぞれ polysome fraction RNA、total fraction RNA も抽出した。それぞれの画分を、Cap 構造とポリ A 配列を有する *in vitro* 合 成した *Renilla luciferase* (*r-luc*) mRNA 5 ng および終濃度 5.5 M になるように 8 M グアニジン塩酸塩を予め加えたチューブに回収した。合成 *r-luc* mRNA は定量 RT-PCR 法により目的 mRNA の各画分における存在比を算出する際の補正に用い た。各チューブへ混合液と等量の 100%エタノールを加え、-20℃にて一晩冷却し た後、遠心操作(15,000 × g, 90 min, 4℃)を行った。得られたペレットは 85%エ タノールにて一度洗浄した後、RNeasy kit に含まれる buffer RLT にてペレットを 溶解し、以降は付属のプロトコールに従い RNeasy kit を用いて RNA 精製を行っ た。

1-2-4-4. 定量 RT-PCR

1-2-4-3.で精製した RNA 溶液を、それぞれ等容量ずつ用いて逆転写反応を行っ た。逆転写反応には Transcription First Strand cDNA Synthesis Kit (Roche Applied Science, Switzerland)を付属のプロトコールに従って用いた。反応系は13 µLとし た (oligo dT プライマー使用)。PCR 反応は 5~20 倍希釈した逆転写反応溶液 2 μL を鋳型に、遺伝子特異的プライマーセット(Table 1)及び LightCycler 480 SYBR Green I Master (Roche Applied Science)を用いて、10 µL の反応系で行った。プラ イマーの設計には Universal ProbeLibrary Assay Design Center/ProbeFinder (Roche Applied Science) を、SYBR Green I の蛍光強度の経時測定には LightCycler 480 System (Roche Applied Science) を、データ解析には LightCycler Data Analysis Software (Roche Applied Science) \mathcal{O} second derivative maximum method を用いた。 各画分の RNA 回収効率、RT-PCR 反応効率の違いを補正するために、各画分にお ける目的遺伝子の結果は、ショ糖密度勾配液の回収時に加えた補正用の r-luc mRNAの結果で補正した。PCR 産物が単一であることは融解曲線分析もしくはア ガロースゲル電気泳動により確認した。シグナルがゲノム由来でないことは逆転 写反応を行っていない RNA 溶液を鋳型にした PCR 反応において、シグナルが検 出されないことにより確認した。各画分に存在する mRNA 量を定量 RT-PCR 解析 により定量し、それぞれ全画分に対する割合を算出した。

Target gene	Primer sequence (5' to 3')
A+1~0(110 (SVID1()	CGGAGATTCCTCCCTTGTG
Allg00110 (SKIP10)	CCGGGATAAAAACAGACGAA
A+1~0(7(0)(Illistone II1)	TGCTGCAACTAAGAGGAAAGC
At 1g06/60 (Histone H1)	CCTTGGCTGGTCTAGCCTTA
A+1~07220 (DDL 4)	CGTGACGGACCTGAATAACA
Al1g0/320 (RPL4)	CACCACCACGAACTTCACC
$A \pm 1 \approx 20020 (C A D 1)$	GCAAGGAACCGTGAACTAGAA
A(1g29950 (CAD1)	TCCGAACTTGACTCCGTTTC
A+2~25705	GTTGCAGCGATCGGAGAG
Al2g35795	AACCCCCGCTATAAATGGTG
A+2~26400 (CDE2)	CTTCTCTGGCTCTTCTAACTCTTCA
Al2g30400 (GRF3)	TCTTGCTTCATCTCCGAACA
A+2~27450	GTTGTGGCGATTATGTCGAG
Al2g37450	TGACCGTAGCACCAAGAGC
A+2~20500	GATTCTGGATTGCTTCCTTCA
Al2g39500	GCTTCTGCAGCCACATCAT
A+2~47500 (DUD2)	GGCATTAGCCCCACTCCTA
At2g4/590 (PHR2)	CAACGCCTCTGTCTCTCCTC
$A_{42} = 11400 (a) = 1220(1)$	CCGAAGAGATCCTTCTCGAAC
Alsg11400 (elf5G-1)	CCTTTGATTCATCCGCTTTG
$A_{\pm 2} = 12590 (DDI 7D)$	CCGGGCTAAACAGTACTCCA
Al3g13380 (RFL/D)	TTCAGCTGGATTAATTCCCTTT
$A + 2 \approx 19790 (A = 197)$	TTCCGCTCTTTCTTTCCAAG
At3g18780 (Actili2)	CCATTGTCACACACGATTGG
$\lambda + 2 \alpha 26650 (CSD1)$	ATCCCTGTTGCGAGTACGTT
Al3g20030 (CSK1)	CGACAACTCATCATCACAAGG
A+2a/7610	TGCCAAGGAATATCTCGACAA
Al3g47010	CTGAACTGGCTGCTACATGG
At3a/7800	CAACGAAGGCCGTAACACTC
Al3g47800	TGGACTGACCAAATCACATCA
$\Delta t 3 \alpha / 8560 (G \Delta P \Delta)$	ACCGAAACCCGTCTCTTCTC
M3g+0300 (OM A)	CACAAACACTCCGGTTCCTT
At3g60240 (eIE4G)	ACGCCCAACACAGCTAAAGT
·	CTGGAGAGGAAATGCCTGAG
At4σ00040	CAATGTTGTTTCCCAGGAGAAT
	TCTTGACAGTTGTGCTTTTGC

A+4~24600	CCAGAGTTACCTGGTCGATACA
Al4g24090	AATTCTTCAGAGATGCATCAACAT
Δt/1σ32060	GGGAGAGAAATCCTGGTGAA
Al4g52060	TCAACATCAAAGAGCATGAAGAA
A+5~44570	AATCGGCTCCTTCCTCAGTT
Al5g44572	TGCTATTATTCCCCCATTCG
$A + 5 = 56010 (H_{am} + 91.2)$	TGAAGGTAGCAAGATGGAGGAAGTT
Al5g50010 (Hsp81-5)	ACCAATGTCTCAACACCCCTAATG
$A + E \sim (2 + 70) (C + 1)$	ATGTTTTGGGGACGATGTGT
Al5g65570 (GSA-1)	TCAACTCACTACACAAGAATTATTCCA
Dha	GGATTCTTTTCCAATGCTATTGTT
K-IUC	AAGACCTTTTACTTTGACAAATTCAGT

Table 1. 定量 RT-PCR に用いた遺伝子特異的プライマーセット

1-3. 結果

1-3-1. 成長・発達段階における全体的な翻訳状態

植物細胞内での翻訳状態(リボソームローディング)は、mRNA 種によって異なり、 環境ストレス等に応じてその翻訳状態は大きく変化することが報告されている (Matsuura et al. 2010, Yángüez et al. 2013, Matsuura et al. 2010, Kawaguchi et al. 2004, Juntawong and Bailey-Serres 2012, Liu et al. 2012, Liu et al. 2013)。さらに、酵母等での 研究より、その翻訳状態は細胞の分化や発達においても変化することが知られてい る(Brar et al. 2012)。しかし、植物に関して各成長段階や発達段階における各 mRNA 種の翻訳状態がどのようになっているのか、ゲノムワイドに解析した例は報告され ていない。そこで植物の成長・発達段階に着目し、まずは全体的な翻訳状態を知る ために、シロイヌナズナ野生株を用いたポリソーム解析を行った。ポリソーム解析 は、ショ糖密度勾配遠心により細胞抽出液中に存在する mRNA をリボソームの結合 数に応じて分画できることから、細胞内の翻訳状態を解析する手法として広く利用 されている。各成長段階での翻訳状態の解析には、発芽 2 日目 (2 day after germination: 2DAG)から 35DAG までの植物を適時サンプリングして用いた(Fig. 1A)。 2~4DAG については植物体全体を、7DAG 以降については根を除いた地上部を使用 している。その結果、2DAG では他と比べ高いポリソームのピークが認められ、細 胞全体として非常に活発な翻訳が行われていることが示唆された。それに対して特 に 21~35DAG 等では、ポリソームのピークは低く、多くの mRNA は遊離の mRNA を含むノンポリソームの画分に存在しており、2DAG 等に比べあまり活発な翻訳は 行われていないことが示された。このポリソームからノンポリソームへのピークの 移行は、日数経過とともに徐々に顕著になっており、植物の成長に伴い細胞全体と しての翻訳状態は大きく抑制されていくことが明らかとなった。一方、21DAGの未 展開葉(young leaves)と展開葉(mature leaves)のプロファイルは、21DAG 地上部全体 のプロファイルに似た傾向を示し、未展開葉と展開葉の間では大きな違いは認めら れなかった (Fig. 1B)。

Figure 1. 各成長段階及び葉の発達段階におけるポリソーム解析

(A)2DAG から 35DAG の植物体から調製した細胞抽出液をショ糖密度勾配遠心法 により分画し、254 nm の吸光を測定したプロファイルを示す。(B)21DAG の未展開 葉と展開葉から測定したプロファイルを示す。沈降方向は左から右である。ポリソ ーム/マイクロアレイ及びポリソーム/ 定量 RT-PCR に用いた画分の番号を図中に示 している。

1-3-2. 発芽 2、21 日目、未展開、展開葉でのゲノムワイドな翻訳状態の解析

1-3-1.の結果より、2DAG では全体的に活発な翻訳が行われており、21DAG 等では 2DAG と比較して、細胞全体としての翻訳状態は低いことが示された。しかし、そ れら全体的な挙動の中で、それぞれの mRNA 種の翻訳状態がどのように分布してい るのかは不明である。加えて未展開葉と展開葉での全体的な翻訳状態に大きな違い は認められなかったが、個々の mRNA 種に着目した場合では、各 mRNA 種の翻訳 状態はそれらの間で大きく異なる可能性も考えられた。そこで、個々の mRNA 種レ ベルでの翻訳状態を解析するために、2DAG、21DAG、21DAGの未展開葉(young leaves)、展開葉(mature leaves)における各 mRNA 種の翻訳状態をポリソーム/マイ クロアレイ法を用いてゲノムワイドに解析した。まずショ糖密度勾配遠心により mRNA をリボソームの結合数に応じて分画し、Total fraction RNA(画分1~8)及び Polysome fraction RNA (画分 5~8) を回収した。その後、回収した RNA をそれぞ れ Cy5 と Cy3 で蛍光標識し、cRNA を調製後、Agilent Arabidopsis 4 Oligo Microarrays 上で競合ハイブリダイゼーションさせた。それぞれのスポットから得られたシグナ ルの比(Cy3:Cy5)から、個々の mRNA 種の Total fraction に対する Polysome fraction に存在する mRNA の比率 Polysome ratio (PR_2DAG、 PR_21DAG、 PR_young_leaves、 PR_mature_leaves) を算出した。高い PR 値を示す mRNA 種は、その mRNA の多く がポリソームを形成し、活発な翻訳が行われていると考えられる。最終的に PR 値 を算出することができた mRNA 数は 16917~19965 種であった。ポリソーム/マイク ロアレイ解析は独立した2つのサンプルを用いて行ったが、対数に変換(Log₁₀)し た PR 値は、その 2 反復間で非常に高く相関していた(Fig. 2)。以降の解析では PR 値を独立した2つのサンプルで平均した数値を使用した。

これらのマイクロアレイデータの信頼性は、各成長・発達段階で 18 種の mRNA を用いたポリソーム/定量 RT-PCR 法によって確かめている。各条件から調整した細 胞抽出液をポリソーム解析に供し、Total fraction (画分 1~8) 及び Polysome fraction (画分 5~8) に分画した後、それぞれの画分に存在する mRNA を定量 RT-PCR によ り定量した。それらのデータから、PR 値を算出し、ポリソーム/マイクロアレイで の結果と比較した (Fig. 3A~C)。その結果、独立した 2 つの手法間においてもすべ ての値は高い相関を示し (r = 0.85~0.89)、マイクロアレイ解析の信頼性を確認した。 またいくつかの mRNA 種に関しては、より詳細にその mRNA が存在する画分を、 細胞抽出液を 8 つの画分に分画して確かめている (Fig. 3D)。なお、At2g35795 の mRNA のみ主に存在する画分が他の場合と異なるが、At2g35795 mRNA の CDS 長が 他に比べ短いため、mRNA の重量および結合しうるリボソームの数が少なくなるた めだと考えられる。

Figure 2. マイクロアレイ結果の生物学的 2 反復間での再現性

独立した生物学的2反復のサンプルより得られたLog₁₀に変換した各PR値の散布 図。それぞれの散布図は(A)19965, (B)18833, (C)18122, (D)16917の転写産物を示す。 近似線(点線)と近似式の傾き(Slope)、ピアソンの相関係数(r)を図中に示した。

Figure 3. 定量 RT-PCR によるマイクロアレイデータの確認

(A~C) 18 遺伝子に対するポリソーム/定量 RT-PCR 解析によって、マイクロア レイデータの信頼性を確認した。ポリソーム/定量 RT-PCR 解析では、Total fraction (画分 1~8)及び Polysome fraction (画分 5~8)のそれぞれに存在する目的の mRNA 量を定量し、各画分に等量ずつ加えた r-luc の mRNA 量で補正した。PR 値は目的 mRNA の Polysome fraction RNA と Total fraction RNA の比によって求め、 Δ PR 値(本 文 1-3-4. 参照)の計算に用いた。算出した PR 値、 Δ PR 値を、マイクロアレイデー タと比較した。近似線(点線)とピアソンの相関係数(r)を図中に示した。個別の 結果は Table. 2 に示している。(D) いくつかの mRNA 種における 8 画分にわけて行 ったポリソーム/ 定量 RT-PCR の例。縦軸は各画分に存在するそれぞれの mRNA 量 を全画分に対する割合で表記している。各画分の位置は Fig. 1 に示している。

		Microarray			qRT-PCR	
Gene name	PR_2DAG	PR_21DAG	ΔPR_Grwoth	PR_2DAG	PR_21DAG	ΔPR_Grwoth
At3g13580 (RPL7D)	0.67	0.28	-0.37	0.29	1.05	-0.44
At1g29930 (CAB1)	0.59	0.24	-0.38	0.23	0.95	-0.25
At1g06110 (SKIP16)	0.61	0.29	-0.33	0.29	0.78	-0.30
At3g18780 (Actin2)	0.60	0.31	-0.28	0.31	1.11	-0.55
At3g48560 (GAPA)	0.63	0.40	-0.19	0.35	0.97	-0.34
At2g36400 (GRF3)	0.70	0.42	-0.22	0.42	0.97	-0.18
At3g26650 (CSR1)	0.61	0.38	-0.21	0.47	0.98	-0.27
At2g37450	0.48	0.33	-0.17	0.33	0.61	-0.24
At1g07320 (RPL4)	0.64	0.45	-0.15	0.45	0.97	-0.24
At4g32060	0.47	0.38	-0.10	0.35	0.79	-0.32
At3g47800	0.71	0.54	-0.12	0.54	0.92	-0.28
At3g11400 (eIF3G-1)	0.60	0.47	-0.10	0.47	0.88	-0.25
At2g39500	0.16	0.13	-0.07	0.13	0.19	-0.22
At1g06760 (Histone H1)	0.62	0.55	-0.05	0.55	0.82	-0.14
At2g47590 (PHR2)	0.79	0.71	-0.05	0.69	0.96	-0.19
At5g56010 (Hsp81-3)	0.67	0.62	-0.04	0.58	0.68	-0.07
At4g24690	0.47	0.47	0.00	0.47	0.73	-0.18
At3g60240 (eIF4G)	0.72	0.75	0.02	0.75	1.21	-0.06
Cono nomo		Microarray		<u></u>	qRT-PCR	
	PR_young leaves	PR_mature leaves	ΔPR_Leaf	PR_young leaves	PR_mature leaves	ΔPR_Leaf
At3g26650 (CSR1)	0.48	0.31	-0.18	0.67	0.42	-0.20
At3g48560 (GAPA)	0.46	0.36	-0.11	0.53	0.41	-0.11
At2g36400 (GRF3)	0.51	0.33	-0.19	0.64	0.43	-0.17
At3g13580 (RPL7D)	0.37	0.26	-0.16	0.41	0.28	-0.17
At1g07320 (RPL4)	0.53	0.39	-0.13	0.69	0.50	-0.14
At3g18780 (Actin2)	0.33	0.27	-0.08	0.37	0.27	-0.13
At3g11400 (eIF3G-1)	0.50	0.48	-0.03	0.64	0.60	-0.02
At1g06110 (SKIP16)	0.30	0.28	-0.02	0.34	0.34	0.00
At5g56010 (Hsp81-3)	0.62	0.56	-0.04	0.90	0.83	-0.04
At5g63570 (GSA-1)	0.58	0.60	0.01	0.75	0.71	-0.02
At1g06760 (Histone H1)	0.56	0.58	0.02	0.95	0.90	-0.02
At4g32060	0.33	0.40	0.08	0.50	0.59	0.07
At3g47800	0.50	0.68	0.14	0.59	0.66	0.05
At2g37450	0.32	0.45	0.15	0.43	0.60	0.14
At5g44572	0.33	0.50	0.18	0.27	0.43	0.20
At2g35795	0.24	0.40	0.22	0.43	0.64	0.17
At2g39500	0.13	0.23	0.23	0.17	0.25	0.17
At4g00040	0.20	0.32	0.22	0.28	0.61	0.34

Table 2. 定量 RT-PCR によるマイクロアレイデータの確認結果

各成長・発達段階でマイクロアレイ解析と定量 RT-PCR から得られた 18 種の mRNA の各 PR 値と Δ PR 値を示した。

1-3-3. 発芽 2、21 日目、未展開、展開葉での個別 mRNA の翻訳状態

算出した PR 値は、個々の mRNA 種のリボソームローディング(翻訳状態)を 反映しており、その PR 値は幅広い分布を示し、mRNA 種によって翻訳状態は大き く異なっていた(Fig. 4)。この幅広い分布は、PR_2DAG、PR_21DAG、 PR_young_leaves、PR_mature_leavesの全てで観察され(SD = 0.11~0.12)、2DAG のように細胞全体としての翻訳状態が非常に高い条件や、PR_21DAG 等のように 全体的には翻訳状態が低い条件でも(Fig. 1)、個々の mRNA 種レベルで解析する と、翻訳状態が非常に高い mRNA 種から低い mRNA 種まで様々であった。この様 に、全ての条件で同様に幅広い PR 値の分布が認められたが、各条件における PR 値の主要な分布の位置には違いが認められ、PR_2DAG (Median = 0.63)では、他 の条件(Median = 0.46~0.48)と比べて、全体的に高い PR 値を示す傾向が認めら れた。このことは全体的な翻訳状態の解析結果と一致しており(Fig. 1)、植物 mRNA の翻訳状態は、mRNA 種によって大きく異なると共に、その植物の成長・発達度合 いによっても大きく異なることが明らかとなった。

Figure 4. 翻訳状態のゲノムワイド解析より算出した PR 値の分布

(A~D)翻訳状態の指標値である Polysome Ratio (PR) 値(total fraction に対す る polysome fraction RNA の存在比)を個々の転写産物についてマイクロアレイ解析 を用いて求め、その分布をヒストグラムで示した。値は生物学的2反復の平均値で ある。図中に各条件における PR 値の中央値(Median)、データ数(n)、標準偏差(SD) を示した。

1-3-4. 成長段階間、葉の発達段階間での個別 mRNA の翻訳状態の違い

これまでの結果より、全ての条件で mRNA の翻訳状態は幅広い分布を示し、その 分布は、細胞全体としての翻訳状態の違いを反映し、PR_2DAG では他の条件と異 なり相対的に高い PR 値を示していた。この条件間での翻訳状態の違いは、全ての mRNA 種の一様な変化なのか、それとも個々の mRNA で異なる変化を示しているの だろうか。加えて、未展開葉と展開葉では全体的な翻訳状態に大きな違いは認めら れなかったが、この発達段階が異なる2条件の間では、個々の mRNA 種レベルでも 違いは認められないのだろうか。これらの疑問を解決するため、成長・発達段階間 の翻訳状態の違い(変化)をΔPR として算出し、解析を行った。解析は成長段階間

(ΔPR_growth = log₁₀ (PR_21DAG / PR_2DAG))、葉の発達段階間 (ΔPR_leaf = log₁₀ (PR_mature_leaves / PR_young_leaves))という2つの観点から行った。成長段階では、 2 条件間の PR 値の比較を示す散布図において、PR 値が等しいことを意味する点線 から大部分の mRNA は下方向に外れており、PR 値は21DAG で減少していた (Fig. 5A)。同様の傾向はΔPR_growth 値のヒストグラムからも認められ (Fig. 5C)、大部 分の mRNA 種はΔPR 値が負を示し、翻訳状態は2DAG に比べ21DAG で抑制され ていた (Median = -0.13)。しかし、その変化は一様ではなく、翻訳状態が強く抑制 されている mRNA 種からΔPR 値が0付近を示し翻訳状態が変化していない mRNA 種まで幅広く存在していた (SD = 0.08)。一方、葉の発達段階間では、2 条件間の散 布図において、成長段階間で観察されたような顕著な片側への偏りは認められず

(Fig. 5B)、 Δ PR_leaf 値の分布でも多くの mRNA 種は Δ PR 値が0付近であり(Fig. 5D, Median = 0.01)、未展開葉と展開葉で類似した翻訳状態であった。しかし、2条 件間で翻訳状態の違いを示す mRNA 種も少なからず存在しており、その分布は Δ PR 値が負を示し、未展開葉と比較して展開葉で翻訳状態が低い(抑制された) mRNA 種から、逆に Δ PR 値が正を示し、展開葉で翻訳状態が高い(活性化された) mRNA 種まで幅広く存在していた(SD = 0.06)。

更に、詳細な葉の発達段階間の翻訳状態の違いを評価するために、翻訳状態が強 く抑制された mRNA 種(ΔPR_leaf 値の下位 1000 種)、強く活性化された mRNA 種 (ΔPR_leaf 値の上位 1000 種)、変化しなかった mRNA 種(ΔPR_leaf 値が 0 付近の 1000 種)を選抜し、その PR 値の分布を解析した(Fig. 6)。Fig. 4 で示したように mRNA 種全体の PR 値の中央値は、2 点間で顕著な違いはない(Median = 0.47、0.48)。 この時、値がランダムに変化しているならば、強く抑制される(値の落ち幅が大き い)集団は、高い値から低い値への変化を示すことになり、PR_young_leaves での中 央値は全体より高く、PR_mature_leaves での中央値は全体より低くなることが予想 される。強く活性化される集団は、それとは逆の挙動をとり、変化しない集団は mRNA 種全体と同じ挙動をとることとなる。しかし、実際の結果を見てみると、強 く抑制された mRNA 種の PR_young_leaves は、mRNA 種全体と類似した値を示し

(Median = 0.46)、展開葉でのみ顕著に低い傾向であった(Median = 0.36)。一方、 強く活性化された mRNA 種は、展開葉において mRNA 種全体と類似した値を示し (Median = 0.45)、未展開葉で顕著に低い PR 値であった(Median = 0.33)。また、変 化しない mRNA 種はどちらの発達段階でも mRNA 種全体よりも高い値を示した

(Median = 0.51)。これらの結果は、葉の発達段階間で翻訳状態が変化しなかった mRNA 種は、翻訳状態が2条件でともに高い傾向がある一方で、抑制された mRNA 種は、未展開葉で平均的な翻訳状態であるが、展開葉では翻訳状態が低い傾向があ り、逆に活性化された mRNA 種は、展開葉では平均的な翻訳状態であるが、未展開 葉では翻訳状態が低い傾向であった。つまり、葉の発達段階を通して抑制された mRNA 種と活性化された mRNA 種は、展開葉、未展開葉それぞれで翻訳状態が全体 と比較すると低い(抑制された) mRNA 種と考えられる。

Figure 5. 成長段階、葉の発達段階間での翻訳状態の違い

(A) 成長段階間での個々の mRNA 種の PR 値の散布図。(B) 葉の発達段階間で の個々の mRNA 種の PR 値の散布図。近似線(実線)とピアソンの相関係数(r)、 近似式の傾きを図中に示す。点線は PR_21DAG と PR_2DAG、または PR_mature_ leaves と PR_young_leaves の翻訳状態が等しいことを意味している。(C) 成長段階 間と(D) 葉の発達段階間での翻訳状態の違い(変化)の指標値である Δ PR 値を個々 の mRNA 種について求め、その分布をヒストグラムで示した。図中に各条件での PR 値の中央値(Median)、データ数(n)、標準偏差(SD)を示した。

Figure 6. 葉の発達段階間での △ PR 値別の PR 値

全 mRNA 種 (n = 15376)、葉の発達段階間の比較で展開葉での翻訳状態が抑制された mRNA 種 (n = 1000、 Δ PR 値の下位 1000 種)、活性化された mRNA 種 (n = 1000、 Δ PR 値の上位 1000 種)、変化しなかった mRNA 種 (n = 1000、 Δ PR 値が 0 付近の 1000 種)の未展開葉、展開葉での PR 値の分布を箱ひげ図で示し、各分布の中央値を図中に表記した。エラーバーの末端は分布の上位 5%位置と下位 5%位置を示し、外れ値は省略している。

1-3-5. 成長・発達を通した mRNA 蓄積量変化と翻訳状態変化の関連性

これまでの結果によって、mRNA の翻訳状態は各成長・発達段階で大きく異なる (変化する)ことが明らかとなった。一方、遺伝子の発現を制御する非常に重要な 段階である転写も、成長・発達を通して大きく変化していることが予想された。そ こで、転写と翻訳の関連性を解析するために、成長段階、葉の発達段階を通した翻 訳状態変化と、蓄積 mRNA 量変化を比較することにした。2DAG、21DAG、未展開 葉 (young leaves)、展開葉 (mature leaves) について、生物学的に独立した各2つの サンプルから Total RNA を抽出後、DNA マイクロアレイ解析に供した。各サンプル のシグナル比を各スポットについて求め値を平均し、蓄積 mRNA 量変化の指標であ る expression score (ES) 値 (ES_growth = Total_21DAG / Total_2DAG, ES_leaf = Total_mature_leaves / Total_young_leaves) とした。得られたシグナル値は、独立した 2 サンプル間で非常に良い再現性であった(Fig. 7, r = 0.99~1.00)。加えて、各条件 で18種のmRNA について、定量 RT-PCR により Log₁₀ES 値を別に算出した結果、 マクロアレイによって得られた結果と非常によく相関した(Fig. 8, r = 0.71)。また、 各 Log₁₀ ES 値(Log₁₀ ES_growth, Log₁₀ ES_leaf)の分布は、どちらも正規様の分布を していた(Fig. 9)。今回算出した Log₁₀ ES 値(Log₁₀ ES_growth、Log₁₀ ES_leaf)と Δ PR 値 (Δ PR_growth, Δ PR_leaf) を各 mRNA について比較したところ (Fig. 10)、 それらの間には相関関係は認められず、成長段階間と葉の発達段階間の翻訳状態の 制御は、全体的には蓄積 mRNA 量の制御とは独立していることが示唆された。

独立した生物学的 2 反復のサンプルより得られた Log₁₀ に変換した各シグナル強度値の散布図。それぞれの散布図は(A)20998, (B)20076, (C)19305, (D)18546 の転写産物を示す。近似線(点線)と近似式の傾き(Slope)、ピアソンの相関係数(r)を図中に示した。

Figure 8. 定量 RT-PCR によるマイクロアレイデータの確認

18 遺伝子について Log₁₀ ES 値を定量 RT-PCR によって求め、マイクロアレイデー タと比較した。近似線(点線)とピアソンの相関係数(r)を図中に示した。個別の 結果は Table 3 に示す。

	Microarray	qRT-PCR		Microarray	qRT-PCR
Gene name	$Log_{10}ES_Growth$ $Log_{10}ES_Growth$ $Come name$		Gene name	Log ₁₀ ES_Leaf	Log ₁₀ ES_Leaf
At3g13580 (RPL7D)	0.06	0.97	At3g26650 (CSR1)	-0.03	-0.21
At1g29930 (CAB1)	0.21	1.10	At3g48560 (GAPA)	-0.11	-0.16
At1g06110 (SKIP16)	0.32	1.05	At2g36400 (GRF3)	0.01	0.01
At3g18780 (Actin2)	-0.17	1.13	At3g13580 (RPL7D)	-0.15	-0.14
At3g48560 (GAPA)	0.24	1.47	At1g07320 (RPL4)	-0.37	-0.38
At2g36400 (GRF3)	-0.07	0.38	At3g18780 (Actin2)	0.03	0.03
At3g26650 (CSR1)	0.21	1.30	At3g11400 (eIF3G-1)	-0.23	-0.23
At2g37450	0.28	0.96	At1g06110 (SKIP16)	0.29	0.29
At1g07320 (RPL4)	-0.09	0.77	At5g56010 (Hsp81-3)	-0.21	-0.16
At4g32060	0.44	1.50	At5g63570 (GSA-1)	-0.56	-0.56
At3g47800	-0.01	0.71	At1g06760 (Histone H1)	-0.10	-0.10
At3g11400 (eIF3G-1)	-0.35	0.43	At4g32060	0.09	0.09
At2g39500	-0.13	0.42	At3g47800	0.11	0.11
At1g06760 (Histone H1)	-0.03	0.47	At2g37450	-0.16	-0.16
At2g47590 (PHR2)	-0.10	0.69	At5g44572	0.00	0.00
At5g56010 (Hsp81-3)	-0.51	-0.34	At2g35795	0.20	0.20
At4g24690	0.20	0.95	At2g39500	-0.03	-0.03
At3g60240 (eIF4G)	0.05	0.16	At4g00040	0.19	0.20

Table 3. 定量 RT-PCR によるマイクロアレイデータの確認結果

各条件でのマイクロアレイ解析と定量 RT-PCR から得られた 18 種の mRNA の各 Log₁₀ ES 値を示した。

Figure 9. マイクロアレイ解析より算出した Log₁₀ ES 値の分布

(A) 成長段階間、(B) 葉の発達段階間での蓄積 mRNA 変化の指標値である Expression Score (ES) 値を個々の転写産物についてマイクロアレイ解析を用いて 求め、その分布をヒストグラムで示した。値は生物学的2反復の平均値である。図 中に各条件における PR 値の中央値 (Median)、データ数 (n)、標準偏差 (SD) を 示した。

