微生物を用いたヒドロキシ

カルボン酸エステルの光学分割

中川 篤

奈良先端科学技術大学院大学 バイオサイエンス研究科 植物代謝調節学講座 (新名 惇彦 教授)

平成19年12月25日提出

目次

略記		5
緒言		6
第一章	CHB を光学分割する微生物の単離	9
1-1 序		9
1-2 実際	験材料および方法	11
1-2-1	実験試薬	11
1-2-2	培地	11
1-2-3	微生物のスクリーニング	11
1-2-4	単離微生物の反応性試験	11
1-2-5	微生物の同定	12
1-2-6	DS-S-75 株を用いた CHBM の光学分割反応	13
1-2-7	DS-S-51 株を用いた CHBM の光学分割反応	13
1-2-8	分析方法	13
1-3 結:	果	15
1-3-1	CHB 光学分割微生物のスクリーニング	15
1-3-2	単離微生物による CHB の光学分割反応	21
1-3-3	CHB 光学分割反応の検討(DS-S-75 株)	22
1-3-4	CHB 光学分割反応の検討(DS-S-51 株)	24
1-3-5	単離微生物の基質特異性	24
1-4 考	察	26
第二章	組換え大腸菌を用いた CHB の光学分割	28
2-1 序詞		28
2-2 実際	験材料および方法	29
2-2-1	実験試薬、酵素	29
2-2-2	使用大腸菌、プラスミド	29
2-2-3	大腸菌用培地	29

2-2-4 ゲノム DNA の調製	30
2-2-5 プラスミド DNA の少量調製	30
2-2-6 DNA の電気泳動および DNA 断片の回収	30
2-2-7 大腸菌の形質転換	31
2-2-8 塩基配列の決定	31
2-2-9 タンパク質の定量	32
2-2-10 SDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)	32
2-2-11 アミノ酸配列の決定	33
2-2-12 酵素活性測定	33
2-2-13 DS-S-75 株由来酵素の精製	34
2-2-14 DS-S-75 株由来酵素遺伝子のクローニング	34
2-2-15 DS-S-75株由来酵素遺伝子組換え大腸菌の作製	36
2-2-16 DS-S-51 株由来酵素遺伝子のクローニング	36
2-2-17 DS-S-51株由来酵素遺伝子組換え大腸菌の作製	37
2-2-18 DS-S-51株由来酵素遺伝子組換え大腸菌の解析	37
2-2-19 組換え大腸菌を用いた光学活性 CHBM、HL の生産検討	37
2-2-20 分析方法	38
2-3 結果	39
2-3-1 DS-S-75 株由来酵素の精製	39
2-3-2 DS-S-75株由来酵素の性質	39
2-3-3 DS-S-75株由来酵素遺伝子のクローニング	41
2-3-4 EnHCH 遺伝子の発現	44
2-3-5 組換え大腸菌を用いた(R)-CHBM、(S)-HLの生産検討	47
2-3-6 DS-S-51 株由来酵素遺伝子のクローニング	48
2-3-7 DS-S-51株由来酵素遺伝子遺伝子の発現	49
2-3-8 組換え大腸菌を用いた(S)-CHBM、(R)-HLの生産検討	51
2-4 考察	54
第三章 組換え大腸菌を用いたその他カルボン酸エステルの光学分割	58
3-1 序論	58

3-2実験材料および方法603-2-1実験試薬60

3-2-2 THFM の合成	60
3-2-3 使用菌株	60
3-2-4 ヒドロキシカルボン酸エステルの光学分割反応	60
3-2-5 各光学活性体の回収、精製	60
3-2-6 分析方法	61
3-3 結果	62
3-3-1 ヒドロキシカルボン酸エステルの光学分割反応	62
3-3-2 光学活性ヒドロキシカルボン酸およびエステルの生産検討	64
3-4 考察	66
総括	68
謝辞	70
参考文献	71

略記

- BPB ; Bromophenol blue
- BSA ; Bovine serum albumin
- BTB ; Bromothymol blue
- CBB ; Coomasie brilliant blue
- CHB ; 4-Chloro-3-hydroxybutyrate
- CHBE ; Ethyl 4-Chloro-3-hydroxybutyrate
- CHBM ; Methyl 4-Chloro-3-hydroxybutyrate
- c.p.; Chemical purity
- DMSO ; Dimethylsulfoxide
- DNA; Deoxyribonucleic acid
- DTT ; Dithiothreitol
- E. coli ; Escherichia coli
- EDTA ; Ethylene-diamine-tetraacetic acid
- EP; Epichlorohydrin
- GC ; Gas chromatography
- 2HBA ; 2-Hydroxybutyric acid
- 3HBA ; 3-Hydroxybutyric acid
- 3HBE ; Ethyl 3-hydroxybutyrate
- 2HBM ; Methyl 2-hydroxybutyrate
- HL ; 3-Hydroxy-γ-butyrolactone
- HPLC ; High performance liquid chromatography
- IPTG ; Isopropyl-β-D-thiogalactopyranoside
- o.p.; Optical purity
- PCR ; Polymerase chain reaction
- PIPES ; 1,4-Piperazinediethanesulfonic acid
- PMSF ; Phenyl methyl sulfonyl fluoride
- SDS ; Sodium dodecyl sulphate
- SDS-PAGE ; SDS-polyacrylamide gel electrophoresis
- 16S rDNA; 16S ribosomal deoxyribonucleic acid
- THFA ; Tetrahydrofuran-2-carboxylic acid
- THFM ; Methyl tetrahydrofuran-2-carboxylate
- Tris ; Tris(hydroxymethyl)aminomethane

緒言

右手と左手や実像と鏡に映し出された虚像のように、対称であってお互いを重ね 合わすことができない化合物(エナンチオマー)が存在し、それらは各々光学活性 体と呼ばれ(旋光度によって(+)体と(-)体、または立体配置の表現法によって R体と S体やD体とL体等呼ばれる)、両エナンチオマー混合物であるラセミ体と区別され る(Fig. 1)。4 つの単結合の置換基がすべて異なる原子(不斉中心)を持つ化合物に は光学活性体が存在し、各々の物理化学的性質は同じであるが、生理学的には全く 異なる挙動を示すことが多いため、精密かつ安全性を重視する医薬品の原料を中心 に利用されている。サリドマイドの悲劇は、催奇形性という重大な副作用が片方の エナンチオマーによって引き起こされた結果と言われている。薬効の発現は薬物分 子と生体分子との間に起きる相互作用であり、生体内において薬効のない片方のエ ナンチオマーは異物として扱われるため、現在では不斉中心を有する新たな合成医 薬品は例外を除いてすべて光学活性体である(キラル医薬品)。これらの合成には、 中間体に分子量の比較的小さな光学活性体をキラルビルディングブロックとして利 用する方法が効果的である。医薬品の市場は、全世界で約60兆円と言われており、 そのうちキラル医薬品は約40兆円以上と見積もられている。キラル医薬品の需要は 今後も増加し、それに伴い医薬中間体の市場規模の拡大が予想されており、2~4兆 円と見積もられている。医薬中間体の販売価格は化合物によって異なるが、ラセミ 体は 1kg あたり、およそ 100~5000 円程度であるのに対し、光学活性体では 5000~ 100,000 円程度になり付加価値の高い化合物となる。

Fig.1 Model structure of chiral compound. The asterisks indicate asymmetric center.

光学活性体の製法にはアミノ酸、糖類およびキラルビルディングブロック等の別 の光学活性体から誘導する方法(キラルプール法)の他、不斉中心のないプロキラ ル化合物から不斉反応によって得る方法(不斉合成法)、もしくはラセミ体を分割し て得る方法(光学分割法)があり、これには不斉触媒による有機化学法、光学分離 カラム、優先晶析、ジアステレオマーによる物理化学法、酵素反応や発酵生産等、 生体触媒による生物化学法がある。特に生物化学法は、温和な条件下で反応するこ とができるため、安全かつ環境に優しい光学分割方法であること、生物は光学活性 体で構成されており、生体反応はキラル反応であるため、スクリーニングにより多 様な反応を生体から見出すことができることから注目されている。

医薬品の開発において、研究案件のうち実用化まで至るのはごく僅かであり、キ ラルビルディングブロックとしては、汎用性の高い化合物が望まれる。本研究では 3 位にヒドロキシル基、末端にクロル基を有するカルボン酸エステルである 4-Chloro-3-hydroxybutyrate (CHB)の光学活性体に着目した。光学活性CHBは反応性 に優れた炭素数4のキラルビルディングブロックとなり、医薬、農薬や新素材へと 展開できる点で重要な化合物である。例えば、(*R*)-CHBは 4-Amino-3-hydroxybutyric acid (GABOB)¹⁻³(生理活性物質誘導)等に、(*S*)-CHB はHydroxymethylglutaryl-CoA(HMG-CoA) reductase inhibitor⁴(医薬中間体)等に、また、両光学活性体ともに Carnitine⁵⁻⁷⁾(生理活性物質誘導体)、4-Hydroxypyrrolidone⁸⁻¹⁰⁾(抗生物質側鎖)およ び1,2,4-Butanetriol等の他の有用なキラルビルディングブロックの前駆体としても需 要が多い(Fig. 2)。そこで、微生物の持つ多様な反応から安価で簡便な光学活性CHB の製法を新たに見出すことを目的として本研究を行なった。

Other useful chiral building block

Fig. 2 Application of optically active CHB.

本論文は三章構成としており、第一章では、CHBを光学分割する微生物のスクリ ーニングを行ない、ラセミ体 CHB のうち一方の光学活性体を 3-Hydroxy-γ-butyrolactone に変換する優れた微生物2株(*Enterobacter* sp. DS-S-75株、 *Rhizobium* sp. DS-S-51株)を単離した。中でもDS-S-75株のユニークな作用機作、基 質特異性、立体選択性、生産性(反応速度、反応基質濃度)の解析、および光学分 割反応の条件検討について述べる。第二章では、DS-S-75株由来の光学分割反応を 担う酵素を解析した。また、生産性を向上させることを目的とし、2株から各々の 遺伝子クローニングを行ない、組換え大腸菌を用いた光学活性 CHB の生産検討に ついても述べる。第三章では、DS-S-75株由来酵素の基質特異性を利用して、CHB 以外にも有用なキラルビルディングブロックとなる 2-Hydroxybutyrate、 3-Hydroxybutyrate、Lactic ester および Tetrahydrofuran-2-carboxylic ester 等のカルボン 酸エステルの光学分割の検討について述べる。

第一章 CHB を光学分割する微生物の単離

1-1 序論

本研究で着目する光学活性CHBはこれまでに多くの製法が報告されているが ^{2,11-21)}、そのほとんどがケトエステル体である 4-Chloroacetoacetate (CAA)を基質とし た不斉還元反応であり^{2,12-21)}、同反応において生物化学法と有機化学法^{2,16,17)}が競合し ている(Fig. 1-1)。生物化学法では、微生物由来のカルボニル還元酵素を用いた反応 が報告されており、各酵素の立体選択性によってR体¹²⁻¹⁵⁾およびS体¹⁸⁻²¹⁾を生成でき る。しかし、これらの反応は基質を還元させるための水素供与体としてNADHや NADPH等の補酵素が必要である。そこで各カルボニル還元酵素の遺伝子とグルコー ス、蟻酸、アルコール等を基質とする各種酸化酵素の遺伝子を組換え体で共発現さ せて補酵素の再生系を構築することにより利用しているが、二種類の遺伝子発現や 酵素反応をコントロールしなければならないため、反応の最適化が難しいこと、補 酵素を酸化するための基質が別途必要であることが懸念される。また、カルボニル 還元酵素の中には、宿主が産生しない補酵素を要求する場合は高価になる。一方、 有機化学法ではBINAP触媒による反応が報告されているが、本基質に対しては立体 選択性が低いことから光学純度が低い課題がある。これらの不斉還元反応は不斉中 心のないプロキラルなCAAを基質としているため、理論的には全てを光学活性CHB に変換することが可能であるが、未反応のCAAが残存するとCHBとCAAの化学的性 質が比較的に類似しているため、両化合物を分離することが容易ではない。さらに CAAは高価であり、これらの背景から安価で容易な反応により高光学純度のCHBを 得る方法が望まれていた。

Fig. 1-1 Method of optically active CHB by asymmetric reduction from 4-Chloroacetoacetate. This reaction is traditional one. The keto-ester is used as the prochiral substrate. The carbonyl reductases from various microorganisms or asymmetrical catalyst are used in asymmetric reduction. The chemical and biocatalytic methods are competing.

一方、不斉中心を持つ化合物において、ラセミ体は(+)体と(-)体(R体とS体)のエナ ンチオマーが混合した化合物であり、これを基質として一方のエナンチオマーに対 して優先的に反応する点を利用し、残存する基質(エナンチオマー)または生成物を 光学活性体として得る方法が一般的に多く知られている(速度論的光学分割方法)。 この場合、理論的に光学活性体の収率は最大でも 50%であるが、ラセミ体が光学活 性体に比べて安価であれば有効な手段となる。CHBのラセミ体((*R*,*S*)-CHB)は、例え ばPropyleneを原料とするポリマー原料のEpichlorohydrin(EP)から有機化学法により 4-Chloro-3-hydroxybutyronitrile²²⁾経由、もしくはコバルト触媒を用いて直接的に合成 することが可能であり²³⁾、安価に入手できる。また、基質と生成物の化学的性質が 異なれば、光学分割反応後に分液、蒸留や晶析等の化学的手法を用いた分離精製が 容易である(Fig. 1-2)。これまでにも(*R*,*S*)-ヒドロキシカルボン酸エステルに対し立体 選択性を示す Bacillus thermocatenulatus、Opthiostoma piliferum、Pseudomonas fluorescens、Streptomyces diastatochromogenes由来のエステラーゼ、リパーゼが報告 されているが²⁴⁾、高い立体選択性を示し、高光学純度なCHBを得る方法は報告され ていない。

Fig. 1-2 Resolution strategy of (R,S)-CHB. One enantiomer of racemate remains and another one is converted to other compound. (R,S)-CHB is synthesized from propylene via epichlorohydrin.

そこで本章では、(*R*,*S*)-CHB に対して高い立体選択性を示し、一方のエナンチオマーを優先的に他の化合物に変換する微生物を土壌よりスクリーニングした。脱ク

ロル化反応、もしくは加水分解反応を指標に行なえば、簡便な反応によって変換された生成物の化学的性質が大きく異なることが期待できる。中でも、効率よくスクリーニングを行なうために、脱クロル化反応による pH 指示薬の呈色の変化を指標にした。その結果、(*R*,*S*)-CHB の一方のエナンチオマーを 99% e.e.以上の高光学純度で残存させ、もう一方を 3-Hydroxy-γ-butyrolactone (HL)に変換する有用な菌株を見出したので、これらの解析および (*R*,*S*)-CHB の光学分割反応を検討した。

1-2 実験材料および方法

1-2-1 実験試薬

CHBの各エステルは、EPから合成した²²⁾。その他の試薬は特に指定のない限り、 和光純薬工業(株)、東京化成工業(株)、シグマアルドリッチ(株)製のものを用いた。

1-2-2 培地

a) 選択培地: Pepton 10 g/l、Yeast extract 10 g/l、Ethyl 4-chloro-3-hydroxybutyrate (CHBE) 5 ml/l、Bromothymol blue (BTB) 80 mg/l、(pH 6.8) 平板培地には 15 g/l の精製寒天を加えた。CHBE は、ラセミ 体または光学活性体のいずれかを使用した。

b) 栄養培地 A: Pepton 10 g/l、 Yeast extract 10 g/l、 Glycerol 10 g/l、 (pH 6.8)

1-2-3 微生物のスクリーニング

採取した土壌試料を滅菌水に懸濁し、その上澄みをラセミ体 CHBE を含む選択平 板培地に塗布した。30℃にてインキュベート後、CHBE の脱クロル化により BTB を 含む培地において、周辺が緑色から黄色に変色しているコロニーを拾い、さらにこ れらを各光学活性 CHBE を含む選択培地にて 30℃で培養し、一方の光学活性 CHBE に対してのみ黄色に変色する菌株を取得した。

1-2-4 単離微生物の反応性試験

1-2-4-1 洗浄菌体(湿菌体)の調製

500 ml 容のバッフル付き三角フラスコに 100 ml の栄養培地 A を調製し、凍結 保存バイアルから 1 ml を無菌的に植菌し、ロータリーシェイカーを用いて 30℃、 130 rpm にて 20 hr 培養した。遠心分離(26,000 g, 20 min, 4℃)により集菌し、菌体を 20 mM Potassium phosphate buffer (pH 7.2)で 2 回洗浄し、湿菌体を得た。

1-2-4-2 菌体反応

DS-S-75 株については、同様の三角フラスコに 1% CaCO₃を含む 20 mM Potassium phosphate buffer (pH 7.2) 100 mlを調製し、湿菌体 1 gおよび各基質を最終濃度 2%に なるように加え、ロータリーシェイカーを用いて 130 rpm、30℃にて 24 hr反応させ た。DS-S-51 株については、300 ml容のバッフル付き三角フラスコに 60 mlのPotassium

phosphate buffer、1% CaCO₃、湿菌体 5 gおよび 1%基質とした以外はDS-S-75 株と同様に行なった。反応後、遠心分離(26,000 g, 20 min, 4℃)により除菌を行ない、上清をガスクロマトグラフィー(GC)により分析し、残存した基質と生成物について濃度と光学純度の分析を行なった。

1-2-5 微生物の同定

1-2-5-1 形態学的、生理学的試験

駒形らの一般的な形態学的、生理学的試験²⁵⁾を行なった。顕微鏡観察、グラム染 色、鞭毛染色、インドールの生産、カタラーゼ活性、チトクロームオキシダーゼ活 性、オキシダーゼ活性、VPテスト、種々の糖に対する資化性テストを行なった。得 られた形態学的、生理学的試験結果についてCowan and Steel's manual ²⁶⁾および Bergey's manual of systematic bacteriology²⁷⁾を参照し、同定を行なった。

1-2-5-2 ゲノム DNA の調製

1-2-4-1 で調製した DS-S-75 株または DS-S-51 株の培養液 1.5 ml を微小遠心チュー ブに入れ、遠心分離(6000 rpm, 3 min, 4°C)により集菌した。培地を完全に除去後、こ の菌体を 490 µl の TE buffer に懸濁し、10% SDS を 30 µl、2% Proteinase K を 50 µl 加え、50°Cで 1 hr 反応させた。次に、中性 Tris 飽和フェノールを 300 µl、4%(v/v) のイソアミルアルコールを含むクロロホルム溶液 を 300 µl 加えて静かに撹拌後、 水層のフェノール/クロロホルム溶液(1/1)処理を中間層のタンパク質がなくなるま で行なった。取り出した水層の 0.1 倍量の 3M 酢酸ナトリウム(pH 5.2) を加え、0.6 倍量の 2-プロパノールを静かに重層した。ガラス棒を用いて静かに撹拌し、界面に 生じるゲノム DNA を巻きつけて集めた。70%エタノールで洗浄し、目的濃度になる ように TE buffer に溶解した。

