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Lingwei Zhu

Abstract

The last decade has been an era of Reinforcement Learning (RL). It has
witnessed tremendous successes in lab robotics or games such as Go. Basically,
RL describes how an agent should act in response to a given environment in order
to maximize its feedback or minimize the penalty. Such mechanism has been
verified to exist in animals and humans, and can be abstracted and described in
a self-contained mathematical formulation. However, unlike animals that have the
notion of efficiency and risk-awareness, the standard RL formulation offers only a
way to reach the goal but not about how the goal is reached. As a consequence,
an RL agent might take extraorbitantly long to reach the goal, and/or incur
unacceptable cost alone its path. Furthermore, the classic RL algorithms are
greedy, hence prone to errors and noises. Due to the above-mentioned issues,
currently RL falls short of realistic applications compared to other branches of
contemporal machine learning such as supervised learning that has applications
permeated in our daily life. This thesis, being application-oriented, attempts to
bridge the gap by providing potentially helpful reference for the recent resurgence
of interest in pratically applicable RL such as autonomous industrial control via
RL. Specifically, in this thesis I tackle three important problems: scalability,
safety and robustness of RL by leveraging the information theoretic quantities
known as entropy. Emerging from information theory, the appearance of entropies
is now prevalent in almost everywhere in engineering.

Intuitively, entropy in RL measures the uncertainty of the decision maker.
By taking entropies into account when formulating the conventional objectives,
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provably more efficient algorithms can be attained. Inside nowadays successful
applications of RL such as the aforementioned robotic tasks or games, one can
always see the presence of them in various forms, serving different objectives
such as smoothening the optimization landscape, promoting exploration or ren-
dering the agent risk-resilient. In this thesis, we investigate two most prevalent
entropies: Shannon entropy and relative entropy (also known as Kullback-Leibler
divergence), and see how they can serve as a regularization for the return, such
that the agent is enabled to learn to be scalable, safe and robust. Since Shannon
entropy can be regarded as a special case of KL divergence, the main thread of
the thesis is actually on leveraging KL divergence between two consecutive deci-
sion making policies as regularization to achieve the above-mentioned desirable
properties, by restricting the aggressive updates in realistic setup.

Keywords:

Reinforcement Learning, Entropy Regularization, Safety-awareness, Plant-wide
Control, Robotics
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1 | Introduction

1.1 Reinforcement Learning and Entropy

Reinforcement Learning (RL) has seen tremendous successes in the last decade,
demontrating super-human level problem-solving abilities in playing video games
[Mnih et al., 2015b], robotics [Andrychowicz et al., 2020], strategic games [Ope-
nAI, 2018, Silver et al., 2017, Wurman et al., 2022], etc. The heart of RL lies in
the simple mechanism that given a state the agent or decision maker (for exam-
ple, a dog) decides which action to take to maximize the incoming reward (such
as food) or to minimize penalty. Such simple mechanism that exists in our daily
lives boils down to a set of mathematical equations expressing the relationship
between state, action and reward, as shown in Figure 1.1: at time t, given a state

Figure 1.1: Reinforcement learning interaction loop.

st, the agent chooses an action at to interact with the environment in which it is

1



located, and then the environment outputs a reward signal Rt as a feedback to the
act of the agent. While being seemingly simple, the above-mentioned astonishing
successes as well as many other advances of RL are based on this simple but
crucial notion [Sutton and Barto, 2018]. As a matter of fact, RL is intrinsically
significantly more difficult than other contemporal branches of machine learning
such as supervised learning [Kober et al., 2013]. In supervised learning, one has
data and labels, the prediction on a data instance can be inspected to see if it
matches the corresponding label. However, such labels or teaching signals are
totally ambiguous in that it is unclear what does ’label’ refer to in RL: an agent
will have to infer important information for its decision solely from the reward
function and past experience.

Another important point is that, RL is in nature sequential : the agent will
have to make several decisions in a row. Starting from any given state, it de-
cides an action, and then it is taken to the next state by that action (perhaps
with some random factors in effect). In this regard, supervised learning can be
somehow seen as a single-step case of RL (although not correct). This sequen-
tial nature is crucial for its power: since we know realistic interaction is seldom
single-step, usually many steps are required for one to fulfill a goal. On the other
hand, the extension from single step to sequential decision making brings signif-
icant complexity since what the agents has done now, will probably affect the
very far future. It also implies that greedily selecting the most rewarding action
in a given state might not result in the best overall return, since the actions
will change the environment and potentially lead to very poor subsequent states,
just like an athlete greedily consuming hamburgers for a moment’s pleasure. In
this case, the agent should care about the long-term rewards instead of being
short-sighted. Now we have better understanding of the factor that distinguishes
supervised learning from RL, which was also the reason why supervised learning
is not a single-step instance of RL: it is usually assumed the labels in supervised
learning are independently and identically distributed (iid). However, this as-
sumption fails immediately in the RL context, which relies on Markov Decision
Processes (MDPs) [Puterman, 1994] as the theoretical background. In short, we
can understand the difficulty as the future depends on the choice the agent makes
now i.e., the environment can be changed by the agent’s actions. Therefore, the

2



data collected by the agent, or experiences such as st, at, rt, st+1, at+1, . . . , are
necessarily correlated. The rich literature developed from supervised learning or
statistics does not simply translate to methods applicable in an RL context.

Given the above-mentioned complexity of RL, how should the agent behave
in order to maximize its long-term rewards over the course it interacts with the
environment? In this thesis, we adopt the most ’classic’ approach known as
dynamic programming [Bellman, 2003, Bertsekas, 2005a, Bertsekas and Tsitsiklis,
1996] that evaluates the utility of each action separately and therefore learns
an ordering between each action given arbitrary state [Rummery and Niranjan,
1994, Watkins and Dayan, 1992]. Once this ordering is learned, the agent will
be able to pick the action with the largest utility in every state, which results in
globally optimal policy, as a result of the famous Bellman’s optimality principle
[Bellman, 2003]: in order to optimally behave globally, the agent will have to
behave optimally locally.

A crucial difference in dynamic programming methods lies in the availability
of the model knowledge. In this thesis we are positioned in a model-free context
which refers to that the agent does not have model knowledge of the environment
such as what will happen if an action A is taken in state S. In this case, the agent
will have to collect sufficient experiences and then distill the model knowledge
from the experiences. This genre of dynamic programming is often known as
approximate dynamic programming and is tightly connected with RL [Powell,
2007, Szepesvari, 2010] As it appears, model-free RL is inherently slower than
those methods explicitly equipped with high-quality model knowledge, but it is
still surprising powerful. In fact, most of the astonishing successes of RL by far
were based on model-free RL methods.

