# **Regulatory Mechanisms of Master Gene Expression in**

# **Xylem Vessel Formation**

(道管分化マスター因子の発現制御機構の解明)

# 1181004

### Hitoshi Endo

# Nara Institute of Science and Technology

# **Graduate School of Biological Sciences**

# Laboratory of Plant Metabolic Regulation

# (Professor Taku Demura)

### 2014/11/25

### Table of content

| Introdu | ction                                                                                        |
|---------|----------------------------------------------------------------------------------------------|
| Materia | ls and methods                                                                               |
| Results | and Discussions                                                                              |
| Part I  | Identification of the transcription factors that regulate the expression of                  |
|         | <b>VND7</b>                                                                                  |
| Resul   | ts I                                                                                         |
| 1       | -1. Selection of transcription factor genes that are expressed during                        |
|         | vessel element differentiation11                                                             |
| 1       | -2. Identification of transcription factors that induce <i>VND7</i> promoter                 |
|         | activity using a transient expression assay                                                  |
| 1       | -3. <i>GATA5</i> , <i>GATA12</i> , and <i>ANAC075</i> are expressed in the vascular cylinder |
|         | of root                                                                                      |
| 1       | -4. Overexpression of VND1 to VND7, GATA12, and ANAC075 causes                               |
|         | ectopic xylem vessel element formation                                                       |
| 1       | -5. VND1 to VND7 bind to the VND7 promoter region in vitro                                   |
| Discu   | ssion I                                                                                      |
| Table   | es and figures                                                                               |
| Part II | Epigenetic control of VND7 expression                                                        |
| Resul   | ts II                                                                                        |
| 2       | 2-1. The VND7 genomic region is marked by the H3K27me3 and the                               |
|         | DNA methylation in seedlings41                                                               |
| 2       | 2-2. Endogenous VND7 expression is repressed by H3K27me3 and                                 |
|         | DNA methylation                                                                              |
| 2       | 2-3. Some transgenic plants harboring <i>VND7pro::VND7</i> in <i>vnd4/vnd7</i>               |
|         | mutant background showed ectopic xylem element formation                                     |
| Discu   | ssion II                                                                                     |
| Table   | s and figures                                                                                |
| Conclus | ions and perspectives                                                                        |
| Referen | <b>ces</b>                                                                                   |
| Supplen | nental tables                                                                                |
| Acknow  | ledgments                                                                                    |

#### Introduction

The xylem cells of the plant vascular system, vessel elements and fibers, conduct water and minerals throughout the plant body and provide mechanical strength to support the entire plant by forming thick secondary cell walls. The secondary cell walls mainly consist of polysaccharides, such as cellulose and hemicellulose, and a phenolic polymer, lignin. Since these components can be converted into bioenergy or biomaterials, xylem cells are regarded as a promising sustainable alternative to fossil fuels (Blanch et al. 2008, Yang et al. 2013).

Kubo et al. established an in vitro system for xylem vessel element transdifferentiation of Arabidopsis Col-0 suspension cultured cells (Kubo et al. 2005). Through transcriptome analysis, they isolated a number of genes that exhibit drastic changes in expression during transdifferentiation, including those encoding transcription factors and enzymes involved in secondary cell wall biosynthesis and programmed cell death (Kubo et al. 2005). Among these genes, VASCULAR-RELATED NAC-DOMAIN7 (VND7), encoding a NAC-domain transcription factor, was found to be important for xylem vessel element differentiation. Overexpression of VND7 induces ectopic differentiation of xylem vessel elements, while overexpression of dominant negative forms of VND7 inhibits the normal differentiation of xylem vessel elements (Kubo et al. 2005, Yamaguchi et al. 2008, Yamaguchi et al. 2010a, Ohtani et al. 2011). These data strongly suggest that VND7 is a master regulator of xylem vessel differentiation, and have prompted further studies of this gene. VND7 regulates the expression of several transcription factors, such as those belonging to the MYB, NAC domain, and LATERAL ORGAN BOUNDARIES DOMAIN (LBD)/ASYMMETRIC LEAVES2 (ASL) families and KNOTTED1-LIKE HOMEODOMAIN PROTEIN7 (KNAT7) (Zhong et al. 2010, Yamaguchi et al. 2011). The expression of MYB46 and its close homolog, MYB83, which regulate many genes related to secondary cell wall formation, was found to be up-regulated directly by VND7 (Zhong et al. 2010, Yamaguchi et al. 2011, Kim et al. 2012a, 2012b, 2013).

VND7 is post-translationally regulated; the stability of VND7 protein is controlled by proteasome-mediated proteolysis (Yamaguchi et al. 2008) and the transcriptional activation activity of VND7 is negatively regulated by VNI2, which encodes a NAC transcription factor (Yamaguchi et al. 2010b). In addition, *VND7* 

transcription is strictly regulated in a spatiotemporal manner, suggesting the involvement of upstream transcription factors. Recent research revealed that xylem vessel formation is tightly regulated by a complex transcriptional network (Demura et al. 2007, Caño-Delgado et al. 2010, Ohashi-Ito and Fukuda 2010, Yamaguchi and Demura 2010, Brady et al. 2011, Miyashima et al. 2012). As several members of the Class III HD-ZIP (HD-ZIP III) transcription factor family, such as ATHB-8 and PHBULOSA (PHB), determine vascular patterning, these transcription factors may regulate *VND7* expression (Carlsbecker et al. 2010, Miyashima et al. 2011, Furuta et al. 2012). Soyano et al. (2008) reported that LOB-domain (LBD) transcription factors, LBD18/ASL20 and LBD30/ASL19, up-regulate *VND7* expression. However, because the expression of LBD18/ASL20 and LBD30/ASL19 itself is dependent on VND7 function, information about upstream transcription factors that regulate *VND7* expression is limited. Thus, the regulatory mechanism underlying *VND7* expression is still largely unknown.

In this study, I sought to decipher the transcriptional regulation mechanism underlying VND7 expression. I screened the 73 transcription factors expressed during xylem vessel element differentiation for their ability to activate VND7 expression. Dual luciferase assays using the VND7 promoter showed that a number of transcription factors, including all members of the VND family (VND1 to VND7); ANAC075; two GATA transcription factors, GATA5 and GATA12; LBD18/ASL20; and LBD30/ASL19 have the potential to induce reporter gene expression. Promoter-reporter analysis revealed that ANAC075, GATA5, and GATA12 are preferentially expressed in the vascular cylinder of the root tip region, where xylem vessels differentiate. Moreover, electrophoresis mobility shift assays (EMSAs) showed that VND1 to VND7 and GATA12 bind to the VND7 promoter region. Overexpression of all seven VNDs, GATA12, and ANAC075 induced transdifferentiation into xylem vessel elements, without upregulating the expression of endogenous VND7. In addition, further studies using chemicals and mutants related to the epigenetic control of gene expression showed that VND7 expression is likely to be repressed by the well-documented epigenetic marks, H3K27me3 and DNA methylation (Feng et al. 2010). Based on these results, I propose a mechanism that regulates VND7 expression in a cell/tissue-specific manner.

#### **Materials and methods**

#### **Plasmid construction**

To generate the Gateway destination vector for the dual luciferase (LUC) transient transfection assay, the pA35SG effector plasmid (Yamaguchi et al. 2008) was digested with SmaI and ligated into EcoRV-digested GATEWAY Reading Frame Cassette http://www.invitrogen.com/). (GWRFC) В (Invitrogen, Likewise. the GAL4UAS:TATA:LUC reporter plasmid containing firefly LUC (Ohta et al. 2000) was digested with *Hind*III and *Sma*I, blunted using the BKL Kit (Takara Bio; http://www. takara-bio.com/), and ligated into EcoRV-digested GWRFC B. The resultant effector and reporter plasmids were designated as pA35G and pAGL, respectively. The amplified coding sequences (CDSs) of candidate transcription factors and the promoter regions of VND1 to VND7 were cloned into the pENTR/D/TOPO vector (Invitrogen; http://www.lifetechnologies.com), and then integrated respectively into the Gateway destination vectors, pA35G and pAGL, using LR Clonase (Invitrogen) (Table 1). For the effector control, the nucleotide sequence of the multi-cloning site (MCS) 5'-CACCTAGTGGATCCCCCGGGCTGCAGGAATTCGATATCAAGCTTATCGATA CCGTCGACCTCGTGATG-3', which includes a stop codon at the 5' end and a start codon at the 3' end, was used (Yamaguchi et al. 2008). The pBIG2113SF effector plasmids (binary vectors) were obtained from the RIKEN Arabidopsis full-length (RALF) cDNA library, which contains full-length cDNAs of the genes listed in Table 2. The pBIG2113SF effector vector was constructed as described previously (Ichikawa et al. 2006). The empty vector pBIG2113SF was used as the effector control (Ichikawa et al. 2006). A reference plasmid containing Renilla reniformis LUC was prepared as described in Ohta et al. 2000. For the promoter analysis, the promoter fragments of GATA5, GATA12, and ANAC075 (for primer sequences see Table S26) were subcloned into the pENTR/D-TOPO vector, and then integrated into the GATEWAY destination vector, pBGYN (Kubo et al. 2005). To generate the overexpression plants, the CDSs of VND1 to VND7, GATA5, GATA12, and ANAC075 were subcloned into the PacI/AscI sites of the pER8 vector, which is part of an estrogen receptor-based chemical-inducible system for use in transgenic plants (Zuo et al. 2000). For the electrophoresis mobility shift assays (EMSAs), the NAC domain region of VND1 to VND7 (for the NAC region used in this study, see Table S27) and full-length GATA12 were subcloned into the

pENTR/D-TOPO vector, and then integrated into the GATEWAY destination vector, pMAL-GWRFC (Yamaguchi et al. 2010b), using LR Clonase (Invitrogen).

#### **Plant materials**

*Arabidopsis* seeds were sterilized with 70% ethanol and Plant Preservative Mixture (PPM; Plant Cell Technology, http://www.plantcelltechnology.com/), and then placed on germination medium (GM) containing Murashige and Skoog (MS) medium, 1% sucrose, 0.05% MES-KOH (pH 5.8), B5 vitamins, and 0.3% phytagel (Sigma). The seeds were then placed at 4°C for 3 to 4 days, and then incubated in a growth chamber under continuous illumination at 22°C. To investigate the effects of 5-aza-2'-deoxycytidine (5-adC) or phytohormones, seedlings of Columbia-0 (Col-0), Landsberg erecta (Ler), mutant, and transgenic plants grown on GM were incubated in solution containing various combinations of phytohormones and 5-adC (Wako: http://www.wako-chem.co.jp) at 22°C for 5 or 6 days.

#### **Transformation of plants**

*Arabidopsis thaliana* (ecotype Col-0) was used as the wild type. Plants were germinated on sterile MS medium (0.6% agar) at 22°C under continuous light conditions after cold treatment (at 4°C in the dark for 2 to 3 days). Two to three weeks after germination, plants grown on plates were transferred to soil and further grown in a growth chamber at 22°C with a photoperiod of 16 h of light and 8 h of darkness. The resultant plasmids were electroporated into *Agrobacterium* strain *GV3101::pMP90*, which in turn was used to transform plants by the floral dip method (Clough et al. 1998).

#### Dual luciferase transient transfection assay

The effector, reporter, and reference plasmids were delivered to the rosette leaves of 4or 5-week-old Arabidopsis plants using the Biolistic PDS-1000/He Particle Delivery System (BIO-RAD, http://www.bio-rad.com) and LUC activity was assayed with the Dual-Luciferase Reporter Assay System (Promega, http://www.promega.com) using the Mithras LB940 or LB941 System (Berthold, http://www.bertholdtech.com).

#### Transient expression assay using *VND7*pro::β-glucuronidase (GUS) leaves

The effector plasmids were introduced into the rosette leaves of 18-day-old transgenic plants expressing the *GUS* reporter driven by the *VND7* promoter (*VND7pro::GUS*; Yamaguchi et al. 2008) by particle bombardment, as described above. After the bombardment, plants were incubated for 4 days at 22°C, and then fixed in 90% (v/v) acetone at -30°C. The leaves were washed with 100 mM sodium phosphate buffer (pH 7.0) three times, and incubated in reaction solution (1 mM 5-bromo-4-chloro-3-indolyl glucuronide, 0.5 mM potassium ferricyanide, 0.5 mM potassium ferrocyanide, and 100 mM sodium phosphate, pH 7.0) at 37°C for 10 h. After washing with 30% ethanol, the samples were mounted in clearing solution (8 g chloral hydrate, 1 ml glycerol, and 2 ml water) and observed with a microscope equipped with Nomarski optics (BX51, Olympus; http://www.olympus-global.com/).

#### **Electrophoretic mobility shift assay**

Promoter fragments were labeled with biotin using the Biotin 3' End DNA Labeling Kit (Thermo, http://www.thermoscientific.com). Labeled probes were separated from unincorporated biotin-dUTP using a MERmaid SPIN Kit (MP-biomedicals, http://www.mpbio.com). The MBP-tagged N-terminal region of VND1 to VND7, containing whole NAC domains, and full-length GATA12 were expressed in *Escherichia coli* strain BL21*trxB* (DE3) and purified as previously described in Yamaguchi et al. (2010b). Approximately 20 fmol of biotinylated promoter fragments were incubated in reaction buffer (LightShift EMSA Optimization and Control Kit; Thermo) for 30 minutes at 4°C with 5 pmol of the purified recombinant protein for VND1-VND7 and 1, 2, 4, 6, and 8 pmol of the purified recombinant protein for GATA12 and/or an excess of unlabeled fragments as competitors. Protein bound to biotinylated DNA fragments was separated by polyacrylamide gel electrophoresis. The DNA was electroblotted onto positively charged nylon membrane (Hybond-N+; GE Health care, http://www.gelifesciences.com) and detected using the LightShift Chemiluminescent EMSA Kit, according to the manufacturer's instructions.

#### **Real-Time PCR**

Total RNA was prepared using the RNeasy Plant Mini Kit (Qiagen; http://www.giagen.com) and RQ1 **RNase-Free** DNase (Promega; http://www.promega.com). cDNA synthesis was performed using oligo(dT)20 primer and Transcriptor Reverse Transcriptase (Roche; http://www.roche.com). Real-time PCR was performed using a Light Cycler 480 II and Light Cycler 480 SYBR Green I Master (Roche), as described in the manufacturer's protocols. The sequences of primers used for real-time PCR are presented in Table S26. UBQ10 cDNA served as an internal control for all experiments.

#### **Microscopy analysis**

For all mounted plant observations, seedlings were fixed with 90% acetone for more than 1 week at -30°C. Samples were mounted on clearing solution (8 g of chloral hydrate, 1 mL of glycerol, and 2 mL of water) before observation. Nomarski images were captured using a polarizing microscope (BX51; Olympus) equipped with a digital camera (DP70; Olympus). To observe the roots of *VND7*pro:*YFP-NLS* (Kubo et al. 2005, Yamaguchi et al. 2008), *GATA5*pro:*YFP-NLS*, *GATA12*pro:*YFP-NLS*, and *ANAC075*pro:*YFP-NLS* plants, the samples were counterstained with propidium iodide and observed with a laser scanning confocal microscope (Zeiss AX10 observer. Z1) equipped with a digital camera (Zeiss LSM 710).

#### Analysis of DNA methylation levels using McrBC-PCR

DNA was extracted from two 7-day-old Col-0 seedlings treated with or without 1 µg/ml of 5-adC (Wako; http://www.wako-chem.co.jp) using a NucleoSpin Plant II Kit (MACHEREY-NAGEL: http://www.mn-net.com). Then, 60 ng of DNA was digested with 20 U of McrBC (New England Biolabs) and incubated for 12 h at 37°C, or incubated without enzyme in the same total volume and under the same conditions. Digested and undigested DNA samples were then subjected to PCR analysis using the primers listed in Table S26.

#### Chromatin immunoprecipitation and quantitative PCR

ChIP experiments were carried out as described by Helliwell et al. (2006) with modifications. Five-day-old Col-0 seedlings (0.25 g) were glaciated with liquid nitrogen and ground in a mortar. Chromatin was crosslinked by formaldehyde. Samples were then sonicated twice and centrifuged for 15 minutes at 20,000 g. The resulting supernatant containing mononucleosomes was incubated with or without Anti-trimethyl-Histone H3 (Lys27) Antibody (Millipore, http://www.millipore.com) for 2 h. Immunoprecipitation was carried out using the MAGnify ChIP System (Invitrogen, http://www.invitrogen.com). The supernatant containing chromatin was incubated with Dynabeads Protein G (Invitrogen) for 2 h at 4°C with rotation. The samples were then washed with lysis buffer (1 M HEPES (pH7.5), 2 M NaCl, 10% Triton X-100, 10% deoxycholate, 10% SDS), LNDET buffer (0.25 M LiCl, 1% NP40, 1% deoxycholate, 1 mM EDTA) and twice with TE buffer for 5 min at 4°C. The protein-DNA crosslinks were reversed by heating at 65°C and the DNA was eluted with 300 µl of proteinase K in 200 mM NaCl, 40 mM Tris-HCl (8.0), and 10 mM EDTA at 55°C for 15 min. The supernatant was further incubated at 95°C for 15 min. DNA was isolated using a Qiagen PCR Clean-up Kit. Real-time quantitative PCR was carried out using SYBR Green and Platinum Taq DNA Polymerase (Invitrogen), according to the manufacturer's instructions. The reactions were carried out on a 7900HT Fast Real-Time PCR System (Applied Biosystems; http://www.appliedbiosystems.com). Primers used for qPCR analysis are listed in Table S26. The data were analyzed using the Absolute Quantification program (Applied Biosystems; http://www.appliedbiosystems.com) and Arabidopsis cDNA isolated from five-day-old Col-0 seedlings was used as the standard.

# **Results and Discussion**

# Part I

# Identification of the transcription factors that regulate the expression of *VND7*

### **Results I**

# **1-1.** Selection of transcription factor genes that are expressed during vessel element differentiation

Previously Kubo et al. established an *in vitro* system for xylem vessel element transdifferentiation of *Arabidopsis* Col-0 suspension cultured cells, which was used to analyze the gene expression profile during the induction of xylem vessel element differentiation (Kubo et al. 2005). *VND7*, encoding a NAC domain transcription factor, was identified as being upregulated during xylem vessel element differentiation. Functional characterization revealed that VND7 directly or indirectly regulates a number of downstream target genes involved in xylem vessel differentiation in planta and established this transcription factor as a master regulator of xylem vessel differentiation (Kubo et al. 2005, Yamaguchi et al. 2008). However, the upstream regulatory mechanism underlying *VND7* expression remained largely unknown. To elucidate the mechanism, transcription factors that regulate *VND7* expression must be identified. Thus, I selected 73 transcription factor genes whose expression peaks at the same time or before *VND7* expression peaks in the *in vitro* differentiation system (Table 1, 2).

I obtained the CDSs of 26 of these transcription factors from the RIKEN full-length cDNA library and subcloned these fragments into a binary vector (pBIG2113SF) downstream of the *CaMV35S* promoter (Chikawa et al. 2006). I amplified the CDSs of the remaining 47 transcription factors from cDNAs derived from Arabidopsis seedlings and subcloned these fragments into a transient expression vector (pA35GS) downstream of the cauliflower mosaic virus 35S (*CaMV35S*) promoter. The resulting constructs were used as effector constructs in transient expression assays.

# **1-2.** Identification of transcription factors that induce *VND7* promoter activity using a transient expression assay

To isolate the transcription factors that upregulate *VND7* expression, I performed a dual luciferase assay according to a previously published technique (Mitsuda and Ohme-Takagi 2009). I first confirmed that a 1000-bp promoter region of *VND7* flanked

by a 9-bp coding region was sufficient to induce xylem vessel-specific expression of a yellow fluorescent protein (YFP) reporter in the root (Fig. 1C). Then, I constructed a reporter construct that contained this region of the VND7 promoter fused to firefly luciferase (LUC) (Fig. 1B). I delivered this reporter construct together with one of the effector constructs containing CDSs of the candidate transcription factors and a reference construct harboring Renilla LUC downstream of the CaMV35S promoter into Arabidopsis rossette leaves by particle bombardment. Fifteen of the candidate transcription factors induced firefly LUC activity (>3-fold compared with the control), and the increase was statistically significant for 11 of these (Welch's t-test, p-value < 0.05; Fig. 2; Table 1, 2; Table S1-25). Among these, GATA5, GATA12, and ANAC075 were identified as novel candidate transcription factors that regulate xylem vessel formation. I confirmed these results by transiently expressing the candidate transcription factors in the leaves of Arabidopsis plants stably expressing VND7pro::GUS, in which the 2-kb promoter region of VND7 was fused to GUS (Yamaguchi et al. 2008), by particle bombardment. All of the candidate transcription factors induced GUS activity, indicating that they indeed activate VND7 expression (Fig. 3, Table 3).

Moreover, I found that all *VND* genes strongly upregulated the *VND7* promoter activity (Table 2, 3, Fig. 3). Furthermore, the expression pattern of *VND7* overlapped with that of other *VND* genes (Kubo et al. 2005, Yamaguchi et al. 2008). These results suggest that *VND* family genes mutually regulate each other's expression during xylem vessel formation. To test this possibility, I performed a dual luciferase assay using all of the *VND* promoters as reporters and all of *VND* genes as effectors for all possible combinations. Although reporter gene expression driven by the *VND3*, *VND5*, and *VND6* promoters was preferentially elevated by a certain set of *VND* genes, the up-regulation of *VND7* promoter activity by VND genes was the most striking (Fig. 4).

# 1-3. *GATA5*, *GATA12*, and *ANAC075* are expressed in the vascular cylinder of roots

To investigate the spatial expression of the transcription factors identified as candidate genes that positively regulate *VND7* expression, I generated transgenic lines expressing YFP fused to the SV40 nuclear localization signal (*YFP-NLS*) under the control of the

*GATA5*, *GATA12*, *ANAC075*, or *VND7* promoter (Yamaguchi et al. 2008, 2010b). As previously reported (Yamaguchi et al. 2008, 2010b), *VND7pro::YFP-NLS* was specifically detected in the differentiating xylem vessels in the root tip region (Fig. 5A). By contrast, *GATA5pro::YFP* signal was detected in the root stele from the meristematic zone upward, while *GATA12pro::YFP-NLS* and *ANAC075pro::YFP-NLS* signals were detected in the root stele from the distal elongation zone upward (Fig. 5B-D). Microscopy observations indicated that all three transcription factors were expressed prior to the onset of *VND7* expression during vascular development in the root. To analyze the spatial expression pattern of these transcription factors in more detail, I observed the roots of the transgenic plants with confocal microscopy. As in the case of *VND7*, all three transcription factors were expressed in differentiating protoxylem vessel elements, which have a spiral secondary cell wall structure, and in putative precursors of metaxylem vessel elements located between two protoxylem vessels (Fig. 6A-D).

# 1-4. Overexpression of *VND1* to *VND7*, *GATA12*, and *ANAC075* causes ectopic xylem vessel element formation

To investigate the roles of ten of the identified transcription factors, I generated transgenic plants overexpressing *GATA5*, *GATA12*, *ANAC075*, and all seven *VNDs* under the control of an estradiol-mediated induction system (Zuo et al. 2000). Ectopic xylem vessel elements with thickened secondary cell walls were induced by application of  $\beta$ -estradiol in the transgenic plants exogenously overexpressing all *VND* genes, *GATA12*, and *ANAC075* (Fig. 7), but not in the transgenic plants overexpressing *GATA5* (data not shown). Safranin-O staining revealed that these secondary cell walls were lignified (Fig. 8). Notably, ectopic xylem vessel elements were observed in the leaves, hypocotyls, and roots of inducible lines harboring the *VND* genes and *ANAC075* (Fig. 7I, 8I), suggesting that GATA12 has a lower ability to induce transdifferentiation of xylem vessel elements than do the other tested transcription factors.