(A) 成長段階間、(B) 葉の発達段階間での Δ PR 値と Log₁₀ ES 値の散布図。ピ アソンの相関係数 (r) と近似線 (実線) を図中に示す。

1-3-6. 特定のタンパク質機能をコードする mRNA 種集団の翻訳状態の傾向

翻訳状態は、mRNA 種によって大きく異なるとともに成長や発達段階を通して変 化し、その制御は、転写制御とは独立していることが示唆された。このような翻訳 制御の生理的な意義を考察するため、類似したタンパク質機能をコードする遺伝子 集団(機能集団、全1420集団)に着目し、mRNA 全体の翻訳状態(PR 値)とは有 意に異なる特徴的な PR 値の分布を示す機能集団が存在するのかを、解析ソフトの Map-man と Page-man (Thimm et al. 2004, Usadel et al. 2005, Usadel et al. 2006) を用い て解析した。この際、PR 値はリボソームの結合数で評価しているため、同じリボソ ームのリクルート効率であっても、長い mRNA の方がリボソームの結合数は多くな り PR 値は高くなる。そこで各機能集団に属する mRNA の CDS 長についても同様 に評価し、PR 値が全 mRNA のそれと有意に異なる挙動をとる機能集団でも、CDS 長に有意な偏りがあり、その影響が考えられるものは除外した。解析の結果、 PR_2DAG、PR_21DAG、PR_young_leaves、PR_mature_leavesのそれぞれで、上位の 階層も含む 32、27、28、20 個の機能集団が mRNA 全体の PR 値の分布よりも有意 に高い分布であった(Table 4)。それらの中には、TCA / org transformation、 N-metabolism, amino acid metabolism, secondary metabolism, nucleotide metabolism, DNA synthesis に関する機能集団が多く含まれ、代謝に関する機能集団の翻訳状態は、 高い傾向があると考えられた。加えて、PR_2DAG、PR_21DAG、PR_young_leaves、 PR_mature_leaves のそれぞれで、9、8、11、11 個の機能集団が mRNA 全体の PR 値 の分布よりも有意に低い分布であった(Table 4)。それらの中には hormone metabolism、RNA regulation of transcription、ubiquitin に関する機能集団が多く含まれ ていた。これらの機能集団の中には、各条件で類似した挙動を示すものが存在し、 特に ubiquitin E3 に関連する機能集団は、全ての条件で翻訳状態は低い傾向であった。

一方、それぞれの成長・発達段階間で異なる挙動を示す機能集団も多く存在し、 それぞれの成長・発達段階で特異的な翻訳状態の決定が行われている可能性が示唆 された。そこで、翻訳状態の違い(変化)が生理的にどのような意義を持っている のかを考察するために、成長段階、葉の発達段階に着目し、その翻訳状態変化(Δ PR)についても同様の解析を行った(Table 5)。その結果、 Δ PR_growth、 Δ PR_leaf のそれぞれで、20、36 個の全体の翻訳状態変化の分布より負の方向に分布が偏る、 つまり成長段階や葉の発達を通して抑制されやすい機能集団を見出した。成長段階 では、ribosomal protein と ubiquitin に関する機能集団が多く含まれ、葉の発達では photosynthesis、major CHO metabolism、glycolysis、cell wall、amino acid metabolism、 RNA processing、ribosomal protein に関する機能集団が多く含まれていた。加えて、 Δ PR_growth、 Δ PR_leaf のそれぞれで、28、9 個の全体の翻訳状態変化の分布より 正の方向に分布が偏る、つまり成長段階を通して変化しにくい、または葉の発達段 階を通して活性化しやすい機能集団が多く含まれ、葉の発達段階では、cell wall、DNA、 signaling、cell に関する機能集団が多く含まれ、葉の発達段階では ubiquitin E3 や signaling 等に関わる機能集団が含まれていた。加えて、6 個の機能集団が、成長段

31

階、葉の発達段階を通して共に抑制されやすい機能集団として見つかり、それらは ribosomal protein に関するものだった。これらの結果から、成長・発達に応じて特定 の機能集団の翻訳状態は、より高くまたは低くなっており、遺伝子発現制御に翻訳 段階が重要な意味を持っている可能性が示唆された。

			P 1		
	BIN name (BIN code)		P-Va		
Dhata and haa's	DC lighter action ATD complete (1, 1, 4)	PK_2D	PR_2ID	PK_YL	PK_ML
Photosynthesis	PS.lightreaction.ATP synthase (1.1.4)	9 24E 02	2 995 02	3.54E-02	0 77E 02
	PS.Igntreaction.NADH DH (1.1.0)	8.24E-03	3.88E-03	3.4/E-03	8.//E-03
Maion CHO	PS.calvin cycle (1.5)	2.40E-02			
Major CHO	(2.2.1.1)		8.14E-03	1.15E-02	4.61E-02
Farmantation	(2.2.1.1)	2.56E.02	1.57E.02	1.22E.02	
OPP	OPP(7)	2.30E-02	1.3/E-02	1.22E-02	
	OFF (7)	5.79E-02			
ICA / olg	TCA / org transformation (8)	3.92E-06	4.72E-05	5.27E-05	3.27E-03
transformation	TCA / or a transformation TCA (8.1)	1.57E.05	5 28E 05	3 02E 05	1 14E 03
	TCA / org transformation TCA purply at DH $(8, 1, 1)$	1.57E-05	J.26E-0J	5.92E-05	1.14L-03
Call wall	all wall procursor surphasis (10.1)	1.34E-02		2 70E 02	
	cell wall procting action and a starting and the set of	7.01E-05	2 50E 02	3.79E-02	0 20E 02
N motobolism	N metabolism ammonia metabolism (12.2)	4 15E 02	2.39E-02	1 22E 02	0.20E-03
IN-metabolism	N-metabolism.animonia metabolism (12.2)	4.13E-05	7.04E-05	1.22E-02	
	(12.2.2)	6.79E-03	3.53E-02	2.79E-02	
Amino acid	amino acid metabolism.synthesis.glutamate family.arginine	2 20E 02		4 12E 02	
metabolism	(13.1.2.3)	2.20E-02		4.12E-02	
	amino acid metabolism.synthesis.branched chain group	1.66E.02	3 05E 02	1 30E 02	
	(13.1.4)	1.00E-02	5.05E-02	1.39E-02	
	amino acid metabolism.synthesis.serine-glycine-cysteine	1 30E 02			
	group (13.1.5)	1.39E-02			
	amino acid metabolism.synthesis.aromatic aa (13.1.6)	2.00E-02			
Secondary metabolism	secondary metabolism isoprenoids (16.1)	6.94E-03			
	secondary metabolism isoprenoids.carotenoids (16.1.4)	3.69E-02			
	secondary metabolism.phenylpropanoids (16.2)	1.67E-02	6.43E-03	1.22E-02	1.94E-02
	secondary metabolism.phenylpropanoids.lignin				
	biosynthesis (16.2.1)		2.59E-02	1.39E-02	
	secondary metabolism.sulfur-		1 105 00	0.545.00	
	containing.glucosinolates.synthesis (16.5.1.1)		1.40E-02	3.54E-02	
	secondary metabolism.sulfur-		0.055.00		
	containing.glucosinolates.synthesis.aliphatic (16.5.1.1.1)		3.05E-02		
Hormone		1.045.00	2.145.02	0.245.00	
metabolism	normone metadolism.etnylene.signal transduction (17.5.2)	1.84E-02	3.14E-02	2.34E-02	
Tetrapyrrole	tateany male synthesis (10)			1 20E 02	
synthesis	leuapymole synthesis (19)			1.39E-02	
	tetrapyrrole synthesis.magnesium chelatase (19.1)		2.73E-02	1.88E-02	
Stress	stress.abiotic (20.2)		1.57E-02	3.48E-02	5.24E-03
	stress.abiotic.heat (20.2.1)		4.86E-02		3.89E-02
Redox	redox.thioredoxin.PDIL (21.1.1)	2.19E-02	4.86E-02	4.11E-02	4.59E-02
Nucleotide metabolism	nucleotide metabolism (23)	1.81E-02			
	nucleotide metabolism.synthesis (23.1)	3.50E-04	1.23E-03	7.32E-04	
	nucleotide metabolism synthesis.pyrimidine (23.1.1)			4.88E-02	
	nucleotide metabolism synthesis.purine (23.1.2)	2.00E-02	8.97E-03	3.85E-03	
	nucleotide metabolism salvage.NUDIX hydrolases				
	(23.3.3)			4.12E-02	
Biodegradation of Xenobiotics	Biodegradation of Xenobiotics (24)				1.82E-02

Misc	misc.glutathione S transferases (26.9)				3.91E-02
	misc.peroxidases (26.12)	7.39E-03			
	misc.myrosinases-lectin-jacalin (26.16)				4.28E-02
	misc.invertase/pectin methylesterase inhibitor family		4 66E 03	2 34E 02	1 28E 03
	protein (26.18)		4.00E-03	2.34E-02	1.26E-03
RNA	RNA.processing (27.1)				1.71E-02
	RNA.processing.splicing (27.1.1)				2.17E-03
	RNA.regulation of transcription (27.3)	1.27E-02	_		
	RNA.regulation of transcription.MADS box transcription			2 10E 02	
	factor family (27.3.24)			2.19E-02	
	RNA.regulation of transcription.MYB domain	3 56E 03			
	transcription factor family (27.3.25)	3.30L-03			
	RNA.regulation of transcription.GeBP like (27.3.49)				3.51E-02
	RNA.regulation of transcription.SNF7 (27.3.71)	_			5.24E-03
	RNA.regulation of transcription.BBR/BPC (27.3.84)		4.11E-02	4.28E-02	
DNA	DNA.synthesis/chromatin structure (28.1)		1.94E-04	2.61E-03	
	DNA.synthesis/chromatin structure.histone (28.1.3)		4.94E-03		2.58E-03
	DNA.synthesis/chromatin structure.histone.core		3 60E 03		1 14E 03
	(28.1.3.2)		3.09E-03		1.14E-03
	DNA.synthesis/chromatin structure.histone.core.H3		4 20E 02		4 50E 02
	(28.1.3.2.3)		4.2912-02		4.39E-02
Protein	protein (29)				2.45E-04
	protein.synthesis.ribosome biogenesis (29.2.2)	3.84E-03	1.75E-02	7.18E-04	
	protein.synthesis.ribosome biogenesis.export from nucleus	3 79E-02			
	(29.2.2.1)	5.171 02			
	protein.synthesis.ribosome biogenesis.Pre-rRNA			1 82E-02	
	processing and modifications (29.2.2.3)			1.021 02	
	protein.synthesis.initiation (29.2.3)		2.09E-02	1.98E-03	
	protein.targeting (29.3)	9.04E-03			
	protein.targeting.nucleus (29.3.1)			1.39E-02	
	protein.targeting.chloroplast (29.3.3)	3.98E-02	2.85E-02	1.09E-02	
	protein.degradation.serine protease (29.5.5)	9.30E-03		4.92E-02	
	protein.degradation.ubiquitin (29.5.11)	2.76E-08	9.50E-09	1.43E-08	4.76E-08
	protein.degradation.ubiquitin.E3 (29.5.11.4)	1.47E-19	2.61E-15	1.26E-15	3.82E-12
	protein.degradation.ubiquitin.E3.RING (29.5.11.4.2)	2.88E-06	1.15E-03	6.63E-04	1.82E-02
	protein.degradation.ubiquitin.E3.SCF (29.5.11.4.3)	2.55E-15	5.40E-17	7.23E-17	2.79E-14
	protein.degradation.ubiquitin.E3.SCF.FBOX	1 61E-18	7 05E-18	3 78E-18	2.02E-15
	(29.5.11.4.3.2)	1.012 10	7.051 10	5.70L 10	2.022 10
	protein.degradation.ubiquitin.proteasom (29.5.11.20)	1.40E-02			
Signalling	signalling.in sugar and nutrient physiology (30.1)				1.82E-02
	signalling.calcium (30.3)				2.88E-03
	signalling.phosphinositides.phosphoinositide				2.02E-02
	phospholipase C (30.4.4)				
	transport.metabolite transporters at the mitochondrial				3.89E-02
Transport	membrane (34.9)				
	transport.Major Intrinsic Proteins (34.19)	9.79E-05			
	transport.Major Intrinsic Proteins.PIP (34.19.1)	2.40E-02			
Not assigned	transport.misc (34.99)	3.21E-06			
	not assigned no ontology.glycine rich proteins (35.1.40)	4.34E-03			1.36E-02
	not assigned no ontology proline rich family (35.1.42)	4.22E-02	2.73E-02	9.21E-03	

Table 4. 全体とは有意に異なる PR 分布を示す機能集団

PR_2DAG (PR_2D)、PR_21DAG (PR_21D)、PR_young_leaves (PR_YL)、 PR_mature_leaves (PR_ML) における各機能集団 (MapMan Functional Category: BIN) のwilcoxon's p-value を示す。青色はPR 値が全mRNAの分布より有意に高いことを、 赤色は有意に低いことを意味している。表には有意な機能集団のみをリストし、有 意水準は p < 0.05 とした。

	DIN nome (DIN code)	P-value		
	BIN Italie (BIN code)	ΔPR_growth	ΔPR_leaf	
Photosynthesis	PS.lightreaction.photosystem II.LHC-II (1.1.1.1)		2.33.E-02	
	PS.calvin cycle (1.3)		1.68.E-02	
Major CHO metabolism	major CHO metabolism (2)	1.07.E-02	1.45.E-03	
	major CHO metabolism.degradation (2.2)		6.09.E-03	
Minor CHO metabolism	minor CHO metabolism.callose (3.6)	1.05.E-02		
Glycolysis	glycolysis (4)		9.62.E-04	
	glycolysis.cytosolic branch (4.1)		2.50.E-02	
Cell wall	cell wall (10)	2.20.E-03	3.90.E-02	
	cell wall.precursor synthesis (10.1)		1.10.E-02	
	cell wall.degradation.mannan-xylose-arabinose-fucose (10.6.2)	9.31.E-03		
Liqid metabolism	lipid metabolism.FA desaturation (11.2)	4.80.E-02		
Amino acid metabolism	amino acid metabolism (13)		3.48.E-07	
	amino acid metabolism.synthesis (13.1)		7.32.E-08	
	amino acid metabolism.synthesis.aspartate family (13.1.3)		1.60.E-02	
	amino acid metabolism.synthesis.branched chain group (13.1.4)		9.21.E-03	
	amino acid metabolism.synthesis.branched chain group.common			
	(13.1.4.1)		4.25.E-02	
Secondary metabolism	secondary metabolism isoprenoids (16.1)		4.13.E-02	
Co-factor and vitamine		2 10 E 02		
metabolism	Co-factor and vitamine metabolism (18)	2.10.E-03		
Stress	stress (20)	1.92.E-02		
Redox	redox.glutaredoxins (21.4)		4.43.E-02	
Nucleotide metabolism	nucleotide metabolism.synthesis (23.1)		5.55.E-03	
	nucleotide metabolism synthesis.purine (23.1.2)		3.41.E-02	
	nucleotide metabolism.salvage.NUDIX hydrolases (23.3.3)		3.90.E-02	
	nucleotide metabolism phosphotransfer and pyrophosphatases	1545.00		
	(23.4)	1.54.E-02		
Misc	misc.gluco-, galacto- and mannosidases (26.3)	2.74.E-02		
RNA	RNA.processing (27.1)		1.11.E-03	
	RNA.processing.splicing (27.1.1)		2.75.E-03	
	RNA.processing.RNA helicase (27.1.2)		1.48.E-03	
	RNA.regulation of transcription.MADS box transcription factor		1 (9 E 02	
	family (27.3.24)		1.68.E-02	
	RNA.regulation of transcription.Aux/IAA family (27.3.40)	4.14.E-02		
	RNA.regulation of transcription.Chromatin Remodeling Factors		2 22 E 02	
	(27.3.44)		2.55.E-02	
	RNA.regulation of transcription.General Transcription (27.3.50)	4.33.E-02		
	RNA.RNA binding (27.4)		3.02.E-02	
DNA	DNA (28)	9.85.E-09		
	DNA.synthesis/chromatin structure (28.1)	1.89.E-13		
	DNA.synthesis/chromatin structure.retrotransposon/transposase	1 41 E 02		
	(28.1.1)	1.41.E-02		
	DNA.synthesis/chromatin structure.histone (28.1.3)	2.52.E-05		
	DNA.synthesis/chromatin structure.histone.core (28.1.3.2)	3.22.E-05		
Protein	protein (29)	2.31.E-04	4.55.E-07	
	protein.aa activation (29.1)		1.45.E-03	
	protein.synthesis (29.2)	6.25.E-08	3.34.E-22	
	protein.synthesis.ribosomal protein (29.2.1)	5.58.E-15	2.19.E-09	
	protein.synthesis.ribosomal protein.prokaryotic.unknown organellar	176 E 02		
	(29.2.1.1.3)	1.70.E-02		
	protein.synthesis.ribosomal protein.prokaryotic.unknown	4 21 E 02		
	organellar.50S subunit (29.2.1.1.3.2)	4.31.E-03		
	protein.synthesis.ribosomal protein.eukaryotic (29.2.1.2)	1.15.E-16	1.49.E-13	

	protein.synthesis.ribosomal protein.eukaryotic.40S subunit (29.2.1.2.1)	9.54.E-07	2.55.E-06
	protein.synthesis.ribosomal protein.eukarvotic.60S subunit		
	(29.2.1.2.2)	1.13.E-09	4.55.E-07
	protein.synthesis.ribosome biogenesis (29.2.2)		4.71.E-06
	protein.synthesis.ribosome biogenesis.Pre-rRNA processing and		1 42 5 02
	modifications (29.2.2.3)		1.42.E-03
	protein.synthesis.ribosome biogenesis.Pre-rRNA processing and		2.00 E.02
	modifications.DExD-box helicases (29.2.2.3.5)		3.90.E-02
	protein.synthesis.initiation (29.2.3)		1.10.E-02
	protein.synthesis.elongation (29.2.4)		2.86.E-04
	protein.targeting.nucleus (29.3.1)		4.55.E-07
	protein.degradation.metalloprotease (29.5.7)	1.49.E-02	
	protein.degradation.ubiquitin (29.5.11)	2.10.E-03	
	protein.degradation.ubiquitin.E2 (29.5.11.3)	1.18.E-05	
	protein.degradation.ubiquitin.E3 (29.5.11.4)	7.11.E-03	2.49.E-02
	protein.degradation.ubiquitin.E3.SCF (29.5.11.4.3)	1.85.E-04	
	protein.degradation.ubiquitin.E3.SCF.FBOX (29.5.11.4.3.2)	2.20.E-03	
Signalling	signalling (30)	7.88.E-14	
	signalling.receptor kinases (30.2)	0.00.E+00	
	signalling.receptor kinases.leucine rich repeat VIII (30.2.8)		2.49.E-02
	signalling.receptor kinases.leucine rich repeat VIII.VIII-2 (30.2.8.2)		2.88.E-02
	signalling.receptor kinases.leucine rich repeat X (30.2.10)	4.62.E-03	
	signalling.receptor kinases.leucine rich repeat XI (30.2.11)	7.11.E-03	
	signalling.receptor kinases.Catharanthus roseus-like RLK1 (30.2.16)	1.57.E-02	
	signalling.calcium (30.3)	4.05.E-02	
	signalling.phosphinositides (30.4)	7.93.E-03	
	signalling.G-proteins (30.5)		2.49.E-02
	signalling.light (30.11)	1.02.E-03	
Cell	cell (31)	3.54.E-02	
	cell.organisation (31.1)	4.31.E-03	
Micro RNA	micro RNA, natural antisense etc (32)		4.55.E-07
Development	development.squamosa promoter binding like (SPL) (33.3)	4.62.E-03	
Transport	transport.metabolite transporters at the mitochondrial membrane	$4.05 E_{-}02$	
mansport	(34.9)	4.05.12-02	
	transport.ABC transporters and multidrug resistance systems	7 11 E-03	
	(34.16)	7.111.L-03	
Not assigned	not assigned (35)	5.05.E-07	0.00.E+00
	not assigned.no ontology.pentatricopeptide (PPR) repeat-containing	2 52 F-05	1 45 F-03
	protein (35.1.5)	2.52.11 05	1.15.12 05
	not assigned.no ontology.pumilio/Puf RNA-binding domain-	1.54 E-02	
	containing protein (35.1.12)	1.5 1.12 02	
	not assigned.no ontology.formin homology 2 domain-containing	1.99.E-03	
	protein (35.1.20)		
	not assigned.unknown (35.2)	2.54.E-09	0.00.E+00

Table 5. 全体とは有意に異なる ΔPR 分布を示す機能集団

 Δ PR_growth、 Δ PR_leaf における各機能集団(MapMan Functional Category: BIN) の wilcoxon's p-value を示す。青色は Δ PR 値が全 mRNA の分布より有意に高く、成 長段階では翻訳状態が変化しにくいことを、葉の発達段階では活性化していること を意味する。一方、赤色は Δ PR 値が有意に低く翻訳状態が抑制されやすいことを意 味している。表には有意な機能集団のみをリストし、有意水準は p < 0.05 とした。

1-3-7. 様々な条件下での翻訳状態及びその変化の類似性と特異性

これまでに、各成長・発達段階での各 mRNA の翻訳状態は多様であり、特定のタ ンパク質機能をコードする mRNA 集団の翻訳状態は、成長・発達段階間で異なる挙 動を示し、それぞれの成長・発達段階に応答した翻訳状態の決定が行われているこ とが示唆された。この様な mRNA の翻訳状態の決定に関して、その制御の類似性と 特異性に焦点を当て、更なる考察を行うために、様々な状況における個々の mRNA の翻訳状態、および翻訳状態変化を比較することにした。これまでに当研究室では、 シロイヌナズナ培養細胞を用いて、熱ストレスコントロール (PR_22℃)、熱ストレ ス下(PR_37℃)の翻訳状態および熱ストレスによる翻訳状態変化(ΔPR_HS)、塩 ストレスコントロール (PR_0_mM)、塩ストレス下 (PR_200_mM) の翻訳状態およ び塩ストレスによる翻訳状態変化(ΔPR SS)などの環境ストレス下での翻訳状態 及びその変化をポリソーム/マイクロアレイ解析によってゲノムワイドに解析して いる(Matsuura et al., 2010)。これらの環境ストレス下での mRNA の翻訳状態は、コ ントロール条件下では全体的に翻訳状態(PR 値)は高く、環境ストレス下では各 mRNAの PR 値は全体的には低い値を示す傾向があり、その変化は、翻訳状態が変 化しないもの(ΔPR 値が0付近)から強く抑制されるもの(ΔPR 値が負を示す) まで正規様の分布をとり、大部分の mRNA からの翻訳が抑制されることが明らかと なっている。今回の成長・発達段階における翻訳状態の解析結果に、これらの結果 も合わせて比較解析を行うことにした。全条件下で PR 値が算出できた 13447 種の mRNAについてすべての条件間でPR値を比較し、相関係数として評価したところ、 mRNA 全体としてはある程度 PR 値が類似していた(r = 0.39~0.95)。加えて、最も 高い PR 値分布の中央値を示した PR_22℃を基準に相関が高い順番に並べると (Table 6)、各条件の中央値は徐々に低くなる傾向が認められ(Table 7)、類似した 中央値を示す条件間では相関が高くなっていた。なお、Matsuura らの解析では、PR 値の算出に用いたポリソーム解析時の回収した画分の位置が今回解析した場合と異 なるため、本研究における PR 値の算出値よりも高く評価されている。その中でも PR_22℃、PR_0_mM、PR_2DAG の発芽初期や培養細胞での非ストレス下などの PR 値分布の中央値が高い傾向にある条件(高 PR 条件)の間(r = 0.74~0.92)と、 PR_young_leaves、PR_200_mM、PR_21DAG、PR_mature_leaves、PR_37℃の十分に 成長した植物体や環境ストレス下など中央値が低い傾向にある条件(低 PR 条件) の間(r=0.64~0.95)において、特に高い相関が認められ、高 PR 条件間や低 PR 条 件間では、それぞれの翻訳状態が比較的に類似していると考えられる。一方で、高 PR 条件と低 PR 条件の間で比較すると相関は低くなる傾向があり(r = 0.39~0.76)、 それらの条件間で異なる挙動を示す mRNA が多く存在していると考えられる。

低 PR 条件間で PR 値の相関は高く、これら条件での各 mRNA の翻訳状態は類似 していると考えられる。しかし、それぞれの状況に応じて特異的な翻訳状態をとる mRNA 種も存在している可能性が十分に考えられた。そこで、特定の状況に応じた 翻訳制御を考察するために、成長段階、熱ストレス、塩ストレスに着目した翻訳状
態変化の比較を、全条件下で Δ PR 値が計算できた 13447 種の mRNA について行った (Table 8)。その結果、成長段階、熱ストレス、塩ストレスによる翻訳状態変化の間で、ある程度は相関することが認められたが (r = 0.56~0.71)、成長段階と環境(熱と塩)ストレスの間での相関は相対的に低く (r = 0.56~0.58)、条件間で異なる翻訳状態変化を示す mRNA 種が多く存在することが示唆された。つまり、翻訳状態が抑制される mRNA 種は常に一定ではなく、2条件間で相関から外れる mRNA 種は成長段階もしくは環境ストレスにおいて特異的に制御されていると考えられる。このように、翻訳状態は様々な条件の間である程度の類似性を示すが、それぞれの条件間で異なる挙動を示す mRNA も多く存在することから、そこには複数の制御機構が存在していると考えられる。

	PR_22°C	PR_0_mM	PR_2DAG	PR_YL	PR_200_mM	PR_21DAG	PR_ML	PR_37°C
PR_22°C		0.92	0.74	0.63	0.62	0.61	0.54	0.39
PR_0_mM			0.75	0.72	0.75	0.70	0.61	0.51
PR_2DAG				0.76	0.61	0.74	0.65	0.42
PR_YL					0.80	0.95	0.87	0.64
PR_200_mM						0.79	0.72	0.78
PR_21DAG							0.91	0.67
PR_ML								0.66
PR_37°C								
					•			

Table 6. 様々な条件間での PR 値の比較(各条件間での相関係数)

熱ストレスコントロール (PR_22°C)、塩ストレスコントロール (PR_0_mM)、2DAG (PR_2DAG)、未展開葉 (PR_YL; PR_young_leaves)、塩ストレス下 (PR_200_mM)、21DAG (PR_21DAG)、展開葉 (PR_ML; PR_mature_leaves)、熱ストレス下 (PR_37°C) における翻訳状態の解析結果より、全条件下で PR 値を算出できた 13447 種の mRNA について、各条件間の PR 値を比較し、相関係数をヒートマップで示した。PR 値の 分布において最も高い中央値を示す PR_22°Cを基準に、その PR_22°Cと相関が高い 順に左から並べている。PR_22°C, PR_0_mM, PR_200_mM, PR_37°Cについては、Matsuura ら (2010) によって報告されたマイクロアレイデータセットを改変して使 用している (http://cibex.nig.ac.jp/data/CBX69/)。

	PR_22°C	PR_0_mM	PR_2DAG	PR_YL	PR_200_mM	PR_21DAG	PR_ML	PR_37°C
Median *			0.630	0.470		0.460	0.490	
Median **	0.910	0.880			0.780			0.600

Table 7. 様々な条件での PR 値分布の中央値

熱ストレスコントロール (PR_22℃)、塩ストレスコントロール (PR_0_mM)、2DAG (PR_2DAG)、未展開葉 (PR_YL; PR_young_leaves)、塩ストレス下 (PR_200_mM)、21DAG (PR_21DAG)、展開葉 (PR_ML; PR_mature_leaves)、熱ストレス下 (PR_37℃) における翻訳状態の解析より、全条件下で PR 値を算出できた 13447 種の mRNA における PR 値分布の中央値を示している。*には本研究におけるマイクロアレイデータ、**には Matsuura ら (2010) によって報告されたマイクロアレイデータセットを改変して使用している (http://cibex.nig.ac.jp/data/CBX69/)。

	ΔPR_SS	ΔPR_HS	ΔPR_growth
ΔPR_SS		0.71	0.56
ΔPR_HS			0.58
ΔPR_growth			
		1	0

Table 8. 様々な条件間での Δ PR 値の比較(各条件間での相関係数)

塩ストレス(ΔPR_SS)、熱ストレス(ΔPR_HS)、成長段階(ΔPR_growth)による翻訳状態変化の解析より、全条件下で ΔPR 値を算出できた13447種のmRNAについて、各条件間の ΔPR 値を比較し、相関係数をヒートマップで示している。 ΔPR 値の分布において最も高い中央値を示す ΔPR_SS を基準に、その ΔPR_SS と相関が高い順に左から並べている。 ΔPR_SS , ΔPR_HS については、Matsuura ら(2010)によって報告されたマイクロアレイデータセットを改変して使用している(http://cibex.nig.ac.jp/data/CBX69/)。

	ΔPR_SS	ΔPR_HS	ΔPR_growth
Median	-0.052	-0.171	-0.135

.

