ギャップ結合構築に関わる新規タンパク質

CIP150の同定とその機能解析

秋山 元英

奈良先端科学技術大学院大学 バイオサイエンス研究科 細胞増殖学講座 (竹家 達夫 教授)

平成 17 年 7 月 22 日提出

目次

序論

ギャップ結合とコネクシン ギャップ結合の多様性 ギャップ結合が関わる生命現象と疾患 卵胞発育におけるギャップ結合 コネクシン 43 のライフサイクル コネクシン 43 によるギャップ結合の制御機構 コネクシン 43 の制御機構 本研究の要約

材料と方法

結果

コネクシン 43 会合タンパク質の探索
新規タンパク質 CIP150 の同定
CIP150 は細胞内において Cx43 と会合する
コネクシン 43 のリン酸化は CIP150 との会合に必須ではない
コネクシン 43 C 末端領域における CIP150 結合領域の決定
CIP150 結合領域はコネクシン 43 のギャップ結合構築に重要である
siRNA による CIP150 の発現抑制はコネクシン 43 の細胞膜への局在
とチャネル活性を減少する

考察

46

54

3

17

23

謝辞

参考文献

55

序論

ギャップ結合とコネクシン

哺乳動物において、隣接した細胞は主として密着結合、接着結合、ギャッ プ結合という役割の全く異なった3種類の様式で結合している。この中で、 ギャップ結合は隣接する細胞間での物質の伝達、交換を可能にし、組織の形 態形成や機能、細胞の分化、増殖など様々な生命現象に関わることが報告さ れている。ギャップ結合発見の歴史は、1960年代に神経や心筋などにおける 細胞間での電気信号の伝達、色素などの低分子量物質の移行が観察されたこ とに始まるが (Kanno and Loewenstein, 1964a, b)、その実体は不明とされて いた。一方、1967年に電子顕微鏡観察で、組織において隣接する細胞の細胞 .膜同士が約 2-4 nm 幅という狭い隙間(ギャップ)構造をとった細胞接着構 造が観察されていた。その後、肝臓のギャップ構造体を含む画分より分子量 28 と 21kDa のタンパク質が、次いで心臓より 43kDa のタンパク質が精製さ れた。その後、これらのタンパク質をコードする cDNA がクローニングされ、 その発現依存的なギャップ結合チャネルの形成が確認された(Paul, 1986)。 このようにクローニングされた cDNA がコードするものが、ギャップ結合構 成タンパク質のコネクシンである。これまでにコネクシン遺伝子は、ヒトで 20、マウスで 19 種類が確認されている(Willecke et al., 2002)。コネクシン の命名法には、コネクシン 43 (Cx43)のようにタンパク質の分子量をもと にしたものと、アミノ酸配列の相同性によって、、、の3つのグループ に分け、同定された順番に命名していくものがある。近年発見されたコネク シン(Cx29、Cx36 など)が、 、 、 どのグループにも当てはまらない ことや、簡便性の面から前者が用いられることが多い。

コネクシンは 4 回膜貫通型の膜タンパク質であり、細胞内 N 末端および C 末端、2 つ細胞外ループ、1 つの細胞内ループ領域を有する(Goodenough *et al.*, 1996; Yeager *et al.*, 1998; Evans *et al.*, 1999; 参考図 1 A)。ギャップ結合チャ ネルは、コネクシンが細胞膜への輸送過程において 6 量体(コネクソン)を 形成し、コネクソンが数十から数千集合したヘミチャネルが隣接する細胞間 で連結することで構築される(Beyer *et al.*, 1990; Unger *et al.*, 1999; 参考図 1 B)。コネクソンの中心に形成される親水性の微小孔は、その直径が約 1.5 nm であり、これを介してイオンや cAMP、イノシトール 3 リン酸、糖、アミノ 酸、ヌクレオチドなど分子量約 1kD 以下の低分子物質が拡散する(Bruzzone *et al.*, 1996a, b; Kumar and Gilula, 1996)。3 番目の膜貫通領域は、 -ヘリック スを形成したとき親水性と疎水性の表面を持つことが予想されており、親水 性表面がコネクソン中心の微小孔内面を構成していると考えられている。ま た、ファミリー間において、膜貫通および細胞外ループ領域において比較的 相同性が高く、特に2つの細胞外ループ領域にそれぞれ3個ずつ存在するシ ステイン残基は、ファミリー間に例外なく保存されている。ループ間では、 このシステイン残基において分子内ジスルフィド結合が形成されており、コ ネクソン間の連結に関与すると考えられている(Toyofuku *et al.*, 1998b)。こ れに対し細胞内ループ領域とC末端領域は、ファミリー間で相同性が低く長 さも異なることから、それぞれのコネクシン特有の機能に重要な働きをする と考えられている(Bruzzone *et al.*, 1996a, b)。

ギャップ結合の多様性

コネクシンは、ファミリー間で組織特異的な発現は見られるものの、ほと んどの器官や臓器の細胞では、1種類以上のコネクシンが同時に発現してお り(Bruzzone *et al.*, 1996b)、複数のコネクシンによるギャップ結合の構築が 可能なことも知られている。例えば、Cx43 と Cx40(He *et al.*, 1999)、Cx43 と Cx45(Martinez *et al.*, 2002)、Cx26 と Cx32(Falk, 2000a)など異なるコネ クシンがコネクソンを形成すること、また Cx43 からなるコネクソンと Cx46 からなるコネクソンがギャップ結合を構築することなどが報告されている (White *et al.*, 1994)。つまり、コネクソンを構成しているコネクシンがホモ またはヘテロの場合、細胞間でのコネクソンの連結がホモまたはヘテロの場 合、それぞれの組合せで 4 種類のモデルが考えられる(Bruzzone et al., 1996a,b; Simon and Goodenough, 1998; 参考図 2)。このように、コネクシンフ ァミリーは多数存在する上に、様々な組み合わせによりギャップ結合を構築 する。

この多様性の意義は不明な点が残されているが、ギャップ結合を構成する コネクシンの違いによる透過物質の選択性が有ることが報告されている (Goldberg *et al.*, 2004)。イノシトール 3 リン酸のギャップ結合を介した透過 活性は、Cx32 が Cx43 の約 2.5 倍、Cx26 の約 3.5 倍高いことが示されている (Niessen *et al.*, 2000)。また、Cx43 は Cx32 よりも ADP や ATP の透過性が 高いが、アデノシンは逆に Cx32 の方が高いことも報告されている(Goldberg *et al.*, 2002)。さらに、Cx26 からなるコネクソンと Cx32 からなるコネクソン は細胞間で連結しギャップ結合を構築するが、Cx32 同士に比べ蛍光色素の 透過活性が低下する (Cao *et al.*, 1998)。このようなコネクシンによる機能の 違いは、Cx43 の遺伝子座を Cx40 または Cx30 で組替えたマウスでは、正常 な発育をせずそれぞれ異なる表現型を示すことからも推察される (Plum *et al.*, 2000)。

ギャップ結合が関る生命現象と疾患

生体内におけるギャップ結合の機能は、各コネクシン遺伝子のノックアウ トマウスの解析により多くの知見がもたらされている。Cx26^{-/-}マウスでは、 マウス特有の胎盤構造において母体からのグルコース輸送に障害が起き、胎 生 11 日目で死亡することが報告されている (Gabriel et al., 1998)。また、 Cx45^{-/-}マウスも胎生 10 日目で致死となり、その原因は心内膜床細胞の分化 抑制であるとされている (Kruger et al., 2000; Kumai et al., 2000)。Cx32^{-/-}マ ウスにおいては、軽度の末梢神経障害を起こすとともに、その発現が高い肝 臓において細胞の異常増殖が起き肝癌が多発する(Nelles et al., 1996; Temme *et al.*, 1997)。Cx40^{-/-}マウスでは、心臓の形態は正常であるが、心筋伝達障害 が観察されている(Kirchhoff *et al.*, 1998)。Cx30^{-/-}マウスでは、蝸牛内の電 位異状により難聴になることが報告されている(Teubner *et al.*, 2003)。Cx46^{-/-} (Gong et al., 1997)、および Cx50^{-/-}マウス(White et al., 1998)では、ともに 白内障を起こす。Cx43 は最も広範な組織発現していることが知られている が、そのノックアウトマウスでは胎生期は生存するが心臓の形態異常(右心 室出路の狭窄)のために出生直後に窒息死する(Reaume et al., 1995)。また、 へテロ接合体 (Cx43 ^{+/-}) ではこれまでに心臓の形態に異常は認められてい ないが、心臓外膜の拍動が遅くなること(Guerrero *et al.*, 1997)、虚血により 心室性不整脈が発生しやすくなるということが示されている(Lo,2000)。

また、ヒトにおいてもコネクシン遺伝子の異常に起因すると考えられる疾 患が報告されている(Kelsell *et al.*, 2001; Wei *et al.*, 2004)。X型 Charcot-Marie-Tooth病の原因遺伝子の1つとしてCx32遺伝子(Bergoffen *et al.*, 1993)が同定されて以降、Cx26(Kelsell *et al.*, 1997)、Cx30(Grifa *et al.*, 1999)およびCx31(Xia *et al.*, 1998; Liu *et al.*, 2000)の遺伝子変異による遺 伝性の非症候性難聴、Cx26 変異による遺伝性皮膚疾患である palmoplantar keratodermas(Maestrini *et al.*, 1993; Kelsell *et al.*, 2000)が報告された。遺伝 性皮膚疾患においては、Cx30.3の変異も明らかにされている(Macari *et al.*, 2000)。また、Cx46 またはCx50の変異による先天性白内障(Francis *et al.*, 1999) や、Cx43 の C 末端領域における点突然変異によるヒトの心臓奇形の 疾患 (Britz-Cunningham *et al.*, 1999) なども報告されている。

これらのノックアウトマウスの表現型や、ヒトにおける疾患の原因遺伝子 としてコネクシン遺伝子が同定されていることなどから推測できるように、 ギャップ結合の役割は多様で、様々な組織で重要な機能を担っていると考え られる。

卵胞発育におけるギャップ結合

ギャップ結合を介した細胞間コミュニケーションが関わる生命現象とし て、さらに、哺乳類卵巣内濾胞(卵胞)における卵子成熟機構が挙げられる。 哺乳類において卵胞は、個体が性成熟を迎えるまで未成熟な初期卵胞(原始 卵胞)の段階で休止しており、卵胞刺激ホルモン(FSH)の刺激により卵胞 発育は再開される。卵胞発育が再開される過程では、卵母細胞を取り巻く顆 粒膜細胞が増殖し、しだいに多層化(1-3次卵胞)していき、やがて卵胞内 に腔を持つ胞状卵胞(グラーフ卵胞)へと発達する(参考図 3 A)。この様な 卵巣内における卵胞発育の最も中心的な過程は、卵母細胞の成長にある。原 始卵胞内にある卵母細胞は、減数分裂を再開する能力も、発生能もまだ持っ ておらず、卵胞が発育すると伴に、その大きさが増大し、発生能力を獲得し ていく。卵胞内には内莢膜層にしか血管は存在しておらず、卵母細胞は周り を囲む顆粒膜細胞を通し栄養や、FSHなど外部からのシグナルを受け取って いる。よって卵胞の発育には、卵母細胞と顆粒膜細胞との細胞間相互作用が 重要な役割を果たしていると考えられてきており(Eppig, 1994)、この相互 作用に関する分子レベルでのメカニズムが、明らかになってきている。顆粒 膜細胞から分泌される Steel 因子は、卵母細胞表面に発現している受容体 c-kitに結合し、生存および成長に必要なシグナルを伝えることが知られてお り(Kissel et al., 2000)、可溶型 Steel 因子を産生できない変異型マウスでは、 卵胞発育は一次卵胞で停止する(Kuroda et al., 1988; Huang et al., 1993; Bedell et al., 1995)。また、卵母細胞から産生される Growth and Differentiation factor-9(GDF-9)は、そのノックアウトマウスで、卵胞発育が初期の段階で 停止する表現型が見られており (Dong *et al.*, 1996)、GDF-9 が顆粒膜細胞に 作用し、ヒアルロン酸合成やシクロキナーゼ2の遺伝子発現を誘導すること により、顆粒膜細胞の分化を誘導することが明らかになっている(Elvin et al., 1999)。

6

これら液性因子に加え、卵胞発育過程において卵母細胞と顆粒膜細胞間の 相互作用に、ギャップ結合も重要な役割を果たしている(Heller and Schultz, 1980; Brower and Schultz, 1982)。卵胞内においてギャップ結合は、顆粒膜細 胞間、および卵母細胞と顆粒膜細胞間に存在しており(Anderson *et al.*, 1976; Gilula et al., 1978; 参考図 3 B)、細胞間の代謝的共役をもたらし、卵母細胞 への栄養供給や分裂再開抑制機構、あるいは顆粒膜細胞の増殖や分化に関与 していると考えられている (Dekel et al., 1981; Bornslaeger and Schultz, 1985; Sherizly et al., 1988; Sandberg et al., 1992; Carabatsos et al., 2000)。卵胞内で発 現しているコネクシンは、これまでに、Cx26、30.3、32、37、43、45、60 の7種類が同定されており、それぞれ特異的な局在を示す。Cx26、32は、 胞状卵胞内の内夾膜細胞にのみ発現が見られ、Cx30.3は、胞状卵胞内の内夾 膜細胞、顆粒膜細胞、卵丘細胞に、Cx60は胞状卵胞内の内夾膜細胞、卵丘 |細胞に発現が見られる(Itahana *et al.*, 1996, 1998)。Cx43 は、卵胞発育の初 期から顆粒膜細胞において発現しており(Wiesen and Midgley, 1994; Juneja et al., 1999)、胞状卵胞内においても、卵母細胞を除き、広範に発現している (Itahana et al., 1996)。Cx37 も卵胞発育の初期から発現しているが、その発 現は卵母細胞に見られる (Simon *et al.*, 1997)。また Cx45 は、胞状卵胞内の 顆粒膜細胞において Cx43 と共局在を示す (Okuma et al., 1996)。これらのコ ネクシンのうち、Cx37^{-/-}マウスでは、メスにおいて卵胞の成熟不全と排卵障 害による不妊が確認されている (Simon et al., 1997)。 さらに、Cx43 のノッ クアウトマウスは前述したように、心臓の形態異常のため生後直後に死亡す るが、卵巣を摘出し器官培養を行うと、顆粒膜細胞の増殖がほとんどみられ ず、原始もしくは一次卵胞で発育を停止するのが認められている(Juneja*et* al., 1999)。このことは、卵巣を野生型マウスの腎皮膜下へ移植した場合でも、 同様のことが確認されており(Ackert et al., 2001)、Cx43 が卵胞発育の初期 の段階から重要な機能を担っていること示唆する。