To further investigate whether overexpression of the transcription factors that induce ectopic xylem vessel element formation upregulates the mRNA levels of endogenous *VND7*, I analyzed the expression of *VND7* and its downstream target genes,

*LBD30/ASL19*, *MYB46*, *XYLEM CYSTEINE PROTASE1* (*XCP1*), and *CELLULOSE SYNTHASE A7* (*CESA7*) (Zhong et al. 2010, Yamaguchi et al. 2011), using quantitative RT-PCR analysis. RNA was extracted from 5-day-old seedlings treated with or without  $\beta$ -estradiol for 24 h (Fig. 9). Surprisingly, the mRNA levels of endogenous *VND7* were not markedly changed by overexpression of any of the analyzed transcription factors (Fig. 9A-H). By contrast, the mRNA levels of the downstream genes were upregulated 24 h after induction of the *VND* genes, whereas only *MYB46* was upregulated by *ANAC075* induction and none of the target genes was upregulated by *GATA12* (Fig. 9), presumably reflecting differences in the frequency of ectopic xylem vessel element formation in each overexpression lines (Fig. 7).

#### 1-5. VND1 to VND7 bind to the VND7 promoter region *in vitro*

VND6 and VND7 were reported to regulate downstream gene expression through cis-elements termed secondary wall NAC-binding elements (SNBEs) or tracheary element-regulating cis-elements (TEREs) (Pyo et al. 2007, Ohashi-Ito et al. 2010, Zhong et al. 2010, Yamaguchi et al. 2011). Expression analysis suggested that overexpression of VND1 to VND5 upregulated the direct target genes of VND6 and VND7 in the absence of an increase in endogenous VND7 expression (Fig. 9A-G). These data suggest that VND1 to VND5 recognize and bind to the SNBE or TERE motifs. Interestingly, the VND7 promoter region, used in the dual LUC assay, contains a SNBE and TERE-like motif (SNBE/TERE-like motif; -425 to -408) (Fig. 10, 11I; Pyo et al. 2007, Zhong et al. 2010). To test whether VND1 to VND7 directly bind to the VND7 promoter, I conducted electrophoresis mobility shift assays (EMSAs) in which I combined a biotinylated 603-bp VND7 promoter fragment (-1 to -603 bp relative to the start codon) with maltose binding protein-tagged (MBP-tagged) N-terminal regions of VND proteins that include the whole NAC domain (Table S27). When the probe was incubated with any of the VND proteins, one or more shifted bands were detected (Fig. 11A-G). These shifted bands were significantly reduced but not completely eliminated by the application of an excess amount (x 200) of the 33-bp DNA fragment of the VND7 promoter, containing the SNBE/TERE-like motif (-428 to -396) (Fig. 11A-G).

To obtain direct evidence that VND proteins bind to the 33-bp fragment of the *VND7* promoter, the 33-bp fragment was biotinylated and used as a probe in EMSAs. In

the presence of MBP-VND3 (as a representative of VND1 to VND6) and MBP-VND7 (as a possible positive control known to bind to the TERE motif; Yamaguchi et al. 2011), a shifted band was observed and the application of an excess amount (x200) of unlabeled fragment strongly decreased the signal (Fig. 12). Moreover, when a mutated 33-bp fragment harboring three nucleotide substitutions in the SNBE/TERE-like motif was used as a competitor, the shifted bands were clearly detected (Fig. 12). These results suggest that VND proteins bind to the SNBE/TERE motif located in the promoter region of *VND7*.

Furthermore, I found that the VND7 promoter also contains a putative GATA-binding motif (AG-motif; AGATCCAA) previously described in Nicotiana tabacum GATA16 (AGP1; Sugimoto et al. 2003) in the region spanning -411 to -404 bp (Fig. 11I). The amino acid sequence of the GATA DNA-binding domain of the reported AGP1 and Arabidopsis GATA12 exhibit high levels of similarity (Fig. 13). Interestingly, the AG-motif was shown to overlap with the SNBE/TERE-like motif (-425 to -408 bp) (Fig. 11I). Based on these findings, I performed an EMSA using N-terminal MBP-tagged full-length GATA12 (MBP-GATA12). When the biotinylated 603-bp VND7 promoter fragment was incubated with GATA12, free probe disappeared, but no clearly shifted bands were detected (Fig. 11H). The application of an excess amount (x 1000) of 33-bp DNA fragment containing the AG-motif did not restore the appearance of free probe (Fig. 11H, I). These data suggest that GATA12 binds to the VND7 promoter region, but that its target site is not within the 33-bp region harboring the AG-motif. To further examine whether GATA12 binds to the VND7 promoter, I performed an EMSA using a series of different concentrations of GATA12 protein (Fig. 14). I found that the level of biotinylated 603-bp VND7 free probe declined as the concentration of GATA12 proteins increased, and shifted bands appeared (Fig. 14).

#### **Discussion I**

In this study, I aimed to identify the transcription factors that regulate the expression of *VND7* using a transient expression assay. Interestingly, all of the *VND* family genes strongly induced VND7 promoter activity (Table 2, Fig. 4). However, the transactivation activity of VND7 for other *VND* genes was not strong (Fig. 4). Moreover, the transient expression of VNDs in *VND7*pro::*GUS* transgenic plants showed that all VNDs induced ectopic GUS activity in the leaf epidermal cells (Fig. 3, Table 3), suggesting that VNDs induce the activity of the *VND7* promoter, which was exogenously integrated into the genome *in vivo*. All of these results suggest that, among the *VND* gene family, *VND7* is the main target of VND transcription factors.

I identified *LBD15/ASL11*, *LBD30/ASL19*, and *LBD18/ASL20* in the dual luciferase assay and showed that they have the ability to induce *VND7* promoter activity *in vivo* (Table 2, 3). Whereas all of these genes were reported to be downstream targets of VND7 (Zhong et al. 2010, Yamaguchi et al. 2011), *LBD30/ASL19* and *LBD18/ASL20* were shown to maintain *VND7* expression during xylem vessel element differentiation via a feedback pathway (Soyanoa et al.2008) and *LBD15/ASL11* and *LBD30/ASL19* were shown to be direct targets of VND7 (Ohashi-Ito et al. 2010, Zhong et al. 2010, Yamaguchi et al. 2011). In addition, *SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN 2* (*SND2*), which is known to be upregulated by NST3/SND1, a master regulator of fiber cell differentiation (Zhong et al. 2008), also induced *VND7* promoter activity (Table 2, 3). Since *SND2* is expressed not only in fiber cells but also in xylem vessels, it is plausible that *SND2* expression is positively regulated not only by NST3/SND1 but also by VND7. Thus, I propose that these four transcription factors are involved in a positive feedback loop that regulates *VND7* expression during xylem vessel differentiation.

In the dual luciferase assay, I also identified REV as a candidate regulator of *VND7* expression (Table 2, 3). This protein belongs to the Class III HD-Zip transcription factor family and is known to function with several bHLHs, such as LHW and TMO5, in the initiation of vasculature and differentiation of xylem vessels (Baima et al. 2001, Carlsbecker et al. 2010, Miyashima et al. 2011, Furuta et al. 2012, De Rybel et al. 2013, Ohashi-Ito et al. 2013a, 2013b). However, other HD-ZipIII genes did not exhibit any significant induction of *VND7* expression (Table 2) and the promoter region

of *VND7* was not detected in a genome-wide binding-site analysis of *REV* (Brandt et al. 2012), suggesting that members of the HD-ZipIII gene family do not directly regulate *VND7* expression, but rather enhance its expression by promoting vascular development. Class III HD-Zip genes are known to be regulated by microRNA165 and 166 (miR165/166) (Carlsbecker et al. 2010, Miyashima et al. 2011). To overcome the post-transcriptional inhibition of *REV* expression, I used a microRNA resistant version of *REVOLUTA* (*REV*avb) (Zhong and Ye 2004) as an effector in my assay. I found that REVavb did not induce *VND7* promoter activity (Table 2).

Furthermore, I identified three previously undescribed transcription factors that induce VND7 promoter activity, namely a NAC domain-containing transcription factor, ANAC075, and two GATA domain-containing transcription factors, GATA5 and GATA12 (Table 2, 3). ANAC075 was proposed as a candidate gene that controls cell wall development based on the findings of an in silico analysis (Shen et al. 2009). Although ANAC075 is one of the closest homologs of SND2, ANAC075 has not been reported as a downstream target of VND or NST (Ohashi-Ito et al. 2010, Zhong et al. 2010, Yamaguchi et al. 2011), suggesting that ANAC075 might not be included in the positive feedback loop that regulates VND7 expression. Twenty-nine GATA domain-containing transcription factors have been identified in Arabidopsis. Although this gene family has been implicated in various biological functions, such as embryogenesis, morphogenesis, circadian clock regulation, light responses, seed dormancy, and hormone crosstalk (Liu et al. 2005, Manfield et al. 2007, Luo et al. 2010, Nawy et al. 2010, Kanei et al. 2012, Zhang et al. 2013), it has not been shown to function in vascular development. According to a previous report, GATA5 and GATA12 both belong to sub-family I of the GATA domain-containing transcription factors, and clustering analysis based on expression patterns showed that they are grouped into the same expression clade (Manfield et al. 2007). In addition to GATA5 and GATA12, GATA10 is also included in this sub-family and expression clade (Manfield et al. 2007). I showed that GATA5 and GATA12 expression peaks before VND7 during in vitro xylem vessel differentiation, while GATA10 expression is not significantly changed (Fig. 15). These data suggest that GATA5 and GATA12 are the only members of the sub-family I to contribute to xylem vessel formation.

I also showed that the four identified regulators of *VND7* are expressed in differentiating protoxylem vessel elements and the metaxylem pole (Fig. 6B-D). It has

been reported that *VND1* to *VND6*, *LBD18/ASL20*, and *LBD30/ASL19* are expressed in the procambial zone, protoxylem, and/or metaxylem vessels (Kubo et al. 2005, Yamaguchi et al. 2008, Soyanoa et al 2008). These data and previous reports suggest that the transcription factors isolated in my screen may coordinately regulate *VND7* expression during xylem vessel formation.

I demonstrated ectopic xylem vessel element formation in transgenic plants overexpressing each of the VND genes (Fig. 7B-H, 8B-H). However, endogenous VND7 expression was not markedly upregulated in these transgenic plants, suggesting that VND overexpression upregulates downstream target genes independently of upregulating endogenous VND7 expression, still inducing transdifferentiation. Several research groups have reported that secondary cell wall-related NAC transcription factors bind to cis-elements termed secondary wall NAC-binding elements (SNBEs) or tracheary element-regulating cis-elements (TEREs) (Pyo et al. 2007, Zhong et al. 2010). These elements exist in the promoter region of the direct target genes of VND7, including LBD30, MYB46, and XCP1 (Zhong et al. 2010, Yamaguchi et al. 2011). It is likely that VND1 to VND5 also bind to these cis-elements and cooperatively regulate xylem vessel differentiation together with VND7. In the transgenic plants overexpressing GATA12, neither VND7 nor its downstream targets were upregulated, whereas ectopic xylem vessel elements were observed (Fig. 7I, 8I). Further analyses, including the isolation of target genes of GATA12 during xylem vessel formation, are needed to establish the molecular function of GATA12. Since LBD30 was shown to participate in a positive feedback loop regulating VND7 expression (Soyanoa et al 2008), it could be expected that the upregulated expression of LBD30 caused by the overexpression of VND genes positively regulates VND7 expression. However, endogenous VND7 expression was not markedly upregulated in lines overexpressing VND genes (Fig. 9A, B, C, D, F). This might be simply because the expression level of LBD30 was not enough to drive the positive feedback loop. Further analysis is needed clarify the feedback mechanisms governing VND7 expression.

I also examined whether VND1 to VND7 could directly bind to the *VND7* promoter using EMSA. These results showed that VND1 to VND7 do indeed bind to the *VND7* promoter (Fig. 11A-G). Moreover, most of the samples showed multiple bands (Fig. 11B, D, E, F, G). Since VND7 forms homodimers and/or heterodimers with other VND proteins (Yamaguchi et al. 2008), it is possible that the other VND proteins

also form homo- or heterodimers, and that the multiple bands are due to the formation of dimers. Furthermore, when a mutated fragment of the *VND7* promoter with three nucleotide substitutions in the SNBE/TERE-like motif was used as a competitor, shifted bands were still observed for both VND3 and VND7 (Fig. 12A, B). These results suggest that VND proteins bind to the SNBE/TERE motif and directly regulate the expression of genes involved in xylem vessel differentiation through the SNBE or TERE motif. In addition, I showed that GATA12 binds to the *VND7* promoter region, since the level of *VND7* free probe decreased with increasing concentrations of GATA12 (Fig. 14). Therefore, GATA12 also directly regulates the expression of *VND7*, and probably in a cell type-specific manner, since endogenous *VND7* mRNA was not upregulated in the seedlings of the overexpressors (Fig. 9H).

In this part of my study, I succeeded in isolating 15 transcription factors that could potentially regulate the expression of VND7, a master regulator of vessel formation. Three of the 15 transcription factors had not previously been reported to be involved in vascular development. Furthermore, LBD18/ASL20, LBD30/ASL19, LBD15/ASL11, and SND2 seem to form a positive feedback loop that regulates VND7 expression. Moreover, all seven VND proteins directly regulate VND7 expression. In addition, my results suggest that VND1 to VND5 promote xylem vessel formation independently of the upregulation of endogenous VND7 expression (Fig. 7B-H, 8B-H, 9A-F). Signaling molecules often regulate vascular development and vascular specification by controlling the expression of specific transcription factors (Demura and Fukuda 2007, Ohashi-Ito and Fukuda 2010, Miyashima et al. 2012). Recent advances in our understanding of vascular development show that multiple types of signaling molecules regulate vascular development. For instance, Okushima et al. (2007) and Soyano et al. (2008) reported that LBD18/ASL20 expression is regulated by auxin. The expression of transcription factors newly identified in this study might also be regulated by some molecular signal. To decipher how xylem vessel elements are specified, it is important to characterize the identified transcription factors in detail. The results obtained in this study also suggest that certain additional unknown factors would strongly repress VND7 expression in non-xylem cells (Fig. 15), since overexpression of VND1 to VND6 and GATA12 could not induce the expression of endogenous VND7, even though they had the ability to bind to the VND7 promoter and induce its activity (Table 2, 3, Fig. 3, 11, 12, 14). Thus, additional undefined factors are required for the

precise regulation of VND7 expression in planta.

| Category | AGI no.   | Description           | Fold change <sup>*</sup> | S.D." | p-value <sup>c</sup> |
|----------|-----------|-----------------------|--------------------------|-------|----------------------|
| AP2      | At5g05410 | DREB2                 | 1.00                     | 0.50  | 0.9527               |
|          | At5g25190 | AP2/ERF               | 1.01                     | 0.49  | 0.9549               |
|          | At5g61600 | AP2/ERF               | 1.02                     | 0.24  | 0.9426               |
| bHLH     | At4g36540 | BEE2                  | 0.96                     | 0.44  | 0.8836               |
|          | At3g26744 | ICE1/SREAM/SCRM       | 0.92                     | 0.50  | 0.9034               |
| bZIP     | At5g15830 | ATBZIP3               | 0.74                     | 0.35  | 0.3106               |
| Homeobox | At5g41410 | BEL1/BELL 1/ MYC6.12  | 0.49                     | 0.11  | 0.0478               |
| MADS     | At3g02310 | SEPALLATA2            | 0.93                     | 0.36  | 0.8619               |
| MYB      | At1g22640 | MYB3                  | 0.67                     | 0.08  | 0.3961               |
|          | At5g16600 | MYB43                 | 1.08                     | 0.17  | 0.8869               |
| NAC      | At1g28470 | SND3                  | 0.45                     | 0.07  | 0.0408               |
|          | At1g34190 | ANAC017               | 0.39                     | 0.04  | 0.0399               |
|          | At1g77450 | ANAC032               | 0.64                     | 0.07  | 0.1010               |
|          | At3g04420 | ANAC048               | 0.63                     | 0.09  | 0.0839               |
|          | At4g28530 | ANAC074               | 0.93                     | 0.23  | 0.6943               |
|          | At5g39610 | ANAC092/ATNAC2/ATNAC6 | 0.73                     | 0.39  | 0.3824               |
|          | At5g13180 | VNI2                  | 0.83                     | 0.25  | 0.6366               |
| ТСР      | At2g31070 | TCP10                 | 1.29                     | 0.81  | 0.6210               |
| WRKY     | At2g30590 | WRKY21                | 1.00                     | 0.41  | 0.9663               |
|          | At3g04670 | ATWRKY39/WRKY39       | 0.49                     | 0.27  | 0.1282               |
|          | At2g46400 | ATWRKY46/WRKY46       | 0.57                     | 0.17  | 0.1639               |
| zf-C2H2  | At1g66140 | ZFP4                  | 0.60                     | 0.21  | 0.2716               |
| zf-C3HC4 | At1g26800 | zinc finger C3HC4     | 0.52                     | 0.29  | 0.1449               |
|          | At3g23060 | zinc finger C3HC4     | 0.57                     | 0.39  | 0.2310               |
|          | At5g08750 | zinc finger C3HC4     | 0.36                     | 0.09  | 0.0810               |
| zf-Dof   | At1g64620 | Dof-type zinc finge   | 0.83                     | 0.08  | 0.6224               |

Table 1. List of transcription factors used in the dual luciferase assay (pBIG2113SF vector)

<sup>a</sup> Fold change = relative luciferase activity <sup>b</sup> S.D. = standard deviation of three replicates

<sup>c</sup> p-value = Welch's t-test; numbers in blue P < 0.05

| Category  | AGI no.   | Description              | Fold change <sup>a</sup> | S.D. <sup>b</sup> | p-value <sup>c</sup> |
|-----------|-----------|--------------------------|--------------------------|-------------------|----------------------|
| ARF       | At1g19850 | MP/ARF5                  | 0.87                     | 0.07              | 0.6725               |
| bHLH      | At1g63650 | ATMYC-2/ EGL1/ EGL3      | 1.50                     | 0.50              | 0.3793               |
|           | At1g35460 | bHLH                     | 0.82                     | 0.23              | 0.4692               |
|           | At1g68810 | TMO5-like1               | 2.11                     | 1.11              | 0.2203               |
|           | At1g51140 | bHLH                     | 0.84                     | 0.14              | 0.5339               |
|           | At1g29950 | bHLH                     | 1.49                     | 0.27              | 0.1796               |
|           | At3g56980 | ORG3                     | 0.95                     | 0.24              | 0.3812               |
|           | At5g64340 | SAC51                    | 0.74                     | 0.22              | 0.4092               |
|           | At5g09460 | SAC51like                | 0.83                     | 0.09              | 0.5466               |
| bZIP      | At5g49450 | ATBZIP1                  | 2.64                     | 0.36              | 0.0082               |
| CCAT      | At4g14540 | NF-YB3                   | 2.01                     | 1.60              | 0.3889               |
| GATA      | At5g66320 | GATA5                    | 10.32                    | 1.39              | 0.0056               |
|           | At5g25830 | GATA12                   | 7.93                     | 2.72              | 0.0454               |
| Homeobox  | At1g62990 | KNAT7                    | 0.92                     | 0.14              | 0.7769               |
|           | At5g06710 | HAT14                    | 1.43                     | 0.05              | 0.0587               |
|           | At4G32880 | AtHB8                    | 2.00                     | 0.70              | 0.1578               |
|           | At1g52150 | AtHB15                   | 2.30                     | 0.90              | 0.1141               |
|           | At2g34710 | PHB                      | 1.55                     | 0.46              | 0.1631               |
|           | At1g30490 | PHV                      | 1.82                     | 0.27              | 0.0176               |
|           | At5g60690 | REV                      | 3.80                     | 0.90              | 0.0150               |
|           | At5g60690 | REVavb <sup>d</sup>      | 0.96                     | 0.19              | 0.9364               |
| LBD       | At2g40470 | LBD15                    | 12.27                    | 4.34              | 0.0459               |
|           | At2g45420 | LBD18                    | 5.92                     | 3.24              | 0.1182               |
|           | At4g00220 | LBD30                    | 7.10                     | 2.00              | 0.0224               |
|           | At1g31320 | LBD4                     | 1.24                     | 0.26              | 0.4532               |
| MYB       | At3g10760 | MYB                      | 0.98                     | 0.23              | 0.9253               |
|           | At2g38090 | MYBlike                  | 0.47                     | 0.27              | 0.0881               |
|           | At1g69580 | MYBlike                  | 1.11                     | 0.54              | 0.7851               |
| NAC       | At4g28500 | SND2                     | 3.39                     | 0.59              | 0.0088               |
|           | At4g29230 | ANAC075                  | 6.70                     | 1.71              | 0.0277               |
|           | At5g64530 | XND1                     | 2.09                     | 0.46              | 0.0419               |
|           | At2g18060 | VND1                     | 61.33                    | 10.37             | 0.0095               |
|           | At4g36160 | VND2                     | 30.42                    | 4.44              | 0.0067               |
|           | At5g66300 | VND3                     | 41.87                    | 21.19             | 0.0789               |
|           | At1g12260 | VND4                     | 14.73                    | 6.87              | 0.0730               |
|           | At1g62700 | VND5                     | 62.70                    | 30.50             | 0.0348               |
|           | At5g62380 | VND6                     | 47.71                    | 18.89             | 0.0502               |
|           | At1g71930 | VND7                     | 32.85                    | 0.94              | 0.0000               |
| NF-YC2    | At1g56170 | HAP5B                    | 0.60                     | 0.19              | 0.1361               |
| TUB       | At1g76900 | ATTLP1                   | 0.73                     | 0.44              | 0.4386               |
|           | At1g43640 | ATTLP5                   | 0.80                     | 0.53              | 0.6048               |
| zf-C2H2   | At1g6/030 | ZFP6                     | 2.02                     | 0.46              | 0.0457               |
| C COTTC 4 | AI3g03510 | Zinc Tinger C2H2         | 0.47                     | 0.10              | 0.1288               |
| ZI-USHU4  | AI38339/0 |                          | U.00                     | 0.22              | 0.2819               |
|           | AI381/000 | NING-H2 ZINC Hinger      | 0.82                     | 0.18              | 0.3283               |
| -6 D - 6  | Allg/2220 | KING-H2 ZINC TINger-ALL3 | 1.82                     | 0.91              | 0.2443               |
| 21-D01    | AI3g0U2UU | $1 \times 100 / D013.3$  | 1.57                     | 0.54              | 0.2552               |
|           | AI3g00940 | 01013.8                  | 0.59                     | 0.54              | 0.1901               |

Table 2. List of transcription factors used in the dual luciferase assay (pA35G vector)