TE buffer : 10 mM Tris-HCl (pH 8.0), 1 mM EDTA(pH 8.0)

1-2-5-3 16S rDNA 解析

ゲノムDNAを抽出し、これを鋳型としてPCRにより得られた 16S rRNA遺伝子(16S rDNA)の増幅断片の塩基配列を決定した。ゲノムDNAの抽出にはInstaGene Matrix(BIO RAD(株)社製)を使用、PCRにはMicroSeq 500 16S rDNA Bacterial Identification PCR Kit(アプライドバイオシステムズ(株)製)を使用、サイクルシークエンスにはMicroSeq 500 16SrDNA Bacterial Identification Sequencing Kitを使用した。 DNAシークエンサーはABI PRISM 3100 DNA Sequencer(アプライドバイオシステム ズ(株)製)を使用した。得られた 16S rDNAの塩基配列データを用いてデータベース GenBank/DDBJ/EMBLより相同性検索を行ない、CLUSTAL W²⁸⁾、MEGA ver3.1²⁹⁾ソ フトウェアを用いて分子系統解析を行なった。

1-2-6 DS-S-75 株を用いた CHBM の光学分割反応

1-2-6-1 培養液の調製

5 L 容ジャーファーメンター(三ツワ理化学工業(株)製 KMJ-5B) に 3 L の栄養培 地 A を調製して撹拌数 500 rpm、通気量 1.5 L/min、30℃にて培養した。種培養液に は 1-2-4-1 と同様に培養した 60 ml の培養液を使用した。

1-2-6-2 洗浄菌体による光学分割反応

培養後 1-2-4-1 と同様に洗浄菌体を調製した。20 mM Potassium phosphate buffer (pH 7.2) 2.5 Lを調製し、湿菌体 158.6 gおよび最終濃度 8%(524 mM)になるようにCHBM を加え、撹拌数 150 rpm、30℃にて反応させた。反応中は 25%(w/w) NaOHにてpH6.7 に制御した。反応後、遠心分離(26,000 g, 20 min, 4℃)により除菌し、上清のCHBM、HLの濃度および光学純度をGCにより分析した。また、必要によりクロルイオンを 定量した³⁰⁾。

1-2-6-3 培養液を用いた CHBM の光学分割反応および中和剤の検討

1-2-6-1 の方法と同様に調製した DS-S-75 株の培養液に目的濃度になるように CHBM を加え、撹拌数 500 rpm、30℃にて反応させた。反応中は各種アルカリにて pH を制御した。反応後、1-2-6-2 と同様に CHBM、HL 濃度および光学純度を分析し た。

1-2-7 DS-S-51 株を用いた CHBM の光学分割反応

pH 制御に 25%(w/w) NaOH を使用した以外は、1-2-6-3 と同様に培養液に直接 CHBM を添加する方法で行なった。

1-2-8 分析方法

各化合物の濃度および光学純度を GC ((株)島津製作所製 GC14A または(株)日立 製作所製 G-3000) により分析した。濃度分析には、PEG-20M-HP;5%,60/80 メッシ ュ(ジーエルサイエンス(株)製)パックドカラム(内径 3.2 mm 、長さ1 m)を使用し、 除菌した試料を1µl 注入して解析した。CHB、HL の反応液についてはカラム温度; 180℃、気化室温度;240℃、検出器温度;240℃、キャリアーガス;窒素、流速;50 ml/min 検出器; FID。Ethyl 3-hydroxybutyrate(3HBE)、Methyl 2-hydroxybutyrate (2HBM)の反応 液については除菌した試料をリン酸にて pH4.0 に調整後 1 µl 注入して解析した。カ ラム温度は 150℃から 200℃まで毎分 5℃昇温させた以外の分析条件は CHB、HL と 同様に行なった。

光学純度分析にはCHIRALDEX G-TA(アステック社製)キャピラリーカラム(内径 0.25 mm、長さ 30 m)を使用した。カラム温度; 110℃、気化室温度; 150℃、検出器 温度; 150℃、キャリアーガス; 窒素、流速; 0.5 ml/minスプリット比 1:100、検出器; FID。 CHBについては除菌した試料を1µl注入して解析した。HLについては除菌した試料 を減圧濃縮後、適当量の酢酸エチルで抽出した。その濃縮物の 20µlを1 mlのジクロ ロメタンに溶解し、200µlの無水トリフルオロ酢酸によりトリフルオロ化し、エタ ノール1 mlで置換したものを1µl注入して解析した。3HBE、2HBMについて分析条 件はカラム温度を 90℃で行なった以外はHLと同様の分析前処理、分析条件にて行 なった。生成した 3-Hydroxybutyric acid (3HBA)、2-Hydroxybutyric acid (2HBA)につ いては、酢酸エチル抽出後の水層を減圧濃縮後、エタノール、MgSO4を適当量加え、 減圧濃縮物 50 mgに*N*,*N*-Dimethyl- 4-aminopyridine(DMAP) 122 mg、ジクロロメタン 10 ml、塩酸飽和エタノール 100 µl、1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC・HCl)115 mgを加えて攪拌し、エチルエステルとして 3HBE、 2HBMと同様に分析した。

1-3 結果

1-3-1 CHB 光学分割微生物のスクリーニング

西日本各地の化学工場内の約 200 地点の土壌試料からスクリーニングした結果、 BTB を含む選択寒天培地にて CHBE を脱クロル化することで、コロニー周辺が黄色 に呈色する菌株を見出した(Fig. 1-3A)。そのほとんどで立体選択性を示さなかった が、CHBEの一方のエナンチオマーを立体選択的に分解する菌株を6株単離した(Fig. 1-3B)。これらを培養し、洗浄した試料を(*R*,*S*)-CHBE に反応させた結果、いずれも 脱クロル化反応を伴いながら、5 株は 3-Hydroxy-γ-butyrolactone (HL)へ変換、1 株は Ethyl 3,4-dihydroxybutyrate へ変換した(Table 1-1)。その中でも特に DS-S-75 株は収率 48%で(*R*)-CHBE を、DS-S-51 株は収率 31%で(*S*)-CHBE を各々光学純度 99% e.e.以上 で残存した。両菌株について形態学的、生理学的解析および 16S rDNA による分子 系統解析を行なった結果、DS-S-75 株は Enterobacter sp.、DS-S-51 株は Rhizobium sp. と同定した(1-4 考察参照)。各同定試験結果を Table 1-2、Fig. 1-4 に示す。

Fig. 1-3 Screening assay for microorganism converting CHB. (A) First screening from soil samples. An arrow indicates positive colony. (B) Second screening for enantioselectivity. The BTB turned to yellow by positive microoganism dechlorinating one enantiomer.

		-	
Ctroip	Substrate	(CHBE)	Product
Strain	Residual ratio(%)	Optical purit	ty (%ee)
DS-S-75	48	99.5(<i>R</i>)	
DS-S-51	31	99.0(<i>S</i>)	ОН
DS-S-13	59	72.5(<i>R</i>)	6-
DS-K-NR818	40	98.5(<i>R</i>)	3-Hydroxy-γ-butyrolactone(HL)
DS-ID-819	43	91.9(<i>S</i>)	
OS-K-29	56	56.0(<i>S</i>)	HO OH O Ethyl 3,4-dihydroxybutyrate

 Table 1-1
 Reactivity of the isolated microorganisms toward CHBE.

Residual ratio is indicated to be 100 % at initial time. Conversion ratio is shown by mol %. Optical purity is calculated from quantity of each enantiomer using formula: $|R-S| / (R+S) \times 100$.

 Table 1-2
 Morphological, cultural and physiological properties of the isolated microoganisms.

Morphology	Rod	Production of citric acid	+
Length	1.5-2.8 mm	Hydrosys of starch	—
Width	0.6-0.8 mm	Liquification of gelatin	_
Pigmentation	_	Methyl red test	_
Flagella	Peripheral flagella	V-P test	+
Motility	+	Reduction of nitrate	+
Gram stain	—	Denitrification	+
Endspores formed	—	Deoxyribonuclease	_
Indole production	+	NPTase	+
Catalase	+	O-F test	Fermentative
Urease	_	D-Glucose, acid	+
Oxidase	+	D-Glucose,gas	+
Lysine decarboxylase	—		

(A) Strain DS-S-75

(B) Strain DS-S-51

Morphology	Rod	β-Galactosidase	+
Length	1.5-2.0 mm	Cytochrome oxidase	÷
Width	0.6-0.7 mm	Liquification of gelatin	_
Motility	+	Reduction of nitrate	+
Gram stain	_	Fermentation of L-Arabinose	+
Endspores formed	_	Fermentation of D-mannose	+
Indole production	+	Fermentation of D-mannitol	+
Catalase	+	Fermentation of maltose	+
Urease	+	O-F test	Oxidative
Oxidase	+	D-Glucose, acid	_
Arginine dihydrolase	_	D-Glucose, gas	_
		-	

(A)

(B)

Fig. 1-4 Neighbor-joining trees based on the 16S rDNA sequence. (A) Strain DS-S-75. (B) Strain DS-S-51. Inferred phylogenetic relationships of the strain DS-S-75 or the strain DS-S-51 and other type strains are indicated. The number at each node is the bootstrap value. The scale bar repesents 1% sequence divergence. The accession number of database sequence is given in parentheses.

1-3-2 単離微生物による各 CHB に対する反応性

Enterobacter sp. DS-S-75 株および Rhizobium sp. DS-S-51 株について、(R,S)-CHB の 各エステル(メチル、エチル、イソプロピル、プロピル、ブチル)に対する反応性を 洗浄菌体を用いて確認した。その結果、DS-S-75 株は各エステルに対して高い立体 選択性を示し、(R)-CHB が高い残存率、光学純度で得られた。一方、DS-S-51 株は DS-S-75 株と比較すると、比活性、(S)-CHB の残存率は低いが、光学純度は同等に 高い値で得られた。しかしイソプロピルエステルには立体選択性がほとんど無く、 生成物の(R)-HL の光学純度も低かった(Table 1-3)。両菌株とも Methyl CHB(CHBM) に対しては比較的に比活性および立体選択性が高いこと、および CHBM が安価であ ることから、以降の基質ラセミ体として使用した。

また、両菌株の温度安定性を調べた。洗浄菌体を 5~50℃で 4 hr インキュベート し、その後 30℃で(*R*,*S*)-CHBM を基質として反応させた結果、両菌株とも 30℃まで 安定であった(Fig. 1-5)。そこで、温度安定性および CHB の pH 安定性を考慮して、 30℃、pH6.9-7.2 で反応を行なうことにした。

Product (HL) version Optica (mol%) purity (l (%ee)
version Optica (mol%) purity (l (%ee)
48.0 95.9(S)
45.1 92.4((S)
47.5 96.8((S)
47.0 96.6(S)
47.1 96.7(S)
65.0 53.2(R)
65.6 52.1(R)
90.0 8.60(R)
6.2 51.5(R)
64.8 52.7(R)
	18.0 95.9(15.1 92.4(17.5 96.8(17.0 96.6(17.1 96.7(55.0 53.2(55.6 52.1(90.0 8.60(56.2 51.5(54.8 52.7(

Table 1-3 Converting activities and enantiselectivities for some CHBs by resting cell.

One unit of activity is defined as releasing 1 μ mol chloride ion for 1 min from CHB. Residual ratio is indicated to be 100 % at initial time. Conversion ratio is shown by mol %. Optical purity is calculated from quantity of each enantiomer using formula: $|R-S| / (R+S) \times 100$.

Fig. 1-5 Temperature stability. Strain DS-S-75, \blacksquare ; strain DS-S-51, \bigcirc . The activity was measured by amount of releasing chloride ion after incubation of resting cells for 4 hours at various temperatures. The relative activity shows that the activity of each strain under 4°C is taken to be 100%.

1-3-3 CHB 光学分割反応の検討(DS-S-75 株)

DS-S-75 株を用いて光学分割反応を検討した。3 L の培養液にて調製した洗浄菌体 に最終濃度 8%になるように(*R*,*S*)-CHBM を加え、2.5 L スケールにて 30℃で反応さ せた。脱クロル化反応の進行に伴って pH が低下するため、25%(w/w) NaOH を加え ることにより pH を調整した。Fig. 1-6 のように溶存酸素計、濁度計、pH 計を装着 し、コンピューターを通じて自動滴定、また適定量の記録ができるように構築した。 その結果、反応の進行に伴って CHBM の濃度が低下、HL、クロルイオン、メタノ ール濃度が増加し、CHBM の光学純度が増加した(Fig. 1-7)。

また、3 Lの培養液に (*R*,*S*)-CHBMを直接加えて反応を行なった結果、40 時間で (*R*)-CHBMは収率 48%、光学純度 99.1% e.e.、(*S*)-HLは収率 48%、光学純度 90.1% e.e. で得られた。HLの光学純度は、中和剤として炭酸カルシウムを用いた 1-3-2 の実験 時よりも低かった(Table 1-3)。そこで最適な中和剤を選ぶために、2.5 Lスケールに て各種中和剤を検討した。その結果、K₂CO₃、Na₂CO₃、(NH₄)₂CO₃、CaCO₃等の弱塩 基を用いると(*S*)-HLの光学純度が上昇し、特にアンモニア水を用いると(*S*)-HLの光 学純度は 95.1% e.e.、E値は 300 であった(Table 1-4)。

Fig. 1-6 Construction of reaction system for CHBM resolution. The dotted arrows indicate out put signals.

Fig. 1-7 Resolution of (R,S)-CHBM using the resting cells of the strain DS-S-75. Residual CHBM, \blacksquare ; formed HL, \bigcirc ; chloride ion, \oplus ; methanol, \triangle ; optical purity of residual CHBM, \blacksquare .

Basa	Optical Pu	urity(%e.e.)	E Value
Dase	(<i>R</i>)-CHBM	(S)-HL	
25%(w/w) NaOH	99.1	90.1	102.4
10%(w/w) K ₂ CO ₃	98.3	95.5	207.1
10%(w/w) Na ₂ CO ₃	98.6	95.5	215.3
10%(w/w) (NH ₄) ₂ CO ₃	98.1	95.6	207.2
5%(w/w) CaCO ₃	98.1	95.1	185.4
7%(w/w) NH₄OH	99.9	95.1	300.0

Table 1-4Effect of various bases for titration.

Optical purity is calculated from quantity of each enantiomer using formula: $|R-S| / (R+S) \times 100$. E value is calculated from optical purity of substrate (CHB; eeS) and product (HL; eeP) using the formula: $Ln[(1-eeS) \times (eeP/(eeS+eeP))] / Ln[(1+eeS) \times (eeP/(eeS+eeP))]$.

1-3-4 CHB 光学分割反応の検討(DS-S-51 株)

DS-S-51 株について、DS-S-75 株と同様に 2.5 L スケールで光学分割反応を検討した。最終濃度 1%で反応し、反応 40 時間で(*S*)-CHBM は収率 30.9%、光学純度 99.2% e.e.、(*R*)-HL は収率 65%、光学純度 53.0% e.e.、E 値は 16.1 であった。HL の光学純度は、中和剤を変えても向上しなかった。

1-3-5 単離微生物の基質特異性

DS-S-75 株および DS-S-51 株の基質特異性を解析するために、洗浄菌体を用いて 各種エステル、アルコール、クロル化合物に対する反応性を調べた。その結果、 DS-S-75 株は(*R*,*S*)-3HBE に対して *S* 体を残存させ、*R* 体を加水分解反応によりカル ボン酸の 3HBA に変換した。(*R*,*S*)-2HBM に対しては、*R* 体を残存させ、*S* 体を 2HBA に変換した(Fig. 1-8(A))。各エステルおよびカルボン酸ともに光学純度 98% e.e.以上 で光学分割することができた。一方、DS-S-51 株は 3HBE、2HBM に対して反応性 を示さなかった。

また、両菌株とも 4-Chloro-3-hydroxybutyronitrile、 3-Choro-1,2-propanediol、 2,3-Dichloro-1-propanol、1,3-Dichloro-2-propanol、Chloroacetone、α-Chloropropionic acid、 β-Chloropropionic acid および EP に対して反応性を示さなかった(Fig. 1-8(B))。 (A)

Fig. 1-8 Tested compounds for analysis of substrate specificity of the strain DS-S-75 and DS-S-51. (A) Compounds that the strain DS-S-75 shows activity. Both esters were stereoselectively converted to carboxylic acids. The strain DS-S-51 showed no activity toward them. (B) Compounds that both strain shows no activity.