Cx43 のライフサイクル

コネクシンファミリーの中で、Cx43 は広範な組織や様々な細胞において 発現しており、早くから cDNA が単離されたことから他のコネクシンに比べ 解析が進められてきた(Bruzzone *et al.*, 1996a,b)。Cx43 は、他の膜タンパク 質と同様に粗面小胞体において合成され、その後ゴルジ体を通り、トランス ゴルジネットワークを経て細胞膜へと輸送されギャップ結合を構築する (Berthoud *et al.*, 2004; 参考図 4)。無細胞タンパク質合成系において、Cx43 は1番目の膜貫通ドメインがシグナルペプチド配列と認識され、シグナルペ プチダーゼにより切断されてしまう傾向があることから、膜への組み込みに はシャペロンタンパク質が必要になる可能性が示唆されている(Falk and Gilula, 1998)。小胞体において膜に組み込まれた Cx43 は、その後トランスゴ ルジネットワークにおいてオリゴマー化しコネクソンを形成する(Musil and Goodenough, 1993)。一方、Cx32 ではコネクソンの形成が小胞体において起 こることが報告されており(DasSarma *et al.*, 2002)、Cx43 と 32 のキメラタ ンパク質を用いた解析より、Cx43 の 3 番目の膜貫通領域と 2 番目の細胞外 ループ領域が小胞体でのコネクソンの形成を阻害する最小のモチーフであ り、中でも 153 番目のアルギニンと 173 番目のグルタミンが重要であること が示されている(Maza *et al.*, 2005)。

コネクソンを形成した Cx43 は、細胞膜へと輸送されギャップ結合を構築 するが、コネクソンはまずギャップ結合周辺の細胞膜に輸送され、その後ギ ャップ結合内へと取り込まれるということが報告されている(Gaietta et al., 2002)。このことは、4つのシステイン残基からなるタグ配列と、これと反応 することで蛍光を発する2つの物質(FIAsH-EDT2およびRsAsH-EDT2)を異 なるタイミングで添加するという手法により明らかにされており、ギャップ 結合の崩壊は逆にその中心より起こるということも同時に示されている。ま た、GFP 融合型 Cx43 (Cx43-GFP)を発現している細胞と、内在性の Cx43 を発現している細胞を同時に培養したところ、Cx43-GFP を発現していない 細胞の細胞質においても GFP のシグナルが観察されることから、ギャップ 結合の崩壊過程において細胞間で連結しているコネクソンは、一方の細胞に 取り込まれるのではないかと考えられている(Jordan et al., 2001)。ギャップ 結合より細胞質へと取り込まれた Cx43 は、その後タンパク質分解を受ける が、これにはユビキチン-プロテアソーム系(Laing and Beyer, 1995)とリソソ ーム系(Musil et al., 2000)の2つの経路が関与していることが知られてい るが、その詳細はまだ不明な点が残されている。これまでの報告において Cx43 の半減期は 1-1.5 時間 (Laird *et al.*, 1995) というものから約 4 時間 (Yamaguchi and Ma, 2003)というものまで様々であり、他のコネクシンで は2日以上という報告もある(Berthoud et al., 1999)。これらことから、コネ クシンの分解は細胞により異なるメカニズムが存在し、これにより半減期の 時間も異なるのではないかと予想される。

Cx43 によるギャップ結合の制御機構

前述したようなライフサイクルにおいて、Cx43 は様々な段階で制御を受 けており、ファミリー間でその長さが異なり相同性も低い細胞内C末端領域 (227 番目のグルタミン酸残基から 382 番目のイソロイシン残基; Cx43-CT) のリン酸化は、この制御に深く関わる (Falk., 2000b; Cruciani and Mikalsen, 2002; Lampe and Lau, 2004; 参考図 5)。細胞内 cAMP の上昇は、PKA 依存的 な Cx43 の細胞内の輸送やギャップ結合の構築を促進し、このときリン酸化 の亢進も見られることが報告されている(Wang and Rose, 1995; Holm et al., 1999; Falk et al., 2000a; Paulson et al., 2000)。顆粒膜細胞において、FSH 刺激 は cAMP の細胞内濃度を上昇させることが知られており、この刺激依存的に Cx43 によるギャップ結合の構築が促進されること、Cx43-CT の 365、368、 369 および 373 番目のセリン残基におけるリン酸化が亢進されることが報告 されている。さらにこのリン酸化部位を全てアラニンに置換した変異体 (Cx43-S4A)では、チャネル活性が著しく低下することも明らかにされてい る (Yogo et al., 2002)。また、カセインキナーゼ1(CK1)の酵素活性は、細 胞膜へと輸送された Cx43 がギャップ結合を構築するのに重要であることが 阻害剤を用いた実験から示されている。なお、CK1 によるリン酸化部位は、 in vitro のリン酸化反応で、Cx43-CT の 325、328 または 330 番目のセリン残 基であることが示されている(Cooper and Lampe, 2002)。

一方、Cx43-CT におけるリン酸化はギャップ結合の負の制御(ギャップ結 合の分解やチャネル活性の阻害)にも関わることが報告されている。G₂/M 期において p34^{cdc2} キナーゼは、255 および 262 番目のセリン残基におるリン 酸化を亢進し、エンドサイトーシスの増加と分解を促進すると考えられてい る(Kanemitsu *et al.*, 1998)。また、PKC はホルボールエステルなどの刺激に より Cx43 の 368 番目の セリン残基を(Lampe *et al.*, 2000; Rivedal and Opsahl, 2001)、上皮増殖因子や血小板由来増殖因子などの刺激により MAPK は 255、 279、282 番目のセリン残基を(Warn-Cramer *et al.*, 1998; Rivedal and Opsahl, 2001)、v-Src は 247、265 番目のチロシン残基をリン酸化しチャネル活性を 負に制御することが報告されている(Lin *et al.*, 2001)。c-Src も細胞間コミュ ニケーションの負の制御に関わり(Postma *et al.*, 1998)、265 番目のチロシン 残基をリン酸化する可能性が示唆されている(Giepmans *et al.*, 2001a)。Src に よるチロシンリン酸化を介した負の制御に関して、Cx43-CT に receptor protein tyrosine phosphatase µ(RPTPµ)が会合することが報告されており、 Src による制御を阻害するのではないかと予想されている(Giepmans *et al.*, 2003)。

また、Cx43 によるギャップ結合の構築制御に関与するものとして、細胞 外基質との結合を担うインテグリンや、接着結合分子であるカドヘリンが挙 げられる(Lampe and Lau, 2000)。インテグリン 3 1とその基質であるラミ ニン 5 との結合は、Rho A を介して Cx43 によるギャップ結合構築を促進さ せることが報告されている(Lampe et al., 1998)。また、接着結合、Cx43 に よるギャップ結合を共に有している細胞において、カドヘリンの機能を阻害 すると、ギャップ結合の構築も阻害されること (Meyer et al., 1992; Frenzel and Johnson, 1996)、これに対し Cx43 は発現しているがギャップ結合を形成 していない細胞において、カドヘリンを遺伝子導入し、接着結合を形成させ ると、ギャップ結合が構築され(Matsuzaki et al., 1990; Jongen et al., 1991)、 Cx43 のリン酸化レベルも上昇することが報告されている(Musil et al., 1990)。 この詳細な機構は不明であるが、神経冠細胞において、カドヘリンの細胞内 領域の -カテニン結合領域と膜貫通領域との間に位置する膜近位の領域に 結合することが知られている p120^{ctn}が Cx43、N-カドヘリンそれぞれと共局 在しており、p120^{ctn}を介してこの2つの細胞間結合が互いに作用している可 能性が示唆されている(Xu et al., 2001)。また、カドヘリンによるギャップ 結合構築の促進が、サイトカラシン D により阻害されることより、 -カテ ニンを介したアクチンフィラメントの形成がカドヘリンによるギャップ結 合構築制御に重要であることも示されている(Hernandez-Blazquez et al., 2001)。Cx43とアクチンフィラメントとの関わりは、細胞膜への輸送に関与 するという可能性が示唆されており(Murray et al., 1997)、アクチン結合タ ンパク質である ZO-1、-2、Drebrin などが Cx43-CT を介して会合することも 報告されている (Giepmans and Moolenaar, 1998; Singh and Lampe, 2003; Butkevich et al., 2004)。また、これらの会合タンパク質は、Cx43の局在制御 やタンパク質の安定性に関わる可能性が示唆されている。例えば、ZO-1 は 心筋細胞において、介在板付近におけるギャップ結合構築に重要である (Toyofuku et al., 1998b)。

一方、その結合領域を欠損しているような変異型 の Cx43 が野生型に比べチャネル活性に若干の違いが見られるものの、ギャ ップ結合を構築することも知られており (Fishman et al., 1991; Dunham et al., 1992)、その重要性は未だ不明である。

さらに、微小管がコネクソン間の連結に必要であるということが、その重 合阻害剤である nocodazole で細胞を処理した実験より示唆されており (Thomas *et al.*, 2001)、Cx43-CTと または チューブリンが直接会合する ことも示されている(Giepmans *et al.*, 2001b, c)。しかし、Cx43-CT における チューブリン結合領域の欠損は、ギャップ結合の構築やチャネル活性に特に 影響を与えないこと、細胞種によりギャップ結合構築に対する nocodazole の 作用が異なることなどから、微小管が Cx43 を制御するのではなく、Cx43 が 微小管重合時に細胞膜でのアンカーとして働くのではないかという報告も 存在する (Murray *et al.*, 1997; Giepmans *et al.*, 2001b)。

アクチン結合タンパク質やチューブリン以外に、これまでに Cx43-CT に会合するタンパク質として、CCN3/NOV (Cyr61/connective tissue growth factor/ nephroblastoma-overexpressed: Fu *et al.*, 2004; Gellhaus *et al.*, 2004)や新規分 子 CIP85 (Connexin43-Interacting Protein of 85-kDa: Lan *et al.*, 2005)などが知 られている。CCN3/NOV は、Cx43 によるギャップ結合の構築依存的にその 発現量が上昇するタンパク質であり、Cx43-CT と会合することで細胞の増殖 を抑制することが示されていが、Cx43 の制御に寄与するかは不明である。 これに対し CIP85 は、Cx43 のリソソーム依存的な分解に関わることが報告 されている。

本研究の要約

以上述べた様に、Cx43 によるギャップ結合制御機構はリン酸化やタンパ ク質の会合など様々な知見が示されているが、その詳細な分子制御機構は未 だ解明されておらず、不明な点が多く残されている。そこで本研究では、Cx43 によるギャップ結合構築における制御機構を理解することを目的に、特に Cx43-CT に着目し、Cx43 が重要な役割を担っている卵巣の cDNA ライブラ リーを用いた yeast two-hybrid 法による会合タンパク質の探索を行った。そ の結果、新規分子 Connexin43-Interacting Protein of 150-kDa(CIP150)を会合 タンパク質として同定した。さらに、CIP150 の機能解析を行なうことによ り、Cx43 の細胞内局在制御に関わる可能性を示唆する結果が得られ、ギャ ップ結合構築に関わる制御機構についての新しい知見を得ることが出来た。

参考図1 コネクシンとギャップ結合の模式図

A. コネクシンは 4 回膜貫通型の膜タンパク質であり、細胞内 N 末端および C 末端、2 つ細胞外ループ、1 つの細胞内ループ領域を有する。ファミリー 間において、膜貫通および細胞外ループ領域において比較的相同性が高く、 細胞外ループ領域に3 個ずつ存在するシステイン残基は例外なく保存されて おいる。ループ間では、このシステイン残基において分子内ジスルフィド結 合が形成される。細胞内ループ領域とC 末端領域は、ファミリー間で相同性 が低く長さも異なる。

B. ギャップ結合チャネルは、コネクシンがコネクソを形成し、コネクソン が数十から数千集合したヘミチャネルが細胞間で連結する事で構築される。 コネクソンの中心に形成される親水性の微小孔は、その直径が約 1.5 nm で ある。

参考図 2 複数のコネクシンによるギャップ結合の構築

コネクソンは、複数のコネクシンより形成され、構成するコネクシンが異な るコネクソン間でも連結する。つまり、コネクシンがホモまたはヘテロの場 合、細胞間でのコネクソンの連結がホモまたはヘテロの場合、それぞれの組 合せで4種類のモデルが考えられる。

参考図 3 卵胞発育におけるギャップ結合

A. 哺乳類において、個体が性成熟を迎えると脳下垂体より卵胞刺激ホルモン(FSH)が分泌され、この刺激により卵胞発育は再開される。卵胞は発育する過程で、卵母細胞を取り巻く顆粒膜細胞が増殖し、しだいに多層化(1-3次卵胞)していき、やがて卵胞内に腔を持つ胞状卵胞(グラーフ卵胞)へと発達した後、排卵が起こる。B. 卵胞内においてギャップ結合は、顆粒膜細胞間、および卵母細胞と顆粒膜細胞間に存在しており、卵母細胞への栄養供給や分裂再開抑制機構、あるいは顆粒膜細胞の増殖や分化に関与していると考えられている。

参考図 4 Cx43 ライフサイクルの模式図

細胞内において Cx43 は、他の膜タンパク質と同様に粗面小胞体において合成され、その後ゴルジ体を通り、トランスゴルジネットワークを経て細胞膜へと輸送されギャップ結合を構築する。この過程において Cx43 は、トランスゴルジネットワークにおいてオリゴマー化しコネクソンを形成する。コネクソンを形成した Cx43 は、ギャップ結合周辺の細胞膜に輸送され、その後コネクソンが細胞間で連結し、ギャップ結合内へと取り込まれる。ギャップ結合の崩壊は逆にその中心よりコネクソンが連結したまま起こり、その後ユビキチン-プロテアソーム系経路またはリソソーム系経路においてタンパク質分解を受ける。

