癌免疫療法剤評価システムの開発

2006年3月

奈良先端科学技術大学院大学

バイオサイエンス研究科

後藤 正志

目次

略言	略語						
要約							
1	研究	名の背景					
	1.1	1.1 癌免疫療法のあらまし					
	1.2	MHC	分子による T 細胞への抗原提示	9			
	1.3	腫瘍拮	亢原と腫瘍抗原ペプチド	16			
	1.4	HLA	クラスIトランスジェニックマウス	19			
	1.5	5 HLA テトラマー					
2	HL	A-A2402	2/K ^b トランスジェニックマウスの作製	22			
	2.1	本研究	院の目的	22			
	2.2 材料および方法						
		2.2.1	ゲノム遺伝子の抽出	23			
		2.2.2	HLA-A2402 ゲノム遺伝子の PCR クローニング	23			
		2.2.3	H-2K ^b ゲノム遺伝子既知領域の PCR クローニング	24			
		2.2.4	H-2K ^b ゲノム遺伝子未知領域の PCR クローニング	24			
		2.2.5	HLA-A2402/K ^b 発現ベクターの構築	25			
		2.2.6	PSA cDNA のクローニングと発現ベクターの構築	25			
		2.2.7	HLA-A2402/K ^b ゲノム遺伝子の構築	26			
		2.2.8	細胞株の樹立	26			
		2.2.9	HLA-A2402/K ^b トランスジェニックマウスの作製	26			
		2.2.10	HLA - ペプチド結合試験	27			
		2.2.11	抗原ペプチドの免疫と細胞傷害性試験	27			
		2.2.12	サイトカイン産生解析	28			
		2.2.13	フローサイトメトリー解析	29			
		2.2.14	染色体マッピング	29			
		2.2.15	腫瘍増殖抑制試験	29			
	2.3 実験結果						

		2.3.1	HLA-A2402 ゲノム遺伝子の PCR クローニング	30			
		2.3.2	H-2K ^b ゲノム遺伝子の PCR クローニング	30			
		2.3.3	HLA-A2402/K ^b ゲノム遺伝子の構築	31			
		2.3.4	HLA-A2402/K ^b トランスジェニックマウスの作製	31			
		2.3.5	HLA-A2402/K ^b の細胞表面発現	32			
		2.3.6	HLA-A2402/K ^b の染色体マッピング	32			
		2.3.7	既知 HLA-A24 結合性腫瘍抗原ペプチド免疫による CTL 誘導	32			
		2.3.8	前立腺特異抗原 PSA 由来ペプチドによる特異的 CTL の誘導	33			
		2.3.9	前立腺特異抗原 PSA 由来ペプチドのヒト腫瘍細胞表面発現	33			
		2.3.10	同定 PSA 由来ペプチドによるマウス腫瘍増殖抑制効果	34			
	2.4	考察		35			
3	HL	A-A24 🗦	テトラマーの作製	51			
	3.1	本研究	究の目的	51			
	3.2	材料す	および方法	52			
		3.2.1	可溶性 HLA および可溶性 β2M 発現ベクターの構築	52			
		3.2.2	ウエスタンブロッティング	53			
		3.2.3	可溶性 HLA 分子と可溶性 β2M 分子の精製	53			
		3.2.4	HLA テトラマーの作製	54			
		3.2.5	特異的 CD8 ⁺ CTL の誘導とフローサイトメトリー解析	54			
	3.3	実験約	结果	56			
		3.3.1	可溶性 HLA 分子の発現解析	56			
		3.3.2	HLA-A24 テトラマーによる特異的 CTL の検出	56			
	3.4	考察		58			
4	結	侖		66			
参	考文	献		67			
謝	射辞 7						

略語

本論文では下記の略語を使用した。

- MHC : Major Histocompatibility Complex
- HLA: Human Leukocyte Antigen
- β2M: Beta 2-Microglobulin
- TCR: T cell receptor
- CTL: Cytotoxic T Lymphocyte
- TAP : transporter associated with antigen processing
- IFA: Incomplete Freund's Adjuvant
- DMSO: dimethyl sulfoxide
- APC: antigen presenting cell
- PSA: prostate specific antigen
- MAGE : melanoma-associated antigen
- CEA: carcinoembryonic antigen
- TERT : telomerase reverse transcriptase
- WT1: Wilms' tumor suppressor gene 1
- ELISA: Enzyme-Linked Immunosorbent Assay
- IFN: interferon

近年、腫瘍細胞特異的に傷害活性を示す HLA クラス I 拘束性 CD8⁺ 細胞傷害 性 T 細胞 (CTL)を誘導して腫瘍を排除する癌免疫療法が注目されている。腫 瘍組織に浸潤している腫瘍特異的 CD8⁺ CTL は、腫瘍細胞上に提示されている腫 瘍抗原ペプチド - HLA クラス I 複合体を特異的に認識することにより、腫瘍細 胞を傷害する。このため、癌免疫療法剤の開発では、HLA クラス I を発現する 動物を利用して *in vivo* における腫瘍特異的 HLA 拘束性 CD8⁺ CTL の誘導活性を 指標としながら実施する必要がある。また、癌免疫療法剤投与によるがん患者 体内の腫瘍特異的 CD8⁺ CTL の誘導効果についてモニタリングすることは重要 である。そこで本研究では、癌免疫療法剤評価システムの開発を目的として、 HLA-A24 発現マウスと HLA-A24 テトラマーを作製した。

HLA-A24 発現マウスの作製では、HLA クラス I 分子とマウス CD8 分子との相 互作用が低いことを考慮して、HLA-A2402 の α3 領域以降をマウス MHC クラス I である H-2K^b の相当領域に置換したキメラ HLA を発現するマウス、 HLA-A2402/K^bトランスジェニックマウスを作製した。また、マウス体内で誘導 された特異的 CD8⁺ CTL の細胞傷害活性について評価するために必要な標的細 胞を樹立した。これまでに同定された複数のヒト腫瘍抗原ペプチドを免疫した ところ、ペプチド特異的に細胞傷害作用を示す HLA 拘束性 CD8⁺ CTL の誘導が 認められた。これより、当評価システムの有用性が明らかになった。更に、前 立腺特異抗原 PSA より前立腺がん患者を対象とする臨床への応用が期待される HLA-A24 結合性腫瘍抗原ペプチドを同定した。

HLA-A24 テトラマーの作製では、大腸菌における可溶性 HLA-A2402 の発現量 が極めて低いことに起因して、HLA-A24 テトラマーの作製は困難な状況にあっ たが、可溶性 HLA-A2402 のN 末端近傍アミノ酸をコードするコドンを宿主大腸 菌にとって最適なコドンに改変することにより、可溶性 HLA-A2402 の大腸菌発 現量は劇的に増強されることを見出し、HLA-A24 テトラマーの作製が可能にな った。作製した HLA-A24 テトラマーは、HLA-A2402/K^bトランスジェニックマ

ウスより腫瘍抗原ペプチド免疫によって誘導された CD8⁺ T 細胞および HLA-A24 陽性滑膜肉腫患者由来末梢血細胞より腫瘍抗原ペプチド刺激によって 誘導された CD8⁺ T 細胞を特異的に検出した。

本研究で開発した癌免疫療法剤評価システムは、HLA-A24 陽性がん患者を対 象とする癌免疫療法剤の開発において利用価値が高い。

研究の背景

1.1 癌免疫療法のあらまし

免疫システムは、ウイルスや細菌などが体に進入した場合、これらを異物とし て認識して体内から排除して感染症にかからないようにしている。近年、免疫 システムは本来自分の体の一部の細胞から発生してくる腫瘍細胞も異物として 認識し、排除できる能力をもっていることが明らかになった。しかし、免疫力 が低下していたり、腫瘍細胞が免疫をすりぬける能力を持っていたりすると、 腫瘍は大きくなって私たちの体を破壊する。癌免疫療法は、直接あるいは間接 的に自己の免疫力を高めることにより、腫瘍を排除する治療法である。

がんを免疫学的に治療しようとする戦略は新しくはない。今日までLAK 療法、 TIL 療法、BRM 療法、サイトカイン療法などの非特異的免疫賦活治療が、がん 患者に対して試みられてきた。LAK(lymphokine activated killer cells)療法とは がん患者自身のリンパ球を末梢血より採取し、体外で IL-2 とともに数日間培養 することにより腫瘍細胞に強い殺傷作用を示すリンパ球を大量に増やしたのち、 患者に戻す治療法である。TIL療法とは腫瘍細胞に対する特異性を高めるために、 末梢の血液ではなく腫瘍組織そのものに集まっているリンパ球を採取し、LAK 療法と同じように、IL-2 とともに数日間培養したのちに、再び患者に戻す治療 法である。BRM(Biological Response Modifiers)療法とは、生体応答調節剤(BCG、 OK-432、PSK、Lentinan、Bestatin など)を外科療法、放射線、あるいは化学療 法などと併用することにより免疫系をはじめとして身体全体の働きを調節する ことにより治療効果を得ようとする治療法である。また、サイトカイン療法と はサイトカイン (IL-2、IL-12、IFN、TNF など) 投与により免疫担当細胞を活性 化・増殖させ、腫瘍細胞を殺傷する治療法である。このように、非特異的免疫 |賦活治療の目的は、腫瘍細胞に対して特異的ではなく"非自己"すべてに対する一 般的な免疫力を向上させ、がんの消滅をはかることだった。しかし、これらの 多くは当初期待されたほどの効果を上げることができず、癌免疫療法の実現は 期待されなくなった。

しかし、1991 年に非特異的免疫賦活療法による癌免疫療法は、科学的根拠に 基づく腫瘍特異的免疫療法へ発展した。即ち、T. Boon らにより患者腫瘍組織に 「浸潤している腫瘍細胞特異的に傷害活性を示す CD8⁺ 細胞傷害性 T 細胞(CTL) が認識する腫瘍抗原とその分解産物の腫瘍抗原ペプチドが同定された(1)。そ れ以後、多くの研究グループより、腫瘍特異的 CD8⁺ CTL が認識するヒト腫瘍抗 原が同定されている。CD8⁺ CTL が認識する標的は腫瘍細胞表面上の腫瘍抗原由 |来ペプチド - HLA 複合体である。このため、抗体療法と異なり、腫瘍抗原の発 現が、核、細胞質、あるいは細胞膜であっても問題にならない。宿主の生体内 において腫瘍細胞が存在すれば、その腫瘍細胞は細胞表面に自然と腫瘍抗原ペ プチドを発現しており、そのペプチドに対する特異的な CD8⁺ CTL も自然に誘導 されている。しかし、その CD8⁺ CTL は十分な数が存在しなかったり十分な殺傷 作用を発揮できなかったりするため、腫瘍は増殖し、結果的に宿主に致命傷を 与える。また、腫瘍自体にも CD8⁺ CTL の攻撃をかわす様々な機構 (免疫逃避機 構)がある。そこで、癌免疫療法の一つの癌ワクチン療法は、腫瘍抗原あるい は腫瘍抗原ペプチドを原薬とする癌ワクチン療法剤を投与し、患者体内で腫瘍 特異的な CD8⁺ CTL を大量に誘導してがんを治療しようとする。このような腫瘍 特異的 CD8⁺ CTL の誘導により腫瘍を排除することを作用メカニズムとする癌 免疫療法は、厳しい副作用が比較的少ないことも期待され、「外科療法」、「化学 療法」、「放射線療法」に次ぐ、第4の癌治療法として再び注目され始めている。

現在、腫瘍特異的 CD8⁺ CTL 誘導による腫瘍の排除を共通の目的として、腫瘍 抗原特異的癌免疫療法の実現を目指した様々な臨床研究が始まっている(図1)。 しかし、後述するが、多くの腫瘍抗原は元来正常タンパク質である場合が多く、 腫瘍特異的 CD8⁺ CTL とは自己の正常細胞に対して細胞傷害性を示す T 細胞で ある。このような自己を積極的に攻撃する T 細胞は負の選択により胸腺で除か れている、あるいは末梢で寛容となっている。これより、癌免疫療法の現状課 題は、生体内において長期間に渡って生存可能で腫瘍特異的に強い殺傷作用を 示す CD8⁺ CTL を強力に誘導することである。そこで、HLA あるいは TCR に親 和性の高い腫瘍抗原ペプチドへの改変研究(2、3)、抗原提示細胞である樹状細

胞を活性化する併用アジュバント(CpG などの TLR リガンドや α-GalCer などの CD1d リガンド)の探索(4、5)や末梢の免疫寛容を担う制御性 T 細胞(CD25⁺ CD4⁺Treg)を阻害する抗体や低分子化合物の開発(6)について研究され始めて いる。

図1.癌に対する免疫療法

1.2 MHC 分子による T 細胞への抗原提示

主要組織適合遺伝子複合体 major histocompatibility complex (MHC)の遺伝子産物 MHC 分子には、別々の細胞内分画から細胞表面へ抗原ペプチドを運ぶ、MHC クラス I およびクラス II 分子の二種類がある。ヒトの場合、白血球抗原 HLA (human histocompatibility leukocyte antigen)と呼ばれ、 HLA クラス I と II がこれに相当し、移植などで問題となる白血球の型として知られて遺伝的に多型性を有している。

MHC クラス I 分子は、ウイルス粒子、細胞質内寄生性細菌を宿主より除去す るための重要な分子であり、すべての有核細胞と血小板に発現している。CD8⁺ CTL は TCR を介して、樹状細胞などの抗原提示細胞表面のペプチド - MHC ク ラス
I
複合体を認識して活性化し、感染細胞のウイルス粒子や細胞質内寄生性細 菌由来の非自己タンパク質に由来するペプチドや腫瘍細胞の腫瘍抗原ペプチド - MHC クラス I 複合体を認識して破壊する。MHC クラス I 分子の構造は、MHC 遺伝子にコードされるα鎖と、それと非共有結合により結合している MHC 遺伝 子にコードされない小さな β_2 ミクログロブリン (β_2 M)の二つのペプチド鎖に より構成され、α鎖のみで細胞膜と結合している(図2)。MHC クラスI分子の 細胞外領域は α 鎖を形成する三つのドメイン (α 1、 α 2、 α 3) と一つの β 2M の合 わせて四つのドメインより構成される。MHC クラス I 分子の最大の特徴は、会 合した際にペプチドを収容する溝(ペプチド収容溝)を形成する α1 および α2 ドメイン構造にある。ペプチド収容溝を形成するアミノ酸のうち特定の位置に あるものが高度の多型性を示し、ペプチド収容溝のポケットに結合するペプチ ドのアミノ酸配列には MHC クラス I 分子ごとにモチーフが存在する(表1)。 MHC クラス I 分子に結合するペプチドは通常 8~12 アミノ酸により構成されて おり、ペプチド上のアミノ酸の側鎖が、ペプチドを MHC 分子につなぎとめるこ とから、アンカー残基と呼ばれる。ペプチドは中央部で折れ曲がり、この部分 が溝から突出してTCRと接触する(図2)。

図2.MHC クラスIによる抗原ペプチドの CD8⁺ 細胞傷害性 T 細胞への提示

A) HLA-A2 分子に結合性を示す、ウイルス由来の5種類のペプチドを重ねて横から見た図。ペプチドは P1~P9 で示した9個のアミノ酸からなり、両端(N および C 末端)のアミノ酸はすべて一致しており、この部分のアミノ酸の 側鎖が HLA-A2 のペプチド収容溝にある3つのボケットに収容される。ペプチドの中央部分のアミノ酸残基(P3~ P7) の側鎖は、ペプチド収容溝からせり上がり TCR により認識される。B)HLA-A2 分子のペプチド収容溝を、 TCR 側より見た図。溝は相対する2つの α ヘリックス(右巻きらせん)構造に囲まれている。破線の円は A, B,およ び F ポケットの位置を示し、カッコ内の数字に対応するペプチド上のアミノ酸残基の側鎖がここに収容される。黒塗 りの部分は HLA-I で多型を示すアミノ酸残基を示す。CHO は糖鎖を示す。C) HLA-I により提示された抗原ペプチ ドの認識による CD8⁺細胞傷害性 T 細胞の活性化および NK 細胞の細胞傷害活性の抑制。KIR は細胞傷害抑制 性レセプター(killer-cell inhibitory receptor)を表す。

表1. 主なMHCクラスIの代表的結合モチーフ

アミノ酸位置	1	2	3	4	5	6	7	8	9
HLA-A24		Y							L
(human)		М							I
									F
HLA-A2		L							L
(human)		М							V
H-2Kb					F				L
(mouse)					Y				Ι
									М
H-2Db					Ν				I
(mouse)									М
H-2Kd		Y							L
(mouse)		F							Ι
									V
H-2Dd		G	Ρ						I
(mouse)									L
									F

MHC クラス II 分子は、樹状細胞、ランゲルハンス細胞、マクロファージ、単 球、B 細胞などの抗原提示細胞 (antigen presenting cell; APC)に限定して発現す る。CD4⁺ T 細胞は抗原提示細胞表面のペプチド - MHC クラス II 複合体を認識 して種々のサイトカインを分泌する。これにより、T 細胞の分化と増殖および APC の活性化を促す。MHC クラス II 分子の構造は、細胞膜を貫通する α 鎖と β 鎖の糖蛋白よりなる。 α 、 β 鎖は、おのおの二つのドメインをもち、それらが会 合して四つのドメインより構成されている。MHC クラス II 分子に結合するペプ チドは、9~20 数個のアミノ酸からなり、1~2 個の間隔をおいて存在する 3~5 個のアミノ酸の側鎖がMHC クラス II に結合し、その間のアミノ酸の側鎖がCD4⁺ T 細胞の TCR に認識される (図3)。最近、抗腫瘍免疫における、腫瘍特異的 CD8⁺ CTL を活性化させる CD4⁺ ヘルパー T 細胞の重要性が報告されている(図 4)

図3. MHC-II を介した抗原ペプチドの CD4⁺ T 細胞への提示

A) HLA-DR1 により抗原提示を受けるインフルエンザへマグルチニンペプチド(HA306-318)の構造を例として示 す。MHC-II との結合に重要なアンカー・アミノ酸残基で、最もN 末端側の Tyr の位置を position 1 (PI)として C 末 端方向に番号をつけた場合の、各残基の番号およびアミノ酸を表示した。またアミノ酸の側鎖が、MHC-II のペプ チド収容溝の5個のポケットに収容されるアミノ酸残基を四角で囲んで示した。ペプチド結合で結ばれたペプチドの 主鎖を黒の実線で示す。各アミノ酸上の黒〈塗りつぶした原子はMHC-II のペプチド収容溝のポケットに埋まってい る原子を、白い原子は MHC-II とは接触していない原子を、灰色の原子は MHC-II および溶媒にともに接している 原子を示す。B) HA306-318を結合した MHC-II を真上(TCR 側)より見た立体構造を示す。円は、HA306-318 上で MHC-II との結合に重要なペプチド5個のアンカー・アミノ酸残基(PI, P4, P6, P7, および P9)の側鎖を収 容すべく、MHC-II のペプチド収容溝に存在するポケットの位置を示す。黒塗りの部分は、とトの代表的な MHC-II である HLA-DR1 分子において多型性を示すアミノ酸残基を示す。C) 細胞外から抗原提示細胞に取り込まれた 抗原がペプチドへと分解され、MHC-IIと結合して CD4⁺T 細胞に提示される様子を示す。α1、α2、β1、および β2 は、MHC-II の細胞外ドメインを示す. TCR 部分の α、β は TCR の α 鎖とβ 鎖を、また C と V は定常領域と可 変領域をそれぞれ示す。

図4.抗腫瘍免疫応答の活性化

ヘルパーT(Th)細胞は腫瘍微小環境で様々な役割を果たす。Th 細胞や多くの免疫エフェクター細胞が直接あるいは間接的に腫瘍細胞と相互作用する。

ところで、MHC クラス I 分子に結合するペプチドの細胞内における生成には、 プロテアソームが重要である。プロテアソーム(タンパク質分解活性をもつサ ブユニット 20S と制御サブユニット 19S/PA700 あるいは 11S/PA28 の複合体から 構成)の機能は IFN-γ による調節を受け、IFN-γ 存在下で IFA-γ 誘導性の 20S サ ブユニット構成分子とともに PA28 の合成が起こり、構成プロテアソーム (19S-20S-19S)から免疫プロテアソーム(11S/PA28-20S-11S)への置き換わり が誘導される。一般にプロテアソームは、ユビキチン結合タンパク質の ATP 依 存性の分解を行い、免疫プロテアソームはユビキチン化非依存的なタンパク質 分解を行うが、免疫プロテアソームは CD8⁺T 細胞に提示するペプチドの生成を 効率的に行う。また、全合成タンパク質の 30-80%を占める小胞体で正しい立体 構造を取れなかったタンパク質 (defective ribosomal products; DRiPs)もまた、 リボソームにおいて翻訳されたペプチド鎖の小胞体内への輸送を担うタンパク チャンネルであるトランスロコンにより細胞質へ輸送された後、ユビキチン化 され、プロテアソームによって分解される(小胞体関連タンパク質分解)。また、 プロテアソーム非依存性の経路であるアミノペプチダーゼによる分解も重要で ある。

細胞質内で分解されたペプチドは、HSP70 などのシャペロン分子により小胞 体へ運搬され、TAP(transporter-associated with antigen processing)分子によって ATP 依存性に小胞体内腔へと輸送され、MHC クラスI分子に結合する。内因性 に発現する腫瘍抗原タンパク質も同様の経路で腫瘍抗原ペプチドまで分解され て小胞体内腔に運ばれ、MHC クラスI分子のペプチド収容溝に結合し、腫瘍抗 原ペプチド - MHC クラスI分子複合体を形成し、腫瘍細胞表面に輸送され提示 される。

内因性抗原提示に加え、クロスプレゼンテーションと呼ばれる外因性抗原の MHC クラス I 分子による提示機構が存在する。このシステムは抗原提示細胞の マクロファージや樹状細胞に顕著である。外来刺激により活性化状態となった 樹状細胞は初めて貪食した抗原を分解してペプチド断片として MHC クラス II 上に提示し、CD4⁺ T 細胞の分化・増殖を促進する。更に活性化樹状細胞は、貪 食した抗原タンパク質のペプチド断片を MHC クラス I 上に提示し、CD8⁺ T 細胞 の分化・増殖を促進する。癌ワクチン療法剤として投与された腫瘍抗原ペプチ ドは、樹状細胞などの抗原提示細胞により取り込まれたのち、内因性抗原提示 経路とクロスプレゼンテーション経路により MHC クラス I 分子によって細胞表 面に提示され、腫瘍抗原ペプチドに特異的な CD8⁺ T 細胞の増殖活性化を促す(図 5)。

by Ken Beauchamp J. Clin. Invest.