Table 9. 様々な条件間での Δ PR 値分布の中央値

塩ストレス (ΔPR_SS)、熱ストレス (ΔPR_HS)、成長段階 (ΔPR_growth) による翻訳状態変化の解析より、全条件下で ΔPR 値を算出できた 13447 種の mRNA における ΔPR 値分布の中央値。 ΔPR_SS , ΔPR_HS については、Matsuura ら (2010) によって報告されたマイクロアレイデータセットを改変して使用している (http://cibex.nig.ac.jp/data/CBX69/)。

1-4. まとめ及び考察

1-4-1. 植物の成長・発達段階での各 mRNA の翻訳状態

未だ不明な点の多い植物の翻訳機構の解明に向けて、まずは植物 mRNA の翻訳状 態を知ることを目的とし、各成長・発達段階での翻訳状態を解析した。細胞全体と しての翻訳状態(リボソームローディング)の解析によって、2DAG 等の発芽初期 では mRNA 全体としては非常に活発な翻訳が行われていること、そして 21DAG 等 の成長した植物体や、21DAG の未展開葉、展開葉では mRNA の翻訳状態は全体的 には悪くなっていた(Fig. 1)。続いて、個々の mRNA 種レベルでの翻訳状態をゲノ ムワイドに解析し、蓄積 mRNA に対するポリソームを形成している mRNA の比率 を Polysome Ratio (PR) 値として数値化した。その結果、mRNA の翻訳状態は mRNA 種によって大きく異なっており、PR 値が高く活発な翻訳が行われていると考えられ る mRNA 種から、PR 値が低くあまり翻訳が行われていない mRNA 種まで幅広い分 布をとっていた(Fig. 4)。更に、成長段階、葉の発達段階に着目し、翻訳状態の違 い(変化)をΔPR 値として算出し解析した結果、成長段階では翻訳状態が強く抑制 される mRNA 種から変化しない mRNA 種まで正規様の分布をとり、大部分の mRNA 種は 21DAG で翻訳状態が抑制されていた(Fig. 5C)。この様な翻訳状態変化は、シ ロイヌナズナ培養細胞を短期的な環境ストレスにさらした場合でも観察されている

(Matsuura et al. 2010)。一方、葉の発達段階間の翻訳状態変化では、mRNAの翻訳 状態は、抑制されるものから活性化されるものまで正規様に分布していた (Fig. 5D)。 更に詳細に解析した結果、それらの抑制、または活性化された mRNA 種の違いは、 未展開葉と展開葉のどちらでより抑制されているかであり、活性化は未展開葉での 抑制からの回復である可能性が示唆された (Fig. 6)。これらの結果から、細胞内の 個々の mRNA の翻訳状態は決して一様ではなく、更にそれぞれの成長・発達段階で 変化しており、植物 mRNA は条件によって多様な翻訳状態変化が起きる複雑な機構 によって制御されているのではないだろうか。

1-4-2. 翻訳段階の生理的な役割

翻訳状態のゲノムワイド解析によって、成長・発達段階での各 mRNA 種の翻訳状態は非常に多様であることが示され(Fig. 4, Fig. 5)、かつ翻訳状態と蓄積 RNA 量の比較より、翻訳段階は転写段階とは独立した制御であることが示唆された(Fig. 10)。この様な翻訳制御の生理的な役割の一端を解明するため、mRNA がコードするタンパク質機能の集団(機能集団)別に翻訳状態及びその変化の傾向を解析した。その結果、特定の機能集団に属する mRNA の翻訳状態が全 mRNA と比較して有意に高い、または低いことを見出した(Table 4)。特に代謝関連の機能集団に属する mRNA 種は各成長・発達段階において翻訳状態が高い傾向が認められた。一次代謝は細胞機能を維持していくために必要不可欠なものであるため、その代謝に関わるタンパ

ク質をコードしている mRNA 種の翻訳状態が高い可能性が考えられた。一方、ユビ キチン (ユビキチン E3) に関連する機能集団に属する mRNA は、各成長・発達段 階において翻訳状態が低い傾向が認められた。ユビキチンは主にタンパク質の分解 に関わり、特に E3 は基質である特定のタンパク質を認識し分解に導く重要な役割 を持つ。しかし、タンパク質の合成には非常に多くのエネルギーを消費するため、 環境に適した厳密なエネルギーの管理が行われていると考えられている (Proud 2007, Branco-Price et al. 2008)。不必要なタンパク質を合成・分解するプロセスを繰 り返すことは多くのエネルギーを消費するため、通常の状態においては、ユビキチン (特に E3) に関連する機能集団の翻訳状態は低い可能性が考えられた。一方で、 ユビキチンはストレス応答等に重要な役割を持っていることが知られており (Sahi et al. 2006, Huang et al. 2008)、ストレス環境下において特定の転写因子を含めた不要 なタンパク質を積極的に分解することに関係している。実際に、熱や塩といった環 境ストレス下でのユビキチンに関連する機能集団の mRNA の翻訳は、他の多くの mRNA からの翻訳が抑制される中、維持(または若干の活性化)されることが報告 されている (Matsuura et al. 2010)。

また、成長段階、葉の発達段階での翻訳状態の違い(変化)に着目した場合、mRNA 全体の翻訳状態変化とは異なる挙動を示す機能集団が存在していた(Table 5)。シグ ナル伝達に関わる機能集団に属する mRNA は、成長段階で翻訳状態が変化しにくい 傾向であった。これは、環境ストレス等の状況の変化に迅速に応答し細胞内ホメオ スタシスを維持するために、シグナル伝達経路に関わるタンパク質は非常に重要で あり(Baena-González et al. 2007, Baena-González et al. 2008)、それらが常に翻訳され ているためだと考えられる。また、リボソームタンパク質に関連する mRNA の翻訳 状態の抑制が成長段階、葉の発達段階の両方で認められた。この様なリボソームタ ンパク質に関連する mRNA の翻訳抑制は、乾燥、低酸素、ショ糖飢餓、熱ストレス、 塩ストレス等の応答でも報告されている(Kawaguchi et al. 2004, Branco-Price et al. 2005, Nicolai et al. 2006, Matsuura et al. 2010)。加えて、リボソームタンパク質は 2DAG や未展開葉のような器官が急速に成長する時に必要とされ、発芽初期や成長因子が 添加された条件下では、非常に活発な翻訳が行われていることも報告されている

(Majeran et al. 2010, Beltrán-Peña et al. 1995)。これは上述したように、タンパク質 合成は最もエネルギーを消費するプロセスの一つであることから、タンパク質合成 が活発な成長・発達中(2DAG や未展開葉)に比べ、成長・発達後(21DAG や展開 葉)などの新規タンパク質合成があまり必要ではない状況下でのエネルギー管理に 合理的と思われる。また、葉の発達段階において、光合成や糖分解に関わる機能集 団の翻訳状態が抑制されることも同様に解釈できる。一方、ユビキチン E3 に関連 する mRNA の翻訳状態は、葉の発達において活性化する傾向があった(未展開葉で 低い翻訳状態であったものが展開葉で比較的高くなる)。タンパク質分解は器官サイ ズに影響を与えることが報告されており、葉の細胞内のセルサイクル関連タンパク 質の分解を通して核内倍加を制御し器官サイズの決定に関わっている(Sonoda et al. 2009, Nguyen et al. 2013)。ユビキチン E3 に関わるいくつかの mRNA 種の翻訳状態 が展開葉で比較的に高いということは、特定のタンパク質の分解を促進することで 葉の発達の制御に関わっているのかもしれない。この様に、特定の生理的機能に関 わる mRNA 種の翻訳状態は、細胞を適切に維持し、それぞれの状況に応答するため に、翻訳段階で制御されているのではないだろうか。

1-4-3. 植物 mRNA の翻訳状態の決定機構

これまでに植物の各成長・発達段階での翻訳状態は複雑に制御され、その制御は 生理的に重要であることを考察した。さらに植物 mRNA の翻訳機構への理解を深め るために、植物体の各成長・発達段階、環境ストレス下などの様々な条件における 個々の mRNA の翻訳状態を比較した。その結果、それら様々な条件間での全ての比 較から、翻訳状態はある程度相関しており、様々な条件での翻訳状態は全体的には ある程度類似していた(Table 6)。これは、様々な条件間で mRNA の翻訳状態を決 定する共通の翻訳機構が存在することを示唆していると考えられた。一方で、発芽 初期や培養細胞の通常条件などの PR 値分布の中央値が高い傾向にある条件(高 PR 条件)と、十分に成長した植物体や環境ストレス下など中央値が低い傾向にある条 件(低 PR 条件)の間では、相関が低くなる傾向が認められ、これら2条件グルー プ間で翻訳機構が異なる部分があることが予想された。また、同じ低 PR 条件グル ープであっても相互の相関係数には差があり(Table 6)、翻訳状態変化(ΔPR)と いう観点からも差が認められることから(Table 8)、各条件で特異的な翻訳機構が存 在することも示唆される。例えば、未展開葉も展開葉も共に低 PR 条件であるが、 ΔPR leaf が負の値を示す mRNA 種は、展開葉で翻訳状態が悪く、 ΔPR leaf が正の 値を示す mRNA 種は未展開葉で翻訳状態が低い。それらの mRNA 種は、特定の条 件でのみそれぞれ特異的に翻訳が抑制されていることから、そこには複数の機構が 存在しているのではないだろうか。

この様な共通する翻訳機構と特異的な翻訳機構という2つの機構によって、植物 mRNAの翻訳状態は決定されていると考察できる。翻訳状態の決定に関して、その 分子機構はほとんど分かっていないが、mRNAの5'非翻訳領域(5'UTR)が重要で あることが知られている(Roy et al. 2013, Kawaguchi et al. 2005, Branco-Price et al. 2005, Matsuura et al. 2013)。5'UTR上には共通する翻訳機構に関わる配列的特徴と、 おそらく複数種類の特異的な翻訳機構に関わるそれぞれの配列的特徴が存在し、各 条件での翻訳状態の決定に関わっている可能性が考えられた。

42

第二章

翻訳状態の決定に関わる 5'UTR の配列的特徴の解明

2-1. 序論

第一章では、植物の成長・発達段階での各 mRNA の翻訳状態をゲノムワイドに解 析し、翻訳状態は mRNA 種によって大きく違うことを示すとともに、各段階に応答 した翻訳状態の決定が行われ、生理的に重要な意味を持っている可能性を示した。 加えて、翻訳状態を各条件で比較することで、各 mRNA の翻訳状態を決定している 機構を考察し、様々な条件における共通の翻訳機構と、特定の条件に応答した特異 的な翻訳機構の存在を示唆した。しかし、このような翻訳機構の分子的な知見は、 ほぼないのが現状である。そこで第二章では、各 mRNA の翻訳状態を決定している 分子機構に着目した解析を行うことで、植物 mRNA の翻訳機構への理解を深めるこ とを目的とした。

mRNA の翻訳効率を規定する非常に重要な要素として mRNA の 5'非翻訳領域 (5'UTR)が挙げられる。異なる 5'UTR 配列を連結したレポーター遺伝子の発現実験 では、5'UTR の違いに起因する翻訳効率の差によってレポータークンパク質の発現 量が大きく異なることが報告されている(Satoh et al. 2004, Matsui et al. 2012)。更に 翻訳状態が低い mRNA 由来の 5'UTR を連結した場合の翻訳効率は低く、翻訳状態 が高い mRNA 由来の 5'UTR を連結した場合の翻訳効率は高いことも報告されてお り(Ueda et al 2014)、mRNA の翻訳効率の決定において 5'UTR は中心的な役割を担 っていると考えられている。加えて、近年の次世代シークエンサー技術の進歩によ って、これまでは難しかった mRNA の末端の配列をゲノムワイドに決定することが 可能になってきており、個々の mRNA の正確な 5'UTR 配列が明らかになることに よって、5'UTR 配列と mRNA の翻訳状態との関連性がより詳細に解析されてきてい る。例えば、mRNA の転写開始点は必ずしも一つではなく、複数の転写開始点に由 来する 5'UTR バリアントを持つ mRNA 種が非常に多いことも報告されており (Yamamoto et al. 2009, Morton et al. 2014)、酵母による研究では、そのような 5'UTR

バリアント間で、それぞれの mRNA の翻訳効率に大きな違いが生じていることも明 らかにされ(Rojas-Duran and Gilbert 2012, Arribere and Gilbert 2013)、5'UTR 配列の 重要性が改めて示されるとともに、翻訳機構の解明において、その条件で存在する 5'UTR 配列を正確に決定することの重要性が認識されている。一方で、5'UTR のど のような配列的特徴が翻訳効率(状態)に影響を与えているのかの詳細については、 植物体においてゲノムワイドに翻訳状態を解析した事例が十分ではなく、データベ ース等での 5'UTR の配列情報には限界があるため、未だ不明な点が多いのが現状で ある。しかしそうした現状の中でも、いくつかの配列的特徴が翻訳状態に影響を与

43

えていることが報告されている。例えば、upstream ORF(uORF)は、本来の ORF からの翻訳を妨げることが知られ、一部の遺伝子では特定の条件でのみ uORF が働 いていることが報告されている(Wiese et al. 2004, Pajerowska-Mukhtar et al. 2012)。 また、熱や塩、乾燥ストレス時の翻訳状態は 5'UTR 内の GC 比率と負に相関するこ とが報告されている(Yángüez et al. 2013, Kawaguchi et al. 2005)。加えて、熱ストレ ス時の翻訳状態の決定には 5'UTR の 5'末端に存在している重要領域の塩基比率が 関係していることも明らかとなっている(Matsuura et al. 2013)。また、5'UTR 内で 強固な二次構造を形成するほど(自由エネルギーが負になるほど)翻訳状態が悪く なる可能性が示唆されている(Kawaguchi et al. 2005)。しかし、5'UTR 上の二次構 造の形成度合いと翻訳状態に相関が認められない例も存在し(Matsuura et al. 2013)、 明確な結論には至っていない。同様に 5'UTR の長さ (Kawaguchi et al. 2005) や rRNA との相補な配列の長さ(Vanderhaeghen et al. 2006, Akbergenov et al. 2004) も影響を 与える可能性が示されているが、5'UTR の長さがあまり影響しない事例や(Liu et al. 2012)、rRNA と相補な長さは動物では影響の正負が異なっていたり(Tranque et al. 1998) と不明確である。他にも、5'UTR 上の特定の塩基パターン(Motif) との関連 性もいくつか報告されている。例えば Tract of oligo pyrimidine (TOP) 配列とも呼ば れる CU リッチな Motif を 5'UTR に持つ mRNA の翻訳は、特定の発達段階や成長因 子等の存在下では活性化され、環境ストレス条件下では抑制される可能性が示唆さ れている(Tzeng et al. 2009, Jiménez-López et al. 2011, Miloslavski et al. 2014)。この様 に翻訳状態に関わる配列的特徴についてはいくつか報告されているが、それらの解 析は翻訳状態と単一の特徴との間の相関解析に留まり、GC 比率や二次構造の形成 度合いといった類似した特徴が別視点から報告されているのが現状である。そのた め、真に重要な特徴や各特徴の影響の大小、そしてそれらの特徴が様々な条件下で 共通して翻訳状態に影響するのか、特定の条件下での特異的な翻訳状態に影響して いるのみなのかといった総合的な知見はない。植物において、複数の条件下での mRNAの翻訳状態を解析するとともに、これらの条件下での個々の mRNA の正確な 5'UTR をゲノムワイドに決定し、それら情報に基づいて 5'UTR 内の様々な特徴を複 合的に捉えて解析することができれば、植物翻訳機構の分子機構の解明が大きく進 歩すると考えられる。

本章では、第一章でのゲノムワイド解析の結果を踏まえ、各 mRNA の翻訳状態の 決定に関わる特徴について、5' UTR の配列的観点から解析を行った。まずはゲノム ワイドな転写開始点の同定と各転写開始点レベルでの mRNA 蓄積量が解析可能な CAGE を、発芽2日目、発芽21日目の未展開葉・展開葉、培養細胞における通常条 件・熱ストレス下・塩ストレス下について行い、それぞれの条件について個々の mRNA の正確な5' UTR の配列を決定した。次に翻訳状態(PR 値)と5' UTR 配列の2 つのゲノムワイドデータを用いた Partial Least Squares Regression (PLS)モデルの構築 を行い、翻訳状態の決定機構に関わる具体的な5' UTR 上の配列的特徴の解明を行 った。目的変数には、未展開葉の PR 値を、説明変数には AUGC 含量、特定の配列 パターン(Motif)、uORF、mRNA の二次構造、rRNA との相補配列長などに関連する 様々な特徴を用いた。このような複数の配列的特徴を用いた、in silico による複合的 な解析により、これまで不明瞭だった真に重要な配列的特徴を推察できるモデル式 を構築した。構築したモデル式の信頼性については、塩基置換を導入した 5'UTR を 用いた一過性発現実験により確認した。加えて、発芽2日目、展開葉、熱ストレス 時の培養細胞での翻訳状態についてもモデル式の構築を行い、それぞれの条件での 翻訳状態の決定に真に重要な配列的特徴を明らかにし、各モデル式で示された重要 な配列的特徴を比較することで、様々な条件で共通した翻訳機構と特定の条件に応 答した特異的な翻訳機構について考察した。

2-2-1. 使用植物体および培養細胞

2-2-2-1. 使用植物体の条件

第一章の条件と同様である。

2-2-2-1. 使用培養細胞条件

シロイヌナズナ培養細胞 (*Arabidopsis thaliana* T87, Axelos et al. 1992) は理化学 研究所ジーンバンク室植物開発銀行より分与していただいたものを使用した。培 養は改変 LS 培地 (Nagata, 1992) を使用し、22℃、24 時間明期、振とう速度 120 rpm の条件で行った。1 週間ごとに定常期に達した細胞 4 mL を新しい培地 95 mL に 移植し継代培養を行った。

2-2-2. Cap Analysis of Gene Expression (CAGE)

2-2-2-1. 植物体のサンプリング

発芽2日目(2 day after germination: 2DAG)の植物体と、21DAGの植物より未 展開葉から3枚を未展開葉(young leaves)として、子葉を除いた古い葉から3枚 を展開葉(mature leaves)として切り取り、液体窒素中で凍結させ、-80℃にて保 存した。21DAGの植物体については根を取り除いている。

2-2-2. 熱および塩ストレス処理

ストレス処理には、植え継ぎ後3日目の培養細胞を用いた。熱ストレス処理は 37℃で10minの振とう培養を行った。塩ストレス処理は終濃度200mMとなるよ うにNaClを細胞培養液に加え、22℃で10minの振とう培養を行った。各種スト レス処理後、吸引濾過により細胞を回収した。なお、塩ストレス処理した細胞に 関しては、吸引濾過後に新たな改変LS培地100mLで細胞を洗浄し、再度の吸引 濾過を行った。回収した細胞は、液体窒素中で凍結させ、-80℃にて保存した。ま た、コントロール条件として未処理の培養細胞も同様に回収し保存した。

2-2-2-2. CAGE ライブラリーの作製

2DAG、未展開葉 (young_leaves)、展開葉 (mature_leaves)、培養 3 日目コント ロール (Control)、熱ストレス下 (37℃)、塩ストレス下 (200_mM)の細胞から、 Trizol reagent (Invitrogen, USA)を用いてトータル RNA を抽出し、CAGE ライブ ラリーの作製に供した。CAGE ライブラリーの作製は、Control、37℃、200_mM に関しては Takahashi ら (Takahashi et al. 2012)の CAGE ライブラリーの作製手法 に従った。2DAG、young_leaves、mature_leaves に関しては、それらの手法を更に 発展させた Murata ら (Murata et al. 2014)の nAnT-iCAGE ライブラリーの作製手 法に従った。概要を述べると、N15 ランダムプライマーを用いて相補鎖 cDNA を 合成し、キャップ・トラッピング法により cDNA の 5'末端を選別した。ついで、 RNaseI を用いて RNA 鎖を除去して得られた一本鎖 cDNA の 5'末端にリンカーを 結合した。Takahashi ら(Takahashi et al. 2012)の手法では、このリンカーにシー クエンスプライマー認識部位、アダプター配列、クラス IIs 制限酵素(EcoP15I) の認識部位があり、EcoP15I によって 5'末端の 26 塩基を切り出した。その後、3' 側にもリンカーを結合させ、CAGE ライブラリーとした。Murata ら(Murata et al. 2014)の手法では、5'末端に結合させたリンカーにはクラス IIs 制限酵素の認識部 位はなく、切り出しは行わずにそのまま 3'側にもリンカーを結合させ、 nAnT-iCAGE ライブラリーとした。

2-2-2-3. シークエンス解析

Control、37℃、200_mM に関しては、illumina (R) HiSeq 2000 を、2DAG、 young_leaves、mature_leaves に関しては、illumina (R) HiSeq 2500 を用いてシーク エンス解析を行った。シークエンス解析は、5'末端に結合させたリンカーに存在 するシークエンスプライマー認識部位を用いたシングルリードにて、付属のプロ トコールに従って行った。

2-2-2-4. マッピング

得られた raw データのそれぞれのタグから CAGE リンカー配列を除去し、長さ を一定にトリミングした。その後、配列中に正確に読まれていないことを示す N が存在するタグを除去し、TAIR10 (http://www.arabidopsis.org/index.jsp)の情報を 基にマッピングを行った。タグがマッピングされたゲノム上の位置を取得し、そ れぞれの位置におけるタグ数をカウントした。なお、複数位置にマッピングされ MapQuality が低いタグは除去した。また、独立して行った 2 つのサンプル間で、 ともにゲノム上にタグが存在する位置についてのみタグ数をカウントし、Tag per million (TPM) 値に変換して使用した。

2-2-2-5. データ処理

各 Tag は、TAIR10 に登録されている染色体コードのタンパク質をコードする各 遺伝子について、ストランド方向が同じで TAIR10 に登録された TSS の上流 500 nt から CDS の AUG までの範囲に存在しているものを、その遺伝子の TSS を示すも のとしてアノテーションした。なお、TAIR10 では、いくつかの遺伝子についてス プライスバリアントが登録されているが、CAGE タグではバリアント間を区別す ることができない。そのため、スプライスバリアントが存在する場合は、 TAIR10_representative_gene_models(http://www.arabidopsis.org/index.jsp)の情報か ら代表的なスプライスバリアントのみを用いている。遺伝子が存在しない領域ま たは CDS 領域にマッピングされ、遺伝子のアノテーションをつけることができな かったタグは除去した。最終的に得られたタグが存在する各ゲノム上の位置は、 その遺伝子の転写開始点(TSS)を示し、その位置における TPM 値をその TSS 由来の mRNA 量を示す TPM_TSS 値とした。そして各遺伝子の全 TSS における TPM 値を合計することで、遺伝子レベルでの mRNA 量(TPM_Sum)を算出した。 続いて、各 TSS 由来の mRNA の分布率(TSS 分布率)を以下の式で算出した。

Distribution_Ration_of_TSS_{ij} $(DR_{ij}) = \frac{TPM_TSS_{ij}}{TPM Sum_i} \times 100$

遺伝子 i における j 番目の TSS の TSS 分布率(DR_{ij})を示す。ここで、n は TSS が存在するゲノム上の位置の数、TPM_TSS_{ij} は遺伝子 i の j 番目の TPM_TSS 値、TPM_Sum_i は遺伝子 i の TPM_Sum 値である。

また、各遺伝子における最大のTSS分布率、つまり最も主要なTSS由来のmRNA の存在比率(Max Distribution Ratio of TSSs: MDR)をTSSの分散度合いの指標値 とした。加えて、各条件間における各遺伝子のTSS分布の変化を、変化の指標値 であるΔTSS値として以下の式から算出した。

$$\Delta \text{TSS}_{i} = \sum_{j}^{n} \frac{\left| DR_A_{ij} - DR_B_{ij} \right|}{200}$$

条件 A と条件 B 間における遺伝子 i の Δ TSS を示す。ここで、n は TSS が存 在するゲノム上の位置の数、DR_A_{ij} は条件 A の遺伝子 i の j 番目の TSS におけ る分布率(%)、DR_B_i は条件 B の遺伝子 i の j 番目の TSS における分布率(%) である。CAGE タグは、その 5'末端に Cap 構造に由来する G が付加されている。 そのため 5'UTR 配列を決定する場合は、タグの 5'末端の 1 nt 下流からの配列を 用いている。また、ある TSS から転写される mRNA の 5'UTR は、TAIR10 の情 報を基に CDS の AUG までのゲノム配列を取得し、イントロンが存在する場合 は、そのイントロンの配列を除去することで決定した。これら全てのデータ処 理は、自らで独自に構築したプログラムを用いて行った。

2-2-3. Partial Least Squares Regression (PLS)モデルの構築

2-2-3-1. 使用したデータセット

予備的な説明変数の選抜には、ポリソーム/マイクロアレイ解析と CAGE の両方 のデータが存在し、TSS が 66.7%以上1点に収束している遺伝子(予備的な説明 変数の選抜用データセット: 2DAG、未展開葉、展開葉、37℃それぞれ 857、555、 643、808 個)について、それぞれの解析法に合わせて更に選抜して使用した。解 析の主となる PLS モデルの構築には、分布率が 5%以上のある程度は転写されて いる TSS 由来の各 5'UTR バリアントの mRNA が、各遺伝子の mRNA の 80%以上 を構成するものについて、それらの Log₁₀ PR 値の分布が 0.005 区切りに最大でも 1 つの遺伝子しか含まれないように選抜した(PLS モデルの構築と検証用データ セット: 2DAG、未展開葉、展開葉、37℃それぞれ 877、1023、1026、1067 遺伝子)。 その後、さらにデータセットを 2 つに分け(それぞれ Log₁₀ PR 値が 0.01 区切り に 1 つ以下になるように)、PLS モデルの構築用のデータセット(PLS モデルの構 築用データセット: 2DAG、未展開葉、展開葉、37℃それぞれ 439、512、508、534 遺伝子)と検証用のデータセット(PLS モデルの検証用データセット: 2DAG、未 展開葉、展開葉、37℃それぞれ 438、511、508、533 遺伝子)とした。

2-2-3-2. 予備的な説明変数の選抜(Region_5'、Region_AUG)

2-2-3-2-1.5'UTR 内の特定の領域における塩基含量の評価

Region_5'および Region_AUG の選抜には、予備的な説明変数の選抜用データ セットから、5'UTR 長が 50 nt 以上の遺伝子において、Log₁₀ PR 値(y)を 0.01 区 切りにした中に、遺伝子が最大でも1個しか含まれないようにN個の遺伝子を 選抜して使用した。それらN個の遺伝子における塩基位置kからk+L-1の範囲 (本研究では k+L-1 ≦ 50 とする) の長さ L の配列と Log₁₀ PR 値(y)の関係を 数理モデルにより表現し、この数理モデルから y 値と最も関連のある塩基配列 の特徴を抽出した。まず初めに、i番目のサンプルについて配列の k番目から 長さLの範囲を抜き出した配列を $Seq_i = s_{ik}s_{ik+1}\cdots s_{ik+L-1}$ とした。ここで、i番目の 遺伝子における塩基配列上の位置を Region_5'の選抜時は 5'端より 3'方向に、 Region AUG の選抜時は、AUG より 5'方向に、s₁, s₂, …, s_k, …, s_M とした。ま た、i 番目の遺伝子の Log₁₀ PR 値を y_i とした (Table 10)。そして、N 個の遺伝子 における塩基位置 k から k+L-1 の範囲の長さ L の配列において、少なくとも 1 回出現する t 個の塩基からなる配列を $R_1(t)$, $R_2(t)$, …, $R_v(t)$, $R_v(t)$ とした。本研究 では $t = 1 \sim 2$ とした。また、それぞれの配列の出現頻度を $f_i^{(k, k+L-1)}(R_1(t)), \dots, f_i^{(k, k+L-1)}(R_1(t))$ $^{k+L-1)}(R_{v}(t)), \dots, f_{i}^{(k, k+L-1)}(R_{v}(t))$ とした。ここで、v 番目の配列頻度を変量 $f_{i}^{(k, k+L-1)}(R_{v}(t))$ ^{*k+L-1)}(<i>R_v(t*))と表した (Table 11)。後述する PLS には、これらの出現頻度を用いて</sup> いる。

	<i>s</i> ₁	s_2	•••	S_k	•••	S_{k+L-1}	•••	S_M	y y
1	<i>s</i> ₁₁	<i>s</i> ₁₂	•••	S_{1k}	•••	$S_{1(k+L-1)}$	•••	S_{1M}	<i>y</i> ₁
2	<i>s</i> ₂₁	<i>s</i> ₂₂	•••	S_{2k}	•••	$S_{2(k+L-1)}$	•••	S_{2M}	<i>y</i> ₂
:		•••	•••	•••	•••	•••	•••	•••	
i	S_{i1}	S_{i2}	•••	S_{ik}	•••	$S_{i(k+L-1)}$	•••	S_{iM}	y _i
÷		•••	•••	•••	•••	•••	•••	•••	
N	S_{N1}	s_{N2}	•••	S_{Nk}	•••	$S_{N(k+L-1)}$	•••	S_{NM}	y_N

Table 10. 配列情報と Log₁₀ PR 値の定義

	$f^{(k,k+L-1)}(R_1(t))$	$f^{(k,k+L-1)}(R_2(t))$	•••	$f^{(k,k+L-1)}(R_{v}(t))$	•••	$f^{(k,k+L-1)}(R_{V}(t))$
1	$f_1^{(k,k+L-1)}(R_1(t))$	$f_1^{(k,k+L-1)}(R_2(t))$	•••	$f_1^{(k,k+L-1)}(R_v(t))$	•••	$f_1^{(k,k+L-1)}(R_V(t))$
2	$f_2^{(k,k+L-1)}(R_1(t))$	$f_2^{(k,k+L-1)}(R_2(t))$	•••	$f_2^{(k,k+L-1)}(R_v(t))$	•••	$f_2^{(k,k+L-1)}(R_V(t))$
÷			•••		•••	
i	$f_i^{(k,k+L-1)}(R_1(t))$	$f_i^{(k,k+L-1)}(R_2(t))$	•••	$f_i^{(k,k+L-1)}(R_v(t))$	•••	$f_i^{(k,k+L-1)}(R_V(t))$
÷			•••		•••	•••
Ν	$f_N^{(k,k+L-1)}(R_1(t))$	$f_N^{(k,k+L-1)}(\boldsymbol{R}_2(t))$	•••	$f_N^{(k,k+L-1)}(R_v(t))$	•••	$f_N^{(k,k+L-1)}(R_V(t))$

Table 11. N 個のサンプルにおける区間[k,k+L-1]の長さLの配列におけるt 個の 連続塩基($R_1(t), R_2(t), ..., R_V(t)$)の頻度

2-2-3-2-2. PLS による回帰係数(重み)と Q²値の算出

説明変数 X (N×V 行列) として 2-2-3-2-1.で評価した区間[k,k+L-1]の長さLの 配列における V 個の配列頻度 $f^{(k, k+L-1)}(R_{v}(t))$, (v = 1, 2…, V)と、目的変数 (N×1) として Log₁₀ PR 値(y)の線形下位形式を以下の式により表現した。

$$y = a_{R_{1}(t)}^{(k,k+L-1)} f^{(k,k+L-1)}(R_{1}(t)) + a_{R_{2}(t)}^{(k,k+L-1)} f^{(k,k+L-1)}(R_{2}(t)) + \dots + a_{R_{v}(t)}^{(k,k+L-1)} f^{(k,k+L-1)}(R_{v}(t)) + \dots + a_{R_{v}(t)}^{(k,k+L-1)} f^{(k,k+L-1)}(R_{v}(t)) + a_{0(t)}^{(k,k+L-1)}$$

ここで、 $a_{R_{v}(t)}^{(k,k+L-1)}$ は、v 番目の塩基頻度における回帰係数である。続いて、

Partial Least Squares (PLS)法により回帰モデル(PLS モデル)を構築し、この回帰 係数を求めた。PLS 法は、説明変数 X (N×V 行列) を目的変数 y (N×1) へ線 形的に関連付ける方法である。PLS は重回帰分析にみられる変数間の共線性や、 応答変数よりも過剰に多い説明変数が存在する時に起きる過度の当てはめの問 題を解決できるため、多変量解析の分野では広く使われている方法である。

PLS は以下の式で表した。

$$\mathbf{X} = \sum_{k=1}^{D} \mathbf{t}_{k} \mathbf{p}_{k}^{\mathrm{T}} + \mathbf{E}$$
$$\mathbf{y} = \sum_{k=1}^{D} \mathbf{t}_{k} q_{k} + \mathbf{e}$$