1-4 考察

土壌から単離した2菌株(Enterobacter sp. DS-S-75株、Rhizobium sp. DS-S-51株)は、 各々高光学純度で CHB の R 体または S 体を残存させ、HL へと変換した。DS-S-75 株の形態学的、生理学的解析を行なった結果、グラム陰性桿菌、周鞭毛および糖質 の資化性から Enterobacter sp.であることが推定された。16S rDNA の塩基配列解析の 結果、Enterobacter cloacae、Enterobacter dissolvens および Enterobacter ludwigii と 99%以上の高い相同性を示し、分子系統樹上で系統枝を形成した。しかし、塩基配 列は完全に一致していないため、詳細な帰属分類群の推定には至らず、形態学的、 生理学的解析の結果と合わせて DS-S-75 株は Enterobacter sp.と同定した。一方、 DS-S-51 株の形態学的、生理学的解析の結果、Rhizobium radiobacter に類似の性状を 示したが、N-Acetyl-D-Glucosamine、Potassium gluconate の資化性試験結果で異なっ た。16S rDNA の塩基配列解析の結果、Rhizobium sp.に属する細菌と高い相同性を示 した。さらに 16S rDNA の塩基配列は相同性 98.9%で Rhizobium daejeonense に対し 最も高い相同性を示し、分子系統樹上で系統枝を形成した。しかし、塩基配列は完 全に一致していないため、詳細な帰属分類群の推定には至らず、形態学的、生理学 的解析の結果と合わせて DS-S-51 株は Rhizobium sp.と同定した。

ジャーファーメンターを用いた洗浄菌体での光学分割反応において、CHBM濃度 の低下に伴って、クロルイオン、メタノール、HL濃度が増加した。この結果から、 CHBを基質として脱クロル化反応、加水分解反応を伴って、ラクトンを生成させる 反応が菌体により行なわれていることが示唆された。4-Chloro-3-hydroxybutyronitrile、 2,3-Dichloro-1-propanol、3-Choro-1,2-propanediolのようなクロルアルコール、および Chloroacetone、α-Chloropropionic acid、β-Chloropropionic acid、Epichlorohydrinのよ うなクロル酸に対して脱クロル化活性を示さず、CHBに対してのみ脱クロル化活性 を示し、これまで報告されている脱ハロゲン化酵素³¹⁻³⁵⁾とは異なった基質特異性で あった。また、本反応はCHBからHLを生成することから、これまでに報告されてい るヒドロキシエステルのヒドロキシル基とエステルの分子間エステル交換反応³⁶⁻³⁹⁾ とは異なり、クロル基とカルボン酸エステルの分子内反応であることが示唆された。 さらにCHBの各エナンチオマーを識別できる能力(立体選択性)を有しており、以 上のことからDS-S-75 株およびDS-S-51 株は非常にユニークな反応を示す菌株であ った。

特にDS-S-75 株は反応速度、基質濃度、立体選択性ともに優れており、中和剤に 弱塩基を用いると (S)-HLも 95% e.e.以上の光学純度で得ることができた。中でもア ンモニア水を用いるとE値は 300 となった。E値とは各々のエナンチオマーに対する 触媒反応の速度比を表し、現在工業化されている光学分割反応ではE値がおおよそ 20以上であるものが多い。(S)-HLもまた医薬中間体^{40,41)}として有用なキラルビルデ ィングブロックであり、天然から得られるL-Malic acid⁴²⁾、L-Ascorbic acid⁴³⁾、 L-Isoascorbic acid⁴³⁾またはL-Asparatic acid⁴⁴⁾からの合成法が報告されているが、いず れも数ステップの反応を要する。また、有機化学法によりCHBからHLを得るには、 IN HCl、高温度条件下で還流させなければならないが⁴⁵⁾、DS-S-75 株を用いると、 温和な条件で同反応を進行することができ、(*R*,*S*)-CHBから1 工程で(*R*)-CHBととも に生成可能であった。さらにCHBだけでなく、クロル基のない 3-Hydroxybutyrate、 およびヒドロキシル基が2位に位置する2-Hydroxybutyrateに対しても立体選択的な 加水分解反応によりカルボン酸へと変換させることで光学分割することができた。 一方、DS-S-51 株を用いた光学分割反応では、中和剤を変えても光学純度が変動し なかったことから、各アルカリに対するCHBやHLの安定性ではなく、DS-S-75 株の 反応を担う酵素の安定性に影響していることが示唆された。

DS-S-51 株は(*S*)-CHB を 99% e.e.で残存させるが、DS-S-75 株よりも残存率は低かった。加えて(*R*)-HL の光学純度は低く、変換率は高かった。これは、(*R*)-CHB を優先的に(*R*)-HL へ変換するが、立体選択性が DS-S-75 株よりも劣るため、(*S*)-CHB の一部も(*S*)-HL へと変換されているからである。

両菌株とも培養液に (*R*,*S*)-CHBM を直接添加しても反応させることが可能であり、 菌体破砕や洗浄菌体の調製が必要なく、反応に補酵素などの高価な添加物を必要と しないことから、両菌株を簡便な反応系で利用できた。また、遠心分離や膜ろ過に よって除菌を行なえば培地には活性を示さなかった。DS-S-51 株を用いた反応は立 体選択性が低いことから、光学分割反応後に活性が残っていると、(*S*)-CHB の回収 時に収率の低下が懸念されるが、培地に活性がないことから、これを防ぐことが可 能である。さらに、HL は CHB と化学的性質が大きく異なり、ろ液と酢酸エチル、 ジクロロメタン等の有機溶媒を用いた分液では、CHB は有機層、HL は水層に入り 易く、沸点も CHBM は 67°C/0.3 mmHg、HL は 110°C/0.3 mmHg であり、光学分割反 応後の両化合物の分離精製が容易である。以上のことから DS-S-75 株、DS-S-51 株 は CHB をはじめとする有用な各種光学活性体の生産に非常に有効な菌株であると 考えられ、両菌株を用いた応用が期待される。

第二章 組換え大腸菌を用いた CHB の光学分割

2-1 序論

第一章で土壌より単離した 2 菌株(Enterobacter sp. DS-S-75 株、Rhizobium sp. DS-S-51 株)は、ユニークな反応により CHB の R 体または S 体を各々高光学純度で 残存させ、他方のエナンチオマーを立体選択的に HL へと変換させることを述べた。 特に DS-S-75 株は活性が高いこと、各種ヒドロキシカルボン酸エステルに対して立 体選択的な加水分解活性を持つことから興味深いが、これらの菌体反応の作用機作 など不明点が多い。そこで本章では、反応を担う DS-S-75 株由来酵素を精製、およ び遺伝子をクローニングし、酵素、遺伝子レベルでの解析を行なった。また DS-S-75 株は培養条件によって活性が依存する。例えば、高溶存酸素条件下で培養を行なう と菌体の増殖性は高くなるが、活性は低くなる。そこで本章では、構成的に遺伝子を高発現させることで、生産性(反応速度、反応基質濃度)および反応の安定性向 上を目的として、組換え大腸菌を作製し、これを用いた(R)-CHBM の実用的な製法 検討を行なった。

一方、DS-S-51 株は試験した基質の中では CHB にのみ立体選択的な活性を示し、 CHB の中でもイソプロピルエステルに対してはほとんど立体選択性がない等、 DS-S-75 株と異なる点が多い。そこで、酵素レベルで DS-S-75 株と比較を行なった。 また、DS-S-51 株は活性が低いことから、野生株を用いた実生産は困難であると考 えられた。そこで、本株についても生産性を向上させるために組換え大腸菌を作製 して(*S*)-CHBM の実用的な製法検討を行なった。

2-2 実験材料および方法

2-2-1 実験試薬、酵素

試薬は特に指定のない限り、和光純薬工業(株)、日本製薬(株)、東京化成工業(株)、 シグマアルドリッチ(株)製のものを用いた。制限酵素および修飾酵素は、東洋紡績 (株)、宝バイオ(株)、(株)ニッポンジーン、NEB(株)製をそれぞれの説明書に従って 使用した。

2-2-2 使用大腸菌、プラスミド

	Genotype, characteristics
Host strains	
Escherichia coli JM109 ⁴⁶⁾	E14-(McrA-), recA1, endA1, gyrA96, thi-1, hsdR17(rk-mk ⁺), supE44, relA1, Δ (lac-proAB) [F' traD36 proAB lacI ^q Z Δ M15]
DH5α ⁴⁷⁾	deoR, endA1, gyrA96, hsdR17(rk-mk+), recA1, relA1, supE44, thi-1, Δ (lacZYA-argF)U169, ϕ 80lacZ Δ M15, F-, λ -
Plasmids	
pBluescriptII KS+	Amp ^r , lacZ
pUC18, 19, 118	Amp ^r , lacZ
рКК223-3	Amp ^r , tac

2-2-3 大腸菌用培地

a) LB 培地: Pepton 10 g/l、Yeast extract 5 g/l、NaCl 10 g/l、(pH 6.8) 平板培地には 15 g/l の精製寒天を加えた。必要に応じて、 Ampicillin 100 mg/l、1 mM IPTG を加えた。

b) SOB 培地: Pepton 20 g/l、Yeast extract 5 g/l、NaCl 0.584 g/l、KCl 0.186 g/l、(pH 6.8) オートクレーブ後、ろ過滅菌した 1 M MgSO₄, 1 M MgCl₂ を 1L に対して 10 ml ずつ加えた。 c) SOC 培地: SOB 培地1L に対して 2 M Glucose を 10 ml ずつ加えた。

d) 栄養培地 A: 1-2-2 参照。

e) 栄養培地 B: Pepton 20 g/l、Yeast extract 10 g/l、Glycerol 5 g/l、(pH 6.8)

2-2-4 ゲノム DNA の調製

1-2-5-2 と同様に行なった。

2-2-5 大腸菌からのプラスミドDNAの少量調製⁴⁸⁾

抗生物質を含む LB 培地 3 ml で 1 晩培養した菌体を遠心分離(3000 rpm, 5 min, 4°C) により集菌した。この菌体を 200 µl の Solution I に懸濁し、次に、400 µl の Solution II を加え、穏やかに混ぜ、氷中に 5 分間静置した。300 µl の Solution III を加え、よ く混合し、氷中に 10 分間静置した。遠心(3500 rpm, 5 min, 4°C)後、上清をフェノー ル/クロロホルム抽出、エタノール沈殿を行い、TE buffer に溶解した。また、必要 に応じて、RNaseA(10 mg/ml)を加え、37°Cで 30 分消化した後、PEG 沈殿を行い TE buffer に溶解した。

Solution I : 50 mM Glucose, 25 mM Tris-HCl (pH 8.0),10 mM EDTA (pH 8.0) Solution II : 0.2 N NaOH, 1% SDS Solution III : 3 M Sodium acetate (pH 5.2)

2-2-6 DNA の電気泳動および DNA 断片の回収

TAE buffer により作製した 1.0%アガロースを使用した。試料に Gel-Loading buffer を 1/10 量加え、ゲルのスロットに注入した。泳動装置は Mupid-2(コスモ・バイオ(株) 製)を用い、定電圧 50 V または 100 V で行った。泳動後、ゲルをエチジウムブロマ イドを含む TAE 溶液に浸し、トランスイルミネーター上で観察した。

TAE buffer: 40 mM Tris-acetate , 1 mM EDTA Gel-Loadingbuffer: 0.25% Bromophenolblue, 0.25% Xylene cyanol, 40% Glycerol

アガロースゲルからの DNA 断片の回収は Prep-A-Gene DNA Purification Kit(Bio Rad(株)製)を用いて添付のプロトコールに従って行ない、計 20 μl の DNA 溶液を 得た。

2-2-7-1 コンピテントセルの調製⁴⁹⁾

大腸菌DH5αまたはJM109 をLB培地 5 mlで一晩培養(前培養)し、200 mlのSOB培地 により 30℃にてOD₆₀₀が 0.4~0.8 になるまで培養した。培養液を氷中で冷却した後、 遠心(3000 rpm, 15 min, 4℃)して集菌し、1/3 容(67 ml)の氷冷したTB bufferに懸濁して 氷中に 10 分間放置した。遠心(3000 rpm, 15 min, 4℃)後、菌を再び 16 mlの氷冷した TB bufferに懸濁し、終濃度 7%となるようにDimethylsulfoxide (DMSO)をゆっくり混 ぜながら加え、氷上に 10 分間放置した。0.2 mlずつ 1.5 ml微小遠心チューブに分注 し、液体窒素で凍結して-80℃で保存した。

> TB緩衝液:10 mM PIPES,15 mM CaCl₂·2H₂O,250 mM KCl KOHでpH6.7 に合わせた後、55 mM MnCl₂·4H₂Oを加え、ろ過滅菌して 4℃で保存した。

2-2-7-2 形質転換

-80℃で保存したコンピテントセルを氷中で解凍後、1~20 µl の DNA 溶液を加 え、氷中に 30 分以上放置した。42℃で 15 秒間ヒートショック後、直ちに氷中に戻 した。800 µl の SOC 培地を加え、37℃で 30 分間振とう培養した。遠心分離後上清 を 200 µl の SOC 培地に菌体を懸濁し、適当な抗生物質を含む LB 寒天培地上に広げ、 37℃で一晩培養した。

2-2-8 塩基配列の決定

DNA の塩基配列の決定は、アプライドバイオシステムズ(株)製の DNA シーケン シングキットを用い、そのプロトコールに従った。キットは dRhodamine Dye Terminator Cycle Sequenceing Ready Reaction Kit または BigDye Terminator Cycle Sequenceing Ready Reaction Kit を用いた。DNA シークエンサーは ABI PRISM 3100 DNA Sequencer を使用した。 2-2-8-1 ポリメラーゼ反応

0.2 ml マイクロチューブに鋳型 DNA と Terminator Ready Reaction Mix 6 µl、プラ イマー2 µl(1.6 pmol)、滅菌水で 15 µl にメスアップした反応液を調製し、Gene Amp PCR system 9600 で PCR 反応させた。反応条件は次の通りである。

96°C 1 min

96°C 10 sec, 50°C 5 sec, 60°C 4 min 25 cycles

2-2-8-2 サンプルの調製

ポリメラーゼ反応の終わった反応液を 1.5 ml の微小遠心チューブに移し、3M NaOAc (pH4.6)1.5 µl、100%エタノール 33 µl を加え、氷上に 10 分間放置した。その 後遠心分離(15000 rpm, 20 min, 4℃)し、上清を捨て 70%エタノールで洗浄し、減圧 乾燥した。Template Suppression Reagent (TSR:アプライドバイオシステムズ(株)製)12 µl によく溶解し、95℃で 5 分間加熱後、氷上で急冷し、気泡が入らないように注意 しながら専用のサンプルチューブに移し、セプタを取り付けた。専用サンプルトレーにサンプルチューブを並べ、シーケンサーにセットした。

2-2-9 タンパク質の定量

特に記載のない限りBradford の方法に従った⁵⁰⁾。1/10 倍希釈した粗酵素液 50 μ l とタンパク質定量試薬 2 ml をキュベットに入れてよく混合し、5 分以上経ってか らAbs 595 nm を測定した。BSA(Bovine Serum Albumin)を用いて検量線を作成し、こ れよりサンプルのタンパク質濃度を求めた。

タンパク質定量試薬: Coomassie Brilliant Blue (CBB) 50 mg, 95% Ethanol 25 ml, 85% (w/v) Phosphoric acid 50 ml

滅菌蒸留水で 500 ml にメスアップし、ろ紙(Toyo No.2)で2回ろ過した。 さらに使用直前に必要量のみ再度ろ紙で2回ろ過して使用した。

2-2-10 SDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)

2-2-10-1 電気泳動

SDS-PAGEは、Laemmliの方法に従った⁵¹⁾。下記の分離ゲルと濃縮ゲルを用いてゲルを作製した。調製した各タンパク質試料に等量のSDS-sample bufferを加え、95℃で2分間熱変性させた試料をゲルにアプライした。電気泳動は恒温式ミニゲルスラ

ブ電気泳動装置(日本エイドー(株)製)を用い、SDS-running buffer中で行った(定電流 20 mA)。

分離用ゲル: 375 mM Tris-HCl pH8.8, 10% Acrylamide, 0.1% SDS (適当量の APS と TEMED で重合) 濃縮用ゲル: 125 mM Tris-HCl pH6.8, 5% Acrylamide, 0.1% SDS (適当量の APS と TEMED で重合) SDS-sample buffer: 100 mM Tris-HCl pH6.8, 50mM DTT, 4% SDS, 20% Glycerol, 0.2% BPB 10×SDS-running buffer: 0.25 M Tris, 1.92 M Glycine, 1% SDS

2-2-10-2 Coomasie brilliant blue (CBB) R-250 によるタンパク質染色

SDS-PAGE 後のゲルを CBB 染色液に浸し1 時間穏やかに振とうした。CBB 染色 液を捨て、ゲルを CBB 脱色液に浸して、バンド以外の部分が透明になるまで穏やか に振とうした。

CBB 染色液:	45% Methanol, 10% Acetic Acid, 0.1% (w/v) CBB R-250
CBB 脱色液:	45% Methanol, 10% Acetic Acid

2-2-11 アミノ酸配列の決定

PVDF膜(BIO-RAD(株)製)、ろ紙およびSDS-PAGE後のゲルをTransfer buffer中で15 分間平衡化した後、エレクトロトランスファー装置(日本エイドー(株)製NA-1512)を 用いてTransfer buffer中で1 mA/cm²の定電流にて45分間通電し、タンパク質をPVDF 膜上にブロットした。目的のバンドをメスで切り出し、50%メタノールで2回、超 純水で2回洗浄後、アミノ酸シークエンサー(アプライドバイオシステムズ(株)社製 PROCISE 792 または476A)により分析した。

Transfer buffer : 48 mM Tris-HCl (pH8.3), 39 mM Glycine, 20% Methanol

2-2-12 酵素活性測定

2-2-12-1 脱クロル活性測定

0.5 M Potassium phosphate buffer (pH7.15)に 1% (*R*,*S*)-CHBMを基質として 30℃で反応し、遊離するクロルイオンを岩崎らの方法で測定し³⁰⁾、1 分間に 1 µmolのクロル イオンを遊離させる酵素量を 1Uとした。

2-2-12-2 基質分解活性測定

0.5 M Potassium phosphate buffer (pH7.15)、1 mM 各基質を調製し、30℃で反応後、GC にて分解率を測定した。

2-2-12-3 加水分解活性測定

0.25 M Tris-sulfate buffer (pH7.15)、1 mM 各 *p*-Nitrophenyl ester を調製し、30°Cで反応後、遊離する *p*-Nitrophenol を 400 nm の吸光により測定した。1 分間に 1 μ mol の *p*-Nitrophenol を遊離させる酵素量を 1U とした。

2-2-13 DS-S-75 株由来酵素の精製

1-2-6-1 と同様の方法で得た DS-S-75 株の洗浄菌体液 を 20 kHz、60-80 W 条件で 超音波破砕し、遠心(26,000 g, 10 min, 4°C)後、上清に 50%飽和になるように硫酸ア ンモニウムを加えた。沈殿を 10 mM Tris-sulfate buffer (pH7.8)に溶解し、同 buffer の 飽和硫酸アンモニウム溶液で平衡化した Butyl-Toyopearl(東ソー(株)製)カラムに供 した。硫酸アンモニウムの濃度を下げながら溶出液を分画し、活性画分を集めて 80% 飽和になるように硫酸アンモニウムを加えた。沈殿を 10 mM Tris-sulfate buffer (pH7.8)に溶解し、同 buffer で透析を行なった。同 buffer で平衡化した DEAE-Sepharose に透析試料を供した後、10-200 mM でグラジエントをかけながら 溶出液を分画し、活性画分を集めて MicroSep 10K(日本ポール(株)製)にて濃縮した。 0.1 M Potassium phosphate buffer (pH7.8) buffer で平衡化した Sephadex-G150(ファルマ シア(株)製)に濃縮試料を供して溶出液を分画し、活性画分を集めた。酵素精製時の タンパク質の定量は、280 nm の吸光により行なった。

2-2-14 DS-S-75 株由来酵素遺伝子のクローニング

2-2-14-1 精製酵素のN末端および内部アミノ酸配列の決定

精製酵素をキモトリプシン処理により断片化し、2-2-11の方法でN末端および内部アミノ酸配列を決定した。

2-2-14-2 縮重 PCR

決定したアミノ酸配列より、以下の様に縮重 PCR プライマーを設計し、1-2-5-2 で調製したゲノム DNA を鋳型として ExTaq Polymerase(宝バイオ(株)製)を用いて縮 重 PCR を行ない、約 400 bp の PCR 産物を BKL kit(宝バイオ(株)製)を用いて添付の プロトコールに従って pUC118 ヘサブクローニングした。

