自然突然変異の発生における損傷乗り越えDNA合成の役割

蟹江 聰 奈良先端科学技術大学院大学 バイオサイエンス研究科 原核生物分子遺伝学講座(真木寿治教授)

平成19年 1月29日提出

目次

第一部序論

1 自然突然変異の生物学的意義・・・3
2 自然突然変異の発生と抑制の分子機構・・・4
3 自然DNA損傷から細胞を守る機構・・・6
4 大腸菌染色体*rpsL*検出系・・・8
5 本研究の目的・・・11

第二部自然突然変異の発生における複製エラーの関与について 第一章 序論・・・12 第二章 結果と考察・・・15

第三部自然突然変異の発生における損傷乗り越えDNA合成の役割 第一章 序論・・・37 第二章 結果と考察・・・41

第四部複製エラーにおけるPol IV(DinB)の関与 第一章 序論・・・88 第二章 結果と考察・・・89

第五部材料と方法・・・92

総括・・・100

付録表・・・102

参考文献・・・111

謝辞・・・117

第一部 序論

1、自然突然変異の生物学的意義

1-1)生物における正確な遺伝情報の伝達

ひとつの細胞が分裂し、ふたつになるとき、自己の持つ遺伝情報を正確に伝える必要性 がある。正確な遺伝情報の継代は、細胞の機能を維持する上で必須のプロセスである。ま た、個体レベルにおいても、細胞分裂の際に、母細胞から娘細胞に正確に遺伝情報を継代 させるためには、遺伝物質であるDNAを正確に複製することが種の保存という観点から 重要な命題となる。

フランシス・クリック(Francis Harry Compton Crick)によって1958年に提唱され たセントラルドグマが広く受け入れられているように、DNAはDNAの複製によってのみ 増えていくことが知られている。DNA複製は、鋳型DNAをもとにし、DNAポリメラーゼ により、ワトソン・クリック型の塩基対合規則に従って新しいDNA鎖が合成されてい く。通常、DNA複製は複製型DNAポリメラーゼによってDNA合成が行われる。複製型 DNAポリメラーゼは、高い正確さ(フィデリティー)と連続的に重合する機能(プロ セッシビティー)を有すると同時に、鋳型DNAに対応しない間違った塩基対合が生じた 場合に、それを除去する校正機能を有している(Scheuermann et al 1984,, Kornberg, A. and Baker et al 1992)。複製型DNAポリメラーゼの働きにより、生物は正確かつ連続 的なDNA合成が行われ、世代を越えた正確な遺伝情報の伝達を可能としている。

1-2)突然変異による不正確な遺伝情報の伝達

ヒトから細菌まで、全ての生物において、自己の遺伝情報を分子レベル、染色体レベル で正確に維持するために数々の分子機構が細胞内に存在している。それらの分子機構の働 きにより、比較的短期的な期間(世代数)において、遺伝情報は非常に高い正確さが保証 されている。しかし、稀に、これらの機構によって修復されなかったDNAの変化が固定 されることにより、自然突然変異が生じる。突然変異による遺伝情報の変化によって、表 現型形質に変化が生じると、発癌、発生異常などの原因となることが知られている。ヒト のp53は特異的DNA結合能をもつ転写因子であり、ガン抑制遺伝子として知られている。 p53に変異が生じ、その機能に異常が生じると、細胞が異常な増殖をすることが示されて いる。また、遺伝情報の変化が固定されて子孫に継代されることにより遺伝性の疾患の原 因となることも示されている。ヒトの遺伝病である色素性乾皮症(xeroderma pigmentosum:XP)やコケイン症候群(Cockayne syndrome:CS)は責任遺伝子の変異が

塩基配列レベルで同定され、遺伝子レベルでの解析によりその全容が明らかにされつつある(Masutani et al ., 1999; Johnson et al ., 1999; Yuasa et al ., 2000)。

自然突然変異の発生は、個体、およびその系統の機能が大きく失われる要因にもなりう る。しかし、もし仮に、遺伝情報が全く変化しない、つまりワトソン・クリック型の塩基 対合規則の変化が全く存在しないと仮定した場合はどうなるであろうか。個体レベル、お よび比較的短期的な期間の世代においては、発癌、発生異常、遺伝病などが生じなくなる ため、大きな利益となるかもしれない。しかし、遺伝情報の完全な普遍性は、長い地質年 代が示してきたように、温度や大気などの環境要因が大きなレベルで変化した場合に必要 な「生物の多様性、および環境適応性」が、全く得られないことを意味する。それどころ か地球上の全ての生物は、30億年以上前に現れた初期の生物の姿のままであったであろ う。現在、地球上に多様な生物種が存在することは、自然突然変異が利益と不利益の両方 を与える役割を担っており、それは自己増殖と進化において、適切なレベルに制御されて いると解することができる。後述する生物の持つ自然突然変異の抑制機構が、自然突然変 異、および前変異損傷(DNAポリメラーゼの複製エラー、および紫外線や活性酸素など によって生じる自然DNA損傷)を極めて高い精度で除去していることが知られている が、細胞内に幾重にも張り巡らされた、自然突然変異の抑制機構をかいくぐってきた突然 変異の発生頻度は、短期的には種を安定に維持するが、長期的には種の多様性を獲得する 微妙なバランスを得ることができるものとなるのであろう。したがって、自然突然変異 は、ゲノムの不安定性を引き起こすが、新たな形質獲得の可能性を与えることにより進化 の原動力となっていると解することができる。

このように、自然突然変異の発生のメカニズムを明らかにすることは、遺伝病、発癌な どにおける発生メカニズムの解明に大きく貢献するだけでなく、生物の進化の原動力のメ カニズムを解明する上でも大きく貢献できると考えられる。

2、自然突然変異の発生と抑制の分子機構

放射線や化学変異原による人工的な誘発変異であれ、自然突然変異であれ、変異発生の プロセスはまず、DNA上に前変異損傷(premutagenic lesion)が生じ、DNA 複製がその損傷部位を通過する課程で変異に固定されて完結する(真木., 2001)。

自然突然変異の発生率は、DNA複製の回数に依存することから自然突然変異の原因と なる前変異損傷は、細胞に内在する要因によって生じることが予想されていた。つまり、 DNAボリメラーゼが稀に生じる複製エラー、および自然DNA損傷などの前変異損傷が主 要な発生要因となって自然突然変異が引き起こされると考えられていた。In vitro DNA合 成系における解析から、DNAボリメラーゼ自身の複製エラーの発生頻度は約10⁻⁴~10⁻⁵/ 塩基対/複製と推定されている(Sloane et al., 1988)。しかし、実際の細胞における自然 突然変異の発生頻度は10⁻⁹~10⁻¹¹/塩基対/細胞分裂という極めて低いレベルに保たれてい る。これは、細胞内に幾重にも張り巡らされた自然突然変異の抑制機構が、効率よく複製 エラーや自然DNA損傷を修復しているためと考えられている(Sheuermann et al., 1984; Brenowita et al., 1991)。通常の細胞分裂時にDNA合成を行う複製型DNAポリメラーゼ が生じた複製エラーは、複製型DNAポリメラーゼ自身のもつ3'→5'エキソヌクレアーゼに よる校正機能、およびミスマッチ修復機構によって高い精度で除去される。校正機能は DNA複製中に生じたミスペアを極めて高い効率で除去していき、校正機能によって修復 できなかったミスペアについても、ミスマッチ修復機構が、鋳型鎖と新生鎖を認識し、 DNAポリメラーゼが間違って挿入した新生鎖塩基を特異的に除去していく(Brenowita et al., 1991; Friedberg et al., 1995; 梅津., 1994)。このように複製エラーは、二重の修復 系によって極めて高い効率で抑制されている。

また、自然DNA損傷についても、細胞内の抑制機構によって除去されている。自然 DNA損傷は、紫外線や生物自身の呼吸によって生じる活性酸素などによって生じている ことが示されている。主に大腸菌などのミューテーター変異株による解析から、細胞には 紫外線などによって生じたピリミジンダイマーなどを効率よく除去するヌクレオチド除去 修復 (Nucleotide excision repair:NER)や、グアニンが酸化されて生じる8-オキソグア ニンを除去する塩基除去修復 (Base excision repair:BER)などの自然DNA損傷を修復す る機構が存在することが明らかにされている(Duncan et al., 1980; Hanawalt et al., 1993)。また、酸化されたヌクレオチドプール (自然ヌクレオチド損傷)を浄化する MutTなどの修復系タンパクも見出されており(Maki., 1992)、複製エラーと同様に自然 DNA損傷も幾重に張り巡らされた修復機構が存在することが示されている (図1.1)。

複製エラーを特異的に修復する校正機能やミスマッチ修復機能を欠損させたミューテー ター変異株の解析から、複製エラーの自然突然変異への関与の度合いがが明らかになりつ つある(蟹江., 2001)。しかし、近年、自然DNA損傷や自然ヌクレオチド損傷を修復除去 する機構の解析から、自然突然変異の発生要因として、自然DNA損傷や自然ヌクレオチ ド損傷がきわめて重要な原因であることが示されている(Sakai et al., 2006; 沙魚川., 未発 表)。

図1.1 自然突然変異の発生と抑制の分子機構

3、自然DNA損傷から細胞を守る機構

細胞は内的、および外的な要因によって、DNAに対し常に損傷を受けている (Kunkel., 1999)。外的要因とは、太陽光中に含まれる紫外線や環境中の化学物質など であり、かつては自然突然変異の主たる発生要因として考えられていた。しかし、近年、 細胞の呼吸によって生じる活性酸素などによってDNAは常に損傷を受けているとの報告 があり、内在的な要因によって引き起こされるDNA損傷も重要視されてきている(Sakai et al., 2006),。これらのDNA損傷の多くは転写やDNA複製を阻害することが知られてい る。上述した全変異損傷の内、DNA複製のエラーとして、鋳型塩基に対し間違った塩基 を挿入する塩基置換などは、場合によっては遺伝情報の変化を生じないケースもあり、必 ずしも細胞死に直結しない。

しかし、鋳型DNA上に生じたDNA損傷に中には、複製フォーク阻害を引き起こすもの もある。また、転写鋳型DNA上のDNA損傷によって、RNAポリメラーゼの進行が阻害さ れれば、RNA合成が妨げられる。これらの複製や転写の阻害は、細胞死に直結するた め、生物にとって必ず回避をしなければならない重要な障害となる。そのため、生物は進 化の過程において、DNA損傷から生体を守り、自己の細胞の死を回避すると同時に次世 代に自己の遺伝情報を伝えるため、DNA複製を完了させるための機構を獲得してきた。 DNA損傷によって複製フォークが停止した場合、互いに相同な二つのDNA分子間でDNA が組換わる反応は、細菌からヒトまで広く確認されている。この相同組換えの性質を用い て、多くのDNA損傷が正常な塩基配列との間で組換え修復される(岩崎、品川 2001)。ま た、DNA損傷による転写の阻害に関しては、転写と共役した修復(Transcriptioncoupled repair:TCR)が細菌からヒトまで、広く存在しており、NERがRNAポリメラーゼ が行っている転写領域に存在するDNA損傷を優先的に除去、修復することが知られてい る(Bohr., 1985; Mellon., 1987)。

DNA複製においては転写の阻害を解消するTCRと異なり、損傷を乗り越えてDNA複製 を継続させる「損傷乗り越えDNA合成」が広く原核生物から高等真核生物まで知られて いる(Johnson., 1999; Napolitano., 2000; Tang et al., 2001)。損傷乗り越えDNA合 成を担う損傷乗り越え型DNAポリメラーゼは、通常の生育環境下で行われるDNA合成を 担うプロセッシビティが高い複製型DNAポリメラーゼとは異なり、一般的にプロセッシ ビティが低く、3'→5'エキソヌクレアーゼによる校正機能などを持たないものが多く見出 されている。これらの損傷乗り越え型DNAポリメラーゼが、DNA損傷によって阻害され たDNA複製を、損傷を乗り越えてひとまず完了させてしまうという機構である。In vitro における数々の解析から、損傷乗り越え型DNAポリメラーゼは、DNA鎖上の損傷を乗り 越えることができる反面、鋳型DNA鎖に対し、相補的でない間違った塩基を挿入するこ とが見出されており、突然変異を誘発する可能性が示唆されている(Tang et al., 2001)。また、鋳型DNA鎖上に損傷がない場合においても、複製型DNAポリメラーゼに 比べ、相補的でない間違った塩基を挿入しやすいことが知られている(Wood et al., 1984)。特に、大腸菌においては、UVなどの強照射によって、鋳型DNA鎖上に損傷が生

じるとSOS応答と呼ばれるDNA修復関連遺伝子(SOS gene)が強発現する細胞応答機構 が存在している。大腸菌において、損傷乗り越え型DNAポリメラーゼをコードする遺伝 子はSOS geneであることが知られており、突然変異の発生における関与が注目されてい る。

4、大腸菌染色体rpsL検出系

rpsL遺伝子はリボソームのサブユニットの1つであるS12タンパクをコードしており、 野生型のrpsL遺伝子を持つ細胞は抗生物質であるストレプトマイシン(Sm)に対し感受 性を示す。rpsL遺伝子のSm感受性(Sm^s)はrpsLのミスセンス変異によるSm耐性

(Sm^r)に対し優性である。従って、Sm^rを指標にして*rpsL*遺伝子に変異を持つ細胞を選択でき、*rpsL*遺伝子を部分二倍体にすることにより上述したように極めて低頻度で発生する突然変異を検出することが可能である。

これまで当研究室では、プラスミド上にrpsL標的遺伝子を配置し、生じた変異を検出 してきた(図1.2A)。しかし、プラスミドは染色体とでは、複製様式が異なる点、修復の効 率やタイミングが異なる点などの相違点が考えられる。そのため、変異の発生頻度、発生 部位に違いを生じている可能性が考えられる。そこで、当研究室の川野(1998)、五十 川(1999)は染色体上にSm⁵とSm⁵のrpsL遺伝子を1つずつ、2コピー持つ部分二倍体株 を作製し、rpsL検出系による変異の検出を試みた(図1.2B)。しかし、recA変異の導入 により、Smの抵抗性が異常に上昇し、5 mg/mlという通常の50倍のSmを含む寒天培地 上でrpsL遺伝子に変異を持つ細胞を特異的に選択することが困難であるという問題点が 明らかになった。そこで、本研究ではゲノムプロジェクトで用いられたMG1655由来の菌 株を用いて、rpsL部分二倍体株を作製し、染色体上に生じる自然突然変異の特異性を明 らかにすることを目指した。MG1655株を用いた結果、プラスミドrpsL系で用いられて いたSm濃度である100 µg/mlという通常の濃度で、突然変異を持つ細胞の選択が可能と なり、以後、この菌株を大腸菌染色体rpsL系野生型株とした。

これまでの自然突然変異の研究では、プラスミド上に復帰変異を導入した標的遺伝子を 用いた解析が主流であった(樋口., 1997、Yoshiyama., 2003)。しかし、本研究では、染 色体上に導入した*rpsL*標的遺伝子を用いて前進突然変異を検出することができる。ま た、染色体*rpsL*前進突然変異検出系では、染色体上に配置されている2つの*rpsL*遺伝子間 で2塩基の違いが存在しており、プラスミド検出系と異なり、2つの遺伝子間で生じた相 同組換えが検出することができる。自然突然変異は制御機構は生物にとって基本的なメカ ニズムであり、普遍的な部分が多い。よって、本研究は高等生物を含めた生物種全般の自

然突然変異の発生、修復機構を明らかにするために大きな意味を持つと考えられる。

B. 染色体rpsL検出系 Sm含有 LB寒天培地 $(100 \ \mu g/ml)$ Sm⁵ に塗布 Sm⁵ 生育不可 rpsl 振とう `培養 Sm bsL (Sm^s) 生育可 m rpsL

図1.2 rpsL遺伝子を標的とした2種類の前進突然変異検出系

大腸菌のrpsL遺伝子は、リボソームタンパク質をコードする必須遺伝子であ り、野生型のrpsL遺伝子を持つ細胞はストレプトマイシン感受性を示す (Sm^s)。rpsL127(Sm^c)とrpsL⁺(Sm^s)の2種類の遺伝子が同一細胞内に存在す ると表現型形質はSm^sとなる。従って、rpsL標的遺伝子に変異が生じ、その機能 が欠損した場合にSm含有LB寒天培地で選択が可能となる。図中では、大腸菌の 染色体DNAを楕円形、プラスミドDNAを円形で表した。rpsL遺伝子に関しては、 野生型を青色、変異型を赤色あるいは緋色の長方形で表示した。

A. 標的rpsL遺伝子がプラスミド上に存在するrpsL検出系の概要。rpsL標的遺 伝子(rpsL⁺)が複製フォークに対して順向きに配置されたプラスミドpMOL21 (マーカーとしてアンピシリン耐性遺伝子を持つ)を調べたい菌株に導入し、 一夜培養後、プラスミドDNAをアルカリ-SDS法で抽出した。この中からrpsL遺 伝子に変異を持つプラスミドを選択するために、染色体上のrpsL遺伝子がすで にSm⁻に変化している変異検出用の大腸菌にプラスミドDNAを導入し、アンピシ リンとストレプトマイシンの存在下で生育できる細胞を選択した。

B. 標的rpsL遺伝子が染色体上に存在するrpsL検出系の概要。染色体上のrpsL 遺伝子がすでにSmiに変化している大腸菌に、野生型のrpsL遺伝子とアンピシリ ン耐性マーカーをcysJIHオペロン内に挿入した、rpsL部分二倍体細胞を材料と した。プラスミドrpsL系と同様の原理で、アンピシリンとストレプトマイシン の存在下でrpsL標的遺伝子上に変異が生じた大腸菌を選択することができる。

5、本研究の目的

本研究では大腸菌染色体rpsL前進突然変異検出系を用いて、野生型大腸菌の染色体上 で生じる自然突然変異の特異性、およびその発生メカニズムを明らかにすることを目的と した。図1.1に示したように自然突然変異の発生要因として大きく注目されている複製型 DNAポリメラーゼの複製エラー、および損傷乗り越えDNA合成を行う損傷乗り越え型 DNAポリメラーゼが誘発する突然変異に注目し、自然突然変異の発生への関与を明らか にすることを目的とした。損傷乗り越え型DNAポリメラーゼは大腸菌からヒトまで、広 く存在し、また、DNA損傷の種類によって、異なる乗り越えの能力を持つ複数の損傷乗 り越え型DNAポリメラーゼが見出されている。In vitroにおける数々の解析の結果、損傷 乗り越えDNA合成による突然変異誘発の詳細が明らかにされつつある。しかし、In vivo における自然突然変異の発生における損傷乗り越えDNA合成の関与はほとんど明らかに されていない。そこで、本研究では簡便に遺伝子操作が行える大腸菌細胞を用い、様々な 種類の突然変異を検出できるrpsL前進突然変異検出系を用いて、TLSの自然突然変異の発 生への関与、および複製エラーへの関与を明らかにすることを目的とした。

第二部 自然突然変異の発生における複製エラーの関与について

第一章 序論

自然突然変異の発生には、細胞の内在的要因が大きく関与していることが明らかにされ つつある(真木., 1997)。自然突然変異の発生において、細胞内で修復される前の変異 である前変異損傷は複製エラーと自然DNA損傷の二つに大別される(図1.1)。その中でも 大きな要因と考えられていたのはDNA ポリメラーゼがDNA複製を行う際に生じる誤り、複 製エラーと考えられていた。複製エラーを特異的に修復する校正機能、およびミスマッチ 修復機構を欠損させたミューテーター変異株では自然突然変異頻度が極めて高いレベルに 上昇するからである(真木., 2001)。*In vitro* DNA複製系の研究からDNA複製酵素である DNAポリメラーゼ自身は約10⁻⁴~10⁻⁵/塩基対/複製の発生頻度で塩基のミスペアを形成する といわれている(Sloane., 1988)。また、1塩基フレームシフト変異を引き起こすスリッ ページエラーも同レベルで起きていることが示された(Fujii *et al.*, 1999)。しかし、 実際の細胞内から自然突然変異が検出される頻度は10⁻⁹~10⁻¹⁰/塩基対/細胞分裂程度であ り、極めて低頻度に抑えられていることが示されている。

大腸菌の複製型DNAポリメラーゼであるDNAポリメラーゼIII(Pol III)ホロ酵素自身が持 つ ε サブユニットは校正機能を担い、ミスペアや1塩基フレームシフトを認識して、前変 異損傷である複製エラーの99~99.9%を修復する。また、ミスマッチ修復は校正機能が修 復しきれなかった1塩基のミスペアや1塩基フレームシフト、4塩基までのループ構造を修 復する (Freidberg et al., 1995; 梅津., 1994) 。大腸菌のミスマッチ修復機構は、1) ミスマッチの認識、2)新生鎖の切断、3)新生鎖の消化、4)DNA修復合成のステップで進行 する(図2.1)。1~4塩基のミスペア、およびループ構造である標的に対し、MutSが結合す る。ミスペア部位に結合したMutSにMutLが結合して複合体を形成し、そのミスマッチ結合 活性を高める。近傍に存在するDamメチラーゼの認識配列(GATC)に結合したMutHと相互 作用する。MutS-MutL複合体はMutHと結合し、MutHのエンドヌクレアーゼ活性で、メチル 化されていない方のDNA鎖を新生鎖とみなして切断する。その後、DNAヘリケースII、エキ ソヌクレアーゼ(ExoI、ExoVII、RecJ)が協調的に働き、ミスペアをこえる部分まで新生 鎖を除去し、DNAポリメラーゼIIIとDNAリガーゼが作用して修復が完了する(Lahue., 1989; 真木 等., 1996; Jiricny et al., 1998)。また、プラスミド上標的遺伝子を用い た解析から、ミスマッチ修復機構は塩基置換や1塩基フレームシフトだけでなく、2〜数 塩基の短い配列置換変異の発生も抑制していることが示唆されている(Yoshiyama .,2003)。配列置換変異はもともとの配列が異なった配列に変化する変異であり、Pol IIIがテンプレートスイッチングすることにより生じる特殊な複製エラーと考えられてい る。ミスマッチ修復機構は数塩基の短い領域では、様々なタイプの複製エラーを抑制して いると考えられている。

図2.1 大腸菌におけるミスマッチ修復機構

上述したように、DNAポリメラーゼ自身が引き起こす複製エラーは、ある程度の頻度で 発生しているが、DNAポリメラーゼ自身の校正機能、およびミスマッチ修復機構によって 極めて低頻度に抑えられている。しかし、細胞内に二重の修復機構が存在しても、修復し きれなかった複製エラーがある可能性も否定できない。そこで本研究では、様々なタイプ の前進突然変異を検出できる染色体上に配置した*rpsL*標的遺伝子を用いて、1)野生型大腸 菌において、自然突然変異の発生パターンの解析を行うこと、2)ミスマッチ修復欠損株 (mutS変異株)を作製し、Pol IIIにおける複製エラーの発生パターンを明らかにし、野 生型大腸菌における自然突然変異の発生パターンとの比較を行うことを目的とした。 第二部 自然突然変異の発生における複製エラーの関与について

第二章 結果と考察

1、プラスミドrpsL系と染色体rpsL系の前進突然変異頻度の比較

一本研究では大腸菌染色体上で生じる自然突然変異の特異性を明らかにするために、染色体に挿入した第二のrpsL遺伝子を標的遺伝子として用いて、塩基配列レベルでの解析を 目指した。当研究室の川野(1997)および五十川(1998)も同様の目的で解析を進めて いたが、彼らが用いた菌株では、Sm抵抗性が異常上昇し、さらにrecA変異を細胞に導入 した場合にはrpsL遺伝子に異常が見られない大腸菌が5 mg/mlという高濃度でも生育可 能になるという結果が生じた。この結果から、川野(1997)、五十川(1998)らが用い た系統の菌株では、染色体上に生じるrpsL前進突然変異を検出するのは困難であること が明らかとなった。その後、当研究室では、川野(1997)、五十川(1998)らが用いた 菌株とは異なる菌株を用い前進突然変異検出を試みた。大腸菌K12株の標準としてゲノム プロジェクトで用いられたMG1655由来の野生型菌株の染色体上にrpsL標的遺伝子を配 置し、rpsL前進突然変異の検出について検討が加えられた。その結果、この菌株では100 μg/mlという低濃度でSm耐性株を用意に且つ明瞭に選択することができ、全体の突然変 異頻度を測定することが可能であることが判明した(愿山,沼田,真木,未発表)。

一*rpsL*前進突然変異頻度を測定する際、MG1655の染色体*cysJIH*に*rpsL*標的遺伝子を挿入した*rpsL*部分二倍体株MK811を野生株として用いた(表5.1)。また、複製エラーの発生頻度、及び発生部位の特異性を明らかにするために、ミスマッチ修復機構を欠損させる目的で、*mutS*変異株を用いた(表5.1)。*rpsL*標的遺伝子上に生じた*rpsL*前進突然変異頻度を表2.1に示した。本研究で用いた染色体*rpsL*系と当研究室で用いられてきたプラスミド*rpsL*系との比較のため、*rpsL*標的遺伝子を複製方向に対して順向きに配置したプラスミドにおける結果も、表2.1–Bにあわせて記載した(図1.2;青木.,未発表; 斉藤., 未発表; 愿山., 1997)。

野生株の細胞を用いた場合、*rpsL*標的遺伝子上での全体の突然変異頻度は、染色体 *rpsL*系(MK811)では0.42×10⁻⁶、プラスミド*rpsL*系(MK426/pMOL21)では1.5× 10⁻⁶であり、染色体*rpsL*系での変異頻度が若干高いか、ほぼ同程度であることが示され た。また、ミスマッチ修復欠損株である*mutS*変異株における変異頻度は染色体*rpsL*系 (MK1381)では32×10⁻⁶、プラスミド*rpsL*系(MK511/pMOL21)では37×10⁻⁶であ り、ほぼ同程度の値であった。プラスミドrpsL系では、野生株に比べ*mutS*変異株では、

rpsL前進突然変異頻度が約76倍に上昇しており、染色体rpsL系では、37倍に上昇していた(表2.1)。プラスミドrpsL系と染色体rpsL系では、野生株とmutS変異株の上昇率は3倍程度の差しかなかった。rpsL前進突然変異検出系は様々なタイプの変異を検出できる実験系であるが、低頻度で発生した突然変異を塩基配列レベルで決定する必要性があるため、大量実験区の解析が困難である(表5.1)。また、突然変異は発生に偶然性も関与する場合もあること、培養中は複数世代の細胞分裂があり、突然変異の生じた世代が分裂世代を1つでも早かった場合、大きな変異頻度の差が生じることから、同一の遺伝子型を有する菌株ですらも、各実験区で測定された変異頻度にある程度の差が生じる。これらの事情を考慮し、rpsL前進突然変異検出系では、各変異株で数倍程度の変異頻度の差に有意差を見いだすことはできない。したがって、表2.1に示した結果は、プラスミドrpsL系、染色体rpsL系ともに、野生株とミスマッチ修復欠損株では、大きな差は見いだされないと考えられる。ミスマッチ修復機構は野生型DNAポリメラーゼが引き起こす複製エラーをプラスミド上、染色体上ともに同程度の効率で抑制していることが示唆された。

表2.1. 染色体上とプラスミド上のrpsL標的遺伝子における

前進突然変異頻度の比較

		変異頻度 ×10 ⁻⁶				
菌株	MK811	MK1381				
	野生株	mutS変異株				
	0.42 (1)	32 (76)	-			

A. 染色体rpsL系でのrpsL⁻前進突然変異頻度

B. プラスミドrpsL系でのrpsL⁻前進突然変異頻度

		変異頻度 ×10 ⁻⁶				
菌株	MK426/pMOL21	MK511/pMOL21				
	野生株	mutS変異株				
	1.5 (1)	37 (25)				

A. 染色体上に配置した*rpsL*標的遺伝子における前進突然変異頻度(当研究)。 野生株(MK811)、および*mutS*変異株(MK1381)については独立した5実験 区を用いて、その平均を示した。より詳細なデータに関しては、付録表Xを参照 のこと。括弧の中の数値は野生株(MK811)の変異頻度を1とした時の相対値 である。

B. プラスミドpMOL21上に配置した*rpsL*標的遺伝子における前進突然変異頻度 (Fujii *et al.*, 1999、上向, 1999および真木, 未発表データより抜粋)。pMOL21 は複製フォークに*rpsL*標的遺伝子が順向きに配置されているプラスミドであ る。各菌株ともに独立した6実験区を用い、その平均を示した。括弧の中の数値 は野生株(MK426/pMOL21)の変異頻度を1とした時の相対値である。

2、染色体rpsL前進突然変異検出系における自然突然変異と複製エラーの特異性

大腸菌染色体上に配置したrpsL標的遺伝子上で生じている自然突然変異、および複製 エラーの特異性を明らかにする目的で塩基配列レベルでの前進突然変異の詳細な解析を 行った。解析には自然突然変異の特異性を明らかにする目的で野生株を、複製エラーの特 異性を明らかにする目的でミスマッチ修復機構が欠損しているmutS変異株を用いた。 rpsL前進突然変異の測定には野生株において、独立した5実験区、mutS変異株には独立 した9実験区を用い、Sm耐性株の中から、野生株においては各実験区240検体、mutS変 異株においては各実験区96検体ずつ任意に選出した細胞からDNAを抽出し、PCR法に よってrpsL標的遺伝子を増幅し、塩基配列を決定した。表2.2Aに示したように、rpsL前 進突然変異頻度は野生株において、0.42×10⁻⁶、mut変異株においては32×10⁻⁶であり、 野生株比べて、約76倍の上昇示された。この結果から、大腸菌染色体上においてもミス マッチ修復機構が複製エラーを極めて高い効率で修復しており、およそ1/100までに減少 させていることが示唆された。以下に大腸菌染色体上における塩基配列レベルで決定した 自然突然変異、および複製エラーの特異性を述べる。

2.1 染色体rpsL系を用いた野生株における前進突然変異の特異性

a)塩基置換

塩基置換はトランジション型(transision)塩基置換とトランスバージョン型 (transversion)塩基置換に分けられる。トランジション型塩基置換は、プリミジンが別の ピリミジンに、あるいはプリンが別のプリンに置換されたものである。つまり、ATペア がGCペアに置換され、またその逆も起こりえる。トランスバージョン型塩基置換はプリ ンがピリミジンに、ピリミジンがプリンに置換される塩基置換である。つまり、ATペア がTAペアまたはCGペアに、GCペアがTAペアまたはCGペアに置換される。点突然変異 である塩基置換は、Pol IIIによる複製エラーをサブユニットのひとつである ε サブユニッ トが担う校正機能によって修復され、校正機能によって修復されなかった塩基置換はミス マッチ修復機構によってさらに修復される。

野生株における組換え型以外の変異で、最も発生頻度が高かった変異が、塩基置換で あった。染色体*rpsL*系の野生株において塩基置換の発生頻度は0.21×10⁻⁶であり、*rpsL*前 進突然変異頻度の50%を占めていた(表2.2A)。染色体*rpsL*系で見いだされる塩基置換 のうち開始コドンから82番目のCがAに置換される変異と開始コドンから245番目のTが A、もしくはGに置換される変異が塩基置換変異の発生頻度の約52%を占めており、高頻 度に検出された。これらの塩基置換変異を本研究では塩基置換のhotspot部位とした

(82C→A部位、245T→A部位、245T→G部位)(表2.2AB、図2.3B)。82C→A部位の 発生頻度は0.17×10⁻⁶、245T→A部位の発生頻度は0.077×10⁻⁶、245T→G部位の発生頻 度は0.013×10⁻⁶であり245T→A部位の発生頻度が最も高かった。hotspot部位の発生頻 度の合計は0.11×10⁻⁶であった。hotspot部位以外の塩基置換において、トランジション 型塩基置換の発生頻度が0.064×10⁻⁶、トランスバージョン型塩基置換の発生頻度は0.039 ×10⁻⁶であり、発生頻度に大きな違いはみられなかった(表2.2C)。

野生株における変異の特異性は自然突然変異の特異性を表していると考えられる。完全 はDNA修復系を有する野生株において、幾重にも張り巡らされたDNA修復によって修復 されなかった突然変異が自然突然変異として、染色体上に固定されるからである。野生株 の変異スペクトラム解析から、大腸菌染色体上で見いだされる自然突然変異は塩基置換が 最も多く、その多くがホットスポット部位に集中していることが見いだされた。この結果 から、塩基置換のホットスポット部位は、複製エラーや酸化損傷などを部位特異的に高頻 度に発生させる部位であるか、もしくは修復系タンパクが結合しにくく、DNA修復が完 全に機能しない部位である可能性が考えられる。

b)1塩基フレームシフト

染色体rpsL前進突然変異検出系野生株において、1塩基フレームシフトも見いだされ た。1塩基フレームシフトは、1塩基の挿入、欠失が生じてrpsL標的遺伝子の機能が欠 損する変異である。1塩基フレームシフトの発生頻度は0.030×10⁶であり、野生株の前進 突然変異頻度の7.1%を占めており、塩基置換、組換え型変異、欠失についで4番目に高い 発生頻度であった(表2.2A)。1塩基の挿入は0.0055×10⁶の発生頻度で検出され、1塩 基の欠失は0.025×10⁶で検出された。1塩基フレームシフトの発生頻度で検出され、1塩 基の欠失が4.5倍高く、野生株の1塩基フレームシフトは1塩基の挿入よりも欠失の方 が高頻度で発生していることが示されれた(表2.2B)。rpsL標的遺伝子上で検出された1塩 基フレームシフトはrun(同じ塩基が2つ以上並んだ部位)とrun以外(同じ塩基が2つ以 上並んでいない部位)に分け、部位特異的発生頻度を解析した。その結果、1塩基の挿入 において、runでの発生頻度は0.0049×10⁶、run以外での発生頻度は0.00059×10⁶あ り、run上での発生頻度が89%を占めていた。また、1塩基の欠失において、runでの発生頻度が 72%を占めていた。1塩基の挿入と欠失とも、run上の検出が大部分であったが、野生株 においてrun以外での部位で1塩基フレームシフトがある程度の頻度で検出されることが 示された。

run配列とnon-run配列上での1塩基フレームシフトの発生頻度は、run配列の方が non-run配列に比べて、挿入、欠失ともに発生頻度が高い。しかし、発生部位の比較を 行うと、1塩基の挿入は、開始コドンから127番目のAが6つ並んだ部位に集中して見い だされたのに対し、1塩基の欠失は、non-run配列上にランダムな発生が見いだされて いる(図2.3A)。run配列上で発生する1塩基フレームシフトは、複製エラーとして生じ た1塩基フレームシフトが校正機能によって除去され、新生鎖が鋳型鎖に再度結合する 際、誤った結合をして、1塩基フレームシフトが生じるmelting modelが提唱されている (Brenwitz et al., 1991)。melting modelは再結合するときに新生鎖末端の塩基が、塩基

対合規則によって結合する塩基でなければならないため、同一の塩基が並ぶrun配列上で 1塩基フレームシフトが生じやすいことを示唆している。しかし、本研究で見いだされた non-run配列上で見いだされた1塩基の欠失は、melting modelでは説明できない。この 結果から、複数部位で見いだされた野性株におけるnon-run配列上での1塩基の欠失 は、複製エラー以外の発生要因、たとえば酸化損傷などの自然DNA損傷が関与している ことが考えられる。

c) 組換え型変異(アリル間組換え)

本研究で用いた染色体rpsL系においては、遺伝的組換えの結果生じる組換え型変異が 検出される(図2.2)。本研究で用いている大腸菌株は染色体上にrpsL遺伝子が2つ配置さ れたrpsL部分2倍体株を解析に用いている。rpsL127(変異型rpsL遺伝子、Sm⁵)と rpsL+(野生型rpsL遺伝子(標的遺伝子)、Sm⁵)の間では2塩基の違いが存在するので、2 つのrpsL遺伝子間で、図2.2のように遺伝的組換えが生じるとrpsL標的遺伝子上で、1塩 基(開始コドンから128番目のAがCに置換する)、もしくは2塩基(開始コドンから-22番 目の塩基がGがAに128番目のAがCに置換する)の塩基置換が検出される(128番目のAが Cに置換することによってrpsL標的遺伝子の機能欠損を生じる)。1塩基の組換えと2塩基 の組換えは、組換え反応の際の鎖交換反応の長さによって生じる差異であると考えられ る。本研究では、この2種類の塩基置換は、表のように大腸菌において組換えにおける鎖 交換反応を担うrecA遺伝子の変異を導入すると検出されなくなる。開始コドンから128番 目のAがCに置換する1塩基の変異を1点型組換え型変異、始コドンから-22番目の塩基がG がAに128番目のAがCに置換する2塩基の変異を2点型組換え型変異と定義した。これら の変異が大腸菌染色体上に配置された2つのrpsL遺伝子間で遺伝的組換えの結果生じる塩 基置換変異であることを明らかにするため、大腸菌において組換え反応における鎖交換反 応を担う*recA*遺伝子を欠損させた変異株による解析を行った。その結果、野生株では 0.092×10⁻⁶の発生頻度で見いだされた組換え型変異が、*recA*変異株では見いだされな かったため、組換え型変異が*recA*遺伝子による遺伝的組換えに生じることが示された。

野生株において、組換え型変異は0.092×10⁻⁶と塩基置換の発生頻度についで2番目に高 く、*rpsL*前進突然変異頻度の22%を占めていた。この結果から野生株において、複製 フォークの停止を引き起こすと考えられる障害がDNA鎖上に高頻度で生じることが示唆 された。複製フォークの停止を引き起こす自然DNA損傷は、前進突然変異と同様に高頻 度でDNA鎖上に生じることが示唆された。 表2.1. 染色体上とプラスミド上のrpsL標的遺伝子における

前進突然変異頻度の比較

		変異頻度 ×10 ⁻⁶				
菌株	MK811	MK1381				
	野生株	mutS変異株				
	0.42 (1)	32 (76)	-			

A. 染色体rpsL系でのrpsL⁻前進突然変異頻度

B. プラスミドrpsL系でのrpsL⁻前進突然変異頻度

		変異頻度 ×10 ⁻⁶				
菌株	MK426/pMOL21	MK511/pMOL21				
	野生株	mutS変異株				
	1.5 (1)	37 (25)				

A. 染色体上に配置した*rpsL*標的遺伝子における前進突然変異頻度(当研究)。 野生株(MK811)、および*mutS*変異株(MK1381)については独立した5実験 区を用いて、その平均を示した。より詳細なデータに関しては、付録表1付録表 2を参照のこと。括弧の中の数値は野生株(MK811)の変異頻度を1とした時の 相対値である。

B. プラスミドpMOL21上に配置した*rpsL*標的遺伝子における前進突然変異頻度 (Fujii *et al.*, 1999、上向, 1999および真木, 未発表データより抜粋)。pMOL21 は複製フォークに*rpsL*標的遺伝子が順向きに配置されているプラスミドであ る。各菌株ともに独立した6実験区を用い、その平均を示した。括弧の中の数値 は野生株(MK426/pMOL21)の変異頻度を1とした時の相対値である。

A. 変異の種類別変異頻度

実験区	#1	#2	#3	#4	#5	ave ± SD			
組換え型 ¹⁾	0.127	0.062	0.093	0.080	0.099	0.092 ± 0.024			
塩基置換									
ホットスポット1(82C→A) ²⁾	0.017	0.013	0.020	0.025	0.0083	0.017 ± 0.0064			
ホットスポット2(245T→A) ²	0.13	0.084	0.057	0.054	0.058	0.077 ± 0.033			
ホットスポット3(245T→G) ²	0.0058	0.040	0.0015	0.011	0.0055	0.013 ± 0.015			
上記以外	0.26	0.054	0.031	0.10	0.072	0.10 ± 0.092			
1塩基フレームシフト	0.029	0.060	0.010	0.028	0.023	0.030 ± 0.018			
2塩基フレームシフト	ND	ND	ND	ND	ND	ND < 0.00070			
配列置換	ND	ND	ND	ND	ND	ND < 0.00070			
欠失	0.101	0.005	0.019	0.019	0.022	0.033 ± 0.0384			
重複	0.0029	0.0048	0.0044	0.0000	0.0110	0.0046 ± 0.0040			
IS	0.0144	0.0586	0.0802	0.0540	0.0234	0.046 ± 0.027			
その他	ND	ND	ND	ND	ND	ND < 0.00070			
変異なし	ND	ND	0.034	ND	0.0083	0.0084 ± 0.015			
Total	0.69	0.38	0.35	0.37	0.33	0.42 ± 0.15			

B.1塩基フレームシフトの種類別変異頻度

Section No.	#1	#2	#3	#4	#5	ave ± SD			
Addition									
at run ³⁾	0.0086	ND	0.0029	0.0062	0.0069	0.0049 ± 0.0034			
at non-run ³⁾	ND	0.0016	ND	ND	0.0014	$\textbf{0.00059} \pm 0.00081$			
total	0.0086	0.0016	0.0029	0.0062	0.0083	0.0055 ± 0.0032			
Deletion									
at run ³⁾	0.0058	0.051	0.0058	0.015	0.011	0.018 ± 0.019			
at non-run ³⁾	0.014	0.0079	0.0015	0.0062	0.0041	0.0068 ± 0.0049			
total	0.020	0.059	0.0073	0.022	0.015	0.025 ± 0.020			
Total	0.029	0.060	0.010	0.028	0.023	0.030 ± 0.018			

独立した5実験区由来の合計1200クローンのrpsL標的遺伝子の塩基配列を決定 し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算出し た。表中には、各実験区ごとの変異頻度(#1から#5まで)および、それらの平均 値(Ave.)を記載した。検出されなかった変異に関しては、実験区ごとの変異頻度 ではND(Not detected)と表記しているが、平均値を算出する際には、その実験 区の変異頻度を0として計算した。より詳細なデータについては、付録表1を参照の こと。

C. 塩基置換の種類別変異頻度

	変異頻度 ×10 ⁻⁶								
Section No.	#1	#2	#3	#4	#5	ave ± SD			
Transition									
A:T→G:C	ND	0.0048	ND	0.028	0.0028	0.0071 ± 0.012			
G:C→A:T	0.22	0.019	0.010	0.034	0.0069	0.057 ± 0.089			
total	0.22	0.024	0.010	0.062	0.0096	0.064 ± 0.087			
Transversion									
G:C→T:A	0.037	0.0048	0.0015	0.0093	0.018	0.014 ± 0.014			
G:C→C:G	ND	ND	0.0058	0.0031	0.029	0.0076 ± 0.012			
T:A→A:T	0.0029	0.0016	0.0044	0.020	0.012	0.0083 ± 0.0078			
A:T→C:G	0.0058	0.024	0.0088	0.0062	0.0028	0.0094 ± 0.0083			
total	0.046	0.030	0.020	0.039	0.062	0.039 ± 0.016			
Hot spot									
82C→A ²⁾	0.017	0.013	0.020	0.025	0.0083	0.017 ± 0.0064			
245 T→A ²⁾	0.13	0.084	0.057	0.054	0.058	0.077 ± 0.033			
245 T→G ²⁾	0.0058	0.040	0.0015	0.011	0.0055	0.013 ± 0.015			
total	0.16	0.14	0.079	0.089	0.072	0.11 ± 0.037			
Total	0.42	0.19	0.11	0.19	0.14	0.21 ± 0.12			