図5.クロスプレゼンテーション

ワクチン由来の長鎖ペプチド(step 1) は、血清プロテアーゼ(step 2) や APC 表面プロテアーゼ(CSP)(step 3) により分解され、APC 表面の"empty"な MHC クラス | 分子に結合する。9 残基アミノ酸より構成されるペプチドを ワクチンとして利用した場合、"empty"な MHC クラス | 分子および既に MHC クラス | 分子に結合している内因性 ペプチドと置き換わる(step 4)。エンドサイト - シスにより取り込まれたペプチド(step 5、6) はエンドソーム(EC)の プロテアーゼ(P)により切断される、また細胞質(step 7)にあるプロテアーゼ(PS)により切断される。細胞質に出た ペプチドは TAP により小胞体(ER) へ運ばれる(step 8)。小胞体では"empty"な MHC クラス | 分子に結合できる ようにアミノペプチダーゼ(AP)によっても更に処理される(step 9)。ペプチド - MHC 複合体はゴルジ装置(step 10) を介して細胞表面に輸送され、CD8⁺ T 細胞に曝露される(step 11)。エンドサイト - シスにより取り込まれたペプチ ドはまた、エンドソームのリサイクリング機構(step 12、13)にともなう MHC クラス | 分子と結合でき、細胞表面に提 示される(step 14)。 1.3 腫瘍抗原と腫瘍抗原ペプチド

現在までに同定されている腫瘍抗原は、 腫瘍特異的変異抗原、 分化抗原、 組織特異的抗原、 がん - 精巣抗原、 多種類のがんで共通に過剰発現する抗 原、に分類される(表2)。癌ワクチン療法への応用を考えた場合の腫瘍抗原の 理想的な特徴として、多くの患者に適用できる(汎用性が高い)こと、自己免 疫疾患などの有害事象誘導の危険性がない(腫瘍特異性が高い)こと、免疫原 性が高い(腫瘍特異的 CD8⁺ CTL を誘導し易い)こと、免疫系からの逃避が起こ りにくい(癌細胞がその発現を欠落すると癌の性質を失う)こと、等が挙げら れる。

腫瘍特異的変異抗原は、腫瘍に特異性が高く、患者の正常組織にも存在しない ため、腫瘍に対する魅力的な標的分子と考えられる。しかし、変異は個々の腫 瘍に特異的で、患者間において異なる場合が多い。このため、腫瘍特異的変異 領域に由来する腫瘍抗原ペプチドを利用した癌ワクチン療法剤は、汎用性に欠 ける。しかし最近、滑膜肉腫の原因遺伝子産物 SYT-SSX1 より、患者間で共通 アミノ酸配列を有する腫瘍抗原ペプチドが同定された(7)。滑膜肉腫は関節を 発生起源として下肢や上肢にできる軟部肉腫の一つで、18 番染色体の SYT 遺伝 子と X 染色体の SSX1 遺伝子の融合が原因とされている。この融合領域のアミ ノ酸配列中に、腫瘍特異的 CD8⁺ CTL により認識される汎用性のある腫瘍抗原ペ プチド領域が同定され、滑膜肉腫に対する癌ワクチン療法の臨床研究が進めら れている(8)。腫瘍特異的変異抗原を除く腫瘍抗原は正常アミノ酸配列を有す るタンパク質である。このような腫瘍抗原は、正常組織では限定された部位だ けに発現していたり、胎生期および癌細胞のみに発現していたり、癌細胞と免 疫系から隔離された精巣などの組織のみに発現していたりしている。

- 伏4・6164 しに凹足616に工は腥物116	表2.	これまて	『に同定され	れた主な腫瘍抗	原
---------------------------	-----	------	--------	---------	---

Antigen Category	腫瘍抗原	発現腫瘍		
	SYT-SSX1	滑膜肉腫		
腫瘍特異的変異	bcr-abl	慢性骨髄性白血病		
	p53	肺がん、脳腫瘍、血液腫瘍、胃がん		
	gp100	メラノーマ		
公化结丙 纽缕特異结丙	MART-1/Melan-A	メラノーマ		
力也加尿、組織付共加尿	tyosinase	メラノーマ		
	PSA	前立腺癌		
	MAGE-1	メラノーマ、肺がん		
がん - 精巣抗原	MAGE-3	メラノーマ、肺がん		
	NY-ESO-1	各種がん		
	WT1	各種がん		
	TERT	各種がん		
腫瘍過剰発現	CEA	消化器系がん		
	SART-1	食道がん		
	HER-2/neu	乳がん、卵巣がん、肺がん		

腫瘍抗原や腫瘍抗原ペプチドを同定することは単純ではない。図6で示すように、腫瘍抗原の同定はがん患者より腫瘍に浸潤している腫瘍特異的 CD8⁺ CTL と自家腫瘍細胞株を樹立することより始まる。腫瘍細胞株より mRNA を抽出して逆転写により cDNA を合成し、哺乳類発現ベクターに組み込んだ cDNA ライプラリーを作製する。約 100 個の大腸菌をプールして抽出したプラスミドプールと抗原提示細胞に必要な MHC クラスI cDNA を COS 細胞などに導入して一過性に過剰発現させ、腫瘍特異的 CD8⁺ CTL と共培養する。CD8⁺ CTL 由来のサイトカインの分泌を指標としてスクリーニングし、腫瘍抗原遺伝子が導入された COS 細胞を単離する。この COS 細胞に導入された cDNA プールから二次、三次スクリーニングを行い、腫瘍抗原をコードする cDNA を単離する。更に、腫瘍 特異的 CD8⁺ CTL が認識するエピトープ領域を同定するため、腫瘍抗原をコードする cDNA 由来の様々な長さの cDNA 断片を作製し、COS 細胞に導入して、腫瘍特異的 CD8⁺ CTL の反応性について解析し、エピトープのおおよその位置を決定する。この範囲内で、抗原提示 MHC に結合するペプチドモチーフを参考にしてペプチドを化学合成し、腫瘍特異的 CD8⁺ CTL の反応性を調べることにより腫 瘍抗原ペプチドとして決定する。しかし、CD8⁺ CTL の樹立法は確立されておら ず困難な技術である。これより、腫瘍抗原ペプチドの同定には技術的な制約が ある上に多くの時間が必要である。

最近では、各種組織の cDNA データベースを用いてサブトラクションを行う ことにより、新規な腫瘍抗原をコードする cDNA が同定されている(9、10)。 このようにして同定した腫瘍に関連する抗原より抗原提示される MHC クラス I に結合すると予測される候補ペプチドを化学合成し、合成ペプチド存在下で患 者由来末梢血細胞を *in vitro* 刺激培養することにより抗原ペプチド特異的 CD8⁺ CTL を誘導する。誘導された CD8⁺ CTL が腫瘍細胞に対して特異的な傷害性を 示す場合、腫瘍関連抗原は腫瘍抗原、候補ペプチドは腫瘍抗原ペプチドである。

図6. T細胞を用いた腫傷抗原の機能的 cDNA 発現クローニング法

腫傷細胞より mRNA を抽出し,逆転写酵素を用いて cDNA に変換し,浦乳類発現ベクターに組み込んで cDNA ライブラリーを作製する。ライブラリーのプール(約 100 cDNA / プール)を抗原提示 MHC の cDNA とともに COS 細胞に導入して一過性に発現させる。DNA 導入 COS 細胞に対する腫傷反応 T 細胞の認識を、T 細胞のサイトカ イン分泌を指標としてスクリーニングすることにより、腫傷抗原遺伝子が導入された COS 細胞を同定する。その COS 細胞に導入した cDNA プールから個々の cDNA を分離し、再度 T 細胞を用いてスクリーニングを行い、腫傷 抗原をコードする cDNA を単離する。 1.4 HLA クラス I トランスジェニックマウス

HLA-A2.1 トランスジェニックマウスは 1989 年に N. Holmes らによりウイルス 性疾患を対象とする研究ツールの一環として作製された。しかし、インフルエ ンザウイルス感染によるウイルス抗原に特異的な HLA-A2.1 拘束性 CD8⁺ CTL の 誘導は認められなかった (11)。その後、MHC クラス I 分子の α1 および α2 領域 は TCR 可変領域と相互作用するが、α3 領域は CD8 分子と主に相互作用するこ とが明らかになった(12、13)。そこで、1991年に Chesnut らは、HLA-A2.1の α3 領域以降を H-2K^b (マウス MHC クラス I)の相当領域に置換した HLA-A2.1/K^b トランスジェニックマウスを作製した(14)。HLA-A2.1/K^b 分子は、HLA-A2.1 の α1 領域と α2 領域から構成されるペプチド収容溝が保存されているため、ペ プチド結合モチーフはHLA-A2.1と完全に一致している。その結果、HLA-A2.1/K^b トランスジェニックマウスでは、インフルエンザウイルス感染により効率よく HLA-A2.1 拘束性 CD8⁺ CTL の誘導が認められた。CD8 分子と相互作用可能な HLA-A2.1/K^b分子の発現が、胸腺での正の選択により幅広い多様な HLA-A2.1 拘 束性 CD8⁺ T 細胞を生み出したと考えられる。更に、1996 年に A. Sette らは、38 種類のウイルス抗原(HBV、HCV、およびHPV)由来ペプチドの特異的 CD8⁺CTL 誘導性ついて、HLA-A2.1/K^bトランスジェニックマウス(in vivo)とヒト末梢血 細胞(in vitro)を比較解析した(15)。その結果、 マウスおよびヒトで誘導可 能なペプチド 14 個、 マウスおよびヒトで誘導不可能なペプチド 13 個、 マ ウスのみで誘導可能なペプチド 5 個、 ヒトのみで誘導可能なペプチド 6 個で あった。これより、HLA-A2.1 結合性抗原ペプチドの第1次スクリーニング評価 系として HLA-A2.1/K^b トランスジェニックマウスを利用すると、ヒトで CD8⁺ CTL 誘導活性を示す抗原ペプチドを約 70%(14+13/38)の確率でスクリーニン グできると報告された。

このように、HLA クラス I トランスジェニックマウスの利用により、生体環 境下で CD8⁺ CTL を誘導できる抗原ペプチドの同定が短期間(1~2 週間)で可 能になる。更に、同定された抗原ペプチドを原薬とするワクチン製剤の開発を 目指した場合、*in vivo* での CD8⁺ CTL 誘導活性の増強を目的として、ペプチド の改良研究、ワクチン剤形、および併用アジュバントなどの研究が可能になる。 このように、HLA クラス I トランスジェニックマウスは特異的 CD8⁺ CTL 誘導 性の抗原ペプチドを原薬とする免疫療法剤の開発において必須な動物である。 1.5 HLA テトラマー

従来、HLA 拘束性 CD8⁺ T 細胞の特異性の検出は不可能だった。そこで、1998 年に Altman らは HIV 患者末梢血中における HIV ウイルス抗原ペプチド - HLA 複合体に特異的な CD8⁺ CTL を検出するツールとして HLA-A2.1 テトラマーを作 製し、有用性の高さを報告した(16)。ペプチド - HLA 複合体と TCR 間の affinity は $10^4 \sim 10^7$ M と低く、可溶性分子の相互作用を見ることは、表面プラズモン共 鳴を利用した BIAcore などの非常に高感度な装置でしか捉えることはできなか った。しかし、ペプチド - HLA 複合体を四量体化することにより、単量体の avidity を数百倍増強可能であることが明らかになった。二量体では約 20 倍、三 量体では約 100 倍、そして四量体(テトラマー)では 200 ~ 700 倍に off-rate が 遅くなることが報告されている(17)。 このため、蛍光標識化 HLA テトラマー は特定の CD8⁺T 細胞の T 細胞受容体 (TCR)に特異的に結合することにより目 的の CD8⁺T 細胞をフローサイトメトリーで特異的に定量解析できる。

HLA テトラマーの作製では、HLA の C 末端の膜貫通ドメイン以降をビオチン 酵素認識配列に置換した構造を有する組換え可溶性 HLA、組換え可溶性 β2M、 および合成ペプチドを用いて *in vitro* で複合体を形成する。そして、蛍光標識ス トレプトアビジンを結合することにより、抗原ペプチド - HLA 複合体の蛍光標 識四量体 (HLA テトラマー)を作製する (図7)。しかし、HLA-A24 テトラマ ーの作製は不可能な状況にあった。

図7. HLA テトラマーの構造

2 HLA-A2402/K^bトランスジェニックマウスの作製

2.1 本研究の目的

HLA-A には国や人種によって大きな偏りがある。HLA-A2.1 は欧米人の約 50%、 日本人の約 45%が陽性で、HLA-A24 は日本人の約 60%、欧米人の約 20%、中国 人の約 33%、ヒスパニック人の約 27%が陽性である(18)。これより、癌ワクチ ン療法剤の開発において HLA-A2.1 および HLA-A24 陽性患者を対象とすること は重要と考えられる。癌ワクチン療法の腫瘍排除メカニズムは、腫瘍特異的に 殺傷作用を示す HLA クラス I 拘束性 CD8⁺ CTL を誘導することであるため、癌 ワクチン療法剤の開発では、対象とする HLA を発現する動物を利用して *in vivo* での HLA 拘束性 CD8⁺ CTL の誘導活性を指標にしながら実施する必要がある。

本研究では、HLA-A24 陽性患者を対象とする癌ワクチン療法剤の開発を目指 して、HLA-A24 を発現するマウスを作製し、マウス体内で誘導された特異的 CD8⁺ CTL の細胞傷害活性を評価可能な標的細胞を樹立する。更に、当評価系を 利用して、前立腺特異抗原 PSA より癌ワクチン療法として臨床応用可能な抗原 ペプチドを同定する。

2.2 材料および方法

2.2.1 ゲノム遺伝子の抽出

ヒト肺扁平上皮癌の RERF-LC-AI 細胞 (HLA-A2402 発現) とマウスリンパ腫細 胞 EL4 (H-2K^b発現)のそれぞれ 3.5 x 10⁶ 個を 10ml の 0.7% 塩化ナトリウム水 溶液に懸濁した。1,200rpm 4℃で5分間遠心したのち、15mlの10mM Tris-HCl (pH 8.3) に懸濁した。次に、150µl の 10mg/ml Proteinase K と 150µl の 10% SDS を加えて 60°C で 1 時間、更に 37°C で 16 時間保温した。その後、15ml のフェ ノール/TE を加えて穏やかに 15 分間混合したのち、9,000rpm 室温で 10 分間遠心 した。次に、水相画分に 15ml のフェノール/クロロホルムを加えて穏やかに 15 分間混合し、9,000rpm 室温で 10 分間遠心した。更に、水相画分に 15ml のクロ ロホルムを加えて穏やかに 15 分間混合したのち、9,000rpm 室温で 10 分間遠心 した。更に、水相画分に 1.5ml の 3M 酢酸ナトリウム (pH 5.2) と 30ml のエタ ノールを加えて穏やかに混合し、析出したゲノムを 80%エタノールで洗浄した のち、15mlのTE(pH 8.0)を加えた。更に、100µlの10mg/ml RNaseを加えて 37°Cで1時間保温した。その後、10mlのフェノール/クロロホルムを加えて穏や かに 5 分間混合したのち、9,000rpm 室温で 10 分間遠心した。次に、水相画分に 10mlのクロロホルムを加えて穏やかに5分間混合したのち、9,000rpm 室温で10 分間遠心した。更に、水相画分に 1ml の 3M 酢酸ナトリウム (pH 5.2) と 20ml の 75%エタノールを加えて穏やかに混合した。析出したゲノムを 80%エタノー ルで洗浄したのち、2mlのTE(pH 8.0)を加えて完全に溶解した。

2.2.2 HLA-A2402 ゲノム遺伝子の PCR クローニング

RERF-LC-AI 細胞由来ゲノム遺伝子を鋳型として、上流プライマーHLA26-1F (5'-CCC <u>AAG CTT</u> ACT CTC TGG CAC CAA ACT CCA TGG GAT-3')と下流プ ライマーA24-BgIII30(5'-CGG G<u>AG ATC T</u>AC AGG CGA TCA GGT AGG CGC-3') を用いて *Pfu*-DNA Polymerase (Promega 社製)にて PCR を行った(下線部はそ れぞれ制限酵素 *Hind* III および *Bgl* II の認識配列を示す)。反応は、95°C で 45 秒間保温したのち、95°C 45 秒 66°C 1分 72°C 4分を 35 サイクル実施し、その後 72°Cで10分間保温した。増幅した遺伝子断片およびpBluescript II (Bgl II⁺)を*Hind* III および *Bgl* II にて消化したのち、DNA Ligation Kit Ver.2(宝酒造社製)を使用 して連結させ、コンピテントセル JM109 にトランスフォームした。出現した各 コロニーを 100µg/ml アンピシリン含有 LB 液体培地にて 37°C で一晩培養し、 Plasmid Maxi Kit(キアゲン社製)を用いてプラスミドを精製した。その後、ABI PRISMTM 377 DNA シーケンサ(ABI Applied Biosystems 社製)にてシーケンス 解析を行い、Genbank データベース(Accession Z72422)と比較した(pB-A2402)。

2.2.3 H-2K^bゲノム遺伝子既知領域の PCR クローニング

EL4細胞由来ゲノム遺伝子を鋳型として、上流プライマーH-2KBF3(5'-CGC AGG CTC TCA CAC TAT TCA GGT GAT CTC-3')と下流プライマーH-2KB3R(5'-CG<u>G</u> <u>AAT TC</u>C GAG TCT CTG ATC TTT AGC CCT GGG GGC TC-3')を用いて、TaKaRa LA Taq TM(宝酒造社製)にて PCR を行った(下線部は制限酵素 *Eco*R Iの認識 配列を示す)。反応は、95°C で 45 秒間保温したのち、95°C 45 秒 68°C 1分 72°C 4分を 25 サイクル実施した。増幅した遺伝子断片および pBluescript II SK+を *Eco*R I および制限酵素 *Kpn* I にて消化したのち、DNA Ligation Kit Ver.2 を使用し て連結させ、コンピテントセル JM109 にトランスフォームした。出現した各コ ロニーを 100µg/ml アンピシリン含有 LB 液体培地にて 37°C で一晩培養し、 Plasmid Maxi Kitを用いてプラスミドを精製した。その後、ABI PRISMTM 377 DNA シーケンサ(ABI Applied Biosystems 社製)にてシーケンス解析を行い、 Genbank データベース (Accession v00746 および v00747)と比較した。

2.2.4 H-2K^bゲノム遺伝子未知領域の PCR クローニング

EL4 細胞由来ゲノム遺伝子を鋳型として、上流プライマーH-2kbF5(5'-AGG ACT TGG ACT CTG AGA GGC AGG GTC TT -3')と下流プライマーH-2kb5R(5'-CAT AGT CCC CTC CTT TTC CAC CTG TGA GAA -3')を用いて *Pfu*-PCR を行った。 反応は、95°C で 45 秒間保温したのち、95°C 45 秒 68°C 1 分 72°C 4 分を 25 サイ クル実施し、その後 72°C で 10 分間保温した。増幅した遺伝子断片および pBluescript II(Bgl II⁺)を BamH I および Bgl II にて消化したのち、DNA Ligation Kit Ver.2 を使用して連結させ、コンピテントセル JM109 にトランスフォームした。 出現したコロニーを100 µg/ml アンピシリン含有 LB液体培地にて 37°C で一晩 培養し、Plasmid Maxi Kit を用いてプラスミドを精製し、ABI PRISMTM 377 DNA シーケンサにてシーケンス解析を行い、Genbank データベース (Accession v00746)と比較した。

2.2.5 HLA-A2402/K^b発現ベクターの構築

HLA-A2402/K^bトランスジェニックマウス脾細胞より ISOGEN (ニッポンジーン 社製)を用いて total RNA を精製した。次に、SuperScript[™] Choice System(GIBCO BRL 社製)を用いて、添付プロトコールに従って 10µg の total RNA を鋳型に Oligo(dT)₁₂₋₁₈による逆転写反応を行い、cDNA を合成した。更に、cDNA を鋳型 として、上流プライマーchi.PF1 (5'-CCC <u>AAG CTT</u> CGC CGA GGA TGG CCG TCA TGG CGC CCC GAA-3')と下流プライマーchi.PR1 (5'-CCG <u>GAA TTC</u> TGT CTT CAC GCT AGA GAA TGA GGG TCA TGA AC-3')を用いて *Pfu*-PCR を行っ た(下線部はそれぞれ *Hind* III および *Eco*R I の認識配列示す)。反応は、95°C で 45 秒間保温したのち、95°C 45 秒 60°C 1 分 68°C2 分を 25 サイクル実施し、その 後 72°C で 10 分間保温した(下線部は *Hind* III および *Eco*R I を示す)。増幅した 遺伝子 pcDNA3.1(+)あるいは pEF1/myc-His A (Invitrogen 社製)に導入すること により、HLA-A2402/K^b発現ベクター (pcHLA-A2402/K^b および pEF1-A2402/K^b) を構築した。

2.2.6 PSA cDNA のクローニングと発現ベクターの構築

ヒト前立腺由来の cDNA Library (Clontech 社製)を鋳型として、上流プライマー hPSA-F (5'-CGC GGA TCC ACC ATG TGG GTC CCG GTT GTC TTC CT-3')と下 流プライマーhPSA-R (5'-CCG GAA TTC TCA GGG GTT GGC CAC GAT GGT GTC-3')を用いて *Pfu*-PCR を行った (下線部はそれぞれ制限酵素 *Bam*H I およ び *Eco*R I の認識配列示す)。 増幅した遺伝子断片を pcDNA3.1(+)あるいは pEF4/myc-His A に挿入し、PSA 発現ベクター (pc-hPSA および pEF4-hPSA)を 構築した。シーケンス解析によりヒト PSA cDNA (Accession M26663)であること を確認した。