<sup>a</sup> Fold change = relative luciferase activity; numbers in red Fold > 3

<sup>b</sup> S.D. = standard deviation of three replicates

<sup>c</sup> p-value = Welch's t-test; numbers in blue P < 0.05</li>
<sup>d</sup> REVavb = REVOLUTA microRNA RESISTANT VERSION (Zhong and Ye 2004)

| Effector        |                             | Cell type   | Cell type |     |   |   |   |   |   |   |   |    |    | Frequency<br>(No. positive |    |     |    |    |         |                 |
|-----------------|-----------------------------|-------------|-----------|-----|---|---|---|---|---|---|---|----|----|----------------------------|----|-----|----|----|---------|-----------------|
| 1.11            | ector                       | een type    | 1         | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12                         | 13 | 14  | 15 | 16 | 17      | leaves / total) |
|                 |                             | SCW (A + C) | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | -  | -       | 0 / 15          |
| Control MCS     | GUS (B + C)                 | 0           | 0         | 0   | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | -  | -  | 1 / 15  |                 |
|                 |                             | SCW/GUS (C) | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | -  | -       | 0 / 15          |
|                 |                             | SCW (A + C) | 0         | 0   | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1  | 4  | 2                          | 3  | 2   | 0  | -  | -       | 6 / 15          |
| VND1            | At2g18060                   | GUS(B+C)    | 0         | 0   | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1  | 1  | 1                          | 2  | 0   | 0  | -  | -       | 5 / 15          |
|                 | SCW/GUS (C)                 | 0           | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1  | 1  | 2                          | 0  | 0   | -  | -  | 3/15    |                 |
| UNIDA           | 1.1.20100                   | SCW(A+C)    | 0         | 0   | 0 | 0 | 5 | 3 | 2 | 2 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | -  | -       | 4/15            |
| VND2 At4g50100  | GUS(B+C)                    | 0           | 0         | 0   | 0 | 2 | 1 | 2 | 2 | 0 | 0 | 0  | 1  | 1                          | 0  | 0   | -  | -  | 6/15    |                 |
|                 |                             | SCW/GUS (C) | 0         | 0   | 0 | 0 | 2 | 1 | 2 | 2 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | -  | -       | 4/15            |
| VND2 445-((200  | $\frac{SCW(A+C)}{CUS(B+C)}$ | 2           | 3         | 2   | 0 | 0 | 1 | 0 | 0 | 2 | 3 | 0  | 1  | 3                          | 3  | 2   | -  | -  | 10/15   |                 |
| VINDS           | Aloguuou                    | GUS(B+C)    | 2         | 2   | 3 | 0 | 0 | 1 | 0 | 1 | 2 | 2  | 0  | 3                          | 4  | 2   | 2  | -  | -       | 11/15           |
|                 |                             | SCW(A+C)    | 1         | - 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2  | 0  | 0                          | 0  | - 2 | 2  | -  | -       | 6/15            |
| VND4            | At1g12260                   | SUS(B+C)    | 1         | 1   | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 2  | 0  | 0                          | 3  | 4   | 2  | -  | -       | 9/15            |
| VIND4 Atigi2200 | 111512200                   | SCW/GUS (C) | 1         | 1   | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2  | 0  | 0                          | 0  | 0   | 0  | -  | -       | 4/15            |
|                 |                             | SCW(A+C)    | 0         | 3   | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 2  | 2  | 8                          | 5  | 4   | 1  | 8  | -       | 10/16           |
| VND5 At1g62700  | GUS(B+C)                    | 0           | 2         | 0   | 0 | 0 | 1 | 0 | 4 | 0 | 2 | 1  | 7  | 4                          | 3  | 1   | 6  | -  | 10/16   |                 |
|                 | SCW/GUS (C)                 | 0           | 2         | 0   | 0 | 0 | 1 | 0 | 2 | 0 | 2 | 1  | 7  | 4                          | 3  | 1   | 6  | -  | 10 / 16 |                 |
| VND6 At5g62380  |                             | SCW (A + C) | 2         | 0   | 8 | 0 | 0 | 5 | 9 | 2 | 1 | 9  | 3  | 0                          | 3  | 5   | 0  | 0  | -       | 10 / 16         |
|                 | GUS (B + C)                 | 1           | 0         | 1   | 0 | 0 | 3 | 2 | 1 | 0 | 5 | 2  | 0  | 5                          | 1  | 1   | 1  | -  | 11 / 16 |                 |
|                 | _                           | SCW/GUS (C) | 1         | 0   | 1 | 0 | 0 | 3 | 2 | 1 | 0 | 4  | 1  | 0                          | 2  | 1   | 0  | 0  | -       | 9 / 16          |
|                 |                             | SCW (A + C) | 3         | 0   | 0 | 2 | 2 | 2 | 4 | 2 | 3 | 14 | 0  | 4                          | 0  | 0   | 8  | 4  | -       | 11 / 16         |
| VND7            | At1g71930                   | GUS (B + C) | 0         | 0   | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 6  | 2  | 1                          | 0  | 0   | 1  | 1  | -       | 7 / 16          |
|                 |                             | SCW/GUS (C) | 0         | 0   | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 3  | 0  | 1                          | 0  | 0   | 1  | 1  | -       | 6 / 16          |
|                 |                             | SCW (A + C) | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | -  | -       | 0 / 15          |
| GATA5           | At5g66320                   | GUS (B + C) | 0         | 1   | 2 | 1 | 0 | 0 | 1 | 2 | 0 | 3  | 0  | 1                          | 0  | 0   | 0  | -  | -       | 7 / 15          |
|                 |                             | SCW/GUS (C) | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | -  | -       | 0 / 15          |
|                 |                             | SCW (A + C) | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | 0  | 0       | 0/17            |
| GATA12          | At5g25830                   | GUS(B+C)    | 0         | 0   | 0 | 1 | 1 | 2 | 0 | 1 | 0 | 0  | 0  | 0                          | 0  | 0   | 1  | 1  | 4       | 7/17            |
|                 |                             | SCW/GUS (C) | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | 0  | 0       | 0/17            |
| L DD15          | 442-40470                   | SCW(A+C)    | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | -  | -       | 0/15            |
| LBD15           | A12g40470                   | GUS(B+C)    | 0         | 0   | 1 | 0 | 1 | 0 | 0 | 2 | 1 | 0  | 0  | 2                          | 0  | 1   | 3  | -  | -       | //15            |
|                 |                             | SCW(A+C)    | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | 0  | -       | 0/15            |
| LBD30           | At4000220                   | SUS(B+C)    | 0         | 0   | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0  | 1  | 2                          | 1  | 1   | 0  | 4  | -       | 7/16            |
| LDDU            |                             | SCW/GUS (C) | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | 0  | -       | 0/16            |
|                 |                             | SCW(A+C)    | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | 0  | -       | 0/16            |
| ANAC075         | At4g29230                   | GUS(B+C)    | 7         | 0   | 1 | 0 | 1 | 3 | 3 | 2 | 4 | 0  | 3  | 1                          | 5  | 6   | 1  | 1  |         | 13/16           |
|                 |                             | SCW/GUS (C) | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | 0  | -       | 0 / 16          |
|                 |                             | SCW (A + C) | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | -  | -       | 0 / 15          |
| REV             | At5g60690                   | GUS (B + C) | 0         | 0   | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1  | 0  | 0                          | 0  | 0   | 2  | -  | -       | 3 / 15          |
|                 |                             | SCW/GUS (C) | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | -  | -       | 0 / 15          |
|                 |                             | SCW (A + C) | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | 0  | -  | -       | 0 / 15          |
| SND2            | At4g28500                   | GUS (B + C) | 0         | 0   | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0  | 0  | 0                          | 1  | 4   | 1  | -  | -       | 5 / 15          |
|                 | SCW/GUS (C)                 | 0           | 0         | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                          | 0  | 0   | -  | -  | 0 / 15  |                 |

Table 3. Summary of transient expression assay using VND7pro::GUS plants

The number of cells with patterned secondary cell wall formation (SCW) and / or VND7pro::GUS activity (GUS) in each leaf. A, B, C in "Cell type" colum indicate (A) cell with patterned SCW, (B) cell with GUS activity and (C) cell with both SCW and GUS activity. A detailed description of cell types provided in Fig. 3. Blue, yellwow and green color shadeing indicates leaf that has cells with SCW, GUS or both SCW and GUS, respectively.



Fig. 1. Schematic diagrams of vectors used in the dual luciferase reporter assay and confirmation that a 1000-bp promoter region of *VND7* induces xylem vessel-specific expression. (A) The effector vector and (B) reporter vector. (C) Expression pattern of *VND7pro::YFP-NLS*. Images of differential interference contrast (DIC) and YFP fluorescence were merged. Bar = 100  $\mu$ m.



Fig. 2. Expression patterns of the transcription factors that induce *VND7* promoter activity during *in vitro* xylem vessel element differentiation, as revealed by microarray analysis (Kubo et al. 2005).



Fig. 3. Patterned secondary cell wall formation (SCW) and ectopic *VND7* promoter::*GUS* activity (GUS activity) induced by the overexpression of the candidate transcription factors. The leaves of *VND7* promoter::*GUS* plants that a *VND7* overexpression vector was introduced by particle bombardment. The plants were incubated at 22°C in a growth chamber for 4 days after bombardment. Four kinds of epidermal cells were present: (A) cells with patterned SCW, (B) cells with GUS activity, (C) cells with both SCW and GUS activity, and (D) cells lacking SCW and GUS activity. Bar = 30 µm. The frequency of each cell type is shown in Table 3.



Fig. 4. *VND* family genes upregulate *VND7* expression *in vitro*. (A) Schematic diagrams of the effector and reporter plasmids used in luciferase transactivation assays. The reporter plasmids contain the promoters of *VND1* to *VND7* upstream of the firefly luciferase reporter gene. The effector plasmids contain *VND1* to *VND7* or a multi-cloning site (MCS) downstream of the CaMV35S promoter. (B) Results of transient expression assays. The reporter, effector and reference constructs were introduced into *Arabidopsis* leaves. The reporter gene activity was normalized by the activity of *Renilla* luciferase. Error bars indicate SD (n = 3). Asterisks indicate statistically significant differences (Welch's t-test; \*P < 0.05) compared to the values for the control effector.



Fig. 5. The expression profiles of candidate transcription factors regulating *VND7* expression in the root. Expression patterns of (A) *VND7*pro::*YFP-NLS*, (B) *GATA5*pro::*YFP-NLS*, (C) *GATA12*pro::*YFP-NLS*, and (D) *ANAC075*pro::*YFP-NLS* in roots. DIC and YFP fluorescence images were merged. Bar = 200  $\mu$ m.



Fig. 6. Confocal microscopy analysis of the expression patterns of the candidate transcription factors regulating *VND7* expression in the root. Confocal microscopy images of the roots of transgenic plants expressing (A) *VND7*pro::*YFP-NLS*, (B) *GATA5*pro::*YFP-NLS*, (C) *GATA12*pro::*YFP-NLS*, and (D) *ANAC075*pro::*YFP-NLS*. A and D, 9-day-old plants; B and C, 10-day-old plants. The roots were counterstained with propidium iodide to visualize the outlines of cells. Black arrowheads indicate protoxylem vessel strands, while white arrows indicate fluorescent signals in metaxylem precursor cells. Bar = 100  $\mu$ m.



Fig. 7. Morphology of transgenic plant organs overexpressing transcription factors shown to upregulate *VND7* expression. DIC images of leaves (top left), hypocotyls (top right), and roots (bottom) of 7-day-old (A) Col-0 and transgenic plants expressing (B– H) *VND1–VND7*, (I) *GATA12*, and (J) *ANAC075* in an estrogen-inducible system. Plants were grown on media containing 10  $\mu$ M  $\beta$ -estradiol for 7 days before analysis. Yellow arrowheads indicate the induced ectopic xylem vessel-like elements. Bar = 50  $\mu$ m.



Fig. 8. Lignification patterns in the ectopic xylem vessel-like elements formed upon overexpression of the identified transcription factors. (A–J) Confocal microscopy images of the roots of 7-day-old seedlings. (A) Col-0 and (B–J) transgenic plants harboring estrogen-inducible *VND1* to *VND7*, *GATA12*, and *ANAC075*. Cells were treated with 10  $\mu$ M of  $\beta$ -estradiol for 5 days before imaging. Plants were stained with Safranin-O, which stains lignin. Bar = 50  $\mu$ m. Blue and yellow arrowheads indicate the endogenous and ectopic xylem vessel elements, respectively.



Fig. 9. Expression analysis of *VND7* and genes known to be involved in xylem vessel formation. Quantitative RT-PCR was used to analyze the expression of the indicated genes. Five-day-old transgenic seedlings harboring (A-G) *VND1* to *VND7* and (H) *GATA12* were treated with (EST) or without (mock) 10  $\mu$ M  $\beta$ -estradiol for 24 h. mRNA levels for each of the indicated genes were normalized to *UBQ10* mRNA. Error bars indicate SD (n = 3). Asterisks indicate statistically significant differences (Welch's t-test; \*P < 0.05) compared with the values of the mock treatment.



Fig. 10. Comparison of the *VND7* promoter (-425 to -407 bp) and SNBE or TERE consensus sequences. Asterisks indicate sequence matches between SNBE or TERE (Pyo et al. 2007, Zhong et al. 2010) and the *VND7* promoter sequence, and red font shows these matching nucleotides in the *VND7* promoter sequence.



Fig. 11. VND proteins and GATA12 bind to the *VND7* promoter. EMSA was performed using MBP-tagged (A-H) VND1 to VND7 and GATA12 proteins. Biotin-labeled *VND7* promoter fragment (-1 to -603 bp) was incubated with (+) or without (-) MBP or the MBP-tagged VND and GATA12 proteins. The 33-bp *VND7* promoter fragment (-428 to -396 bp) was used for competition analysis. Yellow arrowheads indicate free probe. (I) Nucleotide sequences of the 33-bp *VND7* promoter fragments used for EMSA. The gray shading and blue letters indicate the SNBE/TERE-like motif and AG-motif, respectively.

#### A

| Unlabeled frag.     | -428 <b>G A T</b> | AGCCTTAAG | CTTAAAGAT   | CCAAGCTI | TTGG-396 |
|---------------------|-------------------|-----------|-------------|----------|----------|
| mutation frag. (mu) | -428 <b>G A T</b> | AGCCTTAAG | AAG AAAG AT | CCAAGCTI | TTGG-396 |

| B VND7pro 33 bp |                           |   |   |     |     |      |            |    |       |               |            |
|-----------------|---------------------------|---|---|-----|-----|------|------------|----|-------|---------------|------------|
|                 | Biotin-frag.              | + | + | +   | +   | +    | +          | +  | +     | +             | +          |
|                 | MBP-tag                   | _ | + | _   | -   | _    | _          | _  | _     | _             | —          |
|                 | MBP-VND7 <sup>1-161</sup> | - | — | +   | +   | +    | +          | _  | -     | -             | —          |
|                 | MBP-VND3 <sup>1-165</sup> | — | — | —   | -   | -    | -          | +  | +     | +             | +          |
|                 | Unlabeled frag.           | - | - | -   | ×20 | ×200 | ×200<br>mu | -  | ×20 > | <b>‹200</b> : | ×200<br>mu |
|                 |                           |   |   | H   | H   |      | -          | ыÌ | Į.    |               |            |
|                 |                           |   |   | 194 |     | -    |            |    |       |               |            |

Fig. 12. VND proteins bind to the 33-bp *VND7* promoter region containing the SNBE/TERE motif. (A) Nucleotide sequences of the 33-bp *VND7* promoter fragment used for EMSAs. Gray shading and red underlining represent the SNBE/TERE-like motif and mutated nucleotide sequence, respectively. (B) The 33-bp *VND7* promoter fragment labeled with biotin was incubated with (+) or without (-) MBP, MBP-VND3, or MBP-VND7 proteins. The unlabeled *VND7* promoter fragment or mutated fragment (mu) was used for competition analysis. Yellow arrowheads indicate free probe.



Fig. 13. Amino acid alignment of GATA12 and AGP1. Conserved amino acid sequences are indicated by black boxes with white letters. The conserved AGP domain (putative DNA-binding motif; Sugimoto et al. 2003) is indicated by red underlining.


VND7pro 603 bp

Fig. 14. GATA12 binds to the *VND7* promoter in a concentration-dependent manner. EMSA was performed using MBP-tagged GATA12 proteins. Biotin-labeled *VND7* promoter fragment (-1 to -603 bp) was incubated with (+) or without (-) MBP or with MBP-tagged GATA12 proteins with a concentration of 1, 2, 4, 6, and 8 pmol. Yellow and black arrowheads indicate free probe and possible shifted bands, respectively.



Fig. 15. Expression patterns of *VND7*, *GATA5*, *GATA10*, and *GATA12* during *in vitro* xylem vessel element differentiation, as revealed by microarray analysis (Kubo et al. 2005).



Fig. 16. Schematic model of the local transcriptional network that controls *VND7* expression. Transcription factors in red were isolated in this study. Arrows with solid lines indicate that direct transcriptional regulation has been confirmed. Upregulation of *VND7* expression by VND transcription factors was strongly repressed (T-bar) in non-xylem cells. VND1 to VND6 promote xylem vessel differentiation independently of *VND7* expression (blue arrows).

**Results and Discussion** 

## Part II

# Epigenetic control of VND7 expression

#### **Results II**

# 2-1. The *VND7* genomic region is marked by H3K27me3 and DNA methylation in seedlings

In Part I of this study, I showed that several transcription factors induce VND7 promoter activity in a transient expression assay using Arabidopsis leaves, while endogenous *VND7* expression was not markedly upregulated in transgenic plants overexpressing the transcription factors (Table 1, 3, Fig. 8). Furthermore, I showed that all VNDs and GATA12 directly bind to the VND7 promoter region (Fig. 10, 11, 13). Based on these findings, I speculated that VND7 is regulated by certain additional elements/factors that strongly repress its expression in non-xylem cells (Fig. 16). One possible mechanism to explain this phenomenon is the epigenetic control of the VND7 genomic region. Recent studies demonstrated that epigenetic phenomena in plants and animals are mediated by stable chromatin modification and DNA methylation (Feng et al. 2010, Feil and Fraga 2012). In eukaryotes, these genomic modifications form a physical barrier that blocks gene transcription (Lauria and Rossi 2011). Therefore, to assess whether the VND7 genomic region undergoes chromatin modification and/or DNA methylation, I examined the epigenetic status of VND7 using the genome browser created by the Genome Bioinformatics Group of UC Santa Cruz (The UCSC Genome Browser; http://genome.ucsc.edu). I found that the VND7 genomic region has a relatively high histone H3 lysine K27 trimethylation (H3K27me3) signal on the promoter region and about half of the genic region (Fig. 17A). To confirm that these marks are indeed present in Arabidopsis seedlings, I conducted a chromatin immunoprecipitation-qPCR (ChIP-qPCR) using 5-day-old Col-0 seedlings, anti-trimethylation-histone H3 (Lys27) antibody (Helliwell et al. 2006), and nine primer sets (Fig. 18A) based on the information of H3K27me3 marks on the VND7 genomic region in the UCSC Genome Browser (Fig. 17A). I detected a strong enrichment of H3K27me3 around 2-kb upstream of the genic region and between the first intron and second exon of the VND7 genic region (Fig. 18B). As controls, I also used primer sets to amplify Flowering Locus C (FLC) and FUSCA3 (FUS3) genomic regions, because these loci are targeted by polycomb-group proteins (PcG) (Makarevich et al. 2006, Jiang et al. 2008, Buzas et al. 2011). As reported, both of these loci were enriched in H3K27me3 (Fig. 18B). By

contrast, the genome browser indicated that the genomic region of *VND6* was not marked by H3K27me3 (Fig. 17B). ChIP-qPCR analysis confirmed that enrichment of the H3K27me3 mark on the *VND6* genomic region was relatively low compared with all other regions tested (Fig. 18B). The genic region of *VND6* could thus be used as a control not marked by H3K27me3. These data suggest that the *VND7* genomic region is indeed broadly marked by H3K27me3 in seedlings.

A strong DNA methylation signal exists around the second exonic region of the VND7 genomic region, while there is little, if any, DNA methylation signal at the VND7 locus in met1-3, a T-DNA insertion null mutant of the gene encoding DNA cytosine methyltrasferase1 (MET1) (Saze et al. 2003; Fig. 17A). Therefore, I examined the methylation status of the second exonic region of VND7 using genomic DNA, which was extracted from 7-day-old Col-0 Arabidopsis seedlings after a 6-day treatment with or without 5-adC, a DNA methylation inhibitor, using McrBC-PCR. In this method, genomic DNA is digested with McrBC, a restriction enzyme that specifically cleaves DNA-containing methyl cytosine preceded by a purine nucleotide, and then subjected to PCR analysis. For this assay, I designed primers to amplify the first and second exonic regions of VND7 as well as the promoter region of CACTA1, a DNA-type transposon known to be silenced by CpG methylation, as a control (Fig. 19A; Kato et al. 2003, Kato et al. 2004, Ikeda et al. 2011). All samples not subjected to McrBC digestion yielded PCR products (Fig. 19B). By contrast, the second exonic region of VND7 and the promoter region of CACAT1 of mock-treated seedlings yielded much lower levels of amplification product when digested with McrBC than did those of plants treated with 5-adC, while the first exonic region of VND7 showed no difference between the mockand 5-adC-treated samples (Fig. 19B). This result indicated that the second exonic region of VND7 is CpG methylated and that this methylation can be blocked by 5-adC treatment of seedlings (Fig. 19B).

Because DNA CpG methylation is known to affect a wide range of processes by altering gene expression patterns (Chan et al. 2005), I next tested whether the expression of endogenous *VND7* is affected by the DNA demethylation treatment. Wild-type Col-0 plants were treated with different concentrations of 5-adC (0.1, 1.0, 10  $\mu$ g/ml) for 24 h. Then, RNA was extracted, cDNA was prepared, and the samples were subjected to quantitative RT-PCR analysis (Fig. 19C). The expression of endogenous *VND7* was significantly upregulated by the application of 0.1 and 1.0  $\mu$ g/ml of 5-adC,

indicating that endogenous *VND7* expression is affected when DNA methylation is inhibited by 5-adC treatment (Fig. 19C). A previous study also reported that treatment with 4  $\mu$ M (approx. 0.91  $\mu$ g/ml) 5-adC mimicked the *met1-3* mutant phenotype (Mathieu et al. 2007), and I thus used 1  $\mu$ g/ml of 5-adC for all the following analyses.

# 2-2. Endogenous *VND7* expression is repressed by H3K27me3 and DNA methylation

Polycomb Repressive Complex 2 (PRC2) is known to be essential for silencing specific genes, such as FLC and Class I KNOX genes, via H3K27me3 (Xu et al. 2008, Ikeda 2012). ChIP analysis of the VND7 genomic region (Fig. 18) suggests that VND7 is also likely to be targeted by the PRC2. To test this possibility, I obtained a Fertilization Independent Endosperm (FIE) mutant, one of the components of PRC2. In Arabidopsis, at least three types of PRC2 complexes are known to control transitions between the vegetative and the reproductive phases of development. FIE is a single copy gene and is therefore expected to be present in all PRC2 complexes (Bouyer et al. 2011, Butenko et al. 2011). The null *fie-1* mutant was shown to have a mutation in the first intron that causes an aberrant splicing reaction, and the maternal null *fie-1* allele was shown to be embryonic lethal (Ohad et al. 1996, 1999, Kinoshita et al. 2001). Therefore, to examine the postembryonic phenotypes of homozygous *fie-1* mutant plants, Kinoshita et al. (2001) established a *fie-1* mutant carrying a modified *FIE* transgene (pFIE::FIE-GFP) that suppresses the embryonic lethality (*fie-1/pFIE::FIE-GFP*, hereafter called *fie*). Furthermore, Kinoshita et al. (2001) showed that wild-type plants transgenically expressing the *pFIE::FIE-GFP* transgene developed normally and embryos and seedlings of *fie* activate the expression of floral induction genes that are normally repressed in embryos and seedlings of wild-type plants (Kinoshita et al. 2001).

The ectopic expression of *VND7* causes cells to transdifferentiate into xylem vessel elements, even in the case of mature cells, such as trichomes, epidermal, guard, and mesophyll cells (Yamaguchi et al. 2010a). Therefore, I observed the phenotype of *fie* plants in detail to check whether ectopic xylem vessel formation occurs in *fie*, since the miss-expression of *VND7* should result in ectopic xylem vessel element formation. The observation revealed no ectopic xylem vessel element formation in aerial tissues of 15-day-old seedlings (Table 6; Fig. 20E). Auxin, cytokinin, and brassinosteroids are

known to play important roles in xylem vessel formation (Fukuda 2004) and endogenous *VND7* expression was shown to be upregulated in cultured hypocotyls by treatment with a combination of these phytohormone (Kubo et al. 2005). I thus treated the *fie* mutant seedlings with a combination of cytokinin (Kinetin; K), auxin (2,4-dichlorophenoxyacetic acid; D), and brassinosteroid (Brassinolide; B) (Table 4-6, Fig. 20, 21). I subjected wild type Col-0 and Ler to the same treatment because the "*fie*" mutant was generated by crossing *fie-1* (Ler background) with the *pFIE::FIE-GFP* transgenic Col-0 plant (Kinoshita et al. 2001). The treatments rarely induced ectopic xylem vessel element formation in the Col-0 or Ler wild-type plants, except for roots treated with a combination of cytokinin and auxin (Table 4, 5). By contrast, the "*fie*" mutant showed a marked induction of ectopic xylem vessel element formation in response to various combinations of the three phytohormones, especially all three phytohormones together (Table 6), which never induced ectopic xylem vessel element formation in wild-type plants (Table 4-6, Fig. 20, 21).