The notion of maximizing long-term reward is essential but often insufficient
for modern complicated RL scenarios. This is because solely maximizing reward
will result in deterministic optimal policy [Puterman, 1994], which refers to the
agent will always follow exactly same path to the goal. If the environment has
been changed, e.g. by adding adversary effects, such deterministic strategy is
brittle and might incur very poor performance even if the change to the en-
vironment is small. More technically, we can consider the utility function has
been corrupted somehow with some noise. This implies the ordering between
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actions might have also been corrupted as well. Greedily following this corrupted
utility function by picking the action with the largest utility is no longer safe;
actually sometimes very poor performance can be incurred by deterministically
doing so. To tackle this problem, a very natural approach is to make action se-
lection mechanism stochastic: if every action has probability being chosen, then
it can be expected the problem be alleviated. While there exists plain stochas-
tic methods such as the well-known ε-greedy, it cannot adjust the probability
of each action according to some measure. The recent introduction of entropy
regularization into RL [Todorov, 2006, Ziebart, 2010] provides a principled ap-
proach for obtaining stochastic action selection rule in which the probability of
action being selected is proportional to its utility. More interestingly, as is often
seen in the optimization literature [Beck, 2017, Boyd and Vandenberghe, 2004,
Nesterov, 2018, Rockafellar, 1970], adding a convex regularizer often results in
significantly accelerated convergence speed, even though this is not exactly the
case in our dynamic programming setting which relies on contraction property
of the Bellman operator [Kreyszig, 1991] instead of on gradients [Sutton et al.,
1999] but it indeed has been observed the introduction of entropies such as the
Shannon entropy, Kullback-Leibler (KL) divergence, or even the Tsallis entropy
[Tsallis, 1988] improves the learning speed of the resultant algorithms. Those
entropies bring probabilistic action selection rules which are well-defined proba-
bility distributions over actions. In fact, recent advances in RL often comprise
one of them serving various purposes such as promoting exploration [Haarnoja
et al., 2017], accelerating convergence speed [Haarnoja et al., 2018], robustifying
the agent against errors and/or noises [Azar et al., 2012, Fox et al., 2016], to
name a few.

This thesis is basically application-oriented, concerned with leveraging en-
tropy regularization in model-free RL for achieving autonomous control on real-
istic problems. But we aim to attain superior control performance without the
loss of theoretical rigor. Though RL has been mostly limited to simulation or lab
robotics, the interest in extending it to more realistic problems such as industrial
process control, recommendation systems and others has been increasing dramat-
ically over the years. In this thesis, we aim to demonstrate the effectiveness of
entropy-regularized RL mainly in the following three aspects with novel RL al-
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gorithms suitable for each application: (1) Scalability; (2) safety; (3) robustness.
We detail those three aspects in the following contribution section.

Thesis Statement: This thesis is concerned with proposing and exploiting
novel methods of entropy-regularized model-free RL to realistic problems
that are of crucial importance such as the autonomous control of industrial
processes, robotics, etc. The power of the proposed methods is mainly
displayed in the three aspects (1) scalability; (2) safety; (3) robustness.
They respectively address the problem of (1) how to apply RL not just
to game playing but also to complicated realistic problems; (2) how to
safely apply RL to safety-critical problems such as industrial processes and
(3) how to save the overhead of fine-tuning RL on realistic systems. This
thesis contributes as a step towards fully autonomous control of the above-
mentioned real-world systems by RL.

1.2 Thesis Contribution and Outline

The main contributions of this thesis lie in drawing close the theory of RL and
practical applications. Compared with other branches of contemporal machine
learning such as supervised learning, RL significantly falls short of realistic ap-
plications as a result of several dilemmas. In this thesis, I attempt to bridge
the gap by proposing novel and useful theories based on entropy regularization
and validate them on practical scenarios such as industrial plants or robotics.
A commercial-level large-scale chemical process simulator for a Vinyl Acetate
Monomer plant is frequently used as the testbed. This thesis mainly tackles the
issues of scalability, safety and robustness in RL via the tool of entropy. I hope
the thesis could play an important role in the coming resurgence of interest in
pratical RL deployment and applications.

1. Scalability: we show that entropy-regularized model-free RL can be lever-
aged to realize fully autonomous control for a large-scale industrial process,
with very cheap computational overhead and comparable performance to
the state-of-the-art chemical knowledge based controllers (Chapter 3).
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2. Safety: RL is an inherently trial-and-error process, the agent will have ex-
perience both good and bad experiences in order to learn to distinguish be-
tween actions leading to high return from those to poor situations. However
in many realistic problems it is unacceptable to experience bad situation
such as in the industrial processes. We propose a novel algorithm focusing
on how to let the agent safely learn (Chapter 4).

3. Robustness: RL algorithms are notorious for the difficulty of fine-tuning
hyperparameters and long running time. Even slightly varied hyperparame-
ters could cause drastically degraded performance. In this chapter we resort
to the classic but not straightforwardly applicable monotonic improvement
literature and propose a novel algorithm by incorporating entropy regular-
ization. The resulting algorithm is robust against hyperparameter changes
and can achieve the same level of performance as prior methods but with
significantly reduced tuning time (Chapter 5, 6).
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2 | Entropy

2.1 Introduction

In this thesis the entropies used are the Shannon entropy and relative entropy
(known as Kullback-Leibler (KL) divergence). Emerging from the information
theory [Cover and Thomas, 2006], those two entropies are probably the most
widely used entropies in engineering. Basically, Shannon entropy measures how
many bits are required to encode the information contained in the measured
random variable, while KL divergence measures the expectation of the difference
between two distributions in the logarithmic space [Kullback, 1959].

In RL, the Shannon entropy provides a measure of how stochastic a policy
might be, while KL divergence measures how close two policies are. It can be in-
tuitively conceived that if Shannon entropy of the policy is added to the objective
function, the resultant solution policy is encouraged to be more stochastic. On the
other hand, KL divergence added to the objective will make the learning process
more ’conservative’ since the maximum change for one policy update is somehow
limited. In this thesis, we focus on value-based methods, which refers to learning
a value function that is the conditional expectation for long-term reward given
the initial state-action pair [Bertsekas and Tsitsiklis, 1996]. If the optimal value
function could be learned, the optimal policy can be straightforwardly extracted
by acting greedily with respect to this value function. Value-based methods are
classic, enjoy strong theoretical guarantees. On the other hand, the downside is
also apparent: value-based methods cannot handle continuous state-action spaces
as compared to policy gradient methods that directly parametrize the policy and
update it using modern auto-differentiation mechanisms. Nonetherless, we will
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consider value-based methods with entropy regularization in this thesis, and defer
analysis for the policy gradient methods to future work.