1)本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→G 及び128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL遺伝 子との組換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩基置 換を持つ遺伝子を産出する。このうち、当研究では、後者のみの変異、あるいは 両方の変異を持つものが検出された。これらは塩基置換変異の結果である可能性 は極めて低く、当研究では組換え型として別記した。

2) 染色体*rpsL*系では、*rpsL*標的遺伝子の開始コドンから82番目に位置するCがA に置換する塩基置換と、245番目のTがAもしくはGに置換する塩基置換が高頻度 で観察され、塩基置換のホットスポットであると考えられた。他の塩基置換の割 合を明確にするために、このホットスポット上で起こった塩基置換と他の塩基置 換を分けて記載した。

3) 同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異 頻度に関しては、runとrun以外とに分けて表示した。

図2.3AB 野生株 (MKoTT) におりる7/32(標的遺伝子上で生した「塩基フレームシフト (A) および 塩基置換(B) の分布を示した。配列の右に記した数字は開始コドンを1とした時の塩基の番号を表 す。配列中の下線はプロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始コドンを 示す。図中のvは1塩基の挿入を意味し、⊽は 1塩基の欠失を示す。塩基置換の場合は、元の塩基の 上に置換した塩基を記した。これらの変異した塩基の後ろの数字は同じ実験区で同様の部位で見出 された検出数を示す。各実験区は以下の色で識別した。実験区1、実験区2、実験区3、実験区4、実 験区5。

図2.3C 野生株(MK811)におけるrpsL標的遺伝子上で生じた重複および欠失の分布

図2.3C 野生株(MK811)における*rpsL*標的遺伝子上で生じた重複および欠失の分布を示した。 配列の右に記した数字は開始コドンを1とした時の塩基の番号を表す。配列中の下線はプロモー ター領域(-35配列、-10配列)、SD配列、開始コドン、終始コドンを示す。図中のvは重複を、Δ は欠失を表し、それらの範囲は矢印で示した。重複あるいは欠失の両端に相同領域がある場合は、 その領域を同じ模様のボックスで記した。同じ実験区で同じ部位で同じ重複あるいは欠失が見つ かった場合は、その検出数をvあるいはΔの後に示した。各実験区は以下の色で識別した。実験区 1、実験区2、実験区3、実験区4、実験区5。

図2.2 染色体rpsL系で検出される組換え型変異

染色体*rpsL*系では、遺伝的組換えの結果生じると思われる変異が検出され る。図中にある*rpsL*⁺、および*rpsL127*では2塩基の違い(開始コドンから-22 番目の塩基が、*rpsL*⁺でG、*rpsL127*でA、開始コドンから128番目の塩基が、 *rpsL*⁺でA、*rpsL127*でC;128番目の変異がミスセンス変異となる)が存在する。 図中のような、遺伝的組換えの結果、*rpsL*標的遺伝子上において、開始コド ンから128番目の1塩基の違い、もしくは開始コドンが-22番目と128番目の2 塩基の違いが生じた塩基置換変異に関しては組換え型変異と定義した。

d)その他の変異

野生株において、塩基置換、1塩基フレームシフト、組換え型変異以外に見いだされた 変異は2塩基以上の欠失、重複、IS(insertion sequence:挿入配列)であった。2塩基以上 の欠失は、0.032の発生頻度であり*rpsL*前進突然変異頻度の7.6%を占めていた。重複は 0.0046×10⁻⁶の発生頻度であり*rpsL*前進突然変異頻度の1.1%を占めていた。また突然変 異ではないが、挿入配列として見いだされるISは0.045×10⁻⁶の発生頻度であった。

2.2 染色体rpsL系を用いたmutS変異株における前進突然変異の特異性

a)塩基置換

*mutS*変異株における塩基置換の発生頻度は20××10⁻⁶あり、*rpsL*前進突然変異頻度の 63%を占め、最も高い発生頻度であった。検出された塩基置換は、トランジション型塩基 置換が20×10⁻⁶の発生頻度であり、トランスバージョン型塩基置換で0.52×10⁻⁶の発生頻 度であった。また、hotspot型塩基置換(82C→A、245T→A、245T→G)において、 82C→A、245T→Gのhotspot型塩基置換は見いだされず、見いだされた塩基置換は245T →Aのみであり0.51×10⁻⁶の発生頻度であった(表2.4AC)。

野生株とmutS変異株の塩基置換の発生頻度を比較すると、mutS変異株における塩基 置換の発生頻度は野生株の塩基置換の発生頻度に比べて34倍上昇することが示された (表2.5A)。この結果からミスマッチ修復機構は塩基置換を大幅に抑制していることが 示された。これは誤対合によって生じた1~4塩基のループ構造を認識するMutSタンパ クが、ミスマッチの認識を担っているため、ミスマッチ修復機構は点突然変異を主に修復 する結果と一致する。また、塩基置換の種類別発生頻度では、mutS変異株は野生株に比 べて、トランジション型塩基置換の発生頻度が310倍、トランスバージョン型塩基置換の 発生頻度が13倍上昇していることが示された(表2.5C)。トランジション型塩基置換の 発生頻度が大幅に上昇していることから、ミスマッチ修復機構は塩基置換のうちトランジ ション型塩基置換を修復していることが示された。また、野生株とmutS変異株におい て、塩基置換の発生部位に大きな差異が見いだされた。野生株では、rpsL標的遺伝子の 開始コドンから62番目のTがAになる塩基置換と、83番目のCがAにかわる塩基置換が五 実験区中、3実験区から見いだされている(図2.3B)。しかし、62T→A、および83C→A の塩基置換はmutS変異株では検出されなかった(図2.4B)。この結果から62T→A、および 83C→Aの部位はミスマッチ修復機構では直されない塩基置換である可能性が示唆され た。また、mutS変異株では、開始コドンから-100番目のAがGに、-99番目のCがAに、-6番目のTがCに、23番目のTがCに、83番目のCがTに、157番目のGがAに、226番目の AがGに310番目のTがCにかわる塩基置換が高頻度に検出された(図2.4B)。これら*mutS*変 異株での塩基置換のhotspotは野生株では検出されておらず、野生株とmutS変異株では 塩基置換の高頻度発生部位が大きくことなることが示された。

野生株と複製エラーを修復するミスマッチ修復機構が欠損した*mutS*変異株で、塩基置換における変異スペクトラムが異なることから、複製エラーとして生じた塩基置換は、ミ

スマッチ修復機構によって非常に高い精度をもって修復されていることが示唆された。ま た、野生株において、mutS変異株と異なる塩基置換の発生部位が見いだされたことか ら、自然突然変異は複製エラーに起因しない別の原因によって生じている可能性が示唆さ れた。特に野生株で見いだされた開始コドンから82番目のCがAに置換する部位と、245 番目のTがAに置換する部位は、野生株で発生していた塩基置換の大部分を占めている。 野生株で見いだされた塩基置換の発生部位は自然突然変異の発生部位であると考えられ る。mutS変異株で開始コドンから82番目のCがAに置換する部位と、245番目のTがAに 置換する部位の発生頻度が野生株比べて上昇していなかったことから、少なくともrpsL 標的遺伝子上で発生する自然突然変異のホットスポット部位の発生に複製エラーが関与し ていないことが強く示唆された。この結果から、自然突然変異のうち塩基置換に関して は、複製エラーではなく、自然DNA損傷や酸化損傷などの自然DNA損傷や、損傷乗り越 えDNA合成などの複製型DNAポリメラーゼ以外のDNAポリメラーゼにより複製エラーが 自然突然変異の発生に関与している可能性が考えられる。

b)1塩基フレームシフト

mutS変異株における1塩基フレームシフトの発生頻度は7.7×10⁶であり、rpsL前進突 然変異頻度の24%を占め、2番目に高い発生頻度であった。壱塩基フレームシフトにおい て、1塩基の挿入の発生頻度が6.0×10⁶、1塩基の欠失の発生頻度が1.6×10⁶であり、1塩 基の挿入が1塩基フレームシフトの発生頻度の78%を占めていた。1塩基の挿入は、同様 の塩基が連続する部位であるrunでの発生頻度が5.9×10⁶、run以外での発生頻度は0.14 ×10⁶であり、1塩基の挿入の発生頻度のうち98%がrun配列上で検出された。また、1塩 基の欠失は、run上での発生頻度が1.6×10⁶、run以外での発生頻度が0.041×10⁶であ り、1塩基の欠失のうち99%がrun配列上で検出された。野生株と比べmutS変異株は1塩 基フレームシフトの発生頻度は260倍上昇し、1塩基の挿入が1100倍、1塩基の欠失が64 倍上昇していた(表2.5B)。mutS変異株における1塩基フレームシフトはrun配列上に集 申していることから、複製エラーとしての1塩基フレームシフトは同じ塩基が並んだ部位 で生じる複製型DNAポリメラーゼによるスリッページエラーが原因として発生している と考えられる。また、スリッページエラーを引き起こした際、校正機能によって一度めく られた新生鎖の3'末端が鋳型と再結合する際にずれてしまうことによって生じることも考 えられる。

mutS変異株で、1塩基フレームシフトの発生部位は開始コドンから86番目のAが5つ並んだrun配列と127番のAが6つ並んだrun配列に集中している。野生株においても、この

2つのhotspot部位は見いだされるが、*mutS*変異株と異なり、run以外の部位における1 塩基の欠失が多く見いだされている(図2.3A、図2.4A)。野生株では開始コドンから39 番目のT、69番目のG、93番目のT、122番目のC、230番目のA、257番目のG、294番目 のA、313番目のTが欠失する1塩基フレームシフトが見いだされており、この部位に関し て、*mutS*変異株では見いだされていない。

これらの結果から、ミスマッチ修復機構はrun上で高頻度に発生する複製エラーとして の1塩基フレームシフトを高頻度で修復しているが、自然突然変異として検出される1塩 基の欠失は、複製エラーに起因しない別の原因によって生じる可能性が示唆された。自然 突然変異のうち1塩基フレームシフトに関しても、複製エラーではなく、自然DNA損傷 や酸化損傷などの自然DNA損傷や、損傷乗り越えDNA合成などの複製型DNAポリメラー ゼ以外のDNAポリメラーゼにより複製エラーが自然突然変異の発生に関与している可能 性が考えられる。

c)組換え型変異(アリル間組換え)

遺伝的組換えの結果生じる組換え型変異の発生頻度は3.1×10⁻⁶であり、*rpsL*前進突然 変異頻度の9.7%を占め、3番目に高い発生頻度であった(表2.4A)。1点型(開始コドン から128番目のAがCに置換する)組換え型変異の発生頻度は1.0×10⁻⁶であり、2点型(開 始コドンから-22番目の塩基がGがAに128番目のAがCに置換する)組換え型変異の発生頻 度は2.1×10⁻⁶であった。

野生株に比べmutS変異株は、組換え型変異の発生頻度が34倍上昇していた(表 2.5A)。この結果からミスマッチ修復機構が遺伝的組換えを抑制していることが示され た。近年、酵母における研究からミスマッチ修復タンパクが遺伝的組換えの制御に関わっ ていることが示されている。酵母におけるmutSホモログであるMSH2は組換え中に生じ るホリデイジャンクション(組換え中間体)に強く結合し(Kolodner et al., 1997)、相 同性の低い(1%以上相同性が異なる)DNA鎖間で組換えが起こりそうな場合はホリデイ ジャンクションを解消させることで擬似相同組換えを抑制していることが示されている (Kolodner et al., 1994)。本研究の結果から、MutSタンパクがホリデイジャンクション に結合し、大腸菌染色体上においても、遺伝的組換えを抑制していることが強く示唆され た。

d)その他の変異

*mutS*変異株で見いだされた塩基置換、1塩基フレームシフト、組換え型変異以外の前 進突然変異はISのみであった。ミスマッチ修復機構は1~4塩基のDNAのループを認識し て修復するため、重複、欠失などの大きな配列による変異の修復には関与していないこと が考えられる。*mutS*変異株では、前述したように塩基置換と1塩基フレームシフトが多 く検出されたため、発生頻度が野生株と変わらないと推測される重複や欠失は検出できな かったものと考えられる。また、ISの発生頻度は0.075×10⁻⁶であり、野生株における発 生頻度の1.6倍であった。野生株と発生頻度が大きく異ならなかった理由は、ISは挿入配 列であるため複製エラーの修復を行うミスマッチ修復機構が何ら関与しないためであると 考えられる。

A. 変異の種類別変異頻度

					変異頻度	₹ ×10 ⁻⁶				
実験区	#1	#2	#3	#4	#5	#6	#7	#8	#9	ave ± SD
組換え型 ¹⁾	3.3	1.6	2.6	4.0	3.2	1.8	3.3	4.3	3.6	3.1 ± 0.92074
塩基置換										
ホットスポット1(82C→A) ²⁾	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 0.074
ホットスポット2(245T→A) ²⁾	ND	ND	0.24	1.5	0.35	0.91	0.60	ND	0.91	0.51 ± 0.53
ホットスポット3(245T→G) ²⁾	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 0.074
上記以外	22	22	15	18	18	18	16	19	34	20 ± 5.7
1塩基フレームシフト	10	8.8	5.0	6.2	5.0	8.2	8.8	12	5.0	7.7 ± 2.5
2塩基フレームシフト	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 0.074
配列置換	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 0.074
欠失	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 0.074
重複	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 0.074
IS	ND	ND	ND	0.31	ND	ND	0.30	ND	0.45	0.12 ± 0.18
その他	ND	ND	0.24	ND	7.8	ND	ND	ND	ND	0.89 ± 2.6
変異なし	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 0.074
Total	35	32	23	30	34	29	29	35	44	32 ± 5.8

B.1塩基フレームシフトの種類別変異頻度

		変異頻度 ×10 ⁻⁶								
Section No.	#1	#2	#3	#4	#5	#6	#7	#8	#9	ave ± SD
Addition										
at run ³⁾	9.1	5.6	4.0	3.4	4.6	5.7	6.0	10	4.5	5.9 ± 2.3
at non-run ³⁾	ND	0.65	ND	0.31	ND	ND	0.30	ND	ND	0.14 ± 0.23
total	9.1	6.2	4.0	3.7	4.6	5.7	6.3	10	4.5	6.0 ± 2.2
Deletion										
at run ³⁾	0.73	2.6	0.95	2.5	0.35	2.4	2.4	1.8	0.45	1.6 ± 0.95
at non-run ³⁾	0.36	ND	ND	ND	ND	ND	ND	ND	ND	0.041 ± 0.12
total	1.1	2.61	0.95	2.5	0.35	2.4	2.4	1.8	0.45	1.6 ± 0.92
Total	10	8.8	5.0	6.2	5.0	8.2	8.8	12	5.0	7.7 ± 2.5

独立した9実験区由来の合計864クローンのrpsL標的遺伝子の塩基配列を決定 し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算 出した。表中には、各実験区ごとの変異頻度(#1から#9まで)および、それら の平均値(Ave.)を記載した。検出されなかった変異に関しては、実験区ごと の変異頻度ではND(Not detected)と表記しているが、平均値を算出する際に は、その実験区の変異頻度を0として計算した。より詳細なデータについては、 付録表2を参照のこと。 表2.4-続き. mutS変異株における前進突然変異の特異性

C. 塩基置換の種類別変異頻度

Section No.	#1	#2	#3	#4	#5	#6	#7	#8	#9	ave ± SD
Transition										
A:T→G:C	16	11	9.0	11	11	12	11	13	22	13 ± 4.0
G:C→A:T	4.7	9.8	5.5	6.5	6.0	5.1	4.8	4.7	11	6.5 ± 2.3
total	21	21	14	18	17	18	15	18	33	20 ± 5.6
Transversion										
G:C→T:A	ND	ND	ND	ND	ND	ND	0.30	ND	ND	0.034 ± 0.10
G:C→C:G	0.36	ND	ND	ND	ND	ND	ND	ND	ND	0.041 ± 0.12
T:A→A:T	ND	0.33	0.47	ND	0.35	0.30	0.30	0.72	0.91	0.38 ± 0.30
A:T→C:G	ND	ND	ND	ND	ND	0.30	ND	0.36	ND	0.074 ± 0.15
total	0.36	0.33	0.47	ND	0.35	0.60	0.60	1.1	0.91	0.52 ± 0.32
Hot spot										
82C→A ²⁾	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 0.074
245 T→A ²⁾	ND	ND	0.24	1.5	0.35	0.91	0.60	ND	0.91	0.51 ± 0.53
245 T→G ²⁾	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 0.074
total	ND	ND	0.24	1.5	0.35	0.91	0.60	ND	0.91	0.51 ± 0.53
Total	22	22	15	19	18	19	17	19	35	21 ± 5.8

 本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→ G及び128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL 遺伝子との組換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩 基置換を持つ遺伝子を産出する。このうち、当研究では、後者のみの変異、ある いは両方の変異を持つものが検出された。これらは塩基置換変異の結果である可 能性は極めて低く、当研究では組換え型として別記した。

2) 染色体*rpsL*系では、*rpsL*標的遺伝子の開始コドンから82番目に位置するCがA に置換する塩基置換と、245番目のTがAもしくはGに置換する塩基置換が高頻度 で観察され、塩基置換のホットスポットであると考えられた。他の塩基置換の割 合を明確にするために、このホットスポット上で起こった塩基置換と他の塩基置 換を分けて記載した。

3) 同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異 頻度に関しては、runとrun以外とに分けて表示した。

図2.4AB mutS変異株(MK1381)におけるrpsL標的遺伝子上で生じた1塩基フレームシフト(A) および塩基置換(B)の分布を示した。配列の右に記した数字は開始コドンを1とした時の塩基の番 号を表す。配列中の下線はプロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始コ ドンを示す。図中のvは1塩基の挿入を意味し、⊽は 1塩基の欠失を示す。塩基置換の場合は、元の 塩基の上に置換した塩基を記した。これらの変異した塩基の後ろの数字は同じ実験区で同様の部位で 見出された検出数を示す。各実験区は以下の色で識別した。実験区1、実験区2、実験区3、実験区 4、実験区5、実験区6、実験区7、実験区8、実験区9。

A.	変異の	揰類別	変異頻	度の	比較
----	-----	-----	-----	----	----

		変異頻度	×10 ⁻⁶	
	野生株(MK811)		mutS変	異株(MK1381)
	0.092	(1)	3.1	(34)
塩基置換				
ホットスポット1²(82C→A)	0.017	(1)	ND<	0.074
ホットスポット2 [∞] (245T→A)	0.077	(1)	0.38	(4.9)
ホットスポット3 [∞] (245T→G)	0.013		ND<	0.074
上記以外	0.10	(1)	20	(200)
1塩基フレームシフト	0.030	(1)	7.7	(260)
2塩基フレームシフト	ND<0.00070		ND<	0.074
配列置換	ND<0.00070		ND<	0.074
欠失	0.032	(1)	ND<	0.074
重複	0.0043		ND<	0.074
IS	0.045	(1)	0.075	5 (1.6)
その他	ND>0.00070		0.89	
変異なし	0.0084	(1)	ND<	0.074
Total	0.42	(1)	32	(76)

B.1塩基フレームシフトの種類別変異頻度の比較

		変異頻度	×10 ⁻⁶	
	野生株(MK811)		mutS変異株(MK1381)	
挿入				
at run ³⁾	0.0049	(1)	5.9	(1200)
at non-run ³⁾	0.00059	(1)	0.14	(1700)
Total	0.0055	(1)	6.0	(1100)
欠失				
at run ³⁾	0.018	(1)	1.6	(88)
at non-run ³⁾	0.0068	(1)	0.041	(6.0)
Total	0.025	(1)	1.6	(64)
Total	0.030	(1)	7.7	(260)

ミスマッチ修復の特異性を明らかにするために、*mutS*変異株(MK1381)を用いて、独立 した9実験区由来の合計864クローンの*rpsL*標的遺伝子の塩基配列を決定し、全体の変異頻 度と個々の変異の割合をもとに各変異の種類別変異頻度を算出した。比較のために、野生 株(MK811)での結果もあわせて記載した。*mutS*変異株および野生株のより詳細なデータ に関しては、それぞれ付録表1および付録表2を参照のこと。表中には平均値、及び、括弧 内に野生株の変異頻度を1としたときの相対値を示す。検出されなかった変異に関しては、 ND(Not detected)と表記し、さらにその右隣に当研究から推定された変異頻度の最大値 を記した。 表2.5-続き.野生株とmutS変異株の前進突然変異特異性の比較

		変異頻度	×10 ⁻⁶		
種類		野生株(MK811)		mutS変異株(MK381)	
Transition					
A:T→G:C	0.0071	(1)	13	(1800)	
G:C→A:T	0.057	(1)	6.5	(110)	
Total	0.064	(1)	20	(310)	
Transversion					
G:C→T:A	0.014	(1)	0.034	(2.4)	
G:C→C:G	0.0076	(1)	0.041	(5.4)	
T:A→A:T	0.0083	(1)	0.38	(36)	
A:T→C:G	0.0094	(1)	0.074	(7.9)	
Total	0.039	(1)	0.52	(13)	
Hot spot					
82C→A ²⁾	0.017		ND<0.074		
245T→A ²⁾	0.077	(1)	0.51	(6.6)	
245T→G ²⁾	0.013		ND<0.074		
Total	0.11	(1)	0.51	(4.6)	
Total	0.21	(1)	21	(100)	

C. 塩基置換の種類別変異頻度の比較

 本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→G及び 128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL遺伝子との組 換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩基置換を持つ遺伝子 を産出する。このうち、当研究では、後者のみの変異、あるいは両方の変異を持つもの が検出された。これらは塩基置換変異の結果である可能性は極めて低く、当研究では組 換え型として別記した。

2) 染色体*rpsL*系では、*rpsL*標的遺伝子の開始コドンから82番目に位置するCがAに置換 する塩基置換と、245番目のTがAもしくはGに置換する塩基置換が高頻度で観察され、 塩基置換のホットスポットであると考えられた。他の塩基置換の割合を明確にするため に、このホットスポット上で起こった塩基置換と他の塩基置換を分けて記載した。

3)同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異頻度に 関しては、runとrun以外とに分けて表示した。
第三部 自然突然変異の発生における損傷乗り越えDNA合成の役割

第一章 序論

太陽光中の紫外線や環境中の化学物質などの外因性の要因、呼吸によって生じる活性酸 素などの内因性の要因によってたえずDNAは損傷を受けている。前変異損傷の要因とな りうる自然DNA損傷は、DNA複製時の障害となる前に、ヌクレオチド除去修復(NER)の Genome global repair(GGR)などの修復機構によって高い効率で除去される。転写時にお いて、NERはRNAポリメラーゼの障害となるような転写鋳型鎖上のDNA損傷を優先的に 除去することが知られており転写と共役した修復(Transcription coupled repair;TCR)と 呼ばれている。このように転写時に優先的にDNA損傷を除去する修復機構は知られてい るが、DNA複製においては、TCRのような複製と共役したDNA損傷除去機構は見出され ていない。

しかし、近年、複製フォーク停止を解消する機構が見出された。通常のDNA複製を行 う複製型DNAポリメラーゼよりもはるかに高効率にDNA損傷を乗り越える「損傷乗り越 え型DNAポリメラーゼ」が細菌からヒトまで広く見つかっている(Nelson et al., 1996ab; Reuven et al., 1999; Tang et al., 1999; Wagner et al., 1999; Jonson et al., 1999ab; Masutani et al., 1999)。これらの多くは3'→5'エキソヌクレアーゼによる校正機 能を持たないY-family ポリメラーゼに分類されるDNAポリメラーゼであり(Ohmori., 2001)、複製型DNAポリメラーゼに比べ、はるかにfidelityが低い。その反面、鋳型DNA 鎖上の損傷に複製フォークがぶつかった場合、複製型DNAポリメラーゼは、損傷で合成 を停止するが、損傷乗り越え型DNAポリメラーゼは損傷乗り越え合成(Translesion DNA synthesis;TLS)を行う。また、一つの生物種において、複数のTLS型DNAポリメラーゼ が見出されており、In vitro、In vivoの両方の解析から、DNA損傷のタイプによって、異 なるTLS活性、および伸長活性が存在することが示されている(Tang.,2000; Ohashi., 2000; Guo., 2004)。

色素沈着、高頻度発癌などを特徴とする、ヒトの色素性乾皮症(xeroderma pigmentosum;XP)の8つの遺伝的相補性群、XP-A~G、およびXP-Vのうち、XP-V は、TLS型ポリメラーゼであるDNA pol η の遺伝的欠損であることが示されている (Masutani et al., 1999)。XP-Vは紫外線(UV)照射後のDNA複製において、進行阻害 が顕著にみられる。このように、通常の生育環境下においても、TLSはゲノム安定性に大 きく貢献する重要な機構であることが示されている。

本研究で用いている大腸菌細胞においても3つのTLS型ポリメラーゼが見出されてい る。polBにコードされるPol II、dinBにコードされるPol IV、およびumuDCにコードさ れるPol Vであり、Pol IIはfidelityが高く校正機能を持つB-familyのDNAポリメラーゼに 分類され、Pol IVおよびPol VはY-familyに属する(Ohamori., 2001)。大腸菌には、紫外 線などによって鋳型DNA鎖上に損傷が生じると少なくとも43以上のDNA修復関連タンパ ク質を発現誘導する細胞応答機構が存在しており、SOS応答と呼ばれる(Radman., 1975; Witkin., 1985; Walker., 1985)。

SOS応答は1)複製フォークの停止などによるssDNAの認識、2)RecAの活性化、3)活性型 RecA(RecA*)による、SOS遺伝子上のプロモーター領域に結合しているLexAタンパクの 自己分解の促進、4)SOS遺伝子の強発現、のステップで進行する(図3.1)。

TLSポリメラーゼをコードする遺伝子(polB、dinB、umuDC)もSOS応答により強発現 するSOS遺伝子であり、polB、dinBはSOS応答が誘導されると、直ちに強発現される(1 分以内) (Bonner et al., 1988; Reuven et al., 1999; Tang et al., 1999; Wangner et al., 1999)。しかし、umuDCは発現後、RecA*によってUmuDの自己分解が促進され、自己 分解産物UmuD'が2分子、UmuCが1分子のUmuD'。C複合体となってTLS活性を持つこと が示されており、細胞内ではUmuD'_C複合体ができるまでSOS応答が誘導されてから約 40分の時間を有すると考えられている(図3.1、Woodgate., 1989; Bruck., 1996)。大腸菌 細胞における3つのTLS型ポリメラーゼは複製型DNAポリメラーゼであるPol IIIに比べ fidelityが低いことが示されている。その反面、DNA損傷で停止することなく乗り越える ことが示されているが、TLSを行う際、鋳型DNAに対し相補的でない間違った塩基を挿 入する「誤りがち合成;Error-prone DNA synthesis」を行うことが示されている。人為 的に鋳型DNA鎖上に損傷塩基を配置したIn vitro、およびIn vivoの実験から、Pol IIは発 ガン性物質であるアセチルアミノフルオレン(AAF)を付加したGを乗り越える際、2塩基 の欠失を生じることが示されている(Napolitano., 2000)。Pol IVは発ガン性物質であるべ ンゾピレン(BaP)を付加したGを乗り越える際に1塩基の欠失を生じることが示されて いる(Napolitano., 2000)。また、Pol IVは細胞内で過剰発現することにより損傷塩基で はない鋳型DNA鎖上の同一の塩基が並んだrun配列上において1塩基の欠失を生じること が示されている(Wagber., 2000a)。同様にPol Vに関しても、紫外線照射時に生じる6-4光産物(6-4PP)を乗り越える際に、鋳型DNA鎖上のTに対してGを挿入すること、および 脱塩期部位(AP site)に対してAを挿入して乗り越えることが示されている(LeClerc., 1991; Smith., 1996)。このように、異なったタイプの損傷塩基に対し、異なったTLS型 ポリメラーゼがTLS活性を持つことから、細胞内で生じる様々なDNA損傷に対し、異

なったTLS型ポリメラーゼを用いて、損傷塩基の乗り越えを行い、DNA複製を継続、完 了させていると考えられている。

第二部で示したように野生株、およびmutS変異株の解析から、複製エラーの自然突変 異の発生への関与は大きくないことが示された。この結果から、複製エラー以外の自然突 然変異の発生への関与を考察するに至った。第二部で示したように、プラスミドrpsL系 と異なり染色体rpsL系では遺伝的組換えの結果生じる組換え型変異が検出される。組換 え型変異は、TLSと同様に複製フォーク停止を回避する組換え修復の結果生じていると考 えられ、野生株でrpsL標的遺伝子上で検出されるrpsL前進突然変異のうち約1/3を占め ている(表2.2)。この結果から、組換え修復で修復されるような複製フォークの停止など のイベントが通常生育下で高頻度に生じている可能性が考えられる。複製フォークの停止 が引き起こされた場合、複製型DNAポリメラーゼであるPol IIIからTLS型ポリメラーゼに スイッチングが生じている可能性が疑われる。TLS型ポリメラーゼによる損傷乗り越え DNA合成は、前述したように、自然DNA損傷を乗り越える時に高頻度にエラーを生じる ことが示されている。そこで、野生株のrpsL前進突然変異のうち2/3にあたる自然突然 変異の発生において、TLSのうち「誤りがち合成」が関与している可能性を検討するた め、大腸菌において見出されている3つのTLS型ポリメラーゼを欠損させた変異株を作製 し、rpsL標的遺伝子上で生じる突然変異において、塩基配列レベルの詳細、かつ、大量 検体数を用いた大規模解析を行った。

図3.1 大腸菌におけるSOS応答

DNA損傷によって、SOS遺伝子が強発現される細胞応答機構 であるSOS応答の概要を示した。大腸菌染色体上には少なくと も43以上のSOS遺伝子が見出されており、TLSポリメラーゼ をコードする遺伝子もSOS遺伝子である。図中のRecA*は活性 型RecAを、UmuD'はUmuDの自己分解産物を示している。

第二章 結果と考察

大腸菌において、DNAポリメラーゼは5つ見出されており、発見の順番によってPol I~ Pol Vまで命名されている。5つのDNAポリメラーゼのうちPol Iは3'→5' エキソヌクレ アーゼ活性と5'→3'エキソヌクレアーゼ活性の両方を持ち、ニックトランスレーションを 行うことが示されている。Pol IIIは通常のDNA複製を担う複製型DNAポリメラーゼであ り、5つのDNAポリメラーゼの中で最もfidelityが高い。残る3つのDNAポリメラーゼ、 Pol II、Pol IV、Pol Vは損傷乗り越え合成(Translesion DNA synthesis;TLS)を行うこ とが知られている。PolIIは校正機能を有するが、Pol IVとPol Vは校正機能を有しない(Tang., 2000; Goodman., 2002)。前述したように3つのTLS型ポリメラーゼは鋳型DNA に対し、相補的でない塩基を挿入する誤りがち合成を行うことが知られているため、自然 突然変異におけるTLSの関与を明らかにするためにPol IIをコードするpolB、Pol IVを コードするdinB、Pol VをコードするumuDCを欠損させた変異株を作製した。polB、 dinB、umuDCをそれぞれ1つずつ欠損させたsingle mutant(polB変異株、dinB変異株、 *umuDC*変異株)、2つずつ欠損させたdouble mutant(*dinB polB*二重変異株、*dinB* umuDC二重変異株、polB umuDC二重変異株)、および3つ全てを欠損させたTLS完全欠 損株(dinB polB umuDC三重欠損株)の合計7つの変異株を作製してrpsL標的遺伝子上に 生じた突然変異の発生頻度、発生パターンを明らかにすることを試みた。

3.1 紫外線(UV)の強照射における突然変異誘発の確認

紫外線(UV)は、強照射によってDNA鎖上にピリミジン二量体(シクロブタン型ピリミジ ンダイマー;CPD、および6-4光産物;6-4PP)を生じることが示されている。CPD、および 6-4PPが鋳型DNA鎖上に生じると複製フォークの停止が生じ、大腸菌の細胞応答機構で あるSOS応答が生じる(図3.1)。SOS応答が誘導されると、突然変異頻度が上昇すること が示されており、これは誤りがち合成を行うTLS型ポリメラーゼであるPol V(*umuDC*)が 関与していることが示されている(Tang., 2000)。また、UVの強照射後、複製フォークの 停止を解消するためにPol IIおよびPol IVが重要な関与をしていることが示されている (Rangarajan., 1999; Rangarajan., 2002)。そこで本研究で用いた*rpsL*部分二倍体株にお いて、誤りがち合成による突然変異の誘発の確認を行う目的で、UVによる変異誘発の確 認を行った。*rpsL*標的遺伝子を用いた場合、染色体*rpsL*系では、組換え修復の結果に生 じる組換え型変異が増加するため(データは示さない)、抗生物質であるリファンピシリン耐性を指標に選択が可能な*rpoB*標的遺伝子を用い変異頻度の測定を行った。その結果、野生株であるMK811において、300 J/m²のUVを強照射した場合、UV非照射時に比べ約130倍の変異頻度の上昇が確認された。しかし、*umuDC*を欠損させたMK1301に同じ強度のUVを照射した結果、わずか6.5倍の上昇が見られたのみであった。また、TLS完全欠損株と考えられる*dinB polB umuDC*三重変異株であるMK1371に200 J/m²のUVを強照射した場合も同様に4.5倍の上昇にとどまった(図3.2)。

図3.2 紫外線(UV)照射時における突然変異誘発の確認 UVの強照射時における、*rpoB*標的遺伝子を用いた突然変異頻度を測定し た。図中のUV-は非照射時、UV+はMK811、およびMK1301で300 J/m²、MK1371で200 J/m²の照射量のUVを照射したときの突然変異頻 度を表す。括弧の数値は各菌株のUV-を1としたときの相対値を表す。 この結果から、本研究で用いた染色体rpsL部分二倍体株において、UVを強照射すると突 然変異頻度が上昇することが示された。また、突然変異誘発の大部分にumuDCがコード するPol Vが関与していることが示された。したがって、染色体rpsL部分二倍体株におい てもPol Vが少なくともDNA損傷を人為的に誘発した状態ならば、誤りがち合成を行うこ とが強く示された。

TLS完全欠損株であるMK1371においても、若干であるが突然変異頻度の上昇が見られた。UV損傷を除去する経路のうち、ヌクレオチド除去修復は、修復合成を複製型DNAポリメラーゼであるPol IIIではなく、Pol Iが担うことが知られている。この結果から、ヌクレオチド除去修復の際、修復合成を行うPol Iが突然変異を引き起こしている可能性が考えられる。また、Pol II、Pol IV、Pol V以外にピリミジンダイマーを乗り越える際に誤りがち合成を行う未知の第4のTLS型ポリメラーゼの存在の可能性も考えられる。

3.2 dinB変異株、polB変異株、umuDC変異株における変異スペクトラム解析

自然突然変異の発生におけるTLSの役割を明らかにする目的で、TLS型ポリメラーゼで あるPol II(*polB*)、Pol IV(*dinB*)、Pol V(*umuDC*)をそれぞれ欠損させた*dinB*変異株 (MK1201)、*polB*変異株(MK1311)、*umuDC*変異株(MK1301)を作製した(表)。作製し た菌株を用いて、*rpsL*前進突然変異頻度を測定し、PCRを用いて*rpsL*標的遺伝子を増 幅、塩基配列を決定して詳細な変異スペクトラム解析を行った。

a)rpsL前進突然変異頻度

染色体*rpsL*系を用いてSm抵抗性を指標に*rpsL*前進突然変異頻度を測定した結果、 *dinB*変異株で0.53×10⁻⁶、*polB*変異株で0.55×10⁻⁶、*umuDC*変異株で0.84×10⁻⁶であっ た(表3.1、表3.2、表3.3)。野生株における*rpsL*前進突然変異頻度は0.42×10⁻⁶であるた め、各TLS型ポリメラーゼ欠損株における*rpsL*前進突然変異頻度を野生株と比較した相 対値は、*dinB*変異株で1.3倍、*polB*変異株で1.3倍、*umuDC*変異株で2.0倍であった(表 3.4)。TLS型ポリメラーゼをひとつずつ欠損させた変異株は、野生株に比べ、*rpsL*前進 突然変異頻度の顕著な上昇は見られないことが示された。

誤りがち損傷乗り越えDNA合成が、自然突然変異に大きく関与している場合、各TLS ポリメラーゼを欠損させれば*rpsL*前進突然変異頻度の低下がみられるはずである。しか し、表3.4に示した通り、野生株に比べ、dinB変異株、umuDC変異株、polB変異株にお いて*rpsL*前進突然変異頻度の低下はみられなかった。この結果から、損傷乗り越えDNA 合成は自然突然変異の発生に大きく関与していない可能性が考えられる。しかし、TLS型 ポリメラーゼがある変異の発生に関与し、また、ある変異の抑制に関与している可能性も 考えられる。また、自然突然変異の発生に部位特異的にTLS型ポリメラーゼが関与してい る可能性も考えられる。そこで、以下、変異の種類ごとの詳細な発生頻度と発生部位の比 較を行った結果を示す。

b)組換え型変異

組換え型には前述したように、遺伝的組換えが生じる範囲によって、1点型と2点型に 分けられている。1点型と2点型の発生頻度の合計は、*dinB*変異株で0.22×10⁻⁶であり、 *polB*変異株で0.16×10⁻⁶、*umuDC*変異株で0.24×10⁻⁶であった(表3.1、表3.2、表 3.3)。野生株における組換え型における1点型、2点型の発生頻度の合計は0.092×10⁻⁶で あるため、各TLS型ポリメラーゼ欠損株における組換え型変異の発生頻度を野生株と比較 した相対値は、*dinB*変異株で2.4倍、*polB*変異株で1.8倍、*umuDC*変異株で2.6倍であっ た(表3.4)。TLS型ポリメラーゼをひとつずつ欠損させた変異株における組換え型変異の発 生頻度は野生株に比べ、若干の上昇が見られた。この結果から、大腸菌細胞の通常生育下 においても自然DNA損傷などの要因によって、複製フォークの停止が引き起こされ、そ の解消のためにTLSが若干、関与している可能性が考えられる。しかし、各TLS欠損株で の組換え型変異の頻度上昇は2倍程度にとどまっているため、大きな影響はないと考えら れる。

組換え型変異を、1点型、2点型と分けて考えてみると、1点型の発生頻度は、野生株に おいて0.026×10⁻⁶、*dinB*変異株で0.11×10⁻⁶であり、*polB*変異株で0.086×10⁻⁶、 *umuDC*変異株で0.089×10⁻⁶であった(付属表3、付属表4、付属表5)。各TLS型ポリメ ラーゼ欠損株における1点型組換え型変異の発生頻度を野生株と比較した相対値は、 *dinB*変異株で4.2倍、*polB*変異株で3.3倍、*umuDC*変異株で3.4倍であった。同様に2点 型の発生頻度に関しては、野生株において0.066×10⁻⁶、*dinB*変異株で0.10×10⁻⁶であ り、*polB*変異株で0.076×10⁻⁶、*umuDC*変異株で0.15×10⁻⁶であり、野生株との相対値は *dinB*変異株で1.5倍、*polB*変異株で1.2倍、*umuDC*変異株で2.3倍であった。(付属表3、 付属表4、付属表5)。TLS型ポリメラーゼ欠損株において、2点型よりも1点型の方が、大 きな発生頻度の上昇が示された。

c)塩基置換

塩基置換の発生頻度はdinB変異株で0.20×10⁻⁶であり、polB変異株で0.29×10⁻⁶、 umuDC変異株で0.43×10⁻⁶であった。rpsL⁻前進突然変異頻度がdinB変異株で0.53×10⁻⁶ であり、polB変異株で0.55×10⁻⁶、umuDC変異株で0.84×10⁻⁶であるため、rpsL⁻前進突 然変異頻度に対する塩基置換の発生頻度の割合は、dinB変異株で37%、polB変異株で 53%、umuDC変異株で51%であり、塩基置換変異の発生頻度はdinB変異株、polB変異 株、およびumuDC変異株においては最も発生頻度の高い変異であった(表3.1A、表 3.2A、表3.3A)。同様に、野生株でもrpsL⁻前進突然変異頻度が0.42×10⁻⁶であり、その 50%にあたる0.21×10⁻⁶の発生頻度で塩基置換が見出されており、最も発生頻度が高かっ た(表2.2A)。塩基置換の発生頻度は野生株に比べ、dinB変異株は0.95倍、polB変異株は 1.4倍、umuDC変異株は2.0倍であり、野生株と同程度の発生頻度であった(表3.4A)。こ の結果から、野生株と同様に各TLS欠損株でも発生頻度は同程度であり、最も発生頻度が 高かった変異も塩基置換であることが示された。

塩基置換変異において、各TLS欠損株で245T→Aのホットスポット型塩基置換が最も発 生頻度が高く、*dinB*変異株で0.099×10⁻⁶、*polB*変異株で0.13×10⁻⁶、*umuDC*変異株で 0.20×10⁻⁶であった(表3.1C、表3.2C、表3.3C、図3.3B、図3.4B、図3.5B)。野生株の 245T→Aの発生頻度0.077×10⁻⁶に比べ、*dinB*変異株で1.3倍、*polB*変異株で1.8倍、 umuDC変異株で2.6倍であった(表3.4C)。polB変異株やumuDC変異株において、野 生株よりも若干の上昇が見られる可能性が考えられるが、大きな関与は考えられない程度 であった。また、82C→A部位における発生頻度の比較を行うと、野生株の245T→Aの発 生頻度0.017×10⁻⁶に比べ、*dinB*変異株で0.0084×10⁻⁶、*polB*変異株で0.027×10⁻⁶、 *umuDC*変異株で0.022×10⁻⁶であった(表3.1C、表3.2C、表3.3C、図3.3B、図3.4B、図 3.5B)。野生株の82C→Aの発生頻度0.017×10⁻⁶に比べ、*dinB*変異株で0.50倍、*polB*変異 株で1.6倍、umuDC変異株で1.3倍であった(表3.4C)。82C→A部位においても、各 TLS欠損株の発生頻度は野生株と同様であると考えられる。染色体rpsL系における245T →Aのホットスポット部位は、野生株でも最も発生頻度が高く、rpsL標的遺伝子上で生じ る自然突然変異の大部分を占めている。また、次いで発生頻度の高い82C→Aのホットス ポット部位も同様に自然突然変異の発生に大きく関与していると考えられる。そのため、 245T→A、および82C→Aの発生メカニズムを明らかにすることは、自然突然変異の発生 機構を明らかにする上で重要な問題になってくると考えられるが、この各TLS欠損株の結 果から、245T→Aのホットスポット部位において、自然DNA損傷などが鋳型DNA鎖上に 生じやすく、複製フォークが停止し、それを解消する場合にTLS型ポリメラーゼが誤りが ち合成を行って塩基置換を生じている可能性は否定的となった。245T→A部位と82C→A