設計プライマー

E1: 5'-AARCARTAYCARCARATGTGG-3'

E2: 5'-RTANGGNSWYTCNGGNGC-3'

```
R,Y,W,N は下記の混合塩基を示す。
R:A,G Y:C,T W:A,T N:A,C,G,T
```

反応条件

変性	96℃	1 min	
	96°C	30sec]	
アニーリング	50°C	1 min	40 cycles
伸長	72°C	1 min	
	72°C	5 min	

2-2-14-3 プローブの調製

プローブとして用いるDNAをゲル回収し、25 ng分を $BcaBEST^{TM}$ Labeling kit(宝 バイオ(株)製)および[α -³²P]dCTP(1.85 MBq)(ファルマシア(株)製 を用いて添付のプロトコールに従って放射性ラベルした。

2-2-14-4 サザンハイブリダイゼーション

各5µgのゲノムDNAをBamHI、EcoRI、EcoRV、HindIII、KpnI、Notl、Pstl、SacI、 SalI、SmaI、SpeI、XbaI、XhoIの各酵素で完全消化し、サブマリン型電気泳動槽 (ATTO(株)製)を用いて、1%アガロースゲルにて電気泳動を行なった。ゲルを酸 変性液、アルカリ変性液、中和液の順に浸し、ゲル中のDNAを処理した。20×SSC を満たしたブロッティング装置をセットし、DNAをゲルからナイロンメンブレンに 16 hrかけて転写した。終了後、紫外線照射(GS Gene LinkerTM UV Chamber; BIO RAD(株)製)によってDNAをメンブレン(HybondTM-N+; アマシャム(株)製)に固定し、 2-2-14-3 で得たプローブと5×SSC、0.5% SDS溶液中で65℃にてハイブリダイゼー ションを行なった。終了後、2×SSC、0.1% SDSで15 min、1×SSC、0.1% SDSで30 min、0.5×SSC、0.1% SDSで1 hr、各65℃にて洗浄した。イメージングプレートを 用いて感光し、バイオイメージングアナライザーBAS5000(富士フィルム(株)製)によ り画像を読み込んだ。また、X線フィルムを用いて感光し、現像を行なった(富士フ ィルム(株)製)。 酸変性液:0.25 M HClアルカリ変性液:1.5 M NaOH, 0.5 M NaCl中和液:1.0 M Tris-HCl (pH7.0)SSC:0.15 M NaCl, 0.015 M Sodium citrate

2-2-14-5 コロニーハイブリダイゼーション

ゲノム DNA の *Eco*RI 完全消化断片を電気泳動し、約 6.0 kb 断片を pBluescript II KS+の同部位に挿入し、これを導入した大腸菌 DH5αの形質転換体を LB 寒天培地に 並べて接種した。37℃で6時間インキュベート後、コロニーにナイロンメンブレン を 1 min 密着させ、メンブレンを酸変性液、アルカリ変性液、中和液の順に浸し、 メンブレンに付着した DNA を処理した。紫外線照射によって DNA をメンブレンに 固定し、2-2-14-4 の方法に従ってハイブリダイゼーションを行なった後、感光した。

2-2-15 DS-S-75 株由来酵素遺伝子組換え大腸菌の作製

PCR によって DS-S-75 株由来酵素遺伝子の開始コドンと考えられる 3 箇所の ATG 配列のすぐ 5'末端側に EcoRI 認識配列を付加するようにプライマー(E3、E4、E5)を 設計した。また、成熟酵素の N 末端配列のバリンをコードする GTA を ATG に置換 し、同様に 5'末端側に EcoRI 認識配列を付加するようにプライマー(E6)を設計した。 3'末端側プライマーには M13(-20)を使用した。プライマーの配列を以下に示す。

5'末端側 設計プライマー

- E3: 5'-CCGAATTCATGGGGGAATGCGCTGATGAG -3'
- E4: 5'-CCGAATTCATGAGAAAAACCATGCAACG -3'
- E5: 5'-CCGAATTCATGCAACGCAGTTTGCTCTC-3'
- E6: 5'-CCGAATTCATGTCTGCTCAGGTAACCCGC -3'

太字は EcoRI 認識配列を示す。

増幅された DNA を pUC118 にサブクローニングして塩基配列を確認した後、 *Eco*RI-*Pst*I 断片を pKK223-3 に導入した。得られたプラスミドおよび対照用として pKK223-3 のみを大腸菌 JM109 および DH5αに導入し、組換え大腸菌 JM109(pKK-E3)、 JM109(pKK-E4)、JM109(pKK-E5)、JM109(pKK-E6)、JM109(pKK223-3)、DH5α(pKK-E3)、 DH5α(pKK-223-3)を得た。
2-2-16 DS-S-75 株由来酵素遺伝子のクローニング

DS-S-51 株から抽出したゲノム DNA を *Sau*3AI で部分消化し、各断片を pUC19 の *Bam*HI 認識部位へ挿入した。これを DH5αに導入し、100 mg/l Amp、0.5%(v/v) (*R*,*S*)-CHBM および 80 mg/l BTB を含む LB 培地に塗布した。37℃でインキュベート 後、周辺が黄色に呈色したコロニーを取得し、プラスミド抽出を行なった。呈色判 断の対照試料として DH5α(pKK-E3)を用いた。

2-2-17 DS-S-51 株由来酵素酵素組換え大腸菌の作製

PCR によって遺伝子の開始コドンのすぐ 5'末端側に EcoRI 認識配列、終始コドン のすぐ 3'末端側に HindIII 認識配列を付加するようにプライマーを設計した。プラ イマーの配列を以下に示す。

設計プライマー5'末端側

5'-TTGAATTCATGCCCCATAATCTG -3'

太字は EcoRI 認識配列を示す。

3'末端側

5'-AAAAGCTTGTGGCCGTCGA -3'

太字は HindIII 認識配列を示す。

増幅された DNA を pUC118 にサブクローニングして塩基配列を確認した後、 *Eco*RI-*Hin*dIII 断片を pKK223-3 に導入した。得られたプラスミドを大腸菌 JM109 お よび DH5αに導入し、組換え大腸菌 JM109(pKK-R1)、DH5α(pKK-R1)を得た。

2-2-18 DS-S-51 株由来酵素組換え大腸菌の解析

試験管に 5 ml の LB 培地を調製し、作製した各組換え大腸菌を 37°Cにて 16 h 振 とう培養した。JM109 については 0.5 mM IPTG 誘導下でも培養を行なった。20 μ l の培養液に対して 3 ml の反応系で 2-2-12-3 の加水分解活性測定方法により活性評価 した。また、培養液を 1.5 ml 微小遠心チューブに入れ、遠心分離(6000 rpm, 5 min, 4°C) にて集菌し、20 mM Potassium phosphate buffer (pH 7.2)中で 20 kHz、60-80 W にて超 音波破砕した。遠心(15,000 rpm, 10 min, 4°C)後の上清を SDS-PAGE、N 末端アミノ 酸解析、およびゲルろ過カラム(Sephadex G-100)に供した。

2-2-19-1 (R,S)-CHBM の光学分割反応

5 L 容ジャーファーメンター (三ツワ理化学工業(株)製 KMJ-5B) に 3 L の栄養培 地 B を調製して撹拌数 500 rpm、通気量 0.25 L/min、30℃にて培養した。種培養液 には試験管にて 30℃で培養した 3 ml の培養液を使用した。目的濃度になるように CHBM を加え、撹拌数 500 rpm、30℃にて反応させた。反応中は 14%アンモニア水 溶液にて pH6.9 に制御した。反応後 CHBM、HL の濃度および光学純度を GC によ り分析した。また、光学活性 CHBM、HL の実用的な生産検討時には、500 ml 容の バッフル付三角フラスコ 3 本に各々100 ml 栄養培地 B を調製し、ロータリーシェイ カーにて 130 rpm、30℃にて培養後、300 ml の培養液をイオン交換水で 3 L に希釈 したものを反応に使用した。

2-2-19-2 (R)-CHBM、(S)-HLの回収、精製

反応液を UF 膜(Spectrum Laboratories(株)製; 分画分子量 50,000)により除菌し、 ろ液の 1/2 量の酢酸エチルにて 4 回抽出を行なった。CHBM を含む酢酸エチル層お よび HL を含む水層を各々減圧濃縮し、CHBM は 67℃/0.3 mmHg、HL は 110℃/0.3 mmHg にて蒸留した。

2-2-20 分析方法

2-2-20-1 GC 分析

CHBM、HLの濃度および光学純度は、1-2-8の方法で行なった。精製試料の化学 純度分析にはTC-1701(GL サイエンス(株)製)キャピラリーカラム(内径 0.25 mm、長 さ 30 m)使用した。カラム温度; 70℃(3 min)→250℃(10℃/min)、気化室温度; 250℃、 検出器温度; 250℃、キャリアーガス;窒素、流速; 1 ml/min スプリット比 1:100、検 出器; FID。精製試料を 0.2 µl 注入した。

2-2-20-2 NMR 分析

NMR分析は日本電子(株)製GSX-270 にて¹H NMR(CDCl₃, 270 MHz)および¹³C NMR(CDCl₃, 270 MHz)を行なった。

2-2-20-3 旋光度分析

旋光度分析には、日本分光工業(株)製旋光計(DIP-360型)を使用した。

2-3 結果

2-3-1 DS-S-75 株由来酵素の精製

CHBの光学分割反応の詳細解析を目的としてDS-S-75株から目的酵素の精製を行なった。硫安沈殿および疎水性カラム、イオン交換カラム、ゲルろ過カラムの各種カラムクロマトグラフィーにより Enterobacter sp. DS-S-75株の粗酵素液から221倍に精製した(Table 2-1)。精製した酵素液をSDS-PAGEに供するとCBB染色にて単一のバンドを示した(Fig. 2-1)。精製酵素の分子量は約37,500で、ゲルろ過カラムクロマトグラフィーの分子量は約75,000であったことからホモ二量体であった。

Table 2-1 Summary of the purification steps of the enzyme from the strain DS-S-75

	Step	Total activity (U)	Total protein (mg)	Specific activity (U/mg protein)	Yield (%)	Purification (fold)
1.	Cell free extract	88.3	2540	0.0348	100	1.0
2.	(NH ₄) ₂ SO ₄ (0-50%) 53.8	1680	0.0320	61.0	0.9
3.	Butyl Toyopearl	38.1	142	0.269	43.1	7.7
4.	(NH ₄) ₂ SO ₄ (0-80%) 23.0	132	0.174	26.0	5.0
5.	DEAE-Sepharose	28.2	6	4.75	31.9	136
6.	Sephadex G-150	19.5	3	7.69	22.1	221

The enzyme amount which liberates 1µmol of chloride ion for 1 min was defined to be 1U.

Fig. 2-1 SDS-PAGE for purified enzyme from the strain DS-S-75.

2-3-2 DS-S-75 株由来酵素の性質

各種ハロヒドリンやエステルに対する基質特異性を調べた結果、第一章で解析した菌体を用いた試験と同様であった。CHBM、CHBE に対してクロルイオン、アルコールを放出しながら加水分解により HL に変換したが、 4-Chloro-3-hydroxybutyronitrile および 3-Chloro-1,2-propanediol 等の他のハロヒドリンに対しては活性を示さなかった。また 3HBE および 2HBM 等のカルボン酸エステル に対して活性を示し、HL ではなく加水分解によりカルボン酸に変換したが、ジェ ステルや3位の側鎖がヒドロキシル基ではなくアミノ基やクロル基である化合物に は活性を示さなかった(Table 2-2)。また、一般的に加水分解酵素の基質として使用さ れる *p*-Nitrophenyl butyrate に対しても高い活性を示したので、各種炭素鎖(C2-C10) の*p*-Nitrophenyl ester に対する活性を調べた結果、炭素鎖4のブチルエステルに対し て最も活性が高く、炭素鎖が長くなるに従って低活性であり、炭素鎖10の *p*-Nitrophenyl caprate に対しては全く活性を示さなかった(Table 2-3)。本酵素の (*S*)-CHBM に対する Km 値は 8.04 mM、Vmax は 19.2 U/mg、至適 pH は 6.6-6.8 であ り、pH5.0-8.5 で安定であった。また、金属の要求性は示さなかった。

Substrate		Relative activity
СНВМ		100
2HBM		19.3
3HBE	OH	240
Ethyl lactate(EL)		7.00
Methyl butyrate		71.9
Methyl 2-amino-butyrate	NH ₂ O	0
Methyl 2,3-dichloropropionate		0
Diethyl malate		0
4-Chloro-3-hydroxybutyronitrile	CI CN OH	0
3-Chloro-1,2-propanediol	СІ ОН ОН	0

Table 2-2	Substrate	specificity	for	various	halohy	drin	and	esters.
-----------	-----------	-------------	-----	---------	--------	------	-----	---------

The ezyme activity is measured as degrading substrate. The relative activity shows that the activity of CHBM is taken to be 100%.

-more = c $-mover op$	Table 2-3	Substrate s	specificity	for various	<i>p</i> -nitrophen	yl esters.
-----------------------	-----------	-------------	-------------	-------------	---------------------	------------

The enzyme activity is measured as releasing p-nitrophenol from p-nitrophenyl ester. The relative activity shows that the activity of p-nitrophenyl butyrate (C4) is taken to be 100%.

2-3-3 DS-S-75 株由来酵素遺伝子のクローニング

精製酵素の部分アミノ酸配列情報をもとに遺伝子クローニングを試みた。N 末端 アミノ酸配列は V-S-A-Q-V-T-R-D-T-L-G-T-M-E-K-Q-Y-Q-Q-M であり、N 末端はメチ オニンではなくバリンであった。キモトリプシン処理を行なった内部アミノ酸配列 は R-R-A-P-E-S-P-Y-P であった。決定したアミノ酸配列より縮重 PCR プライマーを 設計し、ゲノム DNA を鋳型として PCR を行なった結果、約 400 bp の増幅断片を得 た。これをプローブとして DS-S-75 株から抽出したゲノム DNA を各種制限酵素で 消化し、サザン解析を行なった。その結果から、約 6 kb の EcoRI 断片によるゲノム ライブラリーを大腸菌にて作製し、同プローブを用いてコロニーハイブリダイゼー ションを行なったところ、160 コロニー中から1 個の陽性コロニーを得た。挿入 DNA 断片中の 1760 bp の塩基配列を決定した結果、約 1.1 kb から構成される ORF が存在 した。塩基配列および推定されるアミノ酸配列を Fig. 2-2 に示す。これらの配列は、 DDBJ/EMBL/GenBank データベースに Accession No. AB236152 として登録した。推 定アミノ酸配列中にはエステラーゼおよびリパーゼに保存されている G-X-S-X-G 配列が存在し、DDBJ/EMBL/ GenBank データベースに登録されている微生物各種の エステラーゼ、リパーゼ、ハイドロラーゼと最大で 45%の相同性があった(Table 2-4)。 これらの相同性ならびに 2-3-1 で得られた結果から、DS-S-75 株由来酵素は Hydroxy Carboxylic ester Hydrolase from *Enterobacter* sp. (EnHCH)と命名した(2-3 考察参照)。推定アミノ酸配列中には、DS-S-75 株から精製した酵素の部分アミノ酸配列が存在し、精製した酵素の N 末端アミノ酸配列は推定アミノ酸配列の N 末端から 25 残基程度 内部に存在した。

また、決定した塩基配列中には、*EnHCH* 遺伝子のすぐ上流に別の ORF 部分断片 が認められた。推定した部分 C 末端側アミノ酸配列(236 残基)は微生物各種の 3-Hydoroxybutyrate dehydrogenase と最大 68%の相同性があった(Fig. 2-2)。

(B)

GGATCCAGAT TGTCAGTCCC CTGGATGAAT ACCCGTTTGC TGACTGGCGG AAGATGATGG CTGTTCATCT TGACGGGGCA TTTCTGACCA CCCGGGCAGC RomHI 100 ACTGAAACAT ATGTACAAAA ACCCGCAAGG GGGGACGGTC ATTTATATTG GCTCTGTGCA TTCCCATGAA GCCTCCCGGC TGAAGGCGGC GTATGTGAAC 200 GCCAAACATG GGCTGATGGG GCTGGCTAAG GTGGTCGCGA AGGAGGGGGC TGTTCATCAC GTTCGCTCGC ATGTAGTTTG CCCGGGCTTT GTTGATACGC 300 CGCTGGTTAA AAAGCAGATC CCTGAGCAGG CCCGTGAGCT GGGTATCAGC GAAGAGGATG TCGTCAAAAA TATTATGCTG GCGGAAACCG TTGACGGGCA 400 GTITACATCG GAGGCGGATA TTGCCGAAAC AGTACGTTTT CTGGTGACAT TTCCTTCCAT GGCGCTCACC GGACAGTCAA TTACGGTCAG CCACGG**ATG**G 500 MG GGAATGCGCT GATGAGAAAA ACCATGCAAC GCAGTTTGCT CTCAGCCCTG GTGCTGGTGG CTTCCTGTTG TCATGGGGCC TGGGCAGTAT CTGCTCAGGT 600 T **M** Q R S L L SAL A V AACCCGCGAT ACCCTCGGCA CAATGGAGAA ACAGTATCAA CAGATGTGGG AGAAAGAAAA TGGCCCGCTG ACGTTGTCGC CTCCGGCCCC CCTGGCGACG 700 LGTMEKQYQQM</u>WEKEN G P L T L S P PAP LAT D CTGTTATCAT CGCTACCCAA AAACAGCAAT AACCCCCGAGT ATAATACGCT CGACAGCCGT GATGCGTTGA CTGCGCTGAC CCAAAAGTAC GTGACGGATA 800 L Р К N S N N P E Y N T L DSR DALT ALT окч LSS VTDK AACAATCCAT AGCCCGAATT ATCAATGTGG ATGTCGCGGT GCCGGGACGA AAAATTCCGG TACGGATCTA CAACCCGCAT CCGGATATAG CAACCGGGGT 900 ARI INVD VAV PGR KIPV RIY NPH OSI P D I A T G V GATTTTCTTC ATTCATGGTG GGGGGCATCT GAGTGGTTCG GTGGATGTTT ACGACCCGAT AGCCCGTCAT CTGGCGGCTG CAACCGGTAA TACCGTCGTG 1000 IHGGGHL SGS VDVY DPI ARH LAAA IFF TGNTVV GCAGTGGACT ATCGGCGGGC GCCGGAGTCC CCCTATCCGG AGGGACTTCA CGATGCGCGT GATGTCCTGA TGCAGGTTTA CGCTGTACTG GATCAGAACC 1100 AVDY <u>RRAPES PYP</u>E GLH DAR DVLM QVY AVL DQNH ATGTTCCCTG GAAACCGCAA CTGACTCTGG CCGGAGACAG CGGAGGTGGG GCATTCAGCG CCACGCTTGC CGGCGATTTA CAGACTGAAC ACCCGGGCTT 1200 V P W K P Q L T L A <mark>G D S G G</mark> G A F S A T L A G D L Q T E H P G F TATCTCCCCGC CTGGAGCTGA TTTATCCCAG CCTGGATTAC ACGTTGTCCT GGCCTTCCGC TGATGAAAAT GGGCAGGGTA AATTGCTTGA TAAAAGCAAA 1300 ISR LELIYPS LDY TLSW PSA DEN GQGK LLD KSK GTGGCCTGGT ACTTCAGTCA GTATTTTCAG CATGGTGAAG ACAGAGCGTC GCTTTCACCG TTGTACAGAT CAGTCACGCG GGCGTTTCCG CCCACACTTA 1400 VAWY FSOYFOHGED RASLSPLYRS VTR AFPPTLI