2.2 Value Iteration

Value iteration refers to learning the mapping between state-action pairs to a
scalar value that is used to rank the desirability among all state-action pairs.
Such scalar value is the conditional expectation expressed as follows:

Qπ(s) = E

[
∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s, a0 = a

]
. (2.1)

It is a classic result that if the agent only cares about maximizing the cumulative
reward, the optimal policy is deterministic and stationary [Bertsekas and Tsit-
siklis, 1996, Puterman, 1994]. Therefore, we can write the following recursion for
iteratively obtaining the optimal value function and hence optimal policy:πk+1 = 1{a = arg maxQπk(s, ·)}

Qπk+1
= r(s, a) + γEs′∼p(·|s,a)

[
Ea′∼πk+1(·|s′) [Qπk(s

′, a′)]
] (2.2)

We can make the notations uncluttered by using abbreviation:πk+1 = G(Qk) := arg maxπ 〈π,Qk〉

Qk+1 = r + γP πkQk

(2.3)

where γP πkQk = γ (
∑

s′ P (s′|s, a)
∑

a′ πk(a
′|s′)Qk(s

′, a′)). The reason we used
Qk instead of Qπk is because exactly updating the value function is intractable
since we often do not know the model P , and the state-action spaces are huge
to be exhaustively searched. Modern RL such deep Q-network (DQN) [Mnih
et al., 2015a] often uses a replay buffer to sample the state-action pairs, as well as
approxmate the transition model. On the other hand, since the policy is greedy, it
could easily be corrupted by various errors introduced by approximation [Fu et al.,
2019]. This is because the greedy policies lie on the endpoints of the probability
simplex and if the values are not separated large enough, perturbations could
easily change the ordering the actions, leading to a completely different action
being chosen.
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2.3 Shannon Entropy

An intuitive solution to the above-mentioned issue of errors corrupting action
ordering is to have a stochastic policy, which can be done via introducing the
Shannon entropy since adding the Shannon entropy to the reward function forces
the agent to maximize cumulative reward as well as the stochasticity of the pol-
icy. The optimal policy is this case is stochastic in the sense of being a Boltz-
mann softmax. Let us define the Shannon entropy using the shorthand notation
H (π(·|s)) := −

∑
a π(a|s) lnπ(a|s) = −〈π, ln π〉 |s∈S , we aim to learn the optimal

value function:

V∗(s) = max
π

E

[
∞∑
t=0

γt (r(st, at) + αH(π(·|st)))
∣∣∣∣s0 = s

]
. (2.4)

That is, the optimal policy attempts to maximize not only the reward but also
the entropy for of policy for every state. It can be shown by the Lagrangian
multiplier method or Legendre-Fenchel transform [Boyd and Vandenberghe, 2004]
the optimal policy takes the form of the Boltzmann softmax [Haarnoja et al., 2017,
Ziebart, 2010]:

πk+1(a|s) = arg max
π

〈π,Qk + αH (π)〉 =: exp
(
α−1 (Qk − Vk)

)
. (2.5)

We can now modify the value iteration scheme Eq. (2.3) to a soft value iteration
recursion as follows [Haarnoja et al., 2017, Song et al., 2019]:πk+1 = Gα,0(Qk) := arg maxπ 〈π,Qk + αH (π)〉

Qk+1 = r + γP πk (Qk + αH (πk)) .
(2.6)

An immediate advantage is that the Boltzmann softmax policy assigns positive
probability to every action since exp(·) > 0 so long as the action value does not
take on −∞. The stochasticity can be controlled by the scalar coefficient α. It
is a classic result that

lim
α→0

exp
(
α−1 (Q(s, a)− V (s))

)
= 1{a = arg max

a
Q(s, a)},

i.e. πk+1 → G(Qk) as α→ 0.
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2.4 KL Divergence

We can also consider the two-argument information theoretic regularizer KL di-
vergence DKL(π||π̄) := 〈π, ln π − ln π̄〉. Intuitively, maximizing Shannon entropy
and reward will result in stochastic policy can be explained by KL divergence
since the Shannon entropy is the KL divergence between the current policy and
uniform distribution: DKL

(
π
∥∥ 1
|A|

)
= −〈π, ln π − ln |A|〉 = H (π) up to a con-

stant. Now we can express the recursion as:πk+1 = G0,β(Qk) := arg maxπ 〈π,Qk − βDKL(π||ππk)〉

Qk+1 = r + γP πk (Qk − βDKL (πk+1 || πk)) .
(2.7)

KL divergence plays the most important role in this thesis since it can effective
prevent the errors from destroying learning. Furthermore, unlike the Shannon
entropy whose effect is mostly empirical in value-based methods, KL divergence
regularization provably reduces the error. Let us consider the following upper
bound due to [Vieillard et al., 2020a] where reward is augmented by the KL
divergence:

||Q∗ −Qπk+1||∞ ≤
2

1− γ

∣∣∣∣∣
∣∣∣∣∣1k

k∑
j=0

εj

∣∣∣∣∣
∣∣∣∣∣
∞

+
4

1− γ
Vmax
k

,

where εj are errors and Vmax = rmax
1−γ . By comparing it with the non-improvable

approximate modified policy iteration (AMPI) bound where the reward is not
augmented [Scherrer et al., 2015]:

||Q∗ −Qπk+1 ||∞ ≤

(
(1− γ)

k∑
j=1

||εj||∞

)
+

2γk+1

1− γ
Vmax,

we see that the error term for the KL regularization case is sup-over-sum. Under
mild assumptions such as εj are iid distributed under the natural filtration [Azar
et al., 2012], the summation over errors asymptotically cancels out. On the other
hand, the error term for AMPI depends on the summation of maximum of every
iteration, which is typically large. Further, the dependence of error on the horizon
is linear 1

1−γ rather than quadratic, which is a significant improvement as typically
γ ≈ 1.
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2.5 Miscellaneous

2.5.1 Putting Shanon entropy and KL divergence together

Recent works have investigated the possibility of putting the Shannon entropy
and KL divergence together [Kozuno et al., 2019, Vieillard et al., 2020a,c]. In
this case, the final optimal policy converges to the optimal Boltzmann softmax
as in Section 2.3, rather than the ultimately deterministic policy in Section 2.4
(for the KL case the policies during learning are still stochastic).πk+1 = Gα,β(Qk) := arg maxπ 〈π,Qk + αH (π)− βDKL(π||ππk)〉

Qk+1 = r + γP πk (Qk + αH (πk+1)− βDKL (πk+1 || πk)) .
(2.8)

This formulation might find useful application in scenarios where stochastic policy
is desired, but also conservativeness during learning is paramount.