参考図 5 Cx43-CT におけるリン酸化部位

これまでに報告されている Cx43-CT のリン酸化部位を示した。配列の上に示してある矢印は、が正の制御、が負の制御に関わることを示している。 配列の下には関与する(直接的または間接的)酵素名を示した。

材料と方法

Yeast two-hybrid スクリーニング

Yeast two-hybrid スクリーニングは CLONTECH 社の MATCHMAKER two-hybrid システムを用い行なった。GAL4 DNA 結合領域をコードする配列 を持つ pAS2 にラット Cx43-CT 配列を組み込んだ pAS2-Cx43-CT(bait)を構 築し、酵母 Y190 株にトランスフォームした。Bait を導入した酵母 Y190 株 に、Gal4 の転写活性化領域をコードする配列を持つ pGAD GH にラット卵巣 cDNA を組み込んだライブラリー(prey)をトランスフォームし、ヒスチジ ンを欠如した培地で培養した。生育したコロニーに対してフィルターアッセ イを行ない、β-ガラクトシダーゼ活性を調べた。そして活性のあったクロー ンから prey を回収し、その塩基配列を解析した。

RT-PCR とクローニング

First strand cDNA は、ISOGEN(ニッポンジーン)を用い単離した全 RNA を 鋳型とし、oligo(dT)プライマー(LIFE TECHNOLOGIES)を用い、逆転写 酵素 SUPERSCRIT II (LIFE TECHNOLOGIES)により合成した。

CIP150 全長配列は、KIAA1432 (GenBank accession No. BC023535)と DKFZp434D105 (GenBank accession No. AL136875) 両塩基配列によりカバー される領域を3つの断片に分け、ヒト胎盤の cDNA を鋳型とした PCR によ り増幅し、これらの断片を継ぎ合せることで得た。それぞれの断片を増幅す るのに以下のようなプライマーを用いた。CIP150の開始コドンより 1307番 断 片 目 ወ 塩 基 ŧ で を 含 ţ٢ 1 ; forward [5'-agaattcTGAATGGAGGCCAGATAGTACC-3'] reverse [5'-CCAAACTTGCAACCACAG-3']。1226から2734番目の塩基を含む断片2; forward [5'-CCTATCTAGAGAGCAATTGGCC-3'] reverse [5'-CAGATTCTCCAGAGCCAATGG-3']。2659 番目の塩基から終止コドンまで を含む断片 3; forward [5'-GCACTAGAACAAGGCAAGTGG-3']、 reverse [5'-atggtaccACAACGTACTGAGCTGCACG-3']。断片 1の forward には *EcoR*I、 断片 3 の reverse には KpnI の認識配列が付加してあり(小文字の配列) こ の配列と CIP150 の 1270 から 1275 番目に存在する HindIII、2687 から 2692 番目に存在する Sall の認識配列を利用し、3 つの断片は pBluescript II KS⁺上

で継ぎ合わせ全長配列とした。また *CIP150* 全長配列は、ヒト胎盤の cDNA を鋳型とし、DKFZp434D105 の予想される開始コドン(下線部)を含むプラ イマー[5'-TGA<u>ATG</u>GAGGCCAGATAGTACC-3']および KIAA1432 の予想され る 終 止 コ ド ン (下 線 部)を 含 む プ ラ イ マ ー [5'-GATGGAACCTCACTGTT<u>AGG</u>-3']を用いた PCR により増幅した。PCR 産 物はアガロースゲル電気泳動により分離、精製した後に、その塩基配列を決 定した。*CIP150* のラット顆粒膜細胞における発現は、forward が [5'-AGTTCAGCTGCGTTATCTGC-3']、 reverse が

抗体作製

CIP150 に対する 3 種類の抗体を以下の方法で作製した。CIP150 の中間領 域を認識するウサギポリクローナル抗体(抗 CIP150-M 抗体)の作製には、 His₆を付加したヒト CIP150 のアミノ酸配列 783-1024 番目までのポリペプチ ドを大腸菌で発現、精製したもの抗原として用いた。免疫は、ニュージーラ ンドホワイト、11 週齢、メスのウサギ(オリエンタルバイオサービス)に隔 週で初回に 100µg、2 回目以降 50µg ずつ計 13 回、背中に皮下注射するこ とで行なった。採血により得られた血清中の抗体は、抗原を CNBr-active Sepharose に架橋したカラムを用い精製した。

CIP150 のN末端およびC末端領域を認識するマウスポリクローナル抗体 (抗 CIP150-Nまたは-C抗体)は、抗原としてN末端の109アミノ酸、C末 端の88アミノ酸のポリペプチドをそれぞれ、GST融合組換えタンパク質と して大腸菌で発現、精製したものを免疫し作製した。9週令、メスのBALB/cA Jc1マウス(日本クレア)に抗原50µgを隔週で計3回、腹腔内に免疫を行 った。心臓採血により得た血清は、大過剰量のGSTと反応することで抗GST 抗体を取除いた後、抗体として用いた。

マウス抗 -actin モノクローナル抗体(AC-74)と抗 FLAG モノクローナル 抗体(M2)、ウサギ抗 Cx43 ポリクローナル抗体は SIGMA から、マウス抗 GFP モノクローナル抗体(JL-8)は Clontech Laboratories より購入した。ま た 2 次抗体として用いた、Hoseradish peroxidas (HRP)が結合した Protein-A、 抗マウス抗体、Texas Red が結合した抗ウサギ Ig 抗体は Amersham Biosciences から購入した。

発現プラスミドと siRNA

Yeast two-hybrid スクリーニングにより得た陽性クローンの遺伝子配列は、 N 末端に FLAG-tag を付加する pFLAG-CMV2(SIGMA)の *EcoR*I 部位にサブ クローニングした。CIP150 の全長配列は pFLAG-CMV2 の *EcoR*I- *Kpn*I 部位 にサブクローニングした。ラット野生型 Cx43 および Cx43-S4A 変異体は、 CMV プロモーターを持つ pMH の *Kpn*I-*Not*I 部位にクローニングした。また、 Cx43 および Cx43-CT の欠損変異体は、PCR により作製した。2 種類の CIP150 に対する siRNA 発現ベクターである pSUPER-si*CIP150*-1 および-2 は、 OligoEngine 社の手引書に従い作製した。なお、標的配列は pSUPER-si*CIP150*-1 が [5'-AACCCAGTTCAAGTGGTGGAT-3'] 、 pSUPER-si*KDN*-2 が[5'-AAGCAGCAATATGGTCAGCCG-3']である。

細胞培養と遺伝子導入

COS7、HEK293、HeLa、NRK 細胞は Dulbecco's modified Eagle's medium (DMEM)、T47D 細胞は RPMI-1640、KGN 細胞は DMEM-Ham's F12 (DMEM/F12)に10%の牛胎児血清を加えたものを基本培地とし、37 、5% CO₂条件下で培養した。細胞を Brefeldin A (BFA)で処理時は、基本培地に 終濃度 5µg/mlとなるように添加し、さらに 6 時間培養後、解析に用いた。

ラット顆粒膜細胞の初代培養細胞は既報に従い調製した(Yogo *et al.*, 2002)。雌の 21 日齢 SD ラット(日本 SLC)に、ゴマ油に溶解した Diethylstilbestrol(DES) 2mg を 4 日間連続投与し、最終投与から 48 時間後、 卵巣を摘出した。摘出後、20μg/ml Gentamycin および 0.5μg/ml Fungizone 含有 DMEM/F12 で洗浄後、脂肪組織や結合組織をハサミで除去した。次に DMEM/F12 中で卵巣を 26G 注射針で刺すことにより、卵胞を破裂させ顆粒 膜細胞を取り出し、細胞懸濁液をセルストレイナー(孔 70μm)に通し、余分 な組織を取り除いた。さらに細胞を 0.25% Trypsin、50μg/ml DNaseI で 37 、 1 分間処理することにより分散させ、50mg/ml Trypsin inhibitor(GIBCO BRL) で 37 、5分間処理し trypsin を失活させた後、DMEM/F12 で 2 回洗った。 その後、基本培地である 5μg/ml Insulin (GIBCO BRL)、5μg/ml Transferrin (GIBCO BRL)、0.1% BSA、20μg/ml Gentamycin、0.5μg/ml Fungizone 含有 DMEM/F12 (DMEM/F12-ITB)に 5μg/ml Fibronectin を添加した培地に懸濁 し、poly-D-lysine コートした培養皿に 1cm² あたり 5×10⁵ 個の細胞を播種し、 24 時間 37 、5% CO₂条件下で培養した。24 時間培養後、細胞を PBS で一 度洗い、基本培地に 100ng/ml FSH (Vitro Diagnostics) を添加し、さらに 24 時間培養し解析に用いた。

細胞への遺伝子導入は、COS7 細胞はリン酸カルシウム法(Chen-Okayama 法)により、HeLa 細胞は LIPOFECTAMINE PLUS Reagent package、HEK293 細胞は LIPOFECTAMINE 2000 (Invitrogen) をそれぞれ用い行った。

ウエスタンブロットおよび免疫染色

細胞抽出液は、細胞を氷冷した PBS で洗浄後に lysis buffer (0.5% NP 40、 50mM Tris-HCl(pH 8.0), 120mM NaCl、1mM EDTA、1mM Na₃VO₄、20mM NaF、 1mM PMSF、1mM dithiothreitol、100KIU/ml Aprotinin)で 10 分間溶解し、 15,000rpm 4 で 5 分間遠心した上清を回収することで調製した。細胞抽出液 は SDS-ポリアクリルアミドゲル電気泳動法により分離し、これを PVDF メ ンブレンに転写した。メンブレンを PBS で洗浄後に 5% Skim milk を含む PBS (5% Milk/PBS)でブロッキング反応を室温で 1 時間行った。一次抗体は 5% Bovine Serum Albumin (BSA)を含む PBS で希釈し、室温で 2 時間反応させ た。メンブレンを洗浄後、5% Milk/PBS で希釈した horseradish peroxidase 結 合 2 次抗体または protein-A で 45 分反応させ、シグナルは ECL (Amersham Biosciences)にて検出した。

免疫染色は、以下の方法で行なった。カバーグラス上(HEK293 細胞の場合は poly-D-lysine でコートした)で培養した細胞を PBS で 3 回洗浄し、PBS に溶かした 2% パラホルムアルデヒド(2% PFA/PBS)で 30 分間、室温で固定した。細胞を PBS で洗浄後、0.2% Triton X-100 を含む PBS で 10 分間処理し、5% Milk/PBS でブロッキング反応を室温で 1 時間行った。5% Milk/PBS で希釈した 1 次抗体溶液を室温で 1 時間反応させ、細胞を洗浄後に 5% Milk/PBS で希釈した 2 次抗体溶液でさらに 1 時間反応させた。PBS で洗浄後 VECTASHIELD を用いスライドグラス上にマウントし、LSM410 共焦点顕微鏡(ZEISS)にて検鏡した。

1% Triton X-100 buffer による細胞分画

1% Triton X-100 buffer による細胞分画は既報に準じて行なった (Musil and

Goodenough, 1991)。氷冷した PBS で細胞を 3 回洗浄後、Triton lysis buffer(1% Triton-X 100、50mM Tris-HCI(pH 7.4)、150mM NaCl、2mM EDTA、2mM Na₃VO₄、 20mM NaF、2mM PMSF、10mM N-ethylmaleimide、100KIU/ml Aprotinin)を 加え氷上で 10 分インキュベートした。この後、スクレイパーで細胞をよく 剥ぎ取りエッペンチューブに移し、26G 注射針に 25 回通しゲノム DNA をせ ん断した。これを氷上に 30 分間、10 分毎にボルテックスをかけながらイン キュベートした。この細胞溶解液の半量を別のチューブに保存し、これを全 細胞抽出液とした。残りの細胞溶解液を 100,000g、4 で 50 分超遠心し、細 胞溶解液を分画した。超遠心後、上清を Triton 可溶性画分、沈澱物を同量の Triton lysis buffer に懸濁したものを Triton 不溶性画分とした。

免疫沈降および Pull-down アッセイ

細胞抽出液に抗体 2 µg、BSA を終濃度 0.5%で加え、4 で終夜反応させた。抗体に結合したタンパク質複合体は protein-A(ウサギ抗体使用時)または-G Sepharose(マウス抗体使用時)ビーズを 20 µ1 加え 4 で 2 時間撹拌し、lysis buffer で 5 回洗浄することで回収した。

Pull-down アッセイは、大腸菌で発現、精製した GST 融合型の組換えタンパク質 10 µg を細胞抽出液に加え、4 で 2 時間インキュベートした後に Glutathione Sepharose 4B ビーズで回収した。

正リン酸による細胞標識

細胞をリン酸不含培地で3回洗浄した後、リン酸不含培地で1時間培養し、 1mCi/mlとなるように培地に³²P 正リン酸(NEN)を加え、さらに4時間培 養し細胞を標識した。細胞をPBS で洗浄後、RIPA buffer(50mM Tris-HCl(pH 7.2)、150mM NaCl、1mM EDTA(pH 8.0)、1% Sodium deoxycholate、1% Triton X-100、0.1% SDS、2mM PMSF、100KUI/ml Aprotinin)で溶解し、スクレイ パーで細胞を剥ぎ取り細胞溶解液をエッペンチューブに移した。これを、26G 注射針に20回通すことによりゲノム DNA をせん断し、15,000rpm 4 で10 分間遠心し上清を回収した。回収した上清より Cx43 を免疫沈降により精製 し、 SDS-PAGE により分離した後にゲルを乾燥させ、X 線フィルムにより シグナルを検出した。

Scrape-loading 色素透過アッセイ

Cx43 発現細胞における、ギャップ結合を介したチャネル活性は、既報に 準じて Scrape-loading 色素透過アッセイにより検定した(Yogo et al., 2002)。 カバーグラス上でコンフルエントになるまで培養した細胞を、PBS で 2 回洗 浄した。PBS を除去後、0.25% Lucifer yellow(LY;分子量 476Da)、0.75% Rhodamine dextran(RD;分子量 10kDa)/PBS 溶液中で細胞を直線状に 27G の注射針で傷つけて色素を取り込ませた。室温で 10 分間インキュベートし た後、PBS で 3 回洗浄し、2% PFA/PBS で固定し、スライドグラス上にマウ ントした。LSM410 共焦点顕微鏡にて、傷口から取込まれた色素の細胞間で の移行を検鏡した。色素の透過活性は、共焦点顕微鏡にて取込んだ画像上で、 細胞を傷つけた線から垂直方向に色素が移行した最も遠い細胞までの距離 を Scion Image Beta 4.02 (Scion Corporation)で測定することで定量化した。 3 回の独立した実験を行い、各実験区あたり 4 枚の任意の画像を取込み、そ れぞれの画像において 10 ヶ所距離を測定し、平均距離の算出と有意差検定 を行った。