TTTTTAGTGG CGGTCTGGAT CCATTACGTG ATGAGGATTT TGCTTTTGTT GCCCGACTGA AAAGCGCCGG AGTGCCGGTC AGGCATATCC ACTCCCGGG 1500 F S G G L D P L R D E D F A F V A R L K S A G V P V R H I H F P G GATGGTACAT GCATTCTGA TGCTTGAAAA TCTGGTGCCG CAGCAAACTG CACAGGTTTA TCAGGCTACC GCTGATTCA TTGCCACAC AGCCATTAG 1600 M V H A F L M L E N L V P Q Q T A Q V Y Q A T A D F I A T P A H *GTCTG<u>AGGGG CAGTTTCCGCCCCT</u> GTGATTTCGT TAACGAATTA CCTGTTCGTG GCGTGATTG TTTTCATTGG GACAGAAACG CAGCCTTTTA 1700 AGCCTGCTGT CTGGTCGCTG CCAGCACAAT TTCGCGGATA CAGACGTTT GAGG<u>CTGCAG</u> 1700

Fig. 2-2 DNA fragment containing the *EnHCH* gene. (A) The approximately 6 kbp fragment which is cloned on pBluescript II KS+. Gray arrow indicates the location and direction of the ORF of the *EnHCH* gene. It is approximately 1.1 kbp. White arrow indicates partial sequence of ORF located in upsteam of *EnHCH* gene. (B) Nucleotide sequence of the isolated gene and deduced amino acid sequence of the *EnHCH* gene product. The conserved amino acid sequence, G-X-S-X-G, on esterase and lipase is boxed. The amino acid sequences for design of the degenerate primer is doble-underlined. The bold type of DNA sequence indicates the estimated initiation codons for translation. The signal peptide cleavage site is shown with vertical arrows. The putative inverted repeat sequence is indicated by facing arrows with a solid line. The italic type of DNA sequence indicates the upstream partial ORF.

Table 2-4	Homology serch	of amino acid	sequence of EnHCH towa	ard other enzyme.
-----------	----------------	---------------	------------------------	-------------------

Enzyme	Organism	Identity (%)
Carboxylesterase	Chromobacterium violaceum	45
Alpha/beta hydrolase	Shewanella frigidimarina	42
Lipase (lipP-1)	Sulfolobus solfataricus	34
Similar to lipase	Listeria monocytogenes	31

Amino acid sequence is compared with the entries DDBJ/EMBL/Genbank database.

2-3-4 EnHCH 遺伝子の発現

EnHCH 遺伝子の大腸菌での発現を試みた。配列中に開始コドンと想定可能な ATG 配列が3箇所存在したため、各々のATG 配列のすぐ上流に EcoRI 認識配列を PCR にて付与した(プライマーE3、E4、E5) (Fig. 2-3)。また DS-S-75 株から精製した酵素 のN末端配列に相当するバリンをATGに変換し、同様にすぐ上流に EcoRI 認識配 列を PCR にて付与した(プライマーE6)。PCR 産物を大腸菌用の高発現ベクター pKK223-3の tac プロモーター支配下になるよう EcoRI-Pstl 認識配列部位に挿入し、 これらのプラスミドを導入した組換え大腸菌 JM109 を作製した。IPTG を含む LB 培地で培養し、培養液の加水分解活性を p-Nitrophenyl butyrate を基質として測定し た。その結果、JM109(pKK-E3)および JM109(pKK-E4)で DS-S-75 株の約4 倍の活性 を示した(Table2-5)。JM109(pKK-E4)は菌体あたりの活性が高かったが、菌体の増殖 は悪かった。比べて JM109(pKK-E5)および JM109(pKK-E6)の活性は低く、ベクター のみを導入した JM109(pKK223-3)は全く活性を示さなかった。各組換え大腸菌の粗 酵素液を SDS-PAGE に供したところ、JM109(pKK-E3)および JM109(pKK-E4)につい ては、DS-S-75 株から精製した酵素と同じ位置(分子量 37,500) に明確なバンドが 現れた (Fig. 2-4)。JM109(pKK-E3)由来の組換え EnHCH の N 末端アミノ酸配列を決 定したところ、DS-S-75株由来のEnHCHのN末端アミノ酸配列と一致した(Fig.2-5)。 また、ゲルろ過カラムクロマトグラフィーを行なった結果、分子量は約75,000であ り、組換え EnHCH も大腸菌内で N 末端配列のプロセッシングが行なわれ、ホモニ 量体を形成していることが認められた。

次に、pKK-E3 および pKK-E4 を Lacl 欠損株である DH5αに導入した結果、DH5α (pKK-E3)については構成的に *EnHCH* 遺伝子が発現し、最も高活性を示した。一方、 DH5α (pKK-E4)は生育することができず、コロニーとして得ることができなかった。 これらの結果から、以後、組換え大腸菌を用いた CHB の生産検討には DH5α (pKK-E3)を使用した。

Fig. 2-3 Construction of expression plasmids by *EnHCH* gene. The gene was amplified by PCR with the forward primers E3, E4, E5 or E6 which contained an *Eco*RI site and with the M13 reverse primer as the reverse primer. After the PCR products were digested with *Eco*RI and *Pst*I, they were inserted into pKK223-3.

	Cell growth (O.D.)	IPTG	Activity (U/ml)	Specific activity (U/ml/O.D.)
DS- S- 75	17.32	—	3.16	0.18
JM109(pKK223-3)	2.93	+	0	0
JM109(pKK-E3)	2.27	+	12.6	5.55
JM109(pKK-E4)	1.57	+	13.8	8.79
JM109(pKK-E5)	2.41	+	2.76	1.15
JM109(pKK-E6)	2.81	+	2.37	0.84
DH5 α (pKK223-3)	3.52	_	0	0
DH5 α (pKK-E3)	3.32	_	34.0	10.2
DH5 α (pKK-E4)	Non growth	—	_	_

Table 2-5 Comparison of recombinant cells and strain DS-S-75 in the hydrolase activity.

The enzyme amount which releasing 1 μ mol of *p*-nitrophenol from *p*-nitrophenyl butyrate for 1 min is defined to be 1U. Activities are indicated as U per ml of culture broth.

Fig. 2-4 SDS-PAGE of the protein samples including the EnHCH. Lane 1, purified EnHCH from the the strain DS-S-75; Lane 2, cell-free extract of JM109(pKK223-3); Lane 3, cell-free extract of JM109(pKK-E3); Lane 4, cell-free extract of JM109(pKK-E4); Lane 5, cell-free extract of JM109(pKK-E5); Lane 6, cell-free extract of JM109(pKK-E6); Lane 7, molecular weight markers; Prestained SDS-PAGE standard low range (Bio-Rad, Tokyo). The EnHCH is indicated with an arrow.

N-terminal amino acid

Fig. 2-5 Analysis of N-terminal amino acid.

2-3-5 組換え大腸菌による(*R*)-CHBM および(S)-HL の生産検討

ジャーファーメンターを用いて調製した DH5a(pKK-E3)培養液 3 L に最終濃度 8% になるように(*R,S*)-CHBM を添加して光学分割反応を行なった。その結果、1 hr で (*R*)-CHBM の光学純度は>99.9% e.e.となった。また、生成した(*S*)-HL の光学純度も >99.9% e.e.であった。同様に DS-S-75 株で光学分割反応を行なうと 20 hr を要し、 (*S*)-HL の光学純度は95.9% e.e.であった。DH5a(pKK-E3)は、最終濃度 15%量の CHBM でも 4 hr で光学純度は>99.9% e.e.となった(Table 2-6)。 収率は両菌株で同等であった。

Table 2-6The resolution of CHBM using the strain DS-S-75 and <i>E.coli</i> transformant							
-	(<i>R</i> , <i>S</i>)-CHBM	(R)-CHBM		(S)-HL		Reaction	
Strain	Concentration (w/v%)	Residual ratio (%)	Optical purity (%ee)	Conversion ratio (mol%)	Optical purity (%ee)	time (hr)	
DS-S-75	8	47.8	>99.9	48.0	95.9	20	
	8	49.8	>99.9	46.1	>99.9	1	
υη5α(ρκκ	-E3) 15	47.8	>99.9	47.8	>99.9	4	

Residual ratio is indicated to be 100 % at initial time. Conversion ratio is shown by mol %. Optical purity is calculated from quantity of each enantiomer using formula: $|R-S| / (R+S) \times 100$.

また、実生産を考慮して、300 mlのDH5 α (pKK-E3)の培養液を水で3 Lに希釈し、 最終濃度 15%量のCHBMを添加して光学分割反応を行なった。その結果、20 hrで (*R*)-CHBMの光学純度が>99.9% e.e.となった。光学分割反応後、UF膜で除菌し、酢 酸エチル抽出、濃縮、蒸留により、ろ液から光学活性体の回収、精製を行なった。 その結果、(*R*)-CHBM (o.p. >99.9% e.e., c.p. >99.0%, $[\alpha]_D^{20} = 16.1$ (c 1.21, CH₃OH))、 (*S*)-HL(o.p. >99.9% e.e., c.p. >99.0%, $[\alpha]_D^{20} = -68.1$ (c 1.2, CH₃CH₂OH))を得た。 (*R*,*S*)-CHBMからの収率は、(*R*)-CHBMが 38.8%、(*S*)-HLが 22.8%であった。(*S*)-HLの NMR解析を行なった結果を以下に示す。¹H NMR (CDCl₃, 270 MHz), dppm: 2.54 (d, 1H, J = 18 Hz); 2.79 (dd, 1H, J = 10 Hz); 4.46 (dd, 1H, J = 10 Hz, J = 4.5 Hz); 4.6-4.7 (m, 1H)。¹³C NMR (CDCl₃, 270 MHz), dppm: 177, 76.3, 67.2, 37.7。

2-3-6 DS-S-51 株由来酵素遺伝子のクローニング

目的酵素の活性が低いこと、*EnHCH*遺伝子を導入した組換え大腸菌を陽性コント ロールとして使用可能なことから、遺伝子のクローニングは大腸菌を用いたショッ トガン法により行なった。DS-S-51 株のゲノムDNAをSau3AIで部分消化した断片を pUC19 のBamHI認識部位に導入し、プラスミドライブラリーを作製した。これを DH5αに導入し、CHBMとpH指示薬のBTBを含む選択培地に塗布した。約 47,600 コ ロニーをスクリーニングした結果、強弱はあるが周囲が黄色に変色した 2 個の陽性 コロニーを得た。各々プラスミドを抽出して再度DH5αに導入し、選択培地に塗布 した結果、1 つのクローンのみ周囲が黄色に変色した(Fig. 2-6)。このプラスミドに は約 4 kbの断片が挿入されていた。塩基配列の決定を行なった結果、断片中に 1197 bp、398 アミノ酸をコードするORFが存在した。塩基配列および推定されるアミノ 酸配列をFig. 2-7 に示す。これらの配列は、DDBJ/EMBL/GenBankデータベースに Accession No. AB362771 として登録した。GenBankデータベースのBLASTプログラ ムに登録されている微生物各種の 1,4-Butanediol diacrylate esterase⁵²⁾、β-Lactamase、 Methyl acetate hydrolase⁵³⁾と高い相同性があったが(Table 2-7)、*EnHCH*遺伝子とは全 く相同性がなかった。また、EnHCHで見られたGXGXGアミノ酸配列はなかった。

Fig. 2-6 *E.coli* transformants after shot-gun cloning by plasmid library. The BTB is turn to yellow by positive one.

AAACCGCGGC GCGTTGATCC CTTGCGCCCC GGGAGGATCT TGAATGCCCC ATAATCTGAA GCCGAAAATC GACACGTTGC TCGAAACCCG GGTCAAATCC 100 M<u>PHNLKPKIDT</u>LLETRVKS AGTCCGGGAG TGCCGGGTGT GGTCGCCGTC GTCACGGACC GGAACGGCAA TATCTATGAG GGTGCGGCCG GTTCACGCGC CCTTGGCGGC ACTCAGCCCA 200 SPGV PGV VAV VTDR NGN IYE GAAG SRA LGG T OPM TGACGACCGA CAGCGTGTTC GCCATCTTTT CGACGACAAA GGCGATAACC GGAACTGCAT GTCTCCAACT GGTGGAAGAC GGCAAGCTCG ATCTCGACGC 300 TTD SVF AIFS TTK AIT GTAC LOLVED GKLD LDA GCCTGCAAAG ATCCATGCCC CGGAAATCGG CAAGCTGCAG GTGATCGAAG GGTTCGACGA ACGCGGTTTG CCGAAGCTGC GCCCACCGAA ACGCGACATC 400 THAPETGKI, OVTEGEDERGI, PKI, RPPKRDT ACCACCCCCA TECTECTECT ACACACCECC CCCTTCCCCT ATGACTTTTT CAATGCGACC TACAATCGCC TCCCGAATGA ACATGGACAG CCAAGCCTTC 500 TTRM LLLHTA GFGY DFF NATYNRLANE HGO PSVI TTACCTCGTC GCATGCCTCC CTTCGCACGC CGTTGCTCTT CGATCCGGGT GAAGCCTGGG AATATGGCAC CAATATCGAC TGGGCCCGGAC AGGTTGTCGA 600 TSS H A S L R T P L L F D P G E A W E YGTNIDWAGQ VVE AGGCATTACC GGCAAGCGCC TCGGCGAGGT CATGAAGGAG CGCATCTTCA AGCCGCTCGG CATGGAGGAT ACCGCGTTCA CTATGACGCC ATCCATGTCG 700 GKRL GEV MKE RIFK PLG MED T A F T M T P S M S GCCCGCATGG CGACCATGCA CCAGCGCGAC GGAAGCGGAA CATTGACCCC ACTCGCCAAT TTCACGCTGC CGCAGGACCC GGAGGTGCAC ATGGGCGGGG 800 TMH Q R D G S G T L T P L A N F T L P Q D P E V H M G G H ARMA CGGTCTCTA CTCGACCGCG CTCGACTACG CCAAATTCAT CCGCATGTGG CTGAATGATG GGGAAGGCCC CGGCGGCAGG GTGCTGAAGG CGGAGACGGT 900 L D Y A K F I R M W LNDG EGP G L Y STA GGR VLKA Е Т V GCGCGCCCCCC GAGAAAAACG GTCTCGGCGA GATGAAGATC AAGATGCTGC CGGGCGTCAT TCCAAGCCTT TCCAATGACG CGGAGTTCTT CCCCGGCATG 1000 EKNG L G E M K I K M L P G V I P S L SNDA EFF PGM RAA CCGAAGTCCT GGGGGCTCAC CTTCATGATC AACGACGAGC CCGCGCCAAC CGGGCGTCCC GCTGGCGCAC TCGCCTGGGC CGGTCTTGCC AACCTTTATT 1100 FMINDEPAPT GRPAGAL PKSW GLT AWA GLA NLYY ACTGGATCGA CCGCAAGAAC GGGATAGGCG GCTATTGGGC CACGCAGATA CTCCCCTTCG CCGACCCCGC TTCAGTCGGC GGCTATCTGG ATTTCGAGAC 1200 R K N G I G G Y W A ΤQΙ L P F A D P A S V G G Y L D WID FET AGCCGTCTAT CAATCCCTTC GCGCCAGACA GGCGGCCTAG GTCGCTTCGA TCAAGACCTG CTGACAGCTT GCCTATGCCG GAGCCGTAAA TGGCGCCGGC 1300 AVY OSLR ARO AA* ATAGCGGCGT TATGGGCACC CTATCTGGCT CGACGGCCAC GGGGCACGAT CATTGGCGTG CCGGAAATCG GGTCGGGCAT GACGATTGAG GTCAGGTTGA 1400

Fig. 2-7 Nucleotide sequence of the fragment containing the gene encoding the enzyme from the strain DS-S-51, and its deduced amino acid. The putative Shine–Dalgarno sequence is underlined in the DNA sequence. The determined N-terminal amino acid sequence of the recombinant enzyme is double-underlined.

Table 2-7	Homology serch	n of enzyme from	strain DS-S-51	toward other	enzyme
-----------	----------------	------------------	----------------	--------------	--------

Enzyme	Organism	Identity(%)
1,4-Butanediol diacrylate esterase	Bradyrhizobium japonicum	70
β-Lactamase	Rhodococcus sp.	69
Methyl acetate hydrolase	Gordonia sp.	66

Amino acid sequence is compared with the entries DDBJ/EMBL/Genbank database.