部位は複製エラーが関与しないことがすでに示されているため(本稿第二部参照)、複製 エラーでもなく、TLSでもなく別の要因によって、発生していることが示された。これら の結果から、酸化損傷のような複製フォークの停止を引き起こさないタイプの自然DNA 損傷が245T→A部位、および82C→A部位の発生に関与していることが考えられる。

また、非ホットスポット部位における塩基置換の種類別の変異頻度を比較すると、トラ ンジション型塩基置換の発生頻度は、*dinB*変異株で0.050×10⁻⁶、*polB*変異株で0.059× 10⁻⁶、*umuDC*変異株で0.12×10⁻⁶であり、野生株との相対値は、*dinB*変異株で0.78倍、 *polB*変異株で0.92倍、*umuDC*変異株で1.9倍であった(表3.1C、表3.2C、表3.3C、表 3.4C)。また、トランスバージョン型塩基置置換の発生頻度は、*dinB*変異株で0.034×10⁻⁶、*polB*変異株で0.063×10⁻⁶、*umuDC*変異株で0.053×10⁻⁶であり、野生株との相対値 は、*dinB*変異株で0.87倍、*umuDC*変異株で1.6倍、*umuDC*変異株で1.3倍であった(表 3.1C、表3.2C、表3.3C、表3.4C)。この結果から、トランジション型塩基置換、トラン スバージョン型塩基置換ともに野生株と各TLS欠損株で大きな違いは見出されなかった。 また、発生部位における大きな違いも見出されなかった(図2.3B、図3.3B、図3.4B、図 3.5B)。

以上の結果から、自然突然変異におけるホットスポット部位、および非ホットスポット 部位の塩基置換変異において、大腸菌で見出されているTLS型ポリメラーゼ、Pol II、Pol IV,およびPol Vが大きく関与している可能性は低いことが示唆された。

d)1塩基フレームシフト

1塩基フレームシフトの発生頻度は野生株で0.030×10⁻⁶、*dinB*変異株で0.023×10⁻⁶、 *polB*変異株で0.026×10⁻⁶、*umuDC*変異株で0.075×10⁻⁶であり、野生株との相対値は、 *dinB*変異株で0.77倍、*polB*変異株で0.86倍、*umuDC*変異株で2.5倍であった(表3.1B、 表3.2B、表3.3B、表3.4B)。1塩基フレームシフトの種類別変異頻度は、1塩基の挿入にお いて、野生株で0.0055×10⁻⁶、*dinB*変異株で0.0051×10⁻⁶、*polB*変異株で0.0068×10⁻⁶、 *umuDC*変異株で0.048×10⁻⁶であり、野生株との相対値*dinB*変異株で0.92倍、*polB*変異 株で1.2倍、*umuDC*変異株で8.6倍であった。また、1塩基の欠失において、0.025×× 10⁻⁶、*dinB*変異株で0.018×10⁻⁶、*polB*変異株で0.019×10⁻⁶、*umuDC*変異株で0.027× 10⁻⁶であり、野生株との相対値は*dinB*変異株で0.77倍、*polB*変異株で0.86倍、*umuDC*変 異株で2.5倍であった(表3.1B、表3.2B、表3.3B、表3.4B)。以上の結果から、*dinB*変異 株、*polB*変異株に関しては1塩基の挿入、欠失ともに、野生株と同程度の発生頻度であっ た。しかし、*umuDC*変異株において、1 塩基の挿入の発生頻度は野生株に比べて8.6倍 と大幅に上昇している。この結果から、大腸菌細胞内で*umuDC*にコードされるPol Vが 通常生育下で発生する1塩基の挿入を抑制している可能性が考えられる。しかし、 *umuDC*変異株の解析において、実験区#5から、同一の部位から、38検体のGの挿入が見 出されており、残りの4実験区の1塩基の挿入の発生検体数から比較すると姉妹細胞由来 の変異である可能性が高い(図3.5A)。よって、*umuDC*変異株における実験区#5を除 外して、1塩基の挿入の発生頻度を計算し直すと、0.014×10⁶となり、野生株の発生頻度 に比べて、2.5倍程度の上昇となる。この結果から、*umuDC*変異株においても1塩基の挿 入において野生株と同程度の発生頻度となることが示された。発生部位においても、1塩 基の挿入、欠失ともに、野生株、および各TLS欠損株において、大きな違いは見出されな かった(図2.3A、図3.3A、図3.4A、図3.5A)。野生株では、ミスマッチ修復欠損株と違 い、1塩基の欠失がnon-run配列でランダムに見いだされている(図2.3A)。各TLS欠 損株においても、野生株とどうようにランダムに見いだされていた(図3.3A、図3.4A、 図3.5A)。

以上の結果から、各TLS型ポリメラーゼは自然突然変異における1塩基フレームシフト の発生頻度に関して大きく関与していない可能性が示唆された。塩基置換と同様に1塩基 フレームシフトにおいても、損傷乗り越えDNA合成の関与が否定的となった。自然突然 変異として生じる1塩基フレームシフトは、標的遺伝子中にランダムに生じている。部位 特異的ではなく、広範囲に生じる自然DNA損傷などにより、1塩基フレームシフトが発 生している可能性が考えられる。

e)その他の変異

e-1)欠失

2塩基以上の欠失の発生頻度は野生株で0.033×10⁻⁶、*dinB*変異株で0.025×10⁻⁶、*polB* 変異株で0.020×10⁻⁶、*umuDC*変異株で0.029×10⁻⁶であり、野生株との相対値は、*dinB* 変異株で0.75倍、*polB*変異株で0.62倍、*umuDC*変異株で0.88倍であった(表3.1A、表 3.2A、表3.3A、表3.4A)。欠失は開始点と終結点に存在するリピート配列の種類によって タイプ1~タイプ3まで分類されているが、野生株と同様に各TLS欠損株でも開始点と終結 点にダイレクトリピートが存在するタイプ1が欠失変異の90%以上を占めていた。 e-2)重複

重複の発生頻度は野生株で0.0046×10⁻⁶、*dinB*変異株で0.0033×10⁻⁶、*polB*変異株で 0.0071×10⁻⁶、*umuDC*変異株で0.0035×10⁻⁶であり、野生株との相対値は、*dinB*変異株 で0.71倍、*polB*変異株で0.62倍、*umuDC*変異株で0.88倍であった。 重複は3つのクラ スに分類されている(表3.1A、表3.2A、表3.3A、表3.4A)。クラスIは直列反復配列を伴 う単純な重複であり、クラスIIは逆位と直列反復配列を伴う複雑なもので短いインバー ティドリピートを含んでいる。クラスIIIは一見するとクラスIのような単純な重複のよう に見えるが、構造的に見るとクラスIIと似ているものである。また、クラスII、IIの重複 については、新たにパリンドローム配列が複数見られるのも特徴である。重複変異におい ても、野生株と各TLS欠損株において大きな違いは見いだされなかった。

A. 変異の種類別変異頻度

	変異頻度 ×10 ⁻⁶						
実験区	#1	#2	#3	#4	#5	ave ± SD	
組換え型 ¹⁾	0.28	0.18	0.14	0.16	0.32	0.22 ± 0.078	
塩基置換							
ホットスポット1(82C→A) ²⁾	0.0065	0.0021	0.021	0.0020	0.010	0.0084 ± 0.0079	
ホットスポット2(245T→A) ²⁾	0.026	0.14	0.050	0.046	0.23	0.099 ± 0.087	
ホットスポット3(245T→G) ²⁾	0.0022	0.013	0.0071	0.010	0.0067	0.0077 ± 0.0040	
上記以外	0.074	0.10	0.017	0.12	0.11	0.085 ± 0.042	
1塩基フレームシフト	0.017	0.030	0.040	0.016	0.013	0.023 ± 0.011	
2塩基フレームシフト	ND	ND	ND	0.0040	ND	0.00080 ± 0.0018	
配列置换	ND	ND	ND	ND	ND	ND <0.00070	
欠失	0.054	0.013	0.026	0.0080	0.023	0.025 ± 0.018	
重複	ND	0.0064	ND	ND	0.010	0.0033 ± 0.0047	
IS	0.061	0.026	0.034	0.10	0.067	0.058 ± 0.031	
その他	ND	ND	ND	0.0020	ND	$\textbf{0.00040} \pm 0.00089$	
変異なし	0.0043	0.0043	0.0014	0.0020	0.0033	0.0031 ± 0.0013	
Total	0.52	0.51	0.34	0.48	0.80	0.53 ± 0.17	

B.1塩基フレームシフトの種類別変異頻度

	変異頻度 ×10 ⁻⁶						
実験区	#1	#2	#3	#4	#5	ave ± SD	
Addition							
at run ³⁾	0.0043	ND	ND	0.0040	0.0033	0.0023 ± 0.0022	
at non-run ³⁾	0.0022	0.0021	0.0028	ND	0.0067	0.0028 ± 0.0024	
total	0.0065	0.0021	0.0028	0.0040	0.010	0.0051 ± 0.0032	
Deletion							
at run ³⁾	0.011	0.021	0.037	0.0080	0.0033	0.016 ± 0.013	
at non-run ³⁾	ND	0.0064	ND	0.0040	ND	0.0021 ± 0.0030	
total	0.011	0.028	0.037	0.012	0.0033	0.018 ± 0.014	
Total	0.017	0.030	0.040	0.016	0.013	0.023 ± 0.011	

独立した5実験区由来の合計1200クローンのrpsL標的遺伝子の塩基配列を決 定し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を 算出した。表中には、各実験区ごとの変異頻度(#1から#5まで)および、それ らの平均値(Ave.)を記載した。検出されなかった変異に関しては、実験区ご との変異頻度ではND(Not detected)と表記しているが、平均値を算出する際 には、その実験区の変異頻度を0として計算した。より詳細なデータについて は、付録表3を参照のこと。

С.:	塩基置	【換の】	重類別	変異歩	頁度
-----	-----	------	-----	-----	----

		変異頻度 ×10 ⁻⁶						
実験区	#1	#2	#3	#4	#5	ave ± SD		
Transition								
A:T→G:C	0.024	0.0043	ND	0.010	0.033	0.014 ± 0.014		
G:C→A:T	0.020	0.083	0.0014	0.036	0.040	0.036 ± 0.030		
total	0.043	0.087	0.0014	0.046	0.073	0.050 ± 0.033		
Transversion								
G:C→T:A	ND	0.0021	0.0028	0.010	0.0033	0.0037 ± 0.0038		
G:C→C:G	0.015	0.0021	0.0043	0.0040	0.0067	0.0064 ± 0.0051		
T:A→A:T	0.0087	0.0085	0.0057	0.044	0.013	0.016 ± 0.016		
A:T→C:G	0.0065	ND	0.0028	0.018	0.013	0.0081 ± 0.0074		
total	0.030	0.013	0.016	0.076	0.037	0.034 ± 0.025		
Hot spot								
82C→A ²⁾	0.0065	0.0021	0.021	0.0020	0.010	0.0084 ± 0.0079		
245 T→A ²⁾	0.026	0.14	0.050	0.046	0.23	0.099 ± 0.087		
245 T→G ²⁾	0.0022	0.0128	0.0071	0.0100	0.0067	0.0077 ± 0.0040		
total	0.035	0.15	0.078	0.058	0.25	0.11 ± 0.088		
Total	0.11	0.25	0.095	0.18	0.36	0.20 ± 0.11		

1)本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→G及び128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL遺伝子との組換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩基置換を持つ遺伝子を産出する。このうち、当研究では、後者のみの変異、あるいは両方の変異を持つものが検出された。これらは塩基置換変異の結果である可能性は極めて低く、当研究では組換え型として別記した。

2) 染色体*rpsL*系では、*rpsL*標的遺伝子の開始コドンから82番目に位置する CがAに置換する塩基置換と、245番目のTがAもしくはGに置換する塩基置 換が高頻度で観察され、塩基置換のホットスポットであると考えられた。他 の塩基置換の割合を明確にするために、このホットスポット上で起こった塩 基置換と他の塩基置換を分けて記載した。

3)同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異頻度に関しては、runとrun以外とに分けて表示した。

GCTCCGGCGT TAAAGACCGT AAGCAGGCTC GTTCCAAGTA TGGCGTGAAG CGTCCTAAGG CTTAA -TGGTTCTCCGTTAAGTAAGGCC -3' 397

図3.3B dinB変異株(MK1201)におけるrpsL標的遺伝子上で生じた塩基置換の分布

図3.3AB dinB変異株(MK1201)におけるrpsL標的遺伝子上で生じた1塩基フレームシフト(A)およ び塩基置換(B)の分布を示した。配列の右に記した数字は開始コドンを1とした時の塩基の番号を表 す。配列中の下線はプロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始コドンを示 す。図中の∨は1塩基の挿入を意味し、⊽は 1塩基の欠失を示す。塩基置換の場合は、元の塩基の上に 置換した塩基を記した。これらの変異した塩基の後ろの数字は同じ実験区で同様の部位で見出された検 出数を示す。各実験区は以下の色で識別した。実験区1、実験区2、実験区3、実験区4、実験区5。

図3.3C dinB変異株(MK1201)におけるrpsL標的遺伝子上で生じた重複および欠失の分布

図3.3C dinB変異株(MK1201)におけるrpsL標的遺伝子上で生じた重複および欠失の分布を示した。配列の右に記した数字は開始コドンを1とした時の塩基の番号を表す。配列中の下線はプロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始コドンを示す。図中のvは重複を、Δ は欠失を表し、それらの範囲は矢印で示した。重複あるいは欠失の両端に相同領域がある場合は、そ の領域を同じ模様のボックスで記した。同じ実験区で同じ部位で同じ重複あるいは欠失が見つかった 場合は、その検出数をvあるいはΔの後に示した。各実験区は以下の色で識別した。実験区1、実験 区2、実験区3、実験区4、実験区5。 A. 変異の種類別変異頻度

	変異頻度 ×10 ⁻⁶							
実験区	#1	#2	#3	#4	#5	ave ± SD		
組換え型 ¹⁾	0.10	0.22	0.20	0.19	0.097	0.16 ± 0.058		
塩基置換								
ホットスポット1(82C→A) ²⁾	0.042	0.0048	0.0058	0.042	0.014	0.022 ± 0.019		
ホットスポット2(245T→A) ²	0.11	0.12	0.10	0.082	0.27	0.13 ± 0.076		
ホットスポット3(245T→G) ²⁾	0.016	0.017	0.0019	0.016	ND	0.010 ± 0.0084		
上記以外	0.084	0.10	0.084	0.19	0.15	0.12 ± 0.046		
1塩基フレームシフト	0.044	0.019	0.019	0.019	0.028	0.026 ± 0.011		
2塩基フレームシフト	ND	0.0024	ND	ND	ND	0.00048 ± 0.0011		
配列置換	ND	ND	ND	ND	ND	ND <0.00080		
欠失	0.044	0.014	0.017	0.009	0.017	0.020 ± 0.014		
重複	0.020	0.0024	0.0058	0.0047	0.0028	0.0071 ± 0.0073		
IS	0.014	0.064	0.023	0.012	0.086	0.040 ± 0.033		
その他	ND	ND	ND	ND	ND	ND <0.00080		
変異なし	0.0060	ND	0.0038	ND	0.0083	0.0036 ± 0.0037		
Total	0.48	0.57	0.46	0.56	0.67	0.55 ± 0.083		

B.1塩基フレームシフトの種類別変異頻度

e ± SD
9 ± 0.0020
9 ± 0.0044
8 ± 0.0029
7 ± 0.0058
3 ± 0.016
9 ± 0.012
6 ± 0.011

独立した5実験区由来の合計1200クローンのrpsL標的遺伝子の塩基配列を決 定し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を 算出した。表中には、各実験区ごとの変異頻度(#1から#5まで)および、それ らの平均値(Ave.)を記載した。検出されなかった変異に関しては、実験区ご との変異頻度ではND(Not detected)と表記しているが、平均値を算出する際 には、その実験区の変異頻度を0として計算した。より詳細なデータについて は、付録表4を参照のこと。

C. 塩基置換の種類別変異頻度

	変異頻度 ×10 ⁻⁶						
実験区	#1	#2	#3	#4	#5	ave ± SD	
Transition							
A:T→G:C	ND	0.0071	0.0077	0.0093	0.028	0.010 ± 0.010	
G:C→A:T	0.054	0.069	0.061	0.012	0.047	0.049 ± 0.022	
total	0.054	0.076	0.069	0.021	0.075	0.059 ± 0.023	
Transversion							
G:C→T:A	0.0020	ND	ND	0.0047	0.0028	0.0019 ± 0.0020	
G:C→C:G	ND	0.014	0.0038	ND	0.055	0.015 ± 0.023	
T:A→A:T	0.016	0.012	0.0077	0.16	0.014	0.042 ± 0.066	
A:T→C:G	0.012	0.0024	0.0038	0.0047	0.0028	0.0051 ± 0.0039	
total	0.030	0.029	0.015	0.17	0.075	0.063 ± 0.063	
Hot spot							
82C→A ²⁾	0.042	0.0048	0.0058	0.042	0.014	0.022 ± 0.019	
245 T→A ²⁾	0.11	0.12	0.10	0.082	0.27	0.13 ± 0.076	
245 T→G ²⁾	0.016	0.017	0.0019	0.016	ND	0.010 ± 0.0084	
total	0.16	0.14	0.11	0.14	0.28	0.17 ± 0.068	
Total	0.25	0.24	0.19	0.33	0.43	0.29 ± 0.094	

1)本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→G及び128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL遺伝子との組換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩基置換を持つ遺伝子を産出する。このうち、当研究では、後者のみの変異、あるいは両方の変異を持つものが検出された。これらは塩基置換変異の結果である可能性は極めて低く、当研究では組換え型として別記した。

2) 染色体*rpsL*系では、*rpsL*標的遺伝子の開始コドンから82番目に位置する CがAに置換する塩基置換と、245番目のTがAもしくはGに置換する塩基置 換が高頻度で観察され、塩基置換のホットスポットであると考えられた。他 の塩基置換の割合を明確にするために、このホットスポット上で起こった塩 基置換と他の塩基置換を分けて記載した。

3)同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異頻度に関しては、runとrun以外とに分けて表示した。

GCTCCGGCGT TAAAGACCGT AAGCAGGCTC GTTCCAAGTA TGGCGTGAAG CGTCCTAAGG CTTAA -TGGTTCTCCGTTAAGTAAGGCC -3'397 図3.4B *polB*変異株(MK1311)における*rpsL*標的遺伝子上で生じた塩基置換の分布

図3.4AB polB変異株(MK1311)におけるrpsL標的遺伝子上で生じた1塩基フレームシフト(A) および塩基置換(B)の分布を示した。配列の右に記した数字は開始コドンを1とした時の塩基の番 号を表す。配列中の下線はプロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始コ ドンを示す。図中のvは1塩基の挿入を意味し、⊽は 1塩基の欠失を示す。塩基置換の場合は、元の 塩基の上に置換した塩基を記した。これらの変異した塩基の後ろの数字は同じ実験区で同様の部位 で見出された検出数を示す。各実験区は以下の色で識別した。実験区1、実験区2、実験区3、実験 区4、実験区5。

図3.4C polB変異株(MK1311)におけるrpsL標的遺伝子上で生じた重複および欠失の分布

図3.4C polB変異株(MK1311)におけるrpsL標的遺伝子上で生じた重複および欠失の分布を示 した。配列の右に記した数字は開始コドンを1とした時の塩基の番号を表す。配列中の下線はプ ロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始コドンを示す。図中のvは重 複を、Δは欠失を表し、それらの範囲は矢印で示した。重複あるいは欠失の両端に相同領域があ る場合は、その領域を同じ模様のボックスで記した。同じ実験区で同じ部位で同じ重複あるいは 欠失が見つかった場合は、その検出数をvあるいはΔの後に示した。各実験区は以下の色で識別 した。実験区1、実験区2、実験区3、実験区4、実験区5。

A. 変異の種類別変異頻度

			変異頻度	₹ ×10 ⁻⁶		
実験区	#1	#2	#3	#4	#5	ave ± SD
組換え型 ¹⁾	0.26	0.45	0.04	0.24	0.19	0.24 ± 0.15
塩基置換						
ホットスポット1(82C→A) ²⁾	0.065	0.037	0.018	0.0046	0.011	0.027 ± 0.024
ホットスポット2(245T→A) ²	0.20	0.34	0.081	0.14	0.24	0.20 ± 0.099
ホットスポット3(245T→G) ²⁾	0.0030	0.0046	0.011	0.12	ND	0.028 ± 0.053
上記以外	0.11	0.11	0.061	0.48	0.11	0.18 ± 0.17
1塩基フレームシフト	0.015	0.046	0.088	0.037	0.19	0.075 ± 0.069
2塩基フレームシフト	ND	ND	0.0018	ND	ND	$\textbf{0.00035} \pm 0.00078$
配列置換	ND	ND	0.0018	ND	ND	$\textbf{0.00035} \ \pm \ 0.00078$
欠失	0.021	0.023	0.051	0.037	0.015	0.029 ± 0.015
重複	ND	ND	0.0018	ND	ND	$\textbf{0.00035} \ \pm \ 0.00078$
IS	0.024	0.087	0.063	0.046	0.11	0.066 ± 0.033
その他	0.0030	ND	ND	ND	0.0036	0.0013 ± 0.0018
変異なし	0.0030	ND	ND	ND	0.0036	0.0013 ± 0.0018
Total	0.71	1.1	0.42	1.1	0.87	0.84 ± 0.29

B.1塩基フレームシフトの種類別変異頻度

実験区	#1	#2	#3	#4	#5	ave ± SD		
Addition								
at run ³⁾	0.0059	0.0046	0.028	0.0046	0.18	0.045 ± 0.077		
at non-run ³⁾	0.0030	ND	0.011	ND	ND	0.0027 ± 0.0045		
total	0.0089	0.0046	0.039	0.0046	0.18	0.048 ± 0.076		
Deletion								
at run ³⁾	0.0059	0.037	0.0035	0.0091	0.0036	0.012 ± 0.014		
at non-run ³⁾	ND	0.0046	0.046	0.023	0.0036	0.015 ± 0.019		
total	0.0059	0.041	0.049	0.032	0.0073	0.027 ± 0.020		
Total	0.015	0.046	0.088	0.037	0.19	0.075 ± 0.069		
at non-run ²⁷ total Deletion at run ³⁾ at non-run ³⁾ total Total	0.0030 0.0089 0.0059 ND 0.0059 0.015	ND 0.0046 0.037 0.0046 0.041 0.046	0.011 0.039 0.0035 0.046 0.049 0.088	ND 0.0046 0.0091 0.023 0.032 0.037	ND 0.18 0.0036 0.0036 0.0073 0.19	0.0027 ± 0.0048 0.048 ± 0.076 0.012 ± 0.014 0.015 ± 0.019 0.027 ± 0.020 0.075 ± 0.069		

独立した5実験区由来の合計1200クローンのrpsL標的遺伝子の塩基配列を決定 し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算 出した。表中には、各実験区ごとの変異頻度(#1から#5まで)および、それら の平均値(Ave.)を記載した。検出されなかった変異に関しては、実験区ごと の変異頻度ではND(Not detected)と表記しているが、平均値を算出する際に は、その実験区の変異頻度を0として計算した。より詳細なデータについては、 付録表5を参照のこと。 表3.3-続き. umuDC変異株における前進突然変異の特異性

C. 塩基置換の種類別変異頻度

	変異頻度 ×10 ⁻⁶							
実験区	#1	#2	#3	#4	#5	ave ± SD		
Transition								
A:T→G:C	0.012	ND	0.011	0.25	0.0073	0.056 ± 0.11		
G:C→A:T	0.056	0.11	0.033	0.10	0.036	0.066 ± 0.035		
total	0.068	0.11	0.044	0.35	0.044	0.12 ± 0.13		
Transversion								
G:C→T:A	0.0030	ND	ND	0.0091	0.022	0.0068 ± 0.0092		
G:C→C:G	0.015	0.0046	0.014	0.059	ND	0.019 ± 0.024		
T:A→A:T	0.027	ND	0.0035	0.041	0.025	0.019 ± 0.017		
A:T→C:G	ND	ND	ND	0.018	0.022	0.0080 ± 0.011		
total	0.044	0.0046	0.018	0.13	0.069	0.053 ± 0.049		
Hot spot								
82C→A ²⁾	0.065	0.037	0.018	0.0046	0.011	0.027 ± 0.024		
245 T→A ²⁾	0.20	0.34	0.081	0.14	0.24	0.20 ± 0.099		
245 T→G ²⁾	0.0030	0.0046	0.011	0.12	ND	0.028 ± 0.053		
total	0.27	0.38	0.11	0.26	0.25	0.25 ± 0.097		
Total	0.38	0.49	0.17	0.74	0.36	0.43 ± 0.21		

1)本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→G及び128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL遺伝子との組換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩基置換を持つ遺伝子を産出する。このうち、当研究では、後者のみの変異、あるいは両方の変異を持つものが検出された。これらは塩基置換変異の結果である可能性は極めて低く、当研究では組換え型として別記した。

2) 染色体*rpsL*系では、*rpsL*標的遺伝子の開始コドンから82番目に位置する CがAに置換する塩基置換と、245番目のTがAもしくはGに置換する塩基置 換が高頻度で観察され、塩基置換のホットスポットであると考えられた。他 の塩基置換の割合を明確にするために、このホットスポット上で起こった塩 基置換と他の塩基置換を分けて記載した。

3)同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異頻度に関しては、runとrun以外とに分けて表示した。

5 - TEGECCTEGTEATEATEACE EGATCETTET ATATTTCTTE ACACCTTTTC EGCATCECCC TAAAATTCEE CETCCTCATA TTETETEAEG -51 - 5 6 - 18 ACOTITTATI ACOTOTITAC GAAGCAAAGG CTAAAACCAG GAGCTATITA ATGOCAACAG ITAACCAGCI GOTACGCAAĂ CCACOTOCIC 40.... A6 CT1GCARAGTTEC GRARAGCARC STECCTECEC TEGRAGCATE CCCECRARAAZ CETEGECETAT STACTCETET ATATACTACC ACTCCTARAA 130 AÁČCGAACTC CECECTECET AAAGTATECC ETETTCETCT EACTAACEET TTCEAAETEA CTTCCTACAT CEETEGTEAA GEŤĈACAACC 220 A1 A10 A1 TECASEASCA CTCCETEATC CTEATCCETE ECESTCETET TAAAGACCTC CCEESTETTC ETTACCACAC CETACETEET ECECTTEACT 310 GCTCCGGCGT TAAAGACCGT AAGCAGGCTC GTTCCAAGTA TGGCGTGAAG CGTCCTAAGG CTTAA -TGGTTCTCCCGTTAAGTAAGGCCC -3' 397 図3.5A umuDC変異株(MK1301)における rpsL標的遺伝子上で生じた1塩基フレームシフトの分布 C49# 5'-TGGCCTGGTGATGATGGCG GGATCGTTGT ATATTTCTTG ACACCTTTTC GGCATCGCCC TAAAATTCGG CGTCCTCATA TTGTGTGAGG -51 - 5 6 -11 62 Ã2 асеттттатт асететттас славсаласе сталласс<u>аё сле</u>статтта <u>ате</u>ссалсае тталёслёст сетаёслала ссасётестс 40T2** A1 ССАЛАВТТСС СЛАЛАВСАЛС СТЕССС ТЕСЛАВСАТЕ СССССТАЛАЛА СТЕССТАТ СТАСТСТТТ АТАТАСТАСС АСТССТАЛАЛ 130 ŤŽ AACCEAACTC CECECTECET AAAETATÉSE¹ STETTCETCT GACTÁACET TTCEAAÉTEA CTTÉCTACAT CEETEETEAA ESTCACAACC 220 A30 A46 Техаведеса стесствате стеатесете всестенот талаваете ссебеететте втассасае сетасетеет есесттвает з10 Ğ27

GCTCCGGCGT TAAAGACCGT AAGCAGGCTC GTTCCAAGTA TGGCGTGAAG CGTCCTAAGG CTTAA -TGGTTCTCCCGTTAAGTAAGGCCC -3' 397

図3.5B umuDC変異株(MK1301)におけるrpsL標的遺伝子上で生じた塩基置換の分布

図3.5AB umuDC変異株(MK1301)におけるrpsL標的遺伝子上で生じた1塩基フレームシフト (A)および塩基置換(B)の分布を示した。配列の右に記した数字は開始コドンを1とした時の塩 基の番号を表す。配列中の下線はプロモーター領域(-35配列、-10配列)、SD配列、開始コド ン、終始コドンを示す。図中の∨は1塩基の挿入を意味し、⊽は 1塩基の欠失を示す。塩基置換の 場合は、元の塩基の上に置換した塩基を記した。これらの変異した塩基の後ろの数字は同じ実験区 で同様の部位で見出された検出数を示す。各実験区は以下の色で識別した。実験区1、実験区2、 実験区3、実験区4、実験区5。

GCTCCGGCGT TAAAGACCGT AAGCAGGCTC GTTCCAAGTA TGGCGTGAAG CGTCCTAAGG CTTAA -TGGTTCTCCGTTAAGTAAGGCC -3' 397 図3.5D *umuDC*変異株 (MK1301) における*rpsL*標的遺伝子上で生じた配列置換の分布

図3.5CD umuDC変異株 (MK1301) におけるrpsL標的遺伝子上で生じた欠失(C) および配列置換 (D) の分布を示した。配列の右に記した数字は開始コドンを1とした時の塩基の番号を表す。配列中 の下線はプロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始コドンを示す。同じ実 験区で同じ部位で同じ変異が見つかった場合は、その検出数を実験区番号の後に示した。各実験区は以 下の色で識別した。実験区1、実験区2、実験区3、実験区4、実験区5。(C) 図中のvは重複を、Δは 欠失を表し、その範囲は矢印で示した。欠失の両端に相同領域がある場合は、その領域を同じ模様の ボックスで記した。(D) 複数の塩基が全く違う塩基に置き換わることを配列置換と呼ぶ。実験区から 2塩基の挿入が1例見つかった。配列置換の前後には偽逆向き繰り返し配列が存在し、それが配列置換に より完全な逆向き繰り返し配列になる場合が多い。前後の繰り返し配列を矢印で、異なる塩基の部分を ボックスで示す。

前進突然変異の比較

A. 変異の種類別変異頻度の比較

	Mutation frequency($\times 10^{-6}$)							
	MK811		MK1201		MK1311		MK1301	
	野生株		dinB 変異機	ŧ	polB 変異株		umuDC 変異	朱
組換え型い	0.092	(1.0)	0.22	(2.4)	0.16	(1.8)	0.24	(2.6)
塩基置換2	0.21	(1.0)	0.20	(0.95)	0.29	(1.4)	0.43	(2.0)
1塩基フレームシフト3)	0.030	(1.0)	0.023	(0.77)	0.026	(0.86)	0.075	(2.5)
2塩基フレームシフト	ND<0.00070)	0.00080		0.00048		0.00035	
配列置換	ND<0.00070)	ND<0.0007	0	ND<0.00080		0.00035	
欠失	0.033	(1.0)	0.025	(0.75)	0.020	(0.62)	0.029	(0.88)
重複	0.0046	(1.0)	0.0033	(0.71)	0.0071	(1.5)	0.00035	(0.076)
IS	0.046	(1.0)	0.058	(1.3)	0.040	(0.86)	0.065	(1.4)
その他	ND<0.00070)	0.00089		ND<0.00080		0.0018	
変異なし	0.0084	(1.0)	0.0031	(0.37)	0.0036	(0.43)	0.0013	(0.16)
Total	0.42	(1.0)	0.53	(1.3)	0.55	(1.3)	0.84	(2.0)

B.1塩基フレームシフトの種類別変異頻度の比較

		Mutation frequency($\times 10^{-6}$)								
	MK811		MK1201	MK1311	MK1301					
	野生株		dinB 変異株	polB 変異株	umuDC 変異株					
Addition										
at run	0.0049	(1.0)	0.0023 (0.47) 0.045 (9.1) 0.0019 (0.38)					
at non-run	0.00059	(1.0)	0.0028 (4.7) 0.0027 (4.6) 0.0049 (8.2)					
total	0.0055	(1.0)	0.0051 (0.92) 0.048 (8.6) 0.0068 (1.23)					
Deletion										
at run	0.018	(1.0)	0.016 (0.91) 0.012 (0.66) 0.0057 (0.32)					
at non-run	0.0068	(1.0)	0.0021 (0.30) 0.015 (2.2) 0.013 (1.9)					
total	0.025	(1.0)	0.018 (0.74) 0.027 (1.1) 0.019 (0.77)					
Total	0.030	(1.0)	0.023 (0.77) 0.075 (2.5) 0.026 (0.86)					

誤りがちDNA合成の特異性を明らかにするために、*dinB*変異株(MK1201)、*polB*変 異株(MK1311)、*uimuDC*変異株(MK1301)を用いて、*rpsL*標的遺伝子上に生じた突然変 異の塩基配列を決定し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別 変異頻度を算出した。比較のために、野生株(MK811)での結果もあわせて記載し た。*dinB*変異株(MK1201)、*polB*変異株(MK1311)、*uimuDC*変異株(MK1301)および 野生株(MK811)のより詳細なデータに関しては、それぞれ付録表1、付録表3、付録表 4、付録表5を参照のこと。表中には平均値、及び、括弧内に野生株の変異頻度を1と したときの相対値を示す。検出されなかった変異に関しては、ND(Not detected)と 表記し、さらにその右隣に当研究から推定された変異頻度の最大値を記した。

前進突然変異の比較

C.塩基置換の種類別変異頻度の比較

Mutation frequency($\times 10^{-6}$)								
	MK811		MK1201	MK1311	MK1301			
	野生株		dinB 変異株	polB 変異株	umuDC 変異株			
Transition								
A:T→G:C	0.0071	(1.0)	0.014 (2.0)	0.056 (8.0)	0.010 (1.47)			
G:C→A:T	0.057	(1.0)	0.036 (0.63)	0.066 (1.2)	0.049 (0.85)			
total	0.064	(1.0)	0.050 (0.78)	0.12 (1.9)	0.059 (0.92)			
Transversion								
G:C→T:A	0.014	(1.0)	0.0037 (0.26)	0.0068 (0.48)	0.0019 (0.13)			
G:C→C:G	0.0076	(1.0)	0.0064 (0.85)	0.019 (2.5)	0.015 (1.9)			
T:A→A:T	0.0083	(1.0)	0.016 (1.9)	0.019 (2.3)	0.042 (5.0)			
A:T→C:G	0.0094	(1.0)	0.0081 (0.86)	0.0080 (0.85)	0.0051 (0.54)			
total	0.039	(1.0)	0.034 (0.87)	0.053 (1.3)	0.063 (1.6)			
Hot spot								
82C→A ₂₎	0.017	(1.0)	0.0084 (0.50)	0.027 (1.6)	0.022 (1.3)			
245 T→A ₂₎	0.077	(1.0)	0.099 (1.3)	0.20 (2.6)	0.13 (1.8)			
245 T→G ₂₎	0.013	(1.0)	0.0077 (0.61)	0.028 (2.2)	0.010 (0.81)			
total	0.11	(1.0)	0.11 (1.1)	0.25 (2.4)	0.17 (1.6)			
Total	0.21	(1.0)	0.20 (0.95)	0.43 (2.0)	0.29 (1.4)			

 本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→G 及び128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL遺伝 子との組換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩基置 換を持つ遺伝子を産出する。このうち、当研究では、後者のみの変異、あるいは 両方の変異を持つものが検出された。これらは塩基置換変異の結果である可能性 は極めて低く、当研究では組換え型として別記した。

2) 染色体*rpsL*系では、*rpsL*標的遺伝子の開始コドンから82番目に位置するCがA に置換する塩基置換と、245番目のTがAもしくはGに置換する塩基置換が高頻度 で観察され、塩基置換のホットスポットであると考えられた。他の塩基置換の割 合を明確にするために、このホットスポット上で起こった塩基置換と他の塩基置 換を分けて記載した。

3) 同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異 頻度に関しては、runとrun以外とに分けて表示した。

3.3

*dinB polB*二重変異株、*dinB umuDC*二重変異株、*polB umuDC*二重変異株、 および*dinB polB umuDC*三重変異株における変異スペクトラム解析

本章3.2で示されたように3つのTLSポリメラーゼをそれぞれ欠損させたsingle mutant に関しては、*rpsL*標的遺伝子上で生じる自然突然変異の発生頻度と発生部位において、 野生株と大きな差は見出されなかった。先に述べたように、大腸菌ではTLSポリメラーゼ (Pol II、Pol IV、Pol V)が3つ見出されており、これらのTLSポリメラーゼのうち、2 つ、もしくは3つが協調的に、通常生育下で発生している損傷塩基の乗り越えに関与して いる可能性は否定できない。そこで、本研究では、*dinB polB*二重変異株、*dinB umuDC* 二重変異株、*polB umuDC*二重変異株を作成し、自然突然変異の発生への関与を明らかに することを試みた。また、*dinB polB umuDC*三重変異株を作成し、大腸菌におけるTLS ポリメラーゼ完全欠損株を用いた同様の解析を行った。

a)rpsL前進突然変異頻度

染色体rpsL系を用いてSm抵抗性を指標にrpsL前進突然変異頻度を測定した結果、 dinB umuDC二重変異株で0.57×10⁻⁶、dinB polB二重変異株で0.50×10⁻⁶、polB umuDC二重変異株で0.50×10⁻⁶であった(表3.5A、表3.6A、表3.7A)。野生株における rpsL前進突然変異頻度は0.42×10⁻⁶であるため、各TLS型ポリメラーゼ二重欠損株におけ るrpsL前進突然変異頻度を野生株と比較した相対値は、dinB umuDC二重変異株で1.3 倍、dinB polB変異株で1.3倍、polB umuDC変異株で1.2倍であった(表3.9A)。大腸菌に おいて見出されている3つのTLS型ポリメラーゼを2つずつ欠損させた変異株は、野生株に 比べ、rpsL前進突然変異頻度の顕著な上昇は見られないことが示された。また、大腸菌 で見出されている全てのTLS型ポリメラーゼを完全欠損させたと考えられるdinB umuDC polB三重変異株におけるrpsL前進突然変異頻度は0.64×10⁻⁶となり、野生株に 比べて1.5倍の数値でありTLS型ポリメラーゼ二重欠損株と同様に顕著な上昇が見出され なかった。

Pol II、Pol IV、Pol Vの各TLSポリメラーゼが協調的に働き、自然突然変異の発生を引 き起こしているのなら、各TLS二重変異株、TLS三重変株において、変異頻度の低下がみ られるはずである。しかし、*rpsL*前進突然変異頻度の測定から、野生株と同程度の発生 頻度であった。これらの結果から、各TLS型ポリメラーゼが協調的に働き、突然変異を発 生しているという考えは否定的となった。しかし、TLS型ポリメラーゼがある変異の発生 に関与し、また、ある変異の抑制に関与している可能性も考えられる。また、自然突然変

異の発生に部位特異的にTLS型ポリメラーゼが関与している可能性も考えられる。そこで、以下、変異の種類ごとの詳細な発生頻度と発生部位の比較を行った結果を示す。

b)組換え型変異

遺伝的組換えの結果生じる変異である組換え型変異は、前述したように、1点型と2点 型に分けられている。1点型と2点型の発生頻度の合計は、*dinB umuDC*二重変異株で 0.17×10⁻⁶であり、*dinB polB*二重変異株で0.19×10⁻⁶、*polB umuDC* 二重変異株で0.082 ×10⁻⁶であった(表3.5A、表3.6A、表3.7A)。野生株における組換え型の1点型、2点型の 発生頻度の合計は0.092×10⁻⁶であるため、各TLS型ポリメラーゼ二重欠損株における組 換え型変異の発生頻度を野生株と比較した相対値は、*dinB umuDC*二重変異株で1.8倍、 *dinB polB*二重変異株で2.1倍、*polB umuDC* 二重変異株で0.88倍であった(表3.9A)。 TLS型ポリメラーゼをふたつずつ欠損させた二重変異株における組換え型変異の発生頻度 は野生株に比べ、ほぼ同程度か若干の発生頻度の上昇がみられた。また、TLS型ポリメ ラーゼを完全欠損させたと考えられる*dinB umuDC polB*三重欠損株における組換え型変 異の発生頻度は、0.28×10⁻⁶であり、野生株に比べ、3.0倍の上昇がみられた。

組換え型変異を、1点型、2点型と分けて考えてみると、1点型の発生頻度は、野生株に おいて0.026×10⁻⁶、*dinB umuDC*二重変異株で0.062×10⁻⁶であり、*dinB polB*二重変異 株で0.074×10⁻⁶、*polB umuDC*二重変異株で0.043×10⁻⁶であった(付属表6、付属表7、 付属表8、付属表9)。各TLS型ポリメラーゼ欠損株における組換え型変異の発生頻度を野 生株と比較した相対値は、*dinB umuDC*二重変異株で2.3倍、*dinB polB*二重変異株で2.8 倍、*polB umuDC*二重変異株で1.7倍であった。同様に2点型の発生頻度に関しては、野 生株において0.066×10⁻⁶、*dinB umuDC*二重変異株で0.11×10⁻⁶であり、*dinB polB*二重 変異株で0.14×10⁻⁶、*polB umuDC*二重変異株で0.038×10⁻⁶であり、野生株との相対値 は*dinB umuDC*二重変異株で1.6倍、*dinB polB*二重変異株で2.1倍、*polB umuDC*二重変 異株で0.58倍であった(付属表6、付属表7、付属表8、付属表9)。TLS型ポリメラーゼ二重 欠損株においても、2点型よりも1点型の方が、発生頻度の上昇がある程度示された。