Since endogenous *VND7* expression is enhanced by the 5-adC treatment (Fig. 19C), I investigated the effect of 5-adC treatment on the ectopic xylem vessel element formation induced by phytohormone treatment in the *fie* mutant. I first confirmed that the 5-adC treatment alone did not induce any ectopic xylem element formation in this plant. The 5-adC treatment drastically enhanced the ectopic xylem element formation induced by treatment with the three phytohormones (Table 7, Fig. 22-25).

To investigate whether the application of 5-adC and phytohormones can upregulate the endogenous expression of *VND* genes, I monitored the expression of *VND* genes by quantitative RT-PCR using seedlings of the *fie* mutant and Col-0. RNA was extracted from 5-day-old seedlings treated with or without 5-adC and/or the three phytohormones for 3 days (Fig. 27). In Col-0, only *VND1* and *VND2* were upregulated more than 2-fold compared with the mock samples treated with the phytohormones or 5-adC plus the phytohormones (Fig. 27, Table 8, 9). By contrast, in the *fie* mutant, expression of *VND1*, *VND2*, *VND3*, *VND4*, and *VND5* was upregulated by the phytohormone treatment in the presence or absence of 5-adC treatment (Fig. 27G-K), while *VND7* was only upregulated when the 5-adC and phytohormone treatments were combined (Fig. 27F, L, Table 8, 9).

# 2-3. Some transgenic plants harboring *VND7pro::VND7* in the *vnd4/vnd7* mutant background showed ectopic xylem element formation

The T-DNA insertion mutant, which vnd4 and vnd7 were crossed (vnd4/vnd7) was generated by Dr. Masatoshi Yamaguchi of Saitama University and he observed that the vnd4/vnd7 mutant showed growth defects and discontinuous formation of protoxylem vessels in the roots (unpublished data). Several homozygous transgenic lines carrying VND7pro::VND7 (a genomic fragment harboring a 1-kb 5' upstream fragment from the start codon of VND7 and genomic region of VND7) in the vnd4/vnd7 background were kindly provided by Mr. Yoshito Ogawa of the Nara Institute of Science and Technology and Dr. Masatoshi Yamaguchi (unpublished data). Careful observation of the transgenic lines that contain only a single copy of the transgene revealed that some lines exhibited ectopic xylem vessel element formation in the pericycle cells of roots with higher expression levels of the VND7 transgene (Yoshito Ogawa, unpublished data). These data prompted me to speculate that this phenomenon is caused by VND7 transgene fragments that are not epigenetically repressed. To evaluate this possibility, I selected two independent transgenic lines, 1-2A and 1-3D, which lacked and exhibited ectopic xylem vessel element formation, respectively, in roots (Fig. 28B). Five-day-old seedlings of these lines, Col-0, and the vnd4/vnd7 double mutant were treated with 5-adC and/or phytohormones for 5 days (Table 7-10). None of the seedlings of Col-0 or the double mutant showed ectopic xylem vessel element formation in roots or hypocotyls under any conditions tested (Table 10, 11, Fig. 29A-H, Fig. 31A-H). By contrast, 1-2A and 1-3D showed ectopic xylem vessel element formation under several conditions (Table 10, 11, Fig. 29I-P, 30D, 31I-P, 32C, D). It is noteworthy that, in line 1-3D, the ectopic xylem vessel element formation in the hypocotyl induced by phytohormone treatment was enhanced by 5-adC treatment (Table 13, Fig. 30D). In addition, the roots of both lines, especially of line 1-3D, exhibited ectopic xylem vessel element formation upon treatment with 5-adC in the absence of phytohormone treatment (Table 12, 13, Fig. 31I, J, M, N, 32C, D). These data suggest that the VND7 genomic fragment introduced into the 1-2A and 1-3D lines is much more sensitive to 5-adC and phytohormone treatment than is the endogenous *VND7* genomic region.

#### **Discussion II**

In Results and Discussion I, I demonstrated that VND7 expression is tightly regulated factors multiple transcription together with unidentified additional by mechanism(s)/factor(s). Here I sought to reveal the nature of the unidentified factor(s) that regulate VND7 expression. Several reports showed that Polycomb-repressive complexes (PRCs) define the correct spatiotemporal expression of numerous key developmental regulators in plants, such as WUSCHEL and several members of the class I KNOTTED1-like homeobox (KNOX) gene family (Köhler and Hennig 2010, Liu et al. 2011, Bemer et al. 2012, Lodha et al. 2013). I hypothesized that VND7 expression is also regulated by such a mechanism. To assess this possibility, I examined whether the VND7 genomic region has chromatin and/or DNA modifications that are mediated by PRCs or other elements involved in epigenetic control. By consulting the publicly available Genome browser data, I found that the VND7 genomic region is marked by H3K27me3 in its promoter and genic region and that the second exonic region of VND7 is DNA methylated in seedlings (Fig. 17A). Indeed, ChIP-PCR analysis of the VND7 genomic region using anti-H3K27me3 antibody showed relatively strong enrichment of H3K27me3 at the promoter region and the second exonic region of VND7 (Fig. 18B). Furthermore, McrBC-PCR analysis confirmed that the second exonic region of VND7 is CpG-methylated (Fig. 19B) and 5-adC treatment of Col-0 seedlings upregulated the expression of endogenous VND7 at a concentration known to mimic the phenotype of a cytosine-DNA-methyl-transferase mutant, met1-3 (Fig. 19C; Saze et al. 2003). My analysis of the *fie* mutant demonstrated that simultaneous treatment with 5-adC and three phytohormones drastically enhanced both the frequency of ectopic xylem vessel element formation and the expression of VND genes (Table 7, 8, 9, Fig. 22-27). Treatment with both 5-adC and phytohormones elevated the expression of all VND genes in fie to a greater extent than any other condition tested (Fig 27, Table 8, 9). These data suggest that not only VND7 but also the other VND genes are marked by H3K27me3 and/or DNA methylation, both of which act as repressive marks and loss of these marks is a prerequisite to activate the expression of VND genes in the xylem vessel cells. Genome-wide analyses suggested that the presence of H3K27me3 marks in the genomic region and DNA methylation in the genic region is linked to genic transcription (Zilberman et al. 2007, Lister et al .2008, Shu et al. 2012) and there is a

report that a member of the polycomb group, MEDEA, interacts with MET1 to methylate histones and DNA of certain target genes to repress endosperm development (Schmidt et al. 2013). However, there is no direct evidence showing that a key transcription factor, such as VND7, involved in the transdifferentiation of specific cell types is tightly regulated by both H3K27me3 and DNA methylation during postembryonic development. My study suggests that VND7 together with some of the other VND genes are possible targets of PRC2 and that somehow the DNA methylation acts as a mark to repress their expression and that the repression is canceled in certain cells such as xylem precursor cells. However, it is possible that other factors regulate this phenomenon, since the application of cytokinin, auxin, and brassinosteroids, as well as a DNA de-methylation chemical, broadly affect the expression of numerous genes (Fukuda 2004, Chang and Pikaard 2005). Systems such as INTACT or FACS (Taylor-Teeples et al. 2011) that enable the enrichment of a specific cell type can be used to monitor changes in genomic status and global gene expression during xylem precursor or xylem cell formation, and such studies would definitively reveal whether the VND genomic regions are indeed marked by DNA methylation and/or H3K27me3 in a cell-specific manner.

Some of the transgenic lines harboring VND7pro::VND7 in the vnd4/vnd7 background showed ectopic xylem vessel element formation. Treatment of the transgenic lines 1-2A and 1-3D with 5-adC and/or phytohormones enhanced ectopic xylem vessel element formation (Table 10-13, Fig. 29-32), while Col-0 and vnd4/vnd7 showed no ectopic xylem formation in the roots or hypocotyls, suggesting that the genome regions harboring the VND7 transgenes in 1-2A and 1-3D are more sensitive to phytohormone and 5-adC treatment than is the endogenous VND7 genomic region. The finding that almost all cells in the 1-3D root stele were transdifferentiated into xylem vessel elements in response to 5-adC treatment (Fig. 32D) strongly indicates that the 1-kb region of the VND7 promoter in the genomic region is sufficient to respond to endogenous levels of signal molecules (phytohormones) to activate the expression of *VND7* when DNA of the genomic region is de-methylated. This observation raises two hypotheses: (1) the promoter and genic regions of VND7 introduced in the vnd4/vnd7 background lack some elements responsible for the repression or silencing of the transgene; (2) the introduced VND7 genomic fragment can escape the epigenetic regulatory mechanism that represses the expression of endogenous VND7. The latter

hypothesis can be interpreted as a position effect, where the expression of a transgene is influenced by the chromosome location, which has been well documented in plants (Singh et al. 2008, Lisch 2009). My study showed that there is a difference in sensitivity to signaling molecules among the transgenic lines tested, which suggests that the expression level of the *VND7* transgene in *vnd4/vnd7* is influenced by the position effect (Table 12, 13, Fig. 29-32). These data also support the idea that the expression of endogenous *VND7* is controlled by epigenetic regulation *in planta*.

In Part II of my study, I showed that the *VND7* genomic region is enriched in H3K27me3 and DNA methylation and that both marks seem to repress its expression. Moreover, I showed that some of the other *VND* family members are also regulated by the H3K27me3 marks. Based on these findings, I propose that expression of endogenous *VND7* is silenced by H3K27me3 and DNA methylation in non-xylem cells, while loss of the H3K27me3 mark, DNA de-methylation, and the presence of signaling molecules such as cytokinin, auxin, and brassinosteroids activate *VND7* expression (Fig. 33). Also, I believe that this study provides important and significant clues into the relationship between H3K27me3 and DNA methylation in the epigenetic control of gene expression, and provides strong evidence that hormonal crosstalk controls the master regulator of xylem vessel formation.

|                   |      | 1         |      |      | 2         |      | 1   |        |
|-------------------|------|-----------|------|------|-----------|------|-----|--------|
|                   | leaf | hypocotyl | root | leaf | hypocotyl | root |     |        |
| Mock <sup>b</sup> | _    | -         | _    | _    | -         | _    | ++  | severa |
| к                 | -    | -         | -    | -    | -         | -    | +   | few    |
| D                 | -    | -         | -    | -    | -         | -    | - 1 | none   |
| В                 | -    | -         | -    | -    | -         | -    |     | _      |
| KD                | -    | -         | +    | -    | -         | +    |     |        |
| KB                | -    | -         | -    | -    | -         | -    |     |        |
| DB                | -    | -         | -    | -    | -         | -    |     |        |
| KDB               | -    | -         | -    | -    | -         | -    |     |        |

Table 4. Efficiency of ectopic xylem vessel element fomation induction by hormone treatment

Number of ectopic xylem vessel element formation: ++ orange, several; + yellow, few; - white, none.

<sup>a</sup>Two independet 6-day-old plants were treated for 5 days.

<sup>b</sup>(Mock) hormone free; (K) 50 ng/mL kinetin; (D) 500 ng/mL 2,4-dichlorophenoxyacetic acid; (B) 1 µM brassinolide.

|                   |      | 1         |      |      | 2         |      | I          |
|-------------------|------|-----------|------|------|-----------|------|------------|
|                   | leaf | hypocotyl | root | leaf | hypocotyl | root | ]          |
| Mock <sup>b</sup> | -    | -         | -    | -    | -         | -    | ++ several |
| К                 | -    | -         | -    | -    | -         | -    | + few      |
| D                 | -    | -         | -    | -    | -         | -    | - none     |
| В                 | -    | -         | -    | -    | -         | -    | 1 —        |
| KD                | -    | -         | -    | -    | -         | +    |            |
| KB                | Ι    | -         | -    | -    | -         | -    | ]          |
| DB                | _    | -         | _    | -    | -         | -    | ]          |
| KDB               | _    | -         | -    | -    | -         | -    | ]          |

| Table 5. | Efficiency | of ectopic | xvlem | vessel eleme | nt fomatio | n inducti | ion bv | hormone | treatment |
|----------|------------|------------|-------|--------------|------------|-----------|--------|---------|-----------|
|          |            | 1          |       |              |            |           |        |         |           |

Number of ectopic xylem vessel element formation: ++ orange, several; + yellow, few; - white, none.

<sup>a</sup>Two independet 6-day-old plants were treated for 5 days.

<sup>b</sup>(Mock) hormone free; (K) 50 ng/mL kinetin; (D) 500 ng/mL 2,4-dichlorophenoxyacetic acid; (B) 1 µM brassinolide.

|                   | 5    | 1 7       |      |      |           | J    | -     |           |
|-------------------|------|-----------|------|------|-----------|------|-------|-----------|
|                   |      |           |      |      |           |      |       |           |
|                   |      | 1         |      | 2    |           |      | I     |           |
|                   | leaf | hypocotyl | root | leaf | hypocotyl | root |       |           |
| Mock <sup>b</sup> | -    | -         | -    | _    | -         | _    | +     | + several |
| К                 | -    | -         | -    | -    | -         | -    | ]   - | + few     |
| D                 | -    | -         | +    | -    | -         | -    |       | - none    |
| В                 | _    | -         | -    | _    | -         | -    |       |           |
| KD                | +    | -         | +    | +    | -         | -    |       |           |
| KB                | +    | -         | -    | -    | -         | -    |       |           |
| DB                | +    | -         | -    | +    | -         | -    |       |           |
| KDB               | ++   | +         | +    | +    | +         | -    |       |           |

Table 6. Efficiency of ectopic xylem vessel element fomation induction by hormone treatment

Number of ectopic xylem vessel element formation: ++ orange, several; + yellow, few; - white, none.

<sup>a</sup>Two independet 6-day-old plants were treated for 5 days.

<sup>b</sup>(Mock) hormone free; (K) 50 ng/mL kinetin; (D) 500 ng/mL 2,4-dichlorophenoxyacetic acid; (B) 1 µM brassinolide.

|                   |     | fie− 1/ p |    |   |     |     |         |
|-------------------|-----|-----------|----|---|-----|-----|---------|
|                   | 1   | 2         | 3  | 4 | 5   |     | _       |
| Mock <sup>b</sup> | -   | -         | -  | - | -   | +++ | many    |
| 5−adC             | 1   | -         | -  | - | -   | ++  | several |
| KDB               | ++  | +         | ++ | + | +   | +   | few     |
| 5adC + KDB        | +++ | ++++      | ++ | + | +++ | -   | none    |

 Table 7. Efficiency of ectopic xylem vessel elemen fomation induction by chemical and hormone treatment

Number of ectopic xylem vessel element formation:+++ red, many; ++ orange, several; + yellow, few; - white, none. <sup>a</sup>Five independet 15-day-old platns were treated for 5days.

<sup>b</sup>(Mock) chemical free; (5-adC) 1 µg/mL 5-aza-dC; (K) 50 ng/mL kinetin;

(D) 500 ng/mL 2,4-dichlorophenoxyacetic acid; (B) 1  $\mu M$  brassinolide.

|      |                    | col-0ª           |                         |                 |
|------|--------------------|------------------|-------------------------|-----------------|
|      | 5−adC <sup>b</sup> | KDB <sup>₿</sup> | 5adC + KDB <sup>▶</sup> |                 |
| VND1 | 1.3                | 3.4              | 3.0                     | upregulated     |
| VND2 | 0.9                | 2.2              | 2.3                     | no significance |
| VND3 | 0.9                | 0.4              | 0.5                     | downregulated   |
| VND4 | 0.7                | 0.4              | 0.3                     |                 |
| VND5 | 1.0                | 0.3              | 0.5                     |                 |
| VND7 | 0.9                | 0.4              | 0.6                     |                 |

Table 8. Sumarry of gene expression changes relative to value of mock treatment sample

Greater or equal to 2 fold = red; upregulated

Less than 2 and greater or equal to 0.5 fold = no significance; gray

Less than 0.5 fold = downregulated; blue

<sup>a</sup> Five independet 6-day-old platns were treated for 5 days.

<sup>b</sup>(5-adC) 1 µg/mL 5-aza-dC; (K) 50 ng/mL kinetin;

(D) 500 ng/mL 2,4-dichlorophenoxyacetic acid; (B) 1 µM brassinolide.

|      | fie-1/             |                  |                         |  |
|------|--------------------|------------------|-------------------------|--|
|      | 5−adC <sup>b</sup> | KDB <sup>₿</sup> | 5adC + KDB <sup>▶</sup> |  |
| VND1 | 1.0                | 5.6              | 5.3                     |  |
| VND2 | 0.8                | 7.7              | 10.0                    |  |
| VND3 | 0.9                | 2.0              | 2.3                     |  |
| VND4 | 1.0                | 1.7              | 2.9                     |  |
| VND5 | 1.4                | 2.2              | 4.6                     |  |
| VND7 | 0.8                | 0.6              | 2.2                     |  |

#### Table 9. Sumarry of gene expression changes relative to value of mock treatment sample



Greater or equal to 2 fold = red; upregulated

Less than 2 and greater or equal to 0.5 fold = no significance; gray

Less than 0.5 fold = downregulated; blue

<sup>a</sup> Five independet 6-day-old platns were treated for 5 days.

<sup>b</sup>(5-adC) 1 µg/mL 5-aza-dC; (K) 50 ng/mL kinetin;

(D) 500 ng/mL 2,4-dichlorophenoxyacetic acid; (B) 1  $\mu M$  brassinolide.

|                   | 1         |      |           | 2    |           | 3    |     |         |
|-------------------|-----------|------|-----------|------|-----------|------|-----|---------|
|                   | hypocotyl | root | hypocotyl | root | hypocotyl | root |     | _       |
| Mock <sup>b</sup> | -         | -    | -         | -    | -         | -    | +++ | many    |
| 5-adC             | -         | -    | -         | _    | -         | -    | ++  | several |
| KDB               | -         | _    | -         | _    | -         | -    | +   | few     |
| 5-adC + KDB       | _         | _    | -         | -    | -         | _    | -   | none    |

#### Table 10. Efficiency of ectopic xylem vessel elemen fomation induction by chemical and hormone treatment

Number of ectopic xylem vessel element formation:+++ red, many; ++ orange, several; + yellow, few; - white, none.

<sup>a</sup>Three independet 6-day-old platns were treated for 5days.

<sup>b</sup>(Mock) chemical free; (5-adC) 1 µg/mL 5-aza-dC; (K) 50 ng/mL kinetin; (D) 500 ng/mL 2,4-dichlorophenoxyacetic acid; (B) 1 µM brassinolide.

#### Table 11. Efficiency of ectopic xylem vessel elemen fomation induction by chemical and hormone treatment

|                   |           | vnd4/ vnd7 <sup>a</sup> |           |      |           |      |  |     |         |  |  |  |
|-------------------|-----------|-------------------------|-----------|------|-----------|------|--|-----|---------|--|--|--|
|                   | 1         |                         | 2         |      | 3         |      |  |     |         |  |  |  |
|                   | hypocotyl | root                    | hypocotyl | root | hypocotyl | root |  |     | _       |  |  |  |
| Mock <sup>b</sup> | -         | -                       | -         | -    | -         | -    |  | +++ | many    |  |  |  |
| 5-adC             | -         | Ι                       | -         | -    | -         | Ι    |  | ++  | several |  |  |  |
| KDB               | _         | -                       | -         | _    | -         | -    |  | +   | few     |  |  |  |
| 5-adC + KDB       | _         | -                       | -         | _    | -         | -    |  | -   | none    |  |  |  |

Number of ectopic xylem vessel element formation:+++ red, many; ++ orange, several; + yellow, few; - white, none.

<sup>a</sup>Three independet 6-day-old platns were treated for 5days.

<sup>b</sup>(Mock) chemical free; (5-adC) 1 µg/mL 5-aza-dC; (K) 50 ng/mL kinetin; (D) 500 ng/mL 2,4-dichlorophenoxyacetic acid; (B) 1 µM brassinolide.

|                   |           | ]    |           |      |           |      |   |     |        |
|-------------------|-----------|------|-----------|------|-----------|------|---|-----|--------|
|                   | 1         |      | 2         |      | 3         |      |   |     |        |
|                   | hypocotyl | root | hypocotyl | root | hypocotyl | root |   | +++ | many   |
| Mock <sup>b</sup> | -         | -    | -         | -    | -         | -    |   | ++  | severa |
| 5-adC             | -         | +    | -         | -    | -         | +    |   | +   | few    |
| KDB               | -         | -    | -         | -    | +         | -    |   | -   | none   |
| 5-adC + KDB       | -         | -    | +         | -    | +         | -    | 1 |     | -      |

#### Table 12. Efficiency of ectopic xylem vessel elemen fomation induction by chemical and hormone treatment

Number of ectopic xylem vessel element formation:+++ red, many; ++ orange, several; + yellow, few; - white, none.

<sup>a</sup>Three independet 6-day-old platns were treated for 5days.

<sup>b</sup>(Mock) chemical free; (5-adC) 1 µg/mL 5-aza-dC; (K) 50 ng/mL kinetin; (D) 500 ng/mL 2,4-dichlorophenoxyacetic acid; (B) 1 µM brassinolide.

#### Table 13. Efficiency of ectopic xylem vessel elemen fomation induction by chemical and hormone treatment

|                   |           | 1-3D <sup>a</sup> |           |      |           |      |  |      |        |  |  |  |  |
|-------------------|-----------|-------------------|-----------|------|-----------|------|--|------|--------|--|--|--|--|
|                   | 1         | 1                 | 2         |      | 3         |      |  |      | _      |  |  |  |  |
|                   | hypocotyl | root              | hypocotyl | root | hypocotyl | root |  | ++++ | many   |  |  |  |  |
| Mock <sup>b</sup> | -         | ++                | -         | +    | -         | +    |  | ++   | severa |  |  |  |  |
| 5-adC             | -         | +++               | -         | +++  | -         | +++  |  | +    | few    |  |  |  |  |
| KDB               | ++        | +                 | ++        | +    | ++        | +    |  | -    | none   |  |  |  |  |
| 5-adC + KDB       | +++       | +                 | +++       | -    | +++       | -    |  |      |        |  |  |  |  |

Number of ectopic xylem vessel element formation:+++ red, many; ++ orange, several; + yellow, few; - white, none.

"Three independet 6-day-old platns were treated for 5days.

<sup>b</sup>(Mock) chemical free; (5-adC) 1 µg/mL 5-aza-dC; (K) 50 ng/mL kinetin; (D) 500 ng/mL 2,4-dichlorophenoxyacetic acid; (B) 1 µM brassinolide.



(http://epigenomics.mcdb.ucla.edu/cgi-bin/hgTracks 2013.01.14)

Fig. 17. Genomic status of the *VND7* (A1G71930.1) and *VND6* (AT5G62380.1) loci, as determined using the UCSC Genome Browser. Green bars and black boxes show gene structure and signal intensity of each genomic status, respectively. The darker the shade of the box, the greater the relative signal strength of each status. The *VND7* genic region exhibits relatively strong signals for H3K27me3 and DNA methylation, while the promoter region has H3K27me3 marks.



Fig. 18. H3K27me3 enrichment in the *VND7* genomic region of Col-0 seedlings.

(A) Positions of PCR amplicons 1–9 relative to the *VND7* locus are shown. Scale = 500 bp. (B) Relative enrichment of H3K27me3 at the *VND7*, *FUS3*, *FLC*, and *VND6* loci, determined by ChIP-qPCR. Data are ChIP with (+) or without (-) antibody to show that amplicons are enriched in the ChIP assay. Two independent biological replicates for 5-day-old Col-0 seedlings, Col-0-1, and Col-0-2 were analyzed.