2.5.2 Other entropies

There are other less popular entropies such as the generalizations of the Shannon
entropy. For example, the Tsallis entropy generalizes Shannon entropy and plays
an important role in statistical physics. Its expression is:

Sq(π) :=
1

q − 1
(1− 〈1, πq〉) , Sq(π)→ H (π) as q → 1.

Here, q ∈ R is a scalar known as the entropic index controlling the properties of
the Tsallis entropy [Lee et al., 2020, Tsallis, 1988, 2009]. When q = 2, we recover
the sparsemax distribution [Lee et al., 2018, Martins and Astudillo, 2016] that
assigns probability only to a small subset of actions. Another possible general-
ization of the Shannon entropy is the Rényi entropy [Zhang et al., 2021]

Rτ (π) :=
1

1− τ
ln (〈1, πτ 〉) =

1

1− τ
ln

(∑
a

π(a|s)τ
)
.

Rτ (π) also tends to the Shannon entropy when τ → 1. Investigation of RL with
those entropies is left to future work.
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3 | Scalability

This Chapter focuses on the use of entropy-regularized RL algorithm in process
control problems. We aim to realize autonomous control on a chemical process
producing Vinyl Acetate Monomer. First we examine the problem in a simpler
setting named local control, referred to as controlling the plant with only a part of
the process is activated. We then study the more challenging plant-wide control
setting all parts of the complicated chemical process is activated.

3.1 Introduction

Chemical plants consist of several processing units that cooperatively produce
chemical product via complex interactions and their coordination is important
for safe and profitable plant operations [Dotoli et al., 2015, Metzger and Po-
lakow, 2011]. The conventional control strategies for chemical plants are primarily
formed as a set of heuristics [Olsen et al., 2005, Zheng et al., 1999] and optimized
in both steady and dynamic simulation [McAvoy, 1999]. In terms of the Model
predictive control (MPC), another popular method in chemical process control
[Cheng et al., 2008], it is a model-based method and suffers exorbitant online
computational cost with large scale plant as well as the long prediction length
[Lee and Wong, 2010]. A method that does not rely on both human engineer
knowledge and model remains challenging in this field.

As a popular test problem in chemical plant design, optimization, and control,
the Vinyl Acetate Monomer (VAM) plant model benchmark problem was origi-
nally proposed by [Luyben and Tyréus, 1998]. This problem is uniquely suited
for researchers pursuing simulation, design, and control studies as it:
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1. Has a realistically large flowsheet, containing several standard chemical unit
operations with high level chemical interactions.

2. Includes typical industrial characteristics of recycle streams and energy in-
tegration.

This model has been further developed by [Chen et al., 2003, Machida et al.,
2016], while several other studies on control system design have been conducted
[Chen and McAvoy, 2003, Olsen et al., 2005, Seki et al., 2010]. Based on experi-
enced engineers’ intuition and judgment in eliminating and evaluating candidate
architectures, these works mainly focus on classical controller design procedures
that require analysis of the process dynamics, development of an abstract mathe-
matical model, and derivation of a control law that meets certain design criteria.

As an integral part of contemporary machine learning, reinforcement learning
[Sutton and Barto, 1998] agents search for optimal policies by interacting with
their environment without any prior knowledge and express a remarkably broad
range of control problems in a natural manner. Example applications include elec-
trical power systems control [Ernst et al., 2005], dynamic power management [Liu
et al., 2010], and robot control [Kober et al., 2013]. Such a bio-inspired approach
is suitable for application towards learning the control policies for chemical pro-
cess plants. However the application of reinforcement learning towards chemical
process plants, which commonly features a large number of sensors, controllers
parameters and requires high stability for safety, is a less explored area. Some
previous works with reinforcement learning were conducted besides heuristic so-
lutions. For model-free methods, [Hoskins and Himmelblau, 1992] applied neural
networks and reinforcement learning to cool a reactor simulator via one valve.
Applications in process control field range from electricity grid control to dy-
namic power management [Ernst et al., 2005, Hoskins and Himmelblau, 1992,
Liu et al., 2010]. For model-based methods, MPC based dynamic programming
was utilized to plant with one or two dimensional state and one dimensional ac-
tion in [Lee and Wong, 2010]. However, to the best of the authors’ knowledge
there is no application of reinforcement learning towards the large scale problem
like VAM plant model in the literature due to the curse of dimensionality in high
dimensional state, the intractable computational cost with large action spaces
and the difficulty in accurately modelling complex plant systems.
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In this section, we focus on applying reinforcement learning to the local control
problem in a large scale chemical plant control to optimize production while main-
taining plant stability without any knowledge of the plant models. Since a typical
chemical plant has a large number of sensors and actuators, its control problem
could be formulated as a Markov decision process involving high dimensional
state and large action space that might be difficult to solve by previous methods
due to computational complexity and sample insufficiency. To overcome these is-
sues, a new approach, Factorial Policy Dynamic Policy Programming (FKDPP)
is proposed. Inspired by both Kernel Dynamic Policy Programming (KDPP) [Cui
et al., 2017a] which outperforms other conventional reinforcement learning meth-
ods such as LSPI [Lagoudakis and Parr, 2003] in robot control tasks with high
dimensional states and [Matsubara et al., 2014] that factorizes the high dimen-
sional state Hidden Markov Model to reduce computational complexity, FKDPP
enjoys a factorial policy model and factor-wise kernel-based smooth policy update
by the regularization with the Kullback-Leibler divergence between the current
and updated policies. Thus, the proposed approach is suited for learning near-
optimal policies in large scale chemical plant models. The effectiveness of FKDPP
is validated in the VAM plant model benchmark problem, with experimental re-
sults showing that the proposed method outperforms other methods in terms of
VAM yield, quality and system stability.