2.2.7 HLA-A2402/K^bゲノム遺伝子の構築

pB-A2402 を *Hind* III と *Bgl* II で、pB-H-2 K^bを *Bam*H I と *Eco*R I で 37 2 時間 消化したのち、アガロースゲルにて電気泳動を行い、目的の DNA フラグメント を含むゲル片を回収した。それぞれのゲル片に含有する遺伝子断片を Prep-A-Gene DNA purification kit (Bio-Rad 社製)を用いてそれぞれを抽出したのち、 DNA Ligation Kit Ver.2 を使用してキメラ遺伝子 HLA-A2402/K^b を構築した (pB-A2402/K^b)。11µg の pB-A2402/K^bを *Hind* III と *Eco*R I、更にベクターのみ を切断する制限酵素 *Dra* I で消化したのち、SeaKem GTG アガロースゲルで電気 泳動して、HLA-A2402/K^b を含有するゲル片を回収した。その後、Prep-A-Gene DNA purification kit を用いて精製し、1/10 TE バッファー(10mM Tris pH 8、 0.1mM EDTA pH 8)に溶解することにより、マイクロインジェクション用 DNA 溶液を調製した。

2.2.8 細胞株の樹立

ヒト Jurkat 細胞および Hela 細胞に pcHLA-A2402/K^b、マウス EL4 細胞に pEF1-A2402/K^b をトランスフェクトすることにより、Jurkat-A2402/K^b 細胞、 Hela-A2402/K^b細胞、および EL4-A2402/K^b細胞を樹立した。また、EL4-A2402/K^b 細胞に pEF4-hPSA、Hela-A2402/K^b細胞に pc-hPSA をトランスフェクトし、E24P 細胞および H24P 細胞を樹立した。

2.2.9 HLA-A2402/K^bトランスジェニックマウスの作製

C57BL/6 マウスの受精卵に HLA-A2402/K^b ゲノム遺伝子をマイクロインジェク ションした(日本 SLC 株式会社)。この操作を 6 回繰り返し実施した。HLA-A2402 遺伝子のクローニングで使用したプライマーHLA26-1F、A24-BgIII30、および TaKaRa LA Taq を用い、マウス尾由来 DNA 調製物を鋳型に PCR を行うことによ リ、1.5kbp の大きさの特異的 DNA バンドが認められる個体を選別した。選別し たヘテロマウスの 8 ライン (04-2、05-1、04-1、04-5、04-6、10-5、14-1、および 15-2)と C57BL/6 マウス由来の脾細胞 5 x 10⁶ 個を FITC 標識抗 HLA-ABC 抗体 B9.12.1 (Immunotech 社製) で染色することにより、HLA-A2402/K^b の細胞表面 発現について FACScan[®] (Becton Dickinson 社製)を用いて解析した。また、内 因性のマウス MHC クラス I は別途 FITC 標識抗 H-2D^b 抗体 28-14-8 (Pharmingen 社製)にて染色した。

2.2.10 HLA - ペプチド結合試験

T2-A24 細胞を 3 x 10⁵ 個/穴で 96 穴プレートに播種して 26 で 16.5 時間培養後、 最終濃度 100、30、10、3、1、0.3、0.1µg/ml となるよう PSA ペプチドを添加し た。ここではシステイン不含無血清 RPMI (シグマアルドリッチ社製) 培地を用 いた。その後、26 で 3 時間、37 で 0.5 時間インキュベートした。抗 HLA-A24 抗体 0041HA(One Lambda 社製)で染色したのち、PE 標識抗マウス Igs 抗体(Dako 社製) で染色し、FACscan にて平均蛍光強度 (MFI) を測定した。HLA 結合活 性は次のように算出した。100 x (試験ペプチド添加 MFI - ペプチド非添加 MFI) /ペプチド非添加 MFI = 蛍光強度 (% MFI)。

2.2.11 抗原ペプチドの免疫と細胞傷害性試験

ヒト腫瘍抗原 HER-2/neu、gp100、CEA、MAGE-1、MAGE-3、あるいは TERT に 由来する腫瘍抗原ペプチドおよび破傷風毒素由来の合成ヘルパーペプチド (FNNFTVSFWLRVPKVSASHLE)を DMSO でそれぞれ 40mg/ml および 20mg/ml に調製した。次に、抗原ペプチド液 27.5µl およびヘルパーペプチド液 27.5µl を 500µl の PBS(-) と混合し、更にガラスシリンジを用いて等量の不完全フロイン トアジュバント IFA (和光純薬社製)と混合することにより water-in-oil エマル ションを作製した。PSA 由来ペプチドは DMSO で 40mg/ml に調製したのち、 27.5µl を 527.5µl の蒸留水と混合し、更にガラスシリンジを用いて等量の Montanide ISA 51 と混合することにより water-in-oil エマルションを作製した。調 製した薬剤は 200µl/個体で尾根部皮下に投与した。1週間後に脾臓を摘出し、 スライドガラスのフロスト部分にて擦り破壊し、ACK バッファー(0.15M NH₄Cl, 10mM KHCO₃, 0.1mM EDTA, pH7.2-7.4) にて溶血処理し、脾細胞を個体毎に調製 した。0.7 x 10⁷ 個を 24 穴プレートの各穴に播種し、免疫ペプチド終濃度 1µg/ml 存在下で再刺激培養した。培養液には、RPMI1640 培地に 10%FCS、10mM HEPES、 20mM L-グルタミン、1mM ピルビン酸ナトリウム、1mM MEM 非必須アミノ酸、 1%MEM ビタミン、55µM 2-メルカプトエタノールを含む CTM 培養液を用いた。 5~6日後、再刺激培養した脾細胞を回収した。また、1 x 10⁶個の Jurkat-A2402/K^b あるいは EL4-A2402/K^bを 3.7MBg のクロム酸ナトリウム (⁵¹Cr) で 1 時間ラベ ルし、更に終濃度100μg/mlの免疫ペプチドで1時間パルスした。(ラベル2時間、 ペプチドパルス1時間)。また、ペプチド非パルスの細胞を陰性コントロール標 的細胞として準備した。その後、10mlの10% FCS 含有 RPMI1640 培地にて2回 洗浄したのち、5 x 10⁴ 個/ml に調製した。回収した脾細胞(E)とラベルした標 的細胞(T)を E/T=80,40,20,10 となるように 96 穴プレートに播種した。37 で4時間反応後、各 well の上清を回収し、死細胞より放出された⁵¹Cr を、1470 WIZARD γ - カウンティング (Wallac 社製)を用いて測定した。特異的細胞傷害 活性は次のように算出した。100 x (共培養での放出 - 自然放出) / (1% NP40 による最大放出 - 自然放出) = 細胞傷害活性(% specific lysis)。

2.2.12 サイトカイン産生解析

HLA-A2402/K^b トランスジェニックマウスに PSA 由来抗原ペプチドを ISA 51 に てエマルション化したのち 1 週間免疫した。鼠径部リンパ節細胞を調製し、0.7 x 10⁷ 個を 24 穴プレートの各穴に播種し、免疫ペプチド終濃度 1µg/ml、組換えマ ウス IL-2 を 30U/ml 存在下で 5 日間 *in vitro* 再刺激培養した。MACS (Miltenyi Biotec 社製)を利用してネガティブセレクションにより精製した CD8⁺ T 細胞を 1 x 10⁵ 個/穴を播種し、更に、Hela 細胞、Hela-A2402/K^b細胞、および H24P 細胞 を 1 x 10⁴ 個/穴を播種し、37 で 18 時間共培養した。その後、マウス IFN-γ ELISA キット (R&D Systems 社)を用いて上清中の IFN-γ 量を測定した。

2.2.13 フローサイトメトリー解析

HLA-A2402/K^b トランスジェニックマウスの脾細胞および EL4-A2402/K^b 細胞は FITC 標識抗 HLA 抗体 B9.12.1 あるいは FITC 標識抗 H-2D^b抗体で染色した。Hela、 Hela-A2402/K^b、および H24P 細胞は HLA-A24 抗体 0041 で染色したのち、PE 標 識抗マウス Igs 抗体にて染色した。その後、FACScan にて解析した。

2.2.14 染色体マッピング

HLA-A2402/K^b トランスジェニックマウスより調製した脾細胞について pB-A2402/K^bをプローブにHLA-A2402/K^bの染色上の位置について解析した(有 限会社クロモソームサイエンスラボ)。

2.2.15 腫瘍増殖抑制試験

3 x 10⁵ 個の E24P 細胞を HLA-A2402/K^bトランスジェニックマウスの背中の皮内 に移植した。PSA₂₋₁₀ ワクチンを Montanide ISA 51 にて移植日と1 週間前に尾根 部皮下に投与した (200µg / 200µl / 個体)。リンパ節転移が認められた移植後 23 日まで腫瘍の容積を測定した。

2.3 実験結果

2.3.1 HLA-A2402 ゲノム遺伝子の PCR クローニング

HLA-A24 ゲノム遺伝子の塩基配列 (Accession Z72422)を HLA-A2 ゲノム遺伝 子の塩基配列 (Accession K02883) と比較すると、HLA-A24 では上流 273bp 短 かった (図 8)。また、HLA-A2 では当領域にキメラ HLA の 5'末端となる制限 酵素 Hind III 認識配列が存在していた。当領域はプロモーター領域に位置してお り、HLA-A2とHLA-A26(Accession AB005048)のHind III 認識配列近傍の塩基 配列は完全に一致していることより、HLA-A サブクラス間において相同性が高 く、HLA-A24の Hind III 認識配列近傍の塩基配列も HLA-A2 と一致している可 能性が高いと考えられた。また、キメラ HLA の連結部位として必要な制限酵素 Bgl II 認識配列は HLA-A2 のイントロン 3 に存在していたが、HLA-A24 のイン トロン 3 には存在していなかった (図8)。 そこで、HLA-A2 の Hind III 認識配 列を含む塩基配列のオリゴヌクレオチドを上流プライマー、HLA-A24 のイント ロン3中の塩基配列の一部をBgl II 認識配列に置換したオリゴヌクレオチドを下 流プライマー、HLA-A2402 を両方のアレルより発現しているヒト肺扁平上皮癌 RERF-LC-AI 細胞由来ゲノム遺伝子を鋳型として PCR クローニングした。その 結果、得られた複数のクローンの中に Z72422 の塩基配列と完全に一致している クローンが存在していた。また、未登録の領域はすべてのクローンで一致して いた(図9)。

2.3.2 H-2K^bゲノム遺伝子の PCR クローニング

H-2K^b ゲノム遺伝子の塩基配列は Genbank データベースにおいて 2 つに分断 (Accession v00746 および v00747)されて登録されていた。v00746 は 5'末端よ り 1,594bp、v00747 は 3'末端より 1,837bp の塩基配列を示していた。しかし、こ れらの塩基配列中にはキメラ HLA の連結部位として必要な制限酵素 BamH I 認 識配列は存在していなかったため、これらの分断領域の間(イントロン 3)に存 在していることが明らかになった。このため、必要領域(BamH I 下流の領域) をクローニングするにあたり、v00746 のエキソン 3 に存在する制限酵素 Kpn I 認識配列を含む近傍配列のオリゴヌクレオチドを上流プライマー、v00747 の 3' 末端近傍配列に制限酵素 *Eco*R I 認識配列を付加したオリゴヌクレオチドを下流 プライマー、H-2K^bを両方のアレルより発現している EL4 由来ゲノム遺伝子を 鋳型として PCR クローニングした。その結果、得られた複数のクローンにおい て未登録領域(*Bam*H I 認識配列より v00747 の 5'末端まで)の塩基配列につい ては完全に一致していたが、v00747 の塩基配列と完全に一致するクローンは存 在せず、異なる位置に PCR エラーが挿入されていた。そこで、2 つのクローン を利用して目的の塩基配列を有する H-2K^bゲノム遺伝子を構築した(図10)。

2.3.3 HLA-A2402/K^bゲノム遺伝子の構築

クローニングした HLA-A2402 ゲノム遺伝子の *Bgl* II 認識配列と H-2K^b ゲノム遺 伝子の *Bam*H I 認識配列を連結することにより HLA-A2402/K^b ゲノム遺伝子を構 築した。

2.3.4 HLA-A2402/K^bトランスジェニックマウスの作製

第1回目のインジェクションでは、81個の受精卵を対象に施行し、4匹のレシ ピエントマウスに移植したが産出されなかった。第2回目のインジェクション では、50個の受精卵を対象に施行し、2匹のレシピエントマウスに移植するこ とにより4匹が産出されたが離乳前にすべて死亡した。第3回目のインジェク ションでは101個の受精卵を対象に施行し、4匹のレシピエントマウスに移植す ることにより11匹が産出されたが離乳前にすべて死亡した。第4回目のインジ ェクションでは、168個の受精卵を対象に施行し、6匹のレシピエントマウスに 移植することにより22匹が産出され、19匹が離乳したが、01-4は奇形のため交 配不可能で、05-6は離乳後まもなく死亡した。第5回目のインジェクションで は、221個の受精卵を対象に施行し、8匹のレシピエントマウスに移植すること により14匹が産出され、6匹が離乳した。第6回目のインジェクションでは、 225個の受精卵を対象に施行し、8匹のレシピエントマウスに移植することにより13匹が産出され、6匹が離乳した。第6回目のインジェクションで し、225個の受精卵を対象に施行し、8匹のレシピエントマウスに移植することによ

05-1、05-6、04-1、04-5、04-6、10-5、14-1、および 15-2)がトランスジェニック マウスとして同定された。これらラインの中で癌ワクチンの免疫により特異的 CD8⁺ CTL 誘導反応活性が最も高く検出された 04-1 ラインをホモ化した。

2.3.5 HLA-A2402/K^bの細胞表面発現

HLA-A2402/K^bトランスジェニックマウスにおいて、受精卵にマイクロインジェ クションした *HLA-A2402/K^b* 遺伝子より目的の mRNA が発現していることを確 かめるため、脾細胞由来の total RNA より 1 本鎖 cDNA を合成し、予想される 5' 末端配列を含む上流プライマーと 3'末端配列を含む下流プライマーを用いて PCR を行い、増幅した遺伝子断片の塩基配列を解析した。その結果、目的通り の塩基配列をもつことが明らかになった(図11)。また、HLA と β 2M の複合 体を認識する抗 HLA-A, B, C 抗体 B9.12.1 を利用したフローサイトメトリー解析 により、HLA-A2402/K^b がマウス β 2M と複合体を形成して細胞表面に発現して いることが明らかになった(図12)。

2.3.6 HLA-A2402/K^bの染色体マッピング

HLA-A2402/K^b 遺伝子の染色体上の位置について解析した。その結果、第 18 染 色体 A2 領域に挿入されていることが明らかになった(図13)。

2.3.7 既知 HLA-A24 結合性腫瘍抗原ペプチド免疫による CTL 誘導 HLA-A2402/K^bトランスジェニックマウスの有用性を評価するため、これまでに ヒト末梢血細胞より *in vitro* で腫瘍特異的な HLA-A24 拘束性 CD8⁺ CTL を誘導で きることが報告された腫瘍抗原ペプチド MAGE-1₁₃₅₋₁₄₃(19) MAGE-3₁₉₅₋₂₀₃(20) gp100_{int4 170-178}(21) HER-2/neu₆₃₋₇₁(22) HER-2/neu₇₈₀₋₇₈₈(23) CEA₂₆₈₋₂₇₆(24) CEA₆₅₂₋₆₆₀(24) TERT₃₂₄₋₃₃₂(25)、および TERT₄₆₁₋₄₆₉(25)を HLA-A2402/K^b トランスジェニックマウスに免疫した。その結果、ヒト腫瘍抗原ペプチド特異 的な CTL の誘導が認められた(図14)

2.3.8 前立腺特異抗原 PSA 由来ペプチドによる特異的 CTL の誘導

前立腺特異抗原 PSA より HLA-A24 結合性抗原ペプチド候補について、2 つのペ プチド HLA 結合予測システム BIMAS (http://bimas.cit.nih.gov/molbio/hla_bind) および SYFPEITHI (http://www.uni-tuebingen.de/uni/kxi)を利用して PSA₂₋₁₀、 PSA₆₋₁₄、 PSA₁₃₋₂₁、 PSA₁₀₂₋₁₁₀、および PSA₁₉₄₋₂₀₂ を予測し、化学合成した。先ず HLA-A24 を発現するヒト T2 細胞を利用して、これら候補ペプチドが HLA-A24 に結合するか解析した。T2 細胞は TAP-1 および TAP-2 欠損細胞であり、内因性 ペプチドが HLA により細胞表面に提示されないため、細胞表面に輸送される HLA 複合体はペプチドを持たない" empty"な HLA である。この性質を利用し て、ペプチドの HLA 結合親和性評価試験に利用されている(26)。その結果、 PSA₂₋₁₀、 PSA₆₋₁₄、 PSA₁₃₋₂₁、および PSA₁₉₄₋₂₀₂ において HLA-A24 結合性が認めら れた。(図 1 5)。次に、HLA-A2402/K^b トランスジェニックマウスを利用し、 PSA₂₋₁₀、 PSA₆₋₁₄、 PSA₁₃₋₂₁、 PSA₁₀₂₋₁₁₀、および PSA₁₉₄₋₂₀₂ の *in vivo* における特異 的 CTL 誘導活性について評価した。その結果、PSA₂₋₁₀、 PSA₆₋₁₄、 PSA₁₃₋₂₁、およ び PSA₁₉₄₋₂₀₂において特異的 CTL 誘導活性が認められた(図 1 6)。

2.3.9 前立腺特異抗原 PSA 由来ペプチドのヒト腫瘍細胞表面発現

PSA₂₋₁₀、PSA₆₋₁₄、PSA₁₃₋₂₁、および PSA₁₉₄₋₂₀₂ がヒト腫瘍細胞で HLA-A24 によっ て細胞表面に提示されるか解析するため、PSA を発現していないヒト子宮頚癌 の Hela 細胞に由来する Hela-A2402/K^b 細胞および H24P 細胞を樹立した。Hela 細胞では腫瘍抗原 MAGE-1 および MAGE-3 が発現していることが知られている (25)。また、MAGE-1 および MAGE-3 より HLA-A24 結合性腫瘍抗原ペプチド MAGE-1₁₃₅₋₁₄₃ および MAGE-3₁₉₅₋₂₀₃ が同定されており、転移性メラノ - マ患者を 対象に臨床研究されている(19、20、28)。そこで、MAGE-1₁₃₅₋₁₄₃ と MAGE-3₁₉₅₋₂₀₃ を HLA-A2402/K^bトランスジェニックマウスに免疫して特異的 CD8⁺ CTL を誘導 し、Hela 細胞と Hela-A2402/K^b 細胞に対する反応性について IFN- を指標とす る ELISA 法にて解析した。その結果、Hela-A2402/K^b 細胞に対する特異的な反応 が認められた(図17-A)。この反応は抗 CD8 抗体で顕著に阻害された。一方、

HIV 由来 HIV-1_{Nef138-147} (29) で誘導した特異的 CD8⁺ CTL は、HIV-1_{Nef138-147} を Hela-A2402/K^b にパルスしない限り反応しなかった(データ不掲載)。これより、 HLA-A2402/K^b トランスジェニックマウスと Hela-ELISA 評価システムにより、 臨床応用可能な腫瘍抗原ペプチドを同定できることが明らかになった。そこで、 PSA₂₋₁₀、PSA₆₋₁₄、PSA₁₃₋₂₁、および PSA₁₉₄₋₂₀₂ 特異的 CD8⁺ CTL の Hela 細胞、 Hela-A2402/K^b 細胞、および H24P 細胞に対する反応性について解析した。その 結果、PSA₂₋₁₀、PSA₁₃₋₂₁、および PSA₁₉₄₋₂₀₂ によって誘導された特異的 CD8⁺ CTL は H24P 細胞に対して特異的な反応を示した。この反応は抗 CD8 抗体で顕著に 阻害された。一方、PSA₆₋₁₄ で誘導した CD8⁺ CTL は H24P 細胞に対して特異的な 反応を示さなかった。これより PSA₂₋₁₀、PSA₁₃₋₂₁、および PSA₁₉₄₋₂₀₂ はヒト腫瘍 細胞で HLA-A24 によって細胞表面に提示されることが明らかになった(図17 - B)。

2.3.10 同定 PSA 由来ペプチドによるマウス腫瘍増殖抑制効果 HLA-A2402/K^b トランスジェニックマウスで同定した抗原ペプチドの臨床応用 への可能性について評価するため、その一例として PSA₂₋₁₀を原薬とする癌ワク チンの腫瘍増殖抑制効果について解析した。ここでは臨床研究で一般に利用さ れている Montanide ISA 51 を利用して実施した(n=6)。その結果、PSA₂₋₁₀ 癌ワ クチンの投与によって腫瘍増殖抑制が認められた。ビークル投与では全ての個 体において腫瘍の生着が認められたが、PSA₂₋₁₀ 癌ワクチンを投与することによ り3個体において腫瘍の完全な生着阻止が認められた(図18)。

2.4 考察

近年の分子生物学の急速な発達により多くの腫瘍抗原が同定されている。腫瘍 抗原より臨床応用できる腫瘍抗原ペプチドを同定するには、HLA 結合性候補ペ プチドより特異的 CD8⁺ CTL を誘導できる抗原ペプチドを絞り込み、患者体内の ペプチド特異的 CD8⁺ CTL 前駆細胞の頻度と腫瘍細胞に対する特異的細胞傷害 性について解析する必要がある。更に、同定した腫瘍抗原ペプチドを原薬とす る癌ワクチン療法剤の開発では、HLA を発現する動物を利用して in vivo におけ る HLA 拘束性 CD8⁺ CTL の誘導活性を指標にしながら実施する必要がある。 HLA クラス I トランスジェニックマウスを利用すると、 HLA 結合性抗原ペプ チドの短期間での絞り込み、 同定したペプチドを原薬とする癌ワクチンの in *vivo* HLA 拘束性 CD8⁺ CTL 誘導活性を指標とした剤形の最適化、 治験プロト コールの検討、 併用アジュバント(TLR 作動薬、CD1d 作動薬、サイトカイン、 抗 CTLA-4 抗体、抗 Treg 抗体、など)の研究が可能になる。更に、同定したヒ ト腫瘍抗原ペプチドがマウス抗原由来ペプチドと同じアミノ酸配列であって、 そのペプチドがマウス細胞内でプロセシングにより生成される場合、 牛体内 で誘導された CD8⁺ CTL の安全性(正常組織への傷害性)について評価できる。