ここで、 p_k は X における k 番目の成分の重みベクトルであり、 q_k は y における k 番目の成分の係数である。また D は PLS の成分数、 t_k は k 番目の潜在変数、 E は X の残差であり、e は y の残差である。PLS の成分数である D は、成分数 を増加させるたびに Leave-one-out cross-validation により Q^2 値を逐次計算し、 Q^2 値が最大になるときの成分数として決定される。 Q^2 はモデルの予測精度を示 す尺度であり、以下の式で表した。

$$Q^{2} = 1 - \frac{\sum (y_{obs} - y_{pred})^{2}}{\sum y_{obs}^{2}}$$

ここで、yobs は実験的に得られた実測値であり、ypred は構築したモデルによる予測値である。また PLS は以下の式にまとめることができる。

$\mathbf{y} = \mathbf{X}\mathbf{a} + \mathbf{f}$

このとき、a は回帰係数ベクトルであり、その要素は a_j (j = 1, 2, ..., N)で表される。またf は y の残差である。

2-2-3-2-3. 重要領域(Region_5', Region_AUG)の選抜

Region_5'の選抜のため、5'UTR の 5'末端の塩基位置 k から k+L-1 の範囲の長 さ L の配列において 2-2-3-2-2.で示した PLS モデルを構築し、その Q² 値を $Q_{(k,k+L-1)}^2$ とした。それら $Q_{(k,k+L-1)}^2$ のランキングを作成し、 $Q_{(k,k+L-1)}^2$ が上位 1% に位置した Z 個の重要領域[k,k+L-1]を選抜し、新たに重要領域 Region_5'z (z = 1, 2…, Z)とした。なお、上位 1%に位置する領域でも、より上位の領域と 50%以 上が重複している場合は除外した。Region_AUG の選抜は、AUG の塩基位置 k から 5'方向へ k+L-1 の範囲の長さ L の配列において Region_5'と同様に行い、Z' 個の重要領域[k,k+L-1]を選抜し、新たに重要領域 Region_AUG_z (z' = 1, 2…, Z') とした。ある配列 i の Region_5'z における評価値は、塩基の出現頻度 $f_i^{Region_5'z}(R_1(t)), …, f_i^{Region_AUG_z}(R_V(t))$ 、Region_AUG_z における評価値は、塩基 の出現頻度 $f_i^{Region_AUG_z}(R_1(t)), …, f_i^{Region_AUG_z}(R_V(t))$ となる。

2-2-3-3. 予備的な説明変数の選抜(Motif)

特定の配列的パターン(Motif)の選抜には、予備的な説明変数の選抜用データセットから、5'UTR 長が 50 nt 以上の遺伝子について、Log₁₀ PR 値(y)の分布の上位 10%に存在する集団(上位集団)と下位 10%に存在する集団(下位集団)をさら に選抜して行った。解析は、MEME SUITE (http://meme-suite.org/index.html, Bailey et al. 2015)で提供されている Multiple Expectation-maximization for Motif Elicitation (MEME)を用いた。また、豊富に出現する Motif の最尤推定をする際のバックグラウンドモデルには、予備的な説明変数の選抜用データセットの全 5'UTR 配列の AUGC 含量から算出した 0~1 order Markov モデルを使用した。解析は、" Discriminative mode"を用い、上位集団に豊富に含まれている Motif を選抜する際

は下位集団を対照に、下位集団では上位集団を対照にした。相補鎖は解析対象から外し、*E*-value < 0.5 かつ、解析対象とした遺伝子集団の 25%以上の 5'UTR に出現する Z"個の Motif_{z"}(z" = 1, 2…, Z")を選抜した。後の解析では、対象となる遺伝子の Motif_{z"}を、MEME SUITE にて提供されている Find Individual Motif Occurrences (FIMO)を用いて、評価して使用している。具体的には、FIMO により、5'UTR 配列から *p*-value < 0.1 でその Motif_{z"}に類似している配列を探索し、各遺伝子 i で最も *p*-value が低い配列について、Motif_{z"}との類似度を $f_i^{Motif_{z''}}$ = -Log₁₀ *p* として評価した。評価は、各遺伝子の 5'UTR 全体、Cap または AUG から 25 nt, 50 nt, 75 nt, 100 nt の 9 個の領域(R'_{v'}, v' = 1, 2…, 9)について行ない、ある配列 i の Motif_{z"}の各領域 R'_{v'}における評価値は、類似度 $f_i^{Motif_{z''}}(R'_{y'}), …, f_i^{Motif_{z''}}(R'_9)となる。$

2-2-3-4. 予備的な説明変数の選抜(Other)

2-2-3-4-1. 想定したその他の特徴(Other)の評価

Other の選抜には、予備的な説明変数の選抜用データセットから、Log₁₀ PR 値(y)を 0.01 区切りにした中に、遺伝子が最大でも 1 個しか含まれないように N 個の遺伝子を選抜して使用した。それら N 個の遺伝子における(1) 5'UTR 全体 の塩基含量、(2) uORF、(3)二次構造、(4) rRNA との相補長、(5) mRNA 長、(6) 転写量に関わる様々な特徴を評価した。以下で各項目を具体的に述べる。 (1) 5'UTR 全体の塩基含量は、遺伝子 i の 5'UTR 全体の配列における 1 塩基パ

ターン (A, U, G, C) および 2 塩基パターン (AA, AU, …, CC) の合計 20 種の 塩基パターンの出現頻度を $f_{i}^{TempOther_{1}}$, …, $f_{i}^{TempOther_{20}}$ として評価した。

(2) uORF は、AUG と過去に非 AUG 開始コドンとして報告されている UUG, CUG, ACG, AUU, GUG, AUA, AUC, AAG, AGG について (Brar et al. 2012, Ohta et al. 2010, Depeiges et al. 2006)、遺伝子 i の 5'UTR 上に存在する uAUG, uUUG, …, uAGG と、それと同一フレームで終止コドンが存在している uORF (領域重複 あり), uORF_uug, …, uORF_agg、領域が重複していない uORF'、uORF_uug', …, uORF_agg'の合計 30 個の配列的特徴の頻度を $f'_i^{TempOther_{21}}$, …, $f'_i^{TempOther_{50}}$ と して評価した。

(3) 二 次 構 造 は 、 ViennaRNA Package (Lorenz et al. 2011, http://www.tbi.univie.ac.at/RNA/)の RNAfold を用いて、遺伝子 i の 5'UTR 全体、 CDS 全体、3'UTR 全体、mRNA 全体と Fig. 11 で示す 49 領域の合計 53 領域の 二次構造の形成度合い (- Δ G) を、 $f_i^{TempOther_{51}}$, …, $f_i^{(TempOther_{103})}$ として評価 した。- Δ G の計算には Turner ら (Turner et al. 2004)のパラメータを使用した。 (4) rRNA との相補長は、ViennaRNA Package の RNAduplex を用いて、遺伝子 i の 5'UTR 全体、CDS 全体、3'UTR 全体、mRNA 全体と Fig. 11 で示す 49 領域 の合計 53 領域の、5'UTR が 18S rRNA と相補する最大配列長 (nt) を、 $f'_{i}^{TempOther_{104}}$, …, $f'_{i}^{TempOther_{156}}$ として、25S rRNA と相補する最大配列長 (nt) を、 $f'_{i}^{TempOther_{157}}$, …, $f'_{i}^{TempOther_{209}}$ として評価した。計算時のパラメータには Turner ら (Turner et al. 2004) のものを、18S rRNA と 25S rRNA の配列は TAIR10 のものを使用した。

(5) mRNA 長は、遺伝子 i の 5'UTR、CDS、3'UTR、mRNA 長とその対数値(Log₁₀)、 合計 8 個の配列的特徴を $f'_i^{TempOther_{210}}$, …, $f'_i^{TempOther_{217}}$ として評価した。 (6)転写量に関わる特徴は、遺伝子 i の TPM_Sum 値とその対数値(Log₁₀)、Max Distribution Ratio of TSS (MDR)を $f'_i^{TempOther_{218}}$, …, $f'_i^{TempOther_{220}}$ として評価した。

Figure 11. 二次構造および rRNA との相補長を計算した mRNA 上の領域

(A) mRNAの5'末端からの領域。0 ntの位置はCapの位置を示す。黒で
 示す領域はmRNA 配列を対象に、赤で示す領域は5'UTR 配列を対象に解析
 している。(B) mRNAのAUGからの領域。0 ntの位置はAUGを示す

2-2-3-4-2. Other を用いた PLS モデルの構築

評価した TempOther_v, (v = 1, 2…, 220)を以下の式で標準化し、説明変数 X (N×220 行列) とした。

$$f'_{i}^{\prime \nu TempOther_{\nu}} = \frac{\left(f'_{i}^{TempOther_{\nu}} - \overline{f'^{TempOther_{\nu}}}\right)}{\sigma}$$

この時、 $\overline{f'^{TempOther_v}}$ と σ はデータセット中の全遺伝子の $f'_i^{TempOther_v}$ の平均値 と標準偏差を示す。続いて、 Log_{10} PR 値(y)を目的変数 (N×1) に用いて 2-2-3-2-2. と同様に PLS モデルを構築し Q² 値を算出した。220 個の標準化した評価値 $f''_i^{TempOther_v}$ (v = 1, 2…, 220)と目的変数(y)の線形下位形式を以下の式により表 現した。

$$y = a_1 f_1^{\prime\prime} \frac{TempOther}{1} + a_2 f_2^{\prime\prime} \frac{TempOther}{2} + \dots + a_v f_v^{\prime\prime} \frac{TempOther}{2} + \dots + a_v f_{220}^{\prime\prime} \frac{TempOther}{2} + a_0$$

2-2-3-4-3. Q²値による Other の選抜

2-2-3-4-2.にて構築した PLS モデルの Q^2 値を $Q^2_{otherTemp_0}$ とし、構築時の説明 変数行列から各特徴 v の評価値 $f''_{i}^{TempOther_v}$, (v = 1, 2…, 220)を1 つずつ除いた PLS モデルの $Q_{otherTemp_v}^2$ を計算し、 $\Delta Q_{otherTemp_v}^2$ を以下の式で算出した(Table 12)。この $\Delta Q^2_{OtherTemp_v}$ が正を示す特徴 TempOtherv は、PLS モデルの精度に負の 影響を与えているため、PLS モデルから削除した。削除後の全特徴 V 個を用い て、また PLS モデルを作成し、この PLS モデルをPLSModelothero、その Q²値 $eQ_{other_0}^2$ とした。この際に、 $Q_{other_0}^2$ が $Q_{otherTemp_0}^2$ よりも低くなる場合は、最も $\Delta Q^2_{otherTemp_v}$ が大きい特徴 v のみを削除し、その PLS モデルをPLSModel_{othero}、 Q^2 値を $Q^2_{other_0}$ とした。この PLS モデルPLSModel_{other_0}からも特徴 TempOther_v のΔQ²_{otherTemp}を計算し、PLS モデルの精度に負の影響を与える特徴の削除を繰 り返した。この特徴の削除を、 Q^2_{otherc} が5回連続で低下するまでC回繰り返し、 最も高い $Q_{other_c}^2$ を示す*PLSModel*_{other_c}に含まれる Z^{'''}個の特徴を Other_{z^{'''}} (z^{'''} = 1, 2…, Z^{***})として選抜した。ある配列 i の Other_z^{***}の評価値は、特徴量 $f_i^{other_z''}$ と なる。解析はオープンソースされている ActiveSeqAnalyzerTM (http://kanaya.naist.jp/ActiveSeqAnalyzerTN/intro.html)に独自のプログラムを追加 して使用した。

 $\Delta Q_{OtherTemp_{v}}^{2} = Q_{OtherTemp_{0}}^{2} - Q_{OtherTemp_{v}}^{2}$

PLSModel	$TempOther_1$	 $TempOther_v$	•••	$TempOther_V$	Q^2
$PLSModel_{other_0}$	$f''_{i}^{TempOther_{1}}$	 ${f''}_{i}^{TempOther_{v}}$	•••	$f''_{i}^{TempOther_{V}}$	$Q^2_{OtherTemp_0}$
$PLSModel_{other_1}$		 $f''_{i}^{TempOther_{v}}$	•••	$f''_{i}^{TempOther_{V}}$	$Q^2_{OtherTemp_1}$
		 	•••		
$PLSModel_{other_v}$	$f''_{i}^{TempOther_{1}}$	 	•••	$f''_{i}^{TempOther_{V}}$	$Q^2_{OtherTemp_v}$
		 	•••		
<i>PLSModel</i> _{otherv}	$f''^{TempOther_1}_i$	 $f''^{TempOther_v}_i$			$Q^2_{OtherTemp_V}$

Table 12. PLS モデルの精度に負の影響を与える説明変数の削除

2-2-3-5. 解析の主となる PLS モデルの構築と説明変数の選抜

2-2-3-5-1. 選抜した予備的な説明変数を用いた PLS モデルの構築

PLS モデルの構築と検証用データセットの N'個の遺伝子の各 U 個の 5'UTR バリアント mRNA における、2-2-3-2-3.にて選抜した Z 個の Region_5'_z (z = 1, 2 …, Z)、Z'個の Region_AUG_{z'} (z' = 1, 2…, Z')の塩基の出現頻度、2-2-3-3.にて選 抜した Z''個の Motif_{z''}(z'' = 1, 2…, Z'')の領域(R'_{v'}, v' = 1, 2…, 9)の類似度、 2-2-3-4-3.にて選抜した Z'''個の Other_{z'''} (z''' = 1, 2…, Z''')について、合計 V (Z + Z' +Z'' +Z''')個を f_{iu}^{v} (v = 1, 2…, V) として評価した。U 個の 5'UTR バリアント mRNA の評価値を遺伝子単位で合成し、遺伝子 i の評価値 f_{i}^{v} (v = 1, 2…, V)を算 出後、標準化し説明変数 x_{i}^{v} (v = 1, 2…, V)とした。計算式を以下に示す。

$$f_i^{\nu} = \sum_{u=1}^{U} (f_{iu}^{\nu} \times \frac{DR_u}{\sum_{u=1}^{U} DR_u})$$
$$x_i^{\nu} = \frac{(f_i^{\nu} - \overline{f^{\nu}})}{(f_i^{\nu} - \overline{f^{\nu}})}$$

この時、DR はその 5'UTR バリアント mRNA の存在比率、 $\overline{f^{v}}$ と σ はデータセット中の全遺伝子の f_{i}^{v} の平均値と標準偏差を示す。算出した説明変数 X' (N'×V 行列) から、PLS モデルの構築用データセットの N 個のデータを抽出し、 x_{i}^{v} (i = 1, 2…, N), (v = 1, 2…, V)を説明変数 X (N×V 行列)、Log₁₀ PR 値(y)を目的変数

(N×1) に用いて 2-2-3-2-2.と同様に PLS モデルを構築し Q²値を算出した。V 個の説明変数と目的変数(y)の線形下位形式を以下の式により表現した。なお、 説 明 変 数 x_i^v (v = 1, 2…, V)と、 $x_i^{Region_5'_1}(R_1(t))$, …, $x_i^{Region_5'_2}(R_V(t))$, $x_i^{Region_AUG_1}(R_1(t))$, …, $x_i^{Region_AUG_{2'}}(R_V(t))$, $x_i^{Motif_1}(R'_1)$, …, $x_i^{Motif_{2''}}(R'_9)$, $x_i^{Other_1}$, …, $x_i^{Other_{Z'''}}$ は同じ意味を表している。 $y = a_1x_1 + a_2x_2 + \dots + a_vx_v + \dots + a_Vx_V + a_0$

2-2-3-5-2. Q²値による重要な配列的特徴の選抜

2-2-3-5-1.にて構築した PLS モデルの Q² 値を $Q_{Temp_0}^2$ とし、構築時の説明変数 行列から各特徴 v の評価値 $x_i^{Other_v}$, (v = 1, 2…, V)を 1 つずつ除いた PLS モデル の $Q_{Temp_v}^2$ を計算し、 $\Delta Q_{Temp_v}^2$ を算出した。以降は 2-2-3-2-3.と同様に、PLS モデ ルの精度に負の影響を与える特徴の削除を繰り返した。最も高い Q² を示した PLS モデル(*PLSModel_c*)に含まれる V'個の説明変数 $x^{\nu\prime}$ (v' = 1, 2…, V')を重要な 配列的特徴として選抜した。選抜した重要な配列的特徴 v'が PR 値に与える影 響(重み)として v'の回帰係数 $a^{\nu\prime}$ を使用した。

2-2-3-5-2. 構築した PLS モデルによる予測値と残差の算出

PLS モデルの検証用データセットや予備的な説明変数の選抜用データセット における遺伝子 i について、構築した PLS モデルの V 個の説明変数 x_i^p (v = 1, 2 …, V)を評価・算出し、算出した $x_i^p \geq a^v$ から y_iの予測値(Predicted_y_i)と y_i の残差 (Residual_i)を計算した。なお x_i^p の標準化の際の平均値と標準偏差には、 PLS モデルの構築と検証用データセットのものを使用している。計算式を以下 に示す。

$$Predicted_y_i = \sum_{\nu=1}^{V} a^{\nu} \times x_i^{\nu}$$

 $Residual_i = y_i - Predicted_y_i$

2-2-3-6. 予備的な説明変数の再選抜

予備的な説明変数の選抜用データセットの遺伝子 N 個について、*PLSModel_c*に おける、遺伝子 i の残差 Residual_iを算出した。この時、この残差(y 値、つまり Log₁₀ PR 値を構築した PLS モデルが説明できていない大きさ)が予備的な説明変 数の選抜時の Region_5', Region_AUG, Motif, Other に生じている(計算できていな い影響がある)と仮定するならば、Region_5', Region_AUG, Motif, Other の遺伝子 i の Log₁₀ PR 値への真の影響 ($\Sigma True_a^{Region_5'v} \times True_x_i^{Region_5'v}$ など)は以下の 式で表すことができる。

 $\begin{aligned} Residual_{i} &= Residual_{i}^{Region_5'} + Residual_{i}^{Region_AUG} + Residual_{i}^{Motif} \\ &+ Residual_{i}^{Other} \end{aligned}$

$$\sum_{\nu'=1}^{V'} (True_a^{Region_{5'\nu'}} \times True_x_i^{Region_{5'\nu'}})$$

$$= \sum_{\nu'=1}^{V'} (a^{Region_5'\nu'} \times x_i^{Region_5'\nu'}) + Residual_i^{Region_5'\nu'})$$

$$\sum_{\nu'=1}^{V'} (True_a^{Region_AUG_{\nu'}} \times True_x_i^{Region_AUG_{\nu'}})$$

- -

$$= \sum_{\nu'=1}^{\nu'} (a^{Region_AUG_{\nu'}} \times x_i^{Region_AUG_{\nu'}}) + Residual_i^{Region_AUG})$$

$$\sum_{\nu'=1}^{V'} (True_a^{Motif_{\nu'}} \times True_x_i^{Motif_{\nu'}}) = \sum_{\nu'=1}^{V'} (a^{Motif_{\nu'}} \times x_i^{Motif_{\nu'}}) + Residual_i^{Motif}$$

$$\sum_{\nu'=1}^{V'} (True_a^{Other_{\nu'}} \times True_x_i^{Other_{\nu'}}) = \sum_{\nu'=1}^{V'} (a^{Other_{\nu'}} \times x_i^{Other_{\nu'}}) + Residual_i^{Other_{\nu'}})$$

この時、vとv'はそれぞれの PLS モデルに重要な説明変数の数、True_x_iは遺伝 子 i の真の説明変数、True_a はその重み、 x_i は遺伝子 i の既存の PLS モデルにお ける説明変数、a はその重みを示す。この真の説明変数はあくまで仮定であり、 真の説明変数を選抜することは事実上不可能であるが、少しでも尤もらしい説明 変数を用いた PLS モデルを構築するため、予備的な説明変数の選抜時の y 値を Log_{10} PR 値ではなく以下で計算する値とし、予備的な説明変数(Region_5', Region_AUG, Motif, Other)の再選抜を行った。

$$y(Region_5') = \sum_{\nu'=1}^{\nu'} (a^{Region_5'_{\nu'}} \times x_i^{Region_5'_{\nu'}}) + Residual_i$$

$$y(Region_AUG) = \sum_{\nu'=1}^{\nu'} (a^{Region_AUG_{\nu'}} \times x_i^{Region_AUG_{\nu'}}) + Residual_i$$

$$y(Motif) = \sum_{\nu'=1}^{\nu'} (a^{Motif_{\nu'}} \times x_i^{Motif_{\nu'}}) + Residual_i$$

$$y(Other) = \sum_{\nu'=1}^{\nu'} (a^{Other_{\nu'}} \times x_i^{Other_{\nu'}}) + Residual_i$$

再選抜後の説明変数を用いて同様に PLS モデルの構築を 2-2-3-5-2 の操作まで 行った。それを用いて PLS モデルの検証用データセットにおける予測値を算出し た。算出した予測 Log₁₀ PR 値と実際の Log₁₀ PR 値の間におけるピアソンの相関 係数を計算し、PLS モデルの予測精度とした。再選抜の結果による予測精度の低 下が 5 回連続して確認されるまで再選抜を繰り返し、再選抜の中で最も予測精度 の高い PLS モデル (*PLSModel_{Best}*)を使用した。再選抜の評価に予測精度を使用 した理由は、再選抜を繰り返すことによる説明変数の y 値への過度の当てはめを 避けるためである。

2-2-3-7. 最終的な PLS モデルの確定

2-2-3-6.で構築した*PLSModel_{Best}*で示された重要な説明変数から、さらに偽陽性 が疑われる説明変数を除去するために、PLS モデルの検証用データセットにおけ る*PLSModel_{Best}の*予測値と予測精度を算出し、除外することで予測精度が上がる、 つまりその予測精度に負の影響を与えている説明変数を除去した。その後、PLS モデルの構築用データセットのN個の遺伝子における除去後のV個の説明変数X (N×V 行列) と Log₁₀ PR 値を用いて、再度*PLSModel_{Final}*を構築した。この *PLSModel_{Final}*を最終的な PLS モデルとした。

2-2-3-8. 重要な配列的特徴のクラスタリング

未展開葉の PLS モデルの構築と検証用データセット 1023 遺伝子を使用し、構築した 2DAG、未展開葉、展開葉、37℃におけるそれぞれの*PLSModel_{Final}*の説明 変数、合計 45 個の x_i^v (v = 1, 2…, 45)を評価・算出した(1023×45 行列)。このデー タを用いて各説明変数間のユークリッド距離を計算し、ウォード法による階層的 クラスター分析を行った。

2-2-4. DNA 一過性発現実験

2-2-4-1. プラスミドの構築

異なる 5'UTR の 5'端に Cla I サイト、3'端には Aat II サイトを持つように設計 したプライマーを用い (Table 13)、cDNA を鋳型とした PCR 反応にて目的 DNA 断片の増幅を行った。その後、Cla I、Aat II で切り出し、35S プロモーターの支 配下に *F-luc* 遺伝子と HSP ターミネーターを持つプラスミド pBluescript II KS+ の Cla I /Aat II サイトに挿入した 。5'UTR の塩基置換系列の導入には、末端の配 列が Cla I、Aat II による切断部位と同じになるように設計し、相当する変異を 含むプライマーを用い (Table 14)、アニーリング後、同様に pBluescript II KS+ の Cla I /Aat II サイトに挿入した。補正用の *R-luc* 遺伝子については、35S プロ モーター、*R-luc* 遺伝子、HSP ターミネーターからなる発現カセットを持つ pBluescript II KS+を用いた。

Name	Primer sequence (5' to 3')
A+1-0C7C0 1	TATCGATGGAGAGAACAATCCTCATAATCACTTTC
At1g00700-1	TGACGTCTTCCATCGTCTTCTGAACTTAAGATC
A+1~24000 1	TATCGATGGAGAGAAAGACAATTCAACTAACAAAA
At1g54000-1	TGACGTCTTCCATTTTTTTGTTAGTTGAATTGT
At4g09650-1 TSS1	TATCGATGGAGAGAAGAGAAACCACAAATCTCTCT
	TGACGTCTTCCATTGTTGTTGTTGAGAGAGTTT
A+4~00650 2 TSS2	TATCGATGGAGAGAACAAATCTCTCTTTCTCTCAA
Al4g09050-2 1552	TGACGTCTTCCATTGTTGTTGTTGAGAGAGTTT
A+1~20440 1 TSS1	TATCGATGGAGAGAAAAACATTACTCATTCACAAA
A(1g20440-1 1551	TGACGTCTTCCATAGTTAATCTTGATTTGATTA
A41-20440 2 TEE2	TATCGATGGAGAGAACAAACATTACTCATTCACAA
At1g20440-2 1552	TGACGTCTTCCATAGTTAATCTTGATTTGATTA
A+1-20440 2 TEE2	TATCGATGGAGAGAAACAAACATTACTCATTCACA
At1g20440-3 TSS3	TGACGTCTTCCATAGTTAATCTTGATTTGATTA

A 45 ~ 12 420 1	TATCGATGGAGAGAAGATCGATCAAACCAAGAAAA
At5g13420-1	TGACGTCTTCCATTTTTTCGTCGAGGGAAATA
A+2~22220 1	TATCGATGGAGAGAAAACCTGCAAAAAACAACATCTC
At2g22230-1	TGACGTCTTCCATTGTCGAGTAACAGTGAAGAG

Table 13. 一過性発現実験用のプラスミドの構築に用いたプライマーセット Cla I サイトを赤色、Aat II サイトを青色で示す。

Name	Primer sequence (5' to 3')
	CGATGGAGAGAAATTCATTTGATAACCCTAGTAGCTCCTTTTTTCTCTA
001	TCTCGCTTTCTCTGTTTCACCACAGTCATGGAAGACGT
221	C TTCCATGACTGTGGTGAAACAGAGAAAGCGAGATAGAGAAAAAAGG
	AGCTACTAGGGTTATCAAATGAATTTCTCTCCAT
	CGAT GGAGAGAAACCCATTTGATAACCCTAGTAGCTCCTTTTTTCTCTA
SS1	TCTCGCTTTCTCTGTTTCACCACAGTCATGGAAGACGT
_NC	C TTCCATGACTGTGGTGAAACAGAGAAAGCGAGATAGAGAAAAAAGG
	AGCTACTAGGGTTATCAAATGGGTTTCTCTCCAT
	CGATGGAGAGAAATTCATTTGATAACCCTAGTAGCGCTAGGGTTATCA
SS1	AGTGAGCTTTCTCTGTTTCACCACAGTCATGGAAGACGT
_N-∆G	CTTCCATGACTGTGGTGAAACAGAGAAAGCTCACTTGATAACCCTAGC
	GCTACTAGGGTTATCAAATGAATTTCTCTCCAT
SS 1	CGAT GGAGAGAAATTCATTTGATAACCAAGTGAATTCCTTTTTTCTCTA
N-AG	TCTCGCTTTCTCTGTTTCACCACAGTCATGGAAGACGT
_n-20 mild	CTTCCATGACTGTGGTGAAACAGAGAAAGCGAGATAGAGAAAAAAGG
	AATTCACTTGGTTATCAAATGAATTTCTCTCCAT
	CGAT GGAGAGAAAAACATTTGATAACCCTAGTAGCTCCTTTTTTCTCTA
SS1	TCTCGCTTTCTCTGTTTCACCACAGTCATGGAAGACGT
_PA	CTTCCATGACTGTGGTGAAACAGAGAAAGCGAGATAGAGAAAAAAGG
	AGCTACTAGGGTTATCAAATGTTTTTCTCTCCAT
	CGAT GGAGAGAAAAACACACACACACACACACACACACACACA
SS1_P	TAAGAGCGTCGTCGTCGTCCGGCGATATGGAAGACGT
_Multi	CTTCCATATCGCCGGACGACGACGACGACGCTCTTAGGTGTGTGT
	GTGTGTGTGTGTGTGTGTGTTTTTCTCTCCAT
	CGAT GGAGAGAAATTCACAAAAAGAAGGTGTAGAGAAAGTTAAAGAG
552	AGAAGGAGAGATCCATAGAGAAAGAGAAAGAGAAATGGAAGACGT
552	CTTCCATTCTCTTTCTCTTTCTCTATGGATCTCTCCTTCTCTCTTTAACTT
	TCTCTACACCTTCTTTTGTGAATTTCTCTCCAT

	CGAT GGAGAGAAACCCACAAAAAGAAGGTGTAGAGAAAGTTAAAGAG
SS2	AGAAGGAGAGATCCATAGAGAAAGAGAAAGAGAAATGGAAGACGT
_NC	CTTCCATTCTCTTTCTCTTTCTCTATGGATCTCTCCTTCTCTCTTTAACTT
	TCTCTACACCTTCTTTTGTGGGTTTCTCTCCAT
	CGAT GGAGAGAAATTCACAAAAAGAAGGTGTAGAGTGCGCCTTCTTTT
SS2	TGTGAATAGATCCATAGAGAAAGAGAAAGAGAAAGAGAATGGAAGACGT
$N-\Delta G$	CTTCCATTCTCTTTCTCTTTCTCTATGGATCTATTCACAAAAAGAAGGCG
	CACTCTACACCTTCTTTTGTGAATTTCTCTCCAT
552	CGAT GGAGAGAAATTCACAAAAAGATTTTGTGAATAAAGTTAAAGAGA
SSZ NAG	GAAGGAGAGATCCATAGAGAAAGAGAAAGAGAAATGGAAGACGT
_N-20	CTTCCATTCTCTTTCTCTTTCTCTATGGATCTCTCCTTCTCTCTTTAACTT
_mma	TATTCACAAAATCTTTTTGTGAATTTCTCTCCAT
	CGAT GGAGAGAAAAACACAAAAAGAAGGTGTAGAGAAAGTTAAAGAG
SS3	AGAAGGAGAGATCCATAGAGAAAGAGAAAGAGAAATGGAAGACGT
_PA	CTTCCATTCTCTTTCTCTTTCTCTATGGATCTCTCCTTCTCTCTTTAACTT
	TCTCTACACCTTCTTTTGTGTTTTTTCTCTCCAT
	CGAT GGAGAGAAAAACACACACACACACACACACACACACACA
SS2_P	AGAAGGAGAGCGTCGTCGTCGTCGTCCGGCGATATGGAAGACGT
_Multi	CTTCCATATCGCCGGACGACGACGACGACGCTCTCCTTCTCGTGTGTGT
	GTGTGTGTGTGTGTGTGTGTGTGTTTTTCTCTCCAT
	CGAT GGAGAGAGAGGGGTTAGTTTTCGAAGAACGACGAGCTCGAGATT
662	ATTGATTTTCAAGTGGAGATTGAATCAGTGATAATGGAAGACGT
222	CTTCCATTATCACTGATTCAATCTCCACTTGAAAATCAATAATCTCGAG
	CTCGTCGTTCTTCGAAAACTAACCCTCTTCTCTCCAT
	CGAT GGAGAGAAGCCCGTTAGTTTTCGAAGAACGACGAGCTCGAGATT
SS3	ATTGATTTTCAAGTGGAGATTGAATCAGTGATAATGGAAGACGT
_NC	CTTCCATTATCACTGATTCAATCTCCACTTGAAAATCAATAATCTCGAG
	CTCGTCGTTCTTCGAAAACTAACGGGCTTCTCTCCAT
	CGAT GGAGAGAAGAAAGTTAGTTTTCGAAGAACGACGAGCTCGAGATT
SS3	ATTGATTTTCAAGTGGAGATTGAATCAGTGATAATGGAAGACGT
_PA	CTTCCATTATCACTGATTCAATCTCCACTTGAAAATCAATAATCTCGAG
	CTCGTCGTTCTTCGAAAACTAACTTTCTTCTCTCCAT
	CGATGGAGAGAAGAAACAAACAAAGGAAGAGCAACGATCGGGAGA
SS3_P	AATAATTAAAAGAATAGGAGATAGAAAGAGTGAAAATGGAAGACGT
_Multi	CTTCCATTTTCACTCTTTCTATCTCCTATTCTTTTAATTATT
	CGTTGCTCTTCCTTTGTTTGTTTCTTCTCTCCAT