結果

Cx43 会合タンパク質の探索

Cx43-C 末端領域(Cx43-CT)を bait、ラット卵巣 cDNA ライブラリーを prey としたスクリーニングを行った結果、30の陽性クローンを得た。各クローン が有するインサート配列をシーケンシングにより解析した結果、7種類の遺 伝子を候補遺伝子として得た(表1)。次にこれらの候補が細胞内においても Cx43-CTと会合するかを確認するために、各候補遺伝子の断片配列の上流に FLAG タグを付加し、Cx43-CT と共に COS7 細胞において過剰発現した。 Cx43-CT を認識する抗 Cx43 抗体により免疫沈降した結果、Eleven-nineteen Lysine rich Leukemia (ELL), Triosephosphate isomerase (TPI), KIAA1432 O 3つの候補クローンに関して細胞内での会合が確認された(図1)。次に TPI の全長配列をクローニングし、Cx43 全長との会合を解析した。COS7 細胞に N 末端に FLAG タグを付加した TPI と Cx43 を過剰発現し、抗 Cx43 および FLAG 抗体それぞれで免疫沈降した後、ウエスタンブロットによりシグナル を検出した。その結果、これら2つの全長同士の共沈は見られなかった(図 2 A)。また、KIAA1432 はその全長配列が報告されていないため、Yeast two-hybrid で得られた 164 アミノ酸からなる KIAA1432 の C 末端領域 (KIAA1432-CT)の配列を用い、Cx43 全長配列との会合を確認した。HEK293 細胞に FLAG タグを付加した KIAA1432-CT (FLAG-1432-CT) および Cx43 を過剰発現し、抗FLAG抗体で免疫沈降した結果、細胞内において KIAA1432-CT と Cx43 が会合していることが確認された(図2B)。なお、ELL は RNA polymerase II 伸長因子であり細胞内局在が核であること、Cx43-CT との会合が弱いことより解析は行なわなかった。

新規タンパク質 CIP150 の同定

KIAA1432 (GenBank accession No. AB037853)は、かずさ DNA 研究所のヒ ト完全長 cDNA プロジェクトにおいて報告された配列であるが、前述したよ うに予想される開始コドンを含んでおらず、Cx43 との会合を解析するにた めに、その全長配列の決定を行った。まず、全長配列を決定するにあたり、 NCBI-BLAST において KIAA1432 に対して相同性を有する配列を探索した結 果、KIAA1432 の 5'配列と高い相同性を示す配列 DKFZp434D105 (GenBank accession No. AL136875)が報告されていることが明らかとなった。しかし、 DKFZp434D105の cDNA 配列は、予想される開始コドンを含んでいたが、同 時に KIAA1432の ORF 配列の中央あたりに終止コドンが存在していた(図3)。 そこでこの2つの配列の関係を明らかにするために、DKFZp434D105 および KIAA1432の開始コドンと終止コドンをそれぞれ含むプライマーを設計し、 これを用いヒト胎盤 cDNA を鋳型とした PCR を行なった。その結果、約4kbp の PCR 産物が増幅され、このバンドを精製したものを鋳型とし、シーケン シングによりその配列を確認した結果、DKFZp434D105の5[,]領域、 DKFZp434D105とKIAA1432で相同性のある領域、KIAA1432の3、領域を持 つ配列が確認された(図3)。この ORF 配列より予想されるタンパク質分子 量は約150-kDであり(図4)、この新規分子をCIP150(Connexin43-Interacting Protein of 150-kDa; GenBank accession No. AB205401)と命名した。

次に、予想された CIP150 のアミノ酸配列を基に CIP150 の N 末端、中央、 C 末端を認識する 3 種類の抗体(抗 CIP150-N、抗 CIP150-M、抗 CIP150-C 抗体;図4)を作製し、これを用い哺乳類の細胞における CIP150 の発現を確 認した。細胞抽出液より、抗 CIP150-M 抗体で免疫沈降し、作製したこれら 3種類の抗体でブロットした結果、用いたすべての細胞において、予想され た 150-kDa のバンドが検出された (図 5 A)。また、この 150-kDa バンドは、 作製した3種類の抗体すべてで共通して検出されたことから、PCR により得 られた配列がコードするタンパク質が細胞内に存在することが明らかとな った。また、Cx43 は卵巣内において主に顆粒膜細胞で発現しており、卵巣 cDNA ライブラリーより単離、同定された CIP150 が、同様に顆粒膜細胞に おいて発現しているかを RT-PCR により解析した。ラット顆粒膜細胞より調 製した cDNA を鋳型とし、Yeast two-hybrid により得られた KIAA1432-CT の 配列を増幅した結果、顆粒膜細胞における CIP150 の発現が確認された(図 5 B)。なお、Cx43 は FSH の刺激により、RNA レベルで発現量が上昇するこ とが知られているが (Yogo et al., 2001)、CIP150 の発現量に顕著な差は見ら れなかった。

CIP150 は細胞内において Cx43 と会合する

次に、CIP150 と Cx43 との会合を確認するために、CIP150 配列の N 末端 に FLAG タグを付加し、Cx43 と共に HEK293 細胞に強制発現した。HEK293 細胞は、内在性のコネクシン遺伝子の発現量が低いことが知られているが、 図 5 A で示したように CIP150 は発現している。抗 FLAG 抗体を用い免疫沈 降を行ない、Cx43 の共沈を確認した結果、強制発現した細胞において CIP150 と Cx43 との会合が見られた(図 6 A)。さらに、内在性の CIP150 と Cx43 が 発現しており、ギャップ結合を介したチャネル活性が高いことが知られてい る NRK 細胞において、抗 CIP150-M 抗体を用い免疫沈降した結果、Cx43 の 共沈が見られた。このことより、これら 2 つのタンパク質は内在性の発現レ ベルで会合することが明らかとなった(図 6 B)。その際、CIP150 と共沈し てくる Cx43 は、全細胞抽出液中のシグナルに対し、バンドがシフトするこ とが見られ、ウエスタンプロットにおいて Cx43 は、リン酸化レベルが高い ものほどバンドがシフトすることから、CIP150 はリン酸化の高い Cx43 と会 合していると考えられた。そこで抗 CIP150-M 抗体で共沈してくる Cx43 を アルカリホスファターゼで処理しウエスタンプロットを行なったところ、バ ンドのシフトが見られなくなったことより、リン酸化レベルが高い Cx43 と CIP150 が会合していることが確認された(図 6 C)。

Cx43 のリン酸化は CIP150 との会合に必須ではない

これら 2 つのタンパク質の会合と、Cx43 のリン酸化との関係を解析する ために、Cx43-S4A 変異体を用いCIP150 との会合を確認した。この変異体は、 細胞内においてギャップ結合を構築するがリン酸化による修飾をほとんど 受けず、物質透過活性を示さないことが報告されている(Yogo *et al.*, 2001)。 HEK293 細胞と同様、内在性のコネクシン遺伝子の発現量は低いが CIP150 は発現している HeLa 細胞に、野生型または S4A 変異体の Cx43 を遺伝子導 入し、内在性の CIP150 との会合を調べた。その結果、S4A 変異体は CIP150 と会合することが示された(図7B)。また、³²P 正リン酸により細胞をラベ ルし、Cx43-S4A と野生型とのリン酸化レベルを確認した結果、S4A 変異体 はリン酸化レベルが低いこと(図7A)、免疫蛍光染色により、野生型および S4A 変異体は細胞間にギャップ結合を構築していることも確認された(図7 C)。これらの結果より、Cx43 のリン酸化は CIP150 との会合に必須ではない 可能性が示唆された。

次に、ARF-GEFの阻害剤であり、ゴルジ体の構造を破壊することでタンパ ク質の輸送を阻害する BFA で細胞を処理し、Cx43 の細胞内局在が CIP150 との会合に与える影響を解析した。まず、BFA 存在下で NRK 細胞を 6 時間 培養し、1% Triton X-100 buffer による細胞分画を行い、Cx43 によるギャッ プ結合構築が阻害されているか確認した。この手法はギャップ結合を構築し ている Cx43 は、非イオン性の界面活性剤に対し不溶性を示すこと利用した ものである(Musil and Goodenough, 1991)。1% Triton X-100 buffer により細 胞を溶解し、細胞抽出液を超遠心により分画した結果、BFA 処理をした細胞 において Triton 不溶性画分のリン酸化された Cx43 のバンドが減少すること が確認された(図8A)。また、免疫蛍光染色により、細胞間におけるギャッ プ結合のシグナルが減少し、Cx43 の局在が細胞質へと移行することも観察 され(図8B)、BFA 処理により、Cx43 の細胞膜への輸送が阻害されている ことが確認された。そこで、この条件下における Cx43 と CIP150 との会合を 調べた結果、CIP150 と共沈する Cx43 が減少し、Cx43 の細胞膜への輸送は この会合に重要であることが示された(図9)。

以上の結果から、CIP150 と Cx43 との会合は、細胞膜またはその輸送過程 において起こること、この時、Cx43 は高いリン酸化を受けているがリン酸 化そのものは CIP150 との会合に必須でないことが明らかとなった。

Cx43-CT における CIP150 結合領域の決定

次に、Cx43 と CIP150 との会合をさらに詳しく解析するために、Cx43-CT における CIP150 の結合部位の決定を GST pull down 法により行なった。GST 融合型 Cx43-CT および、20 アミノ酸(1 は 16 アミノ酸)の欠損を有する 変異体(Cx43-CT 1-8; 図 10 A)の組換えタンパク質を大腸菌で発現、精 製した。また、COS7 細胞に FLAG-1432-CT を過剰発現し、細胞抽出液を回 収した。この細胞抽出液中に精製した組換えタンパク質を加え、GST 融合 Cx43-CTと会合してくる FLAG-1432-CTをウエスタンブロットにより検出し た。その結果、野生型および 1 以外の変異型 Cx43-CT において KIAA1432-CT との会合が確認され(図 10 B), 1 領域(227-242)が重要で ある可能性が示唆された。そこで、CIP150 結合領域を欠損した変異型 Cx43 (Cx43 227-242)を作製し、細胞内で CIP150 との会合を確認した。HEK293 細胞にCx43 ₂₂₇₋₂₄₂を遺伝子導入し、抗CIP150-M抗体で免疫沈降した結果、 野生型 Cx43 で見られる会合が、Cx43 227-242 では確認されなかった(図 10 C)。 これらの結果から、この2つのたんぱく質は、KIAA1432-CT にあたる CIP150 のC末端164アミノ酸とCx43-CTの膜貫通領域下流16アミノ酸(227-242) を介して会合していることが示された。

CIP150 結合領域は Cx43 のギャップ結合構築に重要である

CIP150 が Cx43 のギャップ結合制御機構においてどの様な機能を担うかを 解析するために、まず CIP150 の結合領域を欠損している Cx43 227-242 の細 胞内での挙動を解析した。図 10 C において、Cx43 227-242 はウエスタンブ ロットにより検出した時、バンドのシフトが見られなかったことから、この 変異体はリン酸化による修飾を受けないことが予想された。そこでまず、こ の変異体を HeLa 細胞に遺伝子導入し、³²P 正リン酸ラベルによりそのリン酸 化レベルを調べた。その結果、野生型 Cx43 を発現した細胞で見られるリン 酸化のシグナルが、Cx43 227-242ではほとんど検出されなかった(図11A)。 また、免疫染色により細胞内における局在を HeLa 細胞において解析した結 果、Cx43 227-242 は細胞内においてギャップ結合を構築せず細胞質に局在す ることが見られた(図11B)。さらに、この細胞質における局在を調べるた めに、HeLa 細胞に Cx43 227-242 を遺伝子導入し、小胞体を染色することが 知られているレクチンの1つ、コンカナバリンA(ConA)とCx43との二重 染色を行なった(図 12)。その結果、ConAにより染色されたシグナルは、 核の周辺を中心に顆粒状にみられ(図 12 C)、Cx43 227-242が共局在するこ とが観察された(図 12 D)。しかし、Cx43 227-242 はそれ以外の場所にも局 在を示しており、少なくとも小胞体から他の細胞器官に輸送されていること が予想された。次に、Cx43 227-242 がギャップ結合を構築しないことが示さ れたが、これに伴い物質透過活性も消失するかを確認するために、 Scrape-loading 法による色素透過活性の定量を行なった。HEK293 細胞に野生 型 Cx43、Cx43 227-242 をそれぞれピューロマイシン耐性遺伝と共に遺伝子導 入し、ピューロマイシンで選別を行い、コンフルエントになるまで培養した 細胞を用い、チャネル活性を測定した。その結果、野生型を発現している細 胞で観察された細胞間での色素の移行が、この変異体では認められず、チャ ネル活性を持たないことが示された(図 13)。これらの結果より、Cx43-CT における CIP150 結合領域は、リン酸化による修飾、ギャップ結合の構築お よびチャネル活性に重要であることが示された。

siRNA による CIP150 の発現抑制は Cx43 の細胞膜への局在とチャネル活性 を減少する

Cx43 欠損変異体において見られた表現型が、CIP150 との会合が阻害された結果によるものかを解析するために、CIP150 に対する siRNA を作製し、

その発現用抑制時における Cx43 細胞内での挙動を調べた。まず CIP150 を標 的とした 2 種類の siRNA 発現ベクター (siCIP150-1、-2)を作製し、その発 現抑制効果を HEK293 細胞において調べた。 ピューロマイシン耐性遺伝と共 に siRNA 発現ベクター、GFP 発現ベクターを遺伝子導入し、1日選別を行っ た。CIP150の発現量を免疫沈降後、ウエスタンブロットにより確認した結 果、siCIP150-1 は強い発現抑制が見られ、シグナル強度をデンシトメーター で定量した結果、コントロールに比べ 27%まで発現量の低下が見られた(図 14)。また、siCIP150-2発現細胞においても発現が55%まで抑制されていた。 なお、遺伝子導入効率とタンパク質量の内部標準としてそれぞれ用いた GFP とアクチンの差は認められなかった。次に、これら2つの siRNA 発現ベクタ ーを用い、CIP150発現抑制時における Cx43の細胞内局在を免疫蛍光染色に より確認した。その結果、Cx43と共に siRNA 発現ベクターを遺伝子導入し た細胞において、細胞間にギャップ結合の構築が認められるものの、コント ロールに比べそのシグナルは弱く、ぼやけていた(図15A)。また、コント ロールでは認められない細胞内における Cx43 のシグナルも観察された。こ の細胞内のシグナルが見られる細胞の割合を、各実験区あたり独立した2回 の実験を行い、100個の細胞を数えることで定量した結果、CIP150を発現抑 制した細胞ではコントロールに比べ、明らかに Cx43 の細胞質における局在 が増加していることが確認された(図 15 B)。さらに、CIP150発現抑制細胞 において、Cx43 が構築するギャップ結語を介したチャネル活性が低下する かを調べるために、Scrape-loading 法による色素透過活性の定量を行なった (図 16)。その結果、Cx43 発現細胞に比べ CIP150 発現を抑制した細胞はギ ャップ結合を介した色素透過活性は有意に低下していた。以上の結果より、 細胞内において CIP150 は Cx43 の局在制御に関わっており、特にギャップ結 合の構築に重要ではないかと考えられた。