そこで本研究では、HLA-A24 陽性がん患者を対象とする癌ワクチン療法剤の 開発を目的として、HLA-A2402/K^bトランスジェニックマウスを作製した。実験 動物の近郊系マウス C57BL/6 は H-2b(H-2K^bと H-2D^b)を、BALB/c は H-2d(H-2K^d と H-2L^d)を MHC クラス I として発現している。H-2K^dと HLA-A24 のペプチド 結合モチーフは類似しているため、BALB/c マウスに HLA-A24 結合性抗原ペプ チドを免疫すると H-2K^d拘束性 CD8⁺ CTL が誘導されることが報告されている (21)。これより、BALB/c 背景 HLA-A2402/K^bトランスジェニックマウスに HLA-A24 結合性抗原ペプチドを免疫すると、H-2K^d拘束性 CD8⁺ CTL がドミナ ントに誘導されるケースが考えられる。そこで、C57BL/6 背景 HLA-A2402/K^b トランスジェニックマウスを作製した。マウスの有用性を確認するため、これ までに同定された9 種類の異なるヒト腫瘍抗原由来の HLA-A24 結合性抗原ペプ チドを免疫することによって特異的 CTL が誘導されるか評価したところ、ペプ
チド特異的な HLA 拘束性 CTL が誘導された。これより、ヒト腫瘍抗原由来 HLA-A24 結合性抗原ペプチドの同定と HLA-A24 結合性ペプチドを原薬とする 癌ワクチン療法剤の剤形の最適化研究において HLA-A2402/K^b トランスジェニ ックマウスの利用は有用性が高いことが明らかになった。

更に、当マウスを利用して前立腺特異抗原 PSA より、特異的 CD8⁺ CTL 誘導 活性を有しヒト腫瘍細胞表面で HLA 複合体により提示される抗原ペプチドの同 定を行った。前立腺がんは欧米諸国では発生率、死亡率ともに男性悪性がんの 第1~3位を占め、また近年我が国においても増加傾向を認める。前立腺がんが |発見されるとアンドロゲン除去を目的とした内分泌療法が施行されるが、治療 開始時に反応して制癌されても 5 年後には半数以上の症例が再燃する。このア ンドロゲン依存性喪失は前立腺がんの内分泌治療における大きな障害になって いる。このため、癌免疫療法剤の開発が期待されている。PSA は前立腺上皮細 胞から分泌され、その発現はアンドロゲンによって制御される(30)。がん化に より PSA が異常に分泌される、あるいは前立腺組織が腫瘍細胞により破壊され て血中に PSA が出てくると血中濃度が上昇することから、PSA は前立腺がんの 腫瘍マーカーとして広く使用されている(31) 最近、PSA を標的分子とする癌 免疫療法について報告された(32、33、34)。PSA は正常前立腺においても低発 現しているため、PSA を標的とした場合の有害事象の危険性とその抗原性につ いて懸念されたが、これまでの臨床研究の結果では、PSA 癌免疫療法剤投与に よりがん患者体内で誘導された特異的 CD8⁺ CTL は、正常前立腺に対して有害事 象を示さなかった(33、34)。そこで、PSA 由来 HLA-A24 結合性抗原ペプチド の同定を試みた。ペプチド HLA 結合予測システムを利用して、PSA₂₋₁₀、PSA₆₋₁₄、 PSA13-21、PSA102-110、および PSA194-202 を選択し、HLA-A24 結合性と HLA-A2402/K^b トランスジェニックマウスにおける免疫原性について評価した。その結果、 PSA₂₋₁₀、PSA₆₋₁₄、PSA₁₃₋₂₁、および PSA₁₉₄₋₂₀₂は HLA-A24 結合親和性と特異的 CD8⁺ CTL 誘導活性を示した。次に、これら抗原ペプチドがヒト腫瘍細胞表面で HLA によって提示されるか解析した。ここでは、マウスで誘導された CD8⁺ CTL とヒト子宮頚癌の Hela 細胞を組み合わせた ELISA 評価システムを構築した。ま

ず当システムの有用性について検証するため、Hela 細胞で発現することが報告 されている腫瘍抗原 MAGE-1 および MAGE-3 に由来する MAGE-1135-143 および MAGE-3₁₉₅₋₂₀₃をスクリーニング可能か解析した。その結果、HLA-A2402/K^bトラ ンスジェニックマウスで誘導された MAGE-1135-143 および MAGE-3195-203 特異的 CD8⁺ CTL は、HLA-A2402/K^b 遺伝子を人為的に発現する Hela 細胞 (Hela-A2402/K^b細胞)に対して特異的に反応した。MAGE-1₁₃₅₋₁₄₃ および MAGE-3195-203 は転移性メラノ - マ患者を対象とする樹状細胞療法にて臨床応用 されている腫瘍抗原ペプチドであることより、HLA-A2402/K^bトランスジェニッ クマウスとHela-ELISA 評価システムの利用は臨床応用できる腫瘍抗原ペプチド の同定に有効であることが示唆された。そこで実際に、HLA-A2402/K^bトランス ジェニックマウスで誘導した各 PSA 由来抗原ペプチドに特異的な CD8⁺ CTL の Hela 細胞、Hela-A2402/K^b細胞、および H24P 細胞に対する反応性について解析 した。その結果、PSA₂₋₁₀、PSA₁₃₋₂₁、および PSA₁₉₄₋₂₀₂ で誘導した特異的 CD8⁺ CTL は H24P 細胞に対して特異的に反応した。一方、PSA6-14 はプロセシングにより 生成されない、あるいはCD8+CTLにより認識されるための十分な量が効率よく 細胞表面に提示されないことが明らかになった。今後、前立腺がん患者体内に おける同定抗原ペプチド特異的な CD8⁺ CTL 前駆細胞の頻度と HLA-A24 陽性前 立腺がん細胞に対する特異的細胞傷害性を解析することにより、HLA-A24 陽性 前立腺がん患者を対象にした臨床応用への可能性について評価する必要がある。

ところで、HLA トランスジェニックマウスにおいて、細胞内で内因性タンパ ク質より分解されたペプチドは、マウス TAP ヘテロ複合体により小胞体へ輸送 され、そこで HLA とマウス β2M の複合体が形成される。HLA-A24 と H-2K^d の ペプチド結合モチーフが似ていることは、HLA-A2402/K^b トランスジェニックマ ウスにおいて CD8⁺ T 細胞の TCR レパトアがマウス TAP 複合体のペプチド特異 性による制限を受けないことを示唆する。腫瘍抗原 HER-2/neu 由来の HLA-A2.1 結合性ペプチド HER-2/neu₃₆₉₋₃₇₇ は、マウス HER-2/neu とアミノ酸配列が完全に 一致しており、マウスとヒトの両種の細胞で HER-2/neu が分解されることによ り生成される (35)。HER-2/neu₃₆₉₋₃₇₇ は HLA-A2.1 陽性の乳癌患者末梢血細胞か

37

ら特異的 CD8⁺ CTL を誘導できるが、HLA-A2.1/K^b トランスジェニックマウスか ら誘導できないことが報告されている(36)。このため最近、CD8⁺ CTL の TCR レパトアの増幅を目的として、マウス MHC クラス I 分子をノックアウトした HLA-A2.1/K^b トランスジェニックマウスが作製されている(36、37)。HLA-A24 結合性ペプチド HER-2/neu₇₈₀₋₇₈₈ は、HER-2/neu₃₆₉₋₃₇₇ と同様に、マウス HER-2/neu とアミノ酸配列が完全に一致しており、マウスとヒトの両種の細胞で HER-2/neu が分解されて生成される(38)。HLA-A2402/K^b トランスジェニックマウスでは、 マウス MHC クラス I 分子を発現しているにもかかわらず、HER-2/neu₇₈₀₋₇₈₈ に特 異的な CTL 誘導が可能であった。このことは、HLA-A2402/K^b トランスジェニ ックマウス体内には、HLA-A2.1/K^b トランスジェニックマウスと比較するとより 幅広い TCR レパトアを有する多様な CD8⁺ T細胞が存在していることが示唆さ れ、マウスとヒトで同一アミノ酸配列の自己抗原ペプチドの抗原性解析におけ る HLA-A2402/K^b トランスジェニックマウスの有用性が示唆された。

最近、HLA-A2.1/K^bトランスジェニックマウスで誘導した腫瘍抗原ペプチド特 異的 HLA-A2.1 拘束性 CD8⁺ CTL 由来の TCR をコードする遺伝子を、がん患者 末梢血細胞由来 CD4⁺ T 細胞および CD8⁺ T 細胞にトランスフェクトすると、ヒ ト腫瘍特異的に高い細胞傷害活性を示す T 細胞集団になることが報告され、こ れら T 細胞集団を患者に戻す細胞療法について検討されている(39)。ヒト腫瘍 特異的 CD8⁺ CTL の TCR クローニングにマウスの CD8⁺ CTL が利用されている 理由は、ヒト腫瘍抗原ペプチドがマウス抗原のアミノ酸配列と異なる場合に、 ヒトにとって自己抗原である腫瘍抗原ペプチドがマウスにとっては異種抗原と なり、HLA クラス I トランスジェニックマウスでヒト腫瘍抗原ペプチド - HLA 複合体に高親和性 TCR を有する特異的 CD8⁺ CTL が誘導できるからである。ま た、同様の理由により、HLA-A2.1/K^bトランスジェニックマウスを利用して、ヒ ト腫瘍抗原ペプチド - HLA 複合体に特異的な高親和性抗体が作製されている (40、41)。この抗体を利用することにより、患者に癌ワクチン療法剤を投与す る前に予め、患者腫瘍細胞表面に CD8⁺ CTL が標的とする腫瘍抗原ペプチド -HLA 複合体が実際に提示されているか解析することが可能になる。また、毒素

38

タンパク質の標識等により直接腫瘍細胞を傷害したり、RI や蛍光標識すること により患者の微細な腫瘍転移を検出したりできる。このように、HLA クラス I トランスジェニックマウスは癌免疫療法において幅広く利用されている。

本研究でのHLA-A2402/K^bトランスジェニックマウスの作製により、HLA-A24 陽性がん患者を対象とする種々の癌免疫療法の研究および治療剤の開発が飛躍 的に進むことが期待される。