	CGAT GGAGAGAAGTGGATAAGCTTCTCACTTTCAGTTCAATTGGATAG
0.0.4	CCGGAAAGGCTCTCCTCCAAGTGGCGTTTATATGGAAGACGT
334	CTTCCATATAAACGCCACTTGGAGGAGAGCCTTTCCGGCTATCCAATTG
	AACTGAAAGTGAGAAGCTTATCCACTTCTCTCCAT
	CGAT GGAGAGAAGCCCATAAGCTTCTCACTTTCAGTTCAATTGGATAG
SS4	CCGGAAAGGCTCTCCTCCAAGTGGCGTTTATATGGAAGACGT
_NC	CTTCCATATAAACGCCACTTGGAGGAGAGCCTTTCCGGCTATCCAATTG
	AACTGAAAGTGAGAAGCTTATGGGCTTCTCTCCAT
	CGAT GGAGAGAAGAAAATAAGCTTCTCACTTTCAGTTCAATTGGATAG
SS4	CCGGAAAGGCTCTCCTCCAAGTGGCGTTTATATGGAAGACGT
_PA	CTTCCATATAAACGCCACTTGGAGGAGAGCCTTTCCGGCTATCCAATTG
	AACTGAAAGTGAGAAGCTTATTTTCTTCTCTCCAT
	CGATGGAGAGAAGAAAATAAATCCCTCATCCCCAACCCAACCAA
SS4_P	CGAAGAACTAACCAAAAAATACAACATTCAAATGGAAGACGT
_Multi	CTTCCATTTGAATGTTGTATTTTTTGGTTAGTTCTTCGGTACTTGGTTGG
	GTTGGGGATGAGGGATTTATTTTCTTCTCTCCAT

Table 14. 一過性発現実験用のプラスミド構築に用いたプライマーセット

Cla I 切断部位を形成する位置を赤色、Aat II 切断部位を形成する位置を青色で示す。

2-2-4-2. シロイヌナズ T-87 培養細胞からのプロトプラストの調製

シロイヌナズナ T87 培養細胞からのプロトプラスト調製は、Satoh ら (Satoh et al. 2004) の方法に若干の変更を加えて行った。培養細胞を 0.4 M マンニトール で洗浄した後、酵素液 (0.4 M Manitol, 1% Cellulase RS (Yakult, Japan), 0.1% Pectolyase (Kikkoman, Japan), pH 5.5) を加え、25°Cにて 1~2 時間穏やかに 攪拌した。40 µm ナイロンメッシュ (Cell Strainer; BD Falcon, USA) でろ過し た後、400 rpm で 5 分間遠心し、上清を回収した。回収した上清に 0.4 M マン ニトールを加え洗浄し、800 rpm で 5 分間遠心することによりプロトプラスト を得た。0.4 M マンニトールによる洗浄は 2 回行っている。プロトプラストを W5 溶液 (154 mM NaCl, 125 mM CaCl₂, 5 mM KCl, 2 mM Mes-KOH, pH 5.6) に再懸濁し、氷中に 30 分静置した。細胞数の計測は血球計算板を用いて行い、 W5 溶液と等量の MMg 溶液 (0.4 M mannitol, 15 mM MgCl₂, 4 mM Mes-KOH, pH 5.7) を加え、400 rpm で 5 分間遠心することによりプロトプラストを回収 し、プロトプラスト濃度が 1×10⁴ cell/µl になるように MMg 溶液に懸濁した。

2-2-4-3. プロトプラストへの DNA の導入

DNA のプロトプラストへの導入は、基本的に Kovtun ら (Kovtun et al. 2000) の polyethlen glycol (PEG)を用いた方法に従った。DNA (*F-luc* 0.4 µg, *R-luc*

0.04µg, total volume 5 µl) に 1×10⁴ cell/µl のプロトプラストを 50 µl 加えた後、 混合液と等量の PEG 溶液 (40% PEG 4000, 0.2 M Mannitol, 0.1 M Ca(NO₃)₂) (Sheen, 2001)を加えてゆっくりと混和し、細胞を 20 分間室温にて静置した。そ の後、protoplast-medium (Dansako et al., 2003)を 500 µl 加え、22℃で 6 時間 静置し、遠心操作によって上清を取り除き、液体窒素で凍結して-80℃にて保存し た。

2-2-4-4. ルシフェラーゼ活性測定

細胞の溶解は、5×10⁵個のプロトプラストあたり 50 µl の passive lysis buffer (Promega, USA)を用い、ミキサー処理によって溶解し、氷上で 15 分間静置した。 その後、4℃、14000 rpm で 10 分間遠心し、上清中の F-luc と R-luc の活性値を 測定した。測定には Dual-luciferase reporter assay system (Promega)とルミノ メータ (Lumat LB 9501; Berthold, Northern Black Forest, Germany)を付属の プロトコールに従って使用した。

2-3. 結果

2-3-1. CAGE によるゲノムワイドな転写開始点の解析

植物においても、翻訳状態は mRNA 種によって異なっており、加えて成長・発達、 環境ストレス下でその翻訳状態は異なっている(変化している)ことが明らかとな った。一般的に、mRNA の翻訳状態(効率)を規定する非常に重要な要素として mRNAの5'非翻訳領域(5'UTR)が挙げられる(Roy et al. 2013, Kawaguchi et al. 2005, Branco-Price et al. 2005, Matsuura et al. 2013)。この 5'UTR 配列は、決して同じタンパ ク質をコードする mRNA でも一様ではなく、転写開始点(Transcription Start Site: TSS) の違いや 5'UTR 内のスプライシングの有無によって様々なバリアントが存在する ことが知られている。特に、近年の次世代シークエンサー技術の発達によって可能 になったゲノムワイドな TSS の特定によって、複数の TSS に由来する 5'UTR バリ アントを持つ mRNA 種は非常に多いことが知られるようになってきている (Yamamoto et al. 2009, Morton et al. 2014)。酵母による研究では、この様な TSS の 違いに起因する 5'UTR バリアント間で翻訳効率に大きな違いが認められ (Rojas-Duran and Gilbert 2012, Arribere and Gilbert 2013)、また、植物においても 5'UTR 配列の 5'末端のわずか数塩基の違いによって、熱ストレスに応答した翻訳状 態変化の挙動が大きく変化することが報告されている(Matsuura et al. 2013)。これ らの報告を踏まえると、5'UTR バリアントも含めた正確な 5'UTR 配列の決定が翻訳 機構を解析するために必要不可欠であると考えられる。TSS すなわち 5'UTR 配列を ゲノムワイドに決定する手法の一つに Cap Analysis of Gene Expression (CAGE) があ る (Takahashi et al. 2012, Murata et al. 2014)。本研究でも CAGE によって各 5'UTR 配 列の決定及びその存在比率の解析を、mRNA の翻訳状態に関するゲノムワイドデー タを取得している各条件について行った。

CAGE 解析には、シロイヌナズナ植物体の発芽 2 日目 (2day after germination: 2DAG)、21DAG の未展開葉 (young leaves)、展開葉 (mature leaves)、シロイヌナズ ナ培養細胞 T-87 の培養 3 日目コントロール (Control)、37℃熱ストレス条件下 (37℃, 10 min)、NaCl 200 mM 塩ストレス条件下 (200 mM, 10 min)の細胞を用いた。各サ ンプルから抽出した Total RNA から CAGE ライブラリーを作製し、シークエンス解 析を行った。すべてのサンプルで 1000 万以上の Tag 配列が取得でき、良好なシーク エンス結果が得られた (Fig. 12A)。それらの取得した Tag 配列を、シロイヌナズナ のゲノム情報として公開されている TAIR10 の情報に従ってマッピングを行った。 各サンプルは独立した 2 つのサンプルを用いて行っており、2 つのサンプル間で共 にゲノム上に Tag が存在する位置についてのみ Tag 数をカウントし、各ゲノム上の Tag 数を Tag per million (TPM) 値に変換した。各 Tag は TAIR10 に登録されている 染色体コードのタンパク質をコードする各遺伝子について、ストランド方向が同じ で TAIR10 に登録された TSS の上流 500 nt から CDS の AUG までの範囲に存在して いるものを、その遺伝子の TSS を示すものとしてアノテーションした。なお、TAIR10 では、いくつかの遺伝子についてスプライスバリアントが登録されているが、 TAIR10_representative_gene_models の情報から代表的なスプライスバリアントのみ を用いている。マッピングの結果、94%以上の Tag がゲノム上にマッピングされて いた(Fig. 12B)。ゲノム上に非特異的にマッピングされ除外されたことを示す Low MapOuality の Tag が 2DAG、 young leaves、 mature leaves で非常に多くなっていたが、 Low MapQuality の Tag は、ほぼ全て rRNA の領域にマッピングされており、これら のサンプルでは Cap trapping 等での精製時に残留した rRNA が多かったと思われる。 しかし、これらを除いた Tag の 75%以上はアノテーションが付けられており(Fig. 12C)、シークエンス及びマッピング結果に問題はないと考えられ、最終的に全ての サンプルで 400 万以上の Tag を解析に用いることができた。これらのデータ処理に よって、各遺伝子のアノテーションがつけられた Tag が存在する各ゲノム上の位置 は、その遺伝子の TSS を示し、その位置における TPM 値(TPM_TSS) はその TSS 由来のmRNA 量を表している。そして各遺伝子の全 TSS における TPM 値を合計す ることで遺伝子レベルでの mRNA 量(TPM_Sum)を算出した。独立した 2 つのサ ンプル間での TPM_Sum 値には高い相関(r = 0.98~0.99)があり(Fig. 13)、再現性 が確認されている。より信頼性の高いデータを使用するため、以降の解析では発現 量が低い遺伝子と2反復間で発現量が大きく異なる遺伝子を除去したデータセット (Fig. 13の緑色で示す)を用い、TPM_TSS 値と TPM_Sum 値は 2 反復間での平均値 とした。

Figure 12. CAGE ライブラリーのシークエンス解析及びマッピングの結果

得られた全ての結果を(A) Tag 数、(B) Tag の比率で示している。"Sequence with N"には Tag 配列中に正確に読まれていないことを示す N が存在し、除外された Tag を示している。"Unmapped"は TAIR10 のゲノム上のどこにもマッピングされずに除 外された Tag を示している。"Low MapQuality"はゲノム上の2か所以上に非特異的 にマッピングされ除外された Tag を示している。"Noize"はゲノム上にマッピングは されたが、独立の 2 反復間のどちらかでは検出されずノイズとして除去された Tag を示している。"Non-annotated"は遺伝子のコード領域の上流以外にマッピングされ た Tag を示し、本研究では使用していない。"Annotated"は遺伝子のコード領域の上 流にマッピングされ、本研究で用いた Tag を示す。(C) ゲノム上に正しくマッピン グされた"Non-annotated"と"Annotated"の Tag のみを比率で示している。解析は 2DAG (2DAG-1, 2DAG-2)、21DAG の未展開葉(YL-1, YL-2)、展開葉(ML-1, ML-2)、培 養細胞 3 日目コントロール(Con-1, Con-2)、37℃熱ストレス条件下(37℃-1, 37℃-2)、 NaCl 200 mM 塩ストレス条件下(200_mM-1, 200_mM-2) について独立した 2 つの サンプルを用いている。

独立した生物学的 2 反復のサンプルより得られた Log₁₀-transformed TPM_Sum 値 の散布図。それぞれの散布図は(A) 2DAG (n = 18090)、(B)未展開葉 (n = 17083)、 (C)展開葉 (n = 16300)、(D) 培養細胞の通常条件 (n = 17895)、(E)熱ストレス下 (n = 17208)、(F) 塩ストレス下 (n = 17509) における遺伝子あたりの Tag 数を示す。 近似線(点線)と近似式の傾き(Slope)、ピアソンの相関係数(r)を図中に示した。 また赤色で示した遺伝子は発現量が低いか、2 反復間で値が大きく異なるという理 由で解析からは除外した。以降の解析では緑色で示した 13426 (A)、12746 (B)、11903 (C)、14391 (D)、13938 (E)、14309 (F)の遺伝子を対象としている。

2-3-2. 転写開始点の分散と変化

算出した TPM_TSS 値と TPM_Sum 値は、それぞれ各 TSS 由来の mRNA 量と、各 遺伝子レベルでのmRNA量を表している。各条件における発現量が低い遺伝子と2 反復間で発現量が大きく異なる遺伝子を除去したデータの TPM_Sum 値は、正規様 の分布を示した(Fig. 14A)。続いて、それぞれの遺伝子における TSS の分散を評価 するため、各 TSS 由来の mRNA の分布率(TSS 分布率)を算出し、各遺伝子にお ける最大のTSS 分布率を、最も主要なTSS 由来のmRNAの存在比率(Max Distribution Ratio of TSSs: MDR)とした (Fig. 14B)。MDR は 1 つの 5'UTR 配列で、その mRNA を表現できる比率を意味し、100に近いほど TSS が1点に収束し他の TSS 由来のバ リアントが存在しないことを、0 に近いほど TSS が複数に分散し多くの TSS 由来の バリアントが存在していることを示している。代表的な TSS 分布について未展開葉 のデータを例に Fig. 15 に示した。その分布は、eukaryotic initiation factor 4G (elF4G) のように非常に TSS が分散している遺伝子(Fig. 15A)から Chlorophyll A/B binding protein (CAB1)のように TSS がほぼ 1 点に収束している遺伝子(Fig. 15D)まで幅 広く、その全条件における MDR の中央値は 30.2~32.0 であり(Fig. 14B)、多くの 遺伝子の TSS は Ribosomal protein L27 (RPL27) のように分散し複数の 5'UTR バリ アントを持っていた(Fig. 15B)。また、Arabinogalactan protein 21 (AGP21)のよう に 50%以上の TSS が 1 点に収束している遺伝子 (Fig. 15C) は全体の 16~19%、CAB1 のように 75%以上が収束している遺伝子は全体の 2~4%しか存在していなかった。 次に最も主要な TSS から AUG までの配列を TAIR10 のゲノム情報から抽出し、イ ントロンが存在する場合はイントロン部分を除去することで、各遺伝子由来の mRNA において最も主要な 5'UTR 配列を取得した。その 5'UTR 長の中央値は 83~ 93 nt であり、80%以上の 5'UTR は 200 nt 以下であった(Fig. 14C)。加えて、植物体 である 2DAG、未展開葉、展開葉間と、培養細胞の Control、37℃、200_mM 間のそ れぞれで TSS の分布を比較し、TSS 分布の変化を ΔTSS 値として評価した。この Δ TSS 値が0を示すとTSS の分布が2条件間で完全に一致し、1を示すとTSS の分布 が完全に異なることを意味している(Fig. 14D)。 ΔTSS 値の分布より、10 min とい う短期的なストレスである 37℃や 200_mM では、ほぼ全ての遺伝子で大きな変化は 認められなかったが(Median = 0.12~0.13)、発達段階が異なる植物体間での比較で は、TSSの変化が相対的に大きい傾向があった(Median = 0.21~0.28)。未展開葉と 展開葉間の TSS 変化を例にすると、大部分の遺伝子における TSS は 3-ketoacyl-CoA synthase 10 (KCS10) のように顕著な変化は示さなかったが (Fig. 16A)、一部の遺 伝子では Partner of SLD five 1 (PSF1)のように TSS が顕著に変化していた (Fig. 16B)。 PSF1 の例では、未展開葉では主に AUG から-320~-260nt の位置に存在していた TSS が、展開葉では-410~-350nt の位置に変化している。このようにシロイヌナズナに おいても、多くの遺伝子には複数の TSS に由来する 5'UTR バリアントが存在し、 いくつかの遺伝子では条件によって TSS が変化していることが示された。

Figure 14. CAGE による TSS の解析結果の分布

(A) 2DAG、未展開葉(YL)、展開葉(ML)、Control (Con)、37℃、200_mM での遺伝子レベルの mRNA 量を示す TPM_Sum 値の分布、(B) 最も主要な TSS 由来のmRNAの存在比率を示す Max Distribution Ratio of TSSs (MDR) 値の分布、(C) 最も主要な TSS に由来する 5'UTR 長の分布、(D) 2 条件間の TSS の変化を示すム TSS の分布。(A-C)では Fig. 13 の緑色で示される 13426 (2DAG)、12746 (young leaves: YL)、11903 (mature leaves: ML)、14391 (Control: Con)、13938 (37℃)、14309 (200_mM) の遺伝子を、(D) では 2 条件間で共にデータが存在した 10986 (2DAG-YL)、 10163 (2DAG-ML)、11089 (YL-ML)、13830 (Con-37℃)、14144 (Con-200_mM)、13783 (37℃ -200_mM)の遺伝子を対象としている。

Figure 15. 未展開葉での TSS 分布の例

(A)eIF4G、(B)RPL27、(C)AGP21、(D)CAB1 遺伝子の未展開葉での TSS の分布。
横軸は AUG からの距離を縦軸は Distribution ration of TSSs (DR) 値を示している。
(E) 未展開葉で最も主要な TSS 由来の mRNA の存在比率を示す Max Distribution
Ratio of TSSs (MDR) 値の分布と、その分布における(A-D)の遺伝子の位置を矢
印で示している。

Figure 16. 未展開葉と展開葉の間での TSS 変化の例

(A)KCS10、(B)PSF1 遺伝子の未展開葉(上段)と展開葉(下段)でのTSSの分布。
 横軸は AUG からの距離を縦軸は Distribution ration of TSSs(DR)値を示している。
 (C)未展開葉と展開葉の間でのTSS変化を示すΔTSS値の分布と、その分布における(A、B)の遺伝子の位置を矢印で示した。

2-3-3. 転写開始点前後の配列における塩基含量の解析

遺伝子によって、TSS は非常に分散しているものから 1 点に収束しているものま で様々であり、いくつかの遺伝子では TSS が成長・発達段階間で変化していた。ど の位置から転写されるかは、その分散度合いも含めて、プロモーターの性質だけで なく転写された mRNA の質 (5'UTR の配列)に関わる重要な情報である。そこで、 TSS 周辺の配列の塩基含量からその決定に関わる機構についても考察するために、 各遺伝子の最も主要な TSS の上流 50 nt、下流 50 nt の ATGC の比率を算出した (Fig. 17)。なお、開始 AUG の出現による塩基の偏りを無視するために、対象とした遺伝 子は最も主要な TSS 由来の 5'UTR の長さが 50 nt 以上のものとした。解析の結果、 全ての場合において TSS から約-30 nt (0 nt は 5'UTR の 5'末端の塩基となる)の位 置に TATA box と思われる A と T の集中が認められた。加えて TSS 前後数 nt にも顕 著な塩基含量の偏りが認められ、-2 nt では T、-1 nt では T と C、0 nt では A と G、 3 nt では C の集中が見られた。これらの配列は転写装置が転写を開始する上で重要 な要素である可能性がある。加えて、培養細胞である Control、37℃、200_mM では 24~25 nt の位置に T の比率が高い傾向が認められた。

続いて、TSS 前後の塩基の偏りが TSS の分散に与える影響を評価するために、未 展開葉を例にして TSS が収束している遺伝子(MDR の上位 1000 遺伝子)と分散し ている遺伝子(MDR の下位 1000 遺伝子)の塩基含量を比較した(Fig. 18)。その結 果、TSS が収束している遺伝子では TSS から-30 nt 付近に位置する TATA box の存在 がより明瞭であったのに対し、分散している遺伝子ではあまり顕著な偏りは認めら れなかった。また、収束している遺伝子では、TSS 前後の塩基の偏りも全 mRNA の 場合と比較すると僅かながら増加していた。TATA box を有するプロモーターの場合 は TSS が収束しており、TATA-less プロモーターでは TSS が分散する傾向があると 考えられる。

また、TSS の変化に関しても未展開葉と展開葉を例に、TSS の変化が小さい遺伝 子(ΔTSS の下位 1000 遺伝子)、大きい遺伝子(ΔTSS の上位 1000 遺伝子)につい て、それぞれでの未展開葉と展開葉での塩基含量の偏りを解析した(Fig. 19)。結果 として TSS が変化しない遺伝子と大きく変化する遺伝子では TATA box の存在には っきりとした違いがあり、TSS が変化する遺伝子では、TATA box の存在は不明瞭だ った。TATA-less プロモーターの方が、より TSS が変化しやすい傾向と思われる。 また、前後数 nt での塩基含量には大きな差異は認められなかった。

71

Figure 17. TSS 周辺の塩基含量

2DAG (n = 9804)、未展開葉 (n = 9533)、展開葉 (n = 8918)、Control (n = 10959)、 37℃ (n = 10959)、NaCl 200 mM (n = 10923) で最も主要な TSS の前後それぞれ 50 nt における ATGC 含量を示している。横軸は TSS からの距離を示し、0 は 5'UTR の 5' 末端に位置する。

未展開葉のデータセットの全遺伝子 (n = 9533)、TSS が収束している遺伝子 (n = 1000; MDR 値の上位)、分散している遺伝子 (n = 1000; MDR 値の下位)の最も主要 な TSS の前後それぞれ 50 nt における ATGC 含量を示している。横軸は TSS からの 距離を示し、0 は 5'UTR の 5'末端に位置する。

Figure 19. TSS が変化する遺伝子と変化しない遺伝子の TSS 周辺の塩基含量 未展開葉と展開葉で共にデータが存在する全遺伝子(n = 8134)、TSS が変化しな い遺伝子(n = 1000; ΔTSS 値の下位)、変化する遺伝子(n = 1000; ΔTSS 値の上位) の未展開葉(上段)と展開葉(下段)で最も主要な TSS の前後それぞれ 50 nt にお

ける各位置の ATGC 含量を示している。位置の0は5'UTR の5'末端に位置する。

2-3-4. 転写開始点の分散・変化と翻訳の関連性

CAGE によって多くの遺伝子の TSS は分散し、条件によって TSS が変化すること が明らかとなり、5'UTR の多様性が明らかとなった。5'UTR 配列は翻訳状態を規定 している非常に重要な要素として知られており、今回の解析によって示された TSS の分散や変化が翻訳状態の規定に影響を与えている可能性が考えられた。そこでま ずは、未展開葉を例に第一章で算出した PR 値より、翻訳状態が低い mRNA 種(PR 値の下位500種)、中間的な翻訳状態を示すmRNA種(PR値の中央値付近の500種)、 翻訳状態が高い mRNA 種(PR 値の上位 500 種)に分け、TSS の分散度合いの指標 値である MDR 値に偏りが見られるかを解析した(Fig. 20A)。その結果、mRNA 全 体と比較して、それらの分布に顕著な偏りは認められず、全体的には TSS の分散度 合いと翻訳状態は相関していなかった。しかし、僅かながら翻訳状態が低い mRNA 種と高いmRNA種は、全mRNAと比較してMDRが高い傾向があり、それらのmRNA 種はTSS が1点に収束している傾向がある可能性が示唆された。TSS が分散してい る場合、複数存在する 5'UTR バリアントが示す様々な翻訳状態が平均化されること で、顕著な挙動をとりにくい一方で、TSS が1点に収束している場合は、平均化さ れないためにその mRNA の翻訳状態が反映されやすい可能性がある。また、TSS の 変化(ΔTSS)と翻訳状態の変化(ΔPR)を、未展開葉と展開葉を例に、翻訳状態 が抑制された(展開葉で翻訳状態が低い)mRNA種(ΔPR_leafの下位 500 種)、変 化しなかった mRNA 種 (Δ PR_leaf が 0 付近の 500 種)、活性化された(未展開葉で 翻訳状態が低い) mRNA 種 (ΔPR leaf の上位 500 種) に分けて解析した (Fig. 20B)。 その結果、翻訳状態が条件間で異なる(抑制または活性化された)mRNA 種はΔTSS が低い傾向にあった。この結果は、未展開葉と展開葉との間での翻訳状態の変化は、 TSS 変化によって生じた異なる 5'UTR 配列に起因したものではなく、未展開葉およ び展開葉それぞれで異なる翻訳機構が存在しているためと考えられる。

Figure 20. TSS の分散・変化と翻訳状態の関連性

(A)未展開葉のデータが存在する全 mRNA 種 (n = 12258)、翻訳状態が低い mRNA 種 (n =500; PR 値の下位)、中間的な翻訳状態を示す mRNA 種 (n =500; PR 値の中 央値付近)、翻訳状態が高い mRNA 種 (n =500; PR 値の上位) での MDR 値の分布を 箱ひげ図で示し、各分布の中央値を図中に記した。(B) 未展開葉と展開葉でデータ がともに存在する全 mRNA 種 (n = 10299)、翻訳状態が抑制された mRNA 種 (n =500; Δ PR_leaf 値の下位)、変化しなかった mRNA 種 (n =500; Δ PR_leaf が 0 付近)、活 性化された mRNA 種 (n =500; Δ PR_leaf 値の上位) での Δ TSS 値の分布を箱ひげ図 で示し、各分布の中央値を図中に表記した。エラーバーの末端は分布の上位 5%位 置と下位 5%位置を示し、外れ値は省略している。加えて、全 mRNA 種の分布との 差を Welch's t test によって評価した。* p < 0.1, ** p < 0.05, *** p < 0.01

2-3-5.5'UTR の配列的特徴によって翻訳状態を説明できる PLS モデルの構築

第一章において、ゲノムワイドな翻訳状態の決定を行い、PR 値として翻訳状態を 数値化した。その結果、翻訳状態は mRNA 種によって様々であり、加えて植物が置 かれた状況に応じて翻訳状態は変化していた。これまでに mRNA の翻訳状態に影響 を与えていると考えられる 5'UTR の配列的特徴がいくつか報告されている。しかし、 それらの多くは翻訳状態と単一の特徴との間の相関解析に留まり、翻訳状態との間 に緩やかな相関が確認されたに過ぎず、真に重要な特徴や各特徴の影響の大小は不 明瞭なままだった。それらの問題を解決するために、数値化した翻訳状態と特定し た 5'UTR 配列を基に *in silico* での複数の配列的特徴を用いた複合的な解析を行った。

複数のパラメータと目的の値との関係性を解析する(複数のパラメータで目的の 値を説明する)にはいくつかの手法があるが、最も基本的な手法の一つに重回帰分 析法があり、複数のパラメータを説明変数(x)、目的の値を目的変数(y)として計 算的に説明変数の重み(目的変数に与える影響の大きさ)を評価するものである。 本研究では、重回帰分析法に存在する多重共線性等の欠点を改良した Partial Least Squares Regression (PLS)法を用いた。目的変数には翻訳状態の指標値である PR 値の 対数値を、説明変数には CAGE で特定した 5'UTR 配列を基に後述する様々な配列 的特徴を用いた。PLS 法によって、配列的特徴(説明変数)で翻訳状態(目的変数) を説明する式 (PLS モデル)の構築を行い、構築した PLS モデルからモデルの精度

(Q²値)に負の影響を与える説明変数を除いていくことで、真に重要な配列的特徴 を選抜した。なお PLS モデルの構築を行う上で目的変数である PR 値と説明変数の 基となる 5'UTR 配列は 1:1 で対合していることが望ましいが、多くの遺伝子は複数 の 5'UTR バリアントを有する一方で、PR 値は各遺伝子でそれぞれ1 個の値しか存 在しない。しかし、CAGEの結果より、TSSが1点に収束し、5'UTR 配列が1種し か存在しない遺伝子は非常に限られるため正確な結果を導くことができない。この 問題を解決するために、1:1 対合が必要な解析が含まれる予備的な説明変数の選抜 のみを、TSS がほぼ1点に収束し5'UTR 配列が1つしか存在しない遺伝子集団で行 った。その後、予備的に選抜した説明変数を複数の5'UTR バリアントに対して評価 し、バリアント間で評価値をまとめ、複合 5'UTR 配列における説明変数を計算する ことで、TSS が 5'UTR バリアントをある程度有する遺伝子についても、PR 値と複 合 5'UTR の説明変数を 1:1 対合させ、PLS モデルの構築と重要な説明変数(配列的 特徴)の選抜を行った。モデルの構築は、一般的に目的変数の値幅が大きく、適度 に分散し、必要な説明変数が少ないほど容易になる。未展開葉の PR 値は幅広い分 布をとり、かつ他の条件での PR 値と比較的に良く相関し最も中間的もしくは一般 的な翻訳状態を示している。そのため、他の条件と比べ特異的な制御を受ける遺伝 子が少なく、必要な配列的特徴も単純化できると考えられた。そこで、まずは未展 開葉での PLS モデルを構築した。以下でも未展開葉を例に説明をする。

予備的な説明変数の選抜の流れを Fig. 21 にまとめている。PR_young_leaves 値と 5'UTR 配列の両方の情報が存在している遺伝子は 12258 個あり、そのうち、TSS が

77

66.7%以上1点に収束している遺伝子は555個であった。この555遺伝子を、それ ぞれの解析に応じて更に選抜し、予備的な説明変数の選抜に用いた。予備的な説明 変数の選抜は、以下の3つの独立した解析によって行った。5'UTRの5'末端または AUG からの位置依存的な領域内での塩基含量に関する説明変数(Region_5'、 Region_AUG)の選抜、特定の塩基パターンに関する説明変数(Motif)の選抜、そ の他の配列的特徴等に関する説明変数(Other)の選抜である。Region 5'または Region_AUG の選抜では、PR 値が高い遺伝子から低い遺伝子まで適度に分散してい る 5'UTR 長が 50 nt 以上の遺伝子集団を用い、5'UTR の 5'末端または AUG から 50 nt の範囲内における全ての位置と長さの領域(1~1、1~2···1~50、2~2、2~3··· 49~50、50~50) で塩基含量(A、U、G、C または AA、AU・・・CC) を数え、 その塩基含量から PR 値を説明する簡易的な PLS モデルを構築した。構築したモデ ルの精度を表す Q^2 値で領域を評価し、 Q^2 値が他に比べて高い領域を選抜した。 Q^2 値が高い領域は、その塩基含量で PR 値を説明できることを意味し、翻訳状態を規 定している特徴の一つの可能性であると考えられる。Motifの選抜では、5'UTR 長 が 50 nt 以上で PR 値が特に高い遺伝子、または特に低い遺伝子を用い、それらに豊 富に含まれている塩基パターンを Multiple Expectation-maximization for Motif Elicitation (MEME)を用いて選抜した。Other の選抜では、PR 値が適度に分散して いる遺伝子集団において、5'UTR 全体の塩基含量に関する特徴、uORF に関連する 特徴、二次構造に関連する特徴として mRNA の様々な領域内での-ΔG、rRNA との 相互作用に関連する特徴として mRNAの様々な領域内での 18S または 25S rRNA と の相補な連続配列の最大長、5'UTR や CDS 等の mRNA 長に関連する特徴、転写に 関連する特徴として TPM_Sum 値や MDR 値、合計 220 種の配列的特徴を評価し、 それらを説明変数、PR 値を目的変数として予備的な PLS モデルを構築し、モデル の Q^2 値に負の影響を与えない配列的特徴を選抜した。