組換え型の発生頻度、および一点型、二点型の発生頻度が、野生株と各TLS二重変異株、TLS三重変異株とで大きく異ならないことから、野生株においても、TLS欠損株においても、複製フォークの停止を引き起こすような自然DNA損傷は同程度に生じており、それを同程度に組換え修復によって修復されていることが示唆された。

c)塩基置換

塩基置換の発生頻度は*dinB umuDC*二重変異株で0.25×10⁻⁶であり、*dinB polB*二重変 異株で0.23×10⁻⁶、*polB umuDC*二重変異株で0.34×10⁻⁶であった(表3.5C、表3.6C、表 3.7C)。*rpsL*前進突然変異頻度が*dinB umuDC*二重変異株で0.57×10⁻⁶であり、*dinB <i>polB*二重変異株で0.54×10⁻⁶、*polB umuDC*二重変異株で0.50×10⁻⁶であるため、*rpsL*前 進突然変異頻度に対する塩基置換の発生頻度の割合は、*dinB umuDC*二重変異株で 43%、*dinB polB*二重変異株で42%、*polB umuDC*二重変異株で68%であり、塩基置換変 異の発生頻度は*dinB umuDC*二重変異株、*dinB polB*二重変異株、および*polB umuDC*二 重変異株においては最も発生頻度の高い変異であった。同様に、野生株でも*rpsL*前進突 然変異頻度が0.42×10⁻⁶であり、その50%にあたる0.21×10⁻⁶の発生頻度で塩基置換が見 出されており、最も発生頻度が高かった。この結果から、野生株と同様に各TLS二重欠損 株でも最も発生頻度が高かった変異は塩基置換であることが示された。

塩基置換変異において、各TLS二重欠損株で245T→Aのホットスポット型塩基置換が最 も発生頻度が高く、*dinB umuDC*二重変異株で0.12×10⁻⁶、*dinB polB*二重変異株で0.16 ×10⁻⁶、*polB umuDC*二重変異株で0.19×10⁻⁶であった(表3.5C、表3.6C、表3.7C)。野生 株の245T→Aの発生頻度0.077×10⁻⁶に比べ、*dinB umuDC*二重変異株で1.5倍、*dinB polB*二重変異株で2.1倍、*polB umuDC*二重変異株で2.0倍であった。TLS二重欠損株は、 野生株よりも若干の上昇が見られる可能性が考えられるが、大きな関与は考えられない程 度であった(表3.9C)。また、82C→A部位における発生頻度は、*dinB umuDC*二重変 異株で0.016×10⁻⁶、*dinB polB*二重変異株で0.0085×10⁻⁶、*polB umuDC*二重変異株で 0.11×10⁻⁶であった(表3.5C、表3.6C、表3.7C)。野生株の82C→Aの発生頻度0.017×10⁻⁶ に比べ、*dinB umuDC*二重変異株で0.96倍、*dinB polB*二重変異株で0.50倍、*polB umuDC*二重変異株で0.7倍であった(表3.9C)。82C→A部位においても245T→A部位と 同様に発生頻度違いは見いだされなかった。

TLS二重欠損株、およびTLS三重欠損株の詳細な解析からも、82C→A、245T→Aの ホットスポット部位におけるTLS型DNAポリメラーゼが協調的に関与するという考えは 否定的となった。TLS型DNAポリメラーゼを完全欠損させた*dinB umuDC polB*三重変異 株における塩基置換の発生頻度は、0.28×10⁻⁶であり、*rpsL*前進突然変異頻度の43%を占 めており最も高頻度に見いだされた変異であった(表3.8C)。*dinB umuDC polB*三重変異 株における塩基置換の発生頻度は野生株に比べ1.3倍であり、ほぼ同程度であった(表 3.9C)。ホットスポットである245T→A部位における塩基置換が0.19×10⁻⁶の発生頻度で 見いだされ、野生株に比べ、1.6倍とほぼ同程度の発生頻度であった(表3.9C)。TLS三重

欠損株の詳細な解析からも、245T→Aのホットスポット部位におけるTLS型DNAポリメ ラーゼの協調的に関与するという考えは否定的となった。

また、非ホットスポット部位における塩基置換の種類別の変異頻度を比較すると、トラ ンジション型塩基置換の発生頻度は、*dinB umuDC*二重変異株で0.060×10⁻⁶、*dinB* polB二重変異株で0.016×10⁻⁶、polB umuDC二重変異株で0.026×10⁻⁶であり、野生株と の相対値は、*dinB umuDC*二重変異株で0.94倍、*dinB polB*二重変異株で0.25倍、*polB* umuDC二重変異株で0.41倍であった(表3.5C、表3.6C、表3.7C、表3.9C)。また、トラ ンスバージョン型塩基置置換の発生頻度は、dinB umuDC二重変異株で0.037×10⁻⁶、 *dinB polB*二重変異株で0.033×10⁻⁶、*polB umuDC*二重変異株で0.031×10⁻⁶であり、野 生株との相対値は、dinB umuDC二重変異株で0.95倍、dinB polB二重変異株で0.85倍、 polB umuDC二重変異株で0.79倍であった(表3.5C、表3.6C、表3.7C、表3.9C)。この結 果から、トランジション型塩基置換、トランスバージョン型塩基置換ともに野生株と各 TLS二重欠損株で大きな違いは見出されなかった。また、発生部位における大きな違いも 見出されなかった(図3.6B、図3.7B、図3.8B)。TLS型DNAポリメラーゼが完全欠損して いると考えられるdinB umuDC polB三重変異株におけるトランジション型塩基置換の発 生頻度は0.052×10⁻⁶であり、トランスバージョン型塩基置換の発生頻度は0.024×10⁻⁶で あった(表3.8C)。野生株に比べ*dinB umuDC polB*三重変異株はトランジション型塩基 置換の発生頻度は0.81倍、トランスバージョン型塩基置換の発生頻度で0.61倍であった (表3.9C)。TLS三重欠損株においてもトランジション型塩基置換、トランスバージョン型 塩基置換ともに野生株と発生頻度に大きな違いは見いだされなかった。また、発生部位に おける大きな違いも見出されなかった(図3.9B)

以上の結果から、自然突然変異におけるホットスポット部位、および非ホットスポット 部位の塩基置換変異において、大腸菌で見出されているTLS型ポリメラーゼ、Pol II、Pol IV,およびPol Vが大きく関与している可能性は否定的であることが示唆された。

d)1塩基フレームシフト

1塩基フレームシフトの発生頻度は野生株で0.030×10⁻⁶、*dinB umuDC*二重変異株で 0.046×10⁻⁶、*dinB polB*二重変異株で0.049×10⁻⁶、*polB umuDC*二重変異株で0.024× 10⁻⁶、*dinB polB umuDC*三重変異株で0.033×10⁻⁶であった(表3.5B、表3.6B、表3.7B、 表3.8B)。野生株との相対値は、*dinB umuDC*二重変異株で1.5倍、*dinB polB*二重変異 株で1.6倍、*polB umuDC*二重変異株で0.79倍、*dinB polB umuDC*三重変異株で1.1倍で あった(表3.9B)。1塩基フレームシフトの種類別変異頻度は、1塩基の挿入の発生頻度

が、野生株で0.0055×10⁻⁶、*dinB umuDC*二重変異株で0.0089×10⁻⁶、*dinB polB*二重変 異株で0.011×10⁻⁶、 *polB umuDC*二重変異株で0.0061×10⁻⁶、 *dinB polB umuDC*三重変 異株で0.018×10⁻であり、野生株との相対値は*dinB umuDC*二重変異株で1.6倍、*dinB* polB二重変異株で1.9倍、polB umuDC二重変異株で1.1倍、dinB polB umuDC三重変異 株で3.2倍であった(表3.5B、表3.6B、表3.7B、表3.8B、表3.9B)。また、1塩基の欠失 の発生頻度は、野生株で0.025×10⁻⁶、*dinB umuDC*二重変異株で0.037×10⁻⁶、*dinB* polB二重変異株で0.038×10⁻⁶、polB umuDC二重変異株で0.018×10⁻⁶、dinB polB umuDC三重変異株で0.015×10⁻⁶であり、野生株との相対値は*dinB umuDC*二重変異株 で1.5倍、dinB polB二重変異株で1.6倍、polB umuDC二重変異株で0.72倍、dinB polB umuDC三重変異株で0.60倍であった(表3.5B、表3.6B、表3.7B、表3.8B、表3.9B)。 dinB変異株、polB発生部位においても、1塩基の挿入、欠失ともに、野生株、および各 TLS二重欠損株およびTLS三重欠損株において、大きな違いは見出されなかった。以上の 結果から、各TLS型ポリメラーゼは自然突然変異における1塩基フレームシフトの発生頻 度に関して大きく関与していない可能性が示唆された。また、発生部位における大きな違 いも見出されなかった(図3.6A、図3.7A、図3.8A、図3.9A)。野生株では、ミスマッチ 修復欠損株と違い、1塩基の欠失がnon-run配列でランダムに見いだされている(図 2.3A)。各TLS欠損株においても、野生株とどうようにランダムに見いだされていた (図3.6A、図3.7A、図3.8A、図3.9A)。

e)その他の変異

e-1)欠失

2 塩基以上の欠失の発生頻度は、野生株で0.033×10⁻⁶、*dinB umuDC*二重変異株で 0.039×10⁻⁶、*dinB polB*二重変異株で0.012×10⁻⁶、*polB umuDC*二重変異株で0.0074× 10⁻⁶、*dinB polB umuDC*三重変異株で0.023×10⁻⁶であり、野生株との相対値は*dinB umuDC*二重変異株で1.2倍、*dinB polB*二重変異株で0.37倍、*polB umuDC*二重変異株で 0.22倍、*dinB polB umuDC*三重変異株で0.64倍であった(表3.5A、表3.6A、表3.7A、 表3.8A、表3.9A)。*dinB polB*二重変異株と*polB umuDC*二重変異株で、野生株に比べ て若干の発生頻度の低下がみられるが、*rpsL*染色体系で見いだされる2塩基以上の欠失 の検体数が少ないためと考えられ、野生株の発生頻度と大きく異ならないと考えられる (付録表7、付録表8)。

e-2)重複

重複の発生頻度は、野生株で 0.0046×10^{-6} 、 dinB umuDC二重変異株で 0.0026×10^{-6} 、 dinB polB二重変異株で 0.0032×10^{-6} 、 polB umuDC二重変異株では見いだされず、 dinB polB umuDC三重変異株で 0.0021×10^{-6} であり、野生株との相対値は dinB umuDC二重 変異株で0.56倍、 dinB polB二重変異株で0.69倍、 dinB polB umuDC三重変異株で0.47倍であった(表3.5A、表3.6A、表3.7A、表3.8A、表3.9A)。重複に関してもTLS二重 欠損株、TLS三重欠損株ともに野生株と大きく発生頻度は異ならないと考えられる。

e-3)IS

挿入配列であるISの発生頻度は、野生株で0.046×10⁻⁶、*dinB umuDC*二重変異株で 0.044×10⁻⁶、*dinB polB*二重変異株で0.018×10⁻⁶、*polB umuDC*二重変異株で0.033× 10⁻⁶、*dinB polB umuDC*三重変異株で0.021×10⁻⁶であり、野生株との相対値は*dinB umuDC*二重変異株で1.0倍、*dinB polB*二重変異株で0.40倍、*polB umuDC*二重変異株で 0.72倍、*dinB polB umuDC*三重変異株で0.46倍であった(表3.5A、表3.6A、表3.7A、 表3.8A、表3.9A)。ISの発生頻度においても野生株と同程度であった。

3.4 まとめ

大腸菌の複製型DNAポリメラーゼであるPol IIIによる複製エラーは自然突然変異の発生 に大きく関与していないことが本研究で明らかにされた。そこで近年、突然変異への関与 が示唆されている自然DNA損傷に注目し、自然DNA損傷を乗り越えるTLSの関与を明ら かにする目的で、rpsL染色体系を用いた大規模解析を行った。前述したように大腸菌で はDNAポリメラーゼが5つ見いだされており、そのうちPol II、Pol IV、PolVの3つが DNA鎖上の損傷を乗り越える際、相補塩基対合規則とは異なった塩基を挿入する誤りが ちDNA合成(error prone DNA合成)を行うことが示されている。Pol IIはDNA鎖上に 人工的に導入したAAF(アセチルアミノフルオレン)を乗り越える際に、-2塩基のフレーム シフトを生じることが示されている。Pol IVは発ガン性物質であるベンゾピレン(BaP) を付加したGを乗り越える際に1塩基の欠失を生じることが示されている(Napolitano., 2000)。Pol V(UmuDC)はDNA鎖上に配置された6-4光産物を乗り越える際に、Tに対し てCを挿入するため、トランジション型塩基置換を生じながら乗り越え、脱塩期部位(AP site)に対してAを挿入して乗り越えることが示されている(LeClerc., 1991; Smith., 1996)。。本研究においてもPolV(UmuDC)がUV照射時に突然変異頻度を上昇させるこ とが示されている(図3.2)。また、Pol Vが鋳型DNA鎖上の損傷を乗り越える際、SOS 反応によって活性化されたRecAタンパクが、PolVと協調的に働き、乗り越え反応を促進

させていることも示されている(Pham ., 2001, 2002)。

近年の遺伝学的、生化学的解析から、TLS型DNAポリメラーゼは、複製型DNAポリメ ラーゼの動態とは異なり、細胞内でもDNA鎖上に発生したDNA損傷を乗り越える際にエ ラーを生じると考えられていた。しかし、本研究で、野生株とTLS欠損株での変異スペク トラム解析に大きな違いは見いだされなかった。TLSポリメラーゼが誤りがち乗り越え合 成を行うという研究報告は主に鋳型DNA鎖上に人工的に損傷を配置するか、強度のUV

(紫外線)を照射させた状態でのTLSポリメラーゼの乗り越えを調べている。本研究で用いた*rpsL*染色体突然変異検出系は、大腸菌の染色体上に生じた自然突然変異を塩基配列レベルで同定できる実験系である。DNA鎖上に人工的に配置した損傷や、UVを強照射しDNA損傷を人工的に生じさせた解析と異なり、本研究で用いた*rpsL*前進突然変異検出系での結果は、細胞が自然生育下で生じる自然突然変異の詳細を効率的に解析していると考えられる。したがって、本研究により自然生育下における自然突然変異の発生にTLS型DNAポリメラーゼは関与していないことが強く示唆された。

本稿の第二部、第三部の結果から、自然突然変異の発生経路に複製エラーを損傷乗り越 えDNA合成が大きく関与していないことが示された。そのため、自然突然変異の新たな る発生経路の探索が急務であると考えられる。当研究室の坂井(2006)の研究におい て、染色体rpsL部分二倍体株を用いた同様の解析を、嫌気的条件下でおこなった。その 結果、塩基置換のホットスポット部位である245T→A部位の塩基置換変異の発生頻度が 好気的条件下に比べて低下することが示された。また、当研究室の沙魚川(未発表)の研 究において、ヌクレオチド除去修復(NER)における修復合成の際に、突然変異を生じ ることが示されている。これらの結果から、複製フォークの停止を引き起こさないタイプ の酸化損傷や、今までエラーフリーの修復経路と考えられていたNERの経路により、自 然突然変異が発生している可能性が示唆されている。今まで、自然突然変異を抑制してい たと考えられる他の修復経路によって自然突然変異が発生している可能性も考えられ、今 後、さらなる解析が必要であると考えられる。また、本研究で用いたTLS完全欠損株は Pol IIをコードするpolB、Pol IVをコードするdinB、Pol VをコードするumuDCを欠損さ せた菌株である。しかし、大腸菌において、これら3つのTLSポリメラーゼ以外にも未 知のTLSポリメラーゼが存在する可能性も否定できない。大腸菌における新たなるTLS 型ポリメラーゼの探索も試みる必要があるかもしれない。

A. 変異の種類別変異頻度

実験区	#1	#2	#3	#4	#5	ave ± SD
組換え型 ¹⁾	0.12	0.10	0.22	0.25	0.16	0.17 ± 0.062
塩基置換						
ホットスポット1(82C→A) ²⁾	0.014	0.0051	0.049	0.0024	0.0092	0.016 ± 0.019
ホットスポット2(245T→A) ²⁾	0.14	0.075	0.19	0.10	0.071	0.12 ± 0.050
ホットスポット3(245T→G) ²⁾	0.012	0.014	0.023	0.015	0.034	0.019 ± 0.0091
上記以外	0.085	0.070	0.039	0.077	0.21	0.097 ± 0.067
1塩基フレームシフト	0.0060	0.038	0.010	0.044	0.13	0.046 ± 0.051
2塩基フレームシフト	ND	0.021	ND	ND	0.0061	$\textbf{0.0053} \pm 0.0089$
配列置換	0.0020	ND	ND	ND	0.043	0.0090 ± 0.019
欠失	0.042	0.058	0.021	0.056	0.018	0.039 ± 0.019
重複	ND	ND	0.013	ND	ND	0.0026 ± 0.0058
IS	0.063	0.021	0.049	0.036	0.052	0.044 ± 0.0162
その他	0.0081	ND	0.0052	0.0024	0.0061	0.0044 ± 0.0032
変異なし	ND	0.0051	0.0026	ND	ND	0.0015 ± 0.0023
Total	0.49	0.41	0.62	0.58	0.74	0.57 ± 0.13

B.1塩基フレームシフトの種類別変異頻度

			変異頻度	€ ×10 ⁻⁶	3	
実験区	#1	#2	#3	#4	#5	ave ± SD
Addition						
at run ³⁾	ND	0.022	ND	ND	0.0061	0.0057 ± 0.0096
at non-run ³⁾	0.0040	0.012	ND	ND	ND	0.0032 ± 0.0052
total	0.0040	0.034	ND	ND	0.0061	0.0089 ± 0.014
Deletion						
at run ³⁾	ND	0.0034	0.0052	0.027	0.13	0.032 ± 0.053
at non-run ³⁾	0.0020	ND	0.0052	0.017	ND	0.0048 ± 0.0071
total	0.0020	0.0034	0.010	0.044	0.13	0.037 ± 0.052
Total	0.0060	0.038	0.010	0.044	0.13	0.046 ± 0.051

独立した5実験区由来の合計1200クローンのrpsL標的遺伝子の塩基配列を決定 し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算 出した。表中には、各実験区ごとの変異頻度(#1から#5まで)および、それら の平均値(Ave.)を記載した。検出されなかった変異に関しては、実験区ごと の変異頻度ではND(Not detected)と表記しているが、平均値を算出する際に は、その実験区の変異頻度を0として計算した。より詳細なデータについては、 付録表6を参照のこと。 表3.5-続き. dinB umuDC二重変異株における前進突然変異の特異性

C. 塩基置換の種類別変異頻度

実験区	#1	#2	#3	#4	#5	ave ± SD	
Transition							
A:T→G:C	0.024	0.0034	0.0078	0.015	0.16	0.041 ± 0.065	
G:C→A:T	0.026	0.010	0.016	0.017	0.025	0.019 ± 0.0066	
total	0.050	0.014	0.023	0.031	0.18	0.060 ± 0.069	
Transversion							
G:C→T:A	0.012	0.0017	ND	0.015	ND	0.0057 ± 0.0071	
G:C→C:G	ND	ND	0.0026	ND	0.021	0.0048 ± 0.0094	
T:A→A:T	0.018	0.048	0.0078	0.029	0.0061	0.022 ± 0.017	
A:T→C:G	0.0040	0.0068	0.0052	0.0024	0.0031	0.0043 ± 0.0018	
total	0.034	0.056	0.016	0.046	0.031	0.037 ± 0.016	
Hot spot							
82C→A ²⁾	0.014	0.0051	0.049	0.0024	0.0092	0.016 ± 0.019	
245 T→A ²⁾	0.14	0.075	0.19	0.10	0.071	0.12 ± 0.050	
245 T→G ²⁾	0.012	0.014	0.023	0.015	0.034	0.019 ± 0.0091	
total	0.17	0.094	0.26	0.12	0.11	0.15 ± 0.068	
Total	0.25	0.16	0.30	0.20	0.33	0.25 ± 0.068	

1)本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→G及び128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL遺伝子との組換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩基置換を持つ遺伝子を産出する。このうち、当研究では、後者のみの変異、あるいは両方の変異を持つものが検出された。これらは塩基置換変異の結果である可能性は極めて低く、当研究では組換え型として別記した。

2) 染色体*rpsL*系では、*rpsL*標的遺伝子の開始コドンから82番目に位置する CがAに置換する塩基置換と、245番目のTがAもしくはGに置換する塩基置 換が高頻度で観察され、塩基置換のホットスポットであると考えられた。他 の塩基置換の割合を明確にするために、このホットスポット上で起こった塩 基置換と他の塩基置換を分けて記載した。

3) 同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異頻度に関しては、runとrun以外とに分けて表示した。

5'-TGGCCTGGTGATGATGGCG GGATCGTTGT ATATTTCTTG ACACCTTTTC GGCATCGCCC TAAAATTCGG CGTCCTCATA TTGTGTGAGGG -51 - 5 6 - 18 ACGTTTTATT ACGTGTTTAC GAAGCAAAGG CTAAAACCAG GAGCTATTTA ATGGCAACAG TTAACCAGCT GGTACGCAAA CCACGTGCTC 40 GT12 GCAAAGTTGC GAAAAGCAAC GTGCCTGCGC TGGAAGCATG CCCGCAAAAA CGTGGCCTAT GTACTCGTGT ATATACTACC ACTCCTAAAA 130 Žİ A11 ХАССВААСТС СВСВСТВСВТ АЛАВТАТЕСС БТЕТТСЕТСТ БАСТАХСВЕТ ТТСВАЛЕТВА СТТССТАСАТ СВЕТВЕТВА ВЕТСАСААСС — 220 TECAGEABCA CTCCETEATC CTÉATCCETE ECEETCETET TAAAGACCTC CCEGÉTETTC ETTACCACAC CETACETEET ECECTTEACT 310 GCTCCGGCOT TAAAGACCGT AAGCAGGCTC OTTCCAAGTA TGGCGTGAAG CGTCCTAAGG CTTAA -TGGTTCTCCCGTTAAGTAAGGCC -3' 397 図3.6A dinB umuDC変異株(MK1221)におけるrpsL標的遺伝子上で生じた1塩基フレームシフトの分布 5'-T66CCT66T6AT66C6 66ATC6TT6T ATATTTCTT6 ACACCTTTTC 66CATC6CCC TAAAATTC66 C6TCCTCATA TT6T6T6A66 -51 - 55Ğİ - 11 61 АСОТТТТАТТ АСОТОТТТАС GAAGCAAAGG СТААААССАВ GAGCTATTTA ATGGCAACAG TTAACCAGCT GOTACOCAAA CCACOTOCTC 40Ť1º A1 GCAAABTTEC GAAAABCAAC GTECCTECEC TEGAABCATE CCCCCCAAAAA CETECCTAT STACTCETET ATATACTACC ACTCCTAAAA 130 AACCEAACTC CECECTECET AAABTATEC GTETTCETCT GACTAACEET TTCEAAEEA CTTCCTACAT CEETEETEAA EETCACAACC 220 A4364 TECHEGAGCA CTCCGTGATC CTGATCCGTG GCGTCGTGT TAAAGACCTC CCGGGTGTTC GTTACCACAC CGTACGTGGT GCGCTTGACT 310

естесевсет талабассет алесавесте оттесалета тевесотелае сотесталее сттал - теоттетесотталеталеесе - 3' 397 図3.6B *dinB umuDC*変異株 (MK1221) における*rpsL*標的遺伝子上で生じた塩基置換の分布

図3.6AB dinB umuDC変異株(MK1221)におけるrpsL標的遺伝子上で生じた1塩基フレー ムシフト(A)および塩基置換(B)の分布を示した。配列の右に記した数字は開始コドンを1 とした時の塩基の番号を表す。配列中の下線はプロモーター領域(-35配列、-10配列)、SD 配列、開始コドン、終始コドンを示す。図中の∨は1塩基の挿入を意味し、⊽は 1塩基の欠失 を示す。塩基置換の場合は、元の塩基の上に置換した塩基を記した。これらの変異した塩基の 後ろの数字は同じ実験区で同様の部位で見出された検出数を示す。各実験区は以下の色で識別 した。実験区1、実験区2、実験区3、実験区4、実験区5。
5'-TGGCCTGGTGATGATGGCG GGATCGTTGT ATATTTCTTG ACACCTTTTC GGCATCGCCC TAAAATTCGG CGTCCTCATA TTGTGTGGAGG -51 -- 55 - 11 ACOTTITATI ACOTOTITAC GAAGCAAAGG CIAAAACCAG GAGCIATITA AIGCCAACAG ITAACCAGCI GOTACGCAAA CCACOTOCIC 40GCAAAGTTGC GAAAAGCAAC GTGCCTGCGC TGGAAGCATG CCCGCAAAAA CGTGGCGTAT GTACTCGTGT ATATACTACC ACTCCTAAAA 130 Δ1 AACCGAACTC CECECTECET AAAGTATECC ETETTCETCT GACTAACEET TTCGAAETGA CTTCCTACAT CEETEGTGAA GETCACAACC 220 TGATCG#9×5 TECASEASCA CTCCETEATC CTEATCCETE ECGETCETET TAAAGACCTC CCEGETETTC ETTACCACAC CETACETEET ECECTTEACT 310 Δ12 Δ25 Δ1 Δ16 Δ3 GCTCCGGCGT TAAAGACCGT AAGCAGGCTC GTTCCAAGTA TGGCGTGAAG CGTCCTAAGG CTTAA -TGGTTCTCCCGTTAAGTAAGGCC -3' 397 18881 A2 56 -図3.6C dinB umuDC変異株(MK1221)におけるrpsL標的遺伝子上で生じた重複および欠失の分布 5'-TG6CCTG6TGATGATG6CG G6ATC6TTGT ATATTTCTTG ACACCTTTTC G6CATC6CCC TAAAATTC6G C6TCCTCATA TTGT6T6A66 -51 - 5 6 -11 ACOTTITATT ACOTOTITAC GAAGCAAAGO CTAAAACCAO GAGCTATITA ATGOCAACAO TTAACCAOCT GOTACOCAAA CCACOTOCTC $a_0 \xrightarrow{P_0} \#7 \times 1^{-1} \iff T_A$ 40GCAAAGTTGC GAAAAGCAAC GTGCCTGCGC TGGAAGCATG CCCGCAAAAA CGTGGCGTAT GTACTCGTGT ATATACTACC ACTCCTAAAA 130 AACCEAACTC CECECTECET AAAETATECC ETETTCETCT GACTAACEET TTCEAAETEA CTTCCTACAT CEETEETEAA GETCACAACC 220 TECASEGASCA CTCCETEATC CTEATCCETE ECCETCETET TAAAGACCTC CCEEGETETTC ETTACCACAC CETACETEET ECCETEACT 310

GCTCCGGCGT TAAAGACCGT AAGCAGGCTC GTTCCAAGTA TGGCGTGAAG CGTCCTAAGG CTTAA - TGGTTCTCCGTTAAGTAAGGACCC -3' 397 図3.6D *dinB umuDC*変異株 (MK1221) における*rpsL*標的遺伝子上で生じた配列置換の分布

図3.6CD dinB umuDC変異株(MK1221)におけるrpsL標的遺伝子上で生じた重複及び欠失(C) および配列置換(D)の分布を示した。配列の右に記した数字は開始コドンを1とした時の塩基の番 号を表す。配列中の下線はプロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始 コドンを示す。同じ実験区で同じ部位で同じ変異が見つかった場合は、その検出数を実験区番号の 後に示した。各実験区は以下の色で識別した。実験区1、実験区2、実験区3、実験区4、実験区5。 (C)図中のvは重複を、Δは欠失を表し、その範囲は矢印で示した。欠失の両端に相同領域がある 場合は、その領域を同じ模様のボックスで記した。(D)複数の塩基が全く違う塩基に置き換わる ことを配列置換と呼ぶ。実験区から2塩基の挿入が1例見つかった。配列置換の前後には偽逆向き繰 り返し配列が存在し、それが配列置換により完全な逆向き繰り返し配列になる場合が多い。前後の 繰り返し配列を矢印で、異なる塩基の部分をボックスで示す。 表3.6. dinB polB二重変異株における前進突然変異の特異性

A. 変異の種類別変異頻度

			変	異頻度	×10 ⁻⁶		
実験区	#1	#2	#3	#4	#5	#6	ave ± SD
組換え型 ¹⁾	0.26	0.12	0.42	0.20	0.14	0.11	0.21 ± 0.12
塩基置換							
ホットスポット1(82C→A) ²⁾	0.010	0.012	ND	ND	0.016	0.013	0.0085 ± 0.0068
ホットスポット2(245T→A) ²⁾	0.13	0.35	0.17	0.18	0.19	0.044	0.18 ± 0.099
ホットスポット3(245T→G) ²⁾	0.031	0.025	ND	ND	ND	0.013	0.011 ± 0.014
上記以外	0.051	0.025	0.051	0.010	0.13	0.031	0.049 ± 0.041
1塩基フレームシフト	0.010	0.012	0.10	0.019	0.11	0.038	0.049 ± 0.046
2塩基フレームシフト	ND	ND	ND	ND	ND	ND	ND < 0.0038
配列置换	ND	ND	ND	ND	ND	ND	ND < 0.0038
欠失	ND	ND	0.051	0.029	0.079	0.019	0.030 ± 0.031
重複	ND	ND	ND	0.019	ND	ND	0.0032 ± 0.0078
IS	ND	0.050	0.017	ND	0.095	0.031	0.032 ± 0.036
その他	ND	ND	ND	ND	ND	ND	ND < 0.0038
変異なし	ND	0.012	ND	ND	ND	ND	0.0021 ± 0.0051
Total	0.49	0.61	0.81	0.46	0.76	0.30	0.57 ± 0.19

B. 1塩基フレームシフトの種類別変異頻度

			7	変異頻度	×10 ⁻⁶		
実験区	#1	#2	#3	#4	#5	#6	ave ± SD
Addition							
at run ³⁾	ND	ND	ND	ND	ND	0.0063	0.0010 ± 0.0026
at non-run ³⁾	ND	ND	0.051	ND	ND	0.0063	0.0095 ± 0.020
total	ND	ND	0.051	ND	ND	0.013	0.011 ± 0.020
Deletion							
at run ³⁾	0.010	ND	ND	ND	ND	0.025	0.0059 ± 0.010
at non-run ³⁾	ND	0.012	0.051	0.019	0.11	ND	0.032 ± 0.043
total	0.010	0.012	0.051	0.019	0.11	0.025	0.038 ± 0.039
Total	0.010	0.012	0.10	0.019	0.11	0.038	0.049 ± 0.046

独立した6実験区由来の合計266クローンのrpsL標的遺伝子の塩基配列を決定 し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算 出した。表中には、各実験区ごとの変異頻度(#1から#6まで)および、それら の平均値(Ave.)を記載した。検出されなかった変異に関しては、実験区ごと の変異頻度ではND(Not detected)と表記しているが、平均値を算出する際に は、その実験区の変異頻度を0として計算した。より詳細なデータについては、 付録表7を参照のこと。 表3.6-続き. dinB polB二重変異株における前進突然変異の特異性

C. 塩基置換の種類別変異頻度

			2	変異頻度	×10 ⁻⁶		
実験区	#1	#2	#3	#4	#5	#6	ave ± SD
Transition							
A:T→G:C	ND	0.012	ND	ND	0.063	ND	0.013 ± 0.025
G:C→A:T	0.020	ND	ND	ND	ND	ND	0.0034 ± 0.0083
total	0.020	0.012	ND	ND	0.063	ND	0.016 ± 0.025
Transversion							
G:C→T:A	ND	ND	ND	ND	0.016	ND	0.0026 ± 0.0065
G:C→C:G	0.020	0.012	ND	0.0096	0.016	ND	0.0097 ± 0.0083
T:A→A:T	0.010	ND	0.034	ND	0.016	0.031	0.015 ± 0.015
A:T→C:G	ND	ND	0.017	ND	0.016	ND	0.0055 ± 0.0085
total	0.031	0.012	0.051	0.0096	0.063	0.031	0.033 ± 0.021
Hot spot							
82C→A ²⁾	0.010	0.012	ND	ND	0.016	0.013	0.0085 ± 0.0068
245 T→A ²⁾	0.13	0.35	0.17	0.18	0.19	0.044	0.18 ± 0.099
245 T→G ²⁾	0.031	0.025	ND	ND	ND	0.013	0.011 ± 0.014
total	0.17	0.39	0.17	0.18	0.21	0.069	0.20 ± 0.10
Total	0.22	0.41	0.22	0.19	0.33	0.10	0.25 ± 0.11

1)本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→G及び128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL遺伝子との組換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩基置換を持つ遺伝子を産出する。このうち、当研究では、後者のみの変異、あるいは両方の変異を持つものが検出された。これらは塩基置換変異の結果である可能性は極めて低く、当研究では組換え型として別記した。

2) 染色体*rpsL*系では、*rpsL*標的遺伝子の開始コドンから82番目に位置する CがAに置換する塩基置換と、245番目のTがAもしくはGに置換する塩基置 換が高頻度で観察され、塩基置換のホットスポットであると考えられた。他 の塩基置換の割合を明確にするために、このホットスポット上で起こった塩 基置換と他の塩基置換を分けて記載した。

3) 同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異頻度に関しては、runとrun以外とに分けて表示した。

75

5'-TEGCCTEGTEATEATEGCE EGATCETTET ATATTTCTTE ACACCTTTTC EGCATCECCC TAAAATTCEE CETCCTCATA TTETETEAEG - -51 - 5 6 - 18 A1 ACGTITITATT ACGTGTTTAC GAAGCAAAGG CTAAAACCAG GAGCTATTTA ATGGCAACAG TTAACCAGCT GGTACGCAAA CCACGTGCTC 40**A**1 GCAAAGTTGC GAAAAGCAAC GTGCCTGCGC TGGAAGCATG CCCGCAAAAA CGTGGCGTAT GTACTCGTGT ATATACTACC ACTCCTAAAA 130 AACCEAACTC CECECTECET AAABTATECC ETETTCETCT GACTAACEET TTCEAABTEA CTTCCTACAT CEETEETEAA GETCACAACC 220 TECAGEAGCA CTCCOTEATC CTEATCCETE ECERTCETET TAAGACCTC CCEEFETTC STTACCACAC CETACETEET ECECTTEACT 310 V2 C3 GCTCCGGCGT TAAAGACCGT AAGCAGGCTC GTTCCAAGTA TGGCGTGAAG CGTCCTAAGG CTTAA -TGGTTCTCCGTTAAGTAAGGCC -3' 397 図3.7A dinB polB二重変異株(MK1331)におけるrpsL標的遺伝子上で生じた1塩基フレームシフトの分布 5'-TG6CCT66TGATGATG6CG GGATC6TT6T ATATTTCTTG ACACCTTTTC GGCATC6CCC TAAAATTC6G CGTCCTCATA TT6T6T6A66G -51 - 5 6 -11 ACGTITITATI ACGTGTITIAC GAAGCAAAGG CIAAAACCAG GAGCIATITA AIGGCAACAG IIAACCAGCI GGIACGCAAA CCACGIGCIC 40A2 GCAAAGTTGC GAAAAGCAAC GTGCCTGCGC TGGAAGCATG CCCGCAAAAA CGTGGCGTAT GTACTCGTGT ATATACTACC ACTCCTAAAA 130 AACCEAACTC CECECTECET AAAETATECC ETETTCETCT GACTAACEET TTCEAAETEA CTTCCTACAT CEETEETEAA GETCACAACC 220 A762 Â19 A10 A27A-162 TOCAGGAGCA CTCCGTGATC CTGATCCOTG GCGGTCGTGT TAAAGACCTC CCGGGTGTTC GTTACCACAC CGTACGTGGT GCGCTTGACT 310

GCTCC66C6T TAAAGACC6T AAGCAG6CTC GTTCCAAGTA TG6CGTGAAG CGTCCTAAGG CTTAA -TG6TTCTCCGTTAAGTAAG6CC -3' 397

図3.7B dinB polB二重変異株(MK1331)におけるrpsL標的遺伝子上で生じた塩基置換の分布

図3.7 *dinB polB*二重変異株(MK1331)における*rpsL*標的遺伝子上で生じた1塩基フレームシフト(A)および塩基置換(B)の分布を示した。配列の右に記した数字は開始コドンを1とした時の塩基の番号を表す。配列中の下線はプロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始コドンを示す。図中のvは1塩基の挿入を意味し、⊽は1塩基の欠失を示す。塩基置換の場合は、元の塩基の上に置換した塩基を記した。これらの変異した塩基の後ろの数字は同じ実験区で同様の部位で見出された検出数を示す。各実験区は以下の色で識別した。実験区1、実験区2、実験区3、実験区4、実験区5、実験区6。

図3.7C dinB polB二重変異株(MK1331)におけるrpsL標的遺伝子上で生じた重複および欠失の分布

図3.7C dinB polB二重変異株(MK1331)におけるrpsL標的遺伝子上で生じた重複および欠失の 分布を示した。配列の右に記した数字は開始コドンを1とした時の塩基の番号を表す。配列中の下 線はプロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始コドンを示す。図中のv は重複を、Δは欠失を表し、それらの範囲は矢印で示した。重複あるいは欠失の両端に相同領域が ある場合は、その領域を同じ模様のボックスで記した。同じ実験区で同じ部位で同じ重複あるいは 欠失が見つかった場合は、その検出数をvあるいはΔの後に示した。各実験区は以下の色で識別し た。実験区1、実験区2、実験区3、実験区4、実験区5、実験区6。

表3.7. polB umuDC二重変異株における前進突然変異の特異性 A. 変異の種類別変異頻度

			変異頻	度 ×10) ⁻⁶	
実験区	#1	#2	#3	#4	#5	ave ± SD
組換え型 ¹⁾	0.15	0.066	0.060	0.076	0.058	0.082 ± 0.038
塩基置換						
ホットスポット1(82C→A) ²⁾	ND	ND	0.026	0.016	0.52	0.11 ± 0.23
ホットスポット2(245T→A) ²⁾	0.17	0.20	0.15	0.087	0.17	0.16 ± 0.042
ホットスポット3(245T→G) ²⁾	0.023	ND	0.0085	ND	0.058	0.018 ± 0.024
上記以外	0.14	0.015	0.043	0.049	0.038	0.056 ± 0.047
1塩基フレームシフト	0.011	0.0073	0.051	0.011	0.038	0.024 ± 0.020
2塩基フレームシフト	ND	ND	ND	ND	ND	ND < 0.0034
配列置换	ND	ND	ND	ND	ND	ND < 0.0034
欠失	0.011	0.015	ND	0.011	ND	0.0074 ± 0.0069
重複	ND	ND	ND	ND	ND	ND < 0.0034
IS	0.034	0.051	0.051	0.011	0.019	0.033 ± 0.0183
その他	0.011	ND	0.017	ND	ND	0.0057 ± 0.0081
変異なし	ND	ND	ND	ND	0.019	0.0038 ± 0.0086
Total	0.55	0.35	0.41	0.26	0.92	0.50 ± 0.26

B.1塩基フレームシフトの種類別変異頻度

		変異頻度 ×10 ⁻⁶										
実験区	#1	#2	#3	#4	#5	ave ± SD						
Addition												
at run ³⁾	0.011	ND	ND	ND	0.019	0.0061 ± 0.0088						
at non-run ³⁾	ND	ND	ND	ND	ND	ND						
total	0.011	ND	ND	ND	0.019	0.0061 ± 0.0088						
Deletion												
at run ³⁾	ND	ND	0.051	0.0054	0.019	0.015 ± 0.022						
at non-run ³⁾	ND	0.0073	ND	0.0054	ND	0.0025 ± 0.0035						
total	ND	0.0073	0.051	0.011	0.019	0.018 ± 0.020						
Total	0.011	0.0073	0.051	0.011	0.038	0.024 ± 0.020						

独立した5実験区由来の合計240クローンのrpsL標的遺伝子の塩基配列を決定 し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算 出した。表中には、各実験区ごとの変異頻度(#1から#5まで)および、それら の平均値(Ave.)を記載した。検出されなかった変異に関しては、実験区ごと の変異頻度ではND(Not detected)と表記しているが、平均値を算出する際に は、その実験区の変異頻度を0として計算した。より詳細なデータについては、 付録表8を参照のこと。

表3.7-続き. polB umuDC二重変異株における前進突然変異の特異性

C. 塩基置換の種類別変異頻度

			変異頻	頑度 ×10)- ₆	
実験区	#1	#2	#3	#4	#5	ave ± SD
Transition						
A:T→G:C	ND	ND	0.0085	0.0108	ND	0.0039 ± 0.0054
G:C→A:T	0.080	0.0073	0.017	0.0054	ND	0.022 ± 0.033
total	0.080	0.0073	0.026	0.0163	ND	0.026 ± 0.032
Transversion						
G:C→T:A	0.011	ND	ND	0.0054	ND	0.0034 ± 0.0051
G:C→C:G	0.046	0.0073	ND	0.0054	ND	0.012 ± 0.019
T:A→A:T	ND	ND	0.017	0.0108	0.038	0.013 ± 0.016
A:T→C:G	ND	ND	ND	0.011	ND	0.0022 ± 0.0048
total	0.057	0.0073	0.017	0.033	0.038	0.031 ± 0.019
Hot spot						
82C→A ²⁾	ND	ND	0.026	0.016	0.52	0.11 ± 0.23
245 T→A ²⁾	0.17	0.20	0.15	0.087	0.17	0.16 ± 0.042
245 T→G ²⁾	0.023	0.00	0.0085	ND	0.058	0.018 ± 0.024
total	0.19	0.20	0.19	0.10	0.75	0.29 ± 0.26
Total	0.33	0.21	0.23	0.15	0.79	0.34 ± 0.26

1)本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→G及び128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL遺伝子との組換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩基置換を持つ遺伝子を産出する。このうち、当研究では、後者のみの変異、あるいは両方の変異を持つものが検出された。これらは塩基置換変異の結果である可能性は極めて低く、当研究では組換え型として別記した。

2) 染色体*rpsL*系では、*rpsL*標的遺伝子の開始コドンから82番目に位置する CがAに置換する塩基置換と、245番目のTがAもしくはGに置換する塩基置 換が高頻度で観察され、塩基置換のホットスポットであると考えられた。他 の塩基置換の割合を明確にするために、このホットスポット上で起こった塩 基置換と他の塩基置換を分けて記載した。

3) 同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異頻度に関しては、runとrun以外とに分けて表示した。