表 1 Yeast two-hybrid により得られた候補遺伝子

候補遺伝子名	独立クローン数
Eleven-nineteen Lysine rich Leukemia (ELL)	7
RanBPM homolog	1
Ub-like protein	14
MHC class I like	2
Triosephosphate isomerase (TPI)	2
PIPK type II γ	1
KIAA1432 homolog	3

Yeast two-hybrid により得られた陽性クローの遺伝子名とクローン数を表に まとめた。スクリーニングは、ラット Cx43-CT を bait、ラット卵巣 cDNA ラ イブラリーを prey とし行なった。

図1 候補遺伝子産物と Cx43-CT との細胞内での会合

Yeast two-hybrid により得られた各候補遺伝子の断片配列の上流に FLAG タ グを付加し、Cx43-CT と共に COS7 細胞において過剰発現した。Cx43-CT を 認識する抗 Cx43 抗体で免疫沈降後、抗 FLAG または Cx43 抗体でウエスタ ンブロットを行なった。WCL: whole cell lysates。

図2 候補遺伝子産物とCx43 との細胞内での会合

A. COS7 細胞に N 末端に FLAG タグを付加した Triosephosphate isomerase (TPI)とCx43を過剰発現し、抗Cx43 および FLAG 抗体それぞれで免疫沈 降し、各抗体でウエスタンブロットを行なった。

B. HEK293 細胞において N 末端に FLAG タグを付加した KIAA1432 の C 末 端領域 (FLAG-1432-CT)と、Cx43 全長配列とを過剰発現し、抗 FLAG 抗体 で免疫沈降し、抗 Cx43 および FLAG 抗体それぞれででウエスタンブロット を行なった。

図 3 KIAA1432 および DKFZp434D105 の ORF の比較

KIAA1432 および DKFZp434D105 の ORF を比較すると、DKFZp434D105 の 3'
側と KIAA1432 の 5' 側は相同な配列(1646-3188) を有していた。
DKFZp434D105 の開始コドン(Forward primer)および KIAA1432 の終止コドン(Reverse primer)をそれぞれ含むプライマーを設計し、これを用いた
PCR を行ない、ヒト胎盤 cDNA より CIP150 全長配列を得た。

1	MIAVSTANGY	ILFFHITSTR	GDKYLYEPVY	PKGSPQMKGT
41	PHFKEEQCAP	ALNLEMRKIL	DLQAPIMSLQ	SVLEDLLVAT
81	SDGLLHLIHW	EGMTNGRKAI	NLCTVPFSVD	LQSSRVGSFL
121	GFTDVHIRDM	EYCATLDGFA	VVFNDGKVGF	ITPVSSRFTA
161	EQLHGVWPQD	VVDGTCVAVN	NKYRLMAFGC	VSGSVQVYTI
201	DNSTGAMLLS	HKLELTAKQY	PDIWNKTGAV	KLMRWSPDNS
241	VVIVTNEYGG	LSLWSVFGAQ	LICTLOGDFA	YRSDGTKKDP
281	LKINSMSWGA	EGYHLWVISG	FGSQNTEIES	DLRSVVKQPS
321	ILLFQFIKSV	LTVNPCMSNQ	EQVLLQGEDR	LYLNCGEASQ
361	TQNPRSSSTH	SEHKPSREKS	PFADGGLESQ	GLSTLLGHRH
401	WHVVQISSTY	LESNMPIRFS	AIDKLGQNIA	VVGKFGFAHY
441	SLLTKKWKLF	GNITQEQNMI	VIGGLAWWND	FMVLACYNIN
481	DRQEELRVYL	RTSNLDNAFA	HVTKAQAETL	LLSVFQDMVI
521	VFRADCSICL	YSIERKSDGP	NTTAGIQVLQ	EVSMSRYIPH
561	PFLVVSVTLT	SVSTENGITL	KMPQQARGAE	SIMLNLAGQL
601	IMMQRDRSGP	QIREKDSNPN	NQRKLLPFCP	PVVLAQSVEN
641	VWTTCRANKQ	KRHLLEALML	SCGGAGMKVW	LPLFPRDHRK
681	PHSFLSQRIM	LPFHINIYPL	AVLFEDALVL	GAVNDTLLYD
721	SLYTRNNARE	QLEVLFPFCV	VERTSQIYLH	HILRQLLVRN
761	LGEQALLLAQ	SCATLPYFPH	VLELMLHEVL	EEEATSREPI
801	PDPLLPTVAK	FITEFPLFLQ	TVVHCARKTE	YALWNYLFAA
841	VGNPKDLFEE	CLMAQDLDTA	ASYLIILONM	EVPAVSRQHA
881	TLLFNTALEO	GKWDLCRHMI	RFLKAIGSGE	SETPPSTPTA
921	QEPSSSGGFE	FFRNRSISLS	QSAENVPASK	FSLOKTLSMP
961	SGPSGKRWSK	DSDCAENMYI	DMMLWRHARR	LLEDVRLEDL
1001	GCFAAQL/GFE	LISWLCKERT	RAARVDNFVI	ALKRLHKDFL
1041	WPLPIIPASS	ISSPFKNGKY	RTVGEQLLKS	QSADPFINLE
1081	MDAGISNIQR	SQSWLSNIGP	THHEIDTASS	HGPQMQDAFL
1121	SPLSNKGDEC	SIGSATDLTE	SSSMVDGDWT	MVDENFSTLS
1161	LTQSELEHIS	MELASKGPHK	SQVQLRYLLH	IFMEAGCLDW
1201	CIVIGLILRE	SSIINQILVI	TQSSEVDGEM	LQNIKTGLHA
1241	VDRWASTDCP	GYKPFLNIIK	PQLQKLSEIT	EEQVOPDAFO
1281	PITMGKTPEQ	TSPRAEESRG	SSSHGSIPQG	EVGSSNMVSR
1321	KEEDTAQAEE	EEPFODGTYD	CSVS	

図 4 CIP150 のアミノ酸配列と抗原部位

CIP150の ORF 配列より予想されるアミノ酸配列と抗体作製に用いた 3 種類の抗原部位(下線)を図に示した。

図 5 CIP150 の細胞における発現の確認

A. 図 4 で示した抗原部位を認識する抗体を用い NRK(ラット腎臓), HEK293 (ヒト胎児腎臓)、HeLa(ヒト子宮)、KGN(ヒト顆粒膜細胞)、T47D(ヒト 乳腺)細胞における CIP150 の発現を確認した。CIP150-N は N 末端、-M は 中央、-C は C 末端を認識する。

B. ラット顆粒膜細胞における CIP150 発現を RT-PCR により確認した。

図 6 CIP150 はリン酸化レベルの高い Cx43 と会合する

A. HEK293 細胞において N 末端に FLAG タグを付加した CIP150 (FLAG-CIP150)と、Cx43 全長配列とを過剰発現し、抗 FLAG 抗体で免疫 沈降後、抗 Cx43 および CIP150-M 抗体それぞれでウエスタンブロットを行 なった。

B. NRK 細胞における、内在性 CIP150 と Cx43 との会合。抗 CIP150-M 抗体 で免疫沈降後、抗 Cx43 および CIP150-M 抗体それぞれでウエスタンブロッ トを行なった。免疫沈降のネガティブコントロールとして、抗原を免疫する 以前に採血した血清を用いた。

C. NRK 細胞より抗 CIP150-M 抗体で免疫沈降し、共沈した Cx43 をアルカリ ホスファターゼにより脱リン酸化を行なった。

図 7 CIP150 と Cx43-S4A とは会合する

A. HeLa 細胞に野生型 Cx43 および Cx43-S4A を遺伝子導入し、³²P 正リン酸 により細胞をラベルすることで、そのリン酸化レベルを確認した。

B. A と同様に遺伝子導入を行い抗 CIP150-M 抗体で免疫沈降し、抗 Cx43 および CIP150-M 抗体それぞれででウエスタンブロットを行なった。

C. HeLa 細胞に野生型 Cx43 および Cx43-S4A を発現し、抗 Cx43 抗体を用いた免疫蛍光染色により Cx43 の局在を確認した。a: ベクターコントロール、
b: 野生型 Cx43、c: Cx43-S4A。Bar: 15 µ m。

図 8 NRK 細胞における BFA 処理

A. NRK 細胞を BFA (5 µ g/ml) で 6 時間処理し、ギャップ結合を構築している Cx43 は、非イオン性の界面活性剤に対し不溶性を示すこと利用した 1% Triton X-100 buffer による細胞分画を行った。

B. BFA で処理した NRK 細胞において抗 Cx43 抗体で免疫蛍光染色を行い、 Cx43 の局在を確認した。Bar: 15 µ m。

図 9 BFA 処理は Cx43 と CIP150 との会合を阻害する

BFA 処理した NRK 細胞内での CIP150 と Cx43 との会合を、抗 CIP150-M 抗 体で免疫沈降し確認した。タンパク質量の内部標準として、 アクチンによ るウエスタンブロットを行なった。

図 10 Cx43 の 227-242 番目のアミノ酸は CIP150 との会合に重要である

A. GST 融合型 Cx43-CT および、20 アミノ酸 (1 は 16 アミノ酸)の欠損を 有する変異体の模式図 (1-8)。

B. FLAG-1432-CT を過剰発現した COS7 細胞の細胞抽出液と GST 融合 Cx43-CTを用い、GST pull downを行なった。GST-Cx43-CT と会合してくる FLAG-1432-CT をウエスタンブロットにより検出した。

C. HEK293 細胞に野生型 Cx43 または CIP150 結合領域を欠損した Cx43
 227-242 を遺伝子導入し、細胞内で Cx43 227-242 と CIP150 とが会合しないこと
 を確認した。

図 11 CIP150 結合領域は Cx43 のギャップ結合構築に重要である

A. 野生型の Cx43 および Cx43 ₂₂₇₋₂₄₂を HeLa 細胞に遺伝子導入し、³²P 正リン酸ラベルによりそのリン酸化レベル確認した。

B. HeLa 細胞に野生型 Cx43 および Cx43 227-242 を発現し、抗 Cx43 抗体を用いた免疫蛍光染色により Cx43 の局在を確認した。a: ベクターコントロール、
b: 野生型 Cx43、c: Cx43 227-242。Bar: 15µm。

図 12 Cx43 ₂₂₇₋₂₄₂ 発現細胞における小胞体と Cx43 との 2 重染色 HeLa 細胞に Cx43 ₂₂₇₋₂₄₂を遺伝子導入し、コンカナバリン A(ConA)と Cx43 との二重染色を行なった。A は位相差、B は抗 Cx43 抗体、C は ConA による 染色像、D は B と C を重ねた像。Bar: 15 µ m。

図 13 Cx43 227-242 は物質透過活性を持たない

A. HEK293 細胞に空ベクター(a)、野生型 Cx43(b)、Cx43 227-242(c)を それぞれピューロマイシン耐性遺伝と共に遺伝子導入し、ピューロマイシン で1日間選別を行った後、Scrape-loading法による色素透過活性を解析した。 0.25% Lucifer yellow(LY;分子量 476Da)、0.75% Rhodamine dextran(RD; 分子量 10kDa)/PBS 溶液中で細胞を直線状に 27G の注射針で傷つけて色素 を取り込ませ、室温で 10 分間インキュベートし、傷口から取込まれた色素 の細胞間での移行を検鏡した。RD は、分子量が 1kDa 以上でありギャップ結 合チャネルを通過できないことから、ネガティブコントロールとして用いて いる。

B.A を定量化したグラフ。

図 14 CIP150 に対する siRNA 発現ベクターの作製

CIP150を標的とした 2 種類の siRNA 発現ベクター (si*CIP150-*1、-2)を作製 し、その発現抑制効果を HEK293 細胞において調べた。ピューロマイシン耐 性遺伝と共に siRNA 発現ベクター、GFP 発現ベクターを遺伝子導入し、1 日 選別を行い、CIP150 の発現量を免疫沈降後、ウエスタンブロットにより確 認した。上のパネルの下に示してある数値は、CIP150 のシグナル強度をデ ンシトメーターで定量し、コントロールに対する発現量の相対比を算出した ものである。GFP とアクチンは、遺伝子導入効率とタンパク質量の内部標準 として用いた。

図 15 CIP150 発現抑制時において細胞質に局在する Cx43 は増加する

A. HEK293 細胞において、CIP150 発現抑制時における Cx43 の細胞内局在を 免疫蛍光染色により確認した。a: ベクターコントロール、b: Cx43、c: Cx43 + si*CIP-150-*1、d: Cx43 + si*CIP-150-*2。Bar: 15 µ m。

B. 細胞内のシグナルが見られる細胞の割合を、100 個の細胞を数えることで 定量した。各実験区あたり独立した 2 回の実験を行い、平均した数値をグラ フ化した。

図 16 CIP150 発現抑制は Cx43 によるギャップ結合チャネル活性を阻害する A. HEK293 細胞に空ベクター(a)、野生型 Cx43(b)、Cx43 + si*CIP-150-*1(c)、 Cx43 + si*CIP-150-*2(d)をそれぞれピューロマイシン耐性遺伝と共に遺伝子 導入し、ピューロマイシンで 1 日間選別を行った後、図 13 A と同様に Scrape-loading 法による色素透過活性を解析した。 B. A を定量化したグラフ。