Fig. 19. The *VND7* genic region is DNA methylated. (A) Positions of the PCR primers designed to amplify the *VND7* genomic region are shown. The green box and green line indicate the exon and intron of *VND7* genes, respectively. (B) Genomic DNA was extracted from 7-day-old seedlings treated with or without 1  $\mu$ g/ml 5-adC for 6 days. Analysis of DNA methylation levels of *VND7* and *CACTA1* after genomic DNA was digested or not with McrBC, a 5-methylcytosine-specific restriction enzyme. The first and second exons of *VND7* and the *CACTA* promoter region were amplified by PCR. (C) Expression analysis of endogenous *VND7*. Quantitative RT-PCR was performed for the indicated treatment. Eleven-day-old Col-0 seedlings were treated with or without 5-adC (0.1, 1.0. or 10  $\mu$ g/mL) for 24 h. mRNA levels for each gene were normalized to *UBQ10 mRNA*. Error bars indicate SD (n = 3).







Fig. 20. Phytohormone treatment induces ectopic xylem vessel elements in *fie* mutant. DIC images of 11-day-old (A, B) Col-0, (C, D) Ler, and (E, F) *fie* seedlings treated with (B, D, F) or without (A, C, E) phytohormones for 5 days. (Mock) hormone free; (K) 50 ng/mL kinetin; (D) 500 ng/mL 2,4-dichlorophenoxyacetic acid; (B) 1  $\mu$ M brassinolide. White bar = 500  $\mu$ m. Black bar = 200  $\mu$ m.



Col-0

Ler

## fie-1 / pFIE::FIE-GFP

Fig. 21. Phytohormone treatment induces ectopic xylem vessel element with patterned secondary cell wall in *fie* mutant. DIC images of 11-day-old (A) Col-0 (B) Ler, and (C) *fie* seedlings treated with phytohormones for 5 days. Inset in C is showing ectopic xylem vessel elements with patterned secondary cell wall. KDB, 50 ng/mL kinetin; 500 ng/mL 2,4-dichlorophenoxyacetic acid; and 1  $\mu$ M brassinolide. Black bar = 200  $\mu$ m; inset in C, 10  $\mu$ m.



Fig. 22. DIC images of five individual 20-day-old *fie* mutants. (A-E) *fie* 1-5 plants incubated without chemicals (Mock) for 5 days. Bar =  $200 \mu m$ .





Fig. 23. DIC images of five individual 20-day-old *fie* mutants treated with 5-adC. (A-E) *fie* 1-5 plants treated with 5-adC for 5 days. 5-adC, 1  $\mu$ g/mL 5-aza-dC. Bar = 200  $\mu$ m.





Fig. 24. DIC images of five individual 20-day-old *fie* mutants treated with phytohormones. (A-E) *fie* 1-5 plants treated with phytohomornes for 5 days. KDB, 50 ng/mL kinetin; 500 ng/mL 2,4-dichlorophenoxyacetic acid; and 1  $\mu$ M brassinolide. Bar = 200  $\mu$ m.

5-adC + KDB



Fig. 25. DIC images of five individual 20-day-old *fie* mutants treated with 5-adC and phytohormones. (A-E) *fie* 1-5 plants treated with 5-adC and phytohormones for 5 days. (5-adC) 1  $\mu$ g/mL 5-aza-dC; KDB, 50 ng/mL kinetin; 500 ng/mL 2,4-dichlorophenoxyacetic acid; and 1  $\mu$ M brassinolide. Bar = 200  $\mu$ m.

5-adC + KDB



Fig. 26. DIC images of a 20-day-old *fie* 2 plant treated with 5-adC and phytohormones. (A) Leaf. (B) Hypocotyl. Plant treated with 5-adC and phytohormones for 5 days. 5-adC, 1  $\mu$ g/mL 5-aza-dC; KDB, 50 ng/mL kinetin; 500 ng/mL 2,4-dichlorophenoxyacetic acid; and 1  $\mu$ M brassinolide. Bar = 200  $\mu$ m.



Fig. 27. Expression analysis of *VND1* to *VND5* and *VND7*. Quantitative RT-PCR was performed to analyze the expression of the indicated genes. Five six-day-old seedlings of (A-F) Col-0 and (G-L) *fie* plants were treated with or without 5-adC, phytohormones, or a combination of 5-adC and phytohormones for 3 days. mRNA levels for each gene were normalized to *UBQ10 mRNA*. Error bars indicate SD (n = 3). Asterisks indicate statistically significant differences (Welch's t-test; \*P < 0.05) compared with the values of the mock treatment.



Fig. 28. Schematic diagram of transgenic plants harboring VND7pro::VND7 in the vnd4/vnd7 double mutant background. (A) Col-0, vnd4/vnd7 double mutant, and two independent lines, 1-2A and 1-3D, were selected for analysis. (B) Images of the part of the seedling observed in this study. Bar = 1 cm.



Fig. 29. DIC images of the hypocotyls of Col-0, *vnd4/vnd7*, 1-2A, and 1-3D plants treated with chemicals. Six-day-old (A-D) Col-0, (E-H) *vnd4/vnd7*, (I-L) 1-2A, and (M-P) 1-3D plants treated with (B, F, J, M) 5-adC, (C, G, K, O) phytohormones (KDB), (D, H, L, P) a combination of 5-adC and phytohormones (5-adC + KDB), or (A, E, I, M) without any treatment (Mock) for 5 days. (5-adC) 1  $\mu$ g/mL 5-aza-dC; KDB, 50 ng/mL kinetin; 500 ng/mL 2,4-dichlorophenoxyacetic acid; and 1  $\mu$ M brassinolide. Bar = 100  $\mu$ m.

### 5-adC + KDB



Fig. 30. Magnified DIC images of hypocotyl of Col-0, *vnd4/vnd7*, 1-2A, and 1-3D plants. Six-day-old (A) Col-0, (B) *vnd4/vnd7*, (C) 1-2A, and (D) 1-3D plants treated with a combination of 5-adC and phytohormones (5-adC + KDB) for 5 days. (5-adC) 1  $\mu$ g/mL 5-aza-dC; KDB, 50 ng/mL kinetin; 500 ng/mL 2,4-dichlorophenoxyacetic acid; and 1  $\mu$ M brassinolide. Bar = 100  $\mu$ m.



Fig. 31. DIC images of the roots of Col-0, *vnd4/vnd7*, 1-2A, and 1-3D plants treated with chemicals. Six-day-old (A-D) Col-0, (E-H) *vnd4/vnd7*, (I-L) 1-2A, and (M-P) 1-3D seedlings treated with (B, F, J, M) 5-adC, (C, G, K, O) phytohormones (KDB), (D, H, L, P) a combination of 5-adC and phytohormones (5-adC + KDB), or (A, E, I, M) without any treatment (Mock) for 5 days. (5-adC) 1  $\mu$ g/mL 5-aza-dC; KDB, 50 ng/mL kinetin; 500 ng/mL 2,4-dichlorophenoxyacetic acid; 1  $\mu$ M brassinolide. Bar = 50  $\mu$ m.



Fig. 32. Magnified DIC images of the roots of Col-0, *vnd4/vnd7*, 1-2A, and 1-3D plants treated with 5-adC. Six-day-old (A) Col-0, (B) *vnd4/vnd7*, (C) 1-2A, and (D) 1-3D plants treated with 5-adC for 5 days. (5-adC) 1  $\mu$ g/mL 5-aza-dC. Yellow arrowheads indicate ectopic xylem vessel element. Bar = 100  $\mu$ m.





Fig. 33. Model of the transcriptional regulation mechanism underlying *VND* gene expression in xylem and non-xylem cells. The blue circle in the non-xylem cell indicates the nucleus. The spiral patterns in the xylem cell indicate the secondary cell wall deposition typically formed in xylem vessel cells.

#### **Conclusions and perspectives**

In this study, I aimed to address the question of how the expression of VND7, a master transcriptional switch for the formation of xylem vessels, is spatio-temporally regulated during plant development. Firstly, to decipher the regulatory mechanism underlying *VND7* expression, I tried to reveal the transcription factors that act upstream of *VND7*. I succeeded in identifying several potential transcription factors that positively regulate the expression of VND7. However, this study also revealed another unknown potential mechanism that contributes to the tight control of VND7 expression in planta. To explore this possible mechanism, I secondly focused on the epigenetic control of VND genes as epigenetic control is a well-studied mechanism for the tight regulation of certain genes in plants and animals. I found that the VND7 locus is marked by at least two epigenetic marks, histone H3 lysine 27 tri-methylation (H3K27me3) and DNA methylation. In particular, both epigenetic marks seemed to repress VND7 expression. Although phytohoromes such as auxin, cytokinin, and brassinosteroid are known to regulate xylem vessel formation principally by controlling the expression of transcription factors, the contribution of epigenetic control to xylem vessel formation had not previously been reported. Therefore, this is the first study showing that xylem vessel formation is coordinately regulated by phytohormone signaling together with the epigenetic control of master transcriptional switches such as VND7 and/or other VND genes. Taken all together, I propose that differentiation of xylem vessel formation is precisely controlled by the spatio-temporal regulation of VND gene expression by both phytohormone signaling and epigenetic mechanisms.

To evaluate this possibility, we need to establish a system or method that can monitor changes in epigenetic status and phytohoromone concentration in intact xylem precursor cells. One possible system might involve live imaging techniques that simultaneously trace the epigenetic status of a locus or loci of interest and the level of endogenous phytohormones at the single cell level. For this ambitious endeavor, it will be critical to establish a labeling system that reports the epigenetic status. I believe that my study has precipitated the need to establish such a system, not only for studies of xylem vessel formation, but also for studies that aim to advance our understanding of developmental biology.

#### References

Baima, S., Possenti, M., Matteucci, A., Wisman, E., Altamura, MM., Ruberti, I., Morelli, G. (2001) The Arabidopsis ATHB-8 HD-Zip Protein Acts as a Differentiation-Promoting Transcription Factor of the Vascular Meristems. Plant Physiol. 126, 643-55.

Bemer, M. and Grossniklaus, U. (2012) Dynamic regulation of Polycomb group activity during plant development. Curr Opin Plant Biol. 15, 523-9.

Blanch, HW. (2008) Next-generation biomass feedstocks for biofuel production. Genome Biol. 9, 242.

Bouyer, D., Roudier, F., Heese, M., Andersen, ED., Gey, D., Nowack, MK., Goodrich, J., Renou, JP., Grini, PE., Colot, V., Schnittger A. (2011) Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet. 7, e1002014.

Brady, SM., Zhang, L., Megraw, M., Martinez, NJ., Jiang, E., Yi, CS., Liu, W., Zeng, A., Taylor-Teeples, M., Kim, D., Ahnert, S., Ohler, U., Ware, D., Walhout, AJ., Benfey, PN. (2011) A stele-enriched gene regulatory network in the Arabidopsis root. Mol Syst Biol. 7, 459.

Brandt, R., Salla-Martret, M., Bou-Torrent, J., Musielak, T., Stahl, M., Lanz, C., Ott, F., Schmid, M., Greb, T., Schwarz, M., Choi, SB., Barton, MK., Reinhart, BJ., Liu, T., Quint, M., Palauqui, JC., Martínez-García, JF., Wenkel, S. (2012) Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. Plant J. 72, 31-42.

Butenko, Y. and Ohad, N. (2011) Polycomb-group mediated epigenetic mechanisms through plant evolution. Biochim Biophys Acta. 1809, 395-406.

Buzas, DM., Robertson, M., Finnegan, EJ., Helliwell, CA. (2011) Transcription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene *FLC*. Plant J. 65, 872-81.

Caño-Delgado, A., Lee, JY., Demura, T. (2010) Regulatory mechanisms for specification and patterning of plant vascular tissues. Annu Rev Cell Dev Biol. 26, 605-37.

Carlsbecker, A., Lee, JY., Roberts, CJ., Dettmer, J., Lehesranta, S., Zhou, J., Lindgren, O., Moreno-Risueno, MA., Vatén, A., Thitamadee, S., Campilho, A., Sebastian, J., Bowman, JL., Helariutta, Y., Benfey, PN. (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature. 465, 316-21.

Chan, SW., Henderson, IR., Jacobsen, SE. (2005) Gardening the genome: DNA methylation in *Arabidopsis thaliana*. Nat Rev Genet. 6, 351-60.

Chang, S. and Pikaard, CS. (2005) Transcript profiling in *Arabidopsis* reveals complex responses to global inhibition of DNA methylation and histone deacetylation. J Biol Chem. 280, 796-804.

Clough, SJ. and Bent, AF. (1998) Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis* thaliana. Plant J. 16: 735–743.

De Rybel, B., Möler, B., Yoshida, S., Grabowicz, I., Barbier de Reuille, P., Boeren, S., Smith, RS., Borst, JW., Weijers D. (2013) A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in *Arabidopsis*. Dev Cell. 24, 426-37.

Demura, T. and Fukuda, H. (2007) Transcriptional regulation in wood formation. Trends Plant Sci. 12, 64-70.

Feil, R. and Fraga, MF. (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 13, 97-109.
Feng, S., Jacobsen, SE., Reik, W. (2010) Epigenetic Reprogramming in Plant and Animal Development Science. 330, 622-7.

Fukuda, H. (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol. 5, 379-91.

Furuta, K., Lichtenberger, R., Helariutta Y. (2012) The role of mobile small RNA species during root growth and development. Curr Opin Cell Biol. 24, 211-6.

Helliwell, CA., Wood, CC., Robertson, M., James, Peacock, W., Dennis, ES. (2006) The Arabidopsis FLC protein interacts directly *in vivo* with *SOC1* and *FT* chromatin and is part of a high-molecular-weight protein complex. Plant J. 46, 183-92.

Ichikawa, T., Nakazawa, M., Kawashima, M. Iizumi, H., Kuroda, H., Kondou, Y., Tsuhara, Y., Suzuki, K., Ishikawa, A., Seki, M., Fujita, M., Motohashi, R., Nagata, N., Takagi, T., Shinozaki, K., Matsui, M. (2006) The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J. 48, 974-85.

Ikeda, Y., Kinoshita, Y., Susaki, D., Ikeda, Y., Iwano, M., Takayama, S., Higashiyama, T., Kakutani, T., Kinoshita, T. (2011) HMG domain containing *SSRP1* is required for DNA demethylation and genomic imprinting in *Arabidopsis*. Dev Cell. 21, 589-96.

Ikeda, Y. (2012) Plant imprinted genes identified by genome-wide approaches and their regulatory mechanisms. Plant Cell Physiol. 53, 809-16.

Ito, S., Song, YH., Josephson-Day, AR., Miller, RJ., Breton, G., Olmstead, RG., Imaizumi T. (2011) FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator *CONSTANS* in *Arabidopsis*. Proc Natl Acad Sci USA. 109, 3582-7.

Jiang, D., Wang, Y., Wang, Y., He, Y. (2008) Repression of *FLOWERING LOCUS C* and *FLOWERING LOCUS T* by the *Arabidopsis* Polycomb repressive complex 2 components. PLoS One. 3, e3404.

Kanei, M., Horiguchi, G., Tsukaya, H. (2012) Stable establishment of cotyledon identity during embryogenesis in *Arabidopsis* by *ANGUSTIFOLIA3* and *HANABA TARANU*. Development. 139, 2436-46.

Kato, M., Miura, A., Bender, J., Jacobsen, SE., Kakutani, T. (2003) Role of CG and non-CG methylation in immobilization of transposons in *Arabidopsis*. Curr Biol. 13, 421-6.

Kato, M., Takashima, K., Kakutani, T. (2004) Epigenetic Control of *CACTA* Transposon Mobility in *Arabidopsis thaliana* Genetics. 168, 961-9.

Kim, WC., Ko, JH., Han, KH. (2012a) Identification of a *cis*-acting regulatory motif recognized by MYB46, a master transcriptional regulator of secondary wall biosynthesis. Plant Mol Biol. 78, 489-501.

Kim, WC., Ko, JH., Kim, JY., Kim, JM., Bae, HJ., Han, KH. (2012b) MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. Plant J. 73, 26-36.

Kim, WC., Kim, JY., Ko, JH., Kim, J., Han KH. (2013) Transcription factor MYB46 is an obligate component of the transcriptional regulatory complex for functional expression of secondary wall-associated cellulose synthases in *Arabidopsis thaliana*. J Plant Physiol. 170, 1374-8.

Kinoshita, T., Harada, JJ., Goldberg, RB., Fischer, RL. (2001) Polycomb repression of flowering during early plant development. Proc Natl Acad Sci USA. 98, 14156-61.

Köhler, C. and Hennig L. (2010) Regulation of cell identity by plant Polycomb and trithorax group proteins. Curr Opin Genet Dev. 20, 541-7.

Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H. and Demura, T. (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 1855-60.

Lauria, M. and Rossi V. (2011) Epigenetic control of gene regulation in plants. Biochim Biophys Acta. 1809, 369-78.

Lisch, D. (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol. 60, 43-66.

Lister, R., O'Malley, RC., Tonti-Filippini, J., Gregory, BD., Berry, CC., Millar, AH., Ecker JR. (2008) Highly integrated single-base resolution maps of the epigenome in *Arabidopsis*. Cell. 133, 523-36.

Liu, PP., Koizuka, N., Martin, RC., Nonogaki, H. (2005) The *BME3 (Blue Micropylar End 3)* GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. Plant J. 44, 960-71.

Liu, X., Kim, YJ., Müller, R., Yumul, RE., Liu, C., Pan, Y., Cao, X., Goodrich, J., Chen, X. (2011) *AGAMOUS* terminates floral stem cell maintenance in *Arabidopsis* by directly repressing *WUSCHEL* through recruitment of Polycomb Group proteins. Plant Cell. 23, 3654-70.

Lodha, M., Marco, CF., Timmermans, MC. (2013) The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of Polycomb-repressive complex2. Genes Dev. 27, 596-601.

Luo, XM., Lin, WH., Zhu, S., Zhu, JY., Sun, Y., Fan, XY., Cheng, M., Hao, Y., Oh, E., Tian, M., Liu, L., Zhang, M., Xie, Q., Chong, K., Wang, ZY. (2010) Integration of Light- and Brassinosteroid-Signaling Pathwaysby a GATA Transcription Factor in *Arabidopsis*. Dev Cell. 19, 872-83.

Makarevich, G., Leroy, O., Akinci, U., Schubert, D., Clarenz, O., Goodrich, J., Grossniklaus, U., Köhler C. (2006) Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep. 7, 947-52.

Manfield, IW., Devlin, PF., Jen, CH., Westhead, DR., Gilmartin, PM. (2007) Conservation, Convergence, and Divergence of Light-Responsive, Circadian-Regulated, and Tissue-Specific Expression Patterns duringEvolution of the Arabidopsis GATA Gene Family. Plant Physiol. 143, 941-58.

Mathieu, O., Reinders, J., Caikovski, M., Smathajitt, C., Paszkowski, J. (2007) Transgenerational stability of the *Arabidopsis* epigenome is coordinated by CG methylation. Cell. 130, 851-62.

McCarthy, RL., Zhong, R., Ye, ZH. (2009) MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol. 50, 1950-64.

Mitsuda, N., Seki, M., Shinozaki, K., Ohme-Takagi, M. (2005) The NAC transcription factors NST1 and NST2 of *Arabidopsis* regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell. 17, 2993-3006.

Mitsuda, N., Iwase, A., Yamamoto, H., Yoshida, M., Seki, M., Shinozaki, K., Ohme-Takagi M. (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of *Arabidopsis*. Plant Cell. 19, 270-80.

Mitsuda, N. and Ohme-Takagi, M. (2008) NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Plant J. 56, 768-78.

Mitsuda, N. and Ohme-Takagi, M. (2009) Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol. 50, 1232-48.

Miyashima, S., Koi, S., Hashimoto, T., Nakajima, K. (2011) Non-cell- autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the *Arabidopsis* root. Development. 138, 2303-2313.

Miyashima, S., Sebastian, J., Lee, JY., Helariutta, Y. (2012) Stem cell function during plant vascular development. EMBO J. 32, 178-193.

Nakano, Y., Nishikubo, N., Goue, N., Ohtani, M., Yamaguchi, M., Katayama, Y., Demura, T. (2010) MYB transcription factors orchestrating the developmental program of xylem vessels in Arabidopsis roots. Plant Biotechnol. 27, 267-272.

Nawy, T., Bayer, M., Mravec, J., Friml, J., Birnbaum, KD., Lukowitz, W. (2010) The GATA factor *HANABA TARANU* is required to position the proembryo boundary in the early *Arabidopsis* embryo. Dev Cell. 19, 103-13.

Ohad, N., Margossian, L., Hsu, YC., Williams, C., Repetti, P., Fischer, RL. A mutation that allows endosperm development without fertilization. (1996) Proc Natl Acad Sci USA. 93, 5319-24.

Ohad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, JJ., Goldberg, RB., Fischer, RL. (1999) Mutations in *FIE*, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell. 11, 7-16.

Ohashi-Ito, K. and Fukuda, H. (2010) Transcriptional regulation of vascular cell fates. Curr Opin Plant Biol. 13, 670-6.

Ohashi-Ito, K., Oda, Y., Fukuda, H. (2010) *Arabidopsis* VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell. 22, 3461-73.

Ohashi-Ito, K., Matsukawa, M., Fukuda, H. (2013a) An atypical bHLH transcription factor regulates early xylem development downstream of auxin. Plant Cell Physiol. 54, 398-405.

Ohashi-Ito, K., Oguchi, M., Kojima, M., Sakakibara, H., Fukuda, H. (2013b) Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY. Development. 140, 765-9. Ohta, M., Ohme-Takagi, M., Shinshi, H. (2000) Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J. 22, 29-38.

Ohtani, M., Nishikubo, N., Xu, B., Yamaguchi, M., Mitsuda, N., Goue, N., Shi, F., Ohme-Takagi, M., Demura, T. (2011) A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J. 67, 499-512. Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., Tasaka, M. (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of *LBD/ASL* genes in

Arabidopsis. Plant Cell. 19, 118-30.

Pyo, H., Demura, T., Fukuda H. (2007) TERE; a novel *cis*-element responsible for a coordinated expression of genes related to programmed cell death and secondary wall formation during differentiation of tracheary elements. Plant J. 51, 955-65.

Saze, H., Mittelsten Scheid, O., Paszkowski, J. (2003) Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet. 34, 65-9.

Schmidt, A., Wöhrmann, HJ., Raissig, M.T., Arand, J., Gheyselinck, J., Gagliardini, V., Heichinger, C., Walter, J., Grossniklaus, U. (2013) The *Polycomb* group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. Plant J. 73, 776-87

Shen, H., Yin, Y., Chen, F., Xu, Y and A. Dixon, R. (2009) A Bioinformatic Analysis of *NAC* Genes for Plant Cell Wall Development in Relation to Lignocellulosic Bioenergy Production. Bioenrg Res. 2, 217-232.

Shu, H., Wildhaber, T., Siretskiy, A., Gruissem, W., Hennig, L. (2012) Distinct modes of DNA accessibility in plant chromatin. Nat Commun. 3, 1281.

Singh, J., Freeling, M., Lisch, D. (2008) A position effect on the heritability of epigenetic silencing. PLoS Genet. 4, e1000216.

Soyanoa, T., Thitamadeea, S., Machidab, Y. and Chua, N. (2008) ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 Regulate Tracheary Element Differentiation in Arabidopsis. Plant Cell. 20, 3359-73.

Sugimoto, K., Takeda, S., Hirochika, H. (2003) Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGP1 to the AG-motif (AGATCCAA) of the wound-inducible *Myb* gene *NtMyb2*. Plant J. 36, 550-64. Taylor-Teeples, M., Ron, M., Brady SM. (2011) Novel biological insights revealed from cell type-specific expression profiling. Curr Opin Plant Biol. 14, 601-7.

Xu, L. and Shen, WH. (2008) Polycomb silencing of *KNOX* genes confines shoot stem cell niches in Arabidopsis. Curr Biol. 18, 1966-71.