3.2 Local Chemical Process Control

3.2.1 Local Control Definition

VAM Plant Description

The process flow diagram of the VAM plant model is shown in Fig. 3.1. It consists
of eight parts:

Part 1 is for the input of raw materials: ethylene (C2H4), oxygen (O2), and
acetic acid (AcOH or CH3COOH) are provided as fresh feed streams.

Part 2 converts raw materials into vinyl acetate (VAM, CH2 = CHOCOCH3

with = denoting a double chemical bond) along with with water (H2O) and
carbon dioxide (CO2) as byproducts in a reactor. The following reactions take
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Figure 3.1: Process flow diagram of the VAM plant model [Machida et al., 2016].

place during this process:
C2H4 +CH3COOH+ 1

2
O2 −−→ CH2 ––CHOCOCH3 +H2O,

C2H4 + 3O2 −−→ 2CO2 + 2H2O
Part 3 contains a cooler, a separator and a compressor. Since both reactions

are highly exothermic, heat from the reaction is dissipated by boiler feed water
(BFW) circulation. Steam is generated on the shell side of the reactor, while
gas emitted from the reactor is processed this part where leftover acetic acid,
water and vinyl acetate are condensed as liquid VAM crude while separated gases
including unreacted ethylene, oxygen, carbon dioxide, inert ethane (C2H6), and
a small amount of gaseous vinyl acetate is compressed for circulation.

Part 4 has an absorber to capture vinyl acetate gas via cold acetic acid from
Parts 3, 7 and send it to Part 6. Other gases are fed into Part 5.

Part 5 is the gas purge system. It keeps the concentrations of CO2 around
5 ∼ 10 mol% and C2H6 around 5 mol% in the gas recycle line.

Part 6 is the intermediate buffer tank to mix vinyl acetate and acetic acid
with VAM crude condensed from Part 3.
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Table 3.1: Observed variables and control parameters of investigated task.

Table 3.2: Observed variables of the local control task.

Name Description Control criteria
FI560.F flow rate of VAM. to be optimized

as VAM yield
LI550.L level (%) of the decanter

tank.
< 100%

s407.F flow rate from the distilla-
tion column in Part 7 to the
decanter tank.

> 0

QI553.Q acetic acid density. < 150ppm

QI560.Q VAM density. (inversely
proportional to VAM qual-
ity)

< 500ppm

Part 7 contains a distillation that separates the VAM crude and acetic acid
from the intermediate buffer tank (Part 6). VAM-water mixture is then dis-
charged from the bottom while the acetic acid is recycled to the absorber (Part
4) and raw material feed section (Part 1).

Part 8 contains a decanter where the production vinyl acetate is finally de-
canted in.

3.2.2 Tasks

Recall that we focus on local control which refers to observing and controlling
the decanter tank (Part 8) and the distillation column (Part 7), with the overall
objective of optimizing VAM yield and its quality while maintaining stability as
the first step towards the optimal control of the whole VAM plant in Fig. 3.1
by reinforcement learning. This problem features a nine dimensional state spaces
including observed variables and control parameters detailed in Tables 3.2 and
3.3, respectively. A finite discrete action set is defined as increasing/decreasing

16



Control unit Description Effect

Pressure controller 1
Maintain top pressure of the column

with N2 and gas purge
Acetic acid density rises/declines

N2 density rises/declines

Pressure controller 2
Maintain pressure of the 3rd stage
of the distillation column with

superheated steam

Column temperature rises/declines
Affect VAM yield and quality

Steam amount increase/decreases
Steam generation is part of cost

Flow controller 2
Control decanter feed flow

temperature with cooling water
Control Decanter feed flow

Affect stability of the process

Temperature controller
Maintain temperature profile and
product quality by controlling

the reflux flow rate

Affect VAM yield and quality
Affect stability of the process

Control reverse flow rate

Table 3.3: Control units of the local control task.

each control parameter. The initial parameters of the plant are provided to start
from equilibrium. The specific objective is optimizing the VAM production’s
quality and quantity while keeping the level of the decanter tank and the flow
rate from the distillation column within safe limits. This is done by manipulating
the decanter’s reflux flow rate and feed flow temperature, the distillation column’s
steam flow rate and pressure.

3.2.3 Approach

Reinforcement Learning Basics

RL models problems as Markov Decision Processes (MDPs) expressed by a quin-
tuple (S,A, T ,R, γ). S denotes the state space; A denotes the action space, T a

ss′

denotes the transition from state s to s′ with action a taken. R = ra
ss′

is the
immediate reward under that transition. γ ∈ (0, 1) is the discount factor.

Given a state s, the value function Vπ following a specified policy π from that
state is defined as the cumulative discounted reward:

Vπ(s) = Eπ,T

[ ∞∑
t=0

γtrst
∣∣ s0 = s

]
(3.1)

where st is the state at time step t and rst is the reward at state st. Eπ,T denotes
the expectation with respect to π and transition probability T .
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RL methods search an optimal policy π∗ to maximize (3.1), i.e., to satisfy the
recursive Bellman equations:

Vπ∗(s) = max
π

∑
a∈A
s′∈S

π(a|s)
[
T a
ss′
(
ra
ss′

+ γVπ∗(s
′)
)]
. (3.2)

It is also convenient to use Qπ to denote the value function of state-action
pairs (s, a) ∈ S ×A under the policy π:

Qπ∗(s, a) = max
π

∑
s′∈S

T a
ss′
(
ra
ss′

+γ
∑
a′∈A

π(a
′|s′)Qπ∗(s

′
, a
′
)
)
. (3.3)

Dynamic Policy Programming

Dynamic Policy Programming (DPP) [Azar et al., 2012] is a value function based
RL algorithm. Thanks to its theoretically proven convergence, sample efficiency
and stability in learning, DPP has many extensions from complex robot arm
manipulation [Cui et al., 2017a] to DRL based robot control [Tsurumine et al.,
2019] and inverse RL [Uchibe, 2018]. DPP enforces the stability of policy update
by adding a Kullback-Leibler (KL) divergence term between some baseline policy
and the current policy that prevents the agent from taking aggressive steps:

KL
(
π(·|s) ‖ π̄(·|s)

)
=
∑
a∈A

π(a|s) log

(
π(a|s)
π̄(a|s)

)
. (3.4)

The new optimal value function is obtained by incorporating Eq. (3.4) into
(3.2):

Vπ∗(s)=max
π

∑
a∈A
s′∈S

π(a|s)
[
T a
ss′
(
ra
ss′

+γVπ∗(s
′)
)
− 1

η
log

(
π(a|s)
π̄(a|s)

)]
(3.5)

where the η is the temperature parameter that weights the effect of the KL term.
Following [Azar et al., 2011, Todorov, 2006], the new optimal value function

and policy satisfy the recursive equations:

V π∗

π̄ (s) =
1

η
log
∑
a∈A

π̄(a|s) exp

[
η
∑
s′∈S

T ass′
(
rass′ + γV π∗

π̄ (s
′
)
)]
,

(3.6)
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π̄∗(a|s) =

π̄(a|s) exp

[
η
∑

s′∈S T ass′
(
rass′ + γV π∗

π (s
′
)
)]

exp
(
ηV π∗

π (s)
) .