5'-TGGCCTGGTGATGATGGCG GGATCGTTGT ATATTTCTTG ACACCTTTTC GGCATCGCCC TAAAATTCGG CGTCCTCATA TTGTGTGAGG -51 - 5 6 ACGTTTTATT ACGTGTTTAC GAAGCAAAGG CTAAAACCAG GAGCTATTTA ATGGCAACAG TTAACCAGCT GGTACGCAAA CCACGTGCTC 40A1 A1 C'1 GCAAAGTTGC GAAAAGCAAC GTGCCTGCGCC TGGAAGCATG CCCGCAAAAA CGTGGCGTAT GTACTCGTGT ATATACTACC ACTCCTAAAA 130 AACCGAACTC COCOCTOCOT AAASTATECC STGTTCGTCT GACTAACGGT TTCGAASTGA CTTCCTACAT CGGTGGTGAA GGTCACAACC 220 TECARGARCA CICCETEAIC CIEAICCETE ECERTERIT TAAAGACCIC COEGETETIC ETTACCACAC CETACETERT ECECTEGACI 310 V1 GCTCCGGCGT TAAAGACCGT AAGCAGGCTC GTTCCAAGTA TGGCGTGAAG CGTCCTAAGG CTTAA -TGGTTCTCCGTTAAGTAAGGCC -3' 397 図3.8A umuDC polB変異株(MK1351)における rpsL標的遺伝子上で生じた1塩基フレームシフトの分布 5'-TG6CCTG6TGAT66CG 6GATC6TT6T ATATTTCTTG ACACCTTTTC 66CATC6CCC TAAAATTC66 C6TCCTCATA TT6T6T6A666 -51 - 5 6 Τ1 Τ1 ACGTTTTATT ACGTGTTTAC GAAGCAAAGG CTAAAACC $\frac{T2}{A_{Ga}}$ GAGCTATTTA <u>ATG</u>GCAACAG TTAACCÅGCT GGTACGCAAA CCACGTGCTC 40A27 G4 A1 G1 GCAAAGTTGC GAAAAGCAAC GTGCCTGCGC TGGAAGCATG CCCCCCAAAAA CGTGGCGTAT GTACTCGTGT ATATACTACC ACTCCTAAAA 130 AACCEAACTC CECECTECET AAASTATECC STETTCETCT GACTAACEET TTCEAASTEA CTTCCTACAT CESTEETEAA GETCACAACC 220 A963 A1961 A27 A661 1 A1 A1 $\overline{61}$ TECAGGABCA CTCCETGATC CTEATCCETE ECCEPTET TAAGACCTC CCEGETETTC ETTACCACAC CETACETEET ECCETTEACT 310 GCTCCGGCGT TAAAGACCGT AAGCAGGCTC GTTCCAAGTA TGGCGTGAAG CGTCCTAAGG CTTAA -TGGTTCTCCGTTAAGTAAGGCC -3' 397

図3.8B umuDC polB変異株(MK1351)におけるrpsL標的遺伝子上で生じた塩基置換の分布

図3.8AB umuDC polB変異株(MK1351)におけるrpsL標的遺伝子上で生じた1塩基フレームシフト (A)および塩基置換(B)の分布を示した。配列の右に記した数字は開始コドンを1とした時の塩基 の番号を表す。配列中の下線はプロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始 コドンを示す。図中のvは1塩基の挿入を意味し、⊽は 1塩基の欠失を示す。塩基置換の場合は、元の 塩基の上に置換した塩基を記した。これらの変異した塩基の後ろの数字は同じ実験区で同様の部位で 見出された検出数を示す。各実験区は以下の色で識別した。実験区1、実験区2、実験区3、実験区4、 実験区5、実験区6。

図3.8C dumuDC polB変異株(MK1351)における rpsL標的遺伝子上で生じた重複および欠失の分布

図3.8C umuDC polB変異株(MK1351)におけるrpsL標的遺伝子上で生じた重複および欠失の分布 を示した。配列の右に記した数字は開始コドンを1とした時の塩基の番号を表す。配列中の下線はプロ モーター領域(-35配列、-10配列)、SD配列、開始コドン、終始コドンを示す。図中の∨は重複を、 ムは欠失を表し、それらの範囲は矢印で示した。重複あるいは欠失の両端に相同領域がある場合は、 その領域を同じ模様のボックスで記した。同じ実験区で同じ部位で同じ重複あるいは欠失が見つかっ た場合は、その検出数を∨あるいは∆の後に示した。各実験区は以下の色で識別した。実験区1、実験 区2、実験区3、実験区4、実験区5、実験区6。

表3.8. dinB umuDC polB三重変異株における前進突然変異の特異性 A. 変異の種類別変異頻度

					6	
			変異頻	度 ×1	0-6	
実験区	#1	#2	#3	#4	#5	ave ± SD
組換え型 ¹⁾	0.50	0.36	0.30	0.10	0.14	0.28 ± 0.16
塩基置換						
ホットスポット1(82C→A) ²⁾	0.018	0.0050	0.0024	0.014	0.0064	0.0092 ± 0.0067
ホットスポット2(245T→A) ²⁾	0.32	0.18	0.086	0.20	0.17	0.19 ± 0.085
ホットスポット3(245T→G) ²⁾	0.0046	0.0050	0.0095	ND	0.0064	0.0051 ± 0.0034
上記以外	0.20	0.0076	0.036	0.054	0.081	0.076 ± 0.075
1塩基フレームシフト	0.032	0.015	0.057	0.023	0.038	0.033 ± 0.016
2塩基フレームシフト	ND	ND	ND	ND	0.0043	0.00085 ± 0.0019
配列置換	ND	ND	ND	ND	ND	ND < 0.00086
欠失	0.018	0.0076	0.050	0.010	0.030	0.023 ± 0.017
重複	ND	ND	0.0048	0.0017	0.0043	0.0021 ± 0.0023
IS	0.0092	0.030	0.019	0.019	0.032	0.022 ± 0.0093
その他	ND	ND	ND	ND	ND	ND < 0.00086
変異なし	ND	ND	0.0024	ND	0.0021	0.00090 ± 0.0012
Total	1.1	0.61	0.57	0.42	0.51	0.64 ± 0.27

B.1塩基フレームシフトの種類別変異頻度

			変異頻	度 ×1	0 ⁻⁶	
実験区	#1	#2	#3	#4	#5	ave ± SD
Addition						
at run ³⁾	ND	ND	0.0071	0.0070	0.0021	0.0032 ± 0.0036
at non-run ³⁾	ND	0.0025	0.048	0.010	0.015	0.015 ± 0.019
total	ND	0.0025	0.055	0.017	0.017	0.018 ± 0.022
Deletion						
at run ³⁾	0.014	0.013	0.0024	0.0035	0.017	0.0098 ± 0.0065
at non-run ³⁾	0.018	ND	ND	0.0017	0.0043	0.0049 ± 0.0077
total	0.032	0.013	0.0024	0.0052	0.021	0.015 ± 0.012
Total	0.032	0.015	0.057	0.023	0.038	0.033 ± 0.016

独立した5実験区由来の合計1200クローンのrpsL標的遺伝子の塩基配列を決 定し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を 算出した。表中には、各実験区ごとの変異頻度(#1から#5まで)および、それ らの平均値(Ave.)を記載した。検出されなかった変異に関しては、実験区ご との変異頻度ではND(Not detected)と表記しているが、平均値を算出する際 には、その実験区の変異頻度を0として計算した。より詳細なデータについて は、付録表9を参照のこと。

前進突然変異の特異性

C. 塩基置換の種類別変異頻度

			変異頻	度 ×1	0 ⁻⁶	
実験区	#1	#2	#3	#4	#5	ave ± SD
Transition						
A:T→G:C	0.032	ND	0.0071	0.0035	0.043	0.017 ± 0.019
G:C→A:T	0.14	0.0076	0.012	0.0035	0.011	0.035 ± 0.060
total	0.17	0.0076	0.019	0.0070	0.053	0.052 ± 0.071
Transversion						
G:C→T:A	0.0046	ND	ND	0.030	0.0021	0.0073 ± 0.013
G:C→C:G	0.0092	ND	ND	0.0087	ND	0.0036 ± 0.0049
T:A→A:T	0.014	ND	0.0024	0.0087	0.023	0.0096 ± 0.0094
A:T→C:G	ND	ND	0.014	ND	0.0021	0.0033 ± 0.0062
total	0.028	ND	0.017	0.047	0.028	0.024 ± 0.017
Hot spot						
82C→A ²⁾	0.018	0.0050	0.0024	0.014	0.0064	0.0092 ± 0.0067
245 T→A ²⁾	0.32	0.18	0.086	0.20	0.17	0.19 ± 0.085
245 T→G ²⁾	0.0046	0.0050	0.0095	ND	0.0064	0.0051 ± 0.0034
total	0.34	0.19	0.097	0.22	0.18	0.21 ± 0.089
Total	0.55	0.20	0.13	0.27	0.26	0.28 ± 0.16

1)本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→G及び128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL遺伝子との組換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩基置換を持つ遺伝子を産出する。このうち、当研究では、後者のみの変異、あるいは両方の変異を持つものが検出された。これらは塩基置換変異の結果である可能性は極めて低く、当研究では組換え型として別記した。

2) 染色体*rpsL*系では、*rpsL*標的遺伝子の開始コドンから82番目に位置する CがAに置換する塩基置換と、245番目のTがAもしくはGに置換する塩基置 換が高頻度で観察され、塩基置換のホットスポットであると考えられた。他 の塩基置換の割合を明確にするために、このホットスポット上で起こった塩 基置換と他の塩基置換を分けて記載した。

3) 同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異頻度に関しては、runとrun以外とに分けて表示した。

元の塩基の上に置換した塩基を記した。これらの変異した塩基の後ろの数字は同じ実験区で同様の部 位で見出された検出数を示す。各実験区は以下の色で識別した。実験区1、実験区2、実験区3、実験 区4、実験区5。

図3.9C dinB umuDC polB変異株(MK1371)における rpsL標的遺伝子上で生じた重複および欠失の分布

図3.9C dinB umuDC polB変異株 (MK1371) におけるrpsL標的遺伝子上で生じた重複および欠失の 分布を示した。配列の右に記した数字は開始コドンを1とした時の塩基の番号を表す。配列中の下線は プロモーター領域(-35配列、-10配列)、SD配列、開始コドン、終始コドンを示す。図中のvは重複 を、Δは欠失を表し、それらの範囲は矢印で示した。重複あるいは欠失の両端に相同領域がある場合 は、その領域を同じ模様のボックスで記した。同じ実験区で同じ部位で同じ重複あるいは欠失が見つ かった場合は、その検出数をvあるいはΔの後に示した。各実験区は以下の色で識別した。実験区1、 実験区2、実験区3、実験区4、実験区5。

異株の

					М	utation frequency	y(×1()-6)						
	MK811		MK122	1		MK1331			MK1351			MK13	71	
	野生株		dinBurnuC 二重	重変異株	朱 dinB polB 二重変異株		polBumuDC 二重変異株			dinBpolBumuDC 二重変異株				
組換え型い	0.092	(1.0)	0.17	(1.8)	0.19	(2.1) 0.082	(0.88)	0.28	(3.0)
塩基置換 2)	0.21	(1.0)	0.25	(1.2)	0.23	(1.1) 0.34	(1.6)	0.28	(1.3)
1塩基フレームシフト3)	0.030	(1.0)	0.046	(1.5)	0.049	(1.6) 0.024	(0.79)	0.033	(1.1)
2塩基フレームシフト	ND<0.00070		0.0053			ND<0.0021			ND<0.0034			0.00085		
配列置換	ND<0.00070		0.0090			ND<0.0021			ND<0.0034			ND<0.00086		
欠失	0.033	(1.0)	0.039	(1.2)	0.012	(0.37) 0.0074	(0.22)	0.021	((0.64)
重複	0.0046	(1.0)	0.0026	(0.56)	0.0032	(0.69) ND<0.0034			0.0021	(().47)
IS	0.046	(1.0)	0.044	(1.0)	0.018	(0.40) 0.033	(0.72)	0.021	((0.46)
その他	ND<0.00070	(1.0)	0.0032			0.040			0.0081			0.0044		
変異なし	0.0084	(1.0)	0.0015	(0.18)	0.0021	(0.68) 0.0038	(0.46)	0.00090	((0.11)
Total	0.42	(1.0)	0.57	(1.3)	0.54	(1.3) 0.50	(1.2)	0.64	(1.5)

A. 変異の種類別変異頻度の比較進突然変異の比較

B. 1塩基フレームシフトの種類別変異頻度の比較

	MI/ 011	MI/1001		MI/1221		MI/12E1		MI/ 1	271
	MINOII	MIKIZZI		MICIODI		MIK I 33 I		MIN I	571
	野生株	dinBumuC 二重変爭	異株	dinB polB 二重変異	株	polBumuDC 二重变	異株	dinBpolBumuD	C 二重変異株
Addition									
at run	0.0049 (1.0) 0.0057	(1.2)	0.0010	(0.21)	0.0061	(1.2)	0.0032	(0.66)
at non-run	0.00059 (1.0) 0.0032	(5.4)	0.0095	(16)	ND<0.0034		0.015	(25)
total	0.0055 (1.0) 0.0089	(1.6)	0.011	(1.9)	0.0061	(1.1)	0.018	(3.2)
Deletion									
at run	0.018 (1.0) 0.032	(1.8)	0.0059	(0.33)	0.015	(0.86)	0.010	(0.56)
at non-run	0.0068 (1.0) 0.0048	(0.71)	0.032	(4.7)	0.0025	(0.37)	0.0049	(0.71)
total	0.025 (1.0) 0.037	(1.5)	0.038	(1.6)	0.018	(0.72)	0.015	(0.60)
Total	0.030 (1.0) 0.046	(1.5)	0.049	(1.6)	0.024	(0.79)	0.033	(1.1)

誤りがちDNA合成の特異性を明らかにするために、dinB umuDC変異株

(MK1221)、dinB polB変異株(MK1331)、polB uimuDC変異株(MK1351)、dinB polB uimuDC変異株(MK1371)を用いて、rpsL標的遺伝子上に生じた突然変異の塩 基配列を決定し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異 頻度を算出した。比較のために、野生株(MK811)での結果もあわせて記載し た。idinB umuDC変異株(MK1221)、dinB polB変異株(MK1331)、polB uimuDC坙 異株(MK1351)、dinB polB uimuDC変異株(MK1371)および野生株(MK811)のより詳 細なデータに関しては、それぞれ付録表1、付録表6、付録表7、付録表8、付録表9 を参照のこと。表中には平均値、及び、括弧内に野生株の変異頻度を1としたとき の相対値を示す。検出されなかった変異に関しては、ND(Not detected)と表記 し、さらにその右隣に当研究から推定された変異頻度の最大値 を記した。

umuDC変異株の前進突然変異の比較

C.塩基置換の種類別変異頻度の比較

				Mut	ation freque	ncy(×10 ⁻⁶)				
	MK811		MK12	21	MK13	31	MK13	351	MK	1371
	野生株		dinBumuC 二重変異株			重変異株	polBurnuDC :	二重変異株	dinBpolBumuDC 二重変異株	
Transition										
A:T→G:C	0.0071	(1.0)	0.041	(5.9)	0.013	(1.8) 0.0039	(0.55)	0.017	(2.4)
G:C→A:T	0.057	(1.0)	0.019	(0.33)	0.0017	(0.030) 0.022	(0.39)	0.035	(0.61)
total	0.064	(1.0)	0.060	(0.9)	0.014	(0.22) 0.026	(0.40)	0.052	(0.81)
Transversion										
G:C→T:A	0.014	(1.0)	0.0057	(0.40)	0.0026	(0.19) 0.0034	(0.24)	0.0073	(0.5)
G:C→C:G	0.0076	(1.0)	0.0048	(0.64)	0.0081	(1.1) 0.012	(1.5)	0.0036	(0.47)
T:A→A:T	0.0083	(1.0)	0.022	(2.6)	0.018	(2.2) 0.013	(1.6)	0.0096	(1.2)
A:T→C:G	0.0094	(1.0)	0.0043	(0.46)	0.0055	(0.58) 0.0022	(0.23)	0.0033	(0.35)
total	0.039	(1.0)	0.037	(0.93)	0.034	(0.87) 0.031	(0.77)	0.024	(0.60)
Hot spot										
82C→A ₂₎	0.017	(1.0)	0.016	(0.96)	0.0085	(0.51) 0.11	(6.7)	0.0092	(0.55)
245 T→A ₂₎	0.077	(1.0)	0.12	(1.5)	0.16	(2.1) 0.16	(2.0)	0.19	(2.5)
245 T→G ₂₎	0.013	(1.0)	0.019	(1.5)	0.011	(0.90) 0.018	(1.4)	0.0051	(0.40)
total	0.11	(1.0)	0.15	(1.4)	0.18	(1.7) 0.29	(2.7)	0.21	(1.9)
Total	0.21	(1.0)	0.25	(1.2)	0.23	(1.1) 0.34	(1.6)	0.28	(1.3)

1)本来の位置に局在する変異型のrpsL遺伝子は、開始コドンから-22番目のA→G及び128番目のC→Aの2つの変異を持つ。この遺伝子と標的となる野生型rpsL遺伝子との組換えは、その位置により、前者のみ、後者のみ、あるいは両方の塩基置換を持つ遺伝子を産出する。このうち、当研究では、後者のみの変異、あるいは両方の変異を持つものが検出された。これらは塩基置換変異の結果である可能性は極めて低く、当研究では組換え型として別記した。

2) 染色体rpsL系では、rpsL標的遺伝子の開始コドンから82番目に位置する CがAに置換する塩基置換と、245番目のTがAもしくはGに置換する塩基置 換が高頻度で観察され、塩基置換のホットスポットであると考えられた。 他の塩基置換の割合を明確にするために、このホットスポット上で起こっ た塩基置換と他の塩基置換を分けて記載した。

3) 同一の塩基が2つ以上連続する部位をrunと呼ぶ。1塩基フレームシフトの変異頻度に関しては、runとrun以外とに分けて表示した。

第四部 複製エラーにおけるPol IV(DinB)の関与

第一章 序論

本研究において、大腸菌の複製型DNAポリメラーゼであるPol IIIによる複製エラーは校 正機能やミスマッチ修復機構によって高効率に修復されており、自然突然変異の発生に関 与していないことが明らかになった(第二部参照)。また、誤りがち修復を行うTLS型 DNAポリメラーゼ(Pol II、Pol IV、PolV)も自然突然変異の発生に関与していないことが 強く示唆された(第三部参照)。

通常、TLSポリメラーゼやDNA修復関連タンパクは、DNA損傷などによって引き起こ されるSOS応答によって強発現される(図3.1)。しかし、非SOS応答時におけるSOS遺 伝子の発現数は抑えられている。polBにコードされるPol IIは非SOS応答時の細胞内での 分子数はおよそ50分子以下であると示されている(Qiu 1997)。umuDCによってコー ドされるPolVも非SOS応答時における大腸菌細胞での分子数は15分子以下であることが 示されている(Woodgate 1991)。大腸菌で見いだされている5つのTLSポリメラーゼのう ち、dinBにコードされるPol IVは、非SOS応答時の発現分子数が細胞あたり250分子存在 することが示されている(Kim 2001)。複製型DNAポリメラーゼであるPol IIIの細胞内の で分子数は30分子程度であり(McHenry 1977)、Pol IVの分子数は、他のTLSポリメ ラーゼであるPol IIやPol Vより多いだけでなく、複製型DNAポリメラーゼであるPol IIIよ りも細胞内の分子数が多い。

Pol IVは損傷のないDNA鎖上で突然変異を生じることが示されている。*dinB*遺伝子を コピー数の高いプラスミドにクローニング、大腸菌に導入することにとによって、大腸菌 細胞内でPol IVを過剰発現させた場合、損傷のないDNA鎖上の同じ塩基が並んだrun配列 上で-1塩基フレームシフトを生じることが示されている(Kim 1997)。また、UVを照射し て、SOS応答を誘導した後の大腸菌に感染させた入ファージのDNA上における突然変異 (入ファージのuntarget mutagenesis:入UTM)を解析した結果、dinB欠損株では、 入UTMは起こらなかった。すなわち、損傷がないと思われる入ファージDNA上で、SOS 遺伝子である*dinB*によって突然変異が生じている可能性が示唆された(Wood 1984)。そ こで、通常生育下における他のDNAポリメラーゼよりも遙かに分子数が多く、かつ損傷 のないDNA鎖上でエラーを生じるPol IVの複製エラーの関与を明らかにするため、複製 エラーを修復するミスマッチ修復機構を欠損させた変異株に、*dinB*変異を導入し、複製 エラーにおけるPol IVの関与を明らかにすることを試みた。

第二章 結果と考察

Pol IV(dinB)は、損傷のない鋳型DNA鎖上でエラーを生じることが示されている。そ こで、Pol IV(*dinB*)の複製エラーの関与を明らかにする目的でミスマッチ修復機構を欠損 させた大腸菌株(*mutS*変異株)に*dinB*変異を導入し、*dinB mutS*二重変異株を作成した。

自然突然変異における複製エラーの関与を明らかにする目的で解析したミスマッチ修復 欠損株(mutS変異株)および自然突然変異におけるTLSの関与を明らかにする目的で解 析したTLS型ポリメラーゼ欠損株(dinB変異株、dinB umuDC二重変異株、dinB polB二 重変異株、polB umuDC二重変異株、dinB umuDC polB三重変異株)は染色体rpsL突然 変異検出系を用いて解析を行った。染色体rpsL検出系は、1塩基フレームシフトや塩基置 換などの点突然変異だけでなく欠失、重複、配列置換などの数十塩基から数百塩基に及ぶ 変異を検出できる実験系である。また、rpsL標的遺伝子が大腸菌染色体上に配置されて いるため、通常生育下で発生する染色体上での自然突然変異を効率的かつ網羅的に解析す ることが可能となっている。しかし、染色体rpsL検出系では、発生頻度が低い変異の検 出も行うため、同一実験区から、多数の検体の塩基配列レベルでの解析を行う必要性が あった。1つの実験区から多数の検体を解析するため、各変異株間で発生した突然変異の 発生頻度に差があるというには数倍~10倍以上の変異頻度の差が必要であった。Pol IV はTLSポリメラーゼであるため、自然生育下における複製エラーへの寄与度も不明であ る。そこで、本研究では、複製エラーを検出でき、かつ多数の実験区の解析が可能な標的 遺伝子であるrpoB遺伝子を用いて解析を行った。rpoBは大腸菌のRNAポリメラーゼβサ ブユニットをコードする遺伝子であり、抗生物質であるリファンピシリン(Rif)に対し て感受性を示す。大腸菌rpoB上に生じる塩基置換変異とRif耐性が相関することが示され ているため、複製エラーとして1塩基フレームシフトに次いで高頻度に生じる塩基置換を 検出することにより、Pol IVの複製エラーへの関与を明らかにすることを試みた。

4.1 rpoB前進突然変異頻度の測定

Pol IVの複製エラーへの関与を明らかにするために、*rpoB*遺伝子上での前進突然変異 頻度を測定した。*rpoB*遺伝子上での複製エラーの発生頻度を明らかにする目的で、ミス マッチ修復欠損株(*mutS*変異株)の解析を15実験区、複製エラーへのPol IVの関与を明 らかにする目的で*dinB mutS*二重変異株の解析を15実験区行った。多数の実験区をもう け、平均値と中央値を算出し、Pol IVの複製エラーへの関与を明らかにすることを試み た。その結果、野生株において、*rpoB*前進突然変異頻度の平均値は0.42×10⁻⁶であり、中 央値は2.3×10°であった。*mutS*変異株において、*rpoB*前進突然変異頻度の平均値は3.2 ×10°であり、中央値は2.9×10°であった。*dinB mutS*二重変異株においては、*rpoB*前 進突然変異頻度の平均値は1.9×10°であり、中央値は1.6×10°であった。野生株に対す る*mutS*変異株の*rpoB*前進突然変異頻度の平均値の相対値は、7.6倍であり、中央値の相 対値は、13倍であった(表4.1)。この結果から、本研究でも*rpoB*遺伝子上で複製エラーが 検出されていることが示された。

mutS変異株に対するdinB mutS二重変異株のrpoB前進突然変異頻度の平均値の相対値 は0.61倍であり、中央値は0.55倍であった(表4.1、図4.1)。rpoB標的遺伝子を用いて 多数実験区の解析を行った結果、dinB mutS二重変異株はmutS変異株に比べて、塩基置 換の発生頻度が中央値においておよそ半分に低下していた(図4.1)。この結果から、dinB によってコードされるPol IVが通常生育下で複製エラーを生じていることが示された。

4.2 Pol IVの複製エラーへの関与について

*mutS*変異株の*rpoB*前進突然変異頻度に比べ、*dinB mutS*二重変異株の*rpoB*前進突然 変異頻度はおよそ半分に低下していた。この結果から、*rpoB*遺伝子上で検出される塩基 置換のうち、およそ半分がPol IVによって生じている可能性が示唆された。

前述したようにPol IVは非SOS応答時でも細胞内で250分子以上の存在が確認されており、また、損傷のない鋳型DNA鎖上で複製エラーを引き起こすことが示されている。複製型DNAポリメラーゼが何らかの原因で鋳型DNA鎖上から離れた際、分子数の多いPol IVが伸長鎖末端においてPol IIIとスイッチングをし、複製エラーを引き起こしいる可能性が考えられる。

以上の結果から、Pol IVは複製エラーを生じていることが明らかになった。近年、 dinBがadaptive mutationに関与していることも示されており(Slechta 2003)、Pol IV は、DNA鎖上の損傷がなくても突然変異に関与していることが示されている。Pol IVは 他のTLSポリメラーゼと異なり、通常環境下で突然変異の発生に寄与している可能性が考 えられる。損傷のないDNA鎖上で複製エラーを生じ、進化の原動力を生じさせることの できるdinBは、非SOS応答時における新しい個体の創出に寄与しているのかもしれな い。

90

表4.1 野生株、mutS変異株、dinB mutS二重変異株に

おけるrpoB前進突然変異頻度

strain									Mutati	on Freq	uency(×10 ⁻⁸)					
	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	#14	#15	Ave±SD	Median
MK811(野生株)	2.6	4.4	1.0	0.90	21	3.5	1.6	5.7	1.9	1.5	1.4	2.3	0.29	6.7	8.3	4.2 ± 5.2	2.3
MK1381(mutS 変異株)	23	48	24	25	47	23	30	46	30	38	45	28	27	29	19	32 ± 9.9	29
MK1391(dinBmutS 変異株)	15	29	16	27	17	13	18	25	25	39	15	13	15	12	13	19 ± 7.8	16

野生株、mutS変異株、dinB mutS二重変異株におけるrpoB前進突然変異頻度を測定した。測定には各菌株で独立した15実験区をもうけ、平均値と中央値を測定した。

図4.1 *mutS*変異株、*dinB mutS*二重変異株における*rpoB*前進突然 変異頻度

測定したrpoB前進突然変異頻度のmutS変異株、dinB mutS二重変異株における各実験区の 分布と中央値を示した。図中の赤はmutS変異株の数値を示し、青はdinBmutS二重変異株の 数値を示す。赤、および青の点は各実験区の変異頻度を表し、赤、および青の線は中央値を 表す。

1. 菌株

本研究で用いた大腸菌は、全てゲノムプロジェクトで用いられたMG1655由来の菌株で ある。表1にそれらの遺伝子型および入手方法について記載した。

大腸菌MK811は、ストレプトマイシン(Sm)耐性を示す変異型のrpsL遺伝子および Sm感受性を示す野生型のrpsL遺伝子を持つrpsL部分二倍体である。本来の局在位置にあ るrpsL遺伝子では、開始コドンから128番目のAがGに変化することにより、コードする アミノ酸がlysからargに置換している。もう一つのrpsL遺伝子は、ゲノム上59分に位置 するcysJIHオペロンのプロモーター部位に、転写終結因子であるrrnBT1T2及びアンピシ リン(Ap)耐性遺伝子と共に挿入されており、ゲノムの複製方向に対して順向きに配向 している(図5.1)。rpsL遺伝子ではSm感受性の形質が優性であるため、MK811はSm 感受性の表現型を示す。MK811は、MK1201、MK1311、MK1301、MK1221、 MK1331、MK1351及びMK1371の野生型株である。

*polB*変異株を作成は、one step gene disruptionの方法を用いて行った(Wanner 2000)。作成した*pol B*変異株(BW25113*ΔpolB*)からP1ファージを用いてMK811に導入し た。BW25113*ΔpolB*から*polBD*は、カナマイシン(Km)耐性遺伝子をマーカーとして 持つため、この形質を第一の指標とした。得られた候補のうち、形質導入の確認のため、 PCRによって変異導入の確認を行った。MK1331はyG7207から*ΔdinB*をP1ファージを 用いてMK1311に導入した。*ΔdinBは*カナマイシン(Km)耐性遺伝子をマーカーとして 持つため、この形質を第一の指標とした。MK1351はyG7209から*ΔumuDC*をP1ファー ジを用いてMK1311に導入した。*ΔumuDC*はクロラムフェニコール(Cm)耐性遺伝子 をマーカーとして持つため、この形質を第一の指標とした。MK1371はyG7209から*Δ umuDC*をP1ファージを用いてMK1331に導入した。*ΔumuDC*はクロラムフェニコール

(Cm) 耐性遺伝子をマーカーとして持つため、この形質を第一の指標とした。MK811 は本研究室の井田氏から、MK1201、MK1301、MK1221は本研究室の松尾氏から分与 をうけた。MK1391は、yG7207から*Δ dinB*をP1ファージを用いてMK1381に導入した (表5.1)。

92

表5.1 菌株のリスト

菌株 道	遺伝子型	入手方法
MG1655	LAM [™] <i>rph</i> -1	当研究室のストック
ES1301	/ <i>acZ53</i> (Ap ^r) lambda⁻ <i>mutS201∷Tn5</i> 2 thyA36	当研究室のストック
	IN(rrnD-rrnE)1 <i>rha-5 metB1 deoC2</i> ?	
DB1318	recA938::Tn9-200° recD1014	<i>Tn10</i> 当研究室のストッ・
MK801	<i>rpsL4</i>)であること以外はMG1655と同じ	井田慶子氏より分与
MK811 ⁵⁾	D <i>cysJIH∷rpsL</i> であること以外はMK801と同じ	井田慶子氏より分与
yG7207	<i>∆dinB∷Km</i> であること以外はAB1157と同じ	Fuchs氏より分与
yG7209	ΔumuDC∷Kmであること以外はAB1157と同じ	Fuchs氏より分与
BW25113	Δ (araD-araB)567 Δ lacZ4748(∷rrnB-4)	Wanner氏より分与
	Δ lacIp-4000(lacI°) LAM ⁻ rph-1 Δ (rhaD-rhaB)568	
	hsdR514	
BW25113∆po/B	<i>∆po1B∷Km</i> 以外はBW25113と同じ	本研究
MK1201	ΔdinB∷Kmであること以外はMK811と同じ	松尾望美氏より分与
MK1301	∆umuDC∷Cmであること以外はAB1157と同じ	松尾望美氏より分与
MK1221	ΔdinB∷Km ΔumuDC∷Cmであること以外は	松尾望美氏より分与
	MK811と同じ	
MK1311	Δpo/Bであること以外はMK811と同じ	本研究
MK1331	$\Delta dinB::Km \Delta po/B::Km であること以外はMK811と同じ$	本研究
MK1351	$\Delta po/B::Km \Delta umuDC::Cmであること以外はMK811と同じ$	本研究
MK1371	ΔdinB∷Km ΔpolB ΔumuDC∷Cmであること以外は	本研究
	MK811と同じ	· ·
MK1381	<i>∆mutS:tet</i> であること以外はMK811と同じ	本研究
MK1391	$\Delta dinB::Km \Delta mutS:tet$ であること以外はMK811と同じ	本研究
BW25113	∆ (araD–araB) 567 ∆ IacZ4748 (∷rrnB–4)	Wanner氏より分与
	Δ lacIp-4000(lacI') LAM ⁻ rph-1 Δ (rhaD-rhaB)568	
	hsdR514	· ·
BW25113∆po/B	Δpo1B∷Km以外はBW25113と同じ	本研究

1) dnaE遺伝子から2分以内に位置するZae遺伝子座にテトラサイクリン耐性遺伝子が挿入されて いる (Zae-502::Tn10)。

2) マーカーとしてカナマイシン耐性遺伝子を持つ。

 3) マーカーとしてクロラムフェニコール耐性遺伝子を持つ。
 4) rpsL遺伝子の開始コドンから128番目のAがGに変化することにより、コードするアミノ酸がlys からargに置換している。MK801はストレプトマイシン耐性の表現型を指標としてMG1655から単 離された。

5) ゲノム上59分に位置するcysJIHオペロンのプロモーター部位に、rpsL標的遺伝子を含むカセットが染色体の複製方向に対して順向きに挿入されている。このカセットは、野生型のrpsL遺伝子 とともに転写終結因子であるrrnBT1T2及びアンピシリン耐性遺伝子を持ち、プラスミドpMOL21-N1 (川野, 1997)にクローニングされている。アンピシリン耐性およびcys要求性を指標として、P1

ファージを用いてMG1655にこのカセットを挿入した。 6) P1ファージを用いてCAG18436からZae-502::Tn10の形質をMK426に導入し、得られた細胞と

MK811を接合させることにより、MK811にdnaE173の形質の導入を行った。

図5.1 大腸菌染色体におけるrpsL標的遺伝子挿入部位

染色体*rpsL*系で大腸菌染色体上の*rpsL*標的遺伝子の挿入部位を示した。図の遺伝子地図(Bachmann, B. 1990)に記載された染色体上59分に位置する*cysJIHにrpsL*標的遺伝子を挿入した。*cysJIH*はアミノ酸シスチジン合成に関与する遺伝子であり、*rpsL*標的遺伝子が挿入されるとシスチジン要求性株となる。

2. 培地、酵素、試薬

NaClやKCl等の塩類、NaOH等のアルカリ、グルコース等の糖類、抗生物質等の一般 的な粉末試薬に関しては、特に記載のない限り和光純薬工業の製品を使用した。HCl、グ リセロール等の液体試薬についてはナカライテスク株式会社の製品を、agar、peptone、 yeast extract 等の培地成分にはDifco社製の製品を、塩基配列を決定するための試薬に関 してはSigma Chemical Co.の製品を使用した。耐熱性DNAポリメラーゼについては TAKARAの製品を用い、製造元の指示に従って使用した。

特に記載のない限り、各種培地を作成する際には脱イオン水を用い、その他の各種溶液 についてはMilliQ水に溶解して調製した。%で表した濃度は、特に記載のない限り weight/volumeである。

基本的な操作に関しては、*Molecular cloning*(Sambrook *et al.*, 1989)の記載に従っ て行った。一般の大腸菌の培養にはLB培地 [1% Bacto tryptone, 0.5% Bacto yeast extract, 1% NaCl]を用いた。寒天培地として用いる場合には特に記載のない限り、 1.5%の濃度でBacto agarを加えた。

培地に添加した抗生物質の最終濃度に関しては、Sm、Cm、Rifについては100 µg/ml、Kmについては40µg/mlとした。抗生物質のストック溶液の濃度については、 Smに関しては滅菌水に溶解して濃度を100 mg/mlとし、Cmに関しては99.8%のエタ ノールに溶解して濃度を100 mg/mlとし、Kmに関しては滅菌水に溶解して濃度を40 mg/mlとし、Rifに関しては99.5%のメタノールに溶解して濃度を25 mg/mlとした。Sm に関してはLB培地を作製する際に、その都度調整した。Sm以外の抗生物質のストック溶 液については-20℃で保存し、使用する直前に室温で融解した。各抗生物質を含む培地を 作成する際には、オートクレーブ後のLB培地を60℃程度まで冷やし、Rifに関してはス トック溶液の1/500量を、その他の抗生物質についてはストック溶液の1/1000量を添加 した。

P1ファージによる形質導入の際には、R-top ager [1% Bacto Trypton, 0.1% Bacto yeast extract, 0.8% NaCl, 0.8% Agar,オートクレーブ後20 mM CaCl₂, 0.1% glucose]及びR-plate [R-top agerのAgarの濃度を0.8%から1.2%に変更したこと以外は同じ]を使用した。

3.大腸菌の培養

大腸菌の培養に関しては、*Molecular cloning*(Sambrook *et al.*, 1989)の記載に従って行った。特に記載のない限り、一夜培養液とは、LB寒天培地で菌株のグリセロールス

トックを画線培養して得たシングルコロニーを、適当な抗生物質の入ったLB寒天培地に 再度画線培養し、LB培地に植菌し、37℃で12時間(対数増殖後期から定常期)回転培養 したものである。

4. P1ファージによる形質導入

A short course in bacterial genetics(Miller, 1992)の記載に従って、P1ファージを 用いた大腸菌への形質導入を行った。

a) P1溶菌液の調整

5 mM CaCl を含む5 mlのLB培地に*mutSD*供与菌(ES1301)あるいは*recAD*供与菌 (DB1318)の一夜培養液50 µlを添加し、37℃でO.D.₆₀₀=0.9~1.0に達するまで培養し た。この培養液1 mlに1.0×10⁷ pfuのP1ファージを加え、37℃で20分間振とうして大腸 菌にファージを感染させた。これに60℃に保温したR-top agarを2.5 ml加え、すぐにRplate上に流し込んだ。37℃で12時間の静置培養を行った後、R-top agarおよび1 mlのLB でR-plateをリンスしたものを遠心管に回収した。これにクロロフォルムを5滴加えた後、 vortexで30秒間撹拌し、遠心(10000 rpm, 4℃, 15分間, Beckman)した。上清を新し い遠心管に回収してクロロフォルムを5滴加え、vortexで撹拌し、これをP1溶菌液とし た。

b) P1溶菌液による形質導入

受容菌株(MK811、MK832、MK1125あるいは MK1137)の1 mlの一夜培養液を遠 心(5000 rpm, 4℃, 5分間)し、沈殿に1 mlのMC buffer [0.1 M MgSO₄, 5 mM CaCl₂] を加えた。この懸濁液0.1 mlに、原液のP1溶菌液あるいは10倍に希釈したP1溶菌液を0.1 ml添加し、室温で2分間静置した後、0.2 mlの0.1 Mクエン酸緩衝液(pH5.5)を加え た。このうち0.1 mlをKm含有LB寒天培地あるいはCm含有LB寒天培地に塗布し、37℃ で12時間静置培養した。

5. UV感受性試験

*recAD*の形質導入を確認する目的で、*Molecular cloning*(Sambrook *et al.*, 1989)の 記載に従って、細胞のUVに対する感受性を調べた。一夜培養液の原液および10倍希釈液 を2µlづつ3点に、LB寒天培地上にスポットした。コントロールとして*recA*⁺株の一夜培 養液を同様にスポットした。アルミ箔張りのボール紙で寒天培地上の菌液のスポットの1 つを覆い、UV Stratalinker(STRATAGENE)を用いて、15 mJ/cm²のUVを照射し た。ボール紙をずらし、菌液のスポットを2つ覆った状態で再度15 mJ/cm²のUVを照射 した。この一連の操作により、各菌株に関して30 mJ/cm²、15 mJ/cm²あるいは0 mJ/m² の照射量の異なる3つのスポットが存在することになる。UV照射後、寒天培地を遮光し た状態のまま37℃で20時間培養した(図1-A, B)。

6. polymerase chain reaction (PCR) による*rpsL*標的遺伝子の増幅

a)ボイル法による鋳型DNAの調整

寒天培地上より滅菌した爪楊枝を用いて拾い上げた大腸菌を、PCR チューブに分注し た20 µlのTE buffer [10 mM Tris-HCl, 1 mM EDTA pH8.0] に懸濁した。これをGene Amp PCR System9600 (PERKIN ELMER社) あるいは同9700を用いて99℃で3分間加 熱後、3000 rpmで5分間遠心し、上清をPCRの鋳型DNAとした。

b) プライマー

dFOR21 (5'-CAGCCAGATGGCCTGGTG-3' 18 mer)

dREV21R (5'-ATGCCTGCAGGTCGACTCTAG-3' 21 mer)

プライマーの合成に関しては、日本製粉株式会社に製造委託をした。このプライマー セットを用いると、プロモーター領域から停止コドンまでを含む723 bpの*rpsL*標的遺伝 子領域を増幅することができる。

c)反応液の調整およびPCR反応

10×PCR buffer、dNTP mix、Taq polymeraseについては宝酒造株式会社の製品を用 い、PCR反応にはGene Amp PCR System9600(PERKIN ELMER社) あるいは同9700 を使用した。反応液の組成は、10 mM Tris/HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, 0.2 mM dNTP mix, 10 mM 各プライマー(dFOR21およびdREV21R), 0.05 unit/ μ l Taq polymeraseである。この反応溶液19 μ lに鋳型DNA溶液を1 μ l加え、全量を20 μ lとし た。PCRの条件としては、95℃ 1分間のDNA熱変性の後、95℃ 30秒間、60℃ 30秒間、 72℃ 1.5分間の3段階を30サイクル繰り返して行った。

7. アガロースゲル電気泳動

Molecular cloning(Sambrook *et al.*, 1989)の記載に従って、DNAのアガロースゲル 電気泳動を行った。アガロースにはAgarose LO3(TAKARA)を用い、0.7%のゲル濃 度で使用した。bufferについてはTAE buffer [40 mM Tris-acetate, 2 mM EDTA (pH 8.0)]を用いた。泳動にはミューピッド泳動漕(コスモ・バイオ社)を使用し、電圧100 Vで35分間通電した。泳動後、0.5 µg/mlのエチジウムブロマイド水溶液に浸し、30分間、振とうしながらDNAを染色した。UVトランスイルミネーター(ATTO社)を用いて ゲルに紫外線を照射することによりDNAを観察し、得られた泳動像をCCDカメラで撮影 した。

8. プライマーの除去

PCR産物からプライマーを除去するためには、ポリエチレングリコール(PEG)によ る精製(*Molecular cloning*)あるいはPCR Products Pre-Sequence Kit(USB.co)に よる精製を行った。

a) ポリエチレングリコール (PEG) 沈殿による精製

Applied Biosystems社製の373 DNA Sequencerを用いて塩基配列を決定する場合に は、鋳型DNAの調整のために、PCR産物をPEG沈殿で精製した。PCR産物に最終濃度で 8% PEG6000、0.98 M NaClを加え、遠心(14000 rpm, 4℃, 30分間)した。沈殿物に-20℃で冷却した70%エタノールを加えて洗浄し、遠心(14000 rpm, 4℃, 10分間)し、上 清を捨てた。真空乾燥機でDNAの沈殿物を乾燥させ、10 µlの1/10濃度のTE buffer [1 mM Tris/HCl (pH 8.0), 0.1 mM EDTA] に溶解した。

b) PCR Products Pre-Sequence Kit (USB.co) による精製

PERKIN ELMER社製のBiosystem3700を用いて塩基配列を決定する場合には、PCR Products Pre-Sequence Kitを用い、製造元の指示に従ってPCR産物を精製した。 Exonulcease時およびShirimp Alkaline PhosphataseについてはKit付属のものを用い た。反応液の最終濃度に関しては、Exonulcease時については0.0001875 unit/µl、 Shirimp Alkaline Phosphataseについては0.000375 unit/µlとした。37℃で30分間の酵 素反応を行った後、81℃で30分間の熱処理を行うことにより酵素を失活させた。