	1	Hin d III										
III A A94 management	C	10	20	30	40	50 	60 	70 	80	90 	1 	00
HLA-A24 genome HLA-A2 genome	Sequence Sequence	AAGCTTACTC	TCTGGCACCA	AACTCCATGG	GATGATTTTT	CCTTCCTAGA	AGAGTCCAGG	TGGACAGGTA	AGGAGTGGGA	GTCAGGGAGT	CCAGTTCCA	G
		110	120	130	140	150) 160	170	180	190	2	00 L
HLA-A24 genome HLA-A2 genome	Sequence Sequence	GGACAGAGAT	TACGGGATAA	AAAGTGAAAG	GAGAGGGACG	GGGCCCATGC	CGAGGGTTTC	тсссттбттт	CTCAGACAGC	TCTTGGGCCA	AGACTCAGG	G
Ū	·	210	220	230	240	250	260	270	280	290) 3	00
HLA-A24 genome	Sequence	AGACATTGAG	ACAGAGCGCT	TGGCACAGAA	GCAGAGGGGT	CAGGGCGAAG	TCCAGGGCCC	CAGGCGTTGG	TCAGGGT CTCTCAGGGT	CTCAGGCCCC CTCAGGCCCC	GAAGGCGGT GAAGGCGGT	G G
TILA AL genome	Bequeille	310	320	330	340	350	360	370	380	390) 4	00
HLA-A24 genome HLA-A2 genome	Sequence Sequence	TATGGATTGG TATGGATTGG	GGAGTCCCAG GGAGTCCCAG	CCTTGGGGGAT CCTTGGGGGAT	TCCCCAACTC TCCCCAACTC	CGCAGTTTCT CGCAGTTTCT	ТТТСТСССТС ТТТСТСССТС	TCCCAACCTA TCCCAACCTA	TGTAGGGTCC TGTAGGGTCC	TTCTTCCTGG TTCTTCCTGG	ATACTCACG ATACTCACG	A A
		410	420	430	440	450	460	470	480	490	5	00
HLA-A24 genome HLA-A2 genome	Sequence Sequence	CGCGGACCCA	GTTCTCACTC	CCATTGGGTG	TCGGGTTTCC	AGAGAAGCCA	ATCAGTGTCG	TCGCGGTCGC	GGTTCTAAAG	TCCGCACGCA	CCCACCGGG	A
		510	520	530	540	550	560	570	580	590	6 	00
HLA-A24 genome HLA-A2 genome	Sequence Sequence	CTCAGATTCT	CCCCAGACGC	CGAGGATGGC	CGTCATGGCG	CCCCGAACCC	TCGTCCTGCT	ACTCTCGGGG	GCTCTGGCCC	TGACCCAGAC	CTGGGCAGG	T
		610	620	630	640	650	660	670	680	690) 7	00
HLA-A24 genome HLA-A2 genome	Sequence Sequence	GAGTGCGGGG GAGTGCGGGG	TCGGGAGGGA TCGGGAGGGA	AACGGCCTCT AACGGCCTCT	GCGGGGAGAA GTGGGGAGAA	GCAAGGGGCC GCAACGGGCC	CGCCTGGCGG -GCCTGGCGG	GGGCGCAAGA GGGCGCAGGA	CCCGGGAAGC CCCGGGAAGC	CGCGCCGGGA CGCGCCGGGA	GGAGGGTCG GGAGGGTCG	G G
	_	710	720	730		750	760	770	780	790	8	00
HLA-A24 genome	Sequence	GCGGGTCTCA	GCCACTCCTC	GTCCCCAGGC	TCTCACTCCA	TGAGGTATTT	CTTCACATCC	GTGTCCCGGC	CCGGCCGCGG	GGAGCCCCGC	TTCATCGCC	G
filler ne genome	bequeince											<u> </u>
THEIT THE genome	Bequeilee	810	820	830	840	850	860	870	880	890) 9	00
HLA-A24 genome HLA-A2 genome	Sequence Sequence	810 TGGGCTACGT TGGGCTACGT	820 GGACGACACG GGACGACACG	830 CAGTTCGTGC CAGTTCGTGC	840 GGTTCGACAG GGTTCGACAG	CGACGCCGCG CGACGCCGCG	AGCCAGAGGA AGCCAGAGGA	870 TGGAGCCGCG TGGAGCCGCG	880 GGCGCCGTGG GGCGCCGTGG	890 ATAGAGCAGG ATAGAGCAGG	AGGGGCCGG AGGGTCCGG	00 1 A A
HLA-A24 genome HLA-A2 genome	Sequence Sequence	810 TGGGCTACGT TGGGCTACGT 910	820 GGACGACACG GGACGACACG 920	830 CAGTTCGTGC CAGTTCGTGC 930	GGTTCGACAG GGTTCGACAG GGTTCGACAG 940	CGACGCCGCG CGACGCCGCG CGACGCCGCG 950	AGCCAGAGGA AGCCAGAGGA AGCCAGAGGA 9 960	870 TGGAGCCGCG TGGAGCCGCG 970	GGCGCCGTGG GGCGCCGTGG 980	ATAGAGCAGG ATAGAGCAGG 990	AGGGGCCGG AGGGTCCGG 1,0	000 A A 0000
HLA-A24 genome HLA-A2 genome HLA-A24 genome HLA-A24 genome	Sequence Sequence Sequence Sequence	B10 TGGGCTACGT TGGGCTACGT 910 GTATTGGGAC GTATTGGGAC	GGACGACACG GGACGACACG GGACGACACG 920 GAGGAGACAG GGGGAGACAC	830 CAGTTCGTGC CAGTTCGTGC 930 GGAAAGTGAA GGAAAGTGAA	GGTTCGACAG GGTTCGACAG GGTTCGACAG 940 GGCCCACTCA GGCCCACTCA	CGACGCCGCG CGACGCCGCG 950 CAGACTGACC CAGACTGACC	AGCCAGAGGA AGCCAGAGGA AGCCAGAGGA 960 GAGAGAACCT GAGTGGACCT	870 TGGAGCCGCG TGGAGCCGCG 970 GCGGATCGCG GGGGACCCTG	880 GGCGCCGTGG GGCGCCGTGG 980 CTCCGCTACT CGCGGCTACT	ATAGAGCAGG ATAGAGCAGG ATAGAGCAGG 990 ACAACCAGAG ACAACCAGAG	AGGGGCCGG AGGGTCCGG 0 1, CGAGGCCGG CGAGGCCGG	
HLA-A24 genome HLA-A2 genome HLA-A24 genome HLA-A2 genome HLA-A24 genome	Sequence Sequence Sequence Sequence	810 TGGGCTACGT TGGGCTACGT 910 GTATTGGGAC GTATTGGGAC 1,010 GAGTGACCCC	GGACGACACG GGACGACACG GGACGACACG GGGGAGACAC GGGGGAGACAC 0 1.022 GGCCCGGGGC	830 CAGTTCGTGC CAGTTCGTGC 930 GGAAAGTGAA GGAAAGTGAA 0 1.03 GCAGGTCACG	GGTTCGACAG GGTTCGACAG GGTTCGACAG GGCCCACTCA GGCCCACTCA 0 1,04 ACCCCTCATC	CGACGCCGCG CGACGCCGCG CGACGCCGCG CAGACTCACC CAGACTCACC CAGACTCACC 0 1,05 CCCCACGGAC	AGCCAGAGGA AGCCAGAGGA AGCCAGAGGA AGCCAGAGCA GAGAGAACCT GAGTGGACCT 0 1.06 GGGCCCGGGTC	TGGAGCCGCG TGGAGCCGCG 97(GCGGATCGCG GGGGACCCTG 0 1,07 GCCCACAGTC	GCCCCCTGG GCCCCCTGG GCCCCCTGG CTCCCCTACT CCCCGCTACT 0 1.08 TCCCGGTCCG	890 ATAGAGCAGG ATAGAGCAGG 990 ACAACCAGAG ACAACCAGAG 0 1,09 AGATCCACCC	9 AGGGGCCGG AGGGTCCGG 1,1,1 CGAGGCCGG CGAGGCCGG 0 1,7 CGAAGCCGC	A A A 000 T T 100
HLA-A24 genome HLA-A2 genome HLA-A24 genome HLA-A2 genome HLA-A24 genome HLA-A24 genome	Sequence Sequence Sequence Sequence Sequence Sequence	810 TGGGCTACGT TGGGCTACGT 910 GTATTGGGAC GATTGGGAC GAGTGACCCC GAGTGACCCC	820 GGACGACACG GGACGACACG 920 GAGGAGACAG GGGGAGACAC 0 1.02 0 0 1.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CAGTTCGTGC CAGTTCGTGC 9330 GGAAAGTGAA GGAAAGTGAA 0 1.03 GCAGGTCACG GCAGGTCACG	GGTTCGACAG GGTTCGACAG GGTCCGACAG GGCCCACTCA GGCCCACTCA 0 1,04 ACCCCTCATC ACCCTCTCATC	CGACGCCGCG CGACGCCGCG CGACGCCGCG CGACGCCGCG CAGACTGACC CAGACTGACC CAGACTCACC 0 1,05 CCCCACGGAC CCCCACGGAC	AGCCAGAGGA AGCCAGAGGA GAGAGAACCT GAGAGGAACCT 0 106 GAGCGGACCT 0 106 GGGCCAGGTC 0 116	877 TGGAGCCGCG TGGAGCCGCG 977 GCGGATCCCG GGGGACCCTG 0 1,07 GCCCACAGTC GCCCACAGTC	GGCGCCGTGG GGCGCCGTGG GGCGCCGTGG D980 CTCCGCTACT CCGCGCTACT CCGCGCTACT CCCGGGTCCG CCCGGTCCG	ATAGACCAGG ATAGAGCAGG ATAGAGCAGG 990 ACAACCAGAG ACAACCAGAG 0 1,09 AGATCCACCC AGATCCACCC	9 9 AGGGCCCGG AGGGTCCGG AGGGTCCGG 1,1 CGAGGCCGG 0 0 1,7 CGAGGCCGG 0 0 1,7 CGAAGCCGG 0 0 1,7 CGAAGCCGC 0 0 1,7 CGAAGCCGC 0 0 1,7	000 A A 0000 T T T G G
HLA-A24 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome	Sequence Sequence Sequence Sequence Sequence Sequence Sequence	810 TGGGCTACGT GGGCTACGT 910 GTATTGGGAC GTATTGGGAC 1.010 GAGTGACCCG GAGTGACCCG 1.110 GGACCCGGAG	820 GGACGACACG GGACGACACG 920 GGACGACACG GGACGACACG 0 1.022 GGCCGGGGGC 0 1.022 0 1.122 ACCCTTGCGGGCC 0 1.122	CAGTTCGTGC CAGTTCGTGC GGAAAGTGAA GGAAAGTGAA O 1.03 GCAGGTCACG GCAGGTCACG O 1,13 CCGGGAGAGGC	GGTTCGACAG GGTTCGACAG GGCCCACTCA GGCCCACTCA GGCCCACTCA 0 1.04 ACCCCTCATC ACCTCTCATC 0 1.14 CCAGGCGCCCT	CGACGCCGCG CGACGCCGCG GGACGCCGCG 950 CAGACTGACC CAGACTGACC 0 1,05 CCCCACGGAC 0 1,05 CCCCACGGAC 0 1,15 TAACCCGGTT	AGCCAGAGGA AGCCAGAGGA AGCCAGAGGA GAGAGAACCT GAGTGGACCT 0 1.06 GGGCCGGGTC GGCCCAGGTC 0 1.16 TCATTTTCAG	TGGAGCCGCG TGGAGCCGCG GCGGATCGCG GCGGATCGCG GGGGACCCTG D. 1.07 GCCCACAGTC GCCCACAGTC D. 1.17 TTTAGGCCAA	GGCGCCGTGG GGCGCCGTGG CTCCGCTACT CGCGCGCTACT CGCGCGCTACT 0 1.08 TCCCGGTCCG TCCGGGTCCG 0 1,18 AAATCCCCCC	89 ATAGAGCAGG ATAGAGCAGG ACAACCAGAG ACAACCAGAG ACAACCAGAG D 1,09 AGATCCACCC AGATCCACCC D 1,19 GGGTTGGTCG	9 9 AGGGCCCGG AGGGTCCGG AGGGCCGGC 1,1 CGAGGCCGGC 1,2 0 1,1 CGAGGCCGGC 1,2 CGAAGCCGC 1,2 CGAAGCCGC 1,2 CGAAGCCGC 1,2 CGAAGCCGC 1,2 CGGCCGGGC 1,2 GGGCCGGGCC 1,2	000 A A A T T T C G G C C C C C C
HLA-A24 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A24 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome	Sequence Sequence Sequence Sequence Sequence Sequence Sequence	810 TGGGCTACGT GTATTGGGAC GTATTGGGAC GAGTGACCCC GAGTGACCCC GAGTGACCCC GGACCCCGAG GGACCCCGAG	820 GGACGACACG 920 GAGGAGACACG 920 GGGGAGACACG 1,02 GGCCCGGGGC 0 1,12 ACCCTTGCCC ACCCTTGCCC	CAGTTCGTGC CAGTTCGTGC 930 GGAAAGTGAA GGAAAGTGAA 0 1,03 GCAGGTCACG GCAGGTCACG 0 1,13 CCGGGAGAGGC CGGGAGAGGC	GGTTCGACAG GGTTCGACAG GGTCCGACAG GGCCCACTCA O 1.04 ACCCCTCATC ACCCTCCATC O 1.14 CCAGGCCCCT	CGACGCCGCG CGACGCCGCG CAGACTGACC CAGACTGACC CAGACTCACC 0 1.05 CCCCACGGAC 0 1.15 TAACCCGGTT TTACCCGGTT	AGCCAGAGGA AGCCAGAGGA AGCCAGAGGA GAGAGGAACCT GAGAGGACCT 0 1.06 GGGCCGGGTC 0 1.16 TCATTTTCAG TCATTTTCAG	TGGAGCCGCG TGGAGCCGCG 970 GCCGATCGCG GCGGATCGCG GCGGACCTG D 1.07 GCCCACAGTC D 1.17 TTTAGCCCAA TTTAGCCCAA	GGCGCCGTGG GGCGCCGTGG GGCGCCGTGC CGCGCTACT CCGCGCTACT 0 1,08 TCCGGGCCCG 0 1,18 AAATCCCCCC AAATCCCCCC	ATAGAGCAGG ATAGAGCAGG 990 ACAACCAGAG ACAACCAGAG D 1,00 AGATCCACCC AGATCCCCCC D 1,19 GGGTTGGTCG AGGTTGGTCG	9 9 AGGGCCCGG 4 AGGGTCCGG 1 CGAGGCCCGG 1 CGAAGCCCGC 1 CGAAGCCGC 1 CGAAGCCGC 1 CGAAGCCGC 1 GGACCGGC 1 GGACCGGC 1 GGCCGGGCCGGC 1 GGGCCGGGCC 1	2000 A A A A 1000 G G G G G G
HLA-A24 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome	Sequence Sequence Sequence Sequence Sequence Sequence Sequence	810 TGGGCTACGT TGGGCTACGT 910 GTATTGGGAC GTATTGGGAC CGAGTGACCCC GAGTGACCCC GGACCCCGAG GGACCCCGAG 1,210 GGCCCCGGGG	820 GGACGACACG GGACGACACG 920 GACGAGACACG GGACGACACG 0 1,021 GGCCCGGGGGC 0 1,121 ACCCTTGCCC ACCCTTGCCC 0 1,221 GGCCGGCCGC 1,221	CAGTTCGTGC CAGTTCGTGC GGAAAGTGAA GGAAAGTGAA O 1.03 GCAGGTCACG GCAGGTCACG O 1.13 CCGCGGAGAGGC CGGGAGAGGC CGGGAGAGGC O 1.23 ACCGCGGGGT	GGTTCGACAG GGTTCGACAG GGTCCGACAG GGCCCACTCA GGCCCACTCA 0 1.04 ACCCCTCATC ACCTCTCATC 0 1.14 CCAGGCGCCT CCAGGCGCCT 0 1.24 CGAGCCCAGG	CGACGCCGCG CGACGCCGCG GGACGCCGCG 950 CAGACTCACC CAGACTCACC 0 1,05 CCCCACGGAC 0 1,05 CCCCACGGAC 0 1,15 TAACCCGGTT TTACCCGGTT 0 1,25 TTCCCACACC	AGCCAGAGGA AGCCAGAGGA AGCCAGAGAACCT GAGTGGACCT 0 1.06 GGGCCGGGTC GGCCCAGGTC 0 1,16 TCATTTTCAG TCATTTTCAG 0 1.26 CTCCAGATGA	877 TGGAGCCGCG TGGAGCCGCG GCGGATCGCG GCGGATCGCG GCGGATCGCG D 1.07 GCCCACAGTC GCCCACAGTC D 1.17 TTTAGGCCAA TTTAGGCCAA TTTAGGCCAA	GGCGCCGTGG GGCGCCGTGG CTCCGCTACT CGCGCGCTACT CGCGCGCTACT 0 1.08 TCCGGGTCCG 0 1,18 AAATCCCCCC AAATCCCCCC 0 1,28 CGACGTGCGG	89 ATAGAGCAGG ATAGAGCAGG ACAACCAGAG ACAACCAGAG ACAACCAGAG D 1,09 AGATCCACCC AGATCCACCC D 1,19 GGGTTGGTCG AGGTTGGTCG AGGTTGGTCG D 1,29 CCGCACGGGC	9 AGGGCCCGG AGGGTCCGG CGAGGCCCGG 0 1,1 CGAGGCCGGG 0 1,2 CGAAGCCGCG 0 1,2 CGAAGCCGC GGGCCGGGC 0 1,2 CGAAGCCGC 0 1,2 CGGCCGGGCC 0 1,2 GGGCCGGGCC 0 1,2 GGGCCGGGCC 0 0 1,2 GGGCCGGGCC 0 0 1,2 GGGCCGGGCC 0 0 1,2 GGGCCGGGCC 0 0 1,3 GCTTCCTCC 0	00 A A A COU T T T C G G G G G G G G G G G G G G G G
HLA-A24 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome	Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence	810 TGGGCTACGT TGGGCTACGT 910 GTATTGGGAC GAGTGACCCC GAGTGACCCC GAGTGACCCC GAGTGACCCC GGACCCCGAG GGACCCCGAG GGACCCCGAG GGACCCCGAG GGCCCCGGG GGCCCCGGGG	820 GGACGACACG GAGGACACACG 920 GAGGAGACACG 920 1,02 0 1,02 0 1,02 0 1,12 ACCCTTGCCC ACCCTTGCCC 0 1,22 GACTGGECTG GACTGGECTG	CAGTTCGTGC CAGTTCGTGC GGAAAGTGAA GGAAAGTGAA D 1.03 CGGAGGTCACG GCAGGTCACG GCAGGTCACG CGGGAGAGGC D 1.13 CCGGGAGAGGC D 1.23 ACCGCGGGGT	GGTTCGACAG GGTTCGACAG GGCCCACTCA GGCCCACTCA GGCCCACTCA 0 1.04 ACCCTCATC ACCTCTCATC 0 1.14 CCAGGCCCCT 0 1.24 CGAGGCCAGG CCGGCCAGG	CGACGCCGCG CGACGCCGCG GGACGCCCGCG O 950 CAGACTCACC O 1,05 CCCCACGGAC CCCCACGGAC CCCCACGGAC CCCCACGGAC CCCCACGGAC CCCCACGGAC CCCCACGGAC D 1,15 TAACCCGGTT TTACCCGGTT 0 1,25 TTCTCACACC TTCTCACACC	AGCCAGAGGA AGCCAGAGGA GAGAGAACCT GAGTGACCG 0 1.06 GGGCCAGGTC GGGCCAGGTC 0 1.16 TCATTTTCAG TCATTTTCAG 1.26 CTCCAGATGA GTCCAGAGGA	TGGAGCCCGG TGGAGCCCGG 97C GCGGATCGCG GCGGACCCTG 0 1,07 GCCCACAGTC GCCCACAGTC 0 1,17 TTTAGGCCAA TTTAGGCCAA 0 1,27 TGTTTGGCCG TGTATGGCTG	GGCGCCGTGG GGCGCCGTGG GGCGCCGTGG CGCGCGCTACT CCGCGCTACT CCGCGGCTACT 0 1,08 TCCGGGTCCG 0 1,18 AAATCCCCCC 0 1,28 CGACGTGGGG CGACGTGGGG	ATAGAGCAGG ATAGAGCAGG ATAGAGCAGG ACAACCAGAG ACAACCAGAG D 1.09 AGATCCACCC AGATCCACCC D 1.19 GGGTTGGTCG AGGTTGGTCG D 1.29 TCGGACGGGC TCGGACTGGC	9 AGGGCCCGG AGGGTCCGG 0 14 CGAGGCCGGC 0 1,1 CGAAGCCGC 0 1,2 CGAAGCCGC 0 1,3 GGGCCGGGCC 0 1,3 GGGCCGGGCC 1,3 GGGCCGGCC 1,4 GCGCCGGCC 1,4 GCTTCCTCC 1,4 GCTTCCTCC 1,4	© 00 A A 0000 T T 100 G G 3000 G G 3000 G G G
HLA-A24 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome	Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence	810 TGGGCTACGT TGGGCTACGT 910 GTATTGGGAC GTATTGGGAC GAGTGACCCC GAGTGACCCC GAGTGACCCC GGACCCCGAG 1,110 GGACCCCCGAG 1,210 GGACCCCGAG 1,210 GGGCCCGGGG 1,210 GGGCCGGGG 1,210 GGGCCGGG 1,210 GGGCCGG 1,210 GGGCCGG 1,210 GGGCCGG 1,210 GGGCCGG 1,210 GGGCCGG 1,210 GGGCCGG 1,210 GGGCCG 1,210 GGGCCG 1,210 GGGCCG 1,210 GGGCCG 1,210 GGGC 1,210 GGGC 1,210 GGGC 1,210 GGGC 1,210 GGG 1,210 GG 1,210	820 GGACGACACG GGACGACACG 920 920 920 920 920 920 920 920	CAGTTCGTGC CAGTTCGTGC 930 GGAAAGTGAA GGAAAGTGAA 0 1,03 0 1	GGTTCGACAG GGTTCGACAG GGCCCACTCA GGCCCACTCA GGCCCACTCA 0 1,04 ACCCCTCATC 0 1,14 CCAGGCCCCT 0 1,24 CCAGGCCCTG CGAGGCCAGG CCGGCCCAGG 0 1,34	CGACGCCGCG CGACGCCGCG CGACGCCCCGG CACACTCACC CACACTCACC CCCCACGCAC CCCCACGGAC CCCCACGGAC 0 1,15 TAACCCGGTT TTACCCGGTT TTACCCGGTT TTCTCACACC 0 1,35	AGCCAGAGGA AGCCAGAGGA AGCCAGAGGA GAGCAGACCT GAGAGAACCT GAGTGGACCT 0 1,06 GGGCCAGGTC GGGCCAGGTC 0 1,16 TCATTTCAG TCATTTCAG 0 1,26 CTCCAGATGA GTCCAGAGGA 0 1,36	B7C TGGAGCCGCG TGGAGCCGCG 97C 9CCGCACCG 9CCGCACCTG 9CCCACACTC 9CCCACTC	GGCGCCGTGG GGCGCCGTGG CGCGCCGTGG CTCCGCTACT CGCGGCTACT CCGCGCTACT CCCGGTCCG CGCGCTCCG 0 1,18 AAATCCCCCC 0 1,28 CGACGTGGGG CGACGTGGGG 0 1,38	ATAGAGCAGG ATAGAGCAGG 990 ACAACCAGAG ACAACCAGAG ACAACCAGAG D 1,09 AGATCCACCC D 1,19 GGGTTGGTCG D 1,29 TCGGACGGCC D 1,29 TCGGACGGCC D 1,29 TCGGACGGCC D 1,39	9 9 AGGGCCCGG AGGGTCCGG AGGGCCCGG 1,1 CGAGGCCGGG 1,2 0 1,1 CGAGGCCGGG 1,2 0 1,2 CGAAGCCGC GGAGGCCGGG 0 1,2 CGAAGCCGC GGGCCGGGC 0 1,2 GGGCCGGGCG GGGCCGGGC 0 1,3 GCTTCCTCC GCTTCCTCC 0 1,4 AGGGCCGGGC 1,4 AGGGCCGGGC 1,4 AGGGCCGGGC 1,4 AGGGCCGGGCG 1,4 AGGGCCGGGCG 1,4 AGGGCCGGGCG 1,4 AGGGCCGGGGC 1,4 AGGGCCGGGCG 1,4 AGGGCCGGGGC 1,4 AGGGCCGGGCG 1,4 AGGCCGCGGGC 1,4 AGGCCGGGCGGGC 1,4 AGGCCGGGGGGGGGGC 1,4 AGGCCGGGGGGGC 1,4 AGGCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	001 A A 0000 1 T 1000 1 G G 3000 G G 3000 G G 4000
HLA-A24 genome HLA-A2 genome	Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence	810 TGGGCTACGT TGGGCTACGT 910 GTATTGGGAC GAGTGACCCC GAGTGACCCC GAGTGACCCC GAGTGACCCC GGCCCCGAG GGACCCCGAG GGCCCCGAG GGCCCCGAG GGCCCCGGG GGCCCCGGG GGCCCCGGG GGCCCCGGG GGCCCCGGG GGCCCCGGG GGCCCCGGC GGCCCCGCG GGCCCCGCG GGCCCCCC	820 GGACGACACG GGACGACACG 920 GAGGAGACACG 920 1,02 0 1,02 0 1,02 0 1,02 0 1,12 ACCCTTGCCC ACCCTTGCCC 0 1,22 GACTGGECTG 0 1,22 CACTGECCTG 0 1,32 CAGTACGCCT 0 1,32 CAGTACGCCT 0 1,32 CAGTACGCCT	CAGTTCGTGC CAGTTCGTGC GGAAAGTGAA GGAAAGTGAA D 1.03 GGAAGTCAAG D 1.13 CGGGAGAGCCAG D 1.23 ACCGCGGGGGT ACCGCGGGGTA ACCGCGGGCAA	GGTTCGACAG GGTTCGACAG GGCCCACTCA GGCCCACTCA COLORING ACCCTCATC ACCTCTCATC ACCTCTCATC 0 1,14 CCAGGCCCCT 0 1,24 CGAGGCCAGG CCGGCCAGG CCGGCCAGG 0 1,34 GGATTACATC GGATTACATC	856 CGACGCCGCG GGACGCCCGCG 950 CAGACTCACC 0 1,05 CCCCACGGAC 0 1,15 TAACCCGGTT TTACCCGGTT TTACCCGGTT TTACCCGGTT 0 1,25 TTCTCACACC 0 1,35 GCCCTGAAAG GCCCTGAAAG	AGCCAGAGGA AGCCAGAGGA GAGAGAACCT GAGTGACCT 0 1.06 GGGCCAGGTC GGGCCAGGTC 0 1.16 TCATTTTCAG TCATTTTCAG TCATTTTCAG 0 1.26 CTCCAGATGA GTCCAGAGGA 0 1.38 AGGACCTGCG AGGACCTGCG	TGGAGCCCGG TGGAGCCCGG 977 GCGGATCGCG GCGGATCGCG GGGGACCTG D 1,07 GCCCACAGTC D 1,17 TTTAGGCCAA TTTAGGCCAA D 1,27 TGTTTGGCCG TGTTTGGCCG D 1,37 CTCTTGGACC CTCTTGGACC	GGCGCCGTGG GGCGCCGTGG GGCGCCGTGG CGCGCGCTACT CCGCGCGCTACT CCGCGGCTACT 0 1,08 TCCGGGTCCG 0 1,18 AAATCCCCCC 0 1,28 CGACGTGGGG CGACGTGGGG 0 1,38 GCGGCGGAAA	ATAGAGCAGG ATAGAGCAGG ACAACCAGAG ACAACCAGAG ACAACCAGAG D 1.09 AGATCCACCC AGATCCACCC AGATCCGCCC D 1.19 GGGTTGGTCG AGGTTGGTCG D 1.29 TCGGACGGCC D 1.39 TGGCGGCTCA TGGCGGCTCA	AGGGCCGGG CGAGGCCGG 0 1, CGAGGCCGG 0 1, CGAAGCCGC CGAAGCCGC CGAAGCCGC 0 1, GGGCCGGGC GGGCCGGGC 0 1, GCTTCCTCC GCTTCCTCC 0 1, GGTCACCAA GACCACCAA	© 004 A A 0000 TTT 1000 G 2000 G 3000 G 4000 G 4000 G G 4000
HLA-A24 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A24 genome HLA-A24 genome HLA-A24 genome HLA-A24 genome HLA-A24 genome HLA-A2 genome HLA-A2 genome	Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence	810 TGGGCTACGT TGGGCTACGT GGCTACGT 910 GTATTGGGAC GATGTACCCC GAGTGACCCC GAGTGACCCC GGCCCCGAG 1.210 GGACCCCCGAG GGCCCCGAG 1.210 CGGGTACCAC CGGGTACCAC 1.410 1.410 1.410	820 GGACGACACG 920 GAGGAGACAGG 920 GGACGACACG 920 GGAGGAGACAG GGAGGAGACAG 0 1,021 GGCCGGGGGC 0 1,021 GGCCGGGGGGG 0 1,121 GGACTGGGCTG GACCTGGGCTG 0 1,221 GACCGGCTG 0 1,321 CAGTACGCCT 0 1,321 CAGTACGCCT 0 1,421	CAGTTCGTGC CAGTTCGTGC GGAAAGTGAA GGAAAGTGAA O 103 CGGAAGTCACG GCAGGTCACG GCAGGTCACG GCAGGTCACG O 113 ACCGCGGGAGGCC O 1,33 ACCGCCGGCAA ACCGCCGCAA ACCGCCGCAA	GGTTCGACAG GGTTCGACAG GGCCCACTCA GGCCCACTCA GGCCCACTCA 0 1,04 ACCCCTCATC 0 1,14 CCAGGCCCAG CCAGGCCCAG CCAGGCCCAG CCGGCCCAG 0 1,24 CGATTACATC GGATTACATC GGATTACATC 0 1,44	856 CGACGCCGCG 950 CAGACGCACCGCG 951 CAGACTCACC 0 1,05 CCCCACGGAC 0 1,15 TTACCCGGTT 0 1,25 TTCTCACACC 0 1,25 GCCCTGAAAG GCCCTGAAAG GCCCTGAAAG 0 1,45	AGCCAGAGGA AGCCAGAGGA AGCCAGAGGA GAGCAGAGCT GAGAGAACCT GGAGCAGCC CGGCCAGGTC GGGCCAGGTC O 1,16 TCATTITCAG O 1,28 CTCCAGATGA GTCCAGAGA GTCCAGAGGA AGGACCTGCG AGGACCTGCG 0 1,36 AGGACCTGCG	876 TGGAGCCGCGG 977 GGCGCACCGG 976 GCCGACCCGG 977 GCCGACCCG 970 1,07 970 971 971 971 971 971 971 971 971 971 971 972 973 974	GGCGCCGTACT GGCGCCGTACT CGCGGCTACT CGCGGCTACT CCGCGCTACT CCGCGCTACT CCCGGGCCCG 0 1,08 AAATCCCCCC 0 1,18 AAATCCCCCC 0 1,28 CGACGTGGGG CGACGTGGGG 0 1,38 GCGCCGCACA GCGCCGCACA	ATAGAGCAGG ATAGAGCAGG ACAACCAGAG ACAACCAGAG ACAACCAGAG D 1,09 AGATCCACCC D 1,19 GGGTTGGTCG D 1,29 D 1,29 D 1,29 D 1,39 TGGCAGCGCC D 1,39 TGGCAGCTCA TGGCAGCTCA TGGCAGCTCA	9 9 AGGGCCCGG 4 AGGGTCCGG 14 CGAGGCCGG 1 CGAGGCCGG 1 CGAAGCCGC 1 CGAAGCCGC 1 CGAAGCCGC 1 GGCCGGGCCGGG 1 0 1 1 1 GGTCCCCCA 1 GACCACCAA 1 GACCACCAA 1 GACCACCAA 1	© 004A A 0000 TT 1000 GG 2000 GG 3000 GG 4000 GG 5000
HLA-A24 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A24 genome HLA-A24 genome HLA-A2 genome HLA-A2 genome HLA-A24 genome HLA-A2 genome	Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence	810 TGGGCTACGT GGGCTACGT 910 GTATTGGGAC GAGTGACCCC GAGTGACCCC GGACCCCGAG GGACCCCGAG GGACCCCGAG GGACCCCGAG GGGCTCCGGG 1,110 GGGCTCGGGG 1,210 GGGCTCGGGG 1,310 CGGGTACCAC CGGGTACCAC CGGGTACCAC CGGGTACCAC CGCAAGTGGG	820 GGACGACACG 920 GAGGAGACACG 920 GGACGACACG 920 GGACGACACG 920 GGCCGGGGACACAC 920 1,021 GGCCCGGGGC 9 1,121 ACCCTTGCCC ACCCTTGCCC 1,222 ACCCTTGCCC 1,222 CAGTACGGCTG GACTGGGCTG GACTGGGCTG ACCCTTGCCC 1,221 CAGTACGGCTG ACCCTTGCCC 9 1,221 CAGTACGCCT 1,222 AGCCGGCCCA 1,321 AGCCGCCCCA	ACCCCCGCCAA ACCCCCCCCAA CCACTTCGTGC 93C CCACTTCGTGC 93C 05CACGTCACA 93C 93C 93C 93C 93C 93C 93C 93C	GGTTCACAG GGTTCACAG GGCCCACTCA GGCCCACTCA O 1,04 ACCCCTCATC O 1,14 CCAGGCCAGC CAGGCCAGG CCAGGCCAGG CCAGGCCAGG CCAGGCCAGG CCAGGCCAGG CGATTACATC GGATTACATC GGATTACATC O 1,44 CAGCAGAGAG CAGTTGAGAGG	CGACGCCGCG CGACGCCGCG CGACGCCGCG CAGACTCACC CAGACTCACC 0 1,05 CCCCACGGAC CCCCACGGAC 0 1,15 TACCCGGTT TAACCCGGTT TTACCCGGTT TTCTCACACC 0 1,25 TTCTCACACC 0 1,25 CCCCCGAAAG GCCCTGAAAG GCCCTGAAAG CCTACCTGGA	AGCCAGAGGA AGCCAGAGGA AGCCAGAGGA AGCCAGAGCA GAGTGGACCT 0 1,06 GGGCCAGGTC 0 1,16 TCATTITCAG TCATTITCAG TCATTITCAG TCATTITCAG 0 1,26 CTCCAGATGA GTCCAGAGGA 0 1,36 AGGACCTGCG AGGACCTGCG 0 1,46 GGGCACGTGC	870 TGGAGCCGCG 971 GCGGATCCCGG 972 GCGCACCTG 0 1,07 GCCCACAGTC 0 1,17 TTTAGGCCAA 0 1,27 TGTTIGGCCG 0 1,27 TGTTTGCCG 0 1,37 CTCTTGGACC 0 1,37 CTCTTGGACC 0 1,47 GTGGCACGGC 0 0 1,47 GTGGCACGGC 0	GGCGCCGTACT GGCGCCGTACT CGCGCGTACT CCGCGCTACT CCCGCGCTACT 0 1,08 0 1,08 CCGCGCTACT 0 1,08 0 1,18 AAATCCCCCC 0 1,18 AAATCCCCCC 0 1,28 CGACGTGGGG CGACGTGGGG 0 1,38 GCCGCGGACA GCCGCGGACA 0 1,48 TCCCCAGATA TCCCCAGATA	ATAGAGCAGG ATAGAGCAGG ATAGAGCAGAG 99(ACAACCAGAG D 1,09 AGATCCACCG D 1,09 AGATCCACCG D 1,19 GGGTTGGTCG AGGTTGGTCG D 1,29 TCGGACGGCC D 1,39 TGGCGGCTCA D 1,39 TGGCGGCTCA D 1,49 CCTGGAGAAC	9 AGGGCCCGG AGGGTCCGG 0 14 CGAGGCCGGC 0 1,1 CGAAGCCGC 0 1,2 CGAAGCCGC 0 1,2 CGCAGCCGGC 0 1,2 CGCCCGGCCGGC 0 1,2 GCTCCTCCC 0 1,4 GATCACCAA GATCACCAAA 0 1,4 GGGCAAGCACGA 0 1,4 GGGCAAGCACAA 0 1,4 GGGCAAGCACAA	© 00 A A 000 T T 100 G 200 G 300 G 400 G 500 A A A
HLA-A24 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A2 genome HLA-A24 genome HLA-A24 genome HLA-A24 genome HLA-A24 genome HLA-A24 genome HLA-A24 genome	Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence	810 TGGGCTACGT TGGGCTACGT 910 GTATTGGGAC GATTGGGAC GATGACCCC GAGTGACCCC GAGTGACCCC GAGTGACCCC 1,110 GGGCTCCGGGG 1,210 GGGCTCCGGGG 1,210 GGGCTCCGGGG 1,210 GGGCTCCGGGG 1,210 GGGCTCCGGGG 1,210 GGGCTCCGGGG 1,210 GGGCTCCGGGG 1,210 CGGGTACCAC CGGGTACCAC CGGGTACCAC CGGGTACCAC CGGGTACCAC CGGGTACCAC 1,410 CGCACGGGGG 1,410 CGCACGGGGG 1,410 CGCACGGGGG 1,510	820 GGACGACACG GGACGACACG GGACGACACG GGCGCGAGACAC 0 1,02 0 1,02 0 1,12 ACCCTTGCCC ACCCTTGCCC 0 1,22 GACTGGGCTG 1,32 0 1,32 CAGTACGCCT 1,42 AGCCCCCCA 1,42 AGGCGCCCA 1,42 AGGCGCCCA 1,52 0 1,52	CAGTTCGTGC CAGTTCGTGC GGAAAGTGAA GGAAAGTGAA Q 1.03 GGAAGTGAA Q 1.03 GGAAGTCAAG Q 1.03 CGGGGAGAGGC Q 1.13 CGGGGAGAGGC Q 1.33 ACCGCGGGGA ACCGCGGCAA Q 1.43 ACCGCGGCAA Q 1.43 ACCGCGGGAA	GGTTCGACAG GGTTCGACAG GGTCCGACAG GGCCCACTCA GGCCCACTCA 0 1.04 ACCCCTCATC ACCTCTCATC 0 1.14 CCAGGCGCCCTC 0 1.24 CGAGGCCAGG CCGGCCACG CCGGCCACCG CCGGCCACCAG CCGGCCACCAG CCGGCCACCC CCGGCCACCCA CCGGCCACCCAG CCGGCCACCC CCGGCCACCCAG CCCGGCCACCCAG CCGGCCACCCAG CCGGCCACCCAG CCCGGCCACCCA CCGGCCACCCA CCCCCCCC	0 856 CGACGCCGCG 956 CAGACTCACC 956 CAGACTCACC 0 0 1.05 CCCCACGAC 0 0 1.15 TAACCCGGTT TAACCCGGTT TTACCCGGTT 1.74 0 1.25 CTCCACACCA 0 0 1.35 GCCCTGAAAG 0 0 1.45 CCTACCTGAA 0 0 1.45 CCTACCTGAA 0 0 1.45 CCTACCTGAA 0 0 1.55	AGCCAGAGGA AGCCAGAGGA AGCCAGAGGA GAGAGAACCT GAGAGAACCT 0 1.06 GGGCCAGGTC GGGCCAGGTC 0 1.16 TCATTITCAG TCATTITCAG 0 1.26 CTCCAGATGA Q 1.36 AGGACCTGCG AGGACCTGCG AGGACCTGCG 0 1.36 AGGACCTGCG 0 1.46 GGGCCACGTGC 0 0 1.46 GGGCCACGTGC 0 0 1.46 GGCCACGTGC 0 0 1.46	877 TGGAGCCCCG GCGGATCCCG 977 GCGGATCCCG 970 GCGGATCCCG 971 GCGCATCCCG 972 GCCCACAGTC 973 GCCCACAGTC 974 GCCCACAGTC 975 GCCCACAGTC 977 TTTAGGCCAA 977 TTTAGGCCAA 977 TGTTGGCCG 977 GCTCTTGGACC 977 977 97	GGCGCCGTGG GCGCCGTGG CTCCGCGCTACT CCCGCGCTACT CCCGCGCTACT 0 1.08 TCCCGGCTCCG 0 1.18 AAATCCCCCC 0 1.28 CGACGTGGGG 0 1.38 CGACGTGGGG 0 1.38 CCGCCGCAAA CCGCCGCAAA CCGCCGCAAA	ATAGAGCAGG ATAGAGCAGG ATAGAGCAGG ACAACCAGAG ACAACCAGAG ACAACCAGAG D 1,09 AGATCCACCC AGATCCACCC AGATCCACCC D 1,19 GGGTTGGTCG AGGTTGGTCG D 1,29 TCGGACCGGC D 1,39 TGGCGGCTCA TGGCAGCTCA D 1,49 CCTGGAGACC CCTGGAGAAC CCTGGAGAAC	9 9 AGGGCCCGG AGGGTCCGG AGGGTCCGG 1,1 CGAGGCCGG 1,2 CGAAGCCGC 1,2 CGAAGCCGC 1,2 CGAAGCCGC 1,2 GGGCCGGGC 1,2 GGCCGGGCCGG 1,2 GGCCCGCGCGGCC 1,2 GGCCCGCGGCC 1,2 GCTTCCTCCC GCTTCCTCC 0 1,4 GGCAAGCACAA 1,4 GGGAAGGAGG 1,4	© 000 A A 0000 T T 100 G 200 G 300 G 400 G 500 A A 600
HLA-A24 genome HLA-A2 genome	Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence	810 TGGGCTACGT GGGCTACGAC GTATTGGGAC GAGTGACCCC GAGTGACCCC GAGTGACCCC GGACCCCGAG GGACCCCGAG GGCCCCGAG GGGCTCGGGG 1.310 CGCGCTACCAC CGCGTACCAC CGCGACCGG 1.510 CGCCGCAGCG CGCTGCAGCG CGCTGCAGCG	820 GGACGACACG GGACGACACG 920 GGGGAGACACG 920 1,021 GGCCGGGCC 0 1,021 GGCCCGGGGC 0 1,121 ACCCTTGCCC ACCCTTGCCC ACCCTTGCCC ACCCTTGCCC ACCCTTGCCC ACCCTTGCCC ACCCTTGCCC ACCCTTGCCC ACCCTTGCCC 1,122 CAGTGGGCTG 0 1,221 CAGTACGCCTG 0 1,321 CAGTACGCCCCA 0 1,422 AGGCGGCCCA 1,521 CACGGGTACC CACGGGTACC	CAGTTCGTGC CAGTTCGTGC GGAAAGTGAA GGAAAGTGAA O 1,03 GCAGGTCACG GCAGGTCACG O 1,13 ACCGCGGGAGAGC O 1,23 ACCGCGGGGT ACCGCGGGGT ACCGCGGGGT ACCGCGGGGA D 1,33 ACCGCGGGAG D 1,33 ACCGCGGGGA D 1,33 ACCGCGGGGA D 1,33 ACCGCGGGGA D 1,33 ACCGCGGGGA D 1,33 ACCGCGGGAG D 1,33 ACCGCGGGAG D 1,53 ACGGCGCACG AGGGGCCACG AGGGGCCACG	GGTTCGACAG GGTTCGACAG GGTCCGACACA GGCCCACTCA CGCCCACTCA 0 1.04 ACCCCTCATC 0 1.14 CCAGGCCCACC 0 1.24 CGAGGCCAGG CCGGCCAGG CCGGCCAGG 0 1.34 GGATTACATC 0 1.44 CGACAGAGAG CAGTTGAGAG 0 1.54 CGCCCCTAC	CGACGCCGCG CGACGCCGCG CAGACTCACC CAGACTCACC CAGACTCACC 0 1.05 CCCCACGGAC 0 1.15 TAACCCGGTT TTACCCGGTT TTACCCGGT TTACCCGGT TTCTCACACC 0 1.25 GCCCTGAAAG GCCCTGAAAG CCTACCTGGA 0 1.55 CCTGATCGCCT	AGCCAGAGGA AGCCAGAGGA AGCCAGAGGA AGCCAGAGCT GAGAGGACCT GGGCCGGGTC GGGCCAGGTC 0 1.16 TCATTITCAG TCATTITCAG TCATTITCAG O 1.26 CTCCAGATGA GTCCAGAGGA 0 1.36 AGGACCTGCG AGGACCTGCG GGGCACGTGC 0 1.56 GTAGGTCT GTAGATCT	870 TGGAGCCCGG 970 GCGCATCGCB 970 90 90 90 90 91 91 92 93 94 95 95 96 97 97 97 97 97 97 97 <td>SBC GGCGCCGTGG GGCGCCGTGG GGCGCCGTACT CCGCGCTACT 0 1,08 TCCGGGCTCCG 0 1,18 AAATCCCCCC AAATCCCCCC AAATCCCCCC 0 1,28 CGACGTGGGG CGACGTGGGG 0 1,38 GCGGCGGACAA 0 1,48 TCCGGAGATA 1,58</td> <td>ATAGAGCAGG ATAGAGCAGG ACAACCAGAG ACAACCAGAG D 1,09 AGATCCACCC AGATCCACCC D 1,19 GGGTTGGTCG D 1,29 TCGGACCGGC D 1,29 TCGGACCGGC D 1,39 TGGCGGCTCA D 1,49 CCTGGAGAAC CCTGGAGAAC</td> <td>9 9 AGGGCCCGG 14 CGAGGCCCGG 1.7 CGAAGCCCGC 1.7 CGAAGCCGC 1.7 CGAAGCCGC 1.7 CGAAGCCGC 1.7 CGAAGCCGC 1.7 GGGCCGGCC 1.7 GGGCCGGCC 1.7 GCGCCCGCC 1.7 GCTTCCTCC 1.7 GCTTCCTCC 1.7 GATCACCAAI 1.7 GGGAAGCACCAAI 1.7 GGGAAGCAGCAG 1.7 GGGAAGCAGCAG 1.7 GGGAAGCAGCAGAG 1.7</td> <td>© 001 A A 0000 T T 100 G 200 G 300 G 400 G 500 A A 6000</td>	SBC GGCGCCGTGG GGCGCCGTGG GGCGCCGTACT CCGCGCTACT 0 1,08 TCCGGGCTCCG 0 1,18 AAATCCCCCC AAATCCCCCC AAATCCCCCC 0 1,28 CGACGTGGGG CGACGTGGGG 0 1,38 GCGGCGGACAA 0 1,48 TCCGGAGATA 1,58	ATAGAGCAGG ATAGAGCAGG ACAACCAGAG ACAACCAGAG D 1,09 AGATCCACCC AGATCCACCC D 1,19 GGGTTGGTCG D 1,29 TCGGACCGGC D 1,29 TCGGACCGGC D 1,39 TGGCGGCTCA D 1,49 CCTGGAGAAC CCTGGAGAAC	9 9 AGGGCCCGG 14 CGAGGCCCGG 1.7 CGAAGCCCGC 1.7 CGAAGCCGC 1.7 CGAAGCCGC 1.7 CGAAGCCGC 1.7 CGAAGCCGC 1.7 GGGCCGGCC 1.7 GGGCCGGCC 1.7 GCGCCCGCC 1.7 GCTTCCTCC 1.7 GCTTCCTCC 1.7 GATCACCAAI 1.7 GGGAAGCACCAAI 1.7 GGGAAGCAGCAG 1.7 GGGAAGCAGCAG 1.7 GGGAAGCAGCAGAG 1.7	© 001 A A 0000 T T 100 G 200 G 300 G 400 G 500 A A 6000