Yamaguchi, M., Kubo, M., Fukuda, H., and Demura, T. (2008) VASCULAR-RELATED NAC-DOMAIN7 is involved in differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J. 55, 652-664.

Yamaguchi, M. and Demura, T. (2010) Transcriptional regulation of secondary wall formation controlled by NAC domain proteins. Plant Biotechnol. 27, 237-242.

Yamaguchi, M., Goué, N., Igarashi, H., Ohtani, M., Nakano, Y., Mortimer, JC., Nishikubo, N., Kubo, M., Katayama, Y., Kakegawa, K., Dupree, P., Demura, T. (2010a) VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol. 153, 906-14.

Yamaguchi, M., Ohtani, M., Mitsuda, N., Kubo, M., Ohme-Takagi, M., Fukuda, H., Demura, T. (2010b) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in *Arabidopsis*. Plant Cell. 22, 1249-63.

Yamaguchi, M., Mitsuda, N., Ohtani, M., Ohme-Takagi, M., Kato, K., Demura, T. (2011) VASCULAR-RELATED NAC-DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 66, 579-90.

Yang, F., Mitra, P., Zhang, L., Prak, L., Verhertbruggen, Y., Kim, JS., Sun, L., Zheng,K., Tang, K., Auer, M., Scheller, HV., Loqué D. (2013) Engineering secondary cellwall deposition in plants. Plant Biotechnol J. 11, 325-35.

Zhang, X., Zhou, Y., Ding, L., Wu, Z., Liu, R., Meyerowitz, EM. (2013) Transcription repressor HANABA TARANU controls flower development by integrating the actions of multiple hormones, floral organ specification genes, and GATA3 family genes in *Arabidopsis*. Plant Cell. 25, 83-101.

Zhong, R. and Ye, Z.H. (2004) *amphivasal vascular bundle 1*, a gain-of-function mutation of the *IFL1/REV* gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol. 45, 369-85.

Zhong, R., Demura, T., Ye ZH. (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of *Arabidopsis*. Plant Cell. 18, 3158-70.

Zhong, R., Richardson, EA., Ye, ZH. (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in *Arabidopsis*. Plant Cell. 19, 2776-92.

Zhong, R., Lee, C., Zhou, J., L. McCarthy, L. and Ye, Z.H. (2008) A Battery of Transcription Factors Involved in the Regulation of Secondary Cell Wall Biosynthesis in *Arabidopsis*. Plant Cell. 20, 2763-82.

Zhong, R., Lee, C., Zhou, J., L. and Ye, Z.H. (2010) Global Analysis of Direct Targets of Secondary Wall NAC Master Switches in *Arabidopsis*. Mol Plant. 3, 1087-103.

Zilberman, D., Gehring, M., Tran, RK., Ballinger, T., Henikoff, S. (2007) Genome-wide analysis of *Arabidopsis thaliana* DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 39, 61-9. Zuo, J., Niu, QW., Chua, NH. (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265-73.

#### transient assay(pA35G Vectors)

#### Table S1. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|                 |           |               | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative lucit | erase activity |
|-----------------|-----------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|----------------|----------------|
| Effector        |           | Reporter      | firefly | Renilla | Ratio | Relative Ave.  | Relative SD    |
| pA35G-MCS       |           | pAGL-VND7proB | 284     | 31135   | 0.009 | 1013    | 56270   | 0.018 | 89      | 22753   | 0.004 | 462     | 36719   | 0.010 | 487     | 17442   | 0.007 | 1.00           | 0.70           |
| pA35G-VND4      | At1g12260 | pAGL-VND7proB | 4360    | 22626   | 0.193 | 8107    | 12213   | 0.664 | 3165    | 8460    | 0.374 | 5211    | 14433   | 0.410 | 2578    | 7339    | 0.238 | 41.00          | 23.80          |
| pA35G-VND5      | At1g62700 | pAGL-VND7proB | 11203   | 24608   | 0.455 | 35613   | 36385   | 0.979 | 11465   | 25581   | 0.448 | 19427   | 28858   | 0.627 | 14018   | 6537    | 0.305 | 62.70          | 30.50          |
| pA35G-LBD30     | At4g00220 | pAGL-VND7proB | 332     | 6555    | 0.051 | 615     | 6797    | 0.090 | 339     | 4703    | 0.072 | 429     | 6018    | 0.071 | 161     | 1146    | 0.020 | 7.10           | 2.00           |
| pA35G-AtHB8     | At4G32880 | pAGL-VND7proB | 668     | 24981   | 0.027 | 405     | 18999   | 0.021 | 287     | 21474   | 0.013 | 453     | 21818   | 0.020 | 195     | 3006    | 0.007 | 2.00           | 0.70           |
| pA35G-AtHB15    | At1g52150 | pAGL-VND7proB | 2163    | 65765   | 0.033 | 514     | 25110   | 0.020 | 509     | 29171   | 0.017 | 1062    | 40015   | 0.023 | 953     | 22392   | 0.009 | 2.30           | 0.90           |
| pA35G-REV       | At5g60690 | pAGL-VND7proB | 481     | 16926   | 0.028 | 812     | 18032   | 0.045 | 883     | 21515   | 0.041 | 725     | 18824   | 0.038 | 215     | 2395    | 0.009 | 3.80           | 0.90           |
| pA35G-pE7(bHLH) | At1a63650 | nAGL_VND7nmB  | 367     | 29831   | 0.012 | 273     | 20338   | 0.013 | 646     | 30636   | 0.021 | 429     | 26935   | 0.015 | 194     | 5727    | 0.005 | 1 50           | 0.50           |

#### Table S2. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|                   |           |                | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | 8       |         |       | Relative lucif | erase activity |
|-------------------|-----------|----------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|----------------|----------------|
| Effector          |           | Reporter       | firefly | Renilla | Ratio | Relative Ave.  | Relative SD    |
| pA35G-MCS         |           | pAGL-VND7proB  | 239     | 18554   | 0.013 | 282     | 27643   | 0.010 | 411     | 45267   | 0.009 | 311     | 30488   | 0.011 | 90      | 13582   | 0.002 | 1.00           | 0.18           |
| pA35G-VND7        | At1g71930 | pAGL-VND7proB  | 10030   | 26619   | 0.377 | 7747    | 14906   | 0.520 | 4162    | 22829   | 0.182 | 7313    | 21451   | 0.360 | 2958    | 5977    | 0.170 | 32.73          | 15.46          |
| pA35G-PHB         | At2g34710 | pAGL-VND7proB  | 962     | 45218   | 0.021 | 474     | 44389   | 0.011 | 515     | 26666   | 0.019 | 650     | 38758   | 0.017 | 271     | 10480   | 0.005 | 1.55           | 0.46           |
| pA35G-PHV         | At1g30490 | pAGL-VND7proB  | 245     | 13010   | 0.019 | 612     | 27109   | 0.023 | 304     | 17823   | 0.017 | 387     | 19314   | 0.020 | 197     | 7167    | 0.003 | 1.82           | 0.27           |
| pA35G-pE10(z-f)   | At1g72220 | pAGL-VND7proB  | 285     | 14057   | 0.020 | 242     | 8066    | 0.030 | 373     | 37852   | 0.010 | 300     | 19992   | 0.020 | 67      | 15755   | 0.010 | 1.82           | 0.91           |
| pA35G-pE17(z-f)   | At5g17600 | pAGL-VND7proB  | 953     | 98991   | 0.010 | 474     | 76193   | 0.006 | 586     | 60234   | 0.010 | 671     | 78473   | 0.009 | 251     | 19479   | 0.002 | 0.82           | 0.18           |
| pA35G-pE22(XND1)  | At5g64530 | pAGL-VND7proB  | 255     | 12332   | 0.021 | 538     | 18280   | 0.029 | 466     | 24591   | 0.019 | 420     | 18401   | 0.023 | 147     | 6130    | 0.005 | 2.09           | 0.46           |
| nA35G-nE26(BZIP1) | At5q49450 | nAGI -VNDZproB | 1043    | 31006   | 0.034 | 543     | 21267   | 0.026 | 570     | 21014   | 0.027 | 719     | 24429   | 0.029 | 281     | 5697    | 0.004 | 2.64           | 0.36           |

#### Table S3. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|               |           |               | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative lucif | erase activity |
|---------------|-----------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|----------------|----------------|
| Effector      |           | Reporter      | firefly | Renilla | Ratio | Relative Ave.  | Relative SD    |
| pA35G-MCS     |           | pAGL-VND7proB | 491     | 3657    | 0.134 | 127     | 1870    | 0.068 | 317     | 4213    | 0.075 | 312     | 3247    | 0.092 | 182     | 1224    | 0.036 | 1.00           | 0.39           |
| pA35G-NF-YB3  | At4g14540 | pAGL-VND7proB | 339     | 967     | 0.351 | 750     | 5711    | 0.131 | 229     | 3146    | 0.073 | 439     | 3275    | 0.185 | 275     | 2375    | 0.147 | 2.01           | 1.60           |
| pA35G-KNAT7   | At1g62990 | pAGL-VND7proB | 153     | 1616    | 0.095 | 131     | 1463    | 0.090 | 193     | 2706    | 0.071 | 159     | 1928    | 0.085 | 31      | 678     | 0.013 | 0.92           | 0.14           |
| pA35G-VND6    | At5g62380 | pAGL-VND7proB | 4522    | 5218    | 0.867 | 1012    | 3560    | 0.284 | 5472    | 9066    | 0.604 | 3669    | 5948    | 0.585 | 2349    | 2825    | 0.292 | 6.36           | 3.17           |
| pA35G-VND3    | At5g66300 | pAGL-VND7proB | 1245    | 2182    | 0.571 | 2955    | 3462    | 0.854 | 3329    | 4368    | 0.762 | 2510    | 3337    | 0.729 | 1111    | 1098    | 0.144 | 7.92           | 1.57           |
| pA35G-z-fC2H2 | At5g03510 | pAGL-VND7proB | 350     | 9388    | 0.037 | 1722    | 28766   | 0.060 | 686     | 21300   | 0.032 | 919     | 19818   | 0.043 | 715     | 9774    | 0.015 | 0.47           | 0.16           |
| pA35G-MDA7.1  | At5g55970 | pAGL-VND7proB | 176     | 2708    | 0.065 | 164     | 4082    | 0.040 | 318     | 4001    | 0.079 | 219     | 3597    | 0.061 | 86      | 771     | 0.020 | 0.66           | 0.22           |

## Table S4. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|            |           |               | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative luci | ferase activity |
|------------|-----------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|-----------------|
|            |           | Reporter      | firefly | Renilla | Ratio | Relative Ave. | Relative SD     |
| pA35G-MCS  |           | pAGL-VND7proB | 617     | 13932   | 0.044 | 492     | 8660    | 0.057 | 476     | 15419   | 0.031 | 528     | 12670   | 0.044 | 77      | 3552    | 0.013 | 1.00          | 0.30            |
| pA35G-GATA | At5g66320 | pAGL-VND7proB | 2552    | 4859    | 0.525 | 2488    | 6031    | 0.413 | 1937    | 4553    | 0.425 | 2326    | 5148    | 0.454 | 338     | 780     | 0.061 | 10.32         | 1.39            |
| pA35G-bHLH | At1g35460 | pAGL-VND7proB | 613     | 21145   | 0.029 | 847     | 26791   | 0.032 | 699     | 14625   | 0.048 | 720     | 20854   | 0.036 | 118     | 6088    | 0.010 | 0.82          | 0.23            |
| pA35G-SND2 | At4g28500 | pAGL-VND7proB | 1349    | 9089    | 0.148 | 903     | 5168    | 0.175 | 528     | 4310    | 0.123 | 927     | 6189    | 0.149 | 411     | 2548    | 0.026 | 3.39          | 0.59            |
| pA35G-VND1 | At2g18060 | pAGL-VND7proB | 8170    | 6069    | 1.346 | 4499    | 3079    | 1.461 | 5858    | 6921    | 0.846 | 6176    | 5356    | 1.218 | 1856    | 2018    | 0.327 | 27.68         | 7.43            |

## Table S5. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

| Table S5. transient | assay Repoter = VN | D7pro, Effecter = | <ul> <li>Transc</li> </ul> | cription | Factor | <u>s (TFs)</u> | -       |       |         |         |       |         |         |       |         |         |       |                |                |
|---------------------|--------------------|-------------------|----------------------------|----------|--------|----------------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|----------------|----------------|
|                     |                    |                   | 1st                        |          |        | 2nd            |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative lucif | erase activity |
| Effector            |                    | Repoter           | firefly                    | Renilla  | Ratio  | firefly        | Renilla | Ratio | firefly | Renilla | Ratio | firefly | Renilla | Ratio | firefly | Renilla | Ratio | Relative Ave.  | Relative SD    |
| pA35G-MCS           |                    | pAGL-VND7proB     | 743                        | 13541    | 0.055  | 945            | 10014   | 0.094 | 1396    | 18375   | 0.076 | 1028    | 13977   | 0.075 | 334     | 4197    | 0.020 | 1.00           | 0.27           |
| pA35G-VND1          | At2g18060          | pAGL-VND7proB     | 8303                       | 5295     | 1.568  | 9150           | 6300    | 1.452 | 4610    | 3797    | 1.214 | 7354    | 5131    | 1.411 | 2414    | 1260    | 0.180 | 18.81          | 2.40           |
| pA35G-VND4          | At1g12260          | pAGL-VND7proB     | 7611                       | 13918    | 0.547  | 6155           | 16338   | 0.377 | 3691    | 6335    | 0.583 | 5819    | 12197   | 0.502 | 1981    | 5219    | 0.110 | 6.69           | 1.47           |
| pA35G-GATA5         | At5g66320          | pAGL-VND7proB     | 1173                       | 3859     | 0.304  | 1503           | 2855    | 0.526 | 1820    | 4918    | 0.370 | 1499    | 3877    | 0.400 | 324     | 1032    | 0.114 | 5.33           | 1.52           |
| pA35G-LBD18         | At2g45420          | pAGL-VND7proB     | 1798                       | 3823     | 0.470  | 2019           | 3003    | 0.672 | 671     | 3544    | 0.189 | 1496    | 3457    | 0.444 | 723     | 417     | 0.243 | 5.92           | 3.24           |
| pA35G-LBD30         | At4g00220          | pAGL-VND7proB     | 330                        | 1873     | 0.176  | 490            | 2704    | 0.181 | 429     | 1196    | 0.359 | 416     | 1924    | 0.239 | 81      | 755     | 0.104 | 3.19           | 1.39           |
| pA35G-ATBZIP1       | At5g49450          | pAGL-VND7proB     | 426                        | 8264     | 0.052  | 908            | 8282    | 0.110 | 1010    | 11346   | 0.089 | 781     | 9297    | 0.084 | 312     | 1774    | 0.029 | 1.12           | 0.39           |
| pA35G-REV           | At5g60690          | pAGL-VND7proB     | 715                        | 8073     | 0.089  | 1135           | 10128   | 0.112 | 1123    | 8549    | 0.131 | 991     | 8917    | 0.111 | 239     | 1076    | 0.021 | 1.48           | 0.28           |

len.

les.

Delether health

## Table S6. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|              |           |               |         |         |       |         |         |       | 0.0     |         |       | rivolugo |         |       |         |         |       | nonuro nuo    | nonabo abarrey |
|--------------|-----------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|----------|---------|-------|---------|---------|-------|---------------|----------------|
| Effector     |           | Repoter       | firefly | Renilla | Ratio | firefly | Renilla | Ratio | firefly | Renilla | Ratio | firefly  | Renilla | Ratio | firefly | Renilla | Ratio | Relative Ave. | Relative SD    |
| pA35G-MCS    |           | pAGL-VND7proB | 825     | 14730   | 0.056 | 1394    | 18542   | 0.075 | 466     | 5685    | 0.082 | 895      | 12986   | 0.071 | 468     | 6604    | 0.013 | 1.00          | 0.18           |
| pA35G-REV    | At5g60690 | pAGL-VND7proB | 449     | 9832    | 0.046 | 271     | 7448    | 0.036 | 478     | 11758   | 0.041 | 399      | 9679    | 0.041 | 112     | 2159    | 0.005 | 0.58          | 0.07           |
| pA35G-REVabv | At5g60690 | pAGL-VND7proB | 459     | 5188    | 0.088 | 215     | 7904    | 0.027 | 442     | 7765    | 0.057 | 372      | 6952    | 0.057 | 136     | 1530    | 0.031 | 0.80          | 0.44           |
| pA35G-GATA5  | At5g66320 | pAGL-VND7proB | 3264    | 4164    | 0.784 | 1055    | 4851    | 0.217 | 1720    | 7780    | 0.221 | 2013     | 5598    | 0.407 | 1133    | 1920    | 0.326 | 5.73          | 4.59           |
| pA35G-VND1   | At2g18060 | pAGL-VND7proB | 3509    | 5830    | 0.602 | 3720    | 6397    | 0.582 | 4024    | 8156    | 0.493 | 3751     | 6794    | 0.559 | 259     | 1213    | 0.058 | 7.87          | 0.82           |

## Table S7. transient assay Repoter = VND7pro / XCP1pro, Effecter = Transcription Factors (TFs)

|              |           |               | 180     |         |       | 200     |         |       | ara     |         |       | Average |         |       | 30      |         |       | Relative luc  | rerase activity |
|--------------|-----------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|-----------------|
| Effector     |           | Repoter       | firefly | Renilla | Ratio | Relative Ave. | Relative SD     |
| pA35G-MCS    |           | pAGL-VND7proB | 243     | 5382    | 0.045 | 1077    | 7601    | 0.142 | 132     | 5685    | 0.023 | 484     | 6223    | 0.070 | 517     | 1203    | 0.063 | 1.00          | 0.90            |
| pA35G-REV    | At5g60690 | pAGL-VND7proB | 263     | 3115    | 0.084 | 293     | 3947    | 0.074 | 114     | 11758   | 0.010 | 223     | 6273    | 0.056 | 96      | 4768    | 0.040 | 0.80          | 0.57            |
| pA35G-REVabv | At5g60690 | pAGL-VND7proB | 140     | 2473    | 0.057 | 227     | 3688    | 0.062 | 631     | 7765    | 0.081 | 333     | 4642    | 0.067 | 262     | 2772    | 0.013 | 0.96          | 0.19            |
| pA35G-GATA5  | At5g66320 | pAGL-VND7proB | 840     | 1027    | 0.818 | 888     | 590     | 1.505 | 730     | 7780    | 0.094 | 819     | 3132    | 0.806 | 81      | 4031    | 0.706 | 11.51         | 10.09           |

# Table S8. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs) I Ist Izrd Ist Average

| Table 56, transient | assay Repoter = VN | D/pro, Effecter = | = i ranso | Inption | I Factor | 5(115)  | _       |       |         |         |       |         |         |       |         |         |       |               |                  |
|---------------------|--------------------|-------------------|-----------|---------|----------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|------------------|
|                     |                    |                   | 1st       |         |          | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative luc  | iferase activity |
| Effector            |                    | Repoter           | firefly   | Renilla | Ratio    | firefly | Renilla | Ratio | firefly | Renilla | Ratio | firefly | Renilla | Ratio | firefly | Renilla | Ratio | Relative Ave. | Relative SD      |
| pA35G-MCS           |                    | pAGL-VND7proB     | 1996      | 36979   | 0.054    | 471     | 19987   | 0.024 | 752     | 22017   | 0.034 | 1073    | 26328   | 0.037 | 812     | 9280    | 0.015 | 1.00          | 0.41             |
| pA35G-pE3(bHLH)     | At1g35460          | pAGL-VND7proB     | 988       | 34220   | 0.029    | 757     | 39574   | 0.019 | 3488    | 95333   | 0.037 | 1744    | 56376   | 0.028 | 1514    | 33844   | 0.009 | 0.76          | 0.24             |
| pA35G-bHLH(29950)   | At1g29950          | pAGL-VND7proB     | 906       | 15677   | 0.058    | 808     | 18497   | 0.044 | 447     | 7095    | 0.063 | 720     | 13756   | 0.055 | 242     | 5939    | 0.010 | 1.49          | 0.27             |
| pA35G-Dof5.3        | At5g60200          | pAGL-VND7proB     | 1471      | 20817   | 0.071    | 577     | 16538   | 0.035 | 942     | 13981   | 0.067 | 997     | 17112   | 0.058 | 450     | 3454    | 0.020 | 1.57          | 0.54             |
| pA35G-bHLH(68810)   | At1g68810          | pAGL-VND7proB     | 679       | 11287   | 0.060    | 1126    | 9090    | 0.124 | 276     | 5647    | 0.049 | 694     | 8675    | 0.078 | 425     | 2843    | 0.041 | 2.11          | 1.11             |
| pA35G-bHLH(51140)   | At1a51140          | pAGL-VND7proB     | 1748      | 67846   | 0.026    | 1352    | 38886   | 0.035 | 1381    | 44921   | 0.031 | 1494    | 50551   | 0.031 | 221     | 15279   | 0.005 | 0.84          | 0.14             |

#### Table S9. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|                    |               |               | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative luc  | iferase activity |
|--------------------|---------------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|------------------|
| Effector           |               | Repoter       | firefly | Renilla | Ratio | Relative Ave. | Relative SD      |
| pA35G-MCS          |               | pAGL-VND7proB | 215     | 2671    | 0.080 | 189     | 1245    | 0.152 | 388     | 3081    | 0.126 | 264     | 2332    | 0.119 | 108     | 964     | 0.036 | 1.00          | 0.30             |
| pA35G-TLP5         | At1g43640     | pAGL-VND7proB | 127     | 771     | 0.165 | 137     | 3169    | 0.043 | 87      | 1115    | 0.078 | 117     | 1685    | 0.095 | 26      | 1297    | 0.063 | 0.80          | 0.53             |
| pA35G-bHLH038      | At3g56970     | pAGL-VND7proB | 102     | 707     | 0.144 | 153     | 3257    | 0.047 | 180     | 3308    | 0.054 | 145     | 2424    | 0.082 | 40      | 1487    | 0.054 | 0.69          | 0.45             |
| pA35G-bHLH039      | At3g56980     | pAGL-VND7proB | 135     | 1039    | 0.130 | 134     | 1661    | 0.081 | 105     | 813     | 0.129 | 125     | 1171    | 0.113 | 17      | 439     | 0.028 | 0.95          | 0.24             |
| pA35G-Dof5.8       | At5g66940     | pAGL-VND7proB | 188     | 1647    | 0.114 | 198     | 3296    | 0.060 | 297     | 8097    | 0.037 | 228     | 4347    | 0.070 | 60      | 3351    | 0.040 | 0.59          | 0.34             |
| pA35G-TLP1         | At1g76900     | pAGL-VND7proB | 269     | 1899    | 0.142 | 298     | 7844    | 0.038 | 221     | 2701    | 0.082 | 263     | 4148    | 0.087 | 39      | 3226    | 0.052 | 0.73          | 0.44             |
| pA35G-MYB(2g38090) | At2g38090     | pAGL-VND7proB | 111     | 1291    | 0.086 | 192     | 3198    | 0.060 | 240     | 10700   | 0.022 | 181     | 5063    | 0.056 | 65      | 4974    | 0.032 | 0.47          | 0.27             |
| PAREC HADED        | A+1 = E = 170 | nACL_VAD7nmP  | 100     | 1100    | 0.002 | 145     | 1079    | 0.072 | 127     | 2669    | 0.049 | 127     | 1042    | 0.071 | 10      | 745     | 0.022 | 0.60          | 0.10             |