考察

本研究では、Cx43 会合タンパク質の探索を Yeast two-hybrid 法により行い、 新規タンパク質 CIP150 を同定した。この会合には、CIP150 の C 末端の 164 アミノ酸と、Cx43-CT の膜貫通領域下流の 16 アミノ酸が重要であった。細 胞内において CIP150 はリン酸化レベルの高い Cx43 と会合していることが示 された。しかし、Cx43-S4A との会合が見られたことより、Cx43 のリン酸化 は CIP150 との会合に必須ではなかった。また、BFA 処理により会合が阻害 されたことより、この 2 つのタンパクの会合は細胞膜への輸送過程において、 ゴルジ体以降に起こることが示された。さらに、Cx43 227-242 の細胞内での 挙動を解析した結果や siRNA による CIP150 の発現抑制の実験より、CIP150 は Cx43 が細胞膜上においてギャップ結合を構築するのに重要ではないかと 考えられた。

CIP150は、本研究でその全長配列を明らかにした新規遺伝子であり、その アミノ酸配列に対する他種の相同配列を NCBI-BLAST において探索したと ころ、ゲノム配列より予想されるアミノ酸配列を含めると、酵母、線虫、シ ロイヌナズナ、ミドリフグ、ニワトリ、チンパンジーに至るまで、多種にわ たり相同性を有する配列が存在した。この内、ミドリフグでは 71%の相同性 があったが、シロイヌナズナや線虫では約 25%であり、酵母ではそれ以下で あった。ギャップ結合が存在しない植物や、酵母でこのような配列が存在し ていることから、CIP150はCx43によるギャップ結合構築を制御する以外の 機能を有しているのではないかと予想される。一方、線虫などの無脊椎動物 では、脊椎動物のコネクシンとタンパク質配列の相同性は無いがタンパク質 構造が似ておりギャップ結合を構築するイネクシンが存在することが報告 されている (Phelan, 2005)。 無脊椎動物における CIP150 がイネクシンと会 合する可能性も考えられるが、これは予想の域に達しない。なお、哺乳類や 鳥類(ニワトリ)ではヒト CIP150 配列に対する相同性は高く、ニワトリと 比較しても 85%の相同性があることから、各動物種の細胞内において CIP150 と Cx43 の相同配列は会合するのではないかと予想される。

CIP150 は、HUGE Protein Database の KIAA1432 に関するデータとして、 その発現量は低いがヒトの様々な組織において RNA レベルでの発現が報告 されている(http://www.kazusa.or.jp/huge/gfpage/KIAA1432/; 参考図 6)。この ことは、本研究で用いた様々な組織由来の細胞全てにおいて CIP150 の発現

が見られたことと一致している。CIP150 は、卵巣の cDNA ライブラリーを 用いたスクリーニングにより単利、同定されたが、卵巣特異的な機能を有す るかは不明である。Cx43 は脳や心臓、卵巣において発現量が高いが、他の コネクシンに比べ広範な組織で発現していることが知られており(Bruzzone et al., 1996a,b)、KIAA1432 の発現パターンより卵巣以外の組織においても Cx43の制御に関わる可能性は考えられる。このことは、NCBIの UniGene に おいて、EST 配列データを基に各遺伝子の発現パターンを示した EST Profile Viewer で、KIAA1432 とヒト Cx43 との発現を比較しても推察される(参考) 図 7)。少なくとも、本実験で用いた腎臓由来の NRK や HEK293 細胞、子宮 由来のHeLa細胞でCIP150はCx43と会合することは確認されている。また、 卵巣における機能に関してもまだ不明であるが、ラット顆粒膜細胞を用いた RT-PCR の結果より、CIP150 は卵巣において Cx43 が重要な役割を担ってい る顆粒膜細胞で発現していることが確認されており、データとして示してい ないが、ヒト顆粒膜細胞由来の腫瘍細胞である KGN 細胞において Cx43 と会 合するという結果も得られている。これらのことは顆粒膜細胞において CIP150 が Cx43 の制御機構に関わることを予想させるが、他の組織も含めて 今後生体内での機能解析を行なう必要がある。

CIP150 と Cx43 との結合領域は、KIAA1432-CT および GST-Cx43-CT を用 いた pull down 法により同定され、この領域は細胞内においても2つのタン パク質の会合に重要であったことから、KIAA1432-CT にあたる CIP150 の C 末端 164 アミノ酸と Cx43-CT の膜貫通領域下流 16 アミノ酸(227-242) であ ると考えられる。一方、Cx43-CTの228-263番目のアミノ酸は チューブリ ンの結合に重要であり、特に 234-243 番目のアミノ酸はチューブリン結合モ チーフであるということが報告されている(Giepmans et al., 2001b)。これら のことから CIP150 と Cx43 との会合に、チューブリンが関わる可能性が考え られたが、細胞をチューブリン重合阻害剤である nocodazole で処理をしても CIP150 と Cx43 との会合に変化が無いこという結果が得られており(データ 省略)、またチューブリンの会合は Cx43 の制御に関わらないという報告があ ることから(Giepmans et al., 2001a) おそらく CIP150 と Cx43 との会合には 作用しないのではないかと考えられる。また、CIP150 と他のコネクシンと の会合について本実験では解析しなかったが、C末端領域はファミリー間で 相同性が低いことから、おそらく会合しないのではないかと予想される。し かし、Cx43 は Cx40 (He et al., 1999)、Cx45 (Martinez et al., 2002) など異な るコネクシンとコネクソンを形成することが報告されており、このような場 合に CIP150 は Cx43 と会合するかなどさらに解析する必要がある。

CIP150 は NRK 細胞においてリン酸化レベルの高い Cx43 と会合している ことが示され、CIP150 はリン酸化依存的に Cx43 と会合している可能性が示 唆された。しかし、この結果を理解する上で、Cx43の細胞内局在とリン酸 化レベルとの相互関係を考慮する必要がある。これまでに、NRK 細胞では ギャップ結合を構築している Cx43 はリン酸化レベルが高いということが報 告されている (Musil and Goodenough, 1991)。本研究においても BFA で細胞 を処理したときに、ギャップ結合を構築している Cx43(Triton 不溶性画分) が減少すると伴に、Cx43 のリン酸化依存的なバンドのシフトも消失してい くことが確認されている。また、Cx43 は発現しているがギャップ結合を構 築していない細胞において、カドヘリンを遺伝子導入し、接着結合を形成さ せると、ギャップ結合が構築され(Matsuzaki et al., 1990; Jongen et al., 1991)、 Cx43 のリン酸化レベルも上昇することが報告されている(Musil et al., 1990)。 すなわち、Cx43 がギャップ結合を構築することと、リン酸化されることは 相関関係がある。このことより、CIP150がリン酸化依存的に Cx43と会合す る可能性と、ギャップ結合を構築している Cx43 と会合した結果、リン酸化 レベルの高い Cx43 が共沈してきたという 2 つの可能性が有るのではないか と考えられる。これに関して、4つのセリン残基におけるリン酸化部位をア ラニンに置換した S4A 変異体 (Yogo et al., 2001) は細胞内でほとんどリン 酸化を受けないが、ギャップ結合を構築しており、この変異体と CIP150 は 会合した結果が得られている。このことより、CIP150 は Cx43 のリン酸化依 存的に会合するのではなく、ギャップ結合を構築している Cx43 と会合して おり、その結果リン酸化レベルの高い Cx43 が優先的に共沈するのではない かと予想された。

しかし、これまでに Cx43 のリン酸化は、参考図 5 に示したように S4A の 4 つのセリン残基以外にも多く報告されており、他のリン酸化との関係も考 慮する必要性がある。これまでに報告されている PKC、MAPK、Src などに よるリン酸化部位は、細胞増殖因子による刺激など、ある特定の条件下にお いて起こること、またそれらのリン酸化はギャップ結合を負に制御すること などから、今回行なった実験条件ではあまり関与しないのではないかと予想 される。これに対し、CK1 によるリン酸化は、その阻害剤である IC261 で細 胞を処理すると、Cx43 の細胞膜への輸送は起こるが、ギャップ結合の構築 が阻害されることが示されており (Cooper and Lampe, 2002)、CK1 依存的な リン酸化と CIP150 の Cx43 との会合の関係は、否定できない。しかし、 Cx43-S4A 発現細胞を ³²P 正リン酸でラベルし、リン酸化を確認した結果、そのシグナルがほとんど検出できないことから、CK1 のリン酸化は関与しないのではないかと推察される。

また、BFA 処理により Cx43 細胞内局在が細胞膜から細胞質へと変化する と会合が見られなくなることが示された。すなわち、CIP150 との会合には Cx43 が細胞膜へと輸送されることが重要であり、このことからも、Cx43 と CIP150 とが細胞膜で会合している可能性が示唆される。しかし、BFA は小 胞体-ゴルジ間輸送に関わる ARF-GEF の阻害剤であり、ゴルジ体構造を可逆 的に破壊することから、両者の会合はタンパク質輸送時のゴルジ体以降に起 こる可能性があることや、BFA が CIP150 に及ぼす影響は不明であり、CIP150 の細胞内局在を変化させた結果、会合が認められなくなった可能性もあり、 さらに解析を行なう必要がある。

CIP150 の結合領域を欠損した Cx43 227-242 はリン酸化による修飾を受け ず、ギャップ結合を構築しないことからチャネル活性を有さないことが示さ れた。前述したようにギャップ結合を構築している Cx43 はリン酸化レベル が高いことをあわせて考えると、ギャップ結合を構築しない結果として Cx43 227-242はリン酸化による修飾を受けないことが推察される。また、Cx43 227-242 は細胞質に局在することが観察されたことより、CIP150 は Cx43 の 細胞膜への輸送、細胞膜でのコネクソン同士の連結、ギャップ結合を構築し た後の安定化に関わるのではないかと考えられた。しかし、このことはアミ ノ酸欠損によるこの変異体特有の表現型である可能性もある。これまでに、 点変異により立体構造が異常となった Cx32 が、小胞体に局在し、細胞質の プロテアソームによって分解される小胞体関連分解を受けることが報告さ れている(VanSlyke et al., 2000)。この可能性に関して小胞体を染色する ConA と2重染色した結果より、Cx43 227-242は小胞体においてその局在が見られ るが、他の細胞質の領域にも存在していることが観察されており、立体構造 の異常により小胞体関連分解を受けているのではないであろうと予想され る。

また、siRNA により CIP150 を発現抑制した細胞では、Cx43 の細胞質にお ける局在が増加していることが確認され、ギャップ結合チャネル活性も有意 に低下したことから、CIP150 がギャップ結合構築制御に関わることを示唆 していると考えられる。細胞膜においてギャップ結合を構築している Cx43 と会合していること、結合の阻害や CIP150 の発現抑制が Cx43 の局在を細胞 質へと移行することなどの結果より、CIP150 は Cx43 がギャップ結合を安定 的に構築するのに関わるのではないかと思われるが、本実験ではその詳細な メカニズムを明らかにはしておらず、更なる解析が必要である。

また CIP150 による制御機構を理解する上で、CIP150 自身の機能を理解す ることは重要である。しかし、CIP150 はこれまでに機能が知られているタ ンパク質ドメイン構造を全く有しておらず、唯一その C 末端にプレニル化モ チーフ(CaaX)が存在する。プレニル化のなかでも、X がセリン残基である ことから CIP150 はファルネシル化を受けると考えられ、この修飾により細 胞膜に局在することが予想される。このことからも、CIP150 は細胞膜にお いてギャップ結合を構築している Cx43 と会合しているのではないかと考え られるが、その詳細を解析するには CIP150 の細胞内局在を明らかにする必 要がある。

本研究において CIP150 に対する抗体は 3 種類作製しており、これを用い た免疫蛍光染色を行ったが、CIP150 に得的な染色像は観察されなかった。 また、CIP150のN末端にFLAGタグを付加し発現した細胞において、抗FLAG 抗体による免疫蛍光染色も行ったが、そのシグナルを検出することができな かった。さらに、FLAG-CIP150 を細胞に過剰発現し、その細胞抽出液から抗 CIP150-M または FLAG 抗体を用いて免疫沈降し、ウエスタンブロットを行 うとそのバンドが検出できたのに対し、全細胞抽出液では全くバンドを検出 することができなかった。この様なことが起こる理由は不明であるが、 CIP150 のタンパク質としての特殊な性質があるのかもしれない。

これまでに Cx43 の制御機構の解析は、Cx43-CT を中心に行なわれ、リン酸化部位や会合タンパク質の同定など、多くの知見が報告されている。例えば、Cx43 の裏打ちタンパク質として考えられている ZO-1 は、その 2 番目のPDZ ドメインを介して Cx43 の C 末端 20 アミノ酸と会合していることが知られている (Sorgen et al., 2004)。しかし、Cx43-CT のほとんど(241 または245 番目のアミノ酸以降)が欠損した変異体は、野生型と同様にギャップ結合を構築するということが示されており(Fishman et al., 1991; Dunham et al., 1992)、このことは ZO-1 や他の会合タンパク、リン酸化部位はギャップ結合の構築に必須ではない可能性を示唆する。これに対し、CIP150 は227-242 番目の領域に会合することや、Cx43 227-242 はギャップ結合を構築しないことなどは、上記の報告に一致しており、CIP150 の重要性を示唆するのではないかと考えられる。一方、ZO-1 は心筋細胞において、介在板(心筋細胞の長軸両端に見られる構造)付近におけるギャップ結合構築に重要であるこ

とが示されており(Toyofuku *et al.*, 1998a)、細胞膜のギャップ結合を構築す る領域を決定する役割を担っているのではないかと考えられる。すなわち、 Cx43は、ギャップ結合を適切な細胞膜領域に構築するのに ZO-1 との会合が、 ギャップ結合を安定して構築するのに CIP150 との会合が重要であるのでは ないかと予想される。

参考図 6 ヒト組織における KIAA1432 の発現パターン

HUGE Protein Database における報告で、KIAA1432 はその発現量は低いがヒトの様々な組織において RNA レベルでの発現が確認されている。(http://www.kazusa.or.jp/huge/gfpage/KIAA1432/より転載)。