図8.HLA-A24とHLA-A2ゲノム遺伝子の塩基配列比較

Genbank データベースに登録されている HLA-A24 ゲノム遺伝子の塩基配列を HLA-A2 ゲノム遺伝子 と比較すると、上流塩基配列(273bp)が含まれていない。また、HLA-A24 のイントロン3にはキ メラ HLA 連結部位として必要な制限酵素 *Bgl* II (AGATCT)認識配列は存在していない。

		10	20	30	40	50
HLA-A24 HLA-A2	Sequence Sequence	AAGCTTACTC AAGCTTACTC	TCTGGCACCA TCTGGCACCA	AACTCCATGG AACTCCATGG	GATGATTTTT GATGATTTTT	CTTCTAGA CCTTCCTAGA
		60	70	80	90	100
HLA-A24 HLA-A2	Sequence	AGAGTCCAGG AGAGTCCAGG	TGGACAGGTA TGGACAGGTA	AGGAGTGGGA AGGAGTGGGA	GTCAGGGAGT GTCAGGGAGT	CCAGTTC-AG CCAGTTCCAG
	bequeille	110	120	130	140	150
HLA-A24 HLA-A2	Sequence Sequence	GGACAGAGAT GGACAGAGAT	TACGGGATGA TACGGGATAA	AAAGTGAAAG AAAGTGAAAG	GAGAGGGACG GAGAGGGACG	GGGCCCATGC GGGCCCATGC
		160	170	180	190	200
HLA-A24 HLA-A2	Sequence Sequence	CGAGGGTTTC CGAGGGTTTC	TCCCTTGTTT TCCCTTGTTT	CTCAGACAGC CTCAGACAGC	TCTTGGGCCA TCTTGGGCCA	AGATTCAGGG AGACTCAGGG
		210	220	230	240	250
HLA-A24 HLA-A2	Sequence Sequence	AGACATTGAG AGACATTGAG	ACAGAGCGCT ACAGAGCGCT	TGGCACAGAA TGGCACAGAA	GCAGAGGGGT GCAGAGGGGT	CAGGGCGAAG CAGGGCGAAG
	•	260	270	280	290	300
HLA-A24 HLA-A2	Sequence Sequence	TCCCAGGGCC TCC-AGGGCC	CCAGGCGT-G CCAGGCGTTG	GCTC GCTC		

図9.HLA-A24 ゲノム遺伝子の未登録領域の塩基配列

ヒト肺扁平上皮癌の RERF-LC-AI 細胞由来ゲノム遺伝子を鋳型に PCR クローニングし、HLA-A24 ゲノム遺伝子の上流未登録領域についてシーケンス解析し、HLA-A2 ゲノム遺伝子の塩基配列と比較した。

Bam H I GTACCTTGTC CCCCAGAGTC AGGGGCTGGG AGTCATTTC TCTGGCTACA CACTTAGTGA Sequence GGATCCTGTG TGACACACCT H-2Kb 140 100 110 120 130 150 Sequence TGGCTGTTCA CTTGGACTGA CAGTTAATGT TGGTCAGCAA GGTGACTACA ATGGTTGAGT CTCAATGGTG TCACCTTCCA H-2Kb Sequence GGATCATACA GCCCTAATTT TAATATGAAC TCAAACACAT ATTAAATTAG TTATTTCCA ттссстсстс CATTCI H-2Kb Sequence CTACCTCTCT CATGCTATTG AACATCACAT AAGGATGGCC ATGTTTACCC AATGGCTCAT GTGGATTCCC TCTTAGCTT H-2Kb Sequence TGAGTCCCAA AAGAAAATGT GCAGTCCTGT GCTGAGGGGA CCAGCTCTGC TTTTGGTCAC TAGTGCGATG ACAGT A G H-2Kb 470 430 450 460 Sequence TGTCAAACAG ACACATAGTT CACTGTCATC ATTGATTTAA CTGAGTCTTG GGTAGATTTC AGTTTGTCTT GTTAA1 GTG H-2Kb 510 520 530 540 550 nce TGATTTCTTA AATCTTCCAC ACAGATTCCC CAAAGGCCCA TGTGACCCAT CACAGCAGAC H-2Kb CTGAAGATAA AGTCACCCTG 590 610 620 630 Sequence AGGTGCTGGG CCCTGGGCTT CTACCCTGCT GACATCACCC TGACCTGGCA GTTGAATGGG GAGGAGCTGA TCCAGGACAT H-2Kb 670 710 Semience GGAGCTTGTG GAGACCAGGC CTGCAGGGGA TGGAACCTTC CAGAAGTGGG CATCTGTGGT GGTGCCTCTT GGGAAGGAGC H-2Kb ence AGTATTACAC ATGCCATGTG TACCATCAGG GGCTGCCTGA GCCCTCACC CTGAGATGGG GTAAGGAGAGA TGTGGG H-2Kb 810 820 830 840 850 860 870 Sequence GAGCTGGGGT CAGGGAAAGC TGGAGCTTTC TGCAGACCCT GAGCTGCTCA GGGCTGAGAG CTGGGGTCAT GACCCTCACC H-2Kh nee TTCATTTCTT GTACCTGTCC TTCCCAGAGC CTCCTCCATC CACTGTCTCC AACATGGCGA CCGTTGCTGT TCTGG H-2Kb 1,010 990 1,000 970 TTE CTTEGAGETE CAATAGTEAC TEGAGETETE GTEGETTTE TEATGAAGAT GAGAAGGAGA AACACAGGTA GGAAAGGECA H-2Kb 50 1,060 1,070 1,080 1,090 1,100 1,110 1,1 TTTCTCTCAG CCTCCTTTAG AGTGTGCTCT GCTCATCAAT GGGGAACACA GGCACACCCC ACATTGCTAC nce GAGTCTGAGT H-2Kb 1.140 1,150 1,160 1,170 1,180 1.190 1.200 H-2Kb Sequence TGTCTCTAAC TGGGTCTGCT GTCAGTTCTG GGAACTTCCT AGTGTCAAGA TCTTCCTGGA ACTCTCACAG CTTTTCTTCT 1,220 1,230 1,250 1,260 1,270 mee CACAGGTGGA AAAGGAGGGG ACTATGCTCT GGCTCCAGGT TAGTGTGGGG ACAGAGTTGT CCTGGGGACA TTGGA H-2Kb 1,340 1,310 1,330 1.29 1.300 1.320 1.350 1.36 TTGGAGATG ATGGGAGCTC TGGGAATCCA TAATAGCTCC TCCAGAGAAA TCTTCTAGGT GCCTGAGTTG TGCCAT H-2Kh Ser GAAA 1.390 1.410 1.370 1.380 1,400 1.420 1.430 H-2Kb 1,470 1,490 1,450 1,480 1,500 1,510 1,52 Sequence ATTGTAAAGG TGACACTCTA GGGTCTGATT GGGGAGGGGC AATGTGGACA TGATTGGGTT TCAGGAACTC CCAGAAT H-2Kb 1530 1.540 1.550 1.560 1.570 1.580 1 590 H-2Kb Semience CTGTGAGTGA GTGATGGGTT GTTCGAATGT TGTCTTCACA GTGATGGTTC ATGACCCTCA TTCTCTAGCG TGAAGACAGC 1,620 1,630 1,640 1,650 1,660 1,670 Sequence TGCCTGGAGT GGACTTGGTG ACAGACAATG TCTTCTCATA TCTCCTGTGA CATCCAGAGC CCTCAGTTCT CTTTA CAA H-2Kb 1,690 1,700 1,710 1,720 1,730 1,7,40 1,750 1,760 re GTGTCTGATG TTCCCTGTGA GCCTATGGAC TCAATGTGAA GAACTGTGGA GCCCAGTCCA CCCCTCTACA CCAGGACCCT H-2Kb Son 1,7,90 1 800 1.810 1.830 Sequence GTCCCTGCAC TGCTCTGTCT TCCCTTCCAC AGCCAACCTT GCTGGTTCAG CCAAACACTG AGGGACATCT GTAGCCTGTC H-2Kb 1,870 1,890 1,900 1,910 Sequence AGCTCCATGC TACCCTGACC TGCAACTCCT CACTTCCACA CTGAGAATAA TAATTT GAAT GTAACCTT GA TTGT H-2Kb 1,930 1,940 1,950 1,960 1,970 1,980 1,990 2,000 H-2Kb Sequence CTTGACCTAG GGCTGATTTC TTGTTAATTT CATGGATTGA GAATGCTTAG AGGTTTTGTT TGTTTGTTTG ATTGATTTGT H-2Kb Semience TTTTTTGAAG AAATAAATGA TAGATGAATA AACTTCCAGA ATCTGGGTCA CTATGCTGTG TGTATCTGTT GGGACAGGAT 2,100 2,110 2,120 2,130 2,150 2,160 Sequence GAGACTGTAG CAGCTGAGTG TGAACAGGGC TGTGCCGAGG TGGGCTCAGT TTGCTTTGAT CTGTGATGGG GCCAACACTC H-2Kb 2170 2180 2190 2200 2210 2220 2230 224 Sequence CACTGTGTCA CCTCTGGGCT CTGTTCCCTC TATCACTATG AGGCACATGC TGAGAGTTTG TGGTCACAAA GACACAGGGA H-2Kh 2,270 2,290 2,320 Sequence AGGCCTGAGC CTTGCCCTGT CCCCAGGATT ATGAGCCCCC AGGGCTAAAG CCGAATTC ATCAGAGACT H-2Kb Eco R I

図10.H-2K^bゲノム遺伝子の塩基配列

H-2K^b ゲノム遺伝子の必要領域をマウスリンパ腫細胞 EL4 より PCR クローニングした。Genbank データベースに登録されていないイントロン 3 にキメラ HLA 連結部位として必要な制限酵素 Bam HI(GGATCC)認識配列が存在していた。3'末端の制限酵素 EcoR I 認識配列は人為的付加による。