2-3-7 DS-S-51 株由来酵素遺伝子の発現

遺伝子の大腸菌での発現を試みた。ATG のすぐ上流に EcoRI 認識配列、停止コドンの下流に HindIII 認識配列を PCR にて付与し、pKK223-3 の tac プロモーター支配下になるよう EcoRI-HindIII 認識部位に挿入し (Fig. 2-8)、これらのプラスミドを導入した組換え大腸菌 JM109 株および DH5a 株の培養液の加水分解活性を p-Nitrophenyl butyrate を基質として測定した。その結果、JM109 株を宿主にしたJM109(pKK-R1)を IPTG 非添加で培養したものが最も高活性を示した(Table 2-8)。 IPTG を添加した場合は生育および活性が低かった。また、構成的に発現する DH5α(pKK-R1)もまた生育、活性が低かった。各種 *p*-Nitrophenyl ester に対する活性 を調べた結果、炭素鎖 2 の *p*-Nitrophenyl acetate に対して最も活性が高く、炭素鎖が 長くなるに従って低活性であり、炭素鎖 8 の *p*-Nitrophenyl caprylate に対しては全く 活性を示さなかった(Table 2-9)。CHB 以外の化合物に対する基質特異性を調べたと ころ、EnHCH の基質特異性解析に試したクロロヒドリンおよびカルボン酸エステル に対する活性を示さなかった。これらの基質特異性ならびに 2-3-6 で得られた相同 性の結果から、DS-S-51 株由来酵素は CHB Hydrolase from *Rhizobium* sp. (RhCHBH) と命名された(2-3 考察参照)。また、JM109(pKK-R1)粗酵素液を SDS-PAGE に供し、 ゲルを CBB 染色した結果、明確なバンドが確認された(Fig. 2-9)。その分子量は約 42,000 であり、推定アミノ酸配列から予想される分子量と一致した。ゲルろ過カラ ムによる分子量も約 42,000 であり、本酵素はモノマーであることが認められた。ま た、組換え RhCHBH のN 末端配列は推定アミノ酸配列のN 末端と一致したことか ら(Fig. 2-7)、EnHCH と異なり、N 末端配列のプロセッシングは行なわれていないこ とが認められた。

Fig. 2-8 Construction of expression plasmid by *RhCHBH* gene. The gene was amplified by PCR with the forward primer which contained an *Eco*RI site and reverse primer which contained a *Hin*dIII site. After the PCR product was digested with *Eco*RI and *Hin*dIII and it was inserted into pKK223-3.

	Cell growth (O.D.)	IPTG	Activity (U/ml)	Specific activity (U/ml/O.D.)
DS- S- 51	15.28	-	0.15	0.01
JM109(pKK223-3)	2.85	+	0	0
JM109(pKK-R1)	2.58	-	5.85	2.27
JM109(pKK-R1)	1.78	+	3.16	1.78
DH5 α (pKK223-3)	3.48	-	0	0
DH5α(pKK-R1)	0.58	-	0.37	0.64

Table 2-8 Comparison of recombinant cells and strain DS-S-51 in the hydrolase activity.

The enzyme amount which releasing 1μ mol of *p*-nitrophenol from *p*-nitrophenyl butyrate for 1 min was defined to be 1U. Activities are indicated as U per ml of culture broth.

Fig. 2-9 SDS-PAGE of the recombinant cell-free extracts. Lane 1, molecular weight markers; LMW electrophoresis calibration kit (Amersham Pharmacia Biotech). Lane 2, cell-free extract of *E. coli* JM109(pKK223-3); Lane 3, cell-free extract of JM109(pKK-R1). The RhCHBH is indicated with an arrow.

<i>p</i> - Nitrophenyl ester	Relative activity				
	JM109(pKK223-3)	JM109(pKK-R1)			
O ₂ N 0 (C2)	0	100			
O ₂ N 0 (C3)	0	47.4			
O ₂ N O (C4)	0	21.1			
O ₂ N O (C6)	0	12.6			
O ₂ N O (C8)	0	0			
O ₂ N O (C10)	0	0			

 Table 2-9
 Substrate specificity for various *p*-nitrophenyl esters.

The enzyme activity is measured as releasing p-nitrophenol from p-nitrophenyl ester. The relative activity shows that the activity of p-nitrophenyl acetate (C2) is taken to be 100%.

2-3-8 組換え大腸菌による(S)-CHBM および(R)-HL の生産検討

2-3-5 と同様に、ジャーファーメンターを用いて調製した培養液 3 Lを用いて行なった。最終濃度 1%になるように(*R*,*S*)-CHBMを添加して光学分割反応を行なった。 その結果、JM109(pKK-R1)の培養液を用いると 1 hrで(*S*)-CHBMの光学純度は>99.0% e.e.になった。同様にDS-S-51 株で光学分割反応を行なうと 40 hrを要した。最終濃度 2%量の(*R*,*S*)-CHBMでも 2 hrで光学純度は>99.0% e.e.になった(Table 2-10)。 (*R*)-HL の光学純度は両菌株とも 53% e.e.程度であった。また、300 mlの培養液を水で 3 Lに 希釈し、最終濃度 2%量の(*R*,*S*)-CHBMを添加して光学分割反応を行なった。その結 果、20 hrで(*R*)-CHBMの光学純度が>99.0% e.e.になった。光学分割反応後、UF膜で 除菌し、酢酸エチル抽出、濃縮、蒸留により、ろ液から(*S*)-CHBMの回収、精製を行 なった。その結果、(*S*)-CHBM (o.p. >99.0% e.e., c.p. >99.0%, $[\alpha]_D^{20} = -16.1$ (c 1.21, CH₃OH))を得た。

また、基質に(*R*)-CHBMを用いて同様に反応を行なった場合、光学純度を落とす ことなく、100%に近い変換率で(*R*)-HLを得ることができた(Table 2-11)。ろ液を濃縮 後、酢酸エチル抽出、濃縮、蒸留により、(*R*)-HL(o.p. >99.0% e.e., c.p. >99.0%, [α]_D²⁰ = 68.1 (c 1.2, CH₃CH₂OH))を得た。

			-				
Strain	(<i>R</i> , <i>S</i>)-CHBM	(S)-CHBM		(<i>R</i>)-HL		Reaction	
	Concentration (w/v%)	Residual ratio (%)	Optical purity (%ee)	Conversion ratio (mol%)	Optical purity (%ee)	time (hr)	E value
DS-S-51	1	30.9	99.2	65.0	53.0	40	16.1
	1	30.5	99.0	65.2	53.2	1	15.6
JIVI 109(PKK-K	2	30.5	99.1	64.8	53.2	2	15.9

Table 2-10 The resolution of CHBM using the strain DS-S-75 and *E.coli* transformant.

Residual ratio is indicated to be 100 % at initial time. Conversion ratio is shown by mol %. Optical purity is calculated from quantity of each enantiomer using formula: $|R-S| / (R+S) \times 100$. E value is calculated from optical purity of substrate (CHB; eeS) and product (HL; eeP) using the formula: $Ln[(1-eeS) \times (eeP/(eeS+eeP))] / Ln[(1+eeS) \times (eeP/(eeS+eeP))]$.

Table 2-11 The conversion of (R)-CHBM to (R)-HL using the strain DS-S-75 and E.coli.

o	(<i>R</i>)-CHBM	(<i>R</i>)-HL	Peaction
Strain	Concentration (w/v%)	Conversion ratio (mol%)	Optical purity (%ee)	time (hr)
DS-S-51	1	97.9	99.0	80
JM109(pKK	-R1) 2	97.8	99.0	4

Conversion ratio is shown by mol %. Optical purity is calculated from quantity of each enantiomer using formula: $|R-S| / (R+S) \times 100$.

2-4 考察

DS-S-75 株から精製した目的酵素の基質特異性を解析した結果、第一章で記述し た菌株による反応と同様にCHBをHLに変換すること確認できたことから、本反応は 一種類の酵素による反応であることが示された。また、2HBMおよび 3HBEに対し ても加水分解活性を示しカルボン酸に変換させたことから、第一章のDS-S-75 株を 用いたCHB、2HBM、3HBEの光学分割反応は、同一の酵素による反応であることが 示された。不斉中心を形成させる側鎖に関しては、アミノ基やクロル基には活性を 示さず、ヒドロキシル基にのみ活性を示したこと、また、クローニングした本酵素 遺伝子の推定アミノ酸配列中に各種Esterase、Lipase、Hydrolase等の加水分解酵素に 見られる保存配列の存在および相同性があったことから、本酵素をHydroxy Carboxylic ester Hydrolase from Enterobacter sp. (EnHCH)と命名した。しかし、その相 同性は最大でも45%であり、ゲノムプロジェクトによって登録された詳細機能不明 の酵素であるため、新規な酵素として興味深い。 3-Hydoroxybutyrate、 2-Hydoroxybutyrateが立体選択的に加水分解されることから、CHBもエステル基が立 体選択的に加水分解された後、カルボキシル基とクロル基の分子内反応によりHL が生成されることが示唆された。EnHCHは脱ハロゲン化および脱クロル化酵素と相 同性はない。しかしながら、有機化学法では IN HCI、高温度条件でも加水分解後の 中間体である 4-Chloro-3-hydroxybutyric acidが反応進行中に検出される⁴⁵⁾のに対し、 EnHCHによる反応ではpH中性、30℃条件下で検出されないため、ラクトン化にも本 酵素が関与していることが考えられる。

*EnHCH*遺伝子のすぐ上流に 3-Hydoroxybutyrate dehydrogenaseと高い相同性のアミノ配列をコードする遺伝子が存在した。本遺伝子は一般にPoly(3-hydroxybutyrate)を 炭素源として蓄積する微生物に見られ、分解された 3-Hydroxybutyrate は 3-Hydoroxybutyrate dehydrogenaseによってAcetoacetateに酸化された後、Succinyl-CoA transferase またはAcetoacetyl-CoA synthetase によってAcetoacetyl-CoAに活性化され、 β-Ketothiolaseによって 2 分子のAcetyl-CoAを生成しTCAサイクル等にて代謝される ⁵⁴⁻⁵⁶)。基質特異性試験において、3HBEに対して最も高活性であったこと、および *p*-Nitrophenyl esterの中でもブチルエステルに対して最も高活性であったことから EnHCHもこの一連の代謝経路に関与していることが示唆された。本代謝経路で EnHCHのようなエステル化または加水分解反応を担う酵素はこれまでに報告され ていないが、DS-S-75 株が高溶存酸素下で、菌体増殖により活性が低いのは、本代 謝経路に関与することにより発現が制御されていることが考えられる。

DS-S-75 株からクローニングした DNA 断片中には、EnHCH 遺伝子の開始コドン

と考えられる配列が3ヶ所存在した。組換え大腸菌での発現試験の結果、2番目の ATG から発現させると菌体あたりの活性が最も高いこと(JM109(pKK-E4))、SD 配列 と推定される DNA 配列の位置、および3番目の ATG から発現させると発現量が著 しく低いことから(JM109(pKK-E5))、2 番目の ATG が翻訳開始点であることが示唆 された。その結果、EnHCH 遺伝子は 1104 bp で 367 アミノ酸をコードしていること が示された。また、DS-S-75株から精製した EnHCH のN末端配列は、塩基配列か ら推定されるアミノ酸の N 末端配列よりも 25 残基内部に存在したことから、 DS-S-75 株において翻訳後のプロセッシングが行われていることが示された。本配 列は疎水性アミノ酸に富んでいること、および AXA からなる切断認識の保存配列 の存在からシグナル配列であることが考えられる。SDS-PAGE において、組換え EnHCHはDS-S-75株から精製した酵素と同じ分子量であり、N末端配列も同じであ ったことから、大腸菌でも翻訳後のプロセッシングが行なわれていることが示され た。本配列が欠損すると発現量が著しく低いことから(JM109(pKK-E6))、この N 末 端配列が安定した遺伝子発現に重要であることが考えられる。また、組換え大腸菌 でも DS-S-75 株と同様に培養液が活性を示すため、培養液に直接(R,S)-CHBM を添 加しても反応させることが可能であり、培地には活性を示さないことから、EnHCH はペリプラズムに局在していることが考えられ、これにはN末端配列が関与してい る可能性が高い。

本来の開始コドンから翻訳させるために pKK-E4 を導入した大腸菌の場合、生育 阻害が生じ、過剰な高発現により大腸菌の代謝経路に影響を及ぼすことが示唆され た。一方、pKK-E3 を使用すれば、適度な発現量のため生育阻害は生じなかった。 組換え大腸菌 DH5α(pKK-E3)を用いて CHBM の光学分割反応を行なうと、構成的に EnHCH が高発現された結果、培養液あたりの酵素量が多くなり、DS-S-75 株と比較 して反応速度、反応可能な CHBM 濃度が向上した。また、(S)-HL の光学純度が高 くなったことから、EnHCH 酵素は本来 CHB に対する立体選択性は非常に高く、光 学分割に相応しい優秀な酵素であった。DS-S-75 株の菌体反応では、(S)-HL の光学 純度を下げる要因として他の酵素の存在等が考えられた。組換え大腸菌でも DS-S-75 株の菌体反応と同様に菌体破砕や洗浄菌体の調製が必要なく、反応に補酵 素などの高価な添加物を必要としないことから、簡便な反応系で利用できた。また DS-S-75 株と異なり、培養条件に影響なく構成的に発現するため、製造プロセスお ける安定した再現性が期待できる。さらに、高活性な培養液を水で10 倍希釈して反 応液として用いることにより、培養コストの削減、反応液から光学活性体の精製収 率の向上が期待できる。

一方、ショットガン法によってクローニングした DS-S-51 株由来の酵素遺伝子は、 β-ラクタマーゼやエステラーゼ等の加水分解酵素と高い相同性があった。組換え大 腸菌 JM109(pKK-R1)は、2HBM および 3HBE に対しては活性を示さずに CHB にの み活性を示したことから、CHB Hydrolase from *Rhizobium* sp. (RhCHBH)と命名した。 RhCHBH は EnHCH と同様に CHB を光学分割するが、基質特異性、立体選択性、保 存アミノ酸配列、サブユニット構造およびシグナル配列に違いが見られた。組換え 大腸菌により反応速度が向上したため、DH5α(pKK-E3)と同様に 10 倍希釈して反応 液として用いることができた。しかし、(*R*)-HL の光学純度は向上せず、CHB に対し て EnHCH よりも立体選択性が低い酵素であることがわかった。各種 *p*-Nitrophenyl ester に対する反応性および相同性検索結果から、特異性を示す基質としてブタン酸 よりも炭素数の少ない化合物が存在する可能性が高い。また、反応可能な CHBM 濃 度は DS-S-51 株よりも向上したものの、DH5α(pKK-E3)と比べると低かった。DS-S-51 株の酵素活性が低いことの他にシグナル配列が存在しないことも要因として考えら れる。今後の課題として遺伝子を単離している利点を活かし、ランダム変異による 立体選択性の向上、および *EnHCH* 遺伝子のシグナル配列の付加を行なえば、さら に優秀な酵素への展開が期待できる。

一方、(*R*)-CHBMを基質として反応した結果、光学純度を落とすことなく(*R*)-HL
 に変換することができた。先述のように有機化学法では、本反応は 1N HCl、高温度
 条件での反応が必要であり、HLの光学純度の低下および 4-Chloro-3-hydroxybutyric
 acidならびにHLの脱水体が副産物として生成することから実用的ではない⁴⁴⁾。
 (*R*)-CHBM はDH5α(pKK-E3)を用いて(*R*,*S*)-CHBMから得ることが可能であるため、
 両組換え大腸菌を使い分けることにより、安価な(*R*,*S*)-CHBMから簡便な方法でCHB、
 HLの両光学活性体を得ることが可能になった(Fig. 2-10)。

Fig. 2-10 Scheme for the production of optically active CHB and HL from (R,S)-CHB.

第三章 組換え大腸菌を用いたその他カルボン酸エステルの光学分割

3-1 序論

第一章および第二章では CHB の光学分割に関して述べたが、第一章において DS-S-75株は、クロル基がない3HBE、およびヒドロキシル基が2位に位置する2HBM も立体選択的な加水分解反応により、一方のエナンチオマーをカルボン酸へと変換 させた。第二章において精製した EnHCH は 3HBE、2HBM および EL に対して加水 分解活性を示し、同酵素によって光学分割可能であることが期待されるが、未だ立 体選択性は立証していない。

3HBは抗生物質⁵⁷⁾、生理活性物質⁵⁸⁾、香水⁵⁹⁾およびフェロモン⁶⁰⁾用途として有用な キラルビルディングブロックであり、CHBと同様に主に不斉還元法、または代謝経 路を利用した発酵法⁶¹⁾により生成される。2HBや乳酸エステル等の 2-ヒドロキシカ ルボン酸エステルの光学活性体もまた医薬や抗生物質の中間体として有用なキラル ビルディングブロックである⁶²⁾。さらに、D-乳酸はバイオプラスチックとして活用 されているL-乳酸ポリマーとステレオコンプレックスを形成し、その熱安定性を増 強させることが報告されており、近年注目されている(Fig. 3-1)⁶³⁾。光学活性 2-ヒド ロキシカルボン酸エステルの有機化学的製法は、他の光学活性体やプロキラル化合 物から誘導する方法が多く報告されているが、高価な前駆体が要求される^{64,65)}。ま た天然の光学活性体であるD-Fructoseを前駆体とする方法も報告されているが、 -70℃以下の低温反応条件が要求され実用的ではない⁶⁶⁾。生物化学的製法は、不斉還 元法¹⁹⁾およびラセミ体の立体選択的酸化反応^{67,68)}による光学分割が報告されている が、第一章で記述したように酸化還元反応には高価な補酵素が要求され、その反応 制御も容易ではない。また、L-乳酸と同様に、D-乳酸も乳酸菌等による炭水化物の 発酵により生成させることが報告されているが、微生物の代謝経路を利用するため、 培養条件の検討が難しい^{69,70)}。また、生成した乳酸を培養液から回収、精製するた めにはエステル化または重合を行なう必要がある。

また、これらの(*R*,*S*)-ヒドロキシカルボン酸エステル対して立体選択性を示すエス テラーゼ、リパーゼが報告されているが²⁴⁾、高い立体選択性を示し、高光学純度な 光学活性体を得る方法は報告されていない。そこで、本章では、DH5α(pKK-E3)を 用いて 3HBE、2HBMおよびEthyl lactate (EL)の光学分割反応を行ない、各光学活性 体の製法を検討した。また、Tetrahydrofurane-2-caboxylic esterもβ-ラクタム系抗生物 質用途として有用な光学活性体であり(Fig. 3-2)、*Aspergius melleus*由来プロテアーゼ を用いたラセミ体の光学分割による製法が報告されているが光学純度が低い⁷¹⁾。 EnHCHは本化合物のラセミ体も光学分割することが可能であり、そのメチルエステル(THFM)についても合わせて検討を行なった。

Fig. 3-1 Poly D-lactic acid and stereoblock poly lactic acid.

Fig. 3-2 Antibiotics that derive from THFM.