Table S10. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|               |           |               | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative luc  | iferase activity |
|---------------|-----------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|------------------|
| Effector      |           | Repoter       | firefly | Renilla | Ratio | Relative Ave. | Relative SD      |
| pA35G-MCS     |           | pAGL-VND7proB | 185     | 2672    | 0.069 | 108     | 3159    | 0.034 | 66      | 1875    | 0.035 | 120     | 2569    | 0.046 | 60      | 648     | 0.020 | 1.00          | 0.44             |
| pA35G-SAC51   | At5g64340 | pAGL-VND7proB | 93      | 2048    | 0.045 | 85      | 2895    | 0.029 | 73      | 2730    | 0.027 | 84      | 2558    | 0.034 | 10      | 449     | 0.010 | 0.74          | 0.22             |
| pA35G-SAClike | At5g09460 | pAGL-VND7proB | 164     | 3992    | 0.041 | 85      | 2173    | 0.039 | 103     | 3137    | 0.033 | 117     | 3101    | 0.038 | 41      | 910     | 0.004 | 0.83          | 0.09             |
| pA35G-LBD4    | At1g31320 | pAGL-VND7proB | 162     | 2499    | 0.065 | 61      | 1391    | 0.044 | 65      | 1035    | 0.063 | 96      | 1642    | 0.057 | 57      | 764     | 0.012 | 1.24          | 0.26             |
| pA35G-LBD15   | At2g40470 | pAGL-VND7proB | 242     | 1536    | 0.158 | 197     | 909     | 0.217 | 177     | 1405    | 0.126 | 205     | 1283    | 0.167 | 33      | 331     | 0.046 | 3.63          | 1.00             |
| pA35G-MP      | At1g19850 | pAGL-VND7proB | 113     | 2630    | 0.043 | 66      | 1792    | 0.037 | 86      | 2082    | 0.041 | 88      | 2168    | 0.040 | 24      | 426     | 0.003 | 0.87          | 0.07             |

Table S11. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|               |           |                | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative luc  | iferase activity |
|---------------|-----------|----------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|------------------|
| Effector      |           | Repoter        | firefly | Renilla | Ratio | Relative Ave. | Relative SD      |
| pA35G-MCS     |           | pAGL-VND7proB  | 354     | 6444    | 0.055 | 356     | 5274    | 0.068 | 366     | 8020    | 0.046 | 359     | 6579    | 0.056 | 6       | 1378    | 0.011 | 1.00          | 0.20             |
| pA35G-MYB     | At3g10760 | pAGL-VND7proB  | 421     | 8098    | 0.052 | 557     | 7992    | 0.070 | 331     | 7508    | 0.044 | 436     | 7866    | 0.055 | 114     | 315     | 0.013 | 0.98          | 0.23             |
| pA35G-ZFP6    | At1g67030 | pAGL-VND7proB  | 566     | 3972    | 0.142 | 373     | 4058    | 0.092 | 413     | 3879    | 0.106 | 451     | 3970    | 0.113 | 102     | 90      | 0.026 | 2.02          | 0.46             |
| pA35G-HAT14   | At5g06710 | pAGL-VND7proB  | 139     | 1761    | 0.079 | 228     | 2915    | 0.078 | 175     | 2103    | 0.083 | 181     | 2260    | 0.080 | 45      | 593     | 0.003 | 1.43          | 0.05             |
| pA35G-MYB     | At1g69580 | pAGL-VND7proB  | 561     | 6307    | 0.089 | 673     | 9844    | 0.068 | 391     | 13682   | 0.029 | 542     | 9944    | 0.062 | 142     | 3689    | 0.030 | 1.11          | 0.54             |
| pA35G-ANAC075 | At4g29230 | pAGL-VND7proB  | 1857    | 3942    | 0.471 | 3286    | 8797    | 0.374 | 1747    | 6259    | 0.279 | 2297    | 6333    | 0.375 | 859     | 2428    | 0.096 | 6.70          | 1.71             |
| pA35G-LBD15   | At2g40470 | pAGL-VND7proB  | 1551    | 2248    | 0.690 | 1640    | 1767    | 0.928 | 1395    | 3156    | 0.442 | 1529    | 2390    | 0.687 | 124     | 705     | 0.243 | 12.27         | 4.34             |
| PAREC CATAE   | A+E=66220 | nACL_V/NDZoroR | 2027    | 2152    | 0.907 | 1207    | 2564    | 0 267 | 1614    | 2256    | 0 496 | 1016    | 2224    | 0 597 | 904     | 214     | 0 276 | 10.49         | 4 0 2            |

## Table S12. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|              |           |               | 196     |         |       | 2110    |         |       | 314     |         |       | Average |         |       | 30      |         |       | Relative luc  | Terase activity |
|--------------|-----------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|-----------------|
| Effector     |           | Repoter       | firefly | Renilla | Ratio | Relative Ave. | Relative SD     |
| pA35G-MCS    |           | pAGL-VND7proB | 112     | 1217    | 0.092 | 103     | 2398    | 0.043 | 102     | 1552    | 0.066 | 106     | 1722    | 0.067 | 6       | 609     | 0.025 | 1.00          | 0.37            |
| pA35G-GATA5  | At5g66320 | pAGL-VND7proB | 1425    | 703     | 2.027 | 542     | 679     | 0.798 | 931     | 747     | 1.246 | 966     | 710     | 1.357 | 443     | 34      | 0.622 | 20.25         | 9.28            |
| pA35G-GATA12 | At5g25830 | pAGL-VND7proB | 253     | 724     | 0.349 | 83      | 156     | 0.532 | 1651    | 2316    | 0.713 | 662     | 1065    | 0.531 | 860     | 1120    | 0.182 | 7.93          | 2.72            |

201

Average

len

Relative inciference activity

Table S13. transient assay Repoter = VND1pro, Effecter = VND1 ~ VND7

|            |           |              | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative luc  | iferase activity |
|------------|-----------|--------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|------------------|
| Effector   |           | Repoter      | firefly | Renilla | Ratio | Relative Ave. | Relative SD      |
| pA35G-MCS  |           | pAGL-VND1pro | 4037    | 9529    | 0.424 | 4071    | 12254   | 0.332 | 5997    | 11471   | 0.523 | 4702    | 11085   | 0.426 | 1122    | 1403    | 0.096 | 1.00          | 0.23             |
| pA35G-VND1 | At2g18060 | pAGL-VND1pro | 1514    | 3275    | 0.462 | 1360    | 4008    | 0.339 | 2508    | 5374    | 0.467 | 1794    | 4219    | 0.423 | 623     | 1065    | 0.073 | 0.99          | 0.17             |
| pA35G-VND2 | At4g36160 | pAGL-VND1pro | 3343    | 6017    | 0.556 | 1605    | 4913    | 0.327 | 4605    | 12654   | 0.364 | 3184    | 7861    | 0.416 | 1506    | 4187    | 0.123 | 0.98          | 0.29             |
| pA35G-VND3 | At5g66300 | pAGL-VND1pro | 2543    | 10871   | 0.234 | 1830    | 3745    | 0.489 | 5635    | 18284   | 0.308 | 3336    | 10967   | 0.344 | 2023    | 7270    | 0.131 | 0.81          | 0.31             |
| pA35G-VND4 | At1g12260 | pAGL-VND1pro | 2119    | 12831   | 0.165 | 866     | 2940    | 0.295 | 922     | 6227    | 0.148 | 1302    | 7333    | 0.203 | 708     | 5037    | 0.080 | 0.48          | 0.19             |
| pA35G-VND5 | At1g62700 | pAGL-VND1pro | 967     | 2677    | 0.361 | 1647    | 9283    | 0.177 | 3058    | 8171    | 0.374 | 1891    | 6710    | 0.304 | 1067    | 3537    | 0.110 | 0.71          | 0.26             |
| pA35G-VND6 | At5g62380 | pAGL-VND1pro | 1968    | 5424    | 0.363 | 2463    | 5614    | 0.439 | 4218    | 5537    | 0.762 | 2883    | 5525    | 0.521 | 1182    | 96      | 0.212 | 1.22          | 0.50             |
| pA35G-VND7 | At1g71930 | pAGL-VND1pro | 310     | 4081    | 0.076 | 274     | 4388    | 0.062 | 336     | 6889    | 0.049 | 307     | 5119    | 0.062 | 31      | 1540    | 0.014 | 0.15          | 0.03             |

#### Table S14. transient assay Repoter = VND2pro, Effecter = VND1 ~ VND7

|            |           |              | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative luc  | iferase activity |
|------------|-----------|--------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|------------------|
| Effector   |           | Repoter      | firefly | Renilla | Ratio | Relative Ave. | Relative SD      |
| pA35G-MCS  |           | pAGL-VND2pro | 5353    | 16138   | 0.332 | 11035   | 23567   | 0.468 | 15292   | 41408   | 0.369 | 10560   | 27038   | 0.390 | 4986    | 12988   | 0.070 | 1.00          | 0.18             |
| pA35G-VND1 | At2g18060 | pAGL-VND2pro | 2101    | 4613    | 0.455 | 7773    | 3514    | 2.212 | 3894    | 4210    | 0.925 | 4589    | 4112    | 1.197 | 2899    | 556     | 0.910 | 3.07          | 2.33             |
| pA35G-VND2 | At4g36160 | pAGL-VND2pro | 3908    | 9766    | 0.400 | 3863    | 12726   | 0.304 | 2506    | 12665   | 0.198 | 3426    | 11719   | 0.301 | 797     | 1692    | 0.101 | 0.77          | 0.26             |
| pA35G-VND3 | At5g66300 | pAGL-VND2pro | 6377    | 1933    | 3.299 | 13442   | 11013   | 1.221 | 9600    | 11194   | 0.858 | 9806    | 8047    | 1.793 | 3537    | 5295    | 1.317 | 4.60          | 3.38             |
| pA35G-VND4 | At1g12260 | pAGL-VND2pro | 3525    | 16503   | 0.214 | 1766    | 5142    | 0.343 | 2323    | 11584   | 0.201 | 2538    | 11076   | 0.253 | 899     | 5697    | 0.079 | 0.65          | 0.20             |
| pA35G-VND5 | At1g62700 | pAGL-VND2pro | 4607    | 9891    | 0.466 | 3864    | 7887    | 0.490 | 2953    | 6200    | 0.476 | 3808    | 7993    | 0.477 | 828     | 1848    | 0.012 | 1.22          | 0.03             |
| pA35G-VND6 | At5g62380 | pAGL-VND2pro | 1742    | 5753    | 0.303 | 4895    | 15891   | 0.308 | 4037    | 27434   | 0.147 | 3558    | 16359   | 0.253 | 1630    | 10848   | 0.092 | 0.65          | 0.24             |
| pA35G-VND7 | At1g71930 | pAGL-VND2pro | 2011    | 11612   | 0.173 | 1805    | 11476   | 0.157 | 1806    | 7973    | 0.227 | 1874    | 10354   | 0.186 | 119     | 2063    | 0.037 | 0.48          | 0.10             |

#### Table S15. transient assay Repoter = VND3pro, Effecter = VND1 ~ VND7

|            |           |              | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative luc  | iferase activity |
|------------|-----------|--------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|------------------|
| Effector   |           | Repoter      | firefly | Renilla | Ratio | Relative Ave. | Relative SD      |
| pA35G-MCS  |           | pAGL-VND3pro | 327     | 4802    | 0.068 | 701     | 8735    | 0.080 | 220     | 5996    | 0.037 | 416     | 6511    | 0.062 | 253     | 2016    | 0.022 | 1.00          | 0.36             |
| pA35G-VND1 | At2g18060 | pAGL-VND3pro | 2317    | 5199    | 0.446 | 1052    | 5843    | 0.180 | 712     | 3163    | 0.225 | 1360    | 4735    | 0.284 | 846     | 1399    | 0.142 | 4.58          | 2.29             |
| pA35G-VND2 | At4g36160 | pAGL-VND3pro | 1192    | 2195    | 0.543 | 3013    | 6777    | 0.445 | 4357    | 7466    | 0.584 | 2854    | 5479    | 0.524 | 1588    | 2865    | 0.071 | 8.45          | 1.15             |
| pA35G-VND3 | At5g66300 | pAGL-VND3pro | 3330    | 10507   | 0.317 | 2010    | 10338   | 0.194 | 3262    | 10223   | 0.319 | 2867    | 10356   | 0.277 | 743     | 143     | 0.072 | 4.47          | 1.16             |
| pA35G-VND4 | At1g12260 | pAGL-VND3pro | 1103    | 5893    | 0.187 | 3240    | 9838    | 0.329 | 2788    | 11719   | 0.238 | 2377    | 9150    | 0.251 | 1126    | 2973    | 0.072 | 4.05          | 1.16             |
| pA35G-VND5 | At1g62700 | pAGL-VND3pro | 4578    | 8741    | 0.524 | 14085   | 47966   | 0.294 | 3731    | 19202   | 0.194 | 7465    | 25303   | 0.337 | 5749    | 20312   | 0.169 | 5.44          | 2.73             |
| pA35G-VND6 | At5g62380 | pAGL-VND3pro | 3097    | 4783    | 0.648 | 5053    | 6174    | 0.818 | 2267    | 6084    | 0.373 | 3472    | 5680    | 0.613 | 1430    | 778     | 0.225 | 9.89          | 3.63             |
| pA35G-VND7 | At1g71930 | pAGL-VND3pro | 761     | 4924    | 0.155 | 526     | 4601    | 0.114 | 416     | 4120    | 0.101 | 568     | 4548    | 0.123 | 176     | 405     | 0.028 | 1.98          | 0.45             |

#### Table S16. transient assay Repoter = VND4pro, Effecter = VND1 ~ VND7

|            |           |              | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative luc  | iferase activity |
|------------|-----------|--------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|------------------|
| Effector   |           | Repoter      | firefly | Renilla | Ratio | Relative Ave. | Relative SD      |
| pA35G-MCS  |           | pAGL-VND4pro | 7370    | 7833    | 0.941 | 9009    | 5213    | 1.728 | 14582   | 14536   | 1.003 | 10320   | 9194    | 1.224 | 3781    | 4808    | 0.438 | 1.00          | 0.36             |
| pA35G-VND1 | At2g18060 | pAGL-VND4pro | 4944    | 2437    | 2.029 | 8024    | 5341    | 1.502 | 9640    | 7664    | 1.258 | 7536    | 5147    | 1.596 | 2386    | 2619    | 0.394 | 1.30          | 0.32             |
| pA35G-VND2 | At4g36160 | pAGL-VND4pro | 12879   | 6381    | 2.018 | 33542   | 12399   | 2.705 | 4145    | 3970    | 1.044 | 16855   | 7583    | 1.922 | 15097   | 4341    | 0.835 | 1.57          | 0.68             |
| pA35G-VND3 | At5g66300 | pAGL-VND4pro | 10736   | 5596    | 1.919 | 40676   | 13767   | 2.955 | 14751   | 8804    | 1.675 | 22054   | 9389    | 2.183 | 16251   | 4117    | 0.680 | 1.78          | 0.56             |
| pA35G-VND4 | At1g12260 | pAGL-VND4pro | 5006    | 9898    | 0.506 | 2158    | 4524    | 0.477 | 9234    | 15763   | 0.586 | 5466    | 10062   | 0.523 | 3560    | 5621    | 0.056 | 0.43          | 0.05             |
| pA35G-VND5 | At1g62700 | pAGL-VND4pro | 6297    | 8535    | 0.738 | 7824    | 6031    | 1.297 | 5860    | 4842    | 1.210 | 6660    | 6469    | 1.082 | 1031    | 1885    | 0.301 | 0.88          | 0.25             |
| pA35G-VND6 | At5g62380 | pAGL-VND4pro | 7618    | 4864    | 1.566 | 2894    | 1132    | 2.557 | 6269    | 3597    | 1.743 | 5594    | 3198    | 1.955 | 2433    | 1898    | 0.529 | 1.60          | 0.43             |
| pA35G-VND7 | At1g71930 | pAGL-VND4pro | 2582    | 5499    | 0.470 | 2453    | 6332    | 0.387 | 3756    | 5479    | 0.686 | 2930    | 5770    | 0.514 | 718     | 487     | 0.154 | 0.42          | 0.13             |

#### Table S17. transient assay Repoter = VND5pro, Effecter = VND1 ~ VND7

|            |           |              | 150     |         |       | zna     |         |       | 3ra     |         |       | Average |         |       | 50      |         |       | Relative luc  | iterase activity |
|------------|-----------|--------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|------------------|
| Effector   |           | Repoter      | firefly | Renilla | Ratio | Relative Ave. | Relative SD      |
| pA35G-MCS  |           | pAGL-VND5pro | 1196    | 2363    | 0.506 | 4557    | 15811   | 0.288 | 2266    | 7862    | 0.288 | 2673    | 8679    | 0.361 | 1717    | 6761    | 0.126 | 1.00          | 0.35             |
| pA35G-VND1 | At2g18060 | pAGL-VND5pro | 6106    | 2385    | 2.560 | 6284    | 4024    | 1.562 | 7429    | 8063    | 0.921 | 6606    | 4824    | 1.681 | 718     | 2922    | 0.826 | 4.66          | 2.29             |
| pA35G-VND2 | At4g36160 | pAGL-VND5pro | 7627    | 2754    | 2.769 | 12761   | 7544    | 1.692 | 11658   | 6189    | 1.884 | 10682   | 5496    | 2.115 | 2703    | 2469    | 0.574 | 5.86          | 1.59             |
| pA35G-VND3 | At5g66300 | pAGL-VND5pro | 11438   | 8047    | 1.421 | 7103    | 5304    | 1.339 | 11225   | 8835    | 1.271 | 9922    | 7395    | 1.344 | 2444    | 1854    | 0.075 | 3.72          | 0.21             |
| pA35G-VND4 | At1g12260 | pAGL-VND5pro | 6925    | 9291    | 0.745 | 3660    | 18798   | 0.195 | 3565    | 7769    | 0.459 | 4717    | 11953   | 0.466 | 1913    | 5977    | 0.275 | 1.29          | 0.76             |
| pA35G-VND5 | At1g62700 | pAGL-VND5pro | 5284    | 10992   | 0.481 | 2031    | 7623    | 0.266 | 9726    | 12061   | 0.806 | 5680    | 10225   | 0.518 | 3863    | 2316    | 0.272 | 1.44          | 0.75             |
| pA35G-VND6 | At5g62380 | pAGL-VND5pro | 6233    | 4389    | 1.420 | 33363   | 24506   | 1.361 | 16329   | 9712    | 1.681 | 18642   | 12869   | 1.487 | 13712   | 10423   | 0.170 | 4.12          | 0.47             |
| pA35G-VND7 | At1g71930 | pAGL-VND5pro | 2960    | 3613    | 0.819 | 1877    | 5103    | 0.368 | 3261    | 5449    | 0.598 | 2699    | 4722    | 0.595 | 728     | 976     | 0.226 | 1.65          | 0.63             |

#### Table S18. transient assay Repoter = VND6pro, Effecter = VND1 ~ VND7

|             |           |              | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative luc  | iferase activity |
|-------------|-----------|--------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------------|------------------|
| Effector    |           | Repoter      | firefly | Renilla | Ratio | Relative Ave. | Relative SD      |
| pA35G-MCS   |           | pAGL-VND6pro | 445     | 7702    | 0.058 | 180     | 4789    | 0.038 | 269     | 8294    | 0.032 | 298     | 6928    | 0.043 | 135     | 1876    | 0.014 | 1.00          | 0.33             |
| pA35G-VND1  | At2g18060 | pAGL-VND6pro | 524     | 4319    | 0.121 | 508     | 7874    | 0.065 | 258     | 5472    | 0.047 | 430     | 5888    | 0.078 | 149     | 1814    | 0.039 | 1.81          | 0.91             |
| pA35G-VND2  | At4g36160 | pAGL-VND6pro | 339     | 4862    | 0.070 | 287     | 4407    | 0.065 | 235     | 2970    | 0.079 | 287     | 4080    | 0.071 | 52      | 988     | 0.007 | 1.65          | 0.16             |
| pA35G-VND3  | At5g66300 | pAGL-VND6pro | 599     | 6193    | 0.097 | 2226    | 12627   | 0.176 | 1731    | 11151   | 0.155 | 1519    | 9990    | 0.143 | 834     | 3370    | 0.041 | 3.33          | 0.95             |
| pA35G-VND4  | At1g12260 | pAGL-VND6pro | 218     | 7612    | 0.029 | 350     | 15529   | 0.023 | 264     | 9808    | 0.027 | 277     | 10983   | 0.026 | 67      | 4087    | 0.003 | 0.61          | 0.07             |
| pA35G-VND5  | At1g62700 | pAGL-VND6pro | 420     | 12346   | 0.034 | 218     | 6626    | 0.033 | 181     | 5466    | 0.033 | 273     | 8146    | 0.033 | 129     | 3683    | 0.001 | 0.77          | 0.02             |
| pA35G-VND6  | At5g62380 | pAGL-VND6pro | 783     | 11023   | 0.071 | 1094    | 15673   | 0.070 | 252     | 8267    | 0.030 | 710     | 11654   | 0.057 | 426     | 3743    | 0.023 | 1.33          | 0.54             |
| n435G_V/ND7 | A+1a71930 | nACI_V/ND6nm | 208     | 5685    | 0.037 | 386     | 0380    | 0.030 | 147     | /310    | 0.034 | 247     | 6624    | 0.037 | 124     | 2802    | 0.003 | 0.86          | 0.07             |

## Table S19. transient assay Repoter = VND7pro, Effecter = VND1 ~ VND7

|            |           |               | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative lucif | erase activity |
|------------|-----------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|----------------|----------------|
| Effector   |           | Repoter       | firefly | Renilla | Ratio | Relative Ave.  | Relative SD    |
| pA35G-MCS  |           | pAGL-VND7proB | 396     | 11190   | 0.035 | 1008    | 11326   | 0.089 | 327     | 10625   | 0.031 | 577     | 11047   | 0.052 | 375     | 372     | 0.032 | 1.00           | 0.62           |
| pA35G-VND1 | At2g18060 | pAGL-VND7proB | 22622   | 6020    | 3.758 | 22867   | 8516    | 2.685 | 23435   | 7500    | 3.125 | 22975   | 7345    | 3.189 | 417     | 1255    | 0.539 | 61.33          | 10.37          |
| pA35G-VND2 | At4g36160 | pAGL-VND7proB | 9262    | 5019    | 1.845 | 7836    | 5264    | 1.489 | 5497    | 3895    | 1.411 | 7532    | 4726    | 1.582 | 1901    | 730     | 0.231 | 30.42          | 4.44           |
| pA35G-VND3 | At5g66300 | pAGL-VND7proB | 24072   | 7000    | 3.439 | 8580    | 5087    | 1.687 | 23945   | 17026   | 1.406 | 18866   | 9704    | 2.177 | 8908    | 6412    | 1.102 | 41.87          | 21.19          |
| pA35G-VND4 | At1g12260 | pAGL-VND7proB | 10149   | 16026   | 0.633 | 11400   | 9740    | 1.170 | 4585    | 9286    | 0.494 | 8711    | 11684   | 0.766 | 3628    | 3767    | 0.357 | 14.73          | 6.87           |
| pA35G-VND5 | At1g62700 | pAGL-VND7proB | 12225   | 10132   | 1.207 | 28019   | 18274   | 1.533 | 25416   | 11240   | 2.261 | 21887   | 13215   | 1.667 | 8468    | 4416    | 0.540 | 32.06          | 10.39          |
| pA35G-VND6 | At5g62380 | pAGL-VND7proB | 18866   | 14002   | 1.347 | 15797   | 5213    | 3.030 | 17234   | 5623    | 3.065 | 17299   | 8279    | 2.481 | 1536    | 4960    | 0.982 | 47.71          | 18.89          |
| pA35G-VND7 | At1g71930 | pAGL-VND7proB | 11899   | 7129    | 1.669 | 11305   | 6413    | 1.763 | 37168   | 21956   | 1.693 | 20124   | 11833   | 1.708 | 14764   | 8774    | 0.049 | 32.85          | 0.94           |

\*VND7proB=VND7promoter(-1000 - +9 bp)

\*MCS=Multi Cloning Site (Negative control) \*firefly= luciferase activity \*Renilla= renilla activity (refarence)

\*SD=Standard Deviation \*VND7proB=VND7pro \*Ratio=firefly/Renilla \*Relative Ave.= relative average compared with MCS value