		10	20		40			70	
HLA-A2402_Kb	Sequence	ATGGCCGTCA	TGGCGCCCCG	AACCCTCGTC	CTGCTACTCT	CGGGGGGCCCT	GGCCCTGACC	CAGACCTGGG	CAGGCTCCCA
		90	100) 110	120	130	140	150	160
HLA-A2402_Kb	Sequence	CTCCATGAGG	ТАТТТСТССА	CATCCGTGTC	CCGGCCCGGC	CGCGGGGAGC	CCCGCTTCAT	CGCCGTGGGC	TACGTGGACG
		170	0 180) 190	200	210	220	230	240
HLA-A2402_Kb	Sequence	ACACGCAGTT	CGTGCGGTTC	GACAGCGACG	CCGCGAGCCA	GAGGATGGAG	CCGCGGGCGC	CGTGGATAGA	GCAGGAGGGG
		250	260	270	280	290	300	310	320
HLA-A2402_Kb	Sequence	CCGGAGTATT	GGGACGAGGA	GACAGGGAAA	GTGAAGGCCC	ACTCACAGAC	TGACCGAGAG	AACCTGCGGA	TCGCGCTCCG
		330	340	350	360	370	380	390	400
HLA-A2402_Kb	Sequence	CTACTACAAC	CAGAGCGAGG	CCGGTTCTCA	CACCCTCCAG	ATGATGTTTG	GCTGCGACGT	GGGGTCGGAC	GGGCGCTTCC
		410) 420	430	440	450	460	470	480
HLA-A2402_Kb	Sequence	TCCGCGGGTA	CCACCAGTAC	GCCTACGACG	GCAAGGATTA	CATCGCCCTG	AAAGAGGACC	TGCGCTCTTG	GACCGCGGCG
		490	500	510	520	530	540	550	560
HLA-A2402_Kb	Sequence	GACATGGCGG	CTCAGATCAC	CAAGCGCAAG	TGGGAGGCGG	CCCATGTGGC	GGAGCAGCAG	AGAGCCTACC	TGGAGGGCAC
		570	580	590	600	610	620	630	640
HLA-A2402_Kb	Sequence	GTGCGTGGAC	GGGCTCCGCA	GATACCTGGA	GAACGGGAAG	GAGACGCTGC	AGCGCACGGA	TTCCCCAAAG	GCCCATGTGA
		650) 660	670	680	690	700	710	720
HLA-A2402_Kb	Sequence	CCCATCACAG	CAGACCTGAA	GATAAAGTCA	CCCTGAGGTG	CTGGGCCCTG	GGCTTCTACC	CTGCTGACAT	CACCCTGACC
		730) 74(750	760	770	780	790	800
HLA-A2402_Kb	Sequence	TGGCAGTTGA	ATGGGGAGGA	GCTGATCCAG	GACATGGAGC	TTGTGGAGAC	CAGGCCTGCA	GGGGATGGAA	CCTTCCAGAA
		810	820	830	840	850	860	870	880
HLA-A2402_Kb	Sequence	GTGGGCATCT	GTGGTGGTGC	CTCTTGGGAA	GGAGCAGTAT	TACACATGCC	ATGTGTACCA	TCAGGGGCTG	CCTGAGCCCC
		890	900	910	920	930	940	950	960
HLA-A2402_Kb	Sequence	TCACCCTGAG	ATGGGAGCCT	CCTCCATCCA	CTGTCTCCAA	CATGGCGACC	GTTGCTGTTC	TGGTTGTCCT	TGGAGCTGCA
		970	980	990	1,00	0 1,010	0 1,02	0 1,030) 1,040
HLA-A2402_Kb	Sequence	ATAGTCACTG	GAGCTGTGGT	GGCTTTTGTG	ATGAAGATGA	GAAGGAGAAA	CACAGGTGGA	AAAGGAGGGG	ACTATGCTCT
		1,05	i0 1,06	0 1,07	0 1,08	0 1,09	0 1,10	0 1,110) 1,120
HLA-A2402_Kb	Sequence	GGCTCCAGGC	TCCCAGACCT	CTGATCTGTC	TCTCCCAGAT	TGTAAAGTGA	TGGTTCATGA	CCCTCATTCT	CTAGCGTGA .

図11.HLA-A2402/K^bcDNA の塩基配列

HLA-A2402/K^b トランスジェニックマウスの脾細胞より total RNA を精製したのち、逆転写して 1 本鎖 cDNA を合成し、塩基配列を解析した。

図12.マウス脾細胞における HLA-A2402/K^bの細胞表面発現

HLA-A2402/K^bトランスジェニックマウス由来脾細胞表面における HLA-A2402/K^bの発現について 抗 HLA-A, B, C 抗体を利用してフローサイトメトリー解析した。陰性コントロールとして、背景の C57BL/6 マウス由来脾細胞を用いた。H-2D^bはマウス MHC クラス I 分子。

図13.HLA-A2402/K^bの染色体解析

HLA-A2402/K^bトランスジェニックマウスの脾細胞を利用して HLA-A2402/K^bの染色体上の位置に ついて解析した。その結果、第 18 番染色体 A2 領域に挿入されていた。ここでは pB-A2402/K^bを プローブに利用しているため、挿入遺伝子 HLA-A2402/K^b(赤色)と内在性遺伝子 H-2K^b(黄色) が同時に染色されている。

図14.HLA-A2402/K^bトランスジェニックマウスの特異的 CTL 誘導

これまでに同定された HLA-A24 結合性腫瘍抗原ペプチドを免疫した(n=3)。1週間後に脾細胞を 調製し、免疫ペプチド存在下で5日間 *in vitro* 再刺激培養した。培養脾細胞をエフェクター細胞(E)、 Jurkat-A2402/K^b細胞を標的細胞(T)として細胞傷害性試験(⁵¹Cr-release assay)を実施した(E/T=80)。 ■:免疫ペプチドをパルス、□:非パルス。X 軸は個体番号を、Y 軸は細胞傷害活性(% Specific lysis) を示す。

図15.前立腺特異抗原 PSA 由来ペプチドの HLA-A24 結合評価 選択した PSA 由来ペプチドの HLA-A24 結合活性について解析した。Flu はマウス MHC クラス I 結合性ペプチド(陰性コントロール)。

図16.前立腺特異的 PSA 由来ペプチドによる特異的 CTL 誘導

PSA 由来ペプチドを1週間免疫した(n=3)。1週間後に脾細胞を調製し、免疫ペプチド存在下で5
 日間 *in vitro* 再刺激培養した。培養脾細胞をエフェクター細胞(E)、EL4-A2402/K^b細胞を標的細胞(T)として細胞傷害性試験を実施した(E/T=80)。
 第:免疫ペプチドをパルス、□:非パルス。
 X軸は個体番号を、Y軸は細胞傷害活性(% Specific lysis)を示す。

図17.HLA-A24 結合性抗原ペプチドのヒト腫瘍細胞表面提示

ヒト腫瘍細胞表面における HLA-A24 結合性抗原ペプチドの HLA-A24 による提示について ELISA 法 を利用して解析した。HLA-A2402/K^b トランスジェニックマウスに、MAGE-1₁₃₅₋₁₄₃、MAGE-3₁₉₅₋₂₀₃、 PSA₂₋₁₀、PSA₁₃₋₂₁、および PSA₁₉₄₋₂₀₂ に特異的な CD8⁺ CTL をそれぞれ誘導し、Hela 細胞、Hela-A2402/K^b 細胞(HLA-A2402/K^bを発現する Hela 細胞)、あるいは H24P 細胞(HLA-A2402/K^bとヒト PSA を共 発現する Hela 細胞)に対する反応性について解析した。A: Hela 細胞において内因性に発現する腫 瘍抗原 MAGE-1 と MAGE-3 の解析、B: PSA の解析。白: Hela 細胞、黒: Hela-A2402/K^b細胞、斜 線: H24P 細胞。横線: Hela-A2402/K^b細胞(A) あるいは H24P 細胞(B)に抗 CD4 抗体を添加。斑 点: Hela-A2402/K^b細胞(A) あるいは H24P 細胞(B)に抗 CD8 抗体を添加。

図18.PSA2-10 癌ワクチンによるマウス腫瘍増殖抑制効果

PSA₂₋₁₀ ワクチンによる腫瘍増殖抑制効果について解析した(n=6), E24P 細胞の移植当日と1週間前 にワクチンを皮下投与した。A:PSA₂₋₁₀ 癌ワクチンを投与した個体毎の腫瘍増殖、B:ビークルワク チンを投与した個体毎の腫瘍増殖。C:平均(●:PSA₂₋₁₀ 癌ワクチン、O:ビークルワクチン)。 * Wilcoxon test p<0.05 3 HLA-A24 テトラマーの作製

3.1 本研究の目的

癌ワクチン療法は、腫瘍抗原ペプチド - HLA 複合体に特異的な TCR を有する HLA 拘束性 CD8⁺ CTL を誘導することにより腫瘍を排除することを作用メカニ ズムとする。HLA テトラマーの利用により、癌ワクチン療法剤投与後に腫瘍特 異的 CD8⁺ CTL が患者体内で実際に誘導されているかモニタリングすることが 可能になる。また、癌ワクチン療法剤により誘導された腫瘍特異的 CD8⁺ CTL がどのような性状か解析することも可能になる。即ち、癌ワクチン療法で克服 すべき現状課題「長期間に渡り生体内で生存可能で腫瘍特異的に殺傷作用を示 す性状の CD8⁺ CTL をどのようにして効率よく誘導するか」の研究において、こ れまで漠然と CD8⁺ T 細胞を対象に実施していた解析が、HLA テトラマーを用い ることにより、腫瘍特異的な CD8⁺ T 細胞についての詳細な解析が可能になる。

本研究では、日本人の約6割を占めるHLA-A24陽性がん患者を対象とする癌 ワクチン療法剤を開発するにあたり、HLA-A24テトラマーを作製する。

51

3.2 材料および方法

3.2.1 可溶性 HLA および可溶性 β2M 発現ベクターの構築 可溶性 HLA-A2402 cDNA を PCR クローニングするにあたり、HLA-A2402 cDNA 配列を含むプラスミドを鋳型として、上流プライマーrsA24BSP/FW (5'-CCA TGG GCT CCC ACT CCA TGA GGT ATT TCT CCA CAT CCG T-3')と下流プライ ▼-A24BSP/PR (5'-GGA TCC TGG CTC CCA TCT CAG GGT GAG GGG CTT GGG CAG ACC CTC-3')を用いた(下線部は制限酵素 Nco I および BamH I の認 識配列を示す)。また、コドン改変可溶性 HLA-A2402 cDNA を PCR クローニン グするにあたり、HLA-A2402 cDNA 配列を含むプラスミドを鋳型として、上流 プライマーmrsA24BSP/PF (5'-<u>CCA TGG</u> GCA GCC ATT CTA TGC GCT ATT TTT CTA CCT CCG T-3')と下流プライマーA24BSP/PR を用いた。可溶性 HLA-A2.1 cDNA を PCR クローニングするにあたり、HLA-A2.1 cDNA 配列を含むプラスミ ドを鋳型として、上流プライマーrsA0201WT P/PF(5'-CCA TGG GCT CTC ACT CCA TGA GGT ATT TCT TCA CAT CCG T-3)と下流プライマーA2BSP/PR (5'-GGA TCC TGC CTC CCA TCT CAG GGT GAG GGG CTT GGG CAG ACC CTC-3')を用いた。また、コドン改変可溶性 HLA-A2.1 cDNA を PCR クローニ ングするにあたり、HLA-A2.1 cDNA 配列を含むプラスミドを鋳型として、上流 プライマーmrsA0201AL/PF(5'-CCATGG GCA GCC ATT CTA TGC GCT ATT TTT TTA CCT CCG T-3)と下流プライマーA2BSP/PR を用いて Pfu-PCR を実施した。 次に、それぞれの遺伝子断片と pET11d を Nco I および BamH I で消化したのち 連結して pET11-mrsA2402 および pET11-mrsA0201 を構築した。一方、可溶性 β2M cDNA を PCR クローニングするにあたり、β2M cDNA 配列を含むプラスミドを 鋳型として、上流プライマーh2mpET-F1 (5'-CAT ATG ATC CAG CGT ACC CCG AAA ATT CAG-3')と下流プライマーh2mpET-R1 (5'-GGA TCC TTA CAT GTC TCG ATC CCA CTT AAC-3') を用いて Pfu-PCR を実施した(下線部はそれぞれ 制限酵素 Nde I および BamH I の認識配列を示す)。次に、それぞれの遺伝子断 片とpET11aをNdeIおよびBamHIで消化したのち連結してpET11-mrsβ2Mを構 築した。

3.2.2 ウエスタンブロッティング

構築した pET11-mrsA2402、pET11-mrsA0201、および pET11-mrsβ2M を宿主大腸 菌の BL21(DE3) (Novagen 社製) にトランスフォームした。これら大腸菌を 100 µg/ml アンピシリン含有 LB 液体培地にて 37°C で一晩培養したのち、アン ピシリン含有 LB 液体培地にて 10 倍希釈した。O.D.600 =0.8 ~ 1.0 まで更に培養 したのち、終濃度 1mM の isopropyl-β-D-thiogalactosidase (IPTG)を加えた。4 時間後、培養液の一部に等量の 2 x Laemmli の sample buffer を加えて可溶化し、 100°C で4分間煮沸した。その後、2 枚の 10/20% SDS-polyacrylamide gradient multi-gel (第一化学社製)を用いて、40mA 定電流で SDS-PAGE を行った。片方 については Quick-CBB(和光純薬社製)を用いて染色し、もう片方については、 一次抗体として抗 HLA-ABC 抗体 clone8E9.4 (Antigenix America 社製)、二次抗 体として HRP 標識ヤギ抗マウス Igs 抗体 (Dako 社製)を用いてウエスタンプロ ットを行った。

3.2.3 可溶性 HLA 分子と可溶性 β2M 分子の精製

pET11-mrsA2402、pET11-mrsA0201、および pET11-mrsβ2M を包含する BL21(DE3) を 50 µg/ml アンピシリン含有 LB 寒天培地に播種し、出現した単一コロニーを 楊枝で突き、100ml の 50µg/ml アンピシリン含有 LB 培地にて 37 で約 12 時間 培養し、アンピシリン含有 LB 培地で 10 倍希釈した。O.D.600 =0.8 ~ 1.0 まで更 に培養したのち、終濃度 1mM IPTG を添加し、4 時間 37 にて培養した。集菌 後、20ml の suspension buffer (25% sucrose, 50mM Tris pH8.0, 1mM EDTA, 1mM DTT, 1mM PMSF)に完全にサスペンドし、リゾチームを 20mg 加え、5 分間室温 にて転倒攪拌し、Triton X-100 を 400µl 添加し、室温で 30 分間インキュベートし た。その後、終濃度 30mM MgCl₂ および終濃度 1mM MnCl₂溶液、2,400-3,200 unit の DNase I 溶液を添加し、室温で 75 分間転倒攪拌した。遠心回収したのち、20ml の Detergent buffer でサスペンドし、再び遠心回収した。次に、20ml の Wash Buffer1 (0.5% Triton X-100, 50mM Tris pH 8, 100mM NaCl)でサスペンドし、遠心回収し た。この操作は上清がクリアになるまで繰り返した。次に、20ml の Wash Buffer2 (100Mm Tris pH 8, 150mM NaCl, 1mM EDTA)にて遠心回収を繰り返し、10ml の 8M Urea Denaturing Buffer で溶解した。

3.2.4 HLA テトラマーの作製

組換え可溶性 HLA-A2.1 分子、組換え可溶性 HLA-A24 分子、および組換え可溶 性 hβ2M 分子の精製とリフォールディングは、文献報告に従い実施した(42,43)。 即ち、Refolding buffer(100mM Tris-HCl pH8, 2mM EDTA, 400mM L-arginine-HCl, 5mM 還元型 Glutathione, 0.5mM 酸化型 Glutathione, 0.5mM PMSF)に、可溶性 HLA を終濃度 35µg/ml、可溶性 β2M を終濃度 24µg/ml、SYT-SSX1 あるいは PSA 由来 抗原合成ペプチドを 1mg 添加したのち、6 で3日間、ゆっくりと転倒攪拌して 混ぜた。Centriprep-10(YM-10, Amicon 社製)にて濃縮したのち、PD-10 desalting columns (Pharmacia 社製)にてパッファー交換した。Centricon-10 にて約 500µl まで濃縮したのち、50µl Biomax A、50µl Biomax B、1.5µl BirA 酵素 (Avidity 社 製)を添加し、室温で 14~17 時間ビオチン化した。その後、minicon (YM-10) にて 250µl まで濃縮し、Superdex 200HR 10/30 (Pharmacia 社製)を用いてゲルろ 過精製 (0.4ml/min、PBS で溶出)した。PE あるいは APC 標識ストレプトアビ ジン (Molecular Probes 社製)を約 100µg の HLA-A2402/β2M/ペプチド複合体に 対して 33µg を加えることによりテトラマー化した。

3.2.5 特異的 CD8⁺ CTL の誘導とフローサイトメトリー解析

同定したヒト前立腺特異抗原 PSA 由来 HLA-A24 結合性抗原ペプチドを蒸留水 懸濁後に ISA 51 と混合してワクチンを調製し、HLA-A2402/K^bトランスジェニッ クマウスに免疫した。また、コントロールとして蒸留水と ISA 51 を混合したビ ークルワクチンを投与した。1 週間後、これらマウスより脾細胞を調製して 5 日 間免疫ペプチド存在下で *in vitro* 再刺激培養を行った。作製した PE 標識 PSA-HLA-A24 テトラマーで 37 40 分間染色し、更に FITC 標識抗マウス CD8 抗体 (Pharmingen 社製) にて 4 20 分間染色した。培養脾細胞の細胞傷害活性 は、Jurkat-A2402/K^b細胞を標的細胞として細胞傷害性試験(⁵¹Cr-release assay) を行った。一方、SYT-SSX1転座融合遺伝子を発現するHLA-A2402陽性の滑膜 肉腫患者より末梢血細胞を採取し、SYT-SSX1由来のSS393ペプチドで刺激培養 した。APC標識SYT-SSX1-HLA-A24テトラマーで37 20分間染色し、更にPE 標識抗ヒト CD8 抗体(Becton Dickinson 社製)にて4 30分間染色した。同様 に、健常人より末梢血細胞を調製し処理した。その後、PBS にて2回洗浄し、 FACScan で解析した。刺激培養した細胞の細胞傷害活性は、SS393ペプチドパル スあるいは非パルスの HLA-A2402 陽性 CIR-A*2402 細胞、HLA-A2402 陽性 / SYT-SSX1 陽性滑膜肉腫細胞 HS-SYII および Fuji を標的細胞として細胞傷害性試 験(⁵¹Cr-release assay)を行った。このとき、陰性コントロールとして SS393ペ プチドパルスあるいは非パルスの HLA-A2402 陰性 CIR-A*31012 細胞、 HLA-A2402 陽性 / SYT-SSX1 陰性の滑膜肉腫細胞 SW982-A24、および HLA-A2402 陰性 / SYT-SSX1 陰性の 汚腹肉腫細胞 SW982-A24、および

3.3 実験結果

3.3.1 可溶性 HLA 分子の発現解析

組換え可溶性 HLA 分子 (recombinant soluble HLA : rsHLA) と組換え可溶性 β 2M 分子 (recombinant soluble β 2M : rs β 2M)の大腸菌発現について検討したところ、 rsHLA-A2.1 および rs β 2M の発現は認められたが、rsHLA-A2402 の発現はほとん ど 認 め ら れ な か っ た 。 そ こ で 、 コ ド ン 使 用 頻 度 デ ー タ ベ ー ス (http://www.kazusa.or.jp/codon)を利用し、rsHLA-A2402 および rsHLA-A2.1 の N 末端近傍領域のアミノ酸をコードするコドンを宿主 BL21(DE3) (*Escherichia coli B* 株)にとって最適なコドンに改変した。(図19)。その結果、大腸菌における mrsHLA (modified rsHLA)特に mrsHLA-A2402 発現量の顕著な改善が認められ た (図20)。

3.3.2 HLA-A24 テトラマーによる特異的 CTL の検出

HLA-A2402/K^b トランスジェニックマウスに PSA 由来抗原ペプチドを免疫して *in vitro* 再刺激培養した脾細胞、ビークル免疫で同様に *in vitro* 刺激培養した脾細 胞のそれぞれを抗CD8抗体とPSA-HLA-A24テトラマーで染色した(図21-A)。 また、誘導されたCD8⁺T 細胞の細胞傷害活性について解析した(図21-B)。 その結果、PSA 抗原ペプチドを免疫した個体において CD8⁺T 細胞の 34.7%が HLA-A24 テトラマーによって特異的に染色された。一方、ビークル免疫した個 体では 10.59%だった。更に、滑膜肉腫抗原 SYT-SSX1 由来抗原ペプチドによる 刺激培養前後の滑膜肉腫患者、骨肉腫患者、および健常人に由来する末梢血細 胞について、抗 CD8 抗体と SYT-SSX1-HLA-A24 テトラマーで二重染色した(図 22-A)。また、誘導された CD8⁺T 細胞の細胞傷害活性について解析した(図 22-B)。その結果、滑膜肉腫患者由来末梢血細胞において、抗原ペプチド刺 激により滑膜肉腫特異的 CD8⁺T 細胞の増殖が認められた。また、*in vitro* 刺激前 の滑膜肉腫患者、骨肉腫患者、および健常人の滑膜肉腫抗原特異的 CD8⁺T 細胞 の頻度を比較すると、滑膜肉腫患者における特異的 CD8⁺T 細胞の頻度が高いこ とより、滑膜肉腫患者体内には既に滑膜肉腫特異的 CD8⁺T 細胞が誘導されてい ることが示唆された。

3.4 考察

腫瘍特異的な CD8⁺ CTL を誘導することによって腫瘍を排除する癌ワクチン療法において、薬剤投与による患者体内の特異的 CD8⁺ CTL 誘導をモニタリングすることは重要である。そこで本研究では、HLA-A24 陽性がん患者を対象とする 癌ワクチン療法剤の開発を目指して HLA-A24 テトラマーを作製した。