3-2 実験材料および方法

3-2-1 実験試薬

Methyl (*R*,*S*)-tetrahydrofuran-2-carboxylate (THFM) は、 (*R*,*S*)-Tetrahydrofuran-2-carboxylic acid (THFA)(東京化成工業(株)製)からエステル化反応により合成した。その他のカルボン酸およびそのエステルは、東京化成工業(株)製を用いた。その他の 試薬は特に指定のない限り、和光純薬工業(株)、ナカライテスク(株)、シグマアルド リッチ(株)製を用いた。

3-2-2 (R,S)-THFM の合成

メタノール 418 mlにTHFA 150 gを加え、攪拌しながら硫酸 6 mlをゆっくりと滴下 した。70℃で 10 hr還流後、ジクロロメタン 550 mlで抽出し、有機層をpH 7.0 になる まで 5% 炭酸水素ナトリウムで洗浄した。さらに水で洗浄し、無水硫酸ナトリウム で脱水後、80℃/20 mmHgにて蒸留した。合成したTHFMは¹H NMRにより解析した。 ¹H NMR (CDCl₃, 270 MHz), *δ* 1.88-2.09 (m, 3H), 2.22-2.32 (m, 1H), 3.74 (s, 3H), 3.90-4.06 (m, 2H), 4.47 (dd, *J*=5.1, 8.4 Hz, 1H)。

3-2-3 使用菌株

第二章で作製した DH5α(pKK-E3)を使用した。また対照実験として Enterobacter sp. DS-S-75 株を使用した。

3-2-4 ヒドロキシカルボン酸エステルの光学分割反応

500 mL容バッフル付三角フラスコに栄養培地Bを 100 ml調製し、DH5α(pKK-E3) 凍結保存バイアルから1 mlを無菌的に植菌し、ロータリーシェイカーにて 130 rpm、 30℃にて 20 hr培養した。培養液に 5 gのCaCO₃および 3HBE、2HBM、ELまたはTHFM のラセミ体を目的濃度になるように添加し、培養と同条件下で反応させた。1-2-4-1 で調製したDS-S-75 株の培養液 100 mlも同様に反応させた。

実用的な生産検討時には、上記と同条件で培養した 300 ml の DH5α(pKK-E3)培養 液をイオン交換水で 3 L に希釈し、各目的量のラセミ体を加え 5 L ジャーファーメ ンターにて反応した。中和剤は 3HBE、2HBM の反応には 25%(w/w) NaOH を用い、 EL、THFM の反応には 14%(w/w)アンモニア水を用いた。

3-2-5 各光学活性体の回収、精製

反応液を UF 膜(分画分子量 50,000) により除菌し、3HBE、2HBM、THFM につい

ては、ろ液の 1/2 量の酢酸エチルにて 4 回抽出を行なった。EL については、ろ液の 1/2 量のジクロロメタンにて 4 回抽出を行なった。エステルを含む有機層を各々減 圧濃縮し、3HBE、2HBM は 60℃/15 mmHg、EL は 40℃/20 mmHg、THFM は 80℃/20 mmHg にて蒸留した。

3HBA または 2HBA を含む水層を減圧濃縮し、2.3 L のメタノールに溶解した。減 圧ろ過後さらに減圧濃縮し、1 L の 2-プロパノールを加えて 4℃で 24 hr 冷却し、ナ トリウム塩として沈殿を回収、乾燥した。

3-2-6 分析方法

エステル体の濃度、光学純度、化学純度分析は 1-2-8 および 2-2-20-1 の方法によ り行なった。カルボン酸の濃度測定は、リン酸にて pH を 4.0 に調整した試料を 1-2-8 の濃度分析方法にて行なった。光学純度分析は 1-2-8 と同様にエチルエステルとし て分析した。3HBA、2HBA の化学純度分析は(株)日立作所製 HPLC を使用した。カ ラム担体は ODS-AP(内径 4.6 mm、長さ 250 mm、粒子径 5 µm:ダイソー(株)製)を 使用し、移動相; 0.1%リン酸水溶液を用いてカラム温度; 40℃、流速; 1.0 ml/min、 検出器; UV 210 nm で行なった。

3-3 結果

3-3-1 組換え大腸菌によるヒドロキシカルボン酸エステルの光学分割反応

DH5α(pKK-E3)培養液 100 ml に対して(*R*,*S*)-3HBE、(*R*,*S*)-2HBM は 8 g、(*R*,*S*)-EL、 (*R*,*S*)-THFM は 2 g を添加して 30℃にて光学分割反応を行なった。結果を Table 3-1 に示す。3HBE については *S* 体エステル、2HBM、EL、THFM については *R* 体エス テルが残存し、もう一方の光学活性体はカルボン酸へと変換された。いずれの反応 もエステル体の光学純度は>98.0% e.e.になった。また、3HBE、2HBM については、 生成したカルボン酸((*R*)-3HBA、(*S*)-2HBA)も光学純度が 98% e.e.以上であり、高 い E 値を示した。同様に DS-S-75 株の培養液を用いて同じ基質濃度で反応させた結 果、エステル体、カルボン酸とも光学純度は同等であったが、各々の反応時間は 40 倍程度を要した。

Table 3-1 The resolutions of various carboxylic esters using the strain DS-S-75 and *E.coli* transformant. (A) Methy 2-hydroxybutyrate (2HBM). (B) Ethyl 3-hydroxybutyrate (3HBE). (C) Ethyl lactate (EL). (D) Methy tetrahydrofuran-2-carboxylate (THFM).

(A)

	(<i>R</i> , <i>S</i>)-2HBM	(<i>R</i>)-2HBM		(S)-2HBA		Reaction	
Strain	Concentration (w/v%)	Residual ratio (%)	Optical purity (%ee)	Conversion ratio (mol%)	Optical purity (%ee)	time (hr)	E value
DS-S-75	8	50.0	98.0	50.6	98.0	36	458
DH5α(pKK-E3) 8	49.8	98.5	50.3	98.1	1.5	553

Residual ratio is indicated to be 100 % at initial time. Conversion ratio is shown by mol %. Optical purity is calculated from quantity of each enantiomer using formula: $|R-S| / (R+S) \times 100$. E value is calculated from optical purity of substrate (ester; eeS) and product (acid; eeP) using the formula: $Ln[(1-eeS) \times (eeP/(eeS+eeP))] / Ln[(1+eeS) \times (eeP/(eeS+eeP))]$.

(B)

	(<i>R</i> , <i>S</i>)-3HBE	(<i>S</i>)-3HBE		(<i>R</i>)-3HBA		Reaction	
Strain	Concentration (w/v%)	Residual ratio (%)	Optical purity (%ee)	Conversion ratio (mol%)	Optical purity (%ee)	time (hr)	E value
DS-S-75	8	49.7	99.5	50.1	99.0	6	1190
DH5a(pKK-E3	8	49.8	99.5	50.2	99.1	0.25	1330
	15	49.7	99.0	50.5	99.1	0.5	1175

(C)

	(<i>R</i> , <i>S</i>)-EL	(<i>R</i>)-EL		(S)-LA		Reaction	
Strain	Concentration (w/v%)	Residual ratio (%)	Optical purity (%ee)	Conversion ratio (mol%)	Optical purity (%ee)	time (hr)	E value
DS-S-75	2	39.5	98.5	60.0	65.8	40	22.3
DH5α(pKK-E	3) 8	39.3	98.5	60.5	65.2	4	21.8

	D	MeC	→ <он		+		ОН
(<i>R</i> , <i>S</i>)-TH	FM		((<i>R</i>)-THFM		(S))-THFA
-							
	(<i>R</i> , <i>S</i>)-THFM	(<i>R</i>)-	THFM	(S)-TH	FA	Reaction	
Strain	(<i>R</i> , <i>S</i>)-THFM Concentration (w/v%)	(<i>R</i>)- Residual ratio (%)	THFM Optical purity (%ee)	(S)-TH Conversion ratio (mol%)	FA Optical purity (%ee)	Reaction time (hr)	E value
Strain DS-S-75	(<i>R</i> , <i>S</i>)-THFM Concentration (w/v%) 2	(<i>R</i>)- Residual ratio (%) 32.5	THFM Optical purity (%ee) 98.5	(S)-TH Conversion ratio (mol%) 64.7	FA Optical purity (%ee) 53.2	Reaction time (hr) 20	E value

3-3-2 組換え大腸菌による光学活性ヒドロキシカルボン酸およびエステルの生産 検討

300 ml の培養液を水で 3 L に希釈し、各種ラセミ体を添加して光学分割反応を行 なった。その結果、最終濃度 15%で(*R*,*S*)-3HBE を反応させた結果、6 hr で(*S*)-3HBE の光学純度が 98% e.e.に到達した。また、(*R*,*S*)-2HBM、(*R*,*S*)-EL、(*R*,*S*)-THFM につ いては、最終濃度 8%で、各々20 hr、72 hr、20 hr でエステル体の光学純度が 98% e.e. に到達した。3-3-1 の結果と同様に 3HBE、2HBM については、生成したカルボン酸 も光学純度が 98% e.e.以上であった。DS-S-75 株の培養液を用いて、同じラセミ体濃 度で反応させた場合は希釈を行なわずに反応させたが、(*R*,*S*)-2HBM で 36 hr を要し て分割できた以外は、エステル体の光学純度 99% e.e.に到達せずに反応が途中で停 止した。

光学分割反応後、UF膜で除菌し、溶媒抽出、濃縮、蒸留により、ろ液から光学活 性エステルの回収、精製を行なった。その結果、(S)-3HBE (o.p. 99.5% e.e., c.p. >99.0%, [α]_D²⁰ =+18.0 (neat))、(R)-2HBM (o.p. 98.5% e.e., c.p. >99.0%, [α]_D²⁰ =+2.45 (neat))、 (R)-EL (o.p. 98.5% e.e., c.p. >99.0%, [α]_D²⁰ =+11.2 (neat))、(R)-THFM (o.p. 98.5% e.e., c.p. >99.0%, [α]_D²⁰ =-17.7 (neat))を得た。ラセミ体からの収率は(S)-3HBE 36.4%、 (R)-2HBM 32.4%、(R)-EL 34.5%、(R)-THFM 23.4%であった。また、溶媒抽出後の水 層を濃縮し、2-プロパノールによる塩析を行い、(R)-3HBA、(S)-2HBAをナトリウム

(D)

塩として(*R*)-3HBNa (o.p. 99.1% e.e., c.p. >99.0%, $[\alpha]_D^{20} = -14.1$ (*c* 10 H₂O))、(*S*)-2HBNa (o.p. 99.1% e.e., c.p. >99.0%, $[\alpha]_D^{20} = -10.4$ (*c* 10 H₂O))を得た。ラセミ体からの収率は 各々15.5%、16.7%であった。

3-4 考察

組換え大腸菌 DH5α(pKK-E3)を用いて 3HBE、2HBM を光学分割した結果、非常 に高い立体選択性を示し、加水分解反応によりカルボン酸へと変換された。また、 EL、THFM を光学分割した結果、変換された S 体カルボン酸の光学純度は高くなか ったが、R 体のエステルは高光学純度で残存された。R 体は非天然体であることか ら付加価値の高い化合物であり、エステル体は培養液からの回収精製が容易である ため好都合であった。本章で試みた各種エステルは、化学的性質の大きく異なるカ ルボン酸へと変換されたため、CHB、HL の場合と同様に光学分割反応後の光学活 性体の分離が容易であった。エステルからカルボン酸への加水分解反応およびその 逆のエステル化反応は、有機合成の常法によって光学純度を落とすことなく容易に 変換可能であるので、3HB、2HB についてはラセミ体から両方の光学活性体を1反 応で得られることになる。EL、THFM については立体選択性が低いため、光学分割 反応後に活性が残っていると、光学活性エステルの回収時に収率の低下が懸念され るが、遠心分離や膜ろ過によって除菌を行なえば培地には活性を示さないため、こ れを防ぐことが可能である。また、高活性な培養液を水で10倍希釈して反応液とし て用いることにより、第二章の CHB の光学分割反応と同様に、培養コストの削減、 反応液から光学活性体の精製収率の向上が期待できる。以上のように、EnHCH の基 質特異性を活用して、CHB 同様に各種カルボン酸エステルを簡便に光学分割するこ とができた。

試験した4種類の化合物について、残存エステル、生成カルボン酸の光学純度、 収率がDH5a(pKK-E3)とDS-S-75株でほぼ同等であり、ベクターのみ導入した組換 え大腸菌は全く活性を示さなかった。DH5a(pKK-E3)が示す基質特異性はEnHCHの それを表しており、EnHCHはこれらのラセミ体に対しても立体選択的な加水分解活 性を示すことが確認できた。DH5a(pKK-E3)においてDS-S-75株と比較して反応速 度および基質濃度が向上したのは、組換え大腸菌にて多くの酵素が発現された結果 である。第二章で、EnHCHは不斉中心を形成させる側鎖に関して、アミノ基やクロ ル基を持つ化合物には活性を示さず、ヒドロキシル基を持つ化合物にのみ活性を示 したことから、ヒドロキシル基を立体選択的に認識していることが認められた。さ らに本章では3HBEに対する活性は、2HBMに対する活性よりも高いため、3位の ヒドロキシル基に特異性が高いことがわかった。またC3のEL対しては、C4の 2HBMと比較して、反応速度および立体選択性が劣り、*p*-Nitrophenyl esterに対して もC4が最も高活性であったことから、C4に対して特異性が高いことが認められた。 これらの知見からも 3HBE に対して反応速度、立体選択性が高く、DS-S-75 株において本酵素は第二章にて考察した 3-Hydroxybutyrateの代謝経路に機能していることがより示唆された。

総括

本研究により、CHB のラセミ体を光学分割する有用な微生物(Enterobacter sp. DS-S-75株、Rhizobium sp. DS-S-51株)を土壌より単離した。特に高活性で各種ヒドロキシカルボン酸エステルを光学分割する EnHCH 酵素および遺伝子を解析した結果、Poly(3-Hydroxybutyrate)を炭素源として蓄積する微生物に見られる 3-Hydroxybutyrate の代謝経路に関わる加水分解酵素であることが示唆された。また、単離した各々の遺伝子(EnHCH、RhCHBH)を導入した組換え大腸菌を用いて光学活性 CHB、HL、その他各種カルボン酸およびエステルの安価で簡便な実用生産方法を確立した。

光学活性体の製法は緒言で記述の通り、有機化学法、物理化学法、生物化学法等 が知られているが、一昔前までは生物化学法で得られた光学活性体を物理化学法で 光学純度を上げたり、有機化学法で他の光学活性体へ誘導する方法が主流であった。 しかし、近年の光学分離技術の発展に伴って、生物化学法を利用せずに有機化学法、 物理化学法のみで光学活性体を得る方法も発展してきた。特に有機化学法では有用 な不斉触媒が開発され、生体触媒と競うことが多くなった。Ru-BINAP 錯体の不斉 還元触媒の功績によるノーベル化学賞(2001 年)は記憶に新しい。生物化学法は、 温和な条件下で反応することができるため、安全かつ環境に優しく、スクリーニン グにより多様な反応を生体から見出すことができることが長所であるが、一方で釜 効率(発酵、反応スケールあたりの光学活性体の生産量)が低いこと、反応の安定 性および再現性が低い等の短所がある。これらを回避するために、菌株の育種や酵 素の固定化等の改良、より有効な微生物、酵素のスクリーニングによる高活性化が 常に行なわれている。遺伝子組換え技術も改良法の一つであるが、目的とする反応 を担う酵素をクローニングし、他の宿主に導入して得られた組換え体を使用する場 合、組換え体が目的とする活性を示すかがポイントとなるため、親株の反応系がな るべく簡便であることが望ましい。本研究で見出し、使用した2種類の酵素は各々1 種類で反応を担い、1 つの遺伝子の発現により適応可能である。補酵素ならびに補 助的な遺伝子は必要としない反応系である。さらに、このような簡便な反応系では、 酵素または菌体を固定化して反応することも容易であると考えられ、今後検討を進 める予定である。また、親株と近縁種で組換え体を作製することも望ましく、 Enterobacter sp.は大腸菌と同じく腸内細菌であるため、大腸菌でもN末端アミノ酸 がプロセッシングされて、ホモ二量体を形成したことが推測される。組換え体の培 養液に直接ラセミ体を添加して反応することが可能であり、除菌によって活性が無 くなることも含めて親株の性質に近い組換え体を作製することができた。

本法を CHB の従来の製法と比較すると、不斉還元法は基質の変換率が高くなる が、補酵素、補酵素再生用(還元用)の基質(Glucose や 2-Propanol など)が必要で ある。比べて本法はこれらを要求せず、また培養スケールが反応スケールの 1/10 量 で行えるため、人件費、設備費、原材料の入手条件など、原材料の使用量以外の条 件が同じであれば安価に製造可能である。さらに、組換え大腸菌 DH5α(pKK-E3)を 用いれば、副産物として高光学純度の(S)-HL も同時に得ることができ、その他の光 学活性カルボン酸およびエステルの製法にも応用できる。また、JM109(pKK-R1)も 合わせて用いれば、(*R*,*S*)-CHB から CHB、HL の両光学活性体を得ることが可能で ある。

以上のように、本研究は生物化学法による光学活性体の製法の模範となる応用例 であり、光学活性 CHB およびその他の光学活性カルボン酸およびエステルの従来 法と比較して優れた製法でもある。得られた知見をもとに、現在、産業利用におい て法律が定める GILSP(Good Industrial Large Scale Practice)拡散防止対応の 50 L およ び1kL 培養槽を用いてスケールアップを行なっている。最後に、本研究由来の各種 光学活性体がキラルビルディングブロックとして、医薬合成、新素材などの用途に 多く利用され、世界の人々の健康と豊かな生活に貢献できることを願っている。ま た、有機化学法、物理化学法、生物化学法の各技術が競い、各分野の長所を伸ばし、 短所を補ったハイブリッドプロセスを開発することで、今後もさらに多くの有用な キラルビルディングブロックが開発されることを切望している。 本研究にあたり終始御懇篤なるご指導、ご鞭撻を賜りました奈良先端科学技術大 学院大学教授 新名惇彦先生、同助教 加藤晃先生に深く御礼申し上げます。また、 種々有益なるご助言と討論を賜りました奈良先端科学技術大学院大学准教授 吉田 和哉先生、同助教 仲山英樹先生に深甚なる謝意を表します。また、研究に関するご 教示とご助言ならびに激励を賜りましたダイソー株式会社主席研究員鈴木利雄博士 に慎んで深謝致します。

また、種々有益なご助言を賜りました柴谷武爾博士、大阪市立大学名誉教授 南浦 能至先生に感謝致します。

また、共同研究者であり本研究にご協力いただきましたダイソー株式会社井戸垣 秀聡課長、鈴木隆浩研究員に感謝致します。

また、本研究にご協力頂きました奈良先端科学技術大学院大学新名研究室のスタ ッフ、学生の皆様、そしてダイソー株式会社研究所生物化学グループの皆様に感謝 致します。

最後に、本研究をまとめる機会を与えていただきましたダイソー株式会社専務取 締役 橋本明研究開発本部長ならびに同理事 古川喜朗研究所長に深く感謝いたしま す。

参考文献

- Jung, M. E., and Shaw, T. J. (1980). Total synthesis of (*R*)-glycerol acetonide and the antiepileptic and hypotensive drug (-)-γ-amino-β-hydroxybutyric acid (GABOB). Use of Vitamin C as a chiral starting material. J. Am. Chem. Soc., 102, 6304-6311.
- Bock, K., Lundt, I., and Pedersen, C. (1983). Synthesis of S- and R-4-amino-3-hydroxybutyric acid (GABOB) and S- and R-carnitine from arabinose or ascorbic acid. Acta Chem. Scand. B., 37, 341-344.
- Rossiter, B. E., and Sharpless, K. B. (1984). Asymmetric epoxidation of homoallylic alcohols. Synthesis of (-)-γ-amino-β(*R*)-hydroxybutyric acid (GABOB). J. Org. Chem., 49, 3707-3711.
- Karanewsky, D. S., Badia, M. C., Ciosek, C. P. Jr., Robl, J. F., Sofia, M. J., Simpkins, L. M., DeLange, B., Harrity, T. W., Biller, S. A., and Gorden, E. M. (1990). Phosphorous containing inhibitors of HMG-CoA reductase. 1.
 4-[2-(Arylethyl)hydroxyphosphinyl]-3-hydroxy-butanoic acids: A new class of cell-sensitive inhibitors of cholesterol biosynthesis. J. Med. Chem., 33, 2925-2956.
- Zhou, B., Gopalan, A.S., VanMiddlesworth, F., Shieh, W.-R., and Sih, C.J. (1983). Stereochemical control of yeast reductions. 1. Asymmetric synthesis of L-carnitine. J. Am. Chem. Soc., 105, 5925-5926.
- 6. Kitamura, M., Ohkuma, T., Takaya.H., and Noyori, N. (1988). A practical asymmetric synthesis of carnitine. Tetrahedr. Lett., 29, 1555-1556.
- 7. Kasai, N. and Sakaguchi, K. (1992). An efficient synthesis of (*R*)-carnitine. Tetrahedr. Lett., 33, 1211-1212.
- Pifferi, G., and Pinza, M. (1977). Cyclic GABA-GABOB analogues. I. Synthesis of new 4-hydroxy-2-pyrrolinone derivatives. Farmaco. Ed. Sci., 32, 602-613.
- 9. Pellegata, R., Pinza, M., and Pifferi, G. (1978). An improved syntheses of γ-, δ-,

ε-lactums. Synthesis, 614-616.