(3.7)

The optimal value function and policy need to be obtained iteratively. By
repeatedly replacing the baseline policy in Eq.(3.6), the optimal value function
can be asymptotically obtained. Defining an action preference function of the
form in [Sutton, 1996] and denoting the iteration t:

Ψt+1(s, a) =
1

η
log π̄t(a|s) +

∑
s′∈S

T ass′
(
rass′ + γV t

π̄(s
′
)
)

(3.8)

Dynamic Policy Programming Recursion

Dynamic Policy Programming (DPP) [Azar et al., 2012] solves Markov decision
process (MDP) with smooth policy updates by employing the Kullback-Leibler
divergence between current and new policies as a regularization term. According
to [Azar et al., 2012], such a smooth policy update is beneficial when working
with a limited number of samples. A MDP is defined by (S,A, T ,R, γ). S =

{s1, ..., sn} is a finite set of states, A = {a1, ..., am} is a finite set of discrete
actions. T a

ss′ represents the transition probability from s to s′ under the a and
r ass′ = R(s, s′, a) is the corresponding reward, γ ∈ (0, 1) is the discount factor.
The policy π(a|s) denotes the probability of taking the action a under the state s.
The optimal value function with the regularization term that maximizes expected
discounted total reward, while minimizing the difference between current policy
π and baseline policy π̄, follows a Bellman equation:

V ∗π̄ (s) = max
π

∑
a∈A
s′∈S

π(a|s)
[
T a
ss′
(
ra
ss′

+ γV ∗π̄ (s′)
)
− 1

η
log
(π(a|s)
π̄(a|s)

)]
. (3.9)

For solving the optimal value function, the action preferences [Sutton and
Barto, 1998] for all state action pairs (s, a) ∈ S ×A in the (t+ 1)-th iteration are
defined according to [Azar et al., 2012]:

Ψt+1(s, a) =
1

η
log π̄t(a|s) +

∑
s′∈S

T a
ss′
(
r a
ss′

+ γV t
π̄(s

′
)
)
. (3.10)
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Instead of the optimal value function, DPP learns optimal action preferences
to determine the optimal control policy throughout the state-action space. The
DPP recursion is calculated by:

Ψt+1(s, a) = OΨt(s, a)

= Ψt(s, a)−MηΨt(s) +
∑
s′∈S

T a
ss′
(
r a
ss′

+MηΨt(s
′
)
) (3.11)

whereMηΨt(s) =
∑

a∈A
exp
(
ηΨt(s,a)

)
Ψt(s,a)∑

a
′∈A exp

(
ηΨt(s,a

′ )
) is the the Boltzmann soft-max oper-

ator.
DPP can be extended to large-scale (continuous) state spaces via function ap-

proximation, i.e., linear function approximation with basis functions. Here we de-
fine the n-th state-action pair from a set of N samples as xn = [sn, an]n=1:N , where
φ(xn) denotes them×1 output vector ofm basis functions, [ϕ1(xn), ..., ϕm(xn)]T.
The approximate action preferences in the t-th iteration follow Ψ̂t(xn) = φ(xn)Tθt

where θt is the corresponding m× 1 weights vector. The empirical least-squares
solution of minimizing the loss function J(θ; Ψ̂t) , ‖Φθ −OΨ̂t‖2

2 is given by:

θt+1 = [ΦTΦ + σ2I]−1ΦTOΨ̂t (3.12)

where σ is used to avoiding over-fitting due to the small number of samples.

Φ =
[
φ(x1), ...,φ(xN)

]T

and OΨ̂t is N × 1 matrix with elements:

OΨ̂t(xn) , Ψ̂t(xn) + r an
sns
′
n

+ γMηΨ̂t(s
′

n)−Mη.Ψ̂t(sn). (3.13)

Kernel Dynamic Policy Programming

The main limitation of DPP in high dimensional systems is the intractable com-
putational complexity as a result of an exponentially growing number of basis
functions. Based on DPP, KDPP combines the kernel trick and smooth policy
updates to learn tasks represented as high dimensional MDPs with both increased
stability and significantly reduced computational complexity [Cui et al., 2017a].
Kernel ridge regression is applied to the least squares solution in Eq. (3.12). The
weights vector is represented by dual variables αt = [α1

t , ..., α
N
t ]T as:

θt =
N∑
i=1

αitφ(xi) = ΦTαt, (3.14)
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Figure 3.2: Handling huge discrete action set in RL by factorization.

and define the matrix of inner products asK := ΦΦT that [K]ij = 〈φ(xi),φ(xj)〉 =:

k(xi,xj). The approximate action preferences therefore follow:

Ψ̂t(xn) = φ(xn)θt =
N∑
i=1

k(xn,xi)α
i
t. (3.15)

After translating Eq. (3.12) using the Woodbury identity:

[ΦTΦ + σ2I]−1ΦTOΨ̂t = ΦT[ΦΦT + σ2I]−1OΨ̂t. (3.16)

The solution can also be represented by dual variables as:

αt+1 = [K + σ2I]−1OΨ̂t (3.17)

whereOΨ̂t is calculated by plugging Eq. (3.15) into Eq. (3.13). According to [Cui
et al., 2017a], a suitable kernel subset from all samples Dk = [x̃m]m=1:M ,M �
N can be built via an online selection in order to reduce the computational
complexity and therefore enables the learning in high dimensional state space.