KIAA1432

Cx43

Breakdown by Tissue				Breakdown by Tissue			
H H		Hs.2115	120			Hs.744	471
bladder	0		0/21754	bladder	0		0/21754
blood	20	•	1/49988	blood	0		0/49988
bone	54	•	3 / 55055	bone	326	٠	18 / 55055
bone marrow	0		0/36594	bone marrow	191	•	7/36594
brain	36		17 / 469643	brain	117	•	55 / 469643
cervix	0		0/41294	cervix	0		0/41294
colon	0		0/180153	colon	38	•	7 / 180153
eye	23	•	4 / 169020	eye	177	•	30 / 169020
heart	101	•	6 / 59062	heart	203	•	12 / 59062
kidney	71	•	10/139072	kidney	14	-	2/139072
larynx	108		3/27598	larynx	1413	•	39 / 27598
liver	38	•	5/131343	liver	22	-	3/131343
lung	24	•	7 / 289012	lung	114	٠	33/289012
lymph node	93	•	12 / 128237	lymph node	7	-	1/128237
mammary gland	49	•	7 / 140234	mammary gland	35	-	5/140234
muscle	40	•	4 / 99982	muscle	40	-	4 / 99982
ovary	62	•	6/95693	ovary	62	•	6 / 95693
pancreas	30		6/197911	pancreas	40	-	8/197911
peripheral	39	•	1/25034	peripheral	79	•	2/25034
placenta	46	•	11/238006	placenta	134	•	32/238006
prostate	29	•	4 / 133748	prostate	59	-	8 / 133748
skin	18	•	3 / 165707	skin	30	-	5 / 165707
small intes	70		1/14098	small intes	70	•	1/14098
soft tissue	42	•	1/23774	soft tissue	378	•	9/23774
spleen	0		0 / 19302	spieen	0		0 / 19302
stomach	18		2/108315	stomach	92	•	10/108315
tongue	0		0/28966	tongue	103	•	3/28966
testis	43	•	6 / 136587	testis	-36	•	5 / 136587
thymus	0		0/6844	thymus	0		0/6844
uterus	55	•	10 / 181685	uterus	220	•	40 / 181685
vascular	0		0/25893	vascular	772	•	20 / 25893
Breakdown by Developmental Stage			Breakdown by Developmental Stage				
Ha.211520					Hs.744	71	

embryo	71	-	40 / 557204	embryo	113		63 / 557204
juvenile	83		5 / 59630	juvenile	0		0 / 59630
adult	36	•	36/975147	adult	136	٠	133 / 975147
	Pestri	cted pa	ols are repesents	ed by orange border			

参考図 7 EST 配列を基にした KIAA1432 と Cx43 の発現パターンの比較 EST Profile Viewer において、KIAA1432 とヒト Cx43 の発現を比較すると、 いくつかの組織で違いはあるが、どちらの遺伝子も比較的広範な組織で発現 していることが分かる。(NCBI UniGene EST Profile Viewer より転載)

謝辞

本研究を行うにあたり、修士課程より5年間、大変お世話になりました竹 家達夫教授、研究を進めるにあたり、多くのアドバイスをいただきました、 宍戸知行助教授、石田教弘、与語圭一郎助手、お互い励ましあい、一緒に苦 楽をともにした同期の古賀慎太郎君に心から感謝します。

また、本大学院において研究する機会を与えて下さいました、バイオサイ エンス研究科及び遺伝子教育センターの教授をはじめとする先生方、RI施設 などの実験施設を管理して下さった皆様、励ましの言葉を頂いた先輩、同期、 後輩に深く御礼申し上げます。

参考文献

Ackert, C.L., Gittens, J.E., O'Brien, M.J., Eppig, J.J., and Kidder, G.M. (2001) Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse. Dev. Biol. 233:258-270.

Anderson, E., and Albertini, D.F. (1976) Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J. Cell. Biol. 71:680-686.

Bedell, M.A., Brannan, C.I., Evans, E.P., Copeland, N.G., Jenkins, N.A., and Donovan, P.J. (1995) DNA rearrangements located over 100kb 5' of the Steel (SI)-coding region in Steel-panda and Steel-contrasted mice deregulate SI expression and cause female sterility by disrupting ovarian follicle development. Genes. Dev. 9:455-470.

Bergoffen, J., Scherer, S.S., Wang, S., Scott, M.O., Bone, L.J., Paul, D.L., Chen, K., Lensch, M.W., Chance, P.F., and Fischbeck, K.H. (1993) Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262:2039-2042

Berthoud, V.M., Bassnett, S., and Beyer, E.C.(1999)Cultured chicken embryo lens cells resemble differentiating fiber cells in vivo and contain two kinetic pools of connexin56. Exp. Eye. Res. 68:475-484.

Berthoud, V.M., Minogue, P.J., Laing, J.G., and Beyer, E.C. (2004) Pathways for degradation of connexins and gap junctions. Cardiovasc Res. 62:256-267.

Beyer, E.C., Paul, D.L., and Goodenough, D.A. (1990) Connexin family of gap junction proteins. J. Membr. Biol. 116:187-194.

Bornslaeger, E.A., and Schultz, R.M. (1985) Regulation of mouse oocyte maturation: effect of elevating cumulus cell cAMP on oocyte cAMP levels. Biol. Reprod. 33:698-704.

Britz-Cunningham, S.H., Shah, M.M., Zuppan, C.W., and Fletcher, W.H. (1995) Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N. Engl. J. Med. 332:1323-1329.

Brower, P.T., and Schultz, R.M. (1982) Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev. Biol. 90:144-153.

Bruzzone, R., White, T.W., and Goodenough, D.A. (1996a) The cellular Internet: on-line with connexins. Bioessays 18:709-718.

Bruzzone, R., White, T.W., and Paul, D.L. (1996b) Connections with connexins: the molecular basis of direct intercellular signaling. Eur. J. Biochem. 238:1-27.

Butkevich, E., Hulsmann, S., Wenzel, D., Shirao, T., Duden, R., and Majoul, I. (2004) Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr. Biol. 14:650-658.

Cao, F., Eckert, R., Elfgang, C., Nitsche, J.M., Snyder, S.A., H-ulser, D.F., Willecke, K., and Nicholson, B.J. (1998) A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J. Cell. Sci. 111:31-43.

Carabatsos, M.J., Sellitto, C., Goodenough, D.A., and Albertini, D.F. (2000) Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 226:167-179.

Cooper, C.D., and Lampe, P.D. (2002) Casein kinase 1 regulates connexin-43 gap junction assembly. J. Biol. Chem. 277:44962-44968.

Cruciani, V., and Mikalsen, S.O. (2002) Connexins, gap junctional intercellular communication and kinases. Biol. Cell. 94:433-443.

DasSarma, J., Wang, F., and Koval, M. (2002) Targeted gap junction protein constructs reveal connexin-specific differences in oligomerization. J. Biol. Chem. 277:20911-20918.

Dekel, N., Lawrence, T.S., Gilula, N.B., and Beers, W.H. (1981) Modulation of cell-to-cell communication in the cumulus-oocyte complex and the regulation of oocyte maturation by LH. Dev. Biol. 86:356-362.

Dong, J., Albertini, D.F., Nishimori, K., Kumar, T.R., Lu, N., and Matzuk, M.M. (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531-535.

Dunham, B., Liu, S., Taffet, S., Trabak-Janik, E., Delmar, M., Petryshyn, R., Zheng, S., Perzova, R., and Vallano, M. L. (1992) Immunolocalization and expression of functional and nonfunctional cell-to-cell channels from wild-type and mutant rat heart connexin43 cDNA. Circ. Res. 70:1233-1243.

Elvin, J.A., Clark, A.T., Wang, P., Wolfman, N.M., and Matzuk, M.M. (1999) Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol. Endocrinol. 13:1035-1048.

Eppig, J.J. (1994) Oocyte-somatic cell communication in the ovarian folliclesof mammals. Semin. Dev. Biol. 5:51-59.

Evans, W.H., Ahmad, S., Diez, J., George, C.H., Kendall, J.M., and Martin, P.E. (1999) Trafficking pathways leading to the formation of gap junctions. Novartis. Found. Symp. 219:44-9.

Falk, M.M. (2000a) Connexin-specific distribution within gap junctions revealed in living cells. J. Cell. Sci. 113:4109-4120.

Falk, M.M. (2000b) Biosynthesis and structural composition of gap junction intercellular membrane channels. Eur. J. Cell. Biol. 79:564-74.

Falk, M.M., and Gilula, N.B. (1998) Connexin membrane protein biosynthesis is influenced by polypeptide positioning within the translocon and signal peptidase access. J. Biol. Chem. 273:7856-7864.

Fishman, G. I., Moreno, A. P., Spray, D. C., and Leinwand, L. A.(1991)Functional

analysis of human cardiac gap junction channel mutants. Proc. Natl. Acad. Sci. USA 88:3525-3529

Francis, P.J., Berry, V., Moore, A.T., and Bhattacharya, S. (1999) Lens biology: development and human cataractogenesis. Trends. Genet. 15:191-196.

Frenzel, E.M., and Johnson, R.G. (1996) Gap junction formation between cultured embryonic lens cells is inhibited by antibody to N-cadherin. Dev. Biol. 179:1-16.

Fu, C.T., Bechberger, J.F., Ozog, M.A., Perbal, B., and Naus, C.C. (2004) CCN3 (NOV) interacts with connexin43 in C6 glioma cells: possible mechanism of connexin-mediated growth suppression. J. Biol. Chem. 279:36943-36950.

Gabriel, H.D., Jung, D., Butzler, C., Temme, A., Traub, O., Winterhager, E., and Willecke K. (1998) Transplacental uptake of glucose is decreased in embryonic lethal connexin26-deficient mice. J. Cell. Biol. 140:1453-1461.

Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., Sosinsky, G.E., Tsien, R.Y., and Ellisman, M.H. (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503-507.

Gellhaus, A., Dong, X., Propson, S., Maass, K., Klein-Hitpass, L., Kibschull, M., Traub, O., Willecke, K., Perbal, B., Lye, S.J., and Winterhager, E. (2004) Connexin43 interacts with NOV: a possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J. Biol. Chem. 279:36931-36942

Giepmans, B.N., and Moolenaar, W.H.(1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr. Biol. 8:931-934.

Giepmans, B.N., Hengeveld, T., Postma, F.R., and Moolenaar, W.H. (2001a) Interaction of c-Src with gap junction protein connexin-43. Role in the regulation of cell-cell communication. J. Biol. Chem. 276:8544-8549.

Giepmans, B.N., Verlaan, I., Hengeveld, T., Janssen, H., Calafat, J., Falk, M. M.,

and Moolenaar, W. H. (2001b) Gap junction protein connexin-43 interacts directly with microtubules. Curr. Biol. 11:1364-1368

Giepmans, B.N., Verlaan, I., and Moolenaar, W.H. (2001c) Connexin-43 interactions with ZO-1 and alpha- and beta-tubulin. Cell Commun. Adhes. 8:219-23.

Giepmans, B.N., Feiken, E., Gebbink, M.F., and Moolenaar, W.H. (2003) Association of connexin43 with a receptor protein tyrosine phosphatase.Cell Commun. Adhes. 10:201-205.

Gilula, N.B., Epstein, M.L., and Beers, W.H. (1978) Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex. J. Cell. Biol. 78:58-75.

Goldberg, G.S., Moreno, A.P., and Lampe, P.D.(2002)Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J. Biol. Chem. 277:36725-36730.

Goldberg, G.S., Valiunas, V., and Brink, P.R. (2004) Selective permeability of gap junction channels. Biochim. Biophys. Acta. 1662:96-101.

Gong, X., Li, E., Klier, G., Huang, Q., Wu, Y., Lei, H., Kumar, N.M., Horwitz, J., and Gilula, N.B. (1997) Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91:833-843.

Goodenough, D.A., Goliger, J.A., and Paul, D.L. (1996) Connexins, connexons, and intercellular communication. Annu. Rev. Biochem. 65:475-502.

Grifa, A., Wagner, C.A., D'Ambrosio, L., Melchionda, S., Bernardi, F., Lopez-Bigas, N., et al. (1999) Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat. Genet. 23:16-18.

Guerrero, P.A., Schuessler, R.B., Davis, L.M., Beyer, E.C., Johnson, C.M., Yamada, K.A., and Saffitz, J.E. (1997) Slow ventricular conduction in mice heterozygous for a connexin43 null mutation. J. Clin. Invest. 99:1991-1998. He, D.S., Jiang, J.X., Taffet, S.M., and Burt, J.M.(1999) Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA. 96:6495-6500.

Heller, D.T., snd Schultz, R.M. (1980) Ribonucleoside metabolism by mouse oocytes: metabolic cooperativity between the fully grown oocyte and cumulus cells. J. Exp. Zool. 214:355-364.

Hernandez-Blazquez, F.J., Joazeiro, P.P., Omori, Y., and Yamasaki, H. (2001) Control of intracellular movement of connexins by E-cadherin in murine skin papilloma cells. Exp. Cell. Res. 270:235-247.

Holm, I., Mikhailov, A., Jillson, T., and Rose, B.(1999) Dynamics of gap junctions observed in living cells with connexin43-GFP chimeric protein. Eur. J. Cell. Biol. 78:856-866.

Huang, E.J., Manova, K., Packer, A.I., Sanchez, S., Bachvarova, R.F., and Besmer, P.(1993) The murine steel panda mutation affects kit ligand expression and growth of early ovarian follicles. Dev. Biol. 157:100-109.

Itahana, K., Morikazu, Y., and Takeya, T. (1996) Differential expression of four connexin genes, Cx-26, Cx-30.3, Cx-32, and Cx-43, in the porcine ovarian follicle. Endocrinology 137:5036-5044.

Itahana, K., Tanaka, T., Morikazu, Y., Komatu, S., Ishida, N., and Takeya, T. (1998) Isolation and characterization of a novel connexin gene, Cx-60, in porcine ovarian follicles. Endocrinology 139:320-329.

Jongen, W.M., Fitzgerald, D.J., Asamoto, M., Piccoli, C., Slaga, T.J., Gros, D., Takeichi, M., and Yamasaki, H. (1991) Regulation of connexin 43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E-cadherin. J. Cell. Biol. 114:545-555.