こうして予備的に選抜した説明変数を用いて解析の主となるPLSモデルの構築を 行った。PLSモデルの構築の流れをFig. 22 にまとめている。データセットには、分 布率が 5%以上のある程度は転写されている TSS 由来の各 5'UTR バリアントの mRNAの合計が、各遺伝子の mRNAの80%以上を構成する 5744 遺伝子を選び、PR 値が分散するように 1023 遺伝子を更に選抜し使用した。これらの遺伝子は平均して 5.2 個のある程度は転写されている TSS 由来の 5'UTR バリアントを持つ。これらの 遺伝子の PR 値を目的変数、予備的な説明変数の選抜によって示された配列的特徴 の特徴量を説明変数として PLS モデルの構築を行い、モデルの Q²値に負の影響を 与えない説明変数を重要な配列的特徴として選抜した。この時、構築には 1023 遺伝 子の半数である 512 遺伝子(データセット A)のみを用いており、残りの 511 遺伝 子(データセット B)を用いて、構築した PLS モデルにおりる残差(説明しきれ ていない PR 値)を計算し、残差が小さくなるように Region_5'、Region_AUG、Motif、 Other の再選抜を行った。予備的な説明変数の再選抜の流れを Fig. 23 にまとめてい る。再選抜は、5 回連続で再選抜の結果による信頼性の低下を確認した時点で終了 し、それまでの再選抜の中で最も信頼性が高いモデルを採用した。こうして構築し たモデルには、計算上はモデルの精度に正の影響を与える重要な配列的特徴のみが 説明変数として用いられている。しかし、そこに偽陽性が存在する可能性も十分に 考えられる。そこで、採用したモデルに関しては、データセットBを用いた予測精 度による信頼性の評価の際に、その予測精度に負の影響を与えている説明変数を除 去した。除去後に各説明変数の重みを再計算し、最終的なモデルとした。

Figure 21. 予備的な説明変数の選抜の流れを示した模式図

Figure 22. PLS モデルの構築と重要な配列的特徴の選抜の流れを示した模式図

Figure 23. 予備的な説明変数の再選抜の流れを示した模式図

2-3-6. 未展開葉での PLS モデルから示された重要な配列的特徴

未展開葉のLog₁₀ PR_young_leaves(目的変数)を配列的特徴(説明変数)によっ て説明できる PLS モデルの構築では、最も翻訳状態をよく説明できた予備的な説明 変数の再選抜5回目のものを最終的なモデルとした。構築の結果、PLS モデルの構 築に用いた 512 遺伝子(データセット A)において高い Q^2 値が示され、実測 Log_{10} PR voung_leaves とモデルによる予測 Log₁₀ PR_young_leaves はよく相関していた (Fig. 24A)。モデルの検証に用いた 511 遺伝子(データセット B) でも実測値と予 測値の間で高い相関が見られ(Fig. 24B)、構築したモデルは PR 値を十分に説明で きるものであった。このモデルでは、9個の重要な配列的特徴が示され(Table 15)、 それらは 5'UTR 上の二次構造(3 個)と、uORF(1 個)、5'UTR 上の特定領域にお ける塩基含量(3個)、25S rRNA との相互作用(1個)、CDS 長(1個)に関連する ものだった。特に翻訳状態に負の影響を与えている配列的特徴としては、mRNA の Cap 側 100 nt 内の二次構造の形成度合い(-ΔG_1~100_from_Cap) と uORF の数 (uORF)、5'UTRのAUGから-150~-50の領域内の二次構造の形成度合い(-ΔG_-150 ~-51_from_AUG) だった。逆に特に翻訳状態に正の影響を与えている配列的特徴と しては、CDS 長(Log₁₀_CDS_Length)と 5'UTR の Cap 側 4 nt 内の A の含量(A_1 ~4_from_Cap) だった。CDS 長が非常に強い正の影響を与えているが、PR 値はリ ボソームの結合数で評価しているため、同じリボソームのリクルート効率でも長い mRNA の方がリボソームの結合数は多くなり、PR 値は高い傾向となるためだと考 えられる。また 80%以上の 5'UTR の長さは、200 nt 以下であるため (Fig. 14C)、-△G が強い負の影響を与えている mRNA の Cap 側 100 nt 内の領域と、AUG から-150 ~-50 の領域は一部の mRNA では重複していると考えられる。また、-∆G が強い 負の影響を与えている Cap 側 300 nt の領域は多くの遺伝子で AUG 以降も含まれて いる。

Figure 24. 未展開葉の PLS モデルによる予測 PR 値と実測 PR 値の相関

 (A) PLS モデルの構築に用いた 512 遺伝子での実測 Log₁₀ PR_young_leaves と予 測 Log₁₀ PR_young_leaves の散布図。データ数(n) と近似線(実線)、相関係数(r)、 モデルの精度(Q²)を図中に示す。(B) PLS モデルの構築に用いた 512 遺伝子とは 異なる 511 遺伝子での実測 Log₁₀ PR_young_leaves と予測 Log₁₀ PR_young_leaves の散 布図。データ数(n) と近似線(実線)、相関係数(r)を図中に示す。

Explanatory variable	Weight
- ΔG_1~100_from_Cap	-0.050
uORF	-0.033
$-\Delta G_{-150} \sim -51_{from} AUG$	-0.020
$-\Delta G_1 \sim 300$ _from_Cap	-0.015
C_1~4_from_Cap	-0.012
GC23~-5_from_AUG	-0.008
25SrRNA_Duplex_Length_0~25_from_AUG	0.012
A_1~4_from_Cap	0.016
Log ₁₀ _CDS_Length	0.111

Table 15. 未展開葉の PLS モデルで示された重要な配列的特徴とその重み

最終的な PLS モデルに含まれている説明変数(重要な配列的特徴)と重み(PLS モデルへ与える影響)の一覧。重みが負の値を取るほど Log₁₀ PR_young_leaves に負 の影響を与えていることを、正の値を取るほど正の影響を与えていることを意味し ている。"-ΔG"は二次構造の形成度合いを、"uORF"は uORF の数を、"C, GC, A"は塩 基の比率を意味し、特定の領域内でのみ評価を行った場合は、基準となった Cap ま たは AUG からの位置を合わせて表記している。

2-3-7. 一過性発現実験による未展開葉に関する PLS モデルの検証

構築した未展開葉の PLS モデルは、実際の PR 値を十分に予測することができ、 そのモデルから未展開葉の翻訳状態の決定に重要である配列的特徴が示された。こ のモデルの信頼性を更に確かなものとし、加えて翻訳状態(リボソームローディン グ)だけではなく、翻訳効率(実際にタンパク質ができる効率)も説明することが 可能であることを確認するために、一過性発現実験から得られたデータを用いた検 証を行った。また、一過性発現実験では同じレポーター遺伝子を用いることで、PR 値に大きな影響を及ぼす CDS 長に関する説明変数以外を重点的に評価できる。当研 究室ではこれまでに、39遺伝子の5'UTR(Table 16)をレポーター遺伝子(F-luc) に連結し、in vitro 合成した RNA を用いた RNA 一過性発現実験を行っており、様々 な 5'UTR 配列による翻訳効率の違いが評価されている (Fig. 25A)。この一過性発現 実験では、シロイヌナズナ T-87 培養細胞の培養 3 日目(ポリソーム/マイクロアレ イ結果の 22℃、CAGE の Control の細胞とほぼ同一)を用いている。今回 PLS モデ ルを構築した未展開葉とは条件が異なるが、培養3日目の翻訳状態は、未展開葉の 翻訳状態と良く相関し、その相関係数は 0.63 である(Table 6)。また、各 5'UTR に 依存した翻訳効率の違いは、レポーター遺伝子である F-luc の活性値を供導入した R-luc の活性値によって導入効率を補正した F/R 値として評価されている。なお、 PR 値とリボソームの結合数は指数近似するが、リボソームの結合数と翻訳能力は線 形近似するため、PR 値に合わせ 39 種の 5'UTR に関して得られた F/R 値を対数変換 して示した(Fig. 12A)。39種の5'UTRの翻訳効率をPLS モデルから予測した結果 (Fig. 25B)、実測された翻訳効率(Log₁₀ F/R 値)と予測 PR 値はよく相関しており (Fig. 12C, r = 0.77)、今回構築した PLS モデルの信頼性を確認するとともに、実際 にタンパク質を合成する効率である翻訳効率も十分予測できるものであった。一方 で、RNA 一過性発現実験では、転写の影響を無視して翻訳効率を評価することがで きるが、RNAを in vitro 合成する実験上5'末端に必ず GG 配列が付加されてしまう。 今回の未展開葉の PLS モデルでは 5'末端4 nt 中のAとCの含量といった末端の配 列も重要な配列的特徴として示されており、それらの影響を評価するには不十分な 点があった。

そこで、DNA 一過性発現実験により更なる検証を行うことにした。DNA 一過性 発現実験では恒常的に発現し、TSS が 1 点に収束することが知られている CaMV35S プロモーターを使用し、その TSS とレポーターである F-luc 遺伝子の間に CAGE デ ータより選抜した 5'UTR を挿入し、導入した 5'UTR の翻訳効率を F/R 値として評 価した。7 種の遺伝子由来の、異なる 5'UTR バリアントを含む 10 種の 5'UTR (Table 17) の翻訳効率を評価し (Fig. 26A)、PLS モデルによる予測値と実測した F/R 値を 比較した結果 (Fig. 26B)、非常によく相関した (Fig. 26C, r = 0.84)。これらの結果 によって、今回構築した PLS モデルが実際の翻訳効率を十分に説明することが可能 であるということが確認された。

Gene	5'UTR sequence						
A+1~01/20	GG GCTGTGTCTTTTTTATAATGATGAAGTTCCTCGCTTTCAACGCCAACCAA						
Alig01450	AATTAGGGAAACATTTGAAAAAACTCAGTGATCTGCTCTTCTCTCTAATTGCA						
At1a06760	GGCTTCACAATCCTCATAATCACTTTCGAAATTACATTTACGCTTTCTTGCAATCAAATTTTCCGATCTT						
Aliguorou	AAGTTCAGAAGACG						
	GG AGATCCAAAGAGGACTTTTTTCAGCTTCATTGCTCTTTAAAATCTGTGGTAATCTCTCTTCCATTG						
At1g07230	TTATTCTTCAAGTAAATAATGCCCTTTGCTCCTCTCAACACCATTTATCTTATAAACCCTAGACACTC						
	CGCCGAATTTTTACCCTTCTCCACTGGTCATCCGCGTTTTTTTT						
At1g09070	GG ATCATAAAAAACATTCTCAGAGCAAATTTCAAGTTTATTTCATTCA						
A+1a20110	GG ATCTTCGTCATCGTTTCCAATTTCCGATATAATCTGATCAAATCATCGCCGACGATCACCGATTCAG						
Alig20110	CG						
A+1~27720	GG AGCAATTAAACAATTTCTTCACTGCAATTCACAAGCAACCTTCAAACTAAAACTCGAGAGACAAGA						
Alig27750	AATCCTCAGAATCTTTAACTTA						
A+1~17220	GG AAAACATCAAAGAGTCACTCTAAACTCATCTCTCGCCGAATTCTCCCCCAACAATTTCCGCCGGA						
Allg47550	AACAAATTCTCAGATTCCGGTAACTCTAAAACT						
At1g55160	GG TTGAAGAAGAAGAAGAAAAAGAAGAAACCTGGGAAGAAGTGAGAAACTCATCTGATCGCC						
A+1~55220	GG ATCATCACAACACAAAATCAAAAACAAGAATAACAAAAATCTTTCTCTTATAAATTCTTATTTCAAGAC						
Alig55550	ATCAAAGGAGAATTA						
At1g56580	GGTAAGAGAGAGAGAGATCTTAACACAAAACAAAGCAAACACCAAAAAAAA						
A+1~60400	GG ATTTCAAGAACCTTGAGAACATCAAAAACTAACACAGAAAGAA						
Al1g09490	AGATTGTTTTCTAAATTGTCTGAAAATC						
At1g77120	GG TACATCACAAAACCAAAAACTAACAAAAGATCAAAAGCAAGTTCTTCACTGTTGATA						
A+1a77760	GG ACCAAAAAATTTCACAAAACCAAAACCAAAAAAAAAA						
Alig///00	AATCACTAAACC						
	GG ATCGGTGAGGTTGAGAGTAATTCACTACACACACACAAAAAATAAAT						
۸±1œ78080	ACAAAATTGGTAGATAACGAGCAATTGTTTTTTTCAGATTTGATCCTGAATTTTTACATTTTTTTT						
Allgrouou	GCAATCTCCCCCTAATCTGTTGTTTCTCGCTTCTTCTGTTAATCATCTGTCTTTCAAAAAGAAAG						
	AAAAGAAAAATTCGATTTCTGGGTTTGTTTTTGTCATACAGAAAAAAA						
At2g15290	GGAAAATAAACTCTCCACTAAAAAAT						
	GGCTAGAGATTTTGAAACCGAAAACCCCAAAAAACCCCTTTGACGCCTCCTTCTTATCTCTTTATAAA						
At2g21790	AAACCATTTCTTTCCTGCAACATCGTTGCTTATCATCAGACGCACATCACCTGTTCGATAAAATTCCTC						
	TGAGAGTGTTTTTTGTTTTCCTTCTGACAAAGAAAT						
$\Lambda t 2 \sigma^2 \Omega 25 \Omega$	GGAGTTTTATCCTCTTTTTCATTTCAAGATCAATTTCATAAAAAAGTTTCCTTTTTTAGCGAATCCTCTG						
A12g30230	TTTTAGAAATCTTAAAGTTGTCTCCTTTATTAAAGACCATC						
$\Lambda t 2 \sigma 2 4 0 5 0$	GGAGGGTTCTAAATCTGAGATTTCCAGAGAACTGTGCATATCTTCATAGTTTCTTTGAATTTCACCGTA						
A12g34030	ТТСАТАССАТАААА						

	GGACCATCCTCATCTCAATCAACAAACCTAACTCTTTCTCTATACAAGAGCGCAAGCTCGAAGGCG
At2g39700	CTCTTGTTCTTTCTTCATTTTCTCCTTAACAATCACCCTCATAGTAACTTTAAAAACTCTCTGTTTCTAGT
	AATTCACACAAA
	GGCCTTCTCCACATAAGTTACATCTCTCGTGTTTTGTTT
At2g41630	AGAAGACGAGAGAAGAAGAAGAAGTAGAGAAATCGAAGGAATCTGTAACCGATTTTAAGATCTCAA
	TTTTTAGGGTTGTTGATTTTTCAATTTCTGGGTTAATTTTTTTAGGGTTTTCATTTGGAATC
At2g46390	GGGAAAACGAAAGTTCCGAAGAAGAAGAAGAAGAAGAAGGAGAAAAG
A + 2 - 11120	GGGAATTGGCGGCCGCTCATTTTCCTGAAATTTGCATAGAATCAGAGGAGTGAAGAGTTTATCTTCTG
At3g11120	TGAATTCACC
At3g15450	GGATAACACATTTCAAGCATTGGATTAATCAAAGACAAAGAAAACGAAA
At3g46620	GGAACTTCAGATCCTTTCACCAGCAACACAAGTTATTTTCAAAAG
At3g47610	GGCCTTTCTTGTCGTCGTTTCGAAGAGACTAAAGGCGACGGAGAGAATCGGAGAAGAAG
At3g51860	GGCAGATGTAGTAGAATCAAAACGTCTTAAAAC
At4g02820	GGAAACTAAACAAAA
	GGATTAACAAACAAACCGAAAAAAGAAAAAAACTCATCTTTCTCCAAAATCACACAAATCTTCTT
A (4 10000	TTGTTATTCTCAATCCTTCCTTCATCCCCAGGTTTCTTTC
At4g12000	TGGGTTTTTCTCTCTGAATCCGATCGGAGAATCCAGTCGATTACTAATCTAGCGCTCTCTTTTTTCTAC
	TCG
A+4~14560	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGCAATAACAAGAGAAGAAGAAGAA
At4g14560	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGCAATAACAAGAGAAGAAGAA GTAGTTCAAGAATTAAGGAAGAGAGAGCTTCTCCGTTAAAGTATAGTGAGAGAAT
At4g14560 At4g15000	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGCAATAACAAGAGAAGAAGAAGAA GTAGTTCAAGAATTAAGGAAGAGAGAGAGCTTCTCCGTTAAAGTATAGTGAGAGAAAT GGACTTAGGGTTCATAGCAGCCAGAGAGAGAGAGAGACAAGTGAGAGGGATCTACCAAACGAAGCAACA
At4g14560 At4g15000 At4g18430	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGCAATAACAAGAGAAGAAGAAGAA GTAGTTCAAGAATTAAGGAAGAGAGAGAGCTTCTCCGTTAAAGTATAGTGAGAGAGA
At4g14560 At4g15000 At4g18430 At4g32060	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGGAGCAATAACAAGAGAAGAAGAA GTAGTTCAAGAATTAAGGAAGAGAGAGAGCTTCTCCGTTAAAGTATAGTGAGAGAAAT GGACTTAGGGTTCATAGCAGCCAGAGAGAGAGAGAGAGAG
At4g14560 At4g15000 At4g18430 At4g32060	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGGAGCAATAACAAGAGAAGAAGAA GTAGTTCAAGAATTAAGGAAGAGAGAGAGAGCTTCTCCGTTAAAGTATAGTGAGAGAGA
At4g14560 At4g15000 At4g18430 At4g32060 At5g03230	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGGAGGAATAACAAGAGAAGAAGAAGTAGTTCAAGAATTAAGGAAGAGAGAGAGAGCTTCTCCGTTAAAGTATAGTGAGAGAGA
At4g14560 At4g15000 At4g18430 At4g32060 At5g03230 At5g08650	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGGAGGAGCAATAACAAGAGAAGAAGAA GTAGTTCAAGAATTAAGGAAGAGAGAGAGAGCTTCTCCGTTAAAGTATAGTGAGAGAAAA GGACTTAGGGTTCATAGCAGCCAGAGAGAGAGAGAGAGAACAAGTGAGAGGGATCTACCAAACGAAGCAACA GGACACATCTCTCTGAATTCTTCTTTACGATTTTGTAACTTCTATCAAATACCTTAATA GGGTCAAAAGAATCTGCGAAAAATAAGAGAGAGAGAGAGA
At4g14560 At4g15000 At4g18430 At4g32060 At5g03230 At5g08650	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGGAGCAATAACAAGAGAAGAAGAAGTAGTTCAAGAATTAAGGAAGAGAGAGAGCTTCTCCGTTAAAGTATAGTGAGAGAAATGGACTTAGGGTTCATAGCAGCCAGAGAGAGAGAGAGACAAGTGAGAGGGGATCTACCAAACGAAGCAACAGGCAACATCTCTCTGAATTCTTCTTTACGATTTTGTAACTTCTATCAAATACCTTAATAGGGTCAAAAGAATCTGCGAAAAATAAGAGAGAGAGAGAGA
At4g14560 At4g15000 At4g18430 At4g32060 At5g03230 At5g08650 At5g09880	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGA
At4g14560 At4g15000 At4g18430 At4g32060 At5g03230 At5g08650 At5g09880	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGGAGAAGAAGAAGAAGAAGAAGAAGAAGAA
At4g14560 At4g15000 At4g18430 At4g32060 At5g03230 At5g08650 At5g09880 At5g11670	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGGAGGAATAACAAGAGAAGAAGAA GTAGTTCAAGAATTAAGGAAGAGAGAGCTTCTCCGTTAAAGTATAGTGAGAGAGA
At4g14560 At4g15000 At4g18430 At4g32060 At5g03230 At5g08650 At5g09880 At5g11670 At5g39740	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGGAGAAGAAGAAGAAGAAGAAGAAGAAGAA
At4g14560 At4g15000 At4g18430 At4g32060 At5g03230 At5g08650 At5g09880 At5g11670 At5g39740	GGACACAAGCATTTTCAAGGATATCAAAATCACAATCCCAAGAAGAGAGGAATAACAAGAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAA
At4g14560 At4g15000 At4g18430 At4g32060 At5g03230 At5g08650 At5g09880 At5g11670 At5g39740 At5g54510	GGACACAAGCATTTTCAAGGATATCAAATCACAATCCCAAGAAGAGGAATAACAAGAGAAGAAGAAGTAGTTCAAGAATTAAGGAAGAGAGAGGAGCTTCTCCGTTAAAGTATAGTGAGAGAAATGGACTTAGGGTTCATAGCAGCCAGAGAGAGAGAGAGAGAAGTGAGAGGGGATCTACCAAACGAAGCAACAGGACATCTCTCTGAATTCTTCTTTACGATTTTGTAACTTCTATCAAATACCTTAATAGGGTCAAAAGAATCTGCGAAAAATAAGAGAGAGAGAGAGA

Table 16. RNA 一過性発現実験に用いられた遺伝子の 5'UTR 配列

解析の都合上、挿入された2塩基のGを赤色で示している。

Figure 25. RNA 一過性発現実験による PLS モデルの検証

(A) Matsuura ら (Matsuura et al. 2013) によって報告された 39 遺伝子由来の 5'UTR をレポーター遺伝子 (F-luc) に連結した各構築での F-luc 活性値を示す。F-luc 活性値は供導入した R-luc 活性値によって F/R 活性値として補正し対数値に変換している。(B) 39 遺伝子由来の 5'UTR についての予測 PR_young_leaves 値を示している。

(C) 39 遺伝子由来の 5'UTR についての予測 PR_young_leaves 値と実測された Log₁₀
 F/R 活性値の散布図。近似線(実線)とピアソンの相関係数(r)を図中に示す。

Gene	5'UTR sequence				
A + 1 - 77120 1	TACATCACAATCACAAAAACTAACAAAAGATCAAAAGCA				
At1g//120.1	AGTTCTTCACTGTTGATA				
A+1~06760 1	CAATCCTCATAATCACTTTCGAAATTACATTTACGCTTTCTT				
At1g00700.1	GCAATCAAATTTTCCGATCTTAAGTTCAGAAGACG				
At1g34000.1	AGACAATTCAACTAACAAAAA				
At4g09650.1	GAGAAACCACAAATCTCTCTTTCTCTCAAACTCTCTCAACAA				
TSS1	CAACA				
At4g09650.1					
TSS2					
$A \pm 1 = 20440.1$	AAACATTACTCATTCACAAAACCATCTTAAAGCAACTACAC				
Allg20440.1	AAGTCTTGAAATTTTCTCATATTTTCTATTTACTATATAAAC				
1551	TTTTAATCAAATCAAGATTAACT				
$A \pm 1 = 20440.1$	CAAACATTACTCATTCACAAAACCATCTTAAAGCAACTACA				
Allg20440.1	CAAGTCTTGAAATTTTCTCATATTTTCTATTTACTATAAA				
1552	CTTTTAATCAAATCAAGATTAACT				
A+1a20440 1	ACAAACATTACTCATTCACAAAACCATCTTAAAGCAACTAC				
TSS3	ACAAGTCTTGAAATTTTCTCATATTTTCTATTTACTATATAA				
	ACTTTTAATCAAATCAAGATTAACT				
Δ+5α12420 1	GATCGATCAAACCAAGAAAAAACACTTTCGTATTTCCCTCG				
At3g13420.1	ACGAAAAA				
A+2a22230 1	ACCTGCAAAAACAACATCTCTCACATTCTCTCTAAACTCTCT				
AL2g2220.1	TCACTGTTACTCGACA				

Table 17. DNA 一過性発現実験に用いた遺伝子の 5'UTR 配列

At4g09650.1 と At1g20440.1 は異なる TSS に由来する 5'UTR バリアントも試験している。

Figure 26. DNA 一過性発現実験による PLS モデルの検証

(A) 7種の遺伝子由来の 5'UTR バリアントを含む 10種の 5'UTR をレポーター 遺伝子(F-luc)に連結した各構築での F-luc 活性値を示す。F-luc 活性値は供導入し た R-luc 活性値によって F/R 活性値として補正し対数値に変換している。(B) 10種 の 5'UTR についての予測 PR_young_leaves 値を示している。(C) 10種の 5'UTR に ついての予測 PR_young_leaves 値と実測した Log₁₀ F/R 活性値の散布図。近似線とピ アソンの相関係数(r)を図中に示す。

2-3-8. 塩基置換による PLS モデルで示された重要な配列的特徴の検証

これまでの結果から、未展開葉に関する PLS モデルによって、翻訳状態の決定に 関わる重要な配列的特徴が示され、その PLS モデルの信頼性を一過性発現実験によ り確認した。更なる検証として、未展開葉に関する PLS モデルによって示された重 要な配列的特徴について個々にその重要性を確かめるため、いくつかの 5'UTR 上の 配列的特徴量を変化させた配列置換系列を作製し、レポーター遺伝子である F-luc に連結し、シロイヌナズナ T-87 培養細胞を用いた DNA 一過性発現実験によって、 レポーター活性を指標とした評価を行った。今回、検証した配列的特徴は、翻訳状 態に強い負の影響を与える mRNA の Cap 側の二次構造(-ΔG_1~100_from_Cap) と Cap 側 4 nt での C の含量 (C_1~4_from_Cap)、強い正の影響を与える Cap 側 4 nt での A の含量(A_1~4_from_Cap)である(Table 15)。他にモデルによって示され た影響力が大きい配列的特徴として、強い負の影響を与える uORF があるが、uORF が本来の AUG からの翻訳を抑制することは既によく知られているため本研究では 改めての検証は行っていない。置換系列(Substitute series: SS1、SS2)には転写開始 点が1点に66.7%以上収束し、今回検証する配列的特徴を本来の5'UTR内にあまり 持たない At5g08680.1 と At5g55250.1 の 5'UTR を選抜した。そこに負の配列的特徴 である Cap 側の二次構造の形成度合いを増加させた配列(強く形成する N-ΔG、弱 く形成する N- Δ G_mild)、Cap 側 4 nt の C を増加させた配列 (NC)、正の配列的特 徴である Cap 側 4 nt の A を増加させた配列(PA)、正と負の配列的特徴を複合的に 配列置換し、モデル上は非常に高い PR 値が期待できる配列(P_Multi)を作製し検 証した(Table 18, Table 19)。この時、他の配列的特徴の量はできる限り変化させな い様に配列を置換した。なお、P-Multiの Cap 側 4 nt はモデル上では AAAA が望ま しいが、35S プロモーターの TSS 下流に A が長く連続する 5'UTR を連結した場合、 本来の TSS から転写されない事例があったため、今回は GAAA とした。これらの 配列を用いて一過性発現実験を行い各置換系列の翻訳効率を調べたところ(Fig. 27A)、概ねモデルから予測した結果と一致し(Fig. 27B)、実測した翻訳効率と予測 PR 値の間には高い相関(r = 0.71)が認められた(Fig. 27C)。特にモデルによって 示された負の配列的特徴である-∆Gを増加させた場合では、顕著に翻訳効率が低下 しており、加えて- ΔG_{mild} 等の結果から- ΔG が増加するにつれ翻訳効率も徐々に 低下していくことも示された。また、モデルによって示された負の配列的特徴であ る Cap 側4 nt の C を増加させると、SS1 では翻訳効率の減少が確認された一方で、 SS2 では大きな変化は認められなかった。正の配列的特徴である Cap 側 4 nt の A を 増加させた場合では、SS1 では逆に少し翻訳効率が下がったものの、SS2 では翻訳 効率の増加が確認された。しかし、モデル上では非常に高い翻訳効率が期待される P-Multi は、SS1、SS2 でともに翻訳効率が落ちる結果となった。この結果は、PLS モデルの構築に用いた未展開葉での翻訳状態と一過性発現実験に用いているプロト プラスト化した培養細胞での翻訳状態の違いか、この PLS モデルでは評価されてい ない他の重要な配列パターンが出現したことに起因している可能性が考えられる。

予測と大きく異なるこの P-Multi を除外した場合、翻訳効率と予測 PR 値の相関係数 は 0.88 であった。

Fig. 27 の結果には不明瞭な点があったため、はっきりとした影響が確認できなかった Cap 側 4 nt での A と C 含量の影響と複合的な置換である P-Multi について再検証を行った。新たに置換系列として At5g24840.1 と At4g38160.3 の 5'UTR を SS3、SS4 として選抜し、SS1 や SS2 と同様に置換系列を作製し(Table 20, Table 21)、一過性発現実験にて翻訳効率を測定した。その結果、実測した翻訳効率(Fig. 28A)と予測した PR 値(Fig. 28B)の間で非常に高い相関(r = 0.93)が認められた(Fig. 28C)。Cap 側 4 nt の A と C 含量に関しては、SS3 では顕著な変化ではなかったが、SS4 では予測通りの結果を示した。加えて、SS3 と SS4 の両方で P-Multi は、本来の配列よりも高い翻訳効率を示しており、PLS モデルによる予測と類似した結果となった。一部では配列置換による影響が少なかったものの全体的には、モデルによって示された配列的特徴は、実際の翻訳効率にも影響を与えていることが示され、構築したPLS モデルの精度と、そのモデルによって示された配列的特徴の重要性を確認できた。しかし、前述のように未展開葉でのデータから構築した PLS モデルと、評価に用いたプロトプラスト化した細胞での翻訳状態の差異について考慮する必要がある。

Name	5'UTR sequence
SS1	ATTCATTTGATAACCCTAGTAGCTCCTTTTTTCTCTATCTCGCTTTCTCTGTTTCACCACAGTC
SS1_NC	ACCCATTTGATAACCCTAGTAGCTCCTTTTTTCTCTATCTCGCTTTCTCTGTTTCACCACAGTC
SS1_N-∆G	ATTCATTTGATAACCCTAGTAGCGCTAGGGTTATCAAGTGAGCTTTCTCTGTTTCACCACAGTC
SS1_N- ΔG_mild	ATTCATTTGATAACCAAGTGAATTCCTTTTTTCTCTATCTCGCTTTCTCTGTTTCACCACAGTC
SS1_PA	AAACATTTGATAACCCTAGTAGCTCCTTTTTTCTCTATCTCGCTTTCTCTGTTTCACCACAGTC
SS1_P_Multi	GAAAATTTGATAACCCTAGTAATCTTTCCCCCTCCCTATTTCACCCCCTCTCATTATAGATCACAC
SS2	ATTCACAAAAAGAAGGTGTAGAGAAAGTTAAAGAGAGAAGGAGAGATCCATAGAGAAAGAGAAAGAGA
SS2_NC	ACCCACAAAAAGAAGGTGTAGAGAAAGTTAAAGAGAGAAGGAGAGATCCATAGAGAAAGAGAAAGAGA
SS2_N-ΔG	ATTCACAAAAAGAAGGTGTAGAG <mark>TGCGCCTTCTTTTGTGAAT</mark> AGATCCATAGAGAAAGAGAAAGAGA
SS2_N- Δ G_mild	ATTCACAAAAAGATTTTGTGAATAAAGTTAAAGAGAGAAGGAGAGATCCATAGAGAAAGAGAAAGAGA
SS2_PA	AAACACAAAAAGAAGGTGTAGAGAAAGTTAAAGAGAGAAGGAGAGATCCATAGAGAAAGAGAAAGAGA
SS2_P_Multi	GAAAACAAAAAGAAGGTGTAGAGAAAGTTAAAGAGAGAAGGAGAGAAGGATAGAGAAAGAGAAAGAGA