## transient assay(pBIG2113SF vector)

#### Table S20. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|                  |            |               | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative lucife | arase activity |
|------------------|------------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|-----------------|----------------|
| Effector         |            | Reporter      | firefly | Renilla | Ratio | Relative Ave.   | Relative SD    |
| pBIG2113SF       |            | pAGL-VND7proB | 317     | 15150   | 0.021 | 271     | 14341   | 0.019 | 565     | 19579   | 0.029 | 384     | 16357   | 0.023 | 158     | 2820    | 0.005 | 1.00            | 0.22           |
| pBIG-1a(BEE2)    | At4g36540  | pAGL-VND7proB | 628     | 20440   | 0.031 | 303     | 24857   | 0.012 | 501     | 22094   | 0.023 | 477     | 22464   | 0.022 | 164     | 2232    | 0.010 | 0.96            | 0.44           |
| pBIG-3h(ATBZIP3) | At5g15830  | pAGL-VND7proB | 353     | 14011   | 0.025 | 319     | 20608   | 0.015 | 324     | 32445   | 0.010 | 332     | 22355   | 0.017 | 18      | 9340    | 0.008 | 0.74            | 0.35           |
| рыс-эп(Атвыгэ)   | ALSGI SOSU | page-aup/pros | 333     | 14011   | 0.025 | 319     | 20008   | 0.015 | 324     | 52445   | 0.010 | 332     | 22333   | 0.017 | 10      | 5340    | 0.008 | 0.74            | 0.35           |

## Table S21. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|                  |           |                | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative lucife | arase activity |
|------------------|-----------|----------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|-----------------|----------------|
| Effector         |           | Reporter       | firefly | Renilla | Ratio | Relative Ave.   | Relative SD    |
| pBIG2113SF       |           | pAGL-VND7proB  | 1634    | 23787   | 0.069 | 752     | 17152   | 0.044 | 435     | 7912    | 0.055 | 940     | 16284   | 0.056 | 621     | 7973    | 0.013 | 1.00            | 0.23           |
| pBIG-1d(ANAC092) | At5g39610 | pAGL-VND7proB  | 1467    | 24963   | 0.059 | 710     | 14657   | 0.048 | 356     | 20549   | 0.017 | 844     | 20056   | 0.041 | 568     | 5171    | 0.022 | 0.73            | 0.39           |
| pBIG-2f(ANAC048) | At3g04420 | pAGL-VND7proB  | 325     | 8154    | 0.040 | 438     | 13152   | 0.033 | 579     | 18882   | 0.031 | 447     | 13396   | 0.035 | 127     | 5368    | 0.005 | 0.63            | 0.09           |
| pBIG-2g(ANAC017) | At1g34190 | pAGL-VND7proB  | 766     | 34009   | 0.023 | 715     | 33013   | 0.022 | 409     | 20779   | 0.020 | 630     | 29267   | 0.022 | 193     | 7368    | 0.002 | 0.39            | 0.04           |
| pBIG-2h(SND3)    | At1g28470 | pAGL-VND7proB  | 791     | 27575   | 0.029 | 466     | 18057   | 0.026 | 608     | 29427   | 0.021 | 622     | 25020   | 0.025 | 163     | 6101    | 0.004 | 0.45            | 0.07           |
| pBIG-2i(ANAC032) | At1g77450 | pAGL-VND7proB  | 779     | 23272   | 0.033 | 767     | 18756   | 0.041 | 248     | 7171    | 0.035 | 598     | 16400   | 0.036 | 303     | 8305    | 0.004 | 0.64            | 0.07           |
| pBIG-2i(ANAC074) | At4a28530 | nAGI -VNDZproB | 370     | 9279    | 0.040 | 402     | 6166    | 0.065 | 430     | 8623    | 0.050 | 401     | 8023    | 0.052 | 30      | 1641    | 0.013 | 0.93            | 0.23           |

#### Table S22. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|                |           |                | 1st     |               | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative lucifi | erase activity |
|----------------|-----------|----------------|---------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|-----------------|----------------|
| Effector       |           | Reporter       | firefly | Renilla Ratio | firefly | Renilla | Ratio | Relative Ave.   | Relative SD    |
| pBIG2113SF     |           | pAGL-VND7proB  | 230     | 31829 0.007   | 347     | 17032   | 0.020 | 177     | 19627   | 0.009 | 251     | 22829   | 0.012 | 87      | 7901    | 0.007 | 1.00            | 0.58           |
| pBIG-2a(DREB2) | At5g05410 | pAGL-VND7proB  | 1057    | 54254 0.019   | 190     | 19486   | 0.010 | 410     | 51646   | 0.008 | 552     | 41795   | 0.012 | 451     | 19364   | 0.006 | 1.00            | 0.50           |
| pBIG-1i(ICE1)  | At3g26744 | pAGL-VND7proB  | 238     | 20765 0.011   | 196     | 33682   | 0.006 | 145     | 8733    | 0.017 | 193     | 21060   | 0.011 | 47      | 12477   | 0.006 | 0.92            | 0.50           |
| pBIG-1b(VNI2)  | At5g13180 | pAGL-VND7proB  | 129     | 13745 0.009   | 149     | 11809   | 0.013 | 215     | 31604   | 0.007 | 164     | 19053   | 0.010 | 45      | 10913   | 0.003 | 0.83            | 0.25           |
| pBIG-4i(zDof)  | At1g64620 | pAGL-VND7proB  | 320     | 33238 0.010   | 314     | 34973   | 0.009 | 242     | 24203   | 0.010 | 292     | 30805   | 0.010 | 43      | 5783    | 0.001 | 0.83            | 0.08           |
| pBIG-4j(MYB3)  | At1g22640 | pAGL-VND7proB  | 96      | 13137 0.007   | 197     | 26851   | 0.007 | 211     | 23701   | 0.009 | 168     | 21230   | 0.008 | 63      | 7183    | 0.001 | 0.67            | 0.08           |
| pBIG-1a(MYB43) | At5a16600 | nAGI -VND7proB | 129     | 11948 0.011   | 653     | 42802   | 0.015 | 94      | 7705    | 0.012 | 292     | 20818   | 0.013 | 313     | 19156   | 0.002 | 1.08            | 0.17           |

## Table S23. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|               |           |               | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative lucife | erase activity |
|---------------|-----------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|-----------------|----------------|
| Effector      |           | Reporter      | firefly | Renilla | Ratio | Relative Ave.   | Relative SD    |
| pBIG2113SF    |           | pAGL-VND7proB | 450     | 5386    | 0.084 | 104     | 2036    | 0.051 | 426     | 5709    | 0.075 | 327     | 4377    | 0.070 | 193     | 2034    | 0.017 | 1.00            | 0.24           |
| pBIG-1c(ERF)  | At5g25190 | pAGL-VND7proB | 803     | 7275    | 0.110 | 283     | 5376    | 0.053 | 183     | 3599    | 0.051 | 423     | 5417    | 0.071 | 333     | 1838    | 0.034 | 1.01            | 0.49           |
| pBIG-3i(BEL1) | At5g41410 | pAGL-VND7proB | 105     | 2422    | 0.043 | 162     | 5383    | 0.030 | 118     | 4251    | 0.028 | 128     | 4019    | 0.034 | 30      | 1494    | 0.008 | 0.49            | 0.11           |

#### Table S24. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|                    |           |               | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative lucife | erase activity |
|--------------------|-----------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|-----------------|----------------|
| Effector           |           | Reporter      | firefly | Renilla | Ratio | Relative Ave.   | Relative SD    |
| pBIG2113SF         |           | pAGL-VND7proB | 640     | 10041   | 0.064 | 461     | 17396   | 0.027 | 798     | 23806   | 0.034 | 633     | 17081   | 0.042 | 169     | 6888    | 0.020 | 1.00            | 0.48           |
| pBIG-2b(ERF)       | At5g61600 | pAGL-VND7proB | 1330    | 39607   | 0.034 | 752     | 18898   | 0.040 | 1094    | 20080   | 0.054 | 1059    | 26195   | 0.043 | 291     | 11630   | 0.010 | 1.02            | 0.24           |
| pBIG-2e(SEPALLATA) | At3g02310 | pAGL-VND7proB | 167     | 6191    | 0.027 | 415     | 7354    | 0.056 | 256     | 7567    | 0.034 | 279     | 7037    | 0.039 | 126     | 741     | 0.015 | 0.93            | 0.36           |
| pBIG-3b(TCP10)     | At2g31070 | pAGL-VND7proB | 522     | 12012   | 0.043 | 324     | 3531    | 0.092 | 304     | 11378   | 0.027 | 383     | 8974    | 0.054 | 121     | 4724    | 0.034 | 1.29            | 0.81           |
| pBIG-4b(WRKY21)    | At2g30590 | pAGL-VND7proB | 556     | 23311   | 0.024 | 1117    | 20060   | 0.056 | 441     | 9371    | 0.047 | 705     | 17581   | 0.042 | 362     | 7293    | 0.017 | 1.00            | 0.41           |
| pBIG-4c(ZFP4)      | At1g66140 | pAGL-VND7proB | 312     | 13780   | 0.023 | 416     | 12081   | 0.034 | 172     | 10260   | 0.017 | 300     | 12040   | 0.025 | 122     | 1760    | 0.009 | 0.60            | 0.21           |

### Table S25. transient assay Repoter = VND7pro, Effecter = Transcription Factors (TFs)

|                  |           |               | 1st     |         |       | 2nd     |         |       | 3rd     |         |       | Average |         |       | SD      |         |       | Relative lucife | rase activity |
|------------------|-----------|---------------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|-----------------|---------------|
| Effector         |           | Reporter      | firefly | Renilla | Ratio | Relative Ave.   | Relative SD   |
| pBiG2113SF       |           | pAGL-VND7proB | 1440    | 11599   | 0.124 | 1608    | 11969   | 0.134 | 6869    | 30044   | 0.229 | 3306    | 17871   | 0.162 | 3087    | 10544   | 0.058 | 1.00            | 0.36          |
| pBiG-1f(WRKY46)  | At2g46400 | pAGL-VND7proB | 845     | 13120   | 0.064 | 823     | 6901    | 0.119 | 991     | 10201   | 0.097 | 886     | 10074   | 0.093 | 91      | 3111    | 0.028 | 0.57            | 0.17          |
| pBIG-3c(WRKY39)  | At3g04670 | pAGL-VND7proB | 468     | 9506    | 0.049 | 711     | 11750   | 0.061 | 897     | 6841    | 0.131 | 692     | 9366    | 0.080 | 215     | 2458    | 0.044 | 0.49            | 0.27          |
| pBIG-4d(zfC3HC4) | At1g26800 | pAGL-VND7proB | 727     | 9568    | 0.076 | 1127    | 8415    | 0.134 | 438     | 10752   | 0.041 | 764     | 9578    | 0.084 | 346     | 1169    | 0.047 | 0.52            | 0.29          |
| pBIG-4f(zfC3HC4) | At3g23060 | pAGL-VND7proB | 598     | 11298   | 0.053 | 1488    | 9001    | 0.165 | 1567    | 26247   | 0.060 | 1218    | 15515   | 0.093 | 538     | 9365    | 0.063 | 0.57            | 0.39          |
| pBIG-4q(zfC3HC4) | At5a08750 | pAGL-VND7proB | 946     | 14027   | 0.067 | 466     | 11261   | 0.041 | 914     | 13962   | 0.065 | 775     | 13083   | 0.058 | 268     | 1579    | 0.014 | 0.36            | 0.09          |

\*VND7proB=VND7promoter(-1000 - +9 bp)

\*pBIG2113SF= empty vector(negative control) \*firefly= luciferase activity \*Renilla= renilla activity (refarence)

\*SD=Standard Deviation \*VND7proB=VND7promote \*Ratio=firefly/Renilla \*Relative Ave.= relative average compared with pBIG2113SF value

| Gene                   | Number of amino acids | Sequence                                                                                                                                                                              |
|------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VND1 (1-483 + stopTGA) | 161                   | MEPMESCSVPPGFRFHPTDEELVGYYLRKKIASQKIDLDVI<br>RDIDLYRIEPWDLQEQCRIGYEEQNEWYFFSHKDKKYPTG<br>TRTNRATMAGFWKATGRDKAVYDKTKLIGMRKTLVFYKG<br>RAPNGKKSDWIMHEYRLESDENAPPQEEGWVVCRAFKKR<br>AT     |
| VND2 (1-486 + stopTGA) | 162                   | MESVDQSCSVPPGFRFHPTDEELVGYYLRKKVASQKIDLD<br>VIRDIDLYRIEPWDLQESCRIGYEERNEWYFFSHKDKKYPT<br>GTRTNRATMAGFWKATGRDKAVYDKSKLIGMRKTLVFYK<br>GRAPNGQKTDWIMHEYRLESDENAPPQEEGWVVCRAFK<br>KKPM    |
| VND3 (1-495 + stopTAA) | 165                   | MMKVDQDYSCSIPPGFRFHPTDEELVGYYLKKKIASQRID<br>LDVIREIDLYKIEPWDLQERCRIGYEEQTEWYFFSHRDKKY<br>PTGTRTNRATVAGFWKATGRDKAVYLNSKLIGMRKTLVFY<br>RGRAPNGQKSDWIIHEYYSLESHQNSPPQEEGWVVCRAFK<br>KRTT |
| VND4 (1-477 + stopTGA) | 159                   | MNSFSHVPPGFRFHPTDEELVDYYLRKKVASKRIEIDFIKDI<br>DLYKIEPWDLQELCKIGHEEQSDWYFFSHKDKKYPTGTRT<br>NRATKAGFWKATGRDKAIYLRHSLIGMRKTLVFYKGRAP<br>NGQKSDWIMHEYRLETDENGTPQEEGWVVCRVFKKRLA           |
| VND5 (1-477 + stopTAG) | 159                   | MNSFSQVPPGFRFHPTDEELVDYYLRKKVASKRIEIDIIKDV<br>DLYKIEPCDLQELCKIGNEEQSEWYFFSHKDKKYPTGTRTN<br>RATKAGFWKATGRDKAIYIRHSLIGMRKTLVFYKGRAPNG<br>QKSDWIMHEYRLETSENGTPQEEGWVVCRVFKKKLA           |
| VND6 (1-477 + stopTAA) | 159                   | MESLAHIPPGYRFHPTDEELVDYYLKNKVAFPGMQVDVIK<br>DVDLYKIEPWDIQELCGRGTGEEREWYFFSHKDKKYPTGT<br>RTNRATGSGFWKATGRDKAIYSKQELVGMRKTLVFYKGR<br>APNGQKSDWIMHEYRLETDENGPPHEEGWVVCRAFKKKL<br>T       |
| VND7 (1-483 + stopTAA) | 161                   | MDNIMQSSMPPGFRFHPTEEELVGYYLDRKINSMKSALDV<br>IVEIDLYKMEPWDIQARCKLGYEEQNEWYFFSHKDRKYPT<br>GTRTNRATAAGFWKATGRDKAVLSKNSVIGMRKTLVYYK<br>GRAPNGRKSDWIMHEYRLQNSELAPVQEEGWVVCRAFR<br>KPIP     |

Supplementary Table S27. Amino acid sequence of VND proteins used in this study.

| Supplementary Table S26. List of primer sequences. |           |                          |  |  |  |  |
|----------------------------------------------------|-----------|--------------------------|--|--|--|--|
| primer name                                        | AGI No.   | Primer sequences (5'-3') |  |  |  |  |
| For promoter                                       |           |                          |  |  |  |  |
| VND1                                               | At2g18060 | CACCCATAACTTTGT          |  |  |  |  |

|           | Primer sequences (5'-3') |  |  |  |
|-----------|--------------------------|--|--|--|
|           |                          |  |  |  |
| GTTATTAGG | TGGCTCCATTAITTCTACACC    |  |  |  |
| TTGTATATG | CGATTCCATTATTTCTGCATAA   |  |  |  |

| i or promoter         |              |                                              |                                                     |
|-----------------------|--------------|----------------------------------------------|-----------------------------------------------------|
| VND1                  | At2g18060    | CACCCATAACTTTGTGACATAAACGTTATTAGG            | TGGCTCCATTATTTCTACACCAACAAAATG                      |
| VND2                  | At4g36160    | CACCGAACTACTTAAACCTAGTCCTTGTATATG            | CGATTCCATTATTTCTGCATAACACCAATA                      |
| VND3                  | At5g66300    | CACCGGTGAAATCCGAGAAACAACAATCAAAATA           | ATCAACCTTCATCATATTGATAGTTATTTTCTAGG                 |
| VND4                  | At1g12260    | CACCGATCATACACTGTTTGTCTCTTGATGATTT           | TGAATTCATGTTTGTCTTCTTGATCGGTTA                      |
| VND5                  | At1g62700    | CACCGTGTGTTGTTAATGTTGTTATATATGGGTC           | CGAATTCATTCTTTATTCTTTGTTTTTCCGAG                    |
| VND6                  | At5g62380    | CACCGAGATAATTAGTACACTACCTTATTAGGGC           | GTGTGCGAGACTTTCCATTTGATCTTTTA                       |
| VND7 (1000 bp)        | At1g71930    | CACCCTTGAATAGTATACATGTGTGTGGTCCTGT           | ATTATCCATCCACGATGATCCTATAAACGT                      |
| GATA5                 | At5g66320    | CACCGGCTAGTTTTGTCATTTAATATTTAG               | TTGTTCCATTTTCCTATCGAGAAAAAAAC                       |
| GATA12                | At5g25830    | CACCTTATTACATTAGTAATTCTCATTTCGT              | ATCTTCCATAAGTTTCGTTGATTAAAAC                        |
| ANAC075               | At4g29230    | CACCTTACACTTCATTCGAGAATTTTAAGTG              | CTTGTTCATCTCAATCTCGAATATCT                          |
| For EMSA              | U            |                                              |                                                     |
| VND7 (603 bp)         | At1g71930    | GCATCGTTCGGTATGTAGAAGGCG                     | ATTATCCATCCACGATGATCCTATAAACGT                      |
| VND7 (33 bp)          | At1971930    | GATAGCCTTAAGCTTAAAGATCCAAGCTTTTGG            | CCAAAAGCTTGGATCTTTAAGCTTAAGGCTATC                   |
| VND7 (mutated 33 bp)  | At1071930    | GATAGCCTTAAGaggAAAGATCCAAGCTTTTGG            | CCAAAAGCTTGGATCTTTcctCTTAAGGCTATC                   |
| For aRT-PCR           | 11115,1550   | of inforeer inforage. In from control of the | contrained from the first second of the foot of the |
| VND1                  | At2@18060    | CAACAATGATGTGGAGATGGATTCGTC                  | GTACTCAAGAATTCACTGACGAACCTG                         |
| VND2                  | At4g36160    | CGGTCATTACAATAACGAAGAGAGC                    | CATGTA A ATCCCTATATA AGTC ATAGTC                    |
| VND3                  | At5e66300    | CAGCTCGAGAGCCCCCTCTCTCCGTCGG                 | CTCATCAAAAATTGAGACGCCACGAAC                         |
| VND4                  | At1g12260    | GGCTGCCACAGCTTCTGCATCTATACAG                 | GATCAATCTGACAACTCGAAGAAGTAG                         |
| VND5                  | At1e62700    | GGTTTCTTCTTCTTCTCATCAAAACAACG                | CAGCATGAGCATTTGA ATACTCTTCTCC                       |
| VND6                  | At5c62380    | CGCTTGACAAGTTTGTTGCTTCTCAGC                  | GGA AGA AGCATTCATCGA A ACCATTG                      |
| VND7                  | At1g71930    | CACCATGCATCA ATATGGCA ACATTGAG               | TAGTGTTCTCCAATCCACACAGTT                            |
| GATA 12               | At5c25830    | ACCATCACGGTACGGACACT                         | CAACGTTGTGGTGGATCAAG                                |
| LRD30                 | At/200220    | CTATCTACGCTGCGTCTCTCACATCGT                  | TAGAGATCCTGAAGATGACACCGGAAC                         |
| LBD30                 | AT5a12870    | GA ATGTGA AGA AGGTGATTGGTACA                 |                                                     |
| M I B40<br>VCP1       | AT 1 g1 2870 | TTGACCCATGAAGAGTTCAAAGGAAGA                  | GAAAGCGAACTCAGATTCCCTGTTG                           |
| CESA7                 | AT5g17420    | GCCAAACTCAACTCGCCTTGACCG                     | TAACTCCCCTCCATCTCAATTCC                             |
| ANACO75               | AT 3g1 /420  | CCAACTACCTCAACAACCACCACCAACAAC               |                                                     |
| LIBO10                | A14029230    | ACTITCOTCCTTTCTCTTTTCC                       |                                                     |
| UBQIU<br>For ChID DCD | Alogo / 860  | AACIIIGGIGGIIIGIGIIIIGG                      | ICGACI IGICAI IAGAAAGAAAGAGAGAIAA                   |
| FOI CHIF-FCK          | 441-71020    | TOTTTTATCTTCCCCCTTTC                         | OCTTTA CATCOCTCC ATA CTC A                          |
| region 9              | At1 - 71020  |                                              | CUTTACAIGGUICCAIACIGA                               |
| region 8              | At1g/1930    |                                              |                                                     |
| region /              | At1g/1930    |                                              | AIGIGGGIGCAAAAIGAIGA                                |
| region 6              | At1g71930    | TCUAACUTCAGTGAUTTUCA                         | TAAGGGTTTGTTTCGCCTTC                                |
| region 5              | At1g/1930    | CICIGUCACITCICCAICIIG                        |                                                     |
| region 4              | At1g/1930    | CCGGIIGAAAAGIAIAAICAIAICAC                   | CACCICGCIGCAAAIGIAAA                                |
| region 3              | At1g71930    | AAAACAGTGTCAICGGAATGC                        | TGAATCGCGTATCAGTCAGAG                               |
| region 2              | At1g71930    | GGTGGTGTGTCGAGCATTTA                         | TGATGAAGATGCACCGATATG                               |
| region 1              | At1g71930    | GTTGAATTTCACAAAGGTGGATT                      | AAGTTCTCTTAACTAATAGGCCACCA                          |
| FUS3T                 | AT3G26790    | ACTTTTGCTACACTTGTTCACCA                      | CGCAACAAGATCTAATGCCACT                              |
| FLC                   | AT5G10140    | AAGCCAGCGCTATCACTAAACTTT                     | TCGGCAGATTGAAAATGACATT                              |
| VND6                  | At5g62380    | TGCACGAATACCGTCTTGAG                         | TACCATTCCCCACATCCATT                                |
| For McrBC-PCR         |              |                                              |                                                     |
| VND7-2ndex-McrBC      | At1g71930    | CCGGTTGAAAAGTATAATCATATCAC                   | CATTATTGAATCAAATGTCGTCAAAC                          |
| VND7-1stex-McrBC      | At1g71930    | CTCTAACAATTTTCCAAATTAAATAC                   | CACTCCGTTTATGAACATACAAGTC                           |
| CACTA1pro             |              | CAGTACTCATTCTCACATGATACATCA                  | GAATTTCTGGCCAGCGACAGATCTT                           |

# Acknowledgements

First of all, I would like to thank my supervisor Prof. Taku Demura and mentors, Dr. Masatoshi Yamaguchi, Dr. Misato Ohtani and Dr. Ko Kato for their constant support and long hours of discussion on my projects. They always guide me in the right direction.

I am grateful to Prof. Tasaka, Prof. Nakajima, and Prof. Shimamoto for participating in my thesis committee.

I would like to thank Prof. Tetsu Kinoshita, Dr. Diana Buzas and Mr. Yoshito Ogawa for providing the plant materials and also for their technical support and useful advice.

I would like to thank Mr. Taizo Tamura for the technical help with many experiments.

I would like to thank all NAIST Demura lab members and RIKEN Demura team members and my friends for their wonderful support.

I would like to thank my family for always supporting and encouraging me.

Finally, I would like to thank Nami for being with me every day and supporting my life.