9. DNA塩基配列の決定

塩基配列の決定には、ABI PRIZM[™] Big Dye Terminator Cycle Sequencing Kit (PERKIN ELMER社製)を用いて、Big Dye Terminator Cycle Sequencing用reaction mixtureの量を半量にしたこと以外は付属のプロトコールに従って行った。プライマーを 除去した50 ngから100 ngのPCR産物を、サイクルシークエンスのための鋳型DNAとし て用いた。電気泳動、蛍光ラベルの検出および解析に関しては、Applied Biosystems社 製の373 DNA SequencerあるいはPERKIN ELMER社製のBiosystem3700を用いて行った。

10. 自然突然変異頻度の測定

突然変異の発生は非常に頻度の低い現象であり、しかもランダムな現象であるためポア ソン分布に従うことが知られている (Luria and Delbruk, 1943)。従って、突然変異頻度 の測定には完全に独立した複数の実験区を用いる必要がある。

突然変異頻度の測定を行う際には、毎回新鮮な菌株(MK811、MK1201、MK1301、 MK1311、MK1221、MK1331、MK1351、およびMK1371)をグリセロールストック から取り出し、LB寒天培地上にて37℃で18時間の画線培養を行った。そのうちの1つの コロニー由来の菌体を5 mlのLB培地に植菌し、37℃で18時間、回転培養した。この培養 液をLB培地で10⁶倍に希釈して、100 μlをLB寒天培地に塗布した。37℃で18時間の静置 培養後に出現したコロニー数から、変異導入培養開始時における生菌数を測定した。ま た、この10⁶倍に希釈した100 μlの培養液を5 mlのLB培地に植菌し、37℃でO.D.₆₀₀=1.0ま で160 rpm/minの速度で振とう培養した。この培養液をLB培地で10⁶倍から10⁴倍に希釈 して、50 μlもしくは100 μlをLB寒天培地に塗布し、37℃で静置培養した。このコロニー 数から変異導入培養後の生菌数を測定した。また同時に、原液、もしくはLB培地で10倍 から10²倍に希釈して、50 μlあるいは100 μlをSm含有LB寒天培地上に塗布した。37℃で 静置培養後、出現したコロニー数から変異体数を測定した。このLB寒天培地およびSm含 有LB寒天培地、またはRif含有LB寒天培地の静置培養に関しては、野生型株を20時間静 置培養した時の最大のコロニーの大きさと比較して、各変異株のそれが同程度になった時 に培養を停止した。

11.UV感受性の測定

各菌体の培養をLog phaseでとめ(OD600=0.2~0.3)、菌液を遠心して、上清を捨 て、0.9%NaCl溶液に溶かした。滅菌した時計皿に菌液を移し、UV照射を行った。UV照 射後、菌体をLB培地、およびRif含有LB培地に塗布し、20時間の静置培養した。以上の 作業は暗室で行った。

99

総括

1.自然突然変異の発生と抑制の分子機構

大腸菌ミュテーター遺伝子の解析から複製エラーを修復する校正機能やミスマッチ修復 機構を欠損させた場合、突然変異の発生頻度~10⁶倍の上昇がみられる。複製エラーを修 復する遺伝子の欠損により劇的に変異頻度が上昇することから、複製エラーが自然突然変 異の発生原因と考えられていた。しかし、近年の解析から、自然DNA損傷に由来する突 然変異、特にDNA損傷を乗り越える際にエラーを生じる損傷乗り越えDNA合成の関与が 示唆されていた。

2.自然突然変異における複製エラーの関与

本研究で用いた染色体rpsL検出系は大腸菌の染色体上に発生する自然突然変異を網羅 的に解析することができる実験系である。染色体rpsL検出系を用いて、染色体上に生じ る自然突然変異の発生に対する複製エラーの関与を明らかにする目的でミスマッチ修復機 構を欠損させたmutS変異株の解析を行った。自然突然変異の発生原因が複製エラーであ り、複製エラーを校正機能やミスマッチ修復機構が修復しきれなかった前変異損傷が自然 突然変異となるならば、野生株とmutS変異株の変異スペクトラムは一致するはずであ る。しかし、野生株とmutS変異株における塩基配列レベルで明らかにした前進突然変異 の特異性は全く異なったものであった。この結果から、自然突然変異の発生原因が複製エ ラーであるこという可能性は否定的となった。

3.自然突然変異における損傷乗り越えDNA合成の関与

自然突然変異の発生原因が複製エラーではないことが強く示唆されたため、複製エラー と同様に前変異損傷の発生原因となる自然DNA損傷に注目した。自然DNA損傷は、 DNA鎖上に生じる損傷である紫外線などの外的の要因のみならず、活性酸素などの内的 な要因によっても生じることが知られている。近年、鋳型DNA鎖上に配置したDNA損 傷を、誤った塩基を入れながら乗り越える「損傷乗り越えDNA合成」が突然変異の発生 原因として注目されている。大腸菌においても、SOS応答時に発現する遺伝子の産物とし て、損傷乗り越えDNA合成を行うTLSポリメラーゼが3つ見いだされている。大腸菌の TLSポリメラーゼはPol II(*polB*)、PolIV(*dinB*)、PolV(*umuDC*)であり、他の生物のTLS ポリメラーゼ同様、損傷乗り越えDNA合成を行うことが生化学的、遺伝学的に明らかに されつつある。Pol IIはDNA鎖上のアセチルアミノフルオレン(AAF)を乗り越える際 に、2塩基の欠失を生じることが示されている。Pol IVもDNA鎖上のベンゾピレン

(BaP)を乗り越えるときに、1塩基の欠失を生じることが示されている。また、Pol Vは 鋳型DNA鎖上に配置した6-4光産物を乗り越えるとき、Tに対してCを挿入して塩基置換 を引き起こすことが示されている。しかし、大腸菌における自然突然変異への関与は明ら かにされておらず、本研究で解析を試みた。大腸菌染色体*rpsL*系を用いて塩基配列レベ ルでの大量解析を行った結果、標的遺伝子上に生じる突然変異の特異性には野生株とTLS 欠損株ではほとんど違いがみられなかった。人工的に配置した鋳型DNA鎖上の損傷を乗 り越える際に、突然変異を生じるTLSポリメラーゼは、自然生育下で発生する自然突然変 異にはなんら関与をしていない可能性が強く示唆された。

4.複製エラーにおけるdinBの関与

損傷を乗り越える際に突然変異を引き起こすTLSポリメラーゼは、通常生育下で発生す る自然突然変異には関与していないことが示唆された。しかし、大腸菌の3つのTLSポリ メラーゼのうち*dinB*遺伝子にコードされるPol IVは、損傷のない鋳型DNA鎖上でも突然 変異を生じることが示されている。また、dinBは非SOS応答時において、他のTLSポリ メラーゼや複製型DNAポリメラーゼであるPol III よりも5倍から15倍も分子数が多 く、突然変異の発生に関与している可能性は否定できない。そこで、本研究では、Pol IV が複製エラーに関与しているのではないとか考えミスマッチ修復機構を欠損させた*mutS* 変異株にPol IVをコードする*dinB*変異を導入して、Pol IVの複製エラーへの関与を明らか にすることを試みた。

rpoB標的遺伝子上に生じる塩基置換変異の測定を行ったところ、mutS変異株に比べ、 dinB mutS二重変異株は、変異頻度の平均値、および中央値の両方が半分程度に下がって いた。この結果から、dinBは前変異損傷として、複製エラーを高頻度に生じている可能 性が示唆された。dinB変異株における変異頻度は野生株と同程度であるため、dinBに コードされるPol IVは、DNA複製時に何らかの原因によって複製型DNAポリメラーゼで あるPol IIIと置き換わり、複製エラーを生じてはいるが、ミスマッチ修復機構によって高 効率に修復されていることが示唆された。

101

付録表1野生株における変異の種類別変異頻度

A 変異の種類別変異頻度

at run

at non-run

32

10

8

		Muta	ation sco	ored				Mutatio	on freque	ncy(×10 ⁻	⁻⁶)		
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave	± SD
組換え型													
1点型(128A→C)	8	16	7	8	42	81	0.023	0.025	0.010	0.012	0.058	0.026	± 0.019
2点型(-22G→A,128A→C)	36	23	57	44	30	190	0.10	0.036	0.083	0.068	0.041	0.066	± 0.028
塩基置換													
ホットスポット1(82C→A)	6	8	14	16	6	50	0.017	0.013	0.020	0.025	0.0083	0.017	± 0.0064
ホットスポット2(245T→A)	46	53	39	35	42	215	0.13	0.084	0.057	0.054	0.058	0.077	± 0.033
ホットスポット3(245T→G)	2	25	1	7	4	39	0.0058	0.040	0.0015	0.011	0.0055	0.013	± 0.015
上記以外	91	34	21	65	52	263	0.26	0.054	0.031	0.10	0.072	0.10	± 0.092
1塩基フレームシフト	10	38	7	18	17	90	0.029	0.060	0.010	0.028	0.023	0.030	+ 0.018
2塩基フレームシフト	0	0	0	0	0	0	ND					ND	
記録がいたが、	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	
な生		0											
$\sqrt{2}$	34	0	11	7	12	64	0.098	ND	0.016	0.011	0.017	0.028	+ 0.039
$a/J^2(ir)$	0	Õ	0	0	0	0	ND	ND	ND		ND		_ 0.000
$a d d^3 (rtr1.)$	ő	1	ő	ő	ő	1	ND	0.0016	ND	ND	ND	0 00032	+ 0.00071
ション5(1など)	1	2	2	5	4	14	0.0029	0.0010	0.0029	0.0077	0.0055	0.00032	± 0.00071
木向 足 重複		2	2	5	-		0.0025	0.0032	0.0025	0.0077	0.0033	0.0044	1 0.0021
里枝 クラフ1	1	2	2	0	0	14	0 00 20	0.0049	0 0020		0.011	0 0043	+ 0.0041
9 JA 2 = 7 2	0	0	1	0	0	1	0.0023	0.0040	0.0025	ND		0.0043	+ 0.0041
9 JAZ	0	0	0	0	0	0	ND		0.0013	ND		0.00029	1 0.00003
97 <u>7</u> 3	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	
15	2	22	26	0	-	07	0.0000	0.050	0.052	0.012	0.0000	0 0 0 7	
IST	3	33	36	8	-	87	0.0086	0.052	0.053	0.012	0.0096	0.027	± 0.023
185	1	1	14	11		34	0.0029	0.0016	0.020	0.017	0.0096	0.010	± 0.0083
1.2klS	1	3	5	16	3	28	0.0029	0.0048	0.0073	0.025	0.0041	0.0087	± 0.0090
その他	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	
変異なし	0	0	23	0	6	29	ND	ND	0.034	ND	0.0083	0.0084	± 0.015
l otal	240	240	240	240	240	1200	0.69	0.38	0.35	0.37	0.33	0.42	± 0.15
B 塩基置換の種類別検出数と変	異頻度												
B 塩基置換の種類別検出数と変い	異頻度	Muta	ation sco	ored				Mutatio	on freque	ncy(×10 ⁻	⁻⁶)		
B 塩基置換の種類別検出数と変異 Section No.	異頻度 #1	Muta #2	ation sco #3	ored #4	# 5	Total	#1	Mutatio #2	on frequei #3	ncy(×10 #4	- ⁶) #5	ave	± SD
B 塩基置換の種類別検出数と変数 Section No. Transition	異頻度 #1	Muta #2	ation sco #3	ored #4	# 5	Total	#1	Mutatio #2	on frequei #3	ncy(×10 ⁻ #4	- ⁶) #5	ave	± SD
B 塩基置換の種類別検出数と変調 Section No. Transition A:T→G:C	<u>異頻度</u> #1	Muta #2 3	ation sco #3 0	ored #4 18	# 5 2	Total 23	#1	Mutatio #2 0.0048	on frequei #3 ND	ncy(×10 ⁻ #4 0.028	⁻⁶) #5 0.0028	ave 0.0071	± SD ± 0.012
B 塩基置換の種類別検出数と変数 Section No. Transition A:T→G:C G:C→A:T	<u>異頻度</u> #1 0 75	Muta #2 3 12	ation sco #3 0 7	0red #4 18 22	#5 2 5	Total 23 121	#1 ND 0.22	Mutatio #2 0.0048 0.019	n frequer #3 ND 0.010	ncy(×10 ⁻ #4 0.028 0.034	⁻⁶) #5 0.0028 0.0069	ave 0.0071 0.057	± SD ± 0.012 ± 0.089
B 塩基置換の種類別検出数と変数 Section No. Transition A:T→G:C G:C→A:T total	<u>異頻度</u> #1 0 75 75	Muta #2 3 12 15	ation sco #3 0 7 7	0red #4 18 22 40	#5 2 5 7	Total 23 121 144	#1 ND 0.22 0.22	Mutatio #2 0.0048 0.019 0.024	n frequer #3 ND 0.010 0.010	ncy(×10 ⁻ #4 0.028 0.034 0.062	⁶) #5 0.0028 0.0069 0.0096	ave 0.0071 0.057 0.064	± SD ± 0.012 ± 0.089 ± 0.087
B 塩基置換の種類別検出数と変数 Section No. Transition A:T→G:C G:C→A:T total Transversion	<u>異頻度</u> #1 0 75 75	Muta #2 3 12 15	ation sco #3 0 7 7	0red #4 18 22 40	#5 2 5 7	Total 23 121 144	#1 ND 0.22 0.22	Mutatio #2 0.0048 0.019 0.024	00 frequer # 3 ND 0.010 0.010	ncy(×10 #4 0.028 0.034 0.062	⁶) #5 0.0028 0.0069 0.0096	ave 0.0071 0.057 0.064	± SD ± 0.012 ± 0.089 ± 0.087
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A	<u>異頻度</u> #1 0 75 75 13	Muta #2 3 12 15 3	ation sco #3 0 7 7 1	0red #4 18 22 40 6	#5 2 5 7 13	Total 23 121 144 36	#1 ND 0.22 0.22 0.037	Mutatio #2 0.0048 0.019 0.024 0.0048	on frequer #3 ND 0.010 0.010 0.0015	ncy(×10 ⁻ #4 0.028 0.034 0.062 0.0093	⁶) #5 0.0028 0.0069 0.0096 0.018	ave 0.0071 0.057 0.064 0.014	± SD ± 0.012 ± 0.089 ± 0.087 ± 0.014
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G	<u>#1</u> 0 75 75 13 0	Muta #2 3 12 15 3 0	ation sco #3 0 7 7 1 4	0red #4 18 22 40 6 2	#5 2 5 7 13 21	Total 23 121 144 36 27	#1 ND 0.22 0.22 0.037 ND	Mutatio #2 0.0048 0.019 0.024 0.0048 ND	on frequer #3 ND 0.010 0.010 0.0015 0.0058	ncy(×10 #4 0.028 0.034 0.062 0.0093 0.0031	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029	ave 0.0071 0.057 0.064 0.014 0.0076	± SD ± 0.012 ± 0.089 ± 0.087 ± 0.014 ± 0.012
B 塩基置換の種類別検出数と変計 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T	<u>#1</u> 0 75 75 13 0 1	Muta #2 3 12 15 3 0 1	ation sco #3 0 7 7 1 4 3	0red #4 18 22 40 6 2 13	#5 2 5 7 13 21 9	Total 23 121 144 36 27 27	#1 ND 0.22 0.22 0.037 ND 0.0029	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016	n frequer # 3 ND 0.010 0.010 0.0015 0.0058 0.0044	ncy(×10 #4 0.028 0.034 0.062 0.0093 0.0031 0.020	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012	ave 0.0071 0.057 0.064 0.014 0.0076 0.0083	± SD ± 0.012 ± 0.089 ± 0.087 ± 0.014 ± 0.012 ± 0.0078
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G	<u>異頻度</u> #1 0 75 75 13 0 1 2	Muta #2 3 12 15 3 0 1 15	ation sco #3 0 7 7 1 4 3 6	bred #4 18 22 40 6 2 13 4	#5 2 5 7 13 21 9 2	Total 23 121 144 36 27 27 29	#1 ND 0.22 0.22 0.037 ND 0.0029 0.0058	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024	n frequer # 3 ND 0.010 0.010 0.0015 0.0058 0.0044 0.0088	ncy(×10 #4 0.028 0.034 0.062 0.0093 0.0031 0.020 0.0062	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012 0.0028	ave 0.0071 0.057 0.064 0.014 0.0076 0.0083 0.0094	± SD ± 0.012 ± 0.089 ± 0.087 ± 0.014 ± 0.012 ± 0.0078 ± 0.0083
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→T:A G:C→C:G T:A→A:T A:T→C:G	異頻度 #1 0 75 75 13 0 1 2 16	Muta #2 3 12 15 3 0 1 15 19	ation sco #3 0 7 7 1 4 3 6 14	bred #4 18 22 40 6 2 13 4 25	#5 2 5 7 13 21 9 2 45	Total 23 121 144 36 27 27 29 119	#1 ND 0.22 0.22 0.037 ND 0.0029 0.0058 0.046	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030	n frequer #3 ND 0.010 0.0015 0.0058 0.0044 0.0088 0.020	ncy(×10 #4 0.028 0.034 0.062 0.0093 0.0031 0.020 0.0062 0.039	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012 0.0028 0.0028	ave 0.0071 0.057 0.064 0.014 0.0076 0.0083 0.0094 0.039	± SD ± 0.012 ± 0.089 ± 0.087 ± 0.014 ± 0.012 ± 0.0078 ± 0.0083 ± 0.0083
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot soot	異頻度 #1 0 75 75 13 0 1 2 16	Muta #2 3 12 15 3 0 1 15 19	ation scc #3 0 7 7 7 1 4 3 6 6 14	bred #4 18 22 40 6 2 13 4 25	#5 2 5 7 13 21 9 2 45	Total 23 121 144 36 27 27 29 119	#1 ND 0.22 0.22 0.037 ND 0.0029 0.0058 0.046	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030	n frequer # 3 ND 0.010 0.0015 0.0015 0.0058 0.0044 0.0088 0.020	ncy(×10 #4 0.028 0.034 0.062 0.0093 0.0031 0.020 0.0062 0.039	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012 0.0028 0.062	ave 0.0071 0.057 0.064 0.014 0.0076 0.0083 0.0094 0.039	\pm SD \pm 0.012 \pm 0.089 \pm 0.087 \pm 0.014 \pm 0.012 \pm 0.0078 \pm 0.0083 \pm 0.016
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A	異頻度 #1 0 75 75 13 0 1 2 16 6	Muta #2 3 12 15 3 0 1 15 19 8	ation scc #3 0 7 7 1 4 3 6 14	0red #4 18 22 40 6 2 13 4 25 16	#5 2 5 7 13 21 9 2 45 6	Total 23 121 144 36 27 27 29 119 50	#1 ND 0.22 0.22 0.037 ND 0.0029 0.0058 0.046	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030 0.013	n frequer #3 ND 0.010 0.0015 0.0015 0.0058 0.0044 0.0088 0.020 0.020	ncy(×10 #4 0.028 0.034 0.062 0.0093 0.0031 0.020 0.0062 0.039 0.025	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012 0.0028 0.062 0.0083	ave 0.0071 0.057 0.064 0.014 0.0076 0.0083 0.0094 0.039	\pm SD \pm 0.012 \pm 0.089 \pm 0.087 \pm 0.014 \pm 0.012 \pm 0.0078 \pm 0.0083 \pm 0.016 \pm 0.0064
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A	異頻度 #1 0 75 75 13 0 1 2 16 6 46	Muta #2 3 12 15 3 0 1 15 19 8 53	ation sco #3 0 7 7 1 4 3 6 14 14 14 39	bred #4 18 22 40 6 2 13 4 25 16 35	#5 2 5 7 13 21 9 2 45 6 42	Total 23 121 144 36 27 27 29 119 50 215	#1 ND 0.22 0.037 ND 0.0058 0.0058 0.046	Mutatic #2 0.0048 0.019 0.024 0.0048 ND 0.024 0.0016 0.024 0.030 0.013 0.084	n frequei #3 ND 0.010 0.0015 0.0015 0.0058 0.0044 0.0088 0.020 0.020 0.020	ncy(×10 #4 0.028 0.034 0.062 0.0093 0.0031 0.020 0.0062 0.039 0.025 0.054	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.0028 0.0028 0.0062	ave 0.0071 0.057 0.064 0.014 0.0076 0.0083 0.0094 0.039 0.017	$\begin{array}{c} \pm \text{ SD} \\ \pm 0.012 \\ \pm 0.089 \\ \pm 0.087 \\ \pm 0.014 \\ \pm 0.012 \\ \pm 0.0078 \\ \pm 0.0078 \\ \pm 0.0078 \\ \pm 0.0016 \\ \pm 0.0064 \\ \pm 0.0033 \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→G	異頻度 #1 0 75 75 13 0 1 2 16 6 46 2	Muta #2 3 12 15 3 0 1 15 19 8 53 25	ation sco #3 0 7 1 4 3 6 14 14 39 1	6 2 13 4 25 13 4 25 16 35 7	#5 2 5 7 13 21 9 2 45 6 42 4	Total 23 121 144 36 27 27 29 119 50 215 39	#1 ND 0.22 0.037 ND 0.0029 0.0058 0.046 0.017 0.13 0.0058	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030 0.013 0.084 0.048	n frequent #3 ND 0.010 0.0015 0.0058 0.0044 0.0088 0.020 0.020 0.020 0.057 0.0057	ncy(×10 #4 0.028 0.034 0.062 0.0093 0.0031 0.020 0.0062 0.039 0.025 0.054 0.011	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012 0.0028 0.0028 0.0083 0.058 0.0058	ave 0.0071 0.057 0.064 0.0076 0.0083 0.0094 0.039 0.017 0.017	$\begin{array}{c} \pm \text{ SD} \\ \pm 0.012 \\ \pm 0.089 \\ \pm 0.087 \\ \pm 0.014 \\ \pm 0.012 \\ \pm 0.0078 \\ \pm 0.0083 \\ \pm 0.016 \\ \pm 0.0064 \\ \pm 0.0031 \\ \pm 0.015 \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→G total	異頻度 #1 0 75 75 13 0 1 2 16 6 46 46 2 54	Muta #2 3 12 15 3 0 1 15 19 8 53 25 86	ation sco #3 0 7 1 4 3 6 14 14 39 14 39 1 54	red #4 18 22 40 6 2 13 4 25 16 35 7 58	#5 2 5 7 13 21 9 2 45 6 42 45 52	Total 23 121 144 36 27 27 29 119 50 215 39 304	#1 ND 0.22 0.037 ND 0.0029 0.0058 0.046 0.017 0.13 0.0058	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030 0.013 0.084 0.040 0.14	n frequei #3 ND 0.010 0.0015 0.0058 0.0044 0.0088 0.020 0.020 0.020 0.057 0.0015 0.0075	ncy(×10 ⁻ #4 0.028 0.034 0.062 0.0093 0.0031 0.020 0.0062 0.039 0.025 0.054 0.019	⁶) #5 0.0028 0.0069 0.018 0.029 0.012 0.0028 0.062 0.0083 0.058 0.0055 0.0075	ave 0.0071 0.057 0.064 0.014 0.0083 0.0094 0.039 0.017 0.077 0.077 0.013	$\begin{array}{c} \pm \text{ SD} \\ \pm 0.012 \\ \pm 0.089 \\ \pm 0.087 \\ \pm 0.014 \\ \pm 0.012 \\ \pm 0.0078 \\ \pm 0.0083 \\ \pm 0.016 \\ \pm 0.0064 \\ \pm 0.033 \\ \pm 0.015 \\ \pm 0.037 \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→G total Trotal	異頻度 #1 0 75 75 13 0 1 2 16 6 46 2 54 54	Muta #2 3 12 15 3 0 1 15 19 8 53 25 86 120	ation sco #3 0 7 7 7 4 3 6 14 39 1 14 39 1 54	red #4 18 22 40 6 2 13 4 25 16 35 7 16 35 7 58 123	#5 2 5 7 13 21 9 2 45 6 42 4 52 104	Total 23 121 144 36 27 29 119 50 215 39 304 567	#1 ND 0.22 0.22 0.037 ND 0.0029 0.0058 0.046 0.013 0.0058 0.016 0.42	Mutatia #2 0.0048 0.019 0.024 0.0048 ND 0.024 0.024 0.024 0.030 0.013 0.084 0.040 0.14	n freque #3 ND 0.010 0.0015 0.0058 0.0044 0.0088 0.020 0.020 0.057 0.0015 0.079 0.11	ncy(×10 #4 0.028 0.034 0.062 0.0093 0.0031 0.020 0.0062 0.039 0.025 0.054 0.011 0.089 0.19	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012 0.0028 0.0028 0.0083 0.055 0.072 0.14	ave 0.0071 0.057 0.064 0.014 0.0076 0.0084 0.039 0.017 0.017 0.013 0.11 0.21	$\begin{array}{c} \pm \text{ SD} \\ \pm 0.012 \\ \pm 0.089 \\ \pm 0.087 \\ \pm 0.014 \\ \pm 0.012 \\ \pm 0.0078 \\ \pm 0.0083 \\ \pm 0.016 \\ \pm 0.0064 \\ \pm 0.033 \\ \pm 0.015 \\ \pm 0.037 \\ \pm 0.017 \\ \pm 0.12 \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A 245 T→A	異頻度 第11 0 75 75 13 0 1 2 16 6 46 2 54 145	Muta #2 3 12 15 3 0 1 15 19 8 53 25 86 120	ation sco #3 0 7 7 7 7 7 7 1 4 3 6 14 39 1 14 39 1 54 75	med #4 18 22 40 6 2 13 4 25 16 35 7 58 123	#5 2 5 7 13 21 9 2 45 6 42 4 52 104	Total 23 121 144 36 27 27 29 119 119 50 215 39 304 567	#1 ND 0.22 0.22 0.037 ND 0.0029 0.0058 0.046 0.017 0.13 0.0058 0.016 0.42	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030 0.013 0.084 0.040 0.14 0.19	n freques #3 ND 0.010 0.0015 0.0058 0.0044 0.020 0.020 0.020 0.057 0.0015 0.079 0.11	ncy(×10 #4 0.028 0.034 0.0031 0.0020 0.0031 0.020 0.039 0.025 0.054 0.011 0.089 0.19	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012 0.0028 0.0062 0.0083 0.0055 0.0072 0.14	ave 0.0071 0.057 0.064 0.014 0.0076 0.0083 0.0094 0.039 0.017 0.077 0.013 0.11 0.21	$\begin{array}{c} \pm \text{ SD} \\ \\ \pm 0.012 \\ \pm 0.089 \\ \pm 0.087 \\ \\ \pm 0.014 \\ \pm 0.012 \\ \pm 0.0078 \\ \pm 0.0083 \\ \pm 0.016 \\ \\ \pm 0.0064 \\ \pm 0.033 \\ \pm 0.015 \\ \pm 0.037 \\ \pm 0.12 \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→A	異頻度 #1 0 75 75 13 0 1 2 16 6 46 6 46 2 54 145	Muta #2 3 12 15 3 0 1 1 5 3 0 1 1 5 3 0 1 1 5 3 0 1 1 5 8 5 3 2 5 86 120	ation scc #3 0 7 7 1 4 3 6 14 14 39 14 14 39 154 75	0red #4 18 22 40 6 2 13 4 25 16 35 7 58 123	#5 2 5 7 13 21 9 2 45 6 42 4 52 104	Total 23 121 144 36 27 27 29 119 50 215 39 304 567	#1 ND 0.22 0.022 0.0058 0.0058 0.046 0.017 0.13 0.0058 0.16 0.42	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030 0.013 0.084 0.040 0.14 0.19	n freques #3 ND 0.010 0.0015 0.0015 0.0015 0.0015 0.0044 0.0088 0.020 0.020 0.020 0.027 0.0015 0.079 0.11	ncy(×10 ⁻ #4 0.028 0.034 0.062 0.0031 0.020 0.0062 0.039 0.025 0.054 0.011 0.089 0.19	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012 0.0028 0.0028 0.0055 0.072 0.14	ave 0.0071 0.057 0.064 0.014 0.0076 0.0083 0.0094 0.039 0.017 0.077 0.013 0.11 0.21	$\begin{array}{c} \pm \text{ SD} \\ \\ \pm 0.012 \\ \pm 0.089 \\ \pm 0.087 \\ \\ \pm 0.014 \\ \pm 0.012 \\ \pm 0.0078 \\ \pm 0.0083 \\ \pm 0.016 \\ \\ \pm 0.0064 \\ \pm 0.033 \\ \pm 0.015 \\ \pm 0.037 \\ \pm 0.012 \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→G total Total C 1塩基フレームシフトの種類別	異頻度 #1 0 75 75 13 0 1 2 16 6 46 2 54 145 145	Muta #2 3 12 15 3 0 1 15 19 8 53 25 86 120	ation scc #3 0 7 7 1 4 3 6 14 14 39 1 1 4 39 1 1 54 75 75	bred #4 18 22 40 6 2 13 4 25 13 4 25 16 35 7 58 123	#5 2 5 7 13 21 9 2 45 6 42 45 6 42 4 52 104	Total 23 121 144 36 27 27 29 119 50 215 39 304 567	#1 ND 0.22 0.037 ND 0.0029 0.0058 0.046 0.017 0.13 0.0058 0.16 0.42	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030 0.013 0.084 0.040 0.14 0.19	n freques #3 ND 0.010 0.0015 0.0058 0.0044 0.0088 0.020 0.020 0.057 0.0015 0.079 0.11	ney(×10 ⁻ #4 0.028 0.034 0.062 0.0093 0.0031 0.020 0.0062 0.039 0.025 0.054 0.011 0.089 0.19	⁶) #5 0.0028 0.0069 0.0096 0.012 0.028 0.012 0.0028 0.062 0.0083 0.055 0.072 0.14	ave 0.0071 0.057 0.064 0.014 0.0083 0.0094 0.039 0.017 0.077 0.013 0.11 0.21	$\begin{array}{c} \pm \text{ SD} \\ \pm 0.012 \\ \pm 0.087 \\ \pm 0.087 \\ \pm 0.014 \\ \pm 0.012 \\ \pm 0.0078 \\ \pm 0.0083 \\ \pm 0.016 \\ \pm 0.0064 \\ \pm 0.033 \\ \pm 0.015 \\ \pm 0.037 \\ \pm 0.012 \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→A	異頻度 #1 0 75 75 13 0 1 2 16 6 46 2 54 145 145 145	Muta #2 3 12 15 3 0 1 15 19 8 8 5 3 25 86 120 :変異頻	ation scc #3 0 7 1 4 3 6 14 14 39 1 54 75 g ation scc	pred #4 18 22 40 6 2 13 4 25 16 35 7 58 123	#5 2 5 7 13 21 9 2 45 6 42 4 52 104	Total 23 121 144 36 27 27 27 119 119 50 215 39 304 567	#1 ND 0.22 0.22 0.037 ND 0.0029 0.0058 0.046 0.017 0.13 0.0058 0.16 0.42	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.024 0.024 0.024 0.030 0.013 0.084 0.040 0.14 0.19	on frequest #3 ND 0.010 0.0015 0.0058 0.0044 0.0088 0.020 0.020 0.027 0.0015 0.079 0.11	ncy(×10) #4 0.028 0.034 0.062 0.0031 0.020 0.0031 0.020 0.039 0.025 0.054 0.011 0.089 0.19	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012 0.0028 0.0028 0.0083 0.0055 0.072 0.14	ave 0.0071 0.057 0.064 0.014 0.0076 0.0083 0.0094 0.039 0.017 0.017 0.013 0.11 0.21	$\begin{array}{c} \pm \text{ SD} \\ \pm 0.012 \\ \pm 0.089 \\ \pm 0.087 \\ \pm 0.014 \\ \pm 0.012 \\ \pm 0.0078 \\ \pm 0.0078 \\ \pm 0.0083 \\ \pm 0.016 \\ \pm 0.0033 \\ \pm 0.015 \\ \pm 0.037 \\ \pm 0.015 \\ \pm 0.037 \\ \pm 0.12 \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→C	異頻度 #1 0 75 75 13 0 1 2 2 16 6 46 2 2 54 145 9 1校出数 4 4 145 9 1校出数 4 7 5 4 145 9 10 7 5 4 145 9 10 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	Muta #2 3 12 15 3 0 1 1 5 3 0 1 1 5 3 25 86 120 ★ 案異頻 (* * * * * * *	ation scc #3 0 7 1 4 3 6 14 3 6 14 14 39 1 14 39 1 14 39 1 54 75 8 2 8 2 8 2 4 3 3 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	pred #4 18 22 40 6 2 13 4 25 13 4 25 16 35 7 58 123 pred #4	#5 2 5 7 13 21 9 2 45 6 42 52 104 #5	Total 23 121 144 36 27 27 29 119 50 215 39 304 567 Total	#1 ND 0.22 0.037 ND 0.0029 0.0058 0.046 0.017 0.13 0.0058 0.16 0.42	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030 0.013 0.084 0.040 0.14 0.19 Mutatic #2	on freques #3 ND 0.010 0.0015 0.0058 0.0044 0.0088 0.020 0.020 0.025 0.0015 0.0015 0.0015 0.0079 0.11	ncy(×10 #4 0.028 0.034 0.062 0.0031 0.020 0.0062 0.039 0.025 0.054 0.011 0.089 0.19 ncy(×10 #4	⁶) #5 0.0028 0.0069 0.018 0.029 0.012 0.0028 0.0058 0.0055 0.072 0.14	ave 0.0071 0.057 0.064 0.0076 0.0083 0.0094 0.039 0.017 0.013 0.11 0.21	$\begin{array}{c} \pm \mbox{ SD} \\ \pm \mbox{ 0.012} \\ \pm \mbox{ 0.087} \\ \pm \mbox{ 0.014} \\ \pm \mbox{ 0.012} \\ \pm \mbox{ 0.0078} \\ \pm \mbox{ 0.0083} \\ \pm \mbox{ 0.016} \\ \pm \mbox{ 0.0064} \\ \pm \mbox{ 0.037} \\ \pm \mbox{ 0.015} \\ \pm \mbox{ 0.037} \\ \pm \mbox{ 0.012} \\ \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→G total Total C 1塩基フレームシフトの種類別 Section No. Addition	異頻度 #1 0 75 75 13 0 1 2 16 6 46 2 54 145 145 145 145 4 145 145 145 145 14	Muta #2 3 12 15 3 0 1 15 19 8 53 25 86 120 ↓ ℃変異頻則 Muta #2	ation scc #3 0 7 7 1 4 3 6 14 14 39 14 14 39 14 54 75 g ation scc #3	pred #4 18 22 40 6 2 13 4 25 16 35 7 7 58 123 pred #4	#5 2 5 7 13 21 9 2 45 6 42 45 6 42 45 104 #5	Total 23 121 144 36 27 27 29 119 50 215 39 304 567 Total	#1 ND 0.22 0.037 ND 0.0029 0.0058 0.046 0.017 0.13 0.0058 0.16 0.42 #1	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030 0.013 0.084 0.040 0.14 0.19 Mutatio #2	n frequer #3 ND 0.010 0.0015 0.0015 0.0058 0.0044 0.0088 0.020 0.057 0.0075 0.079 0.11	ncy(×10 #4 0.028 0.034 0.062 0.003 0.003 0.020 0.0062 0.039 0.025 0.054 0.011 0.089 0.19 ncy(×10 #4	⁶) #5 0.0028 0.0069 0.018 0.029 0.012 0.0028 0.0028 0.0055 0.072 0.14	ave 0.0071 0.057 0.064 0.003 0.0076 0.0083 0.0094 0.039 0.017 0.077 0.013 0.11 0.21	$\begin{array}{c} \pm \text{ SD} \\ \pm 0.012 \\ \pm 0.089 \\ \pm 0.087 \\ \pm 0.014 \\ \pm 0.012 \\ \pm 0.0078 \\ \pm 0.0083 \\ \pm 0.016 \\ \pm 0.0064 \\ \pm 0.033 \\ \pm 0.015 \\ \pm 0.037 \\ \pm 0.012 \\ \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 250 No. Addition	異頻度 #1 0 75 75 13 0 1 2 16 6 46 2 54 145 145 145 145 3	Muta #2 3 12 15 3 0 1 15 19 8 53 25 86 120 ÷変異頻 42 7 0	ation scc #3 0 7 7 1 4 3 6 14 14 39 1 54 75 2	pred #4 18 22 40 6 2 13 4 25 16 35 7 7 58 123	#5 2 5 7 13 21 9 2 45 6 42 4 52 104 #5 5	Total 23 121 144 36 27 27 29 119 50 215 39 304 567 Total 14	#1 ND 0.22 0.037 ND 0.0029 0.0058 0.046 0.017 0.13 0.0058 0.16 0.42 #1 0.0086	Mutatie #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030 0.013 0.084 0.040 0.14 0.19 Mutatie #2 ND	on freques #3 ND 0.010 0.0015 0.0058 0.0044 0.0088 0.020 0.020 0.057 0.0015 0.079 0.11 on freques #3 0.0029	ncy(×10 #4 0.028 0.034 0.062 0.0093 0.0031 0.020 0.0054 0.039 0.025 0.054 0.011 0.089 0.19 ncy(×10 #4 0.0062	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012 0.0028 0.0028 0.0055 0.072 0.14	ave 0.0071 0.057 0.064 0.014 0.0076 0.0083 0.0094 0.039 0.017 0.013 0.11 0.21 ave 0.0049	$\begin{array}{c} \pm \ \text{SD} \\ \pm \ 0.012 \\ \pm \ 0.089 \\ \pm \ 0.087 \\ \pm \ 0.014 \\ \pm \ 0.012 \\ \pm \ 0.0078 \\ \pm \ 0.0078 \\ \pm \ 0.0078 \\ \pm \ 0.0078 \\ \pm \ 0.0016 \\ \pm \ 0.0064 \\ \pm \ 0.033 \\ \pm \ 0.015 \\ \pm \ 0.037 \\ \pm \ 0.12 \\ \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A	異頻度 #1 0 75 75 13 0 1 2 16 6 46 2 145 54 145 9 岐出数 6 46 2 54 145 9 9 岐出数 6 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 1 1 3 0 1 1 3 0 1 1 3 0 1 1 3 0 1 1 3 0 1 1 1 3 0 1 1 3 0 1 1 1 3 0 1 1 1 1	Muta #2 3 12 15 3 0 1 15 19 8 25 86 120 ± xx 星頻 Muta #2 0 1	ation scc #3 0 7 1 4 3 6 14 14 14 14 39 1 1 54 75 0 ¢	pred #4 18 22 40 6 2 13 4 25 13 4 25 13 4 25 7 58 123 58 123 58 123	#5 2 5 7 13 21 9 2 45 6 42 4 52 104 #5 5 1	Total 23 121 144 36 27 27 29 119 50 215 39 304 567 Total 14 2	#1 ND 0.22 0.037 ND 0.0029 0.0058 0.046 0.017 0.13 0.0058 0.16 0.42 #1 0.0086 ND	Mutatio #2 0.0048 0.019 0.024 0.0048 ND 0.0016 0.024 0.030 0.013 0.084 0.040 0.14 0.19 Mutatio #2 ND 0.0016	on freques #3 ND 0.010 0.0015 0.0058 0.0044 0.0088 0.020 0.057 0.0015 0.0079 0.11 0.079 0.11 m freques #3 0.0029 ND	ncy(×10 #4 0.028 0.034 0.0031 0.020 0.0031 0.020 0.039 0.025 0.054 0.019 0.089 0.19 ncy(×10 #4 0.0062 ND	⁶) #5 0.0028 0.0069 0.0096 0.018 0.029 0.012 0.0028 0.0062 0.0083 0.0055 0.072 0.14	ave 0.0071 0.057 0.064 0.0076 0.0083 0.0094 0.039 0.017 0.013 0.11 0.21 ave 0.0049 0.00059	$\begin{array}{c} \pm \text{ SD} \\ \\ \pm 0.012 \\ \pm 0.089 \\ \pm 0.087 \\ \\ \pm 0.014 \\ \pm 0.012 \\ \pm 0.0078 \\ \pm 0.0063 \\ \pm 0.016 \\ \\ \pm 0.0064 \\ \pm 0.0031 \\ \pm 0.015 \\ \pm 0.037 \\ \pm 0.015 \\ \\ \pm 0.037 \\ \pm 0.037 \\ \\ \pm 0.037 \\ \\ \pm 0.0034 \\ \pm 0.00081 \end{array}$
B 塩基置換の種類別検出数と変影 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→G 245 T→G total C 1塩基フレームシフトの種類別 Section No. Addition at run at non-run total	異頻度 #1 0 75 75 13 0 1 2 16 6 46 2 54 145 9 0 #1 145 9 0 3	Muta #2 3 12 15 3 0 1 15 19 8 53 25 86 120 25 86 120 20 21 0 1 1	ation scc #3 0 7 7 1 4 3 6 14 3 9 14 14 39 1 14 39 1 54 75 g #3 2 0 2	pred #4 18 22 40 6 2 13 4 25 16 35 7 58 123 0 red #4 4 0 4	#5 2 5 7 13 21 9 2 45 6 42 45 6 42 45 104	Total 23 121 144 36 27 27 29 119 50 215 39 304 567 Total 14 2 16	#1 ND 0.22 0.029 0.0058 0.046 0.017 0.13 0.0058 0.16 0.42 #1 0.0086 ND 0.0086	Mutatio #2 0.0048 0.019 0.024 0.0016 0.024 0.030 0.013 0.084 0.040 0.14 0.19 Mutatio #2 ND 0.0016 0.0016	n freques #3 ND 0.010 0.0015 0.0015 0.0015 0.0044 0.0088 0.020 0.020 0.020 0.020 0.0015 0.079 0.11 0.079 0.11 0.0029 ND 0.0029	ncy(×10 ⁻ #4 0.028 0.034 0.062 0.0031 0.020 0.0062 0.039 0.025 0.054 0.011 0.089 0.19 	⁶) #5 0.0028 0.0069 0.009 0.009 0.012 0.0028 0.0028 0.0025 0.0083 0.0055 0.072 0.14	ave 0.0071 0.057 0.064 0.014 0.0076 0.0083 0.0094 0.039 0.017 0.017 0.017 0.013 0.11 0.21 ave 0.0049 0.00059 0.0055	\pm SD \pm 0.012 \pm 0.089 \pm 0.087 \pm 0.014 \pm 0.012 \pm 0.0078 \pm 0.0078 \pm 0.0064 \pm 0.0037 \pm 0.015 \pm 0.015 \pm 0.015 \pm 0.037 \pm 0.012 \pm 0.0034 \pm 0.0034 \pm 0.0032