Table 18. DNA 一過性発現実験に用いた置換系列 SS1 と SS2 の 5'UTR 配列

置換系列に用いた SS1、SS2 の配列とその置換系列の配列を示している。塩基置換した配列を赤で示した。

		Region			Secondary_Structure			
		From Cap		From AUG	From_Cap		From_AUG	
		1~	~ 4	-23~-8	1-100	1-300	-150~-51	
Name	Predicted PR	А	С	GC	-ΔG	-ΔG	-ΔG	
SS1_NC	0.51→0.46	1	1→3	1	13.1	67.9→69.2	0	
$SS1_N-\Delta G$	0.51→0.33	1	1	1	13.1→36.8	67.9→87.9	0	
$SS1_N-\Delta G_mild$	0.51→0.47	1	1	1	13.1→18.3	67.9→69.2	0	
SS1_PA	0.51→0.57	1→3	1	1	13.1	67.9→66.7	0	
SS1_P_Multi	0.51→0.73	1→3	1→0	1→0	13.1→3.8	67.9→57.8	0	
SS2_NC	0.62→0.57	1	1→3	0	4.2	59.9→58.8	0→0.2	
$SS2_N-\Delta G$	0.62→0.38	1	1	0	4.2→29.7	59.9→83.7	0	
$SS2_N-\Delta G_mild$	0.62→0.55	1	1	0	4.2→10.7	59.9→65.1	0	
SS2_PA	0.62→0.69	1→3	1	0	4.2→ 4.7	59.9→59.1	0	
SS2_P_Multi	0.62→0.78	1→3	1→0	0	4.2→ 0.1	59.9→56.2	0	

Table 19. SS1 と SS2 の各置換系列の配列的特徴の変化

それぞれの置換系列での配列的特徴の変化とそれに伴う予測 PR 値の変化を示している。

Figure 27. DNA 一過性発現実験による置換系列 SS1 と SS2 の評価

(A) 5'UTR 配列の置換系列をレポーター遺伝子(F-luc)に連結した各構築での
F-luc 活性値を示す。F-luc 活性値は供導入した R-luc 活性値によって F/R 活性値として補正し対数値に変換している。(B)置換系列についての予測 PR_young_leaves 値を示している。(C)置換系列についての予測 PR_young_leaves 値と実測した翻訳効率を表す Log₁₀ F/R 活性値の散布図。近似線(実線)とピアソンの相関係数(r)を図中に示す。

Name	5'UTR sequence
SS3	GAGGGTTAGTTTTCGAAGAACGACGAGGTCGAGATTATTGATTTTCAAGTGGAGATTGAATCAGTGATA
SS3_NC	GCCCGTTAGTTTTCGAAGAACGACGAGGTCGAGATTATTGATTTTCAAGTGGAGATTGAATCAGTGATA
SS3_PA	GAAAGTTAGTTTTCGAAGAACGACGAGGTCGAGATTATTGATTTTCAAGTGGAGATTGAATCAGTGATA
SS3_P_Multi	GAAACAAACAAAAGGAAGAGCAACGATCGGGAGAAATAATTAAAAGAATAGGAGATAGAAAGAGTGAAA
SS4	GTGGATAAGCTTCTCACTTTCAGTTCAATTGGATAGCCGGAAAGGCTCTCCTCCAAGTGGCGTTTAT
SS4_NC	GCCCATAAGCTTCTCACTTTCAGTTCAATTGGATAGCCGGAAAGGCTCTCCTCCAAGTGGCGTTTAT
SS4_PA	GAAAATAAGCTTCTCACTTTCAGTTCAATTGGATAGCCGGAAAGGCTCTCCTCCAAGTGGCGTTTAT
SS4_P_Multi	GAAAATAAATCCCTCATCCCCAACCCAACCAAGTACCGAAGAACTAACCAAAAAATACAACATTCAA

Table 20. DNA 一過性発現実験に用いた置換系列 SS3 と SS4 の 5'UTR 配列

置換系列に用いた SS1、SS2 の配列とその置換系列の配列を示している。塩基置換した配列を赤で示した。

		Region			Secondary_Structure			
		From Cap		From AUG	From_Cap		From_AUG	
		1~4		-23~-8	1-100	1-300	-150~-51	
Name	Predicted PR	А	С	GC	-ΔG	-ΔG	-ΔG	
SS3_NC	0.52→0.42	1→0	0→3	0	16.1→17.2	70.8→73.9	0.3→0	
SS3_PA	0.52→0.58	1→3	0	0	16.1→15.4	70.8→70.4	0.3→1	
SS3_P-Multi	0.52→0.78	1→3	0	0	$16.1 \rightarrow 0.1$	70.8→56.5	0.3→0	
SS4_NC	0.43→0.37	0	0→3	1	20.8→20.5	79.5→84.2	2→0.2	
SS4_PA	0.43→0.51	0→3	0	1	20.8→20.5	79.5→76.3	$2 \rightarrow 0$	
SS4_P-Multi	0.43→0.78	0→3	0	1→0	$20.8 \rightarrow 0.1$	79.5→56.4	$2 \rightarrow 0$	

Table 21. SS3 と SS4 の各置換系列の配列的特徴の変化

それぞれの置換系列での配列的特徴の変化とそれに伴う予測 PR 値の変化を示している。

Figure 28. DNA 一過性発現実験による置換系列 SS3 と SS4 の評価

(A) 5'UTR 配列の置換系列をレポーター遺伝子(F-luc)に連結した各構築での
 F-luc 活性値を示す。F-luc 活性値は供導入した R-luc 活性値によって F/R 活性値として補正し対数値に変換している。(B)置換系列についての予測 PR_young_leaves 値を示している。(C)置換系列についての予測 PR_young_leaves 値と実測した翻訳効率を表す Log₁₀ F/R 活性値の散布図。近似線とピアソンの相関係数(r)を図中に示す。

2-3-9. 様々な条件下での PLS モデルの構築とその比較

ここまでに、未展開葉において、5'UTR の配列的特徴で mRNA の翻訳状態を説明 できる PLS モデルの構築を行い、構築した PLS モデルが実際のタンパク質の生産効 率である翻訳効率を十分に説明できることを確認し、構築した PLS モデルの信頼性 を確かめた。この未展開葉でのモデルによって、翻訳状態に影響を与える重要な配 列的特徴が示されているが、翻訳状態は様々な条件で異なっていることから、それ ぞれの翻訳状態には異なる配列的特徴が関係している可能性が考えられた。そこで、 翻訳状態 (PR 値) と 5'UTR の配列情報をともに取得している 2DAG、展開葉 (mature leaves)、培養 3 日目コントロール (Control)、熱ストレス下 (37℃)、塩ストレス下

(200 mM) についても未展開葉と同様に PLS モデルの構築を行い、その条件における翻訳状態の決定に重要な配列的特徴を解析した。

PR_2DAG を配列的特徴で説明する PLS モデルの構築では、最も翻訳状態をよく 説明できた予備的な説明変数の再選抜 5 回目のモデルを使用した。この PLS モデル は翻訳状態を十分に説明でき(Fig. 29)、この PLS モデルより 8 個の重要な配列的 特徴が示された(Table 22)。特に翻訳状態に影響を与えていた配列的特徴には、二 次構造の形成度合いや A リッチな配列パターン(Motif)などがあった(Fig. 30)。

展開葉でのPLS モデルの構築では、最も翻訳状態をよく説明できた予備的な説明 変数の再選抜 6 回目のモデルを使用した。このPLS モデルも翻訳状態を十分に説明 でき(Fig. 31)、このPLS モデルより 16 個の重要な配列的特徴が示された(Table 23)。 特に翻訳状態に影響を与えていた配列的特徴には、二次構造の形成度合いや CT リ ッチな Motif (Fig. 32)、A 含量などがあった。なお、この PLS モデルで示されてい る uCUG は過去に非 AUG 翻訳開始コドンとして報告がある配列であり(Brar et al. 2012, Ohta et al. 2010, Depeiges et al. 2006)、uORF に関連した配列的特徴である。

37℃でのPLS モデルの構築では、最も翻訳状態をよく説明できた予備的な説明変数の再選抜なしのモデルを使用した。このPLS モデルも翻訳状態を十分に説明でき (Fig. 33)、このPLS モデルより12 個の重要な配列的特徴が示された(Table 24)。 特に翻訳状態に影響を与えていた配列的特徴には、二次構造の形成度合いやC含量、 A 含量、A リッチな Motif (Fig. 34) などがあった。

残りの Control と 200 mM に関しては、十分な精度の PLS モデルの構築には至ら なかった。これは、精度の高い PLS モデルの構築には、目的変数(PR 値)がある 程度幅広く分布している必要があるが、Control と 200 mM では他の条件に比べ PR 値の分布が狭かったのが原因であると考えられる。

翻訳状態を十分に説明できた 2DAG、未展開葉、展開葉、37℃の PLS モデルから 合計 45 個 (モデル間の重複を含む)の様々な配列的特徴が示され、それらの中には 二次構造の形成度合いなどの全てのモデルに含まれていた配列的特徴や、逆に展開 葉のモデルでのみ示されている CT リッチな Motif 等の条件特異的な配列的特徴が 存在していた。各条件での翻訳状態の決定に関わる配列的特徴の違いを更に解析す るため、各モデルで示された 45 個の配列的特徴について、ウォード法による階層的

クラスター分析を行った (Fig. 35)。データセットには、TSS が分散しすぎておらず、 幅広い PR 値分布を示す 1023 遺伝子の配列情報を使用し、各遺伝子における 45 個 の配列的特徴の量を評価した。類似する配列的特徴ならば各遺伝子の評価値も近い 値となり1個のクラスターを形成するが、大きく異なる配列的特徴ならば各遺伝子 での評価値も大きく異なる値を示すこととなり異なるクラスターを形成することと なる。その結果、それぞれの配列的特徴を、類似した配列的特徴ごとに分けること ができ、それらを8個のクラスターとした(Fig. 22、赤枠で示す)。 クラスター1は、 uORF や 5'UTR の長さに関連するものが多く(-ΔG_-150~-51_from_AUG という配 列的特徴が含まれるが、長い 5'UTR を持つ遺伝子での特徴である)、それらに関連 したクラスターと考えられる。クラスター2は、CまたはTに関わるものが多く、C 及び T の含量に関連したクラスターと考えられる。クラスター3 に属する特徴は、 CDS 内の 25S rRNA との相補配列長や Cap 側 4 nt の C 含量など大きく異なる配列的 特徴であり解釈はできていない。クラスター4 は、Cap 側の A 含量、クラスター5 は、CDS 長を表していた。クラスター6 は、A 含量または A (A 及び G) リッチな Motif を示し、特に影響が大きいものには Cap から 50 nt 内を示すものが多く、Cap 側の A 含量に関連したクラスターと考えられる。クラスター7 は、Cap 側 100 nt の 二次構造またはG含量に関わるものが多くCap 側の二次構造に関連したクラスター と考えられる。クラスター8 は、Cap から広い範囲内での二次構造に関連している と考えられる。

それぞれのクラスターが各条件での翻訳状態に与える影響を評価するため、各条 件での重みをクラスター単位で合計した(Table 25)。全ての条件で翻訳状態に影響 を与えるクラスターは、5 と7 であった。CDS 長を示すクラスター5 は、PR 値(リ ボソームローディング)に CDS 長が直接的に関わるため全ての条件で強い正の影響 を与えていた。Cap 側の二次構造に関連しているクラスター7 は、全ての条件で負 の影響を与えており、未展開葉では他より影響が強かった。クラスター1、2、6、8 は、条件間で与える影響の有無が異なっていた。uORFや5'UTRの長さに関連する クラスター1は、37℃以外では負の影響を与えており、特に 2DAG と未展開葉での 影響が大きかった。CとTの含量に関連するクラスター2は、展開葉と37℃でのみ 負の影響を与えていた。Cap 側の A 含量に関連するクラスター6 は、37℃でのみ強 い正の影響を与えていた。Cap から広い範囲での二次構造に関連するクラスター8 は、2DAG以外では負の影響を与えており、特に展開葉と37℃で影響が大きかった。 これらの結果によって、全ての条件で翻訳状態に影響を与える共通する配列的特徴 の存在と、特定の条件でのみ翻訳状態に影響を与える特異的な配列的特徴が存在す ることが明らかとなった。このことは、第一章において考察した様々な条件で共通 する翻訳機構と、特定の条件に特異的な翻訳機構にそれぞれ関わっていると考えら れる。

Figure 29. 2DAG の PLS モデルによる予測 PR 値と実測 PR 値の相関

(A) PLS モデルの構築に用いた 439 遺伝子についての実測 Log₁₀ PR_2DAG と予測 Log₁₀ PR_2DAG の散布図。データ数(n) と近似線(実線)、相関係数(r)、モデルの精度(Q²)を図中に示す。(B) PLS モデルの構築に用いた 439 遺伝子とは異なる 438 遺伝子についての実測 Log₁₀ PR_2DAG と予測 Log₁₀ PR_2DAG の散布図。データ数(n) と近似線(実線)、相関係数(r)を図中に示す。

Explanatory variable	Weight
$-\Delta G_{-150} \sim -51_{from} AUG$	-0.047
$-\Delta G_1 \sim 100$ _from_Cap	-0.026
Motif_2DAG-1	-0.024
25SrRNA_Duplex_Length_301~400_from_Cap	-0.013
T_1~6_from_Cap	0.011
25SrRNA_Duplex_Length_501~600_from_Cap	0.015
Motif_2DAG-1_1~50_from_Cap	0.035
Log ₁₀ _CDS_Length	0.113

Table 22. 2DAG の PLS モデルで示された重要な配列的特徴とその重み

最終的な PLS モデルに含まれている説明変数(重要な配列的特徴)と重み(PLS モデルへ与える影響)の一覧。重みが負の値をとるほど Log₁₀ PR_2DAG に負の影響 を与えていることを、正の値をとるほど正の影響を与えていることを意味している。 説明変数に含まれている Motif_2DAG-1 の配列パターンは Fig. 30 に示してい る。"-ΔG"は二次構造の形成度合いを、"T"は塩基の比率を意味し、特定の領域内でのみ評価を行った場合は、基準となった Cap または AUG からの位置を合わせて表記している。

Figure 30. 2DAG の PLS モデルで示された Motif の配列パターン 2DAG での PLS モデルで示された Motif_2DAG-1 の配列パターン。文字の高さは、 その位置での塩基の偏りの大きさを示している。

Figure 31. 展開葉の PLS モデルによる予測 PR 値と実測 PR 値の相関

 (A) PLS モデルの構築に用いた 508 遺伝子についての実測 Log₁₀ PR_mature_leaves と予測 Log₁₀ PR_mature_leaves の散布図。データ数(n) と近似線(実線)、相関係 数(r)、モデルの精度(Q²) を図中に示す。(B) PLS モデルの構築に用いた 508 遺 伝子とは異なる別の 508 遺伝子についての実測 Log₁₀ PR_mature_leaves と予測 Log₁₀ PR_mature_leaves の散布図。データ数(n) と近似線(実線)、相関係数(r) を図中 に示す。

Explanatory variable	Weight
$-\Delta G_1 \sim 300$ _from_Cap	-0.042
$-\Delta G_1 \sim 50$ _from_Cap	-0.030
Motif_ML-1_1~25_from_Cap	-0.015
25SrRNA_Duplex_Length150~-51_from_AUG	-0.012
G_1~13_from_Cap	-0.012
Motif_ML-1	-0.010
uCUG	-0.008
5'UTR_Length	-0.007
Motif_ML-2100~-1_from_AUG	-0.006
Motif_ML-2	-0.004
$-\Delta G_{-5} \sim 4_{from} AUG$	0.006
Motif_ML-210~-1_from_AUG	0.010
T25~-5_from_AUG	0.010
A_1~13_from_Cap	0.013
A50~-8_from_AUG	0.015
Log ₁₀ _CDS_Length	0.100

Table 23. 展開葉の PLS モデルで示された重要な配列的特徴とその重み

最終的な PLS モデルに含まれている説明変数(重要な配列的特徴)と重み(PLS モデルヘ与える影響)の一覧。重みが負の値をとるほど Log₁₀ PR_mature_leaves に 負の影響を与えていることを、正の値をとるほど正の影響を与えていることを意味 している。説明変数に含まれている Motif_ML-1 と Motif_ML-2 の配列パターンは Fig. 32 に示している。"-ΔG"は二次構造の形成度合いを、"uCUG"は CUG の配列パ ターンの数を、"G, T, A"は塩基の比率を意味し、特定の領域内でのみ評価を行った 場合は、基準となった Cap または AUG からの位置を合わせて表記している。

Figure 32. 展開葉の PLS モデルで示された Motif の配列パターン

展開葉での PLS モデルで示された Motif_ML-1 (A) と Motif_ML-2 (B) の配列パ ターン。文字の高さは、その位置での塩基の偏りの大きさを示している。

Figure 33. 37℃の PLS モデルによる予測 PR 値と実測 PR 値の相関

(A) PLS モデルの構築に用いた 534 遺伝子についての実測 Log₁₀ PR_37℃と予測 Log₁₀ PR_37℃の散布図。データ数(n)と近似線(実線)、相関係数(r)、モデルの 精度(Q²)を図中に示す。(B) PLS モデルの構築に用いた 534 遺伝子とは異なる別の 533 遺伝子についての実測 Log₁₀ PR_37℃と予測 Log₁₀ PR_37℃の散布図。データ数(n)と近似線(実線)、相関係数(r)を図中に示す。

Explanatory variable	Weight
$-\Delta G_1 \sim 200$ _from_Cap	-0.064
C_1~45_from_Cap	-0.056
$-\Delta G_1 \sim 250$ _from_Cap	-0.045
$Motif_37^{\circ}C-1_{-100}\sim -1_{from}AUG$	-0.031
GG	-0.023
Motif_37°C-125~-1_from_AUG	-0.012
Motif_37°C-210~-1_from_AUG	0.018
T_1~45_from_Cap	0.022
Motif_37°C-150~-1_from_AUG	0.023
A_1~45_from_Cap	0.049
$-\Delta G_{101} \sim 200_{\text{from}}$ Cap	0.065
Log ₁₀ _CDS_Length	0.066

Table 24.37℃の PLS モデルで示された重要な配列的特徴とその重み

最終的な PLS モデルに含まれている説明変数(重要な配列的特徴)と重み(PLS

モデルヘ与える影響)の一覧。重みが負の値をとるほど Log₁₀ PR_37℃に負の影響 を与えていることを、正の値をとるほど正の影響を与えていることを意味している。 説明変数に含まれている Motif_37℃-1 と Motif_37℃-2 の配列パターンは Fig. 34 に 示している。"- Δ G"は二次構造の形成度合いを、"C, GG, T, A"は塩基の比率を意味し、 特定の領域内でのみ評価を行った場合は、基準となった Cap または AUG からの位 置を合わせて表記している。

Figure 34. 37℃の PLS モデルで示された Motif の配列パターン

37℃での PLS モデルで示された Motif_37℃-1(A) と Motif_37℃-2(B) の配列パ ターン。文字の高さは、その位置での塩基の偏りの大きさを示している。

Figure 35. 各 PLS モデルで重要な配列的特徴のクラスタリング

2DAG、未展開葉 (young leaves: YL)、展開葉 (mature leaves: ML)、37℃のPLS モデルでの合計 45 個の説明変数 (重要な配列的特徴) について、1023 遺伝子の配

列データを基に特徴量の評価を行い、それぞれの遺伝子について、各特徴量の類似 度からクラスタリングを行った。各 PLS モデルで示された重要な配列的特徴を色別 で示し、それぞれの重みをヒートマップで表している。加えて、クラスタリング結 果を基に配列的特徴を 8 個のクラスターに分け、それぞれのクラスター(Cluster1 ~8)の位置を示している。

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6	Cluster 7	Cluster 8
2DAG	-0.05	0.01	0.00	0.00	0.11	0.01	-0.03	0.00
YL	-0.05	0.00	-0.01	0.02	0.11	0.00	-0.05	-0.02
ML	-0.02	-0.03	0.01	0.01	0.10	-0.01	-0.02	-0.04
37° C	0.00	-0.03	0.00	0.00	0.07	0.05	-0.02	-0.04

0.11 -0.11

Table 25. 配列的特徴のクラスター別の各 PLS モデルへの影響

Fig. 35 において分けられた説明変数(配列的特徴)の各クラスターについて、各条件(Fig. 35 の色別)で配列的特徴の重みを合計し、ヒートマップで示している。

2-4-1. CAGE による 5'UTR 配列の特定

5'UTR 配列は、各 mRNA の翻訳状態の決定において中心的な役割を果たしている ことが知られている。そこで第一章で考察した翻訳機構について、5'UTR 配列の違 いという観点から解析するために、まずは CAGE を用いて TSS を調べることで、正 確な 5'UTR 配列のゲノムワイドな特定を行った。その結果、1 万を超える遺伝子に ついて、様々な 5'UTR バリアントとその存在比を含む詳細な 5'UTR 配列の情報を 取得することができた。CAGE によって得られた個々の遺伝子の詳細な 5'UTR 配列 の情報は、翻訳状態を規定している 5'UTR の配列的特徴に関する解析のために非常 に重要な知見となった。

加えて、今回の CAGE 結果を用いて、TSS の決定に関する基本的な解析も行った。 まず各遺伝子の TSS の分布からは、TSS が1点に収束している遺伝子から非常に分 散し多様な 5'UTR バリアントを持つ遺伝子まで幅広く存在し、多くの遺伝子の TSS は分散していることが明らかとなった(Fig. 14B, 15)。また TSS が 1 点に収束して いる遺伝子では、TSS 上流に存在する TATA box の存在が明瞭であったが、TSS が 分散している遺伝子では、TATA box の存在は曖昧だった(Fig. 18)。加えて、TSS の前後数 nt の領域にもその塩基含量に顕著な偏りが認められ(Fig. 17)、特定の塩 基パターンがある可能性が示唆された。この領域は一般的に、Initiator (Inr)として 知られており、その配列としてショウジョウバエでは TCAKTY が、ヒトでは YYANWYY(下線部が mRNA の 5'末端となる位置を、K は G, T、Y は C, T、W は T, A を意味している)が提唱されている(Kadonaga 2012)。一方で、5'末端となる 位置の A はショウジョウバエやヒトでは非常に高度に保存されているが、本研究の 結果では、AまたはGであるなど、一部異なる部分もあり、これらの塩基パターン は、植物での転写装置が転写を開始するために重要な配列であると考えられる。ま た、いくつかの遺伝子では成長・発達や環境ストレスを通して TSS が変化していた (Fig. 14D, 16)。この様な TSS が大きく変化する遺伝子では、TSS が変化しない遺

伝子に比べ、その TSS 上流に位置する TATA box の存在が曖昧であり、TATA-less プロモーターの方が TSS の変化が起きやすい傾向があると思われる(Fig. 19)。植物においてコアプロモーター因子として TATA box や Y patch、Inr 等が報告されており

(Yamamoto et al. 2009)、3 割ほどの遺伝子が TATA box を有することが知られている。またその報告の中で明確な TATA box や Y patch、Inr を有する遺伝子の TSS は 収束している傾向があり、特に TATA box の有無は TSS の収束度合いに大きな影響 があることが示されている。本研究の結果も踏まえて考察すると TATA box を有する遺伝子は TSS が収束し、条件によっても TSS が変化しにくく、一様な 5'UTR 配列を有する傾向があるのではないだろうか。

2-4-2. 翻訳状態の決定に関わる配列的特徴

翻訳状態の決定に関わる配列的特徴を解析するために、主に 5'UTR の配列的特徴 によって翻訳状態が説明できる PLS モデルを作成し、重要な配列的特徴を選抜する とともに、示された配列的特徴が与える影響を評価した。PLS モデルの構築は 2DAG、 未展開葉、展開葉、37℃など複数の翻訳状態について行い(Fig. 24, 29, 31, 33)、そ れらの翻訳状態の決定に関わる重要な配列的特徴を示した(Table 15, 23, 24, 25)。ま た、未展開葉での PLS モデルに関しては、一過性発現実験によって PLS モデルが翻 訳効率、つまり実際のタンパク質を生産する効率を十分に説明できることを検証す るとともに、5'UTR上の配列的特徴を変化させた配列置換系列によって、その重要 性を確認した(Fig. 25, 26, 27, 28)。複合的に配列を置換し、PLS モデル上は非常に 高い翻訳効率を示す SS1 と SS2 の P-Multi に関してのみ、予測した翻訳状態と実測 の翻訳効率間で大きな違いが認められたが(Fig. 27)、これは構築に用いた未展開葉 での翻訳状態と、一過性発現実験に用いたプロトプラスト化した培養細胞での翻訳 状態の違いに起因している可能性が考えられた。他の PLS モデル例えば展開葉での PLS モデルで SS1 と SS2 の置換系列を予測した結果では、予測した翻訳状態と実測 した翻訳効率間の相関(r = 0.82)は未展開葉(r = 0.71)に比べると高く、P-Multi の予測値も基の配列の予測値とほぼ同じ値となり実測値に近かった。プロトプラス ト化した培養細胞の翻訳状態は展開葉の翻訳状態に近いのかもしれない。しかし、 一過性発現実験による検証全体では、翻訳状態の予測値と実際の翻訳効率は高い相 関を示したことから、今回 PLS モデルを構築した手法は、これまでの特徴単体での 解析では難しかった複数の特徴が影響を与えるような複雑な機構を十分に説明する ことが可能であり、重要な特徴とその影響を客観的に表す有用な手法であると考え られる。

第一章にて、翻訳状態の決定機構には、様々な状況で共通した翻訳機構とそれぞ れの状況に応答した特異的な翻訳機構が存在する可能性を考察した。これらの翻訳 機構の一端を明らかとするため、構築した 2DAG、未展開葉、展開葉、37℃の PLS モデルによって示された重要な配列的特徴を比較し、示された配列的特徴の差異を 考察した。考察には配列的特徴をいくつかのクラスターに分けて行い (Fig. 35, Table 25)、それぞれのクラスターが各条件の翻訳状態に与える影響は、全ての条件で共通 した影響から特定の条件だけの特異的な影響まで様々であることが示された。Cap 構造側の二次構造に関連しているクラスターは、全ての条件において負の影響が認 められた。この様々な条件で共通して翻訳状態に影響を与えている Cap 構造側の二 次構造に関する配列的特徴は、第一章で考察した様々な条件下で共通した翻訳機構 に関係している可能性が考えられる。この Cap 構造側の二次構造が翻訳へ及ぼす影 響は、動物細胞での研究でも知られており、Cap 構造に非常に近い位置(Cap から 45 nt)に存在するヘアピン構造(強固な二次構造)が翻訳効率を大きく低下させることが 報告されている(Babendure et al. 2006)。この Cap 構造近傍でのヘアピン構造は、 Cap 構造を認識する eIF4G を含む開始前複合体の mRNA への結合を物理的に阻害す
ることで翻訳を抑制していると考えられており、様々な条件下で共通した翻訳機構 の分子機構の1つなのではないだろうか。興味深いことに、このCap構造近傍の二 次構造による翻訳の阻害は、酵母では確認されておらず、開始 AUG 近くの領域で 形成される二次構造による翻訳の阻害が観察されている(Vega-Laso et al. 1993, Koloteva et al. 1997)。このことから、動物等の高等真核生物では、Cap構造と開始 前複合体の結合が重要なのに対し、酵母等の下等な真核生物では、リボソームのス キャニングが重要なのではないかと考えられている(Koloteva et al. 1997)。本研究 の結果では、動物細胞と同様にCap構造近傍の二次構造の重要性が示されているが、 2DAG 以外の PR 値の分布が全体的に低い傾向がある条件、特に展開葉や 37℃にお いて、Cap 構造から 200~300 nt の広い範囲での二次構造の形成度合いが翻訳状態の 決定に負の影響を及ぼすことが示されている。植物では 5'UTR 長が比較的短いため

(Fig. 14C)、この範囲には開始 AUG が含まれる可能性が高く、この領域内の二次 構造は、酵母と同様にリボソームのスキャニングまたは翻訳の伸長に影響を及ぼし ている可能性が考えられる。リボソームが mRNA 上をスキャニングする際には、 RNA ヘリカーゼである eIF4A (eIF4A-1, eIF4A-2) によって二次構造を形成している 2 本鎖を解きながら進んでいくことが知られている。この eIF4A-1 と eIF4A-2 は、 分裂組織等の活発な成長が行われている組織では、発現が誘導され、細胞周期の進 行や細胞サイズの決定に重要であることが示唆されている (Le et al. 1998, Bush et al. 2015)。加えて低酸素ストレス時には eIF4A-1 タンパク質と高い相同性を示す eIF4A-3 の細胞内局在が核質から核小体とスプライシング小斑点に速やかに変化す ることも報告されている (Koroleva et al 2009)。eIF4A の発現が誘導される発芽初期 ではヘリカーゼ活性が高く、展開葉や環境ストレス時では発現量の低下や局在の変 化によってヘリカーゼ活性が低下し、mRNA のスキャニングに影響を及ぼしている 可能性が考えられる。この Cap 構造から広い範囲での二次構造は、スキャニングへ の影響によって成長した植物や環境ストレス下での特異的な翻訳機構に関わってい るのではないだろうか。