Factorial KDPP

KDPP has shown its efficient learning in the control of a pneumatic muscle-
driven robotic hand with a 32 dimensional state space [Cui et al., 2017a], while
other conventional methods such as LSPI [Lagoudakis and Parr, 2003] could not.
On the other hand, calculating MηΨt(s) in Eq. 3.11 through a huge discrete
action set A is intractable. For example, defineM discrete actions for one control
parameter. In order to control N parameters, the entire set of all possible actions
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Algorithm 1: Factorial KDPP
Require: number of iteration T , number of action dimensions N .
1: Initialize kernel subset DKerneln = , n = 1, ..., N .
2: for iteration t = 0, 1, 2, ..., T do
3: if t == 0 then
4: Generate samples in Dt with random policies π0

n.
5: else
6: Generate samples in t-th iteration Dt by setting πtn, i = 1, ..., N , as

softmax exploration policies.
7: end if
8: for each dimension of actions n = 1, 2, ..., N do
9: Select samples from Dt to build kernel subset for the n-th dimension

DKerneln .
10: Update dual weights vector αn with samples Di, i = 0, 1, ..., t, and

kernel subset DKerneln following KDPP.
11: end for
12: end for

becomes |A| = MN (Solution 2 in Fig. 3.2) which is intractable with large
M and N . As one solution to maintain a tractable computational complexity,
the experiments in [Cui et al., 2017a] carefully coded actions to limit only one
parameter’s control available in each action (Solution 1 in Fig. 3.2). It therefore
reduces the size of action set to MN . However, this trick clearly weakens control
capability and is not suitable to tasks requiring the simultaneous control of several
units (e.g., chemical plant control). To address this, Factorial Kernel Dynamic
Policy Programming (FKDPP) is proposed to learn action space dimension by
dimension separately under the KDPP framework following:

π(a|s) =
N∏
n=1

π(n)(a(n)|s). (3.18)

FKDPP divides the discrete action set for N control parameters, A, to N subsets
An which only contains M discrete actions and leaves them to N KDPP agents
respectively. The policy π(a|s) then turns to N policies π(n)(a(n)|s) as the So-
lution 3 in Fig. 3.2. With one agent searching M discrete values in subset, N
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agents factorially search all MN discrete actions in A. It hugely decreases the
computational complexity without losing control capability. Inheriting the regu-
larization with the Kullback-Leibler divergence from KDPP, FKDPP features a
factor-wise kernel-based smooth policy update that stabilizes the learnings among
multiple agents since the over-large update of each agents’ policy is avoided every
iteration.

FKDPP adds a loop to learn each subset of actions separately according to
Algorithm 1. Each subset is allocated to an agent, which is updated with corre-
sponding samples generated through a soft-max exploration policy:

πnexplore(a
n|s) =

exp(ηexploreΨ̂
n
t (s, an))∑

an′∈An exp(ηexploreΨ̂n
t (s, an′))

. (3.19)

By doing this, tasks with huge discrete action set for multiple control parameters
are divided into several sub-tasks with smaller action sets which are tractable for
KDPP. Details of KDPP’s kernel subset selection and weights update (lines lines
9 and 10 in Algorithm 1) are covered in [Cui et al., 2017a].

3.2.4 Experimental Results

In this section FKDPP and KDPP are applied to the task introduced in Section
3.2.2. According to Table 3.2, the state space has nine dimensions including con-
trol state (FI560.F, LI550.L, s407.F, QI553.Q and QI560.Q) and control parame-
ters (FC550.SVM, TC540.SVM, TC501.SVM and PC501.SVM). The discrete ac-
tion set is defined as increasing/decreasing four control parameters by 10 discrete
actions (M = 10) following: aFC550 ∈ [−2, 2], aTC540 ∈ [−4, 4], aTC501 ∈ [−10, 10]

and aPC540 ∈ [−2, 2]. The total number of actions is close to 104, resulting in
an intractable computation in Eq. 3.11 for KDPP under Solution 2 in Fig. 3.2.
Therefore Solution 1 is used in KDPP to consider only M ×N = 40 action com-
binations. For FKDPP, the action space with 104 actions is factorized by four
agents. For each agent, there are M = 10 actions. The VAM plant simulation
used in this experiment is detailed in [Machida et al., 2016], which is implemented
on the commercial dynamic simulator, Visual Modeler developed by Omega Sim-
ulation Co., Ltd.. Each algorithm is trained over 30 iterations, with each iteration
consisting of 200 steps. Each step simulates approx. 30 minutes due to lengthy
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Figure 3.3: Learning results of VAM plant simulation.

chemical processes. The reward function used by both methods is defined as:

R = 30× FI560.F− 2× LI550.L− 5×QI560.Q

− 20×QI553.Q.
(3.20)

It follows the strategy of giving a high reward when FI560.F is increased (VAM
quantity up) or QI560.Q is decreased (VAM quality up). If any critical condition
in Table 3.2 is violated, the reward is sharply decreased.

Figures 3.3(a) and 3.3(b) show the mean and variance of VAM yield (FI560.F)
and quality (QI560.Q) for each 200 step period during 30 iterations of learning.
FKDPP quickly converged to a good policy which maximized production (Fig.
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3.3(a)), while KDPP resulted with a lower mean and larger variance due to system
instability (e.g., depleting the tank or causing other catastrophic failure scenar-
ios). FKDPP also has a lower mean of QI560.Q during learning compared with
KDPP, as shown in Fig. 3.3(b).

After 30 learning iterations, the policies of FKDPP and KDPP are tested.
According to Figs. 3.3(c) and 3.3(d), FKDPP outperformed KDPP in both VAM
quantity and quality. The sequences of control parameters are shown in Figs.
3.4(a) and 3.4(b), where FKDPP facilitates exploration with multiple control
parameters at each step. On the other hand, KDPP only operates a single control
parameter at each step which is insufficient in terms of exploration, especially
when each step lasts for 30 minutes. In Fig. 3.4(b), KDPP has to use more
iterations to operate each dimension of the action, resulting in worse performance.
These results show that under identical learning conditions, the proposed FKDPP
achieves superior performance compared with methods in which the policy is not
factorized.

In terms of computational complexity for this task with its nine dimensional
state and action set for four control parameters, FKDPP took an average 0.0017s

per step to search over 104 actions while KDPP took 0.0014s to consider 10× 4

actions. Because FKDPP reduces the computational complexity by limiting the
number of action combinations (Eq. 3.11), computation time for FKDPP with
10 actions each is negligibly slower in comparison to running a single agent with
40 actions in the case of KDPP.
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3.3 Plant-wide Control

In the industrial process control community, while there was early attempts on
leveraging RL, few studies exist on solving large-scale chemical plant control prob-
lems. Section 3.2 can also be seen as part of the literature that focuses only local
control problems without touching upon the more important plant-wide control.
The main reasons are intractable computation and memory cost incurred by an
extremely large number of samples, subsequent derivation for feasible policies,
and the poor scalability of traditional RL algorithms, e.g., Q-learning. Such al-
gorithms easily incur the curse of dimensionality [Bellman, 2003] which refers to
the explosion of the number of samples needed as the dimensionality increases.