大腸菌における rsHLA-A2.1 の発現は認められたが、rsHLA-A2402 の発現量は 極めて低かった。このことが HLA-A24 テトラマーの開発が遅れている原因であ ると考えられた。HLA テトラマー作製領域における rsHLA-A2402 のアミノ酸領 域について rsHLA-A2.1 と比較したところ、アミノ酸レベルで 91.6%の相同性が 認められた。また、rsHLA-A2.1 の N 末端近傍のアミノ酸をコードしているコド ンについて rsHLA-A2402 と比較すると、第 3 位セリン残基コドンが異なる以外 はすべて一致していた。これより、rsHLA-A2402 が大腸菌にとって特異的に毒 性が高いとは考え難く、また N 末端近傍アミノ酸をコードするコドンが rsHLA-A2402 特異的にタンパク質発現量の低下を引き起こしていることも考え 難かった。

そこで、rsHLA-A2402 の大腸菌発現量の増強を目的として、コドン使用頻度 データベースを利用して rsHLA-A2402 および rsHLA-A2.1 の N 末端近傍アミノ 酸をコードしているコドンの大腸菌使用頻度について解析したところ、第 7 番 目のアルギニン残基で使用されているコドン AGG は、*Homo sapiens* で使用頻度 11.9%であるが、宿主の *E. coli B* 株では 2.1%であることが判明した。このような アルギニン残基のマイナーコドン(AGG と AGA)を多く含む遺伝子は大腸菌内 での効率的タンパク質発現が認められないことが報告されている(44)。そこで、 コドン AGG を大腸菌で使用頻度の高いアルギニン残基をコードするコドン CGC に改変した。また、使用頻度の比較的低い周辺コドンについても大腸菌使 用頻度の高いコドンに改変した。その結果、大腸菌における rsHLA-A2402 の劇 的な発現増強が認められた。

次に、作製した HLA-A24 テトラマーが機能するか確認するため、PSA 抗原ペ プチドワクチンあるいはビークルワクチンを免疫した HLA-A2402/K^b トランス

58

ジェニックマウス由来の脾細胞を PSA-HLA-A24 テトラマーと抗 CD8 抗体で染 色した。また、HLA-A24 陽性滑膜肉腫患者、骨肉腫患者、および健常人に由来 する末梢血細胞を滑膜肉腫抗原 SYT-SSX1 由来抗原ペプチドで *in vitro* 刺激培養 したのち、SYT-SSX1-HLA-A24 テトラマーと抗 CD8 抗体で二重染色した。これ らの結果、PSA 抗原ペプチドワクチン免疫マウス由来および滑膜肉腫患者由来 の細胞において、作製した HLA-A24 テトラマーにより特異的に染色される CD8⁺ CTL が検出された。これより、HLA-A24 テトラマーは目的の特異的 CD8⁺ CTL の検出ツールとして機能することが明らかになった。

以上のように、rsHLA-A2402 の N 末端近傍領域のアミノ酸をコードするコド ンの改変によって大腸菌発現量が劇的に改善されたことより、純度の高い rsHLA-A2402 が得られ、リフォールディング効率が向上し、HLA-A24 テトラマ ーの作製が可能になった。今後、HLA-A24 テトラマーの利用により、特異的 CD8⁺ CTL のモニタリングの他、誘導された CD8⁺ CTL の性状解析も可能になる。即 ち、癌ワクチン療法で克服すべき課題である「長期間に渡り生体内で生存可能 で腫瘍特異的に殺傷作用を示す性状の CD8⁺ CTL の効果的誘導」研究を、 HLA-A24 テトラマーによって検出された特異的 CD8⁺ CTL の性状を詳細に分析 しながら進めることが可能になる。

rsHLA-A2402 frequency	5'-	ATG	GGC 33.1	TCC 8.0	CAC 7.2	TCC 8.0	ATG	AGG 2.1	TAT 18.6	TTC 18.8	TCC 8.0	ACA 6.1
amino acids		Met	Gly	Ser	His	Ser	Met	Arg	Tyr	Phe	Ser	Thr
mrsHLA-A2402 frequency	5'-	ATG	GGC 33.1	AGC 14.3	CAT 9.3	TCT 8.5	ATG	CGC 18.8	TAT 18.6	TTT 28.9	TCT 8.5	ACC 25.2
rsHLA-A0201 frequency	5'-	ATG	GGC 33.1	TCT 8.5	CAC 7.2	TCC 8.0	ATG	AGG 2.1	TAT 18.6	TTC 18.8	TTC 18.8	ACA 6.1
amino acids		Met	Gly	Ser	His	Ser	Met	Arg	Tyr	Phe	Phe	Thr
mrsHLA-A0201 frequency	5'-	ATG	GGC 33.1	AGC 14.3	CAT 9.3	TCT 8.5	ATG	CGC 18.8	TAT 18.6	TTT 28.9	TTT 28.9	ACC 25.2

図19. 組換え可溶性 HLA 分子のN末端アミノ酸のコドン使用頻度

組換え可溶性 HLA 分子の N 末端近傍領域のコドンを *Escherichia coli B* 株に最適なコドンへ改変 した。rs は野生型、mrs はコドン改変型を示す。

図20.大腸菌における組換え可溶性 HLA 分子の発現

37 で 12 時間培養後、アンピシリン含有 LB 培地で 10 倍希釈し、O.D.600 =0.8 ~ 1.0 まで更に培 養した。その後、終濃度 1mM IPTG を添加し、更に 4 時間 37 で培養した。10µl の培養液を等 量 2x Laemmli sample buffer で可溶化し、SDS-PAGE を行った。(A) CBB 染色の結果、(B) 抗 HLA-ABC 抗体 clone8E9.4 を用いたウエスタンプロットの結果。rs は野生型、mrs はコドン改変 型を示す。

図21 - A. PSA-HLA-A24 テトラマーによる染色

同定した PSA 由来抗原ペプチドを HLA-A2402/K^bトランスジェニックマウスに免疫した。1 週間 後に脾細胞を調製し、5 日間 *in vitro* 再刺激培養した。コントロールとして、ビークル投与マウ ス由来脾細胞を同様に培養した。PSA-HLA-A24 テトラマーおよび抗 CD8 抗体で染色した。

図 2 1 - B . PSA 特異的 CD8⁺ CTL の細胞傷害活性

同定した PSA 由来抗原ペプチドを HLA-A2402/K^bトランスジェニックマウスに免疫した。1 週間 後に脾細胞を調製し、5 日間 *in vitro* 再刺激培養した。培養後の脾細胞 CD8⁺ CTL(E)の細胞傷 害活性について解析した。標的細胞(T)として PSA ペプチドパルス Jurkat-A2402/K^b細胞を用 いた。陰性コントロールとして、PSA ペプチド非パルス Jurkat-A2402/K^b細胞、PSA パルス、お よび非パルス Jurkat 細胞(HLA-A24 陰性)を用いた。X 軸は細胞傷害活性(% Specific lysis)、Y 軸は標的細胞。E/T=80。

図 2 2 - A . SYT-SSX1-HLA-A24 テトラマーによる染色

HLA-A24 陽性滑膜肉腫患者の末梢血細胞を SYT-SSX1 由来抗原ペプチドで *in vitro* 刺激培養した。 培養前後で SYT-SSX1-HLA-A24 テトラマーと抗 CD8 抗体で染色した(A-B)。陰性コンとロール として、HLA-A24 陽性骨肉腫患者(C-D)と HLA-A24 陽性健常人(E-F)に由来する末梢血細 胞を同様に処理した。

図22-B.SYT-SSX1 特異的 CD8⁺ CTL の細胞傷害活性

HLA-A24 陽性滑膜肉腫患者の末梢血細胞を SYT-SSX1 由来抗原ペプチド(SS393)で *in vitro* 刺 激培養して誘導した CD8⁺ CTL(E)の細胞傷害活性について解析した。標的細胞(T)として SS393 パルス CIR-A*2402 細胞、HLA-A24 陽性 SYT-SSX 陽性の滑膜肉腫細胞 HS-SYII および Fuji を用いた。陰性コントロールとして、SS393 非パルス CIR-A*2402 細胞、SS393 パルスおよび非 パルス CIR-A*31012 細胞(HLA-A24 陰性) K562 細胞(HLA-A24 陰性/SYT-SSX 陰性) SW982-A24 細胞(HLA-A24 陽性/SYT-SSX 陰性)を用いた。X 軸は細胞傷害活性(% Specific lysis) Y 軸は標的細胞。E/T=30。

4 結論

- (1)HLA-A24 陽性がん患者を対象とする癌ワクチン療法剤の開発を目的として、HLA-A2402/K^bトランスジェニックマウスを作製した。また、マウス体内で誘導された HLA 拘束性特異的 CTL の細胞傷害活性について評価するために必要な標的細胞を樹立した。これまでに同定された複数のヒト腫瘍抗原ペプチドの免疫によって、腫瘍抗原ペプチド特異的に細胞傷害作用を示す CTL の誘導が認められた。
- (2)前立腺特異抗原 PSA より HLA-A24 結合モチーフに従って 5 種類の HLA-A24 結合性候補ペプチドを選択し、上記評価系を利用して CD8⁺ CTL 誘導活性を示す 4 種類の抗原ペプチドを同定した。これらの中の 3 種類 の抗原ペプチドはヒト腫瘍細胞表面に HLA-A24 によって提示されること を確認した。同定した抗原ペプチドを用いて調製したワクチンは、マウ ス腫瘍の *in vivo* 増殖抑制効果を示した。
- (3)可溶性 HLA-A24のN未端近傍領域のアミノ酸をコードするコドンをアミ ノ酸の変更なしに宿主大腸菌にとって最適なコドンに合わせることによ リ、可溶性 HLA-A24 の大腸菌発現量は劇的に増強されることを見出し、 HLA-A24 テトラマーの作製が可能になった。作製した HLA-A24 テトラ マーは、HLA-A2402/K^bトランスジェニックマウスより PSA 抗原ペプチ ド免疫にて *in vivo* で誘導された特異的 CD8⁺ CTL と HLA-A24 陽性滑膜肉 腫患者由来末梢血細胞より滑膜肉腫抗原ペプチド刺激にて *in vitro* で誘導 された特異的 CD8⁺ CTL を検出した。

以上のように、癌免疫療法剤評価システムとして HLA-A2402/K^bトランスジェ ニックマウスと HLA-A24 テトラマーを作製した。本研究の成果は、癌免疫療法 が第4の癌治療法として実現する上で有用性が高い。

参考文献

- van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. (1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 254, 1643-7.
- Valmori, D., J. F. Fonteneau, C. M. Lizana, N. Gervois, D. Lienard, D. Rimoldi, V. Jongeneel, F. Jotereau, J. C. Cerottini, P. Romero. (1998). Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogs. J. Immunol. *160*, 1750
- Chen JL, Dunbar PR, Gileadi U, Jager E, Gnjatic S, Nagata Y, Stockert E, Panicali DL, Chen YT, Knuth A, Old LJ, Cerundolo V. (2000). Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J. Immunol. *165*:948-55.
- Miconnet I, Koenig S, Speiser D, Krieg A, Guillaume P, Cerottini JC, Romero P. (2002). CpG are efficient adjuvants for specific CTL induction against tumor antigen-derived peptide. J. Immunol. 168, 1212-8.
- Koch M, Stronge VS, Shepherd D, Gadola SD, Mathew B, Ritter G, Fersht AR, Besra GS, Schmidt RR, Jones EY, Cerundolo V. (2005). The crystal structure of human CD1d with and without alpha-galactosylceramide. Nat. Immunol. *6*, 819-26.
- 6. Powell DJ Jr, Parker LL, Rosenberg SA. (2005). Large-scale depletion of CD25⁺ regulatory T cells from patient leukapheresis samples. J. Immunother. 28, 403-11.
- 7. Sato Y, Nabeta Y, Tsukahara T, Hirohashi Y, Syunsui R, Maeda A, Sahara H, Ikeda H, Torigoe T, Ichimiya S, Wada T, Yamashita T, Hiraga H, Kawai A, Ishii T, Araki N, Myoui A, Matsumoto S, Umeda T, Ishii S, Kawaguchi S, Sato N. (2002). Detection and induction of CTLs specific for SYT-SSX-derived peptides in HLA-A24⁺ patients with synovial sarcoma. J. Immunol. *169*, 1611-8.
- Kawaguchi S, Wada T, Ida K, Sato Y, Nagoya S, Tsukahara T, Kimura S, Sahara H, Ikeda H, Shimozawa K, Asanuma H, Torigoe T, Hiraga H, Ishii T, Tatezaki SI, Sato N, Yamashita T. (2005). Phase I vaccination trial of SYT-SSX junction peptide in patients with disseminated synovial sarcoma. J. Transl. Med. 3, 1.
- 9. Brinkmann U, Vasmatzis G, Lee B, Pastan I. (1999). Novel genes in the PAGE and

GAGE family of tumor antigens found by homology walking in the dbEST database. Cancer. Res. *59*, 1445-8.

- George Vasmatzis, Magnus Essand, Ulrich Brinkmann, Byungkook Lee, and Ira Pastan. (1998). Discovery of three genes specifically expressed in human prostate by expressed sequence tag database analysis. Proc. Natl. Acad. Sci. 95, 300-4.
- 11. Epstein H, Hardy R, May JS, Johnson MH, Holmes N. (1989). Expression and function of HLA-A2.1 in transgenic mice. Eur. J. Immunol. *19*, 1575-83.
- Salter RD, Norment AM, Chen BP, Clayberger C, Krensky AM, Littman DR, Parham P. (1989). Polymorphism in the alpha 3 domain of HLA-A molecules affects binding to CD8. Nature. *338*, 345-7.
- Salter RD, Benjamin RJ, Wesley PK, Buxton SE, Garrett TP, Clayberger C, Krensky AM, Norment AM, Littman DR, Parham P. (1990). A binding site for the T-cell co-receptor CD8 on the alpha 3 domain of HLA-A2. Nature. 345, 41-6.
- 14. Vitiello A, Marchesini D, Furze J, Sherman LA, Chesnut RW. (1991). Analysis of the HLA-restricted influenza-specific cytotoxic T lymphocyte response in transgenic mice carrying a chimeric human-mouse class I major histocompatibility complex. J Exp. Med. 173, 1007-15.
- 15. Wentworth PA, Vitiello A, Sidney J, Keogh E, Chesnut RW, Grey H, Sette A. (1996). Differences and similarities in the A2.1-restricted cytotoxic T cell repertoire in humans and human leukocyte antigen-transgenic mice. Eur. J. Immunol. 26, 97-101.
- Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM. (1996). Science. 274, 94-6. Erratum in: Science. (1998) 280, 1821.
- Boniface JJ, Rabinowitz JD, Wulfing C, Hampl J, Reich Z, Altman JD, Kantor RM, Beeson C, McConnell HM, Davis MM. (1998). Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands. Immunity. 9, 459-66. Erratum in: Immunity. 9, 891.
- Date Y, Kimura A, Kato H, Sasazuki T. (1996). DNA typing of the HLA-A gene: population study and identification of four new alleles in Japanese. Tissue. Antigens. 47, 93-101.
- 19. Fujie T, Tahara K, Tanaka F, Mori M, Takesako K, Akiyoshi T. (1999). A MAGE-1-encoded HLA-A24-binding synthetic peptide induces specific anti-tumor

cytotoxic T lymphocytes. Int. J. Cancer. 80, 169-72.

- Tanaka F, Fujie T, Tahara K, Mori M, Takesako K, Sette A, Celis E, Akiyoshi T. (1997). Induction of antitumor cytotoxic T lymphocytes with a MAGE-3-encoded synthetic peptide presented by human leukocytes antigen-A24. Cancer. Res. 57, 4465-8.
- 21. Robbins PF, El-Gamil M, Li YF, Fitzgerald EB, Kawakami Y, Rosenberg SA. (1997). The intronic region of an incompletely spliced gp100 gene transcript encodes an epitope recognized by melanoma-reactive tumor-infiltrating lymphocytes. J. Immunol. 159, 303-8.
- 22. Okugawa T, Ikuta Y, Takahashi Y, Obata H, Tanida K, Watanabe M, Imai S, Furugen R, Nagata Y, Toyoda N, Shiku H. (2000). A novel human HER2-derived peptide homologous to the mouse K^d-restricted tumor rejection antigen can induce HLA-A24-restricted cytotoxic T lymphocytes in ovarian cancer patients and healthy individuals. Eur. J. Immunol. *11*, 3338-46.
- 23. Ikuta Y, Okugawa T, Furugen R, Nagata Y, Takahashi Y, Wang L, Ikeda H, Watanabe M, Imai S, Shiku H. (2000). A HER2/NEU-derived peptide, a K^d-restricted murine tumor rejection antigen, induces HER2-specific HLA-A2402-restricted CD8⁺ cytotoxic T lymphocytes. Int. J. Cancer. 87, 553-8.
- Nukaya I, Yasumoto M, Iwasaki T, Ideno M, Sette A, Celis E, Takesako K, Kato I. (1999). Identification of HLA-A24 epitope peptides of carcinoembryonic antigen which induce tumor-reactive cytotoxic T lymphocyte. Int. J. Cancer. 80, 92-7.
- 25. Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S. (2001). Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood. 97, 2903-7.
- 26. Kuzushima K, Hayashi N, Kimura H, Tsurumi T. (2001). Efficient identification of HLA-A*2402-restricted cytomegalovirus-specific CD8⁺ T-cell epitopes by a computer algorithm and an enzyme-linked immunospot assay. Blood. 98, 1872-81.
- 27. Jurk M, Kremmer E, Schwarz U, Forster R, Winnacker EL. (1998). MAGE-11 protein is highly conserved in higher organisms and located predominantly in the nucleus. Int. J. Cancer. 75, 762-6.
- 28. Akiyama Y, Tanosaki R, Inoue N, Shimada M, Hotate Y, Yamamoto A, Yamazaki N,

Kawashima I, Nukaya I, Takesako K, Maruyama K, Takaue Y, Yamaguchi K. (2005). Clinical response in Japanese metastatic melanoma patients treated with peptide cocktail-pulsed dendritic cells. J. Transl. Med. *3*, 4.

- Ikeda-Moore Y, Tomiyama H, Miwa K, Oka S, Iwamoto A, Kaneko Y, Takiguchi M. (1997). Identification and characterization of multiple HLA-A24-restricted HIV-1 CTL epitopes: strong epitopes are derived from V regions of HIV-1. J. Immunol. *159*, 6242-52.
- Lundwall A, Lilja H. (1987). Molecular cloning of human prostate specific antigen cDNA. FEBS. Lett. 214,: 17-22.
- 31. Papsidero LD, Kuriyama M, Wang MC, Horoszewicz J, Leong SS, Valenzuela L, Murphy GP, Chu TM. (1981). Prostate antigen: a marker for human prostate epithelial cells. J. Natl. Cancer. Inst. 66, 37-42.
- 32. Roos AK, Pavlenko M, Charo J, Egevad L, Pisa P. (2005). Induction of PSA-specific CTLs and anti-tumor immunity by a genetic prostate cancer vaccine. Prostate. 62, 217-23.
- 33. Pavlenko M, Roos AK, Lundqvist A, Palmborg A, Miller AM, Ozenci V, Bergman B, Egevad L, Hellstrom M, Kiessling R, Masucci G, Wersall P, Nilsson S, Pisa P. (2004). A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer. 91, 688-94.
- 34. Kaufman HL, Wang W, Manola J, DiPaola RS, Ko YJ, Sweeney C, Whiteside TL, Schlom J, Wilding G, Weiner LM. (2004). Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. J. Clin. Oncol. 22, 2122-32.
- 35. Lustgarten J, Dominguez AL, Cuadros C. (2004). The CD8⁺ T cell repertoire against Her-2/neu antigens in neu transgenic mice is of low avidity with antitumor activity. Eur. J. Immunol. 34, 752-61.
- 36. Firat H, Garcia-Pons F, Tourdot S, Pascolo S, Scardino A, Garcia Z, Michel ML, Jack RW, Jung G, Kosmatopoulos K, Mateo L, Suhrbier A, Lemonnier FA, Langlade-Demoyen P. (1999). H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur. J. Immunol. 29, 3112-21.

- 37. Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B. (1997). HLA-A2.1-restricted education and cytolytic activity of CD8⁺ T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2D^b beta2m double knockout mice. J. Exp. Med. 185, 2043-51.
- 38. Nagata Y, Furugen R, Hiasa A, Ikeda H, Ohta N, Furukawa K, Nakamura H, Furukawa K, Kanematsu T, Shiku H. (1997). Peptides derived from a wild-type murine proto-oncogene c-erbB-2/HER2/neu can induce CTL and tumor suppression in syngeneic hosts. J. Immunol. 159, 1336-43.
- 39. Cohen CJ, Zheng Z, Bray R, Zhao Y, Sherman LA, Rosenberg SA, Morgan RA. (2005). Recognition of fresh human tumor by human peripheral blood lymphocytes transduced with a bicistronic retroviral vector encoding a murine anti-p53 TCR. J. Immunol. 175, 5799-808.
- 40. Denkberg G, Lev A, Eisenbach L, Benhar I, Reiter Y. (2003). Selective targeting of melanoma and APCs using a recombinant antibody with TCR-like specificity directed toward a melanoma differentiation antigen. J. Immunol. *171*, 2197-207..
- 41. Epel M, Ellenhorn JD, Diamond DJ, Reiter Y. (2002). A functional recombinant single-chain T cell receptor fragment capable of selectively targeting antigen-presenting cells. Cancer. Immunol. Immunother. *51*, 565-73.
- 42. Parker KC, Wiley DC. (1989). Overexpression of native human beta 2-microglobulin in Escherichia coli and its purification. Gene. *83*, 117-24.
- 43. Garboczi DN, Hung DT, Wiley DC. (1992). HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl. Acad. Sci. 89, 3429-33.
- 44. Brinkmann U, Mattes RE, Buckel P. (1989). High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene. 85, 109-14.
本研究の発表の機会を与えていただきました奈良先端科学技術大学院大学竹 家達夫教授に心より感謝致します。また、HLA-A24 テトラマーの作製の機会を 与えていただきました久留米大学医学部伊東恭悟教授および札幌医科大学医学 部佐藤昇志教授に心より感謝致します。久留米大学医学部七條茂樹先生および 奈良先端科学技術大学院大学加藤順也教授には研究の様々な面で大変お世話に なりました。また実験を手伝っていただきました大日本住友製薬株式会社薬理 第3グループの方々にお礼申し上げます。最後に私の研究生活を精神的に支え てくださいました妻と子供達に心より感謝致します。