加えて、他にも限られた条件下でのみ特異的に翻訳状態に影響を与える配列的特 徴のクラスターも存在し、C及びUの含量に関連するクラスターは、展開葉と37℃ でのみ負の影響を与えていた。C及びUリッチな配列はTract of OligoPyrimidine (TOP)配列として知られ、詳細な分子機構は分かっていないが mTOR 経路による翻 訳制御に関わることが示唆されている(Iadevaia et al. 2008, Xiong and Sheen 2014)。 実際にTOP 配列を持つ mRNA の一部からの翻訳は、花器の形成過程(Tzeng et al. 2009)や成長因子(Jiménez-López et al. 2011)、オーキシンの存在下(Schepetilnikov et al. 2013)では活性化され、動物細胞での低酸素ストレス条件下(Miloslavski et al. 2014)では抑制されることが報告されている。C及びUリッチな配列は、mTOR 経 路などを通して、十分に発達した器官である展開葉や熱ストレス下における特異的 な翻訳機構に関わっているのかもしれない。また、Cap構造側のA含量に関連する クラスターは、熱ストレス時にのみ特異的に翻訳状態に正の影響を与えていた。植 物培養細胞における熱ストレスによる翻訳状態の変化を解析した研究では、熱スト レスによる翻訳の抑制に関わる重要な特徴として、Cap 構造から主に 34 nt 内の重要 領域が示されている(Matsuura et al. 2013)。そして、その領域で熱ストレス下でも 高い翻訳を維持する最適な配列はAリッチであることが示されており、今回の結果 と一致している。この熱ストレス下での翻訳の抑制に関わる機構は明らかになって いないが、熱ストレス下では何らかの翻訳開始因子や RNA 結合因子といったトラ ンス因子が Cap 構造側の A リッチな配列を認識し、高い翻訳状態を保つ機構が存在 していると考えられる。また uORF や 5'UTR の長さに関連したクラスターは、37℃ 以外では負の影響を与えており特に 2DAG と未展開葉での影響が大きかった。uORF は下流に存在する本来の ORF からの翻訳を抑制することが知られており、eIF2 αの リン酸化状態がその制御に影響を与えることが報告されている。例えば、TBF1 遺 伝子は成長している植物体では uORF によって本来の AUG からの翻訳が抑えられ ているが、病原体の進入時には eIF2 α のリン酸化を介して本来の AUG からの翻訳 が行われる (Pajerowska-Mukhtar et al. 2012)。また酵母の GCN4 遺伝子の翻訳も eIF2 αのリン酸化と uORF によって制御され、通常時は翻訳が抑えられるがアミノ酸の 飢餓状態では翻訳が活性化される(Hinnebusch 2005)。通常の植物体、特に 2DAG と未展開葉 でも uORF を持つ mRNA の翻訳状態は、eIF2αのリン酸化を介して uORF による特異的な翻訳機構で制御されているのかもしれない。これらの結果は、 植物 mRNA の翻訳状態は、今回示された各 mRNA の配列的特徴に基づいて、共通 する翻訳機構と、主に条件特異的に変化するトランス因子の量や修飾状態によって 制御される複数の特異的な翻訳機構によって複雑に制御され決定されていることを 示唆している。本研究は、これまで報告および推察されてきた様々な配列的特徴に ついて、各条件での PLS モデルを構築することで複合的に解析し、これまでは不明 瞭だった、それぞれの条件での翻訳状態の決定に真に重要な配列的特徴を示すとと もに、条件間でのそれら配列的特徴の寄与度の違いを明らかにした。これらの知見 は、各 mRNA の翻訳状態を決定しているその分子機構の解明に非常に重要な情報に なる。

2-4-3. TSS の収束/分散と mRNA の翻訳状態

CAGEによって明らかになったTSSの分散による5'UTR 配列バリアントの存在や、 そのTSSの変化による5'UTR 配列の変化は、今回のPLS モデルによって示された 重要な配列的特徴の有無や特徴量に影響を与え、翻訳状態に影響を及ぼしている可 能性が考えられる。5'UTR 配列バリアントが多く存在する場合、一般的には5'UTR 配列の重要な配列的特徴の量がバリアント間でばらけることによって、それに依存 した様々な翻訳状態を示す mRNA が存在し、その遺伝子単位での翻訳状態は平均化 され常に一般的な翻訳状態をとるとも考えられる。実際に、非常にわずかながら翻 訳状態が非常に高い、または低いといった極端な挙動を示す遺伝子は、他の遺伝子 と比べTSS が収束している傾向があった(Fig. 20A)。また過去の研究より、条件に よって TSS が変化し 5'UTR の配列列的特徴の有無や特徴量が変化することによっ て、結果として特異的に翻訳状態が制御されている遺伝子が哺乳動物や酵母におい て報告されている(Law et al. 2005, Brar et al. 2012, Badhai et al. 2011)。しかし興味深 いことに、葉の発達段階間での TSS の変化と翻訳状態変化の関係を解析した結果か らは、葉の発達段階間で翻訳状態が大きく異なる遺伝子の TSS は、他の遺伝子に比 べ変化していないことが示された(Fig. 20B)。このような結果となった理由には、 植物の場合、TSS が変化する遺伝子は TATA-less プロモーターが多く TSS が分散す るものが多いため、翻訳状態が平均化されることで明確な変化を示しにくいからで はないかと考えられる。この結果は、一般的に未展開葉と展開葉の翻訳状態の違い は、TSS の変化によって生じる 5'UTR の配列的特徴の変化ではなく、5'UTR 上に存 在している特異的な翻訳機構に関わる配列的特徴に依存していると考えられる。

総括

本研究は、遺伝子の発現制御に重要であることが知られる「翻訳」について、その制御に非常に重要な 5'UTR の配列に着目し、植物 mRNA の翻訳機構への理解を 深める目的で行ったものである。

まず第一章では、植物 mRNA の翻訳機構を理解するための基盤情報となる翻訳状態を解析し、遺伝子発現における翻訳段階の重要性を示すとともに、翻訳状態を決定している翻訳機構を考察した。具体的には、シロイヌナズナの各成長・発達段階での翻訳状態をゲノムワイドに解析し、翻訳状態は mRNA 種によって大きく異なり、活発な翻訳が行われていると考えられる mRNA から、あまり翻訳が行われていないものまで幅広く存在していることを明らかにした。また、各 mRNA 種の翻訳状態は、成長・発達段階間で変わらないものから大きく変化するものまで様々であり、その発達段階に応じて各 mRNA の翻訳状態が決定されている可能性を示した。この様な各 mRNA の翻訳状態の違いを、タンパク質機能の観点から解析し、翻訳段階での制御の生理的な重要性の一端を示した。加えて、これまでに当研究室で解析された培養細胞の環境ストレス下等も含めた様々な条件間での翻訳状態の比較から、各条件での翻訳状態を制御している機構について考察し、様々な条件で共通する翻訳機構と、特定の状況に応答した特異的な翻訳機構の存在を示唆した。

続く第二章では、mRNA の翻訳状態の決定に中心的な役割を担っていると考えら れている 5'UTR 配列に焦点を当て、植物 mRNA の翻訳状態を決定している分子機 構の理解を目指した。まずは CAGE を行い、様々な条件での正確な 5'UTR の配列 を決定し、その多様性と分布を調べた。次に翻訳状態と 5'UTR 配列の 2 つのゲノム ワイドデータを用いた PLS モデルの構築を行い、翻訳状態の決定機構に関わる具体 的な 5'UTR 上の配列的特徴の解明を行った。構築した PLS モデルからいくつかの 重要な配列的特徴が明らかとなり、構築したモデルは、翻訳状態を十分に説明可能 であることを示した。また、構築した PLS モデルは、実際のタンパク質の生産効率 も十分に説明できることを一過性発現実験によって検証し、その高い信頼性を確認 した。加えて、様々な条件の翻訳状態に関する PLS モデルを構築し、それぞれの条 件で重要な配列的特徴を示すとともに、その配列的特徴を比較することで、各条件 下で翻訳状態を決定している機構について考察し、5'末端の二次構造が共通の翻訳 機構に関わること、5'UTR の CU リッチや A リッチな配列などが特定の条件に応答 した特異的な翻訳機構に関わることを示唆した。

本研究の結果は、様々な条件での植物 mRNA の翻訳状態について、それを決定している配列的特徴を明らかにし、各条件でのそれら配列的特徴の寄与度の違いを示すとともに、様々な条件での共通または特異的な翻訳機構に特徴づけた。本研究の結果は、植物 mRNA の翻訳機構への理解を大きく進歩させ、将来の翻訳制御の分子機構の解明に非常に重要な情報となることが期待される。

今後の発展としては、様々な条件や発達段階、器官、細胞型での植物について、 リボソームフットプリント法のような mRNA の翻訳状態の高解像度解析や、ポリソ ーム/CAGE 法のような各 5'UTR バリアントについての翻訳状態解析による大規模 かつ詳細な情報の蓄積が望まれる。より大規模かつ詳細な情報があれば、翻訳状態 に影響を与えている配列的特徴をより詳細に解析することも可能になり、本研究で 明らかにした配列的特徴のより具体的な配列パターンや重要な位置を示すことや、 翻訳制御に関わる新たな配列的特徴を見出すことも可能になるだろう。

最後に、本研究を別の視点から捉えてみると、外来遺伝子の発現を制御する上で も非常に有用であると言える。本研究によって構築した PLS モデルは、配列から翻 訳状態を予測できるだけではなく、目的とする翻訳状態に適した 5'UTR の配列を設 計し、タンパク質の生産量を操作できる可能性を秘めている。例えば、有用物質(生 分解性プラスティック、植物性油脂、医療用タンパク質など)の大量生産のために、 目的の外来遺伝子を効率的に翻訳できる 5'UTR 配列を、モデルによる翻訳状態の予 測値から選抜でき、更に 5'UTR 配列の最適化を行うことで、目的の遺伝子に適した 高発現系の開発が行える可能性がある。この可能性の一端は、第二章の一過性発現 実験による PLS モデルの検証において、配列置換によって基となった配列よりも翻 訳効率を大きく上昇させることに成功した置換配列 SS3_ P-Multi と SS4_P-Multi の 結果によって示されている(Fig. 28)。

謝辞

本研究を遂行するにあたり、御指導、御鞭撻を賜りました出村拓教授に厚く御礼 申しあげます。加藤晃助教には大変お忙しい中、直接の懇切なる御指導ならびに格 別なる御高配を賜り深く御礼申し上げます。また、久保稔特任准教授、大谷美沙都 助教、米田新助教、情報科学研究科の金谷重彦教授、大阪大学の松浦秀幸助教、埼 玉大学の山口雅利准教授には折々に御指導ならびに適切且つ有益な御助言を頂き深 く感謝いたします。また、梅田正明教授、高山誠司教授には、本研究のアドバイザ ーとして適切且つ有益な御助言を頂き心から感謝いたします。

植物代謝調節学講座の皆様にも本当にお世話になりました。特に上田清貴博士に は研究における御指導のみならず、多岐に渡ってお世話になりました。厚く御礼申 し上げます。田中雅恵氏、大平菜緒氏、原田麻記氏には、事務的な面で何かとお世 話になりました。津田貴子氏、金城聖子氏には試薬類の作製や培養細胞の継代など、 大変お世話になりました。厚く御礼申し上げます。ここにすべての方の名前を挙げ ることはできませんが、佐野亮輔博士、大河原錬也氏、矢村寿啓氏、西垣直哉氏、 畑健介氏、横河由樹子氏、今瀬諒司氏、佐藤伊純氏には私の至らないところもあり、 迷惑をかけることもありましたが、研究の遂行にあたって様々な面でお世話になり ました。植物代謝調節学講座の皆様の御指導、御助言、御協力等に対し、心から御 礼申し上げます。皆様のお力添えや励まし無くして本論文の完成はあり得ませんで した。

最後に、家族にはいつも私の意思を尊重していただき、暖かく応援してもらいま した。この場を借りて深く御礼申し上げます。ありがとうございました。

研究成果の公表

本研究の成果は、筆頭著者として執筆した論文と、複数の学会にて発表している。 また、関連する研究を、共著論文として発表するとともに著書も書いている。以下 に内容を記す。

論文(筆頭著者)

Yamasaki, S., Matsuura, H., Demura, T. and Kato, K. (2015) Changes in Polysome Association of mRNA Throughout Growth and Development in *Arabidopsis thaliana*. *Plant Cell Physiol*. 56:2169-2180

論文 (共同著者)

Matsui, T., Matsuura, H., Sawada, K., Takita, E., Kinjo, S., Takenami, S., Ueda, K., Nishigaki, N., Yamasaki, S., Hat, a K., Yamaguchi, M., Demura, T. and Kato, K. (2012) High level expression of transgenes by use of 5'-untranslated region of the *Arabidopsis thaliana arabinogalactan-protein 21* gene in dicotyledons. *Plant Biotechnol.* 29: 319-322

Ueda, K., Okawara, R., Yamasaki, S., Sanada, Y., Kinoshita, E., Yoneda, A., Demura, T. and Kato K. (2014) Efficient transgene expression by alleviation of translational repression in plant cells. *J. Biosci. Bioeng.* 118:434-440

学会発表

シロイヌナズナ植物体の成長に伴う翻訳状態変化の解析 山崎 将太朗,上田 清貴,米田 新,出村 拓,加藤 晃 第30回日本植物細胞分子生物学会大会 2012年8月5日

成長と発達に伴う翻訳状態変化のゲノムワイドな解析 山崎 将太朗,上田 清貴,米田 新,出村 拓,加藤 晃 第476回日本農芸化学会関西支部大会 2012 年 9 月 29 日

植物体の成長/発達に伴う翻訳状態変化の解析 山崎 将太朗,上田 清貴,米田 新,出村 拓,加藤 晃 第54回日本植物生理学会年会 2013年3月21日

植物体の成長/発達に伴う翻訳レベルでの遺伝子発現変化 山崎 将太朗,上田 清貴,米田 新,出村 拓,加藤 晃 第31回日本植物細胞分子生物学会大会 2013年9月19日

植物の成長や発達に伴う翻訳制御の解析 山崎 将太朗,上田 清貴,出村 拓,加藤 晃 第32回日本植物細胞分子生物学会大会 2014 年 8 月 21 日

植物の成長・発達に伴う翻訳状態変化に関わる 5[°] UTR の配列的特徴の解析 山崎 将太朗, 上田 清貴, 出村 拓, 加藤 晃 生命情報科学若手の会 第6回研究会 2014 年 10 月 29 日

5'UTR を介した植物翻訳制御機構の解明(CAGE データの活用) 山崎 将太朗、出村 拓、加藤 晃 理研公開シンポジウム CAGE 法を用いた新たなトランスクリプトーム解析事例と実際 2014 年 11 月 19 日

in silico による植物 mRNA の翻訳状態を規定する 5'UTR の配列的特徴の解析 山崎 将太朗、出村 拓、加藤 晃 NGS 現場の会 第4回研究会 2015 年7月2日~3日

mRNAからの翻訳効率を改良した導入遺伝子高発現系 山崎 将太朗,出村 拓,加藤 晃 第67回生物工学会大会 2015 年 10 月 28 日

翻訳状態を決定する 5'UTR の配列的特徴 山崎 将太朗、出村 拓、加藤 晃 第 57 回日本植物生理学会年会 2016 年 3 月(予定)

著書

山崎 将太朗, 上田 清貴, 加藤 晃 (2013) 環境ストレスの影響を考慮した植物発現 ベクターの開発. *生物工学会誌* 91: 356-360

山崎 将太朗, 加藤 晃 (2014) 植物への有用遺伝子導入. 生物工学会誌. 92: 617-621

参考文献

Akbergenov, R.Zh., Zhanybekova, S.Sh., Kryldakov, R.V., Zhigailov, A., Polimbetova, N.S., Hohn, T. et al. (2004) ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs. *Nucleic Acids Res.* 32:239-47.

Arribere, J.A. and Gilbert, W.V. (2013) Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing. *Genome Res.* 23: 977-987.

Axelos, M., Curie, C., Mazzolini, L., Bardet, C. and Lescure, B. (1992) A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. *Plant Physiol. Biochem.* 30: 123-128.

Babendure, J.R., Babendure, J.L., Ding, J.H. and Tsien, R.Y. (2006) Control of mammalian translation by mRNA structure near caps. *RNA*. 12: 851-861.

Badhai, J., Schuster, J., Gidlöf, O. and Dahl, N. (2011) 5'UTR variants of ribosomal protein S19 transcript determine translational efficiency: implications for Diamond-Blackfan anemia and tissue variability. *PLoS One* 6: e17672.

Baena-González, E., Rolland, F., Thevelein, J.M. and Sheen, J. (2007) A central integrator of transcription networks in plant stress and energy signalling. *Nature* 448: 938–942.

Baena-González, E. and Sheen, J. (2008) Convergent energy and stress signaling. *Trends Plant Sci.* 13: 474–482.

Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L. et al. (2015) MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res.* 37: W202-W208.

Beltrán-Peña, E., Ortíz-López, A. and Sánchez de Jiménez, E. (1995) Synthesis of ribosomal proteins from stored mRNAs early in seed germination. *Plant Mol. Biol.* 28: 327–336.

Branco-Price, C., Kawaguchi, R., Ferreira, R.B. and Bailey-Serres, J. (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. *Ann. Bot.* 96: 647–660.

Branco-Price, C., Kaiser, K.A., Jang, C.J., Larive, C.K. and Bailey-Serres, J. (2008) Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in *Arabidopsis thaliana*. *Plant J*. 56: 743–755.

Brar, G.A., Yassour, M., Friedman, N., Regev, A., Ingolia, N.T. and Weissman, J.S. (2012) High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling. *Science* 335: 552-557.

Browning, K.S. (2004) Plant translation initiation factors: it is not easy to be green. *Biochem. Soc. Trans.* 32: 589-591.

Bush, M.S., Crowe, N., Zheng, T. and Doonan, J.H. (2015) The RNA helicase, eIF4A-1, is required for ovule development and cell size homeostasis in Arabidopsis. *Plant J.* 84: 989-1004.

Dansako, T., Kato, K., Satoh, J., Sekine, M., Yoshida, K. and Shinmyo, A. (2003) 5' Untranslated region of the *HSP 18.2* gene contributes to efficient translation in plant cells. *J. Biosci. Bioeng.* 95: 52-58.

Davies, E., and Abe, S. (1995) Methods for isolation and analysis of polyribosomes. *Methods Cell Biol.* 50: 209-222.

Depeiges, A., Degroote, F., Espagnol, M.C. and Picard, G. (2006) Translation initiation by non-AUG codons in *Arabidopsis thaliana* transgenic plants. *Plant Cell Rep.* 25:55-61.

Galland, M., Huguet, R., Arc, E., Cueff, G., Job, D. and Rajjou, L. (2014) Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. *Mol. Cell.* Proteomics. 13: 252-268.

Gebauer, F. and Hentze, M.W. (2004) Molecular mechanisms of translational control. *Nat. Rev. Mol. Cell Biol.* 5: 827-835.

Gingras, A.C., Raught, B., and Sonenberg, N. (1999) eIF4F initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. *Annu. Rev. Biochem.* 68: 913-963.

Hinnebusch, A.G. (2005) Translational regulation of GCN4 and the general amino acid control of yeast. *Annu. Rev. Microbiol.* 59: 407-450.

Huang, B. and Xu, C. (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. *J. Integr. Plant Biol.* 50: 1230–1237.

Hulzink, R.J., de Groot, P.F., Croes, A.F., Quaedvlieg, W., Twell, D., Wullems, G.J., et al. (2002) The 5'-untranslated region of the *ntp303* gene strongly enhances translation during pollen tube growth, but not during pollen maturation. *Plant Physiol.* 129: 342-353.

Iadevaia, V., Caldarola, S., Tino, E., Amaldi, F. and Loreni, F. (2008) All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5'-terminal oligopyrimidine (TOP) mRNAs. *RNA*. 14: 1730-1736.

Ingolia, N.T., Ghaemmaghami, S., Newman, J.R. and Weissman, J.S. (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. *Science* 324: 218-223.

Jiao, Y. and Meyerowitz, E.M. (2010) Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. *Mol. Syst. Biol.* 6: 419.

Jiménez-López, S., Mancera-Martínez, E., Donayre-Torres, A., Rangel, C., Uribe, L., March, S., et al. (2011) Expression Profile of Maize (*Zea mays L.*) Embryonic Axes During Germination: Translational Regulation of Ribosomal Protein mRNAs. *Plant Cell Physiol.* 52: 1719–1733.

Juntawong, P. and Bailey-Serres, J. (2012) Dynamic light regulation of translation status in Arabidopsis thaliana. *Front Plant Sci.* 3: 66.

Kadonaga, J.T. (2012) Perspectives on the RNA polymerase II core promoter. *Wiley Interdiscip. Rev. Dev. Biol.* 1: 40-51.

Kawaguchi, R., Girke, T., Bray, E.A. and Bailey-Serres, J. (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. *Plant J.* 38: 823-839.

Kawaguchi, R. and Bailey-Serres, J. (2005) mRNA sequence features that contribute to translational regulation in Arabidopsis. *Nucleic Acids Res.* 33: 955-965.

Koloteva, N., Müller, P.P., McCarthy, J.E. (1997) The position dependence of translational regulation via RNA-RNA and RNA-protein interactions in the 5'-untranslated region of

eukaryotic mRNA is a function of the thermodynamic competence of 40 S ribosomes in translational initiation. *J. Biol. Chem.* 272: 16531-16539.

Komar, A.A., Mazumder, B. and Merrick, W.C. (2012) A new framework for understanding IRES-mediated translation. *Gene.* 502 :75-86.

Koroleva, O.A., Calder, G., Pendle, A.F., Kim, S.H., Lewandowska, D., Simpson, C.G. et al (2009) Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. *Plant Cell.* 21: 1592-606.

Kovtun, Y., Chiu, W.L., Tena, G. and Sheen, J. (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. *Proc. Natl. Acad. Sci. USA* 97: 2940-2945.

Law, G.L., Bickel, K.S., MacKay, V.L. and Morris, D.R. (2005) The undertranslated transcriptome reveals widespread translational silencing by alternative 5' transcript leaders. *Genome Biol.* 6: R111.

Le, H., Browning, K.S., Gallie, D.R. (1998) The phosphorylation state of the wheat translation initiation factors eIF4B, eIF4A, and eIF2 is differentially regulated during seed development and germination. *J. Biol. Chem.* 273: 20084-20089.

Liu, M.J., Wu, S.H., Chen, H.M. and Wu, S.H. (2012) Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Mol. Syst. Biol. 8: 566. Liu, M.J., Wu, S.H., Wu, J.F., Lin, W.D., Wu, Y.C., Tsai, T.Y., et al. (2013) Translational Landscape of Photomorphogenic Arabidopsis. *Plant Cell* 25: 3699-3710.

Lorenz, R., Bernhart, S.H., Höner-Zu-Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F. et al. (2011) ViennaRNA Package 2.0. *Algorithms Mol. Biol.* 6:26.

Maier, T., Güell, M. and Serrano, L. (2009) Correlation of mRNA and protein in complex biological samples. *FEBS Lett.* 583: 3966-3973.

Majeran, W., Friso, G., Ponnala, L., Connolly, B., Huang, M., Reidel, E., et al. (2010) Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. *Plant Cell* 22: 3509-3542.

Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M. and Turner, D. H.

(2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. *Proc. Natl. Acad. Sci. USA* 101: 7287-7292.

Matsui, T., Matsuura, H., Sawada, K., Takita, E., Kinjo, S., Takenami, S. et al. (2012) High level expression of transgenes by use of 5'-untranslated region of the *Arabidopsis thaliana arabinogalactan-protein 21* gene in dicotyledons. *Plant Biotechnol.* 29: 319-322.

Matsuura, H., Shinmyo, A. and Kato, K. (2008) Preferential translation mediated by *Hsp81-3* 5'-UTR during heat shock involves ribosome entry at the 5'-end rather than an internal site in Arabidopsis suspension cells. *J. Biosci. Bioeng.* 105: 39-47.

Matsuura, H., Ishibashi, Y., Shinmyo, A., Kanaya, S. and Kato, K. (2010) Genome-Wide Analyses of Early Translational Responses to Elevated Temperature and High Salinity in Arabidopsis thaliana. *Plant Cell Physiol.* 51: 448–462.

Matsuura, H., Takenami, S., Kubo, Y., Ueda, K., Ueda, A., Yamaguchi, M., et al. (2013) A computational and experimental approach reveals that the 5'-proximal region of the 5'-UTR has a Cis-regulatory signature responsible for heat stress-regulated mRNA translation in Arabidopsis. *Plant Cell Physiol.* 54: 474-483.

Melamed, D. and Arava, Y. (2007) Genome - Wide Analysis of mRNA Polysomal Profiles with Spotted DNA Microarrays. *Methods Enzymol.* 431: 177-201.

Miloslavski, R., Cohen, E., Avraham, A., Iluz, Y., Hayouka, Z., Kasir, J. et al. (2014) Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. *J. Mol. Cell Biol.* 6: 255-266.

Morton, T., Petricka, J., Corcoran, D.L., Li, S., Winter, C.M., Carda, A., et al. (2014) Paired-end analysis of transcription start sites in Arabidopsis reveals plant-specific promoter signatures. *Plant Cell* 26: 2746-2760.

Murata, M., Nishiyori-Sueki, H., Kojima-Ishiyama, M., Carninci, P., Hayashizaki, Y. and Itoh, M. (2014) Detecting expressed genes using CAGE. Methods Mol. Biol. 1164:67-85. Nagata, T., Nemoto, Y., and Hasezawa, S. (1992) Tobacco BY-2 cell line as the "HeLa" cell in the cell biology of higher plants. *Int. Rev. Cytol.* 132: 1-30.

Nguyen, H.M., Schippers, J.H., Gõni-Ramos, O., Christoph, M.P., Dortay, H., van der Hoorn, R.A., et al. (2013) An upstream regulator of the 26S proteasome modulates organ size in Arabidopsis thaliana. Plant J. 74: 25-36.

Nicolaï, M., Roncato, M.A., Canoy, A.S., Rouquié, D., Sarda, X., Freyssinet, G., et al. (2006) Large-scale analysis of mRNA translation states during sucrose starvation in Arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control. *Plant Physiol.* 141: 663–673.

Ohta, T., Matsuoka, H., Nomura, Y. and Tozawa, Y. (2010) Control of translational initiation in the wheat-embryo cell-free protein expression system for producing homogenous products. *Protein Expr Purif.* 73:15-22.

Pajerowska-Mukhtar, K.M., Wang, W., Tada, Y., Oka, N., Tucker, C.L., Fonseca, J.P., et al. (2012) The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. *Curr. Biol.* 22:103-112.

Proud, C.G. (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. *Biochem. J.* 403: 217-234.

Rojas-Duran, M.F. and Gilbert, W.V. (2012) Alternative transcription start site selection leads to large differences in translation activity in yeast. *RNA* 18: 2299-2305.

Rosado, A., Li, R., van de Ven, W., Hsu, E. and Raikhel, N.V. (2012) Arabidopsis ribosomal proteins control developmental programs through translational regulation of auxin response factors. *Proc. Natl. Acad. Sci. USA* 109: 19537-19544.

Roy, B. and von Arnim, A.G. (2013) Translational Regulation of Cytoplasmic mRNAs. *Arabidopsis Book* 11: e0165.

Sahi, C., Singh, A., Blumwald, E. and Grover, A. (2006) Beyond osmolytes and transporters: novel plant salt-stresstolera nce-related genes from transcriptio nal profiling data. *Physiol. Plant.* 127: 1–9.

Satoh, J., Kato, K. and Shinmyo, A. (2004) The 5'-untranslated region of the tobacco *alcohol dehydrogenase* gene functions as an effective translational enhancer in plant. *J. Biosci. Bioeng.* 98:1-8.

Schepetilnikov, M., Dimitrova, M., Mancera-Martínez, E., Geldreich, A., Keller, M. and Ryabova, L.A. (2013) TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. *EMBO J.* 32: 1087-1102.

Schneider, R., Agol, V.I., Andino, R., Bayard, F., Cavener, D.R., Chappell, S.A., Chen, J.J. et al. (2001) New ways of initiating translation in eukaryotes. *Mol. Cell. Biol.* 21: 8238-8246.

Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., et al. (2011) Global quantification of mammalian gene expression control. *Nature* 473: 337–342.

Sonenberg, N. and Hinnebusch, A.G. (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. *Cell* 136: 731-745.

Sonoda, Y., Sako, K., Maki, Y., Yamazaki, N., Yamamoto, H., Ikeda, A., et al. (2009) Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit. *Plant J.* 60: 68-78.

Sugio, T., Matsuura, H., Matsui, T., Matsunaga, M., Nosho, T., Kanaya et al. (2010) Effect of the sequence context of the AUG initiation codon on the rate of translation in dicotyledonous and monocotyledonous plant cells. *J. Biosci. Bioeng.* 109: 170-3.

Takahashi, H., Lassmann, T., Murata, M. and Carninci, P. (2012) 5' end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. *Nat. Protoc.* 7: 542-561.

Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., et al. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. *Plant J.* 37: 914-939.

Thoreen, C.C., Chantranupong, L., Keys, H.R., Wang, T., Gray, NS. and Sabatini D.M. (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. *Nature* 485: 109-113.

Tranque, P., Hu, M.C., Edelman, G.M. and Mauro, V.P. (1998) rRNA complementarity within mRNAs: a possible basis for mRNA-ribosome interactions and translational control. *Proc. Natl. Acad. Sci. USA* 95:12238-12243.

Tzeng, T.Y., Kong, L.R., Chen, C.H., Shaw, C.C. and Yang, C.H. (2009) Overexpression of the Lily p70^{s6k} Gene in Arabidopsis Affects Elongation of Flower Organs and Indicates TOR-Dependent Regulation of AP3, PI and SUP Translation. *Plant Cell Physiol.* 50: 1695–1709.

Ueda, K., Okawara, R., Yamasaki, S., Sanada, Y., Kinoshita, E., Yoneda, A. et al. (2014) Efficient transgene expression by alleviation of translational repression in plant cells. *J. Biosci. Bioeng.* 118: 434-440.

Ueda, K., Matsuura, H., Yamaguchi, M., Demura, T. and Kato, K. (2012) Genome-wide analyses of changes in translation state caused by elevated temperature in Oryza sativa. *Plant Cell Physiol.* 53:1481-1491.

Usadel, B., Nagel, A., Thimm, O., Redestig, H., Blaesing, O.E., Palacios-Rojas, N., et al. (2005) Extension of the Visualization Tool MapMan to Allow Statistical Analysis of Arrays, Display of Coresponding Genes, and Comparison with Known Responses. *Plant Physiol.* 138: 1195-1204.

Usadel, B., Nagel, A., Steinhauser, D., Gibon, Y., Bläsing, O.E., Redestig, H., et al. (2006) PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. *BMC Bioinformatics* 7: 535.

Vanderhaeghen, R., De-Clercq, R., Karimi, M., Van-Montagu, M., Hilson, P. and Van-Lijsebettens, M. (2006) Leader sequence of a plant ribosomal protein gene with complementarity to the 18S rRNA triggers in vitro cap-independent translation. *FEBS Lett.* 580: 2630-2636.

Vega-Laso, M.R., Zhu, D., Sagliocco, F., Brown, A.J., Tuite, M.F. and McCarthy, J.E. (1993) Inhibition of translational initiation in the yeast Saccharomyces cerevisiae as a function of the stability and position of hairpin structures in the mRNA leader. *J. Biol. Chem.* 268: 6453-62.

Wiese, A., Elzinga, N., Wobbes, B. and Smeekens, S. (2004) A conserved upstream open reading frame mediates sucrose-induced repression of translation. *Plant Cell* 16: 1717-1729.

Xiong, Y. and Sheen, J. (2014) The role of target of rapamycin signaling networks in plant growth and metabolism. *Plant Physiol.* 164:499-512.

Yamamoto, Y.Y., Yoshitsugu, T., Sakurai, T., Seki, M., Shinozaki, K. and Obokata, J. (2009) Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis. *Plant J.* 60: 350-362. Yamana, R., Iwasaki, M., Wakabayashi, M., Nakagawa, M., Yamanaka, S. and Ishihama, Y. (2013) Rapid and Deep Profiling of Human Induced Pluripotent Stem Cell Proteome by One-shot NanoLC–MS/MS Analysis with Meter-scale Monolithic Silica Columns. *J. Proteome Res.* 12: 214–221.

Yángüez, E., Castro-Sanz, A.B., Fernández-Bautista, N., Oliveros, J.C. and Castellano, M.M. (2013) Analysis of Genome-Wide Changes in the Translatome of Arabidopsis Seedlings Subjected to Heat Stress. *PLoS One* 8: e71425.