5 37 5 0.020 0.059 0.0073 0.022 0.015 total 14 11 10 90 0.029 0.060 0.010 0.028 0.023 0.030 ± 0.018 Total 38 18 17 野生株(MK811)において、各変異の種類別変異頻度と見いだされた各変異の検体数を示す。解析 は、独立した5実験区由来の合計1200クローンのrpsL標的遺伝子の塩基配列を決定し、全体の変異 頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算出した。表のAは変異の種類別変異

56

18

74

0.0058 0.051 0.0058 0.015 0.011

 0.018 ± 0.019

頻度を、Bは塩基置換の種類別変異頻度を、Cは1塩基フレームシフトの種類別変異頻度を示す。

付録表2 mutS変異株における変異の種類別変異頻度

A 変異の種類別変異頻度																				
			Mut	ation sc	ored							1	Mutation I	frequency	y(×10 ⁻⁶)					
Section No.	#1	#2	#3	#4	#5	#6	#7	#8	#9	Total	#1	#2	#3	#4	#5	#6	#7	#8	#9	ave ± SD
組換え型																				
1点型(128A→C)	4	4	6	5	2	1	3	3	1	29	1.5	1.3	1.4	1.5	0.71	0.30	0.91	1.1	0.45	1.0 ± 0.46
2点型(-22G→A,128A→C)	5	1	5	8	7	5	8	9	7	48	1.8	0.33	1.2	2.5	2.5	1.5	2.4	3.2	3.2	2.1 ± 0.95
塩基置換																				
ホットスポット1(82C→A)	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ホットスポット2(245T→A)	0	0	1	5	1	3	2	0	2	14	ND	ND	0.24	1.5	0.35	0.91	0.60	ND	0.91	0.51 ± 0.53
ホットスポット3(245T→G)	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	59	66	63	58	50	60	53	52	75	536	22	22	15	18	18	18	16	19	34	20 ± 5.7
1塩基フレームシフト	28	27	21	20	14	27	29	33	11	210	10	8.8	5.0	6.2	5.0	8.2	8.8	12	5.0	7.7 ± 2.5
2塩基フレームシフト	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
配列置換	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
欠失																				
タイプ1(dr)	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
タイプ2(ir)	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
タイプ3(rなし)	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
未同定	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
重複																				
クラス1	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
クラス2	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
クラス3	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
IS																				
IS1	0	0	0	1	0	0	1	0	1	3	ND	ND	ND	0.31	ND	ND	0.30	ND	0.45	0.12 ± 0.18
IS5	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2klS	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
その他	0	0	1	0	22	0	0	0	0	23	ND	ND	0.24	ND	7.8	ND	ND	ND	ND	0.89 ± 2.6
変異なし	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total	96	98	97	97	96	96	96	97	97	870	35	32	23	30	34	29	29	35	44	32 ± 5.8
B 塩基置換の種類別検出数と変調	異頻度													_						
с. н. н		" 2	Mut	ation sc	ored					T			Mutation 1	trequency	y(×10 ⁻⁰)	"				
Section No.	# I	₩Z	#3	#4	#5	# 6	#1	#8	#9	Iotal	#1	#Z	#3	#4	#5	#6	#7	#8	#9	ave ± SD
I ransition	45	25	20	27			25	20	40	2.40	10					10		10	22	12
A:T→G:U	45	35	38	37	32	41	35	36	49	348	16	11	9.0		11	12	11	13	22	13 ± 4.0
G:C→A: I	13	30	23	21	17	1/ 50	10 F1	13	24	<u> </u>	4./	9.8	5.5	0.5	6.0	5.1	4.8	4.7	22	0.5 ± 2.5
Turana	20	00	01	30	49	30	21	49	15	522	21	21	14	10	17	10	15	10	33	20 ± 5.0
CrC NTA	0	0	0	0	0	0	1	0	0	1	ND		ND	ND	ND	ND	0.20	ND	ND	0 024 + 0 10
	1	0	0	0	0	0	0	0	0	1		ND	ND	ND	ND	ND	0.50	ND		0.034 ± 0.10
0.0→0.0 T·A→A·T	0	1	2	0	1	1	1	2	2	10	0.30 ND	0.33	0.47	ND	0.25	0.20	0.30	0.72	0.01	0.29 ± 0.12
	0	0	0	0	0	1	0	1	0	2		0.33 ND	0.47 ND	ND	0.55	0.30	0.30	0.72	0.51 ND	0.30 ± 0.30
A.I→C.G	1	1	2	0	1	2	2	2	2	14	0.36	0.22	0.47		0.25	0.30	0.60	1.1	0.01	0.074 ± 0.15
Hot spot		1	2	0	1	2	2	5	2	14	0.30	0.55	0.47	ND	0.55	0.00	0.00	1.1	0.91	0.32 ± 0.32
	0	٥	٥	0	٥	٥	٥	٥	0	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	0	0	1	5	1	2	2	0	2	14	ND	ND	0.24	15	0.25	0.01	0.60	ND	0.01	0 51 + 0 52
245 T→C	0	0	0	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND		ND	ND	ND 10.00
total	0	0	1	5	1	3	2	0	2	14	ND	ND	0.24	1.5	0.35	0.91	0.60	ND	0.91	0 51 + 0 53
Total	59	66	64	63	51	63	55	52	77	550	22	22	15	1.5	18	19	17	19	35	21 + 5.8
C1塩基フレームシフトの種類別	検出数	 と変異頻	度	00	51	00	55	52		550	LL		15	15	10	15		10	55	LI - 5.0
			Mut	ation sc	ored							1	Mutation	frequency	$(\times 10^{-6})$					
Section No.	#1	#2	#3	#4	#5	#6	#7	#8	# 9	Total	#1	#2	#3	#4	#5	#6	#7	#8	#9	ave + SD
Addition	11.1	11 E	11.9	16.1	110	11° V	11.1					11 -		10° 1	115	110	10.1		11.2	
atrun	25	17	17	11	13	19	20	28	10	160	91	56	4.0	34	46	57	6.0	10	4 5	5.9 + 2 3
at non-run	0	2	0	1	0	0	1	0	0	4	ND	0.65	ND	0.31	ND	ND	0.30	ND	ND	0.14 ± 0.23
total	25	19	17	12	13	19	21	28	10	164	9.1	6.2	4.0	37	4.6	5.7	63	10	4 5	6.0 ± 2 2
Deletion								20				0.2		0.1		0.1	0.0			VIV - C.C
atrun	2	8	4	8	1	8	8	5	1	45	0 73	26	0.95	25	0.35	24	24	18	0.45	1.6 ± 0.95
at non-run	1	n	0	0	0	0	0	0	0	1	0.76	ND	ND		ND	ND	ND	ND	ND	0.041 + 0.12
total	3	8	4	8	1	8	8	5	1	46	11	2 61	0.95	2.5	0.35	2.4	2.4	1.8	0.45	1.6 + 0.92
Total	28	27	21	20	14	27	29	33	11	210	10	8.8	5.0	6.2	5.0	8.2	8.8	12	5.0	7.7 ± 2.5

mutS変異株において、各変異の種類別変異頻度と見いだされた各変異の検体数を示す。解析は、 独立した9実験区由来の合計864クローンのrpsL標的遺伝子の塩基配列を決定し、全体の変異頻度と 個々の変異の割合をもとに各変異の種類別変異頻度を算出した。表のAは変異の種類別変異頻度 を、Bは塩基置換の種類別変異頻度を、Cは1塩基フレームシフトの種類別変異頻度を示す。

付録表3 dinB変異株における変異の種類別変異頻度

A 変異の種類別変異頻度													
		Mutatior	n scored					Mutati	on freaue	$ncv(\times 10^{-1})$	⁶)		
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave	± SD
組織え型									<i></i>		11 -		
1点型(128A→C)	38	30	62	42	75	247	0.082	0.064	0.088	0.084	0.25	0.11	± 0.077
2点型(-22G→A.128A→C)	89	54	40	40	22	245	0.19	0.11	0.057	0.080	0.073	0.10	± 0.054
[[[[[[]]]]]][[[]]]][[]]][[]]][[]]][[]]][[]]][[]]][[]]][[]]][[]]][[]]][[]]][[]]][[]][[]]][[]]][[]][[]]][[]]][[]][[]]][[]]][[]][[]]][[]]][[]][[]]][[]][[]]][[]][[]][[]][[]]][[][]													
ホットスポット1(82C \rightarrow A)	3	1	15	1	3	23	0.0065	0.0021	0.021	0.0020	0.010	0.0084	± 0.0079
$\pi_{\rm N}$ $h_{\rm Z}$ $\pi_{\rm N}$ $h_{\rm Z}$ $h_{\rm h_{\rm	12	65	35	23	70	205	0.026	0.14	0.050	0.046	0.23	0 099	+ 0.087
ホットスポット3(245T→G)	1	6	5	5	2	19	0.0022	0.013	0.0071	0.010	0.0067	0.0077	+ 0.0040
上記以外	34	47	12	61	33	187	0.074	0.10	0.017	0.12	0.11	0.085	+ 0.042
1塩基フレームシフト	8	14	28	8	4	62	0.017	0.030	0.040	0.016	0.013	0.023	± 0.011
2塩基フレームシフト	0	0	0	2	0	2	ND	ND	ND	0.0040	ND	0.00080	± 0.0018
配列置換	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	
欠失	-	-	-	-									
タイプ1(dr)	8	6	13	3	2	32	0.017	0.013	0.018	0.0060	0.0067	0.012	± 0.0058
タイプ2(ir)	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	
タイプ3(rなし)	0	0	2	0	0	2	ND	ND	0.0028	ND	ND	0.00057	± 0.0013
未同定	17	0	3	1	5	26	0.037	ND	0.0043	0.0020	0.017	0.012	± 0.015
重複													
クラス1	0	3	0	0	3	6	ND	0.0064	ND	ND	0.010	0.0033	± 0.0047
クラス2	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	
クラス3	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	
IS													
IS1	21	12	22	16	5	76	0.046	0.026	0.031	0.032	0.017	0.030	± 0.011
IS5	7	0	2	19	6	34	0.015	ND	0.0028	0.038	0.020	0.015	± 0.015
1.2klS	0	0	0	17	9	26	ND	ND	ND	0.034	0.030	0.013	± 0.018
その他	0	0	0	1	0	1	ND	ND	ND	0.0020	ND	0.00040	± 0.00089
変異なし	2	2	1	1	1	7	0.0043	0.0043	0.0014	0.0020	0.0033	0.0031	± 0.0013
Total	240	240	240	240	240	1200	0.52	0.51	0.34	0.48	0.80	0.53	± 0.17
B 塩基置換の種類別検出数と変	異頻度												
		Mutatior	1 scored					Mutati	on freaue	$ncv(\times 10^{-1})$	⁶)		
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave	± SD
Transition													
A:T→G:C	11	2	0	5	10	28	0.024	0.0043	ND	0.010	0.033	0.014	± 0.014
G:C→A:T	9	39	1	18	12	79	0.020	0.083	0.0014	0.036	0.040	0.036	± 0.030
total	20	41	1	23	22	107	0.043	0.087	0.0014	0.046	0.073	0.050	± 0.033
Transversion							-						
G:C→T:A	0	1	2	5	1	9	ND	0.0021	0.0028	0.010	0.0033	0.0037	± 0.0038
G:C→C:G	7	1	3	2	2	15	0.015	0.0021	0.0043	0.0040	0.0067	0.0064	± 0.0051
T:A→A:T	4	4	4	22	4	38	0.0087	0.0085	0.0057	0.044	0.013	0.016	± 0.016
A:T→C:G	3	0	2	9	4	18	0.0065	ND	0.0028	0.018	0.013	0.0081	± 0.0074
total	14	6	11	38	11	80	0.030	0.013	0.016	0.076	0.037	0.034	± 0.025
Hot spot													
82C→A	3	1	15	1	3	23	0.0065	0.0021	0.021	0.0020	0.010	0.0084	± 0.0079
245 T→A	12	65	35	23	70	205	0.026	0.14	0.050	0.046	0.23	0.099	± 0.087
245 T→G	1	6	5	5	2	19	0.0022	0.0128	0.0071	0.0100	0.0067	0.0077	± 0.0040
total	16	72	55	29	75	247	0.035	0.15	0.078	0.058	0.25	0.11	± 0.088
T + 1	50	110	67	0.0	100	40.4	0.1.1	0.05	0.005	0.1.0	0.00		

		Mutatior	n scored					Mutatio	on freque	ncy(×10	ຶ)	
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD
Addition												
at run	2	0	0	2	1	5	0.0043	ND	ND	0.0040	0.0033	0.0023 ± 0.0022
at non-run	1	1	2	0	2	6	0.0022	0.0021	0.0028	ND	0.0067	0.0028 ± 0.0024
total	3	1	2	2	3	11	0.0065	0.0021	0.0028	0.0040	0.010	0.0051 ± 0.0032
Deletion												
at run	5	10	26	4	1	46	0.011	0.021	0.037	0.0080	0.0033	0.016 ± 0.013
at non-run	0	3	0	2	0	5	ND	0.0064	ND	0.0040	ND	0.0021 ± 0.0030
total	5	13	26	6	1	51	0.011	0.028	0.037	0.012	0.0033	0.018 ± 0.014
Total	8	14	28	8	4	62	0.017	0.030	0.040	0.016	0.013	0.023 ± 0.011

434

0.11

0.25

0.095

0.18

0.36

0.20 ± 0.11

Total

C1塩基フレームシフトの種類別検出数と変異頻度

50

119

67

90

108

dinB変異株(MK1201)において、各変異の種類別変異頻度と見いだされた各変異の検体数を示 す。解析は、独立した5実験区由来の合計1200クローンのrpsL標的遺伝子の塩基配列を決定し、全 体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算出した。表のAは変異の種 類別変異頻度を、Bは塩基置換の種類別変異頻度を、Cは1塩基フレームシフトの種類別変異頻度を 示す。

付録表4 polB変異株における変異の種類別変異頻度

A変共の												
		Mut	ation sc	ored				Mutatio	on freque	ncy(×10	^{.6})	
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD
組換え型							0.104	0.223	0.199	0.187	0.097	0.162
1点型(128A→C)	26	50	68	41	12	197	0.052	0.12	0.13	0.096	0.033	0.086 ± 0.042
2点型(-22G→A,128A→C)	26	44	36	39	23	168	0.052	0.10	0.069	0.091	0.064	0.076 ± 0.021
塩基置換												
ホットスポット1(82C→A)	21	2	3	18	5	49	0.042	0.0048	0.0058	0.042	0.014	0.022 ± 0.019
ホットスポット2(245T→A)	53	50	52	35	97	287	0.11	0.12	0.10	0.082	0.27	0.13 ± 0.076
ホットスポット3(245T→G)	8	7	1	7	0	23	0.016	0.017	0.0019	0.016	ND	0.010 ± 0.0084
上記以外	42	44	44	81	54	265	0.084	0.10	0.084	0.19	0.15	0.12 ± 0.046
1塩基フレームシフト	22	8	10	8	10	58	0.044	0.019	0.019	0.019	0.028	0.026 ± 0.011
2塩基フレームシフト	0	1	0	0	0	1	ND	0.0024	ND	ND	ND	0.00048 ± 0.0011
配列置換	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
欠失											-	
タイプ1(dr)	5	2	0	1	2	10	0.010	0.0048	ND	0.0023	0.0055	0.0045 ± 0.0038
タイプ2(ir)	3	3	3	0	0	9	0.0060	0.0071	0.0058	ND	ND	0.0038 ± 0.0035
タイプ3(rなし)	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
未同定	14	1	6	3	4	28	0.028	0.0024	0.012	0.0070	0.0111	0.012 ± 0.0097
重複												
クラス1	10	1	3	2	1	17	0.020	0.0024	0.0058	0.0047	0.0028	0.0071 ± 0.0073
クラス2	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
クラス3	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
IS												
IS1	3	11	0	2	30	46	0.0060	0.026	ND	0.0047	0.083	0.024 ± 0.035
IS5	4	16	12	3	1	36	0.0080	0.038	0.023	0.0070	0.0028	0.016 ± 0.015
1.2klS	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
その他	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
変異なし	3	0	2	0	3	8	0.0060	ND	0.0038	ND	0.0083	0.0036 ± 0.0037
Total	240	240	240	240	242	1202	0.48	0.57	0.46	0.56	0.67	0.55 ± 0.083

B 塩基置換の種類別検出数と変異頻度

		Muta	ation sc	ored				Mutati	on freque	ncy(×10 ⁻	⁻⁶)	
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD
Transition												
A:T→G:C	0	3	4	4	10	21	ND	0.0071	0.0077	0.0093	0.028	0.010 ± 0.010
G:C→A:T	27	29	32	5	17	110	0.054	0.069	0.061	0.012	0.047	0.049 ± 0.022
total	27	32	36	9	27	131	0.054	0.076	0.069	0.021	0.075	0.059 ± 0.023
Transversion												
G:C→T:A	1	0	0	2	1	4	0.0020	ND	ND	0.0047	0.0028	0.0019 ± 0.0020
G:C→C:G	0	6	2	0	20	28	ND	0.014	0.0038	ND	0.055	0.015 ± 0.023
T:A→A:T	8	5	4	68	5	90	0.016	0.012	0.0077	0.16	0.014	0.042 ± 0.066
A:T→C:G	6	1	2	2	1	12	0.012	0.0024	0.0038	0.0047	0.0028	$\textbf{0.0051} \pm 0.0039$
total	15	12	8	72	27	134	0.030	0.029	0.015	0.17	0.075	0.063 ± 0.063
Hot spot												
82C→A	21	2	3	18	5	49	0.042	0.0048	0.0058	0.042	0.014	0.022 ± 0.019
245 T→A	53	50	52	35	97	287	0.11	0.12	0.10	0.082	0.27	0.13 ± 0.076
245 T→G	8	7	1	7	0	23	0.016	0.017	0.0019	0.016	ND	0.010 ± 0.0084
total	82	59	56	60	102	359	0.16	0.14	0.11	0.14	0.28	0.17 ± 0.068
Total	124	103	100	141	156	624	0.25	0.24	0.19	0.33	0.43	0.29 ± 0.094

C1塩基フレームシフトの種類別検出数と変異頻度

		Mut	ation sc	ored				Mutatio	on freque	ncy(×10	-6)	
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD
Addition												
at run	1	0	0	2	1	4	0.0020	ND	ND	0.0047	0.0028	0.0019 ± 0.0020
at non-run	2	5	3	0	1	11	0.0040	0.012	0.0058	ND	0.0028	$\textbf{0.0049} \pm 0.0044$
total	3	5	3	2	2	15	0.0060	0.012	0.0058	0.0047	0.0055	0.0068 ± 0.0029
Deletion												
at run	0	1	5	6	1	13	ND	0.0024	0.0096	0.014	0.0028	0.0057 ± 0.0058
at non-run	19	2	2	0	7	30	0.038	0.0048	0.0038	ND	0.019	0.013 ± 0.016
total	19	3	7	6	8	43	0.038	0.0071	0.013	0.014	0.022	0.019 ± 0.012
Total	22	8	10	8	10	58	0.044	0.019	0.019	0.019	0.028	0.026 ± 0.011

polB変異株(MK1311)において、各変異の種類別変異頻度と見いだされた各変異の検体数を示す。解析は、独立した5実験区由来の合計1200クローンのrpsL標的遺伝子の塩基配列を決定し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算出した。表のAは変異の種類別変異頻度を、Bは塩基置換の種類別変異頻度を、Cは1塩基フレームシフトの種類別変異頻度を示す。

付録表5 umuDC変異株における変異の種類別変異頻度

A 変異の種類別変異頻度

		Mut	ation sco	ored				Mutatio	on freque	ncy(×10 ⁻	⁶)		
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave	± SD
組換え型													
1点型(128A→C)	66	11	7	24	21	129	0.20	0.050	0.012	0.11	0.076	0.089	± 0.069
2点型(-22G→A,128A→C)	22	88	18	28	32	188	0.065	0.40	0.032	0.13	0.12	0.15	± 0.15
塩基置換													
ホットスポット1(82C→A)	22	8	10	1	3	44	0.065	0.037	0.018	0.0046	0.011	0.027	± 0.024
ホットスポット2(245T→A)	69	74	46	30	65	284	0.20	0.34	0.081	0.14	0.24	0.20	± 0.099
ホットスポット3(245T→G)	1	1	6	27	0	35	0.0030	0.0046	0.011	0.12	ND	0.028	± 0.053
上記以外	38	24	35	105	31	233	0.11	0.11	0.061	0.48	0.11	0.18	± 0.17
1塩基フレームシフト	5	10	50	8	52	125	0.015	0.046	0.088	0.037	0.19	0.075	± 0.069
2塩基フレームシフト	0	0	1	0	0	1	ND	ND	0.0018	ND	ND	0.00035	± 0.00078
配列置換	0	0	1	0	0	1	ND	ND	0.0018	ND	ND	0.00035	± 0.00078
欠失													
タイプ1(dr)	1	4	11	6	4	26	0.0030	0.018	0.019	0.027	0.015	0.016	± 0.0089
タイプ2(ir)	1	0	0	0	0	1	0.0030	ND	ND	ND	ND	0.00059	± 0.0013
タイプ3(rなし)	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	
未同定	5	1	18	2	0	26	0.015	0.0046	0.032	0.0091	ND	0.012	± 0.012
重複													
クラス1	0	0	1	0	0	1	ND	ND	0.0018	ND	ND	0.00035	± 0.00078
クラス2	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	
クラス3	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	
IS													
IS1	1	2	14	9	19	45	0.0030	0.0092	0.025	0.041	0.069	0.029	± 0.027
IS5	4	6	13	1	7	31	0.012	0.028	0.023	0.0046	0.025	0.018	± 0.0098
1.2klS	3	11	8	0	4	26	0.0089	0.050	0.014	ND	0.015	0.018	± 0.019
1.3klS	0	0	1	0	0	1	ND	ND	0.0018	ND	ND	0.00035	± 0.00078
その他	1	0	0	0	1	2	0.0030	ND	ND	ND	0.0036	0.0013	± 0.0018
変異なし	1	0	0	0	1	2	0.0030	ND	ND	ND	0.0036	0.0013	± 0.0018
Total	240	240	240	241	240	1201	0.71	1.1	0.42	1.1	0.87	0.84	± 0.29

B 塩基置換の種類別検出数と変	で異頻度											
		Mut	ation sc	ored				Mutatio	on freque	ncy(×10 ⁻	⁶)	
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD
Transition												
A:T→G:C	4	0	6	55	2	67	0.012	ND	0.011	0.25	0.0073	0.056 ± 0.11
G:C→A:T	19	23	19	22	10	93	0.056	0.11	0.033	0.10	0.036	0.066 ± 0.035
total	23	23	25	77	12	160	0.068	0.11	0.044	0.35	0.044	0.12 ± 0.13
Transversion												
G:C→T:A	1	0	0	2	6	9	0.0030	ND	ND	0.0091	0.022	0.0068 ± 0.0092
G:C→C:G	5	1	8	13	0	27	0.015	0.0046	0.014	0.059	ND	0.019 ± 0.024
T:A→A:T	9	0	2	9	7	27	0.027	ND	0.0035	0.041	0.025	0.019 ± 0.017
A:T→C:G	0	0	0	4	6	10	ND	ND	ND	0.018	0.022	0.0080 ± 0.011
total	15	1	10	28	19	73	0.044	0.0046	0.018	0.13	0.069	0.053 ± 0.049
Hot spot												
82C→A	22	8	10	1	3	44	0.065	0.037	0.018	0.0046	0.011	0.027 ± 0.024
245 T→A	69	74	46	30	65	284	0.20	0.34	0.081	0.14	0.24	0.20 ± 0.099
245 T→G	1	1	6	27	0	35	0.0030	0.0046	0.011	0.12	ND	0.028 ± 0.053
total	92	83	62	58	68	363	0.27	0.38	0.11	0.26	0.25	0.25 ± 0.097
Total	130	107	97	163	99	596	0.38	0.49	0.17	0.74	0.36	0.43 ± 0.21

C1塩基フレームシフトの種類別検出数と変異頻度

		Mut	ation sc	ored				Mutatio	on freque	ncy(×10 ⁻	⁶)	
Section No.	#7	#8	#9	#10	#11	Total	#7	#8	#9	#10	#11	ave ± SD
Addition												
at run	2	1	16	1	50	70	0.0059	0.0046	0.028	0.0046	0.18	0.045 ± 0.077
at non-run	1	0	6	0	0	7	0.0030	ND	0.011	ND	ND	0.0027 ± 0.0045
total	3	1	22	1	50	77	0.0089	0.0046	0.039	0.0046	0.18	0.048 ± 0.076
Deletion												
at run	2	8	2	2	1	15	0.0059	0.037	0.0035	0.0091	0.0036	0.012 ± 0.014
at non-run	0	1	26	5	1	33	ND	0.0046	0.046	0.023	0.0036	0.015 ± 0.019
total	2	9	28	7	2	48	0.0059	0.041	0.049	0.032	0.0073	0.027 ± 0.020
Total	5	10	50	8	52	125	0.015	0.046	0.088	0.037	0.19	0.075 ± 0.069

umuDC変異株(MK1301)において、各変異の種類別変異頻度と見いだされた各変異の検体数を示 す。解析は、独立した5実験区由来の合計1200クローンの*rpsL*標的遺伝子の塩基配列を決定し、全 体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算出した。表のAは変異の種 類別変異頻度を、Bは塩基置換の種類別変異頻度を、Cは1塩基フレームシフトの種類別変異頻度を 示す。

付録表6 dinB umuDC二重変異株における変異の種類別変異頻度

A 変異の種類別変異頻度

		Mut	ation sc	ored								
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD
組換え型												
1点型(128A→C)	17	28	64	14	9	132	0.034	0.048	0.17	0.034	0.028	0.062 ± 0.058
2点型(-22G→A,128A→C)	42	33	20	88	42	225	0.085	0.056	0.052	0.21	0.13	0.11 ± 0.067
塩基置換												
ホットスポット1(82C→A)	7	3	19	1	3	33	0.014	0.0051	0.049	0.0024	0.0092	0.016 ± 0.019
ホットスポット2(245T→A)	69	44	74	42	23	252	0.14	0.075	0.19	0.10	0.071	0.12 ± 0.050
ホットスポット3(245T→G)	6	8	9	6	11	40	0.012	0.014	0.023	0.015	0.034	0.019 ± 0.0091
上記以外	42	41	15	32	69	199	0.085	0.070	0.039	0.077	0.21	0.097 ± 0.067
1塩基フレームシフト	3	22	4	18	43	90	0.0060	0.038	0.010	0.044	0.13	0.046 ± 0.051
2塩基フレームシフト	0	12	0	0	2	14	ND	0.021	ND	ND	0.0061	0.0053 ± 0.0089
配列置換	1	0	0	0	14	15	0.0020	ND	ND	ND	0.043	0.0090 ± 0.019
欠失												
タイプ1(dr)	11	25	1	19	4	60	0.022	0.043	0.0026	0.046	0.012	0.025 ± 0.019
タイプ2(ir)	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
タイプ3(rなし)	0	2	0	0	0	2	ND	0.0034	ND	ND	ND	0.00068 ± 0.0015
未同定	10	7	7	4	2	30	0.020	0.012	0.018	0.0097	0.0061	0.013 ± 0.0058
重複												
クラス1	0	0	5	0	0	5	ND	ND	0.013	ND	ND	0.0026 ± 0.0058
クラス2	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
クラス3	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
IS												
IS1	19	10	10	9	16	64	0.038	0.0171	0.026	0.022	0.049	0.030 ± 0.013
IS5	12	2	9	6	1	30	0.024	0.0034	0.023	0.015	0.0031	0.014 ± 0.010
1.2klS	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
その他	4	0	2	1	2	9	0.0081	ND	0.0052	0.0024	0.0061	0.0044 ± 0.0032
変異なし	0	3	1	0	0	4	ND	0.0051	0.0026	ND	ND	0.0015 ± 0.0023
Total	243	240	240	240	241	1204	0.49	0.41	0.62	0.58	0.74	0.57 ± 0.13
B 塩基置換の種類別検出数と変異頻度												

		Mut	ation sco	ored								
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD
Transition												
A:T→G:C	12	2	3	6	51	74	0.024	0.0034	0.0078	0.015	0.16	0.041 ± 0.065
G:C→A:T	13	6	6	7	8	40	0.026	0.010	0.016	0.017	0.025	0.019 ± 0.0066
total	25	8	9	13	59	114	0.050	0.014	0.023	0.031	0.18	0.060 ± 0.069
Transversion												
G:C→T:A	6	1	0	6	0	13	0.012	0.0017	ND	0.015	ND	0.0057 ± 0.0071
G:C→C:G	0	0	1	0	7	8	ND	ND	0.0026	ND	0.021	0.0048 ± 0.0094
T:A→A:T	9	28	3	12	2	54	0.018	0.048	0.0078	0.029	0.0061	0.022 ± 0.017
A:T→C:G	2	4	2	1	1	10	0.0040	0.0068	0.0052	0.0024	0.0031	0.0043 ± 0.0018
total	17	33	6	19	10	85	0.034	0.056	0.016	0.046	0.031	0.037 ± 0.016
Hot spot												
82C→A	7	3	19	1	3	33	0.014	0.0051	0.049	0.0024	0.0092	0.016 ± 0.019
245 T→A	69	44	74	42	23	252	0.14	0.075	0.19	0.10	0.071	0.12 ± 0.050
245 T→G	6	8	9	6	11	40	0.012	0.014	0.023	0.015	0.034	0.019 ± 0.0091
total	82	55	102	49	37	325	0.17	0.094	0.26	0.12	0.11	0.15 ± 0.068
Total	124	96	117	81	106	524	0.25	0.16	0.30	0.20	0.33	0.25 ± 0.068

C1塩基フレームシフトの種類別検出数と変異頻度

		Mut	ation sc	ored				Mutatio				
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD
Addition												
at run	0	13	0	0	2	15	ND	0.022	ND	ND	0.0061	0.0057 ± 0.0096
at non-run	2	7	0	0	0	9	0.0040	0.012	ND	ND	ND	0.0032 ± 0.0052
total	2	20	0	0	2	24	0.0040	0.034	ND	ND	0.0061	0.0089 ± 0.014
Deletion												
at run	0	2	2	11	41	56	ND	0.0034	0.0052	0.027	0.13	0.032 ± 0.053
at non-run	1	0	2	7	0	10	0.0020	ND	0.0052	0.017	ND	0.0048 ± 0.0071
total	1	2	4	18	41	66	0.0020	0.0034	0.010	0.044	0.13	0.037 ± 0.052
Total	3	22	4	18	43	90	0.0060	0.038	0.010	0.044	0.13	0.046 ± 0.051

*dinB umuDC*二重変異株(MK1221)において、各変異の種類別変異頻度と見いだされた各変異の 検体数を示す。解析は、独立した5実験区由来の合計1200クローンの*rpsL*標的遺伝子の塩基配列 を決定し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算出した。表 のAは変異の種類別変異頻度を、Bは塩基置換の種類別変異頻度を、Cは1塩基フレームシフトの 種類別変異頻度を示す。

付録表7 dinB polB二重変異株における変異の種類別変異頻度

A 変異の種類別変異頻度																
				Mutation	n scored			Mutation frequency($\times 10^{-6}$)								
Section No.	#1	#2	#3	#4	#5	#6	Total	#1	#2	#3	#4	#5	#6	ave ± SD		
組換え型																
1点型(128A→C)	1	7	8	15	1	8	40	0.010	0.087	0.14	0.14	0.016	0.050	0.074 ± 0.058		
2点型(-22G→A,128A→C)	24	3	17	6	8	10	68	0.25	0.037	0.29	0.058	0.13	0.063	0.14 ± 0.11		
塩基置換																
ホットスポット1(82C→A)	1	1	0	0	1	2	5	0.010	0.012	ND	ND	0.016	0.013	0.0085 ± 0.0068		
ホットスポット2(245T→A)	13	28	10	19	12	7	89	0.13	0.35	0.17	0.18	0.19	0.044	0.18 ± 0.099		
ホットスポット3(245T→G)	3	2	0	0	0	2	7	0.031	0.025	ND	ND	ND	0.013	0.011 ± 0.014		
上記以外	5	2	3	1	8	5	24	0.051	0.025	0.051	0.010	0.13	0.031	0.049 ± 0.041		
1塩基フレームシフト	1	1	6	2	7	6	23	0.010	0.012	0.10	0.019	0.11	0.038	0.049 ± 0.046		
2塩基フレームシフト	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND		
配列置換	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND		
欠失																
タイプ1(dr)	0	0	1	0	1	1	3	ND	ND	0.017	ND	0.016	0.0063	0.0065 ± 0.0080		
タイプ2(ir)	0	0	0	2	0	1	3	ND	ND	ND	0.019	ND	0.0063	0.0042 ± 0.0077		
タイプ3(rなし)	0	0	0	1	0	0	1	ND	ND	ND	0.0096	ND	ND	0.0016 ± 0.0039		
未同定	0	0	2	0	4	1	7	ND	ND	0.034	ND	0.063	0.0063	0.017 ± 0.026		
重複																
クラス1	0	0	0	2	0	0	2	ND	ND	ND	0.019	ND	ND	0.0032 ± 0.0078		
クラス2	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND		
クラス3	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND		
IS																
IS1	0	0	0	0	5	4	9	ND	ND	ND	ND	0.079	0.025	0.017 ± 0.032		
IS5	0	4	1	0	1	1	7	ND	0.050	0.017	ND	0.016	0.0063	0.015 ± 0.019		
1.2klS	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND		
その他	0	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND		
変異なし	0	1	0	0	0	0	1	ND	0.012	ND	ND	ND	ND	0.0021 ± 0.0051		
Total	48	49	48	48	48	48	289	0.49	0.61	0.81	0.46	0.76	0.30	0.57 ± 0.19		
Dに甘田佐の廷哲団体山教し本	ㅋĸĸ															
B塩基直換の種類別検出数と変	 夷 夏															
				Mutation	n scored			Mutation frequency(×10°)								
Section No.	#1	#2	#3	#4	#5	#6	Total	#1	#2	#3	#4	#5	#6	ave ± SD		
Transition							_									
A:1→G:C	0	1	0	0	4	0	5	ND	0.012	ND	ND	0.063	ND	0.013 ± 0.025		
G:C→A:1	2	0	0	0	0	0		0.020	ND	ND	ND	ND	ND	0.0034 ± 0.0083		
total	2	I	0	0	4	0	/	0.020	0.012	ND	ND	0.063	ND	0.016 ± 0.025		
	0	0	0	0	1	~	1					0.010		0 0000 + 0 0000		
G:C→T:A	0	0	0	0	1	0	-	ND		ND		0.016	ND	0.0026 ± 0.0065		
G:C→C:G	2	1	0	1	1	0	5	0.020	0.012	ND	0.0096	0.016	ND	0.0097 ± 0.0083		
1:A→A:1	1	0	2	0	1	5	9	0.010	ND	0.034	ND	0.016	0.031	0.015 ± 0.015		
A:T→C:G	0	0	1	0		0		ND	ND	0.017	ND	0.016	ND	0.0055 ± 0.0085		
total	3	I	3	I	4	5	17	0.031	0.012	0.051	0.0096	0.063	0.031	0.033 ± 0.021		
Hot spot	1	1	0	0	1	2	-	0.010	0.012			0.010	0.012	0 000F + 0 00C0		
82C→A	10	1	10	0	10	2	5	0.010	0.012			0.016	0.015			
245 I→A 245 T→C	13	28	10	19	12	2	89	0.13	0.35	0.17	0.18	0.19	0.044	0.16 ± 0.099		
243 170	3	21	10	10	12	11	101	0.031	0.025	0.17	0.1.9	0.21	0.013	0.011 ± 0.014		
total	22	31	10	20	13	10	101	0.17	0.39	0.17	0.18	0.21	0.069	0.20 ± 0.10		
I OTAI	22	33	13	20	21	10	125	0.22	0.41	0.22	0.19	0.33	0.10	U.25 ± 0.11		
○1 作其フレームシフトの孫和□		レ亦卑垢	Æ													
しい温盛ノレームシノトの俚親が	加光山就。	こ炎共頻	皮								,	(
Contribution of the	# 1	# 2	<i>"</i>	Mutation	n scored	# ^	T		40	Mutation	trequency	<u>(×10°)</u>	# ^	aug. : 00		
Section No	Π Ι	π/	π ≺	π4	π 5	πh	1012	Π Ι	π.	π ≺	π4	π 5	πь	$q_V q + N_I$		

Section No.	#1	#2	#3	#4	#5	#6	Total	#1	#2	#3	#4	#5	#6	ave ± SD
Addition														
at run	0	0	0	0	0	1	1	ND	ND	ND	ND	ND	0.0063	0.0010 ± 0.0026
at non-run	0	0	3	0	0	1	4	ND	ND	0.051	ND	ND	0.0063	0.0095 ± 0.020
total	0	0	3	0	0	2	5	ND	ND	0.051	ND	ND	0.013	0.011 ± 0.020
Deletion														
at run	1	0	0	0	0	4	5	0.010	ND	ND	ND	ND	0.025	0.0059 ± 0.010
at non-run	0	1	3	2	7	0	13	ND	0.012	0.051	0.019	0.11	ND	0.032 ± 0.043
total	1	1	3	2	7	4	18	0.010	0.012	0.051	0.019	0.11	0.025	0.038 ± 0.039
Total	1	1	6	2	7	6	23	0.010	0.012	0.10	0.019	0.11	0.038	0.049 ± 0.046

*dinB polB*二重変異株(MK1331)において、各変異の種類別変異頻度と見いだされた各変異の 検体数を示す。解析は、独立した6実験区由来の合計288クローンの*rpsL*標的遺伝子の塩基配 列を決定し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算出し た。表のAは変異の種類別変異頻度を、Bは塩基置換の種類別変異頻度を、Cは1塩基フレーム シフトの種類別変異頻度を示す。

108
付録表8 polB umuDC二重変異株における変異の種類別変異頻度

A 変異の種類別変異頻度												
	Mutationation scored						1					
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD
組換え型												
1点型(128A→C)	9	5	3	6	1	24	0.103	0.036	0.026	0.033	0.019	0.043 ± 0.034
2点型(-22G→A,128A→C)	4	4	4	8	2	22	0.046	0.029	0.034	0.043	0.038	0.038 ± 0.0068
塩基置換												
ホットスポット1(82C→A)	0	0	3	3	27	33	ND	ND	0.026	0.016	0.52	0.11 ± 0.23
ホットスポット2(245T→A)	15	27	18	16	9	85	0.17	0.20	0.15	0.087	0.17	0.16 ± 0.042
ホットスポット3(245T→G)	2	0	1	0	3	6	0.023	ND	0.0085	ND	0.058	0.018 ± 0.024
上記以外	12	2	5	9	2	30	0.14	0.015	0.043	0.049	0.038	0.056 ± 0.047
1塩基フレームシフト	1	1	6	2	2	12	0.011	0.0073	0.051	0.011	0.038	0.024 ± 0.020
2塩基フレームシフト	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
配列置換	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
欠失												
タイプ1(dr)	1	2	0	1	0	4	0.011	0.015	ND	0.0054	ND	0.0063 ± 0.0066
タイプ2(ir)	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
タイプ3(rなし)	0	0	0	1	0	1	ND	ND	ND	0.0054	ND	0.0011 ± 0.0024
未同定	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
重複												
クラス1	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
クラス2	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
クラス3	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
IS												
IS1	3	7	4	2	1	17	0.034	0.051	0.034	0.011	0.019	0.030 ± 0.016
IS5	0	0	2	0	0	2	ND	ND	0.017	ND	ND	0.0034 ± 0.0076
1.2klS	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
その他	1	0	2	0	0	3	0.011	ND	0.017	ND	ND	0.0057 ± 0.0081
変異なし	0	0	0	0	1	1	ND	ND	ND	ND	0.019	0.0038 ± 0.0086
Total	48	48	48	48	48	240	0.55	0.35	0.41	0.26	0.92	0.50 ± 0.26

B 塩基置換の種類別検出数と変異頻度

	Mutatioration scored							Mutation frequency(×10-6)					
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD	
Transition													
A:T→G:C	0	0	1	2	0	3	ND	ND	0.0085	0.0108	ND	0.0039 ± 0.0054	
G:C→A:T	7	1	2	1	0	11	0.080	0.0073	0.017	0.0054	ND	0.022 ± 0.033	
total	7	1	3	3	0	14	0.080	0.0073	0.026	0.0163	ND	0.026 ± 0.032	
Transversion													
G:C→T:A	1	0	0	1	0	2	0.011	ND	ND	0.0054	ND	0.0034 ± 0.0051	
G:C→C:G	4	1	0	1	0	6	0.046	0.0073	ND	0.0054	ND	0.012 ± 0.019	
T:A→A:T	0	0	2	2	2	6	ND	ND	0.017	0.0108	0.038	0.013 ± 0.016	
A:T→C:G	0	0	0	2	0	2	ND	ND	ND	0.011	ND	0.0022 ± 0.0048	
total	5	1	2	6	2	16	0.057	0.0073	0.017	0.033	0.038	0.031 ± 0.019	
Hot spot													
82C→A	0	0	3	3	27	33	ND	ND	0.026	0.016	0.52	0.11 ± 0.23	
245 T→A	15	27	18	16	9	85	0.17	0.20	0.15	0.087	0.17	0.16 ± 0.042	
245 T→G	2	0	1	0	3	6	0.023	0.00	0.0085	ND	0.058	0.018 ± 0.024	
total	17	27	22	19	39	124	0.19	0.20	0.19	0.10	0.75	0.29 ± 0.26	
Total	29	29	27	28	41	154	0.33	0.21	0.23	0.15	0.79	0.34 ± 0.26	