Jordan, K., Chodock, R., Hand, A.R., and Laird, D.W(2001) The origin of annular junctions: a mechanism of gap junction internalization. J. Cell. Sci. 114: 763-773

Juneja, S.C., Barr, K.J., Enders, G.C., and Kidder, G.M. (1999) Defects in the germ line and gonads of mice lacking connexin43. Biol. Repod. 60:1263-1270.

Kanemitsu, M.Y., Jiang, W., and Eckhart, W. (1998) Cdc2-mediated phosphorylation of the gap junction protein, connexin43, during mitosis. Cell Growth Differ. 9:13-21.

Kanno, Y. and Loewenstein, W.R. (1964a) INTERCELLULAR DIFFUSION. Science 143:959-960.

Kanno, Y. and Loewenstein, W.R. (1964b) LOW-RESISTANCE COUPLING BETWEEN GLAND CELLS. SOME OBSERVATIONS ON INTERCELLULAR CONTACT MEMBRANES AND INTERCELLULAR SPACE. Nature 201:194-195.

Kelsell, D.P., Dunlop, J., and Hodgins, M.B. (2001) Human diseases: clues to cracking the connexin code? Trends. Cell. Biol. 11:2-6.

Kelsell, D.P., Dunlop, J., Stevens, H.P., Lench, N.J., Liang, J.N., Parry, G., Mueller, R.F., and Leigh, I.M. (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80-83.

Kelsell, D.P., Wilgoss, A.L., Richard, G., Stevens, H.P., Munro, C.S., and Leigh, I.M. (2000) Connexin mutations associated with palmoplantar keratoderma and profound deafness in a single family. Eur. J. Hum. Genet. 8:469-472.

Kirchhoff, S., Nelles, E., Hagendorff, A., Kruger, O., Traub, O., and Willecke, K. (1998) Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Curr. Biol. 8:299-302.

Kissel, H., Timokhina, I., Rothschild, G., Tajima, Y., Soares, V., Angeles, M., Whitlow, S.R., Manova, K., and Besmer, P. (2000) Point mutation in kit receptor tyrosine kinase reveals essential role for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. ENBO J. 49:1312-1326.

Kruger, O., Plum, A., Kim, J.S., Winterhager, E., Maxeiner, S., Hallas, G.,

Kirchhoff, S., Traub, O., Lamers, W.H., and Willecke, K. (2000) Defective vascular development in connexin 45-deficient mice. Development 127:4179-4193.

Kumai, M., Nishii, K., Nakamura, K., Takeda, N., Suzuki, M., and Shibata, Y. (2000) Loss of connexin45 causes a cushion defect in early cardiogenesis. Development 2000 127:3501-3512.

Kumar, N.M., and Gilula, N.B. (1996) The gap junction communication channel. Cell. 84:381-388.

Kuroda, H., Terada, N., Nakamura, H., Matsumoto, K., and Kitamura, Y. (1988) Infertility due to growth arrest of ovarian follicles in Sl/Slt mice. Dev.biol. 126:71-79.

Laing, J.G., and Beyer, E.C. (1995) The gap junction protein connexin43 is degraded via the ubiquitin proteasome pathway. J. Biol. Chem. 270:26399-26403.

Laird, D.W., Castillo, M., and Kasprzak, L. (1995) Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in brefeldin A-treated rat mammary tumor cells. J. Cell. Biol. 131:1193-1203.

Lampe, P.D., and Lau, A.F. (2000) Regulation of gap junctions by phosphorylation of connexins. Arch. Biochem. Biophys. 384:205-215.

Lampe, P.D., and Lau, A.F. (2004) The effects of connexin phosphorylation on gap junctional communication. Int. J. Biochem. Cell. Biol. 36:1171-1186.

Lampe, P.D., Nguyen, B.P., Gil, S., Usui, M., Olerud, J., Takada, Y., and Carter, W.G. (1998) Cellular interaction of integrin alpha3beta1 with laminin 5 promotes gap junctional communication. J. Cell. Biol. 143:1735-1747.

Lampe, P.D., TenBroek, E.M., Burt, J.M., Kurata, W.E., Johnson, R.G., and Lau, A.F. (2000) Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J. Cell. Biol. 149:1503-1512.

Lan, Z., Kurata, W.E., Martyn, K.D., Jin, C., and Lau, A.F. (2005) Novel rab GAP-like protein, CIP85, interacts with connexin43 and induces its degradation. Biochemistry. 44:2385-2396.

Lin, R., Warn-Cramer, B.J., Kurata, W.E., and Lau, A.F. (2001) v-Src phosphorylation of connexin 43 on Tyr247 and Tyr265 disrupts gap junctional communication. J. Cell. Biol. 154:815-827.

Liu, X.Z., Xia, X.J., Xu, L.R., Pandya, A., Liang, C.Y., Blanton, S.H., Brown, S.D., Steel, K.P., and Nance, W.E. (2000) Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Hum. Mol. Genet. 9:63-67.

Lo, C.W. (2000) Role of gap junctions in cardiac conduction and development: insights from the connexin knockout mice. Circ. Res. 87:346-8.

Macari, F., Landau, M., Cousin, P., Mevorah, B., Brenner, S., Panizzon, R., Schorderet, D.F., Hohl, D., and Huber, M. (2000) Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am. J. Hum. Genet. 2000 67:1296-1301.

Maestrini, E., Korge, B.P., Ocana-Sierra, J., Calzolari, E., Cambiaghi, S., Scudder, P.M., Hovnanian, A., Monaco, A.P., and Munro, C.S. (1999) A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families. Hum. Mol. Genet. 8:1237-1243.

Martinez, A.D., Hayrapetyan, V., Moreno, A.P., and Beyer, E.C. (2002) Connexin43 and connexin45 form heteromeric gap junction channels in which individual components determine permeability and regulation. Circ. Res. 90:1100-1107.

Matsuzaki, F., Mege, R.M., Jaffe, S.H., Friedlander, D.R., Gallin, W.J., Goldberg, J.I., Cunningham, B.A., and Edelman, G.M. (1990) cDNAs of cell adhesion molecules of different specificity induce changes in cell shape and border formation in cultured S180 cells. J. Cell. Biol. 110:1239-1252.

Maza, J., DasSarma, J., and Koval, M. (2005) Defining a minimal motif required to prevent connexin oligomerization in the endoplasmic reticulum. J. Biol. Chem. 280:21115-21121.

Meyer, R.A., Laird, D.W., Revel, J.P., and Johnson, R.G. (1992) Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell. Biol. 119:179-189.

Murray, S.A., Williams, S.Y., Dillard, C.Y., Narayanan, S.K., and McCauley, J. (1997) Relationship of cytoskeletal filaments to annular gap junction expression in human adrenal cortical tumor cells in culture. Exp. Cell Res. 234:398-404.

Musil, L.S., and Goodenough, D.A. (1991) Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J. Cell. Biol. 115:1357-74.

Musil, L.S., and Goodenough, D.A. (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74:1065-1077.

Musil, L.S., Cunningham, B.A., Edelman, G.M., and Goodenough, D.A. (1990) Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and -deficient cell lines. J. Cell. Biol. 111:2077-2088.

Musil, L.S., Le, A.C., VanSlyke, J.K., and Roberts, L.M. (2000) Regulation of connexin degradation as a mechanism to increase gap junction assembly and function. J. Biol. Chem. 275:25207-25215.

Nelles, E., Butzler, C., Jung, D., Temme, A., Gabriel, H.D., Dahl, U., Traub, O., Stumpel, F., Jungermann, K., Zielasek, J., Toyka, K.V., Dermietzel, R., and Willecke, K. (1996) Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proc. Natl. Acad. Sci. USA. 93:9565-9570.

Niessen, H., Harz, H., Bedner, P., Kramer, K., and Willecke, K. (2000) Selective

permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J. Cell. Sci. 113:1365-1372.

Okuma A, Kuraoka A, Iida H, Inai T, Wasano K, Shibata Y. (1996) Colocalization of connexin 43 and connexin 45 but absence of connexin 40 in granulosa cell gap junctions of rat ovary. J. Reprod. Fertil. 107:255-264.

Paul, D.L. (1986) Molecular cloning of cDNA for rat liver gap junction protein. J. Cell. Biol. 103:123-134.

Paulson, A.F., Lampe, P.D., Meyer, R.A., TenBroek, E., Atkinson, M.M., Walseth, T.F., and Johnson, R.G. (2000) Cyclic AMP and LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking. J. Cell. Sci. 113:3037-3049.

Phelan, P. (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim. Biophys. Acta. 1711:225-245.

Plum, A., Hallas, G., Magin, T., Dombrowski, F., Hagendorff, A., Schumacher, B.,
Wolpert, C., Kim, J., Lamers, W.H., Evert, M., Meda, P., Traub, O., and Willecke,
K. (2000) Unique and shared functions of different connexins in mice. Curr. Biol. 10:1083-1091.

Postma, F.R., Hengeveld, T., Alblas, J., Giepmans, B.N., Zondag, G.C., Jalink, K., and Moolenaar, W.H. (1998) Acute loss of cell-cell communication caused by G protein-coupled receptors: a critical role for c-Src. J. Cell. Biol. 140:1199-1209.

Reaume, A.G., de Sousa, P.A., Kulkarni, S., Langille, B.L., Zhu, D., Davies, T.C., Juneja, S.C., Kidder, G.M., and Rossant, J. (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831-1834.

Rivedal, E., and Opsahl, H. (2001) Role of PKC and MAP kinase in EGF- and TPA-induced connexin43 phosphorylation and inhibition of gap junction intercellular communication in rat liver epithelial cells. Carcinogenesis

22:1543-1550.

Sandberg, K., Ji, H., Iida, T., and Catt, K.J. (1992) Intercellular communication between follicular angiotensin receptors and Xenopus laevis oocytes: medication by an inositol 1,4,5-trisphosphate-dependent mechanism. J. Cell. Biol. 117:157-167.

Sherizly, I., Galiani, D., and Dekel, N. (1988) Regulation of oocyte maturation: communication in the rat cumulus-oocyte complex. Hum. Reprod. 3:761-766.

Simon, A.M., Goodenough, D.A., Li, E., and Paul, D.L. (1997) Female infertility in mice lacking connexin 37. Nature 385:525-529.

Simon, A.M., and Goodenough, D.A. (1998) Diverse functions of vertebrate gap junctions. Trends. Cell. Biol. 8:477-483.

Singh, D., and Lampe, P.D. (2003) Identification of connexin-43 interacting proteins. Cell Commun. Adhes. 10:215-220.

Sorgen, P.L., Duffy, H.S., Sahoo, P., Coombs, W., Delmar, M. and Spray, D.C. (2004) Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1. J. Biol. Chem. 279:54695-54701.

Temme, A., Buchmann, A., Gabriel, H.D., Nelles, E., Schwarz, M., and Willecke, K. (1997) High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Curr. Biol. 7:713-716.

Teubner, B., Michel, V., Pesch, J., Lautermann, J., Cohen-Salmon, M., Sohl, G., Jahnke, K., Winterhager, E., Herberhold, C., Hardelin, J.P., Petit, C., and Willecke, K. (2003) Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum. Mol. Genet. 12:13-21.

Thomas, T., Jordan, K., and Laird, D.W. (2001) Role of cytoskeletal elements in the recruitment of Cx43-GFP and Cx26-YFP into gap junctions. Cell Commun.

Adhes. 8:231-236.

Toyofuku, T., Yabuki, M., Otsu, K., Kuzuya, T., Hori, M., Tada, M.(1998a)Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J. Biol. Chem. 273:12725-12731.

Toyofuku, T., Yabuki, M., Otsu, K., Kuzuya, T., Hori, M., Tada, M. (1998b) Intercellular calcium signaling via gap junction in connexin-43-transfected cells. J. Biol. Chem. 273:1519-1528.

Unger, V.M., Kumar, N.M., Gilula, N.B., and Yeager, M.(1999) Three-dimensional structure of a recombinant gap junction membrane channel. Science 283:1176-1180.

VanSlyke, J.K., Deschenes, S.M., and Musil, L.S. (2000) Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol. Biol. Cell. 11:1933-1946.

Wang, Y., and Rose, B. (1995) Clustering of Cx43 cell-to-cell channels into gap junction plaques: regulation by cAMP and microfilaments. J. Cell. Sci. 108:3501-3508.

Warn-Cramer, B.J., Cottrell, G.T., Burt, J.M., and Lau, A.F. (1998) Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J. Biol. Chem. 273:9188-9196.

Wei, C.J., Xu, X., and Lo, C.W. (2004) Connexins and cell signaling in development and disease. Annu. Rev. Cell. Dev. Biol. 20:811-838.

White, T.W., Bruzzone, R., Wolfram, S., Paul, D.L., and Goodenough, D.A.(1994) Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins. J. Cell. Biol. 125:879-892.

White, T.W., Goodenough, D.A., and Paul, D.L. (1998) Targeted ablation of

connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J. Cell. Biol. 143:815-825

Wiesen, J.F., and Midgley, A.R. Jr. (1994) Expression of connexin 43 gap junction messenger ribonucleic acid and protein during follicular atresia. Biol. Reprod. 50:336-348.

Willecke, K., Eiberger, J., Degen, J., Eckardt, D., Romualdi, A., Guldenagel, M., Deutsch, U., and Sohl, G. (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 383:725-737.

Xia, J.H., Liu, C.Y., Tang, B.S., Pan, Q., Huang, L., Dai, H.P., Zhang, B.R., Xie, W., et al. (1998) Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat. Genet. 20:370-373.

Xu, X., Li, W.E., Huang, G.Y., Meyer, R., Chen, T., Luo, Y., Thomas, M.P., Radice, G.L., and Lo, C.W. (2001) Modulation of mouse neural crest cell motility by N-cadherin and connexin 43 gap junctions. J. Cell. Biol. 154:217-230.

Yamaguchi, D.T., and Ma, D. (2003) Mechanism of pH regulation of connexin 43 expression in MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 304:736-9.

Yeager, M., Unger, V.M., and Falk, M.M.(1998) Synthesis, assembly and structure of gap junction intercellular channels. Curr. Opin. Struct. Biol. 8:517-24.

Yogo, K., Ogawa, T., Akiyama, M., Ishida, N., and Takeya, T(2002)Identification and functional analysis of novel phosphorylation sites in Cx43 in rat primary granulose cells. FEBS Lett. 531:132-136.