- Santaniello, E., Casati, R., and Milani, F. (1984). Chiral systhesis of a component of Amanita muscaria, (S)-(-)-4-hydroxypyrrolidin-2-one, and assessment of its absolute configuration. J. Chem. Res., 132-133.
- Bare, G., Jaques, P., Hubert, J. B., Rikir, R., and Thonart, P. (1991). Bioconversion of an L-carnitine precursor in a one- or two-phase system. Appl. Biochem. Biotechnol., 28-29, 445-456.
- Shimizu, S., Kataoka, M., Morishita, A., Katoh, M., Morikawa, T., Miyoshi, T., and Yamada, H. (1990). Microbial asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to optically active ethyl 4- chloro-3-hydroxybutanoate. Biotechnol. Lett., 12, 593-596.
- Hunt, J. R., Carter, A. S., Murell, J. C., Dalton, H., Hallinan, K. O., Crout, D. H. G., Holt, R. A., and Crosby, J. (1995). Yeast-catalysed reduction of β-keto esters. 1. Factors affecting whole-cell catalytic activity and stereoselectivity. Biocatal. Biotransform., 12, 159-178.
- Hallinan. K. O., Crout, D. H. G., Hunt, J. R., Carter, A. S., Dalton, H., Murrell, J. C., Holt, R., and Crosby, J. (1995).Yeast-catalysed reduction of β-keto esters. 2. Optimization of the stereospecific reduction by *Zygosaccharomyces rouxii*. Biocatal. Biotransform., 12, 179-191.
- Yamamato, H., Matsuyama, A., and Kobayashi, Y. (2002). Synthesis of ethyl (*R*)-4-chloro-3-hydroxybutanoate with recombinant *Escherichia coli* cells expressing (*S*)-specific secondary alcohol dehydrogenase. Biosci. Biotechnol. Biochem., 66, 481-483.
- Kitamura, M., Tokunaga, M., Ohkuma, T., and Noyori, R. (1991). Convenient preparation of BINAP-Ruthenium (II) complexes catalyzing symmetric hydrogenation of functionalized ketones. Tetrahedr.Lett., 32, 4163-4166.
- 17. Davies, S. G., and Ichihara, O. (1996). Asymmetric synthesis of (+)-negamycin. Tetrahedron: Asymmetry., 7, 1919-1922.
- Inoue, K., Makino, Y., and Itoh, N. (2005). Production of (*R*)-chiral alcohols by a hydrogen-transfer bioreduction with NADH-dependent *Leifsonia* alcohol dehydrogenase (LSADH). Tetrahedron: Asymmetry, 16, 2539-2549.
- Yamamoto, H., Mitsuhashi, K., Kimoto, N., Matsuyama, A., Esaki, N., and Kobayashi, Y. (2004). A novel NADH-dependent carbonyl reductase from Kluyveromyces aestuarii and Comparison of NADH-Regeneration System for the synthesis of ethyl (S)-4-chloro-3-oxobutanoate. Biosci. Biotechnol. Biochem., 68, 638-649.
- Saratani, Y., Uheda, E., Yamamoto, H., Nishimura, A., and Yoshizako, F. (2001). Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by fungi. Biosci. Biotechnol. Biochem., 65, 1676-1679.
- 21. Kizaki, N., Yasohara, Y., Hasegawa, J., Wada, M., Kataoka, M., and shimizu, S. (2001). Synthesis of optically pure ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol., 55, 590-595.
- 22. Kasai, N. (1993). A new generation of C3 chiral building blocks. Pharmaceutical Manufacturing International, 147-151.
- 23. Denmark, S. E., and Ahmad, M. (2007). Carbonylative ring opening of terminal epoxides at atmospheric pressure. J. Org. Chem., 72, 9630-9634.
- Liu, A. M. F., Somers, N. A., Kazlauskas, R. J., Brush, T. S., Zocher, F., Enzelberger, M. M., Bornscheuer, U. T., Horsman, G. P., Mezzetti, A., Schmidt-Dannert, C., and Schmid, R. D. (2001). Mapping the substrate selectivity of new hydrolase using colorimetric screening: lipases from *Bacillus thermocatenulatus* and *Ophiostoma piliferum*, esterases from *Pseudomonas fluorescens* and *Streptmyces diastatochromogenes*. Tetrahedron: Asymmetry, 12, 545-556.
- Komagata, K. (1981). Classification and identification of aerobic bacteria. In: Classification and identification of microorganisms (Hasegawa, T., Ed.). Gakkai Syuppan Center, Tokyo, 203-245.

- 26. Barrow, G. I. and Feltham, R.K.A. (1993). Cowan and Steel's manual for the identification of medical bacteria, 3rd edition. Cambridge university press.
- Krieg, N. R. and Holt, J. G. (1984). Bergey's manual of systematic bacteriology, vol.1.
 Williams and Willkins, Baltimore.
- Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22, 4673-4680.
- 29. Kumar, S., Tamura, K., and Nei, M. (2004). Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. in Bioinform., 5, 150-163.
- 30. Iwasaki, I., Utsumi, S., and Ozawa, T. (1952). New colorimetric determination of cloride using mercuric thiocyanate and ferric ion. Bull. Chem. Soc. Jpn., 25, 226.
- 31. Kasai, N., Tsujimura, K., Unoura, K., and Suzuki, T. (1990). Degradation of 2,3-dichloro-1-propanol by a *Pseudomonas*. Agric. Biol. Chem., 54, 3185-3190.
- 32. Kasai, N., Tsujimura, K., Unoura, K., and Suzuki, T. (1992). Isolation of (S)-2,3dichloro-1-propanol assimilating bacterium, its characterization, and its use in preparation of (R)-2,3- dichloro-1-propanol and (S)-epichlorohydrin. J. Ind. Microbiol., 9, 97-101.
- van den Wijngaard, A. J., Janssen, D. B., and Witholt, B. (1989). Degradation of epichlorohydrin and halohydrins by bacterial cultures isolated from freshwater sediment. J. Gen. Microbiol., 135, 2199-2208.
- 34. van den Wijngaard, A. J., Reuvekamp, P. T. W., and Janssen, D. B. (1991). Purification and characterization of haloalcohol dehalogenase from *Arthrobacter* sp. Strain AD2. J. Bacteriol., 173, 124-129.
- 35. Nakamura, T., Nagasawa, T., Yu, F., Watanabe, I., and Yamada, H. (1992). Resolution and some properties of enzyme involved in enantioselective transformation of 1,3dichloro-2-propanol to (*R*)-3-chloro-1,2-propanediol by *Corynebacterium* sp. Strain

N-1704. J. Bacteriol., 174, 7613-7619.

- 36. Suzuki, T., Kasai, N., and Minamiura, N. (1994). A novel generation of optically active 1,2-diols from the racemates by using halohydrin dehydro-dehalogenase. Tetrahedr Asym., 5, 239-246.
- 37. Makita, A., Nihira, T., and Yamada, Y. (1987). Lipase catalyzed synthesis of macrocyclic lactones in organic solvent. Tetrahedr. Lett., 28, 805-808.
- 38. Kageyama, Y., Nihira, T., and Yamada, Y. (1990). Lipase-catalyzed synthesis of macrocyclic lactones in organic solvent. Ann. N. Y. Acad. Sci., 613, 681-685.
- Ihara, F., Kageyama, T., Hirata, M., Nihira, T., and Yamada, Y. (1991). Purification, characterization, and molecular cloning of lactonizing lipase from *Pseudomonas* sp. J. Biol. Chem., 299, 18135-18140.
- Н., 40. Yamada, Н., Sugiyama, and Kajiwara, M. (1987). **Synthesis** of (S)-N-(benzyloxy)-4-acetoxymethyl-2-azetidinone, potential intermediate for carbapenem antibiotics, by chemomicrobiological approach. Heterocycles, 26, 2841-2844.
- 41. Mori, K., Takigawa, T., and Matsuo, T. (1979). Synthesis of optically active forms of ipsdienol and ipsenol. Tetrahedron, 35, 933-940.
- 42. Saito, S., Hasegawa, T., Inaba, M., Nishida, R., Fujii, T., Nomizu, S., and Moriwake, T. (1984). Combination of borane-dimethyl sulfide complex with catalytic sodium tetrahydroborate as a selective reducing agent for α -hydroxy esters, versatile chiral building block from (*S*)-(-)-malic acid. Chem. Lett., 1389-1392.
- 43. Tanaka, A., and Yamashita, K. (1987). A novel synthesis of (*R*)- and (*S*)-4-hydroxytetrahydrofuran-2-ones. Synthesis, 570-573.
- 44. Henrot, S., Larcheveque, M., and Petit, Y. (1986). Amino acids as chiral synthons: Preparation of enantiomerically pure (*R*)- and (*S*)-malic acids and its application to the synthesis of 3-hydroxy-4-butanolide. Syn. Commun., 16, 183-190.

- 45. Yuasa, Y., and Tsuruta, H. (1997). Practical syntheses of (S)-4-hydroxytetrahydrofuran-2-one, (S)-3-hydroxytetrahydrofuran and their (R)-enantiomers. Liebigs Ann./Recueil, 1877-1879.
- 46. Yanisch-Perron, C., Vieira, J., and Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33, 103-119.
- 47. Grant, S. G. N., J. jessee, F. R. Bloom, and D. Hanahan. (1990) Differential plasmid rescue from transgenic mouse DNAs into *Escherichia coli* methylation-restriction mutants. Proc. Natl. Acad. Sci. USA, 87, 4645-4649.
- 48. Birnboin, H. C., and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res., 7, 1513-1523.
- 49. Inoue, H., Nojima, H., and Okayama, H. (1990). High efficiency transformation of *Escherichia coli* with plasmids. Gene, 96, 23-28.
- Bradford, M. M. (1976). A rapid sensitive method for the quantitative analysis of microgram quantities of protein utilizing the principal of protein-dye binding. Anal. Biochem., 72, 248-254.
- 51. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
- 52. Sakai, Y., Ishikawa, J., Fukusaka, S., Yurimoto, H., Mitsui, R., Ynase, H., and Kato, N. (1999). A new carboxylesterase from Brevibacterium linens IFO 12171 responsible for the conversion of 1,4-butanediol diacrylate to 4-hydroxybutyl acrylate: purification, characterization, gene cloning, and gene expression in *Escherichia coli*. Biosci. Biotechnol. Biochem., 63, 688-697.
- Kotani, T., Yurimoto, H., Kato, N., and Sakai, Y. (2007). Novel Acetone Metabolism in a Propane-Utilizing Bacterium, *Gordonia* sp. Strain TY-5. J. Bacteriol., 189, 886-893.
- 54. Takanashi, M., and Saito, T. (2006). Characterization of two 3-hydroxybutyrate

dehydrogenases in poly(3-hydroxybutyrate)-degradable bacterium, *Ralstonia pickettii* T1. J. Biosci. Bioeng., 101, 501-507.

- 55. Anderson, A.J., and Dawes, E. A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev., 54, 450-472.
- Dawes, E. A., Senior, P. J. (1973). The role and regulation of energy reserve polymers in microorganisms. Adv. Microb. Physiol., 10, 135-266.
- 57. Chiba, T., Nakai, T. (1985). A synthetic approach to (+)-thienamycin from methylene (R)-3-hydroxybutanoate. Chem. Lett., 651-654.
- 58. Lee, S. Y. (1996). Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng., 49, 1-14.
- Schnurrenberger, P., E. Hungerbuhler., and D. Seebach. (1987). Total synthesis of (+)-colletodiol from (S,S)-tartarate and (R)-3-hydroxybutanoate. Liebigs Ann. Chem., 733-744.
- 60. Seebach, D., A. K. Beck, R. Breitschuh, and K. job. (1992). Direct degradation of the biopolymer poly[(*R*)-3-hydroxybutyric acid] to (*R*)-3-hydroxybutanoic acid and its methyl ester. Org. Synth., 71, 39-47.
- Lee, S. Y., and Lee, Y. (2003). Metabolic engineering of Escherichia coli for production of enantiomerically pure (*R*)-(-)-hydroxycarboxylic acids. Appl. Environ. Microbiol., 69, 3421-3426.
- 62. Karl, J. H., Jiaqiang, C., Soraya, M., and Andrew, P. S. (1995). Synthetic studies on the azinothrin family of antibiotics. 4. Enantioselective synthesis of the northern half of antitumor antibiotics A83586C and citropeptin. Tetrahedron Lett., 36, 6965-6968.
- 63. Fukushima, K., Furuhashi, Y., Sogo, K., Miura, S., and Kimura, Y. (2005). Stereoblock Poly (lactic acid): Synthesis via Solid-State Polycondensation of a Stereocomplexed mixture of poly (L-lactic acid) and poly (D-lactic acid). Macromol. Biosci., 5, 21-29.
- 64. Evans, D. A., Morrissey, M. M., and Dorow, R. L. (1985). Asymmetric oxygenation of

chiral imide enolates. A general approach to synthesis of enantiomerically pure α -hydroxy carboxylic acid synthons. J. Am. Chem. Soc., 107, 4346-4348.

- 65. Corey, E. J., Link, J. O., and Shao, Y. (1992). Two effective procedures for the synthesis of trichloromethyl ketones, useful precursors of chiral α-amino and α-hydroxy acids. Tetrahedron Lett., 33, 3435-3478.
- 66. Yu, H., Ballard, C. E., Boyle, P. D., and Wang, B. (2002). An inexpensive carbohydrate derivative used as a chiral auxiliary in the synthesis of α-hydroxy carboxylic acids. Tetrahedron, 58, 7663-7679.
- 67. Adam, W., Lazarus, M., Saha-Moller, C. R., and Schreier, P. (1998). Quantitive transformation of racemic 2-hydroxy acids into (*R*)-2-hydroxy acids by enantioselective oxidation with glycolate oxidase and subsequent reduction of 2-keto acids with D-lactate dehydrogenase. Tetrahedron: asymmetry, 9, 351-355.
- 68. Oikawa, T., Mukoyama, S., and Soda, K. (2001). Chemo-enzymatic D-enantiomerization of DL-lactate. Biotechnol. Bioeng., 73, 80-82.
- Zhou, S., Yomano, L. P., Shanmugam, K. T., and Ingram, L. O. (2005). Fermentation of 10% (w/v) sugar to D: (-)-Lactate by engineered *Escherichia coli* B. Biotechnol. Lett., 27, 1891-1896.
- Ishida, N., Suzuki, T., Tokuhiro, K., Nagamori, E., Onishi, T., Saitoh, S., Kitamoto, K., and Takahashi, H. (2006). D-Lactic acid production by metabolically engineered Saccaromyces cerevisiae. J. Biosci. Bioeng., 101, 172-177.
- 71. Fujima, Y., Hirayama, Y., Ikunaka, M., and Nishimoto, Y. (2003). A scalable chemoenzymatic preparation of (*R*)-tetrahydrofuran-2-carboxylic acid. Tetrahedron: Asymmetry, 14, 1385-1391.

論文目録

学位論文の主たる部分を公表した論文 (題名、全著者名、公表時期、雑誌名、巻、ページ)

Improvement on production of (*R*)-4-chloro-3-hydroxybutyrate and (*S*)-3-hydroxy-γ-butyrolactone with recombinant *Escherichia coli* cells. Atsushi Nakagawa, Hideaki Idogaki, Ko Kato, Atsuhiko Shinmyo and Toshio Suzuki. 2006, Journal of Bioscience and Bioengineering, 101, 97-103.

Asymmetric hydrolysis of 2-hydroxy-carboxylic esters using recombinant *Escherichia coli*. Atsushi Nakagawa, Ko Kato, Atsuhiko Shinmyo and Toshio Suzuki. 2007, Tetrahedron:Asymmetry, 18, 2394-2398.

Production of (*S*)-4-chloro-3-hydroxybutyrate by microbial resolution using hydrolase from *Rhizobium* sp. DS-S-51.

Atsushi Nakagawa, Takahiro Suzuki, Ko Kato, Atsuhiko Shinmyo and Toshio Suzuki. 2008, Journal of Bioscience and Bioengineering, in press.

参考論文

(題名、全著者名、公表時期、雑誌名、巻、ページ)

クロロアルコール脱ハロゲン化酵素と光学分割への応用 中川 篤, 鈴木利雄 2007, 酵素工学ニュース, 58, 34-44.