C1塩基フレームシフトの種類別検出数と変異頻度

			Mutatior	ation sc	ored			Mutation f	requency	y(×10-6)		
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD
Addition												
at run	1	0	0	0	1	2	0.011	ND	ND	ND	0.019	0.0061 ± 0.0088
at non-run	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
total	1	0	0	0	1	2	0.011	ND	ND	ND	0.019	0.0061 ± 0.0088
Deletion												
at run	0	0	6	1	1	8	ND	ND	0.051	0.0054	0.019	0.015 ± 0.022
at non-run	0	1	0	1	0	2	ND	0.0073	ND	0.0054	ND	0.0025 ± 0.0035
total	0	1	6	2	1	10	ND	0.0073	0.051	0.011	0.019	0.018 ± 0.020
Total	1	1	6	2	2	12	0.011	0.0073	0.051	0.011	0.038	0.024 ± 0.020

polB umuDC二重変異株(MK1351)において、各変異の種類別変異頻度と見いだされた各変異の検体数を示す。解析は、独立した5実験区由来の合計240クローンの*rpsL*標的遺伝子の塩基配列を決定し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算出した。表のAは変異の種類別変異頻度を、Bは塩基置換の種類別変異頻度を、Cは1塩基フレームシフトの種類別変異頻度を示す。

付録表9 dinB umuDC polB三重変異株における変異の

種類別変異頻度

A 変異の種類別変異頻度												
		Mut	ation sc	ored				Mutatio	on freque	ncy(×10	⁻⁶)	
Section No.	#1	#2	#3	#4	#5	Total	#1	#2	#3	#4	#5	ave ± SD
組換え型												
1点型(128A→C)	88	122	90	29	39	368	0.40	0.31	0.21	0.051	0.083	0.21 ± 0.15
2点型(-22G→A.128A→C)	20	21	38	26	25	130	0.092	0.053	0.090	0.045	0.053	0.067 ± 0.022
ホットスポット1(82C→A)	4	2	1	8	3	18	0.018	0.0050	0.0024	0.014	0 0064	0.0092 + 0.0067
$\pm \times F_2 \pm \times F_2$	70	71	36	116	80	373	0.32	0.0000	0.0021	0.011	0.0001	0.00012 ± 0.0001
$\pi = \sqrt{1 + 2}$	1	2	4	0	3	10	0.0046	0.0050	0.0005	ND	0.0064	0.0051 ± 0.0034
	44	3	15	31	38	131	0.0040	0.0030	0.0000	0.054	0.0004	0.0031 ± 0.0034
1位其フレームシフト	7	6	24	13	18	68	0.032	0.0015	0.057	0.023	0.038	0.033 ± 0.016
「塩金ノレームノノト	<u>,</u>	0		0	2	2	ND			0.023	0.030	0.0035 ± 0.010
	0	0	0	0							0.0043	ND
乱"列旦没 友生	0	0	0	0	0			IND	IND	ND	ND	
	1	2		4	c	21	0.0040	0.0050	0.0100	0.0070	0.0120	0 0007 + 0 0001
タイノ (dr)		2	0	4	0	21	0.0046	0.0050	0.0190	0.0070	0.0120	0.0097 ± 0.0061
91 J2(II)	1	0	9	0	0	9		ND	0.021	ND		0.0043 ± 0.0096
タイ ノ3(Fなし)	1	0	0	0	3	4	0.0046	ND	ND	ND	0.0064	0.0022 ± 0.0031
未同定	2	I	4	2	5	14	0.0092	0.0025	0.0095	0.0035	0.011	0.0071 ± 0.0038
重複						_						
25X1	0	0	2	1	2	5	ND	ND	0.0048	0.0017	0.0043	0.0021 ± 0.0023
クラス2	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
クラス3	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
IS												
IS1	1	5	6	11	7	30	0.0046	0.013	0.014	0.019	0.015	0.013 ± 0.0053
IS5	1	7	2	0	8	18	0.0046	0.018	0.0048	ND	0.017	0.0088 ± 0.0080
1.2klS	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
その他	0	0	0	0	0	0	ND	ND	ND	ND	ND	ND
変異なし	0	0	1	0	1	2	ND	ND	0.0024	ND	0.0021	0.00090 ± 0.0012
Total	240	242	240	241	240	1203	1.1	0.61	0.57	0.42	0.51	0.64 ± 0.27
B 塩基置換の種類別検出数と変	異頻度											
B 塩基置換の種類別検出数と変	異頻度	Mut	ation sc	ored				Mutatio	on freque	ncy(×10	-6)	
B 塩基置換の種類別検出数と変 Section No.	異頻度 #1	Mut #2	ation sc # 3	ored #4	#5	Total	#1	Mutatio #2	on freque #3	ncy(×10 #4	⁻⁶) #5	ave ± SD
B 塩基置換の種類別検出数と変 Section No. Transition	異頻度 #1	Mut #2	ation sc #3	ored #4	#5	Total	#1	Mutatio #2	on freque #3	ncy(×10 #4	⁶) #5	ave ± SD
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C	異頻度 #1 7	Mut #2 0	ation sc #3 3	ored #4 2	#5	Total 32	#1	Mutatio #2 ND	on freque #3 0.0071	ncy(×10 #4 0.0035	⁻⁶) #5 0.043	ave ± SD 0.017 ± 0.019
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T	<u>異頻度</u> #1 7 31	Mut #2 0 3	<u>ation sc</u> #3 3 5	0red #4 2 2	#5 20 5	Total 32 46	#1 0.032 0.14	Mutatio # 2 ND 0.0076	0.0071 0.012	ncy(×10 #4 0.0035 0.0035	⁻⁶) #5 0.043 0.011	ave ± SD 0.017 ± 0.019 0.035 ± 0.060
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total	異頻度 #1 7 31 38	Mut #2 0 3	ation sci #3 3 5 8	ored #4 2 2 4	#5 20 5 25	Total 32 46 78	#1 0.032 0.14 0.17	Mutatio # 2 ND 0.0076 0.0076	0.0071 0.012 0.019	ncy(×10 #4 0.0035 0.0035 0.0070	⁶) #5 0.043 0.011 0.053	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion	異頻度 7 31 38	Mut #2 0 3 3	ation sco #3 3 5 8	ored #4 2 2 4	#5 20 5 25	Total 32 46 78	#1 0.032 0.14 0.17	Mutatio #2 ND 0.0076 0.0076	0.0071 0.012 0.019	ncy(×10 #4 0.0035 0.0035 0.0070	⁶) #5 0.043 0.011 0.053	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A	<u>異頻度</u> #1 7 31 38 1	Mut #2 0 3 3	ation sc #3 3 5 8 0	ored #4 2 2 4	# 5 20 5 25	Total 32 46 78 19	#1 0.032 0.14 0.17 0.0046	Mutatio # 2 ND 0.0076 0.0076	0.0071 0.012 0.019 ND	ncy(×10 #4 0.0035 0.0035 0.0070 0.030	⁶) #5 0.043 0.011 0.053 0.0021	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G	異頻度 #1 7 31 38 1 2	Mut #2 0 3 3 0 0	ation sc #3 3 5 8 0 0	0red #4 2 2 4 17 5	# 5 20 5 25 1 0	Total 32 46 78 19 7	#1 0.032 0.14 0.17 0.0046 0.0092	Mutatio # 2 ND 0.0076 0.0076 ND ND	0.0071 0.0071 0.012 0.019 ND ND	ncy(×10 #4 0.0035 0.0035 0.0070 0.0070 0.030	⁻⁶) #5 0.043 0.011 0.053 0.0021 ND	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T	異頻度 #1 7 31 38 1 2 3	Mut #2 0 3 3 0 0 0	ation sco #3 3 5 8 0 0 1	0red #4 2 2 4 17 5 5	#5 20 5 25 1 0	Total 32 46 78 19 7 20	#1 0.032 0.14 0.17 0.0046 0.0092 0.014	Mutatio # 2 ND 0.0076 0.0076 ND ND ND	0.0071 0.0071 0.012 0.019 ND ND 0.0024	ncy(×10 #4 0.0035 0.0035 0.0070 0.0087 0.0087	⁻⁶) #5 0.043 0.011 0.053 0.0021 ND 0.023	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G	異頻度 #1 7 31 38 1 2 3 0	Mut #2 0 3 3 0 0 0 0 0	ation sco #3 3 5 8 0 0 1 6	ored #4 2 2 4 17 5 5 0	#5 20 5 25 1 0 11	Total 32 46 78 19 7 20 7	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND	Mutatio # 2 ND 0.0076 0.0076 ND ND ND ND	n freque #3 0.0071 0.012 0.019 ND ND 0.0024 0.014	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.030 0.0087 0.0087 ND	⁶) #5 0.043 0.011 0.053 0.0021 ND 0.023 0.0021	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0062
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total	異頻度 #1 7 31 38 1 2 3 0 6	Mut #2 0 3 3 0 0 0 0 0 0	ation sco #3 3 5 8 0 0 1 6 7	ored #4 2 2 4 17 5 5 0 27	#5 20 5 25 1 0 11 1 1	Total 32 46 78 19 7 20 7 53	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028	Mutatio #2 ND 0.0076 0.0076 ND ND ND ND	n freques #3 0.0071 0.012 0.019 ND 0.0024 0.014 0.017	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 ND 0.047	⁶) #5 0.043 0.011 0.053 0.0021 ND 0.023 0.0021 0.028	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0033 ± 0.0062 0.0024 ± 0.017
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot soot	異頻度 #1 7 31 38 1 2 3 0 6	Mut #2 0 3 3 0 0 0 0 0 0 0 0	ation sco #3 3 5 8 0 0 1 6 7	ored #4 2 2 4 17 5 5 0 27	#5 20 5 25 1 0 11 1 13	Total 32 46 78 19 7 20 7 53	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028	Mutatie #2 ND 0.0076 0.0076 ND ND ND ND ND ND	n freque #3 0.0071 0.012 0.019 ND 0.0024 0.014 0.017	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 ND 0.047	⁶) #5 0.043 0.011 0.053 0.0021 ND 0.023 0.0021 0.028	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A	異頻度 #1 7 31 38 1 2 3 0 6 4	Mut #2 0 3 3 0 0 0 0 0 0 0 2	ation sco #3 3 5 8 0 0 1 6 7 7	ored #4 2 2 4 17 5 5 0 27 8	#5 20 5 25 1 0 11 1 13 3	Total 32 46 78 19 7 20 7 53 18	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028	Mutatio #2 ND 0.0076 0.0076 ND ND ND ND ND ND	n freque #3 0.0071 0.012 0.019 ND ND 0.0024 0.014 0.017	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 ND 0.047	⁶) #5 0.043 0.011 0.053 0.0021 ND 0.023 0.0021 0.028	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017
B 塩基置換の種類別検出数と変更 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A	異頻度 #1 7 31 38 1 2 3 0 6 4 70	Mut #2 0 3 3 0 0 0 0 0 0 0 2 2 71	ation sc #3 3 5 8 0 0 1 6 7 1 36	ored #4 2 2 4 17 5 5 0 27 8	#5 20 5 25 1 0 11 1 1 3 80	Total 32 46 78 19 7 20 7 53 18 373	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32	Mutatic #2 ND 0.0076 0.0076 ND ND ND ND ND ND ND 0.0050 0 18	n freque #3 0.0071 0.012 0.019 ND 0.0024 0.014 0.017 0.0024	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 ND 0.0047 0.014 0.014	⁶) #5 0.043 0.011 0.053 0.0021 ND 0.023 0.0021 0.028 0.0064	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A	異頻度 #1 7 31 38 1 2 3 0 6 4 70 0	Mut #2 0 3 3 0 0 0 0 0 0 0 2 71 2	ation sc #3 3 5 8 0 1 6 7 1 36 4	0red #4 2 2 4 17 5 5 0 27 8 116 0	#5 20 5 25 1 0 11 1 1 3 80 3	Total 32 46 78 19 7 20 7 53 18 373 10	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32	Mutatic #2 ND 0.0076 0.0076 ND ND ND ND ND ND 0.0050 0.0150	n freque #3 0.0071 0.012 0.019 ND 0.0024 0.014 0.017 0.0024 0.0024	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 0.0087 0.0047 0.014 0.014 0.20	⁶) #5 0.043 0.011 0.053 0.0021 0.023 0.0021 0.028 0.0064 0.17 0.0064	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0033 ± 0.0052 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0034 ± 0.0034
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→G	異頻度 #1 7 31 38 1 2 3 0 6 4 70 1 75	Mut #2 0 3 3 0 0 0 0 0 0 0 0 2 71 2 2 75	ation sc #3 3 5 8 0 0 1 6 7 1 36 4 4	bred #4 2 2 4 17 5 5 0 27 8 116 0 124	#5 20 5 25 1 0 11 1 1 3 80 3 80	Total 32 46 78 19 7 20 7 53 18 373 10 401	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0048	Mutatio #2 ND 0.0076 0.0076 ND ND ND ND ND 0.0050 0.18 0.0050 0.19	n freque #3 0.0071 0.012 0.019 ND 0.0024 0.014 0.0024 0.0024 0.0024 0.0024 0.0025 0.0095	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 ND 0.047 0.014 0.20 ND	⁶) #5 0.043 0.011 0.053 0.0021 0.023 0.0021 0.028 0.0064 0.17 0.0064	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0030
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→G	異頻度 #1 7 31 38 1 2 3 0 6 4 70 1 75 110	Mut #2 0 3 3 0 0 0 0 0 0 0 0 0 2 71 2 75 75	ation sc #3 3 5 8 0 0 1 6 7 1 36 4 4 4 5 5 5 8 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 6 7 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	bred #4 2 2 4 17 5 5 0 27 8 116 0 124	#5 20 5 25 1 0 11 1 1 3 80 3 86 124	Total 32 46 78 19 7 20 7 53 18 373 10 401 522	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.32 0.0046 0.32	Mutatic #2 ND 0.0076 0.0076 0.0076 ND ND ND ND ND 0.0050 0.18 0.0050 0.18 0.0050 0.19	n freque #3 0.0071 0.012 0.019 ND ND 0.0024 0.014 0.0017 0.0024 0.0025 0.0095 0.097	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 ND 0.047 0.014 0.20 ND 0.22 0.22	⁶) #5 0.043 0.011 0.053 0.0021 ND 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.18 0.26	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16
B 塩基置換の種類別検出数と変更 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A 245 T→G	異頻度 第1 7 31 38 1 2 3 0 6 4 70 1 75 119	Mut #2 0 3 3 0 0 0 0 0 0 0 0 2 71 2 75 78	ation sco #3 3 5 8 0 0 1 6 7 1 36 4 4 1 56	bred #4 2 2 4 17 5 5 0 27 8 116 0 124 155	#5 20 5 25 1 0 111 1 1 3 80 3 80 3 86 124	Total 32 46 78 19 7 20 7 53 18 373 10 401 532	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.34 0.55	Mutatic #2 ND 0.0076 0.0076 ND ND ND ND ND ND 0.0050 0.18 0.0050 0.19 0.20	n freques #3 0.0071 0.012 0.019 ND ND 0.0024 0.014 0.0017 0.0024 0.086 0.0095 0.097 0.13	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 ND 0.047 0.014 0.20 ND 0.22 0.27	⁶) #5 0.043 0.011 0.053 0.0021 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.18 0.26	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A	異頻度 #1 7 31 38 1 2 3 0 6 4 70 1 75 119	Mut #2 0 3 3 0 0 0 0 0 0 0 0 0 0 2 71 2 75 78	ation sco #3 3 5 8 0 0 1 6 7 1 36 4 41 56	bred #4 2 4 17 5 5 0 27 8 116 0 124 155	# 5 20 5 25 1 0 11 1 1 3 80 3 86 124	Total 32 46 78 19 7 20 7 53 18 373 10 401 532	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.34 0.55	Mutatic #2 ND 0.0076 0.0076 ND ND ND ND ND 0.0050 0.18 0.0050 0.19 0.20	n freque #3 0.0071 0.012 0.019 ND 0.0024 0.014 0.0017 0.0024 0.086 0.0095 0.097 0.13	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 ND 0.047 0.014 0.20 ND 0.22 0.27	⁶) #5 0.043 0.011 0.053 0.0021 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.18 0.26	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→G total C 1塩基フレームシフトの種類類	異頻度 #1 7 31 38 1 2 3 0 6 4 70 4 70 1 75 119	Mut #2 0 3 3 0 0 0 0 0 0 0 2 71 2 75 78	ation sco #3 3 5 8 0 0 1 6 7 1 36 4 41 56 g	event and the second se	#5 20 5 25 1 0 11 1 1 3 80 3 86 124	Total 32 46 78 19 7 20 7 53 18 373 10 401 532	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.34 0.55	Mutatic #2 ND 0.0076 0.0076 ND ND ND ND ND 0.0050 0.018 0.0050 0.19 0.20	n freque #3 0.0071 0.012 0.019 ND 0.0024 0.014 0.0014 0.0017 0.0024 0.0095 0.0095 0.097 0.13	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 ND 0.047 0.014 0.20 ND 0.22 0.27	⁶) #5 0.043 0.011 0.053 0.0021 ND 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.18 0.26	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→G total C 1塩基フレームシフトの種類別	異頻度 #1 7 31 38 1 2 3 0 6 4 70 1 75 119 リ検出数。	Mut #2 0 3 3 0 0 0 0 0 0 2 71 2 75 78 2 5 78	ation sc #3 3 5 8 0 0 1 6 7 1 36 4 4 41 56 g ation sc	0red #4 2 2 4 17 5 5 0 27 8 116 0 124 155 0	#5 20 5 25 1 0 11 1 1 3 80 3 86 124	Total 32 46 78 19 7 20 7 53 18 373 10 401 532	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.34 0.55	Mutatic #2 ND 0.0076 0.0076 ND ND ND ND ND 0.0050 0.18 0.0050 0.19 0.20	n freque #3 0.0071 0.012 0.019 ND 0.0024 0.014 0.0024 0.004 0.0095 0.097 0.13	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 ND 0.047 0.014 0.20 ND 0.22 0.27 ncy(×10	⁶) #5 0.043 0.011 0.053 0.0021 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.18 0.26	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→G total C 1塩基フレームシフトの種類別 Section No.	異頻度 #1 7 31 38 1 2 3 0 6 4 70 1 75 119 リ検出数。 #1	Mut #2 0 3 3 0 0 0 0 0 0 2 71 2 75 78 2 75 78	ation sc # 3 3 5 8 0 0 1 6 7 1 36 4 41 56 g ation sc # 3	ored #4 2 2 4 17 5 5 0 27 8 116 0 124 155 0 0 27 8 116 0 124 155	#5 20 5 25 1 0 11 1 1 1 3 80 3 86 124 #5	Total 32 46 78 19 7 20 7 53 53 18 373 10 401 532	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.34 0.55 #1	Mutatic #2 ND 0.0076 0.0076 0.0076 ND ND ND ND 0.0050 0.18 0.0050 0.19 0.20 0.19 0.20	n freque #3 0.0071 0.012 0.019 ND 0.0024 0.014 0.0024 0.004 0.0095 0.097 0.13 on freque #3	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 ND 0.047 0.014 0.20 ND 0.22 0.27 ncy(×10 #4	⁶) # 5 0.043 0.011 0.053 0.0021 ND 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.17 0.0064 0.18 0.26	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16
B 塩基置換の種類別検出数と変更 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→C C 1塩基フレームシフトの種類別 Section No.	異頻度 #1 7 31 38 1 2 3 0 6 4 70 1 75 119 リ検出数。	Mut #2 0 3 3 0 0 0 0 0 0 0 2 71 2 75 78 2 75 78 2 2 75 78	ation sco #3 3 5 8 0 0 1 6 7 1 36 4 4 1 56 g ation sco #3	ored #4 2 2 4 17 5 5 0 27 8 116 0 124 155 0 0 27 8 116 0 124 155	#5 20 5 25 1 0 11 1 1 3 80 3 86 124 #5	Total 32 46 78 19 7 20 7 53 18 373 10 401 532	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.34 0.55 #1	Mutatic #2 ND 0.0076 0.0076 ND ND ND ND ND 0.0050 0.18 0.0050 0.19 0.20	n freques #3 0.0071 0.012 0.019 ND ND 0.0024 0.014 0.0024 0.0024 0.0025 0.097 0.13 on freques #3	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 ND 0.047 0.014 0.20 ND 0.22 0.27 ncy(×10 #4	⁶) #5 0.043 0.011 0.053 0.0021 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.17 0.0064 0.18 0.26 ⁶) #5	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16
B 塩基置換の種類別検出数と変更 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→C C 1塩基フレームシフトの種類別 Section No. Addition at run	異頻度 #1 7 31 38 1 2 3 0 6 4 70 1 2 3 0 6 4 70 1 1 75 119 リ検出数。	Mut #2 0 3 3 0 0 0 0 0 0 0 0 0 0 2 71 2 75 78 2 75 78 と変異頻 Mut #2 0	ation scc #3 3 5 8 0 0 1 6 7 1 36 4 41 56 <u><u></u> <u></u> <u></u> <u></u> 8 0 0 1 <u></u> 36 <u>4</u> <u></u> 41 <u></u> 56 <u></u> 36 <u>4</u> <u></u> 36 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 36 <u></u> 4 <u></u> 36 <u></u> 36 <u></u> 36 <u></u> 36 <u></u> 36 <u></u> 36 <u></u> 36 <u></u> 36 <u></u> 36 <u></u> 37 <u></u> 36 <u></u> 36 <u></u> 37 <u></u> 36 <u></u> 36 <u></u> 37 <u></u> 36 <u></u> 37 <u></u> 36 <u></u> 37 <u></u> 36 <u></u> 37 <u></u> 36 <u></u> 37 <u></u> 36 <u></u> 37 <u></u> 36 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 <u></u> 37 37 37 37 37 37 37 37 37 37</u>	ored #4 2 2 4 17 5 5 0 27 8 116 0 124 155 0 124 155 0 4 4	#5 20 5 25 1 0 11 1 1 3 80 3 86 124 #5 1	Total 32 46 78 19 7 20 7 53 18 373 10 401 532 Total 8	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.34 0.55 #1 ND	Mutatio #2 ND 0.0076 0.0076 ND ND ND ND ND 0.0050 0.18 0.0050 0.18 0.0050 0.19 0.20	n freques #3 0.0071 0.012 0.019 ND ND 0.0024 0.014 0.007 0.0024 0.086 0.0095 0.097 0.13 on freques #3 0.0071	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 ND 0.047 0.014 0.20 ND 0.22 0.27 ncy(×10 #4 0.0070	⁶) #5 0.043 0.011 0.053 0.0021 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.17 0.0064 0.17 0.0064 0.18 0.26	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16 ave ± SD 0.0032 ± 0.0036
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A C 1塩基フレームシフトの種類別 Section No. Addition at run at non-run	異頻度 #1 7 31 38 1 2 3 0 6 4 70 1 75 119 1余出数。 #1 75 119	Mut #2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 71 2 75 78 Exat Age Mutt #2 0 1	ation sc #3 3 5 8 0 0 1 6 7 1 36 4 41 56 <u></u> <u></u> <u></u> <u></u> 8 0 0 1 <u></u> 3 <u></u> 6 <u></u> 41 <u></u> 5 <u></u> 3 <u></u> 6 <u></u> 7 <u></u> 3 <u></u> 6 <u></u> 7 <u></u> 3 <u></u> 6 <u></u> 7 <u></u> 3 <u></u> 6 <u></u> 4 <u></u> 7 <u></u> 7 <u></u> 3 <u></u> 6 <u></u> 7 <u></u> 3 <u></u> 6 <u></u> 7 <u></u> 3 <u></u> 6 <u></u> 4 <u></u> 7 <u></u> 3 <u></u> 6 <u></u> 4 <u></u> 7 <u></u> 7 <u></u> 3 <u></u> 6 <u></u> 4 <u></u> 3 <u></u> 6 <u></u> 4 <u></u> 3 <u></u> 6 <u></u> 4 <u></u> 3 <u></u> 6 <u></u> 4 <u></u> 3 <u></u> 6 <u></u> 4 <u></u> 3 <u></u> 6 <u></u> 4 <u></u> 3 <u></u> 6 <u></u> 3 <u></u> 3 <u></u> 3 <u></u> 3 <u></u> 3 <u></u> 3 <u></u> 20 <u></u> 3 <u></u> 3 <u></u> 20 <u></u> 3 <u></u> 3 <u></u> 20 <u></u> 20 <u></u> 3 <u></u> 3 <u></u> 20 <u></u> 3 <u></u> 3 <u></u> 20 <u></u> 3 <u></u> 20 <u></u> 3 <u></u> 20 <u></u> 3 <u></u> 3 <u></u> 20 <u></u> 20 <u></u> 3 <u></u> 20 <u></u> 20 <u></u> 20 <u></u> 20 <u></u> 20 <u></u> 20 20 20 20 20 20 20 20 20 20	ored #4 2 2 4 17 5 5 0 27 8 116 0 124 155 0 0 24 155 0 0 4 4 4 6	#5 20 5 25 1 0 11 1 1 3 80 3 80 3 86 124 #5 1 7	Total 32 46 78 19 7 20 7 53 18 373 10 401 532 Total 8 34	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.34 0.55 #1 ND ND	Mutatic #2 ND 0.0076 0.0076 ND ND ND ND 0.0050 0.18 0.0050 0.19 0.20 0.19 0.20	n freque #3 0.0071 0.012 0.019 ND 0.0024 0.014 0.014 0.0024 0.0095 0.097 0.13 0.0095 0.097 0.13	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 0.0087 0.0047 0.014 0.22 0.27 ncy(×10 #4 0.0070 0.010	⁶) #5 0.043 0.011 0.053 0.0021 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.17 0.0064 0.18 0.26	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0096 ± 0.0094 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16 ave ± SD 0.0032 ± 0.0036 0.015 ± 0.019
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→G total C 1塩基フレームシフトの種類別 Section No. Addition at run at non-run total	異頻度 #1 7 31 38 1 2 3 0 6 4 70 1 9 (0 1 9 (119) 9 (次 119) 9 (次 119) 9 (次 119) 9 (次 10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mut #2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 71 2 75 78 b b 0 1	ation sc #3 3 5 8 0 0 1 6 7 1 36 4 41 56 g ation sc #3 3 20 23	ored #4 2 2 4 17 5 5 0 27 8 116 0 124 155 0 124 155 0 0 4 4 4 6 10	#5 20 5 25 1 0 11 1 1 1 3 80 3 86 124 #5 1 7 8	Total 32 46 78 19 7 20 7 53 18 373 10 401 532 Total 8 34 42	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.34 0.55 #1 ND ND	Mutatio #2 ND 0.0076 0.0076 ND ND ND ND 0.0050 0.18 0.0050 0.19 0.20 0.19 0.20	n freque #3 0.0071 0.012 0.019 ND 0.0024 0.014 0.0024 0.004 0.0095 0.097 0.13 0.0097 0.13 0.0071 0.048 0.0055	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 ND 0.047 0.014 0.20 ND 0.22 0.27 ncy(×10 #4 0.0070 0.010 0.017	⁶) #5 0.043 0.011 0.053 0.0021 ND 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.18 0.26 ⁶) #5 0.0021 0.015 0.017	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16 ave ± SD 0.0032 ± 0.0036 0.015 ± 0.019 0.018 ± 0.022
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A 245 T→G total C 1塩基フレームシフトの種類別 Section No. Addition at run at non-run total Deletion	異頻度 #1 7 31 38 1 2 3 0 6 4 70 1 75 119 リ検出数。 #1 0 0 0 0	Mut #2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 2 71 2 75 78 と変異頻 Mut #2 0 1	ation sc #3 3 5 8 0 0 1 6 7 1 36 4 41 56 2 2 3 3 20 23	ored #4 2 2 4 17 5 5 0 27 8 116 0 124 155 0 27 8 116 0 4 4 4 6 10	#5 20 5 25 1 0 11 1 1 1 3 80 3 86 124 #5 1 7 8	Total 32 46 78 19 7 20 7 53 18 373 10 401 532 Total 8 34 42	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.34 0.55 #11 ND ND	Mutatic #2 ND 0.0076 0.0076 ND ND ND ND 0.0050 0.18 0.0050 0.19 0.20 0.19 0.20 0.19 0.20	n freque #3 0.0071 0.012 0.019 ND ND 0.0024 0.014 0.0014 0.0024 0.0095 0.097 0.13 0.0097 0.13 0.0071 0.048 0.0055	ncy(×10 #4 0.0035 0.0035 0.0070 0.030 0.0087 0.0087 ND 0.047 0.014 0.20 ND 0.22 0.27 0.27 ncy(×10 #4 0.0070 0.010 0.017	⁶) # 5 0.043 0.011 0.053 0.0021 ND 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.17 0.0064 0.18 0.26 ⁶) # 5 0.0021 0.015 0.017	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16 ave ± SD 0.0032 ± 0.0036 0.015 ± 0.019 0.018 ± 0.022
B 塩基置換の種類別検出数と変 Section No. Transition A:T→G:C G:C→A:T total Transversion G:C→T:A G:C→C:G T:A→A:T A:T→C:G total Hot spot 82C→A 245 T→A 245 T→A 245 T→A 245 T→A 245 T→A C 1塩基フレームシフトの種類類 Section No. Addition at run at non-run total Deletion at run	異頻度 #1 7 31 38 1 2 3 0 6 4 70 1 75 119 リ検出数。 #1 4 70 1 75 119 リ検出数。 3	Mut #2 0 3 0 0 0 0 0 0 0 0 0 2 71 2 75 78 Mut #2 0 1 5	ation sc #3 3 5 8 0 0 1 6 7 1 36 4 41 56 #3 6 4 41 56 #3 3 20 23 1	ored #4 2 2 4 17 5 5 0 27 8 116 0 124 155 0 124 155 0 4 6 10 2 2	#5 20 5 25 1 0 11 1 1 3 80 3 86 124 #5 1 7 8 8 8 8 8	Total 32 46 78 19 7 20 7 53 18 373 10 401 532 Total 8 34 42 19	#1 0.032 0.14 0.17 0.0046 0.0092 0.014 ND 0.028 0.018 0.32 0.0046 0.34 0.55 #1 ND ND ND 0.014	Mutatic #2 ND 0.0076 0.0076 0.0076 ND ND ND ND 0.0050 0.18 0.0050 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.20 0.13	n freques #3 0.0071 0.012 0.019 ND ND 0.0024 0.014 0.0024 0.0024 0.0095 0.097 0.13 0.0071 0.0071 0.048 0.0055 0.0024	ncy(×10 #4 0.0035 0.0070 0.030 0.0087 0.0087 ND 0.047 0.014 0.20 ND 0.22 0.27 ncy(×10 #4 0.0070 0.010 0.017 0.0035	⁶) #5 0.043 0.011 0.053 0.0021 ND 0.023 0.0021 0.028 0.0064 0.17 0.0064 0.18 0.26 ⁶) #5 0.0021 0.015 0.017 0.017	ave ± SD 0.017 ± 0.019 0.035 ± 0.060 0.052 ± 0.071 0.0073 ± 0.013 0.0036 ± 0.0049 0.0096 ± 0.0094 0.0033 ± 0.0062 0.024 ± 0.017 0.0092 ± 0.0067 0.19 ± 0.085 0.0051 ± 0.0034 0.21 ± 0.089 0.28 ± 0.16 ave ± SD 0.0032 ± 0.0036 0.015 ± 0.019 0.018 ± 0.022 0.0098 ± 0.0065

dinB umuDC polB三重変異株(MK1371)において、各変異の種類別変異頻度と見いだされた各変 異の検体数を示す。解析は、独立した5実験区由来の合計1200クローンのrpsL標的遺伝子の塩基配 列を決定し、全体の変異頻度と個々の変異の割合をもとに各変異の種類別変異頻度を算出した。表 のAは変異の種類別変異頻度を、Bは塩基置換の種類別変異頻度を、Cは1塩基フレームシフトの種 類別変異頻度を示す。

10

18

ND
 26
 0.032
 0.013
 0.0024
 0.0052
 0.021

 68
 0.032
 0.015
 0.057
 0.023
 0.038

total

Total

5 6

7

1

24

3

13

0.0017 0.0043 0.0049 ± 0.0077

0.015 ± 0.012

0.033 ± 0.016

参考文献

Bohr VA, Smith CA, Okumoto DS, Hanawalt PC. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 40,359–69.

Bonner CA, Randall SK, Rayssiguier C, Radman M, Eritja R, Kaplan BE, McEntee K, Goodman MF.(1988) Purification and characterization of an inducible Escherichia coli DNA polymerase capable of insertion and bypass at abasic lesions in DNA. J Biol Chem. 263.18946–52.

Brenowitz, S., Kwack, S., Goodman, M. F., O'Donnell, M., and Echols, H. (1991). Specificity and enzymatic mechanism of the editing exonuclease of Escherichia coli DNA polymerase III, J Biol Chem 266, 7888–92.

Bruck I, Woodgate R, McEntee K, Goodman MF.(1996) Purification of a soluble UmuD'C complex from Escherichia coli. Cooperative binding of UmuD'C to singlestranded DNA J Biol Chem. 271.10767–74.

Datsenko KA., Wanner BL.,(2000) One-step inactivation of chromosomal genes in E.coli K-12 using PCR products Proc Natl Acad Sci 6.6640-5

Friedberg E. C. (1995). DNA Repair and Mutagenesis, American Society for Microbiology, Washington, D. C. 407–593

Fujii.S, Akiyama. M, Aoki. K, Sugaya. Y, Higuchi. K, Hiraoka. M, Miki. Y, Saitoh. N, Yoshiyama. K, Ihara. K, Seki. M, Ohtsubo. E, Maki. H. (1999).DNA replication errors produced by the replicative apparatus of Escherichia coli. J Mol Biol. *289*, 835–50.

Duncan, B. K., and Miller, J. H. (1980). Mutagenic deamination of cytosine residues in DNA, Nature 287, 560–1.

Goodman MF. Related Articles, (2002) Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem. 71:17–50.

Guo D, Xie Z, Shen H, Zhao B, Wang Z.(2004) Translesion synthesis of acetylaminofluorene–dG adducts by DNA polymerase zeta is stimulated by yeast

Rev1 protein. Nucleic Acids Res. 32.1122–30.

Hanawalt P, Mellon I.(1993) Stranded in an active gene. Curr Biol. 3,67–69

Jiricny. J, (1998). Replication errors: cha(lle)nging the genome. EMBO J . 17,6427-36.

Johnson RE, Kondratick CM, Prakash S, Prakash L.(1999a) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science. 285.263–5.

Johnson RE, Prakash S, Prakash L.(1999b) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science. 283.1001–4.

Kim SR, Matsui K, Yamada M, Gruz P, Nohmi T. Related Articles, (2001) Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli. Mol Genet Genomics. 266.207–15.

Kim SR, Maenhaut–Michel G, Yamada M, Yamamoto Y, Matsui K, Sofuni T, Nohmi T, Ohmori H.(1997) Multiple pathways for SOS–induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc Natl Acad Sci 94.13792–7.

Kolodner RD, Hall NR, Lipford J, Kane MF, Rao MR, Morrison P, Wirth L, Finan PJ, Burn J, Chapman P. (1994) Structure of the human MSH2 locus and analysis of two Muir–Torre kindreds for msh2 mutations. Genomics. 24.516–26

Kunkel TA. Related Articles,(1998) The high cost of living. American Association for Cancer Research Special Conference: endogenous sources of mutations, Trends Genet. 15,93–4.

Lahue RS, Au KG, Modrich P.(1989) DNA mismatch correction in a defined system. Science. 245.160–4.

LeClerc JE, Borden A, Lawrence CW.(1991)The thymine-thymine pyrimidinepyrimidone(6-4) ultraviolet light photoproduct is highly mutagenic and specifically induces 3' thymine-to-cytosine transitions in Escherichia coli. Proc Natl Acad Sci 88.9685-9.

Maki, H., and Sekiguchi, M. (1992). MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355, 273–5.

Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F. (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature. 399. 700–704.

McHenry C, Kornberg A. Related Articles, (1977) DNA polymerase III holoenzyme of Escherichia coli. Purification and resolution into subunits. J Biol Chem. 252.6478–84.

Mellon I, Spivak G, Hanawalt PC. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell.;51.241-9.

Napolitano R, Janel-Bintz R, Wagner J, Fuchs RP.(2000) All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. 19.6259–65.

Nelson JR, Lawrence CW, Hinkle DC. (1996a) Deoxycytidyl transferase activity of yeast REV1 protein. Nature. 382.729-31.

Nelson JR, Lawrence CW, Hinkle DC. (1996b)Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science. 272.1646-9.

Ohashi E, Ogi T, Kusumoto R, Iwai S, Masutani C, Hanaoka F, Ohmori H. (2000) Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa. Genes Dev. 14.1589–94

Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z, Woodgate R. (2001) The Y-family of DNA polymerases.

Mol Cell. 8.7-8.

Pham P, Bertram JG, O'Donnell M, Woodgate R, Goodman MF(2001) A model for SOS-lesion-targeted mutations in Escherichia coli. Nature. 409.366–70.

Pham P, Seitz EM, Saveliev S, Shen X, Woodgate R, Cox MM, Goodman MF.(2002) Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis.

Proc Natl Acad Sci 99.11061-6.

Qiu Z, Goodman MF. Related Articles,(1997) The Escherichia coli polB locus is identical to dinA, the structural gene for DNA polymerase II. Characterization of Pol II purified from a polB mutant. J Biol Chem. 272.8611–7.

Rangarajan S, Woodgate R, Goodman MF.(1999) A phenotype for enigmatic DNA polymerase II: a pivotal role for pol II in replication restart in UV-irradiated Escherichia coli. Proc Natl Acad Sci 96.9224–9

Rangarajan S, Woodgate R, Goodman MF(2002) Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol Microbiol. 43.617–28.

Reuven NB, Arad G, Maor–Shoshani A, Livneh Z.(1999) The mutagenesis protein UmuC is a DNA polymerase activated by UmuD', RecA, and SSB and is specialized for translesion replication. J Biol Chem.274.31763–6.

Sakai A, Nakanishi M, Yoshiyama K, Maki H. (2006) Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli.Sakai Genes Cells. 11,767–78.

Scheuermann, R. H., and Echols, H. (1984). A separate editing exonuclease for DNA replication: the epsilon subunit of Escherichia coli DNA polymerase III holoenzyme, Proc Natl Acad Sci 81, 7747–51.

Slechta ES, Bunny KL, Kugelberg E, Kofoid E, Andersson DI, Roth JR. (2003)

Adaptive mutation: general mutagenesis is not a programmed response to stress but results from rare coamplification of dinB with lac. Proc Natl Acad Sci 100.12847–52.

Sloane, D. L., Goodman, M. F., and Echols, H. (1988) The fidelity of base selection by the polymerase subunit of DNA polymerase III holoenzyme.

Smith CA, Wang M, Jiang N, Che L, Zhao X, Taylor JS.(1996) Mutation spectra of M13 vectors containing site-specific Cis-Syn, Trans-Syn-I, (6-4), and Dewar pyrimidone photoproducts of thymidylyl-(3'-->5')-thymidine in Escherichia coli under SOS conditions. Biochemistry. 35.4146-54.

Tang M, Pham P, Shen X, Taylor JS, O'Donnell M, Woodgate R, Goodman MF.(2000)Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis Nature. 404.1014–8

Wagner J, Nohmi T. (2000a)Escherichia coli DNA polymerase IV mutator activity: genetic requirements and mutational specificity. J Bacteriol. 182.4587–95.

Wagner J, Fujii S, Gruz P, Nohmi T, Fuchs RP.(2000b) The beta clamp targets DNA polymerase IV to DNA and strongly increases its processivity. EMBO Rep. 1.484–8.

Walker GC. (1985) Inducible DNA repair systems. Annu Rev Biochem. 54:425–57.

Witkin EM.(1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli.

Bacteriol Rev. 40.869-907.

Wood RD, Hutchinson F. (1984) Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli host cells irradiated with ultraviolet light. J Mol Biol. 173.293–305.

Woodgate R, Ennis DG. Related Articles, (1991) Levels of chromosomally encoded Umu proteins and requirements for in vivo UmuD cleavage.

Mol Gen Genet. 229.10-6.

Woodgate R, Rajagopalan M, Lu C, Echols H.(1989) UmuC mutagenesis protein of Escherichia coli: purification and interaction with UmuD and UmuD'. Proc Natl Acad Sci 86.7301–5.

Yoshiyama K, Maki H.(2003) Spontaneous hotspot mutations resistant to mismatch correction in Escherichia coli: transcription-dependent mutagenesis involving template-switching mechanisms. J Mol Biol. 327.7–18.

Yuasa M, Masutani C, Eki T, Hanaoka F.(2000) Genomic structure, chromosomal localization and identification of mutations in the xeroderma pigmentosum variant (XPV) gene.

Oncogene. 19. 4721-4728.

五十川亜紗子,部分二倍体rpsL遺伝子を用いた変異検出系の問題点 奈良先端科学技術大学院大学,バイオサイエンス研究科修士論文(1999)

岩崎博史、品川日出夫,蛋白核酸酵素 46.995-1003(2001)

梅津桂子:細胞工学,13 673-682,(1994)

蟹江聰,大腸菌染色体上に挿入したrpsL標的遺伝子上に生じる自然突然変異:複製エラー とミスマッチ修復機構の特異性 奈良先端科学技術大学院大学,バイオサイエンス研究科修士論文(2001)

川野 光興, 大腸菌染色体DNAにおける自然突然変異の特異性 奈良先端科学技術大学院大学, バイオサイエンス研究科修士論文,(1998)

樋口久美子,自然突然変異における欠失変異の塩基配列特異性 奈良先端科学技術大学院大学,バイオサイエンス研究科修士論文(1997)

真木寿治, 梅津桂子, 自然突然変異の制御機構と発癌, DNA複製・修復と発癌, 松影昭夫編, 羊土社, 118-30(1996)

真木寿治, DNA複製エラーの発生と抑制の分子機構, 生化学, 69. 159-171 (1997,)

真木寿治,蛋白核酸酵素 46.1146-1154(2001)

謝辞

本研究を進めるにあたり、様々なご指導を頂き、暖かく見守っていただいた真木寿治教 授に、こころから厚く御礼申し上げます。秋山助教授、真木助手、梅津教授、中嶋秘書の 研究環境の整備などのご尽力を頂き、たいへん感謝しております。実験を進めるにあた り、愿山郁氏、井田慶子氏からたいへんなご助力をいただきました。日頃から有意義な議 論を頂いた同期の安島潤博士、多くの先輩後輩の皆様に心より感謝いたします。学問を学 ぶにあたり、博士後期課程まで援助をしてくれた母親と3年前に他界した父に心より感謝 します。

最後に、こんな私でも支えてくれた最愛の妻に感謝したいと思います。

皆さんの力でここまで来れました。ありがとうございました。

平成19年 2月

蟹江 聡.