This dilemma can be seen from looking back into the literature: Syafiie et
al. [Syafiie et al., 2007] leveraged Q-learning in the classical pH neutralization
control task on a laboratory plant. In other process control problems aside from
chemical plants, Ernest et al. [Liu et al., 2010] used the enhanced Q-learning
algorithm to derive a policy that achieves better power-performance tradeoff on
both synthetic and small-sized real workloads. Harp et al. [Harp et al., 2000]
embedded RL algorithm in a simulator for electricity management to learn a
profitable electricity pricing policy. While these methods achieve successes in
low dimensional simulations or small-scaled real-world experiments, Q-learning
[Watkins and Dayan, 1992] has been well-known that it does not scale well into
high dimensional problems, and is typically expensive in terms of both learning
time and computational resources for high dimensional systems. Deep RL (DRL)
techniques on process control [Kubosawa et al., 2018, Spielberg et al., 2017] such
as Deep Q-Network (DQN), usually have sample complexity several magnitudes
larger than traditional RL. This prohibitive sample complexity excludes them
from consideration for plant-wide process control and may be the reason that
Kubosawa et al. [Kubosawa et al., 2018] has conducted the experiment only with
some isolated components of the VAM manufacturing process from malfunction-
ing, without considering the full context of VAM process control problems, e.g.,
improving the production rate or product quality.

In this section, we focus on plant-wide control of the VAM process. Since the
problem is intractable for conventional algorithms, including FKDPP proposed
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in the next section, we propose a more scalable algorithm: Factorial Fast-food
Dynamic Policy Programming (FFDPP), for realizing autonomous control on
large-scale chemical plants. Similar with FKDPP, FFDPP is also based on Dy-
namic Policy Programming [Azar et al., 2012] which considers KL regularization
[Cui et al., 2017a,b, Tsurumine et al., 2019] and factorial policies [Cui et al., 2018,
Matsubara et al., 2014]. However, a crucial difference lies in that we exploit a more
advanced kernel function approximation scheme known as Fast-food approxima-
tion [Le et al., 2013]. Factorial policy representation is coupled with factor-wise
policy update to further reduce computational cost. Intuitively, Fast-food kernel
approximation samples in the frequency domain to approximate feature maps
[Le et al., 2013] instead of sampling directly in the original space to alleviate the
curse of dimensionality.

3.3.1 Fast-food Approximation

Before introducing our solution to the plant-wide control problem, we need to
recap on the concept of Fast-food, which was proposed by Le et al. [2013] to
approximate kernel expansion with only O(n log d) time and O(n) storage, where
n denotes the number of samples, d denotes the dimensionality. In our case, the
problem is n continues to grow, which renders computing the kernel matrix in
FKDPP intractable since inverting the kernel matrix takes O(n3) computations.
We aim to approximate the kernel matrix K such that its inversion can be com-
puted in a straightforward manner. Let us first introduce some basics associated
with kernels.

Mercer’s Theorem Let X be the input space. Any kernel k: X × X →
R satisfying

∫
k(x, x

′
)f(x)f(x

′
)dxdx

′ ≥ 0 for all measurable functions f can be
expanded into the following summation:

k(x, x
′
) =

∑
j

λjφj(x)φj(x
′
) (3.21)

where λj > 0 and φj are orthonormal.
Mercer’s theorem states that any positive definite kernel can be computed as

a summation of weighted inner products of feature vectors. This in turn implies
that lifted datapoints can be computed as K(x, y) = k(x, y) = 〈φj(x), φj(y)〉,
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where x, y ∈ Rd are the input datapoints, φj : Rd → Rq defines the lifting, where
q � d.

Rahimi proposed that, instead of relying on the implicit lifting defined by the
kernel trick, it might be better to explicitly map the data to a low-dimensional
Euclidean distance space using a randomized feature map z : Rd → RD, such that
the inner product between a pair of lifted datapoints approximates their kernel
counterpart:

k(x, y) = 〈φ(x), φ(y)〉 ≈ z(x)T z(y) (3.22)

where unlike the high dimensional mapping φ, z is low-dimensional. The low-
dimensionality of z provides us with the benefit that can be used directly with the
transformed input to approximate the desired nonlinear kernel machine. Specifi-
cally, to obtain the desired kernel, an important theorem from harmonic analysis
called Bochner’s theorem is used, which further complements the Mercer theorem
in the sense that a kernel is valid only if its Fourier transform is a valid probability
measure, i.e., a proper probability distribution.

Bochner’s Theorem A continuous kernel k(x, y) = k(x − y) is positive
definite if and only if k(δ) is the Fourier transform of a non-negative measure,
i.e.,

k(x− y) =

∫
p(w)ejw

T (x−y)dw = Ew
[
ϕw(x)ϕw(y)

]
(3.23)

where ϕw(x) = ejw
T x. This states that, if w is drawn from the distribution p(w),

then we have an unbiased estimate of original kernel k(x, y) = k(x − y). Note
that by writing so we mean that the kernel should be shift-invariant, as is the
case of common kernel functions including RBF, Cauchy and Laplacian, etc.

Two more steps to obtain the desired kernel function. The first is that, RBF
and the corresponding Gaussian distribution are real, hence the complex compo-
nents in Eq.(3.23) can be replaced by cosine function zw(x) =

√
2 cos (wTx+ b)

and p(w) set to be Gaussian. Second, to manipulate the width σ2 of the desired
feature map, one simply samples from the Gaussian with zero mean and variance
σ2. The approach of RKS is summarized below:
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input Width σ2, n, d

Sample entries of Z ∈ Rn×d i.i.d. from N (0, σ−2)

for all x,
Compute the feature map using Eq.(3.23)
φj = 1√

n
exp (i[Zx]j)

end for

The RKS approximation is a probabilistic approximation that converges with
high probability and at the rate of independent empirical averages [Rahimi and
Recht, 2008]. However, one shortcoming is that one needs to compute Zx for
every observation, leading to O(nd) operations and storage for each input x. In
the application considered in this thesis, input comes as a stream of observations
resulted from interacting with the environment. This stream of observations can
be arbitrarily many if one wants to collect as many samples as possible. Hence
it is desirable to further reduce the cost of computation and storage.

Le et al. proposed Fast-food approximation [Le et al., 2013] to improve the
computation time of RKS from O(nd) to O(n log d) and storage from O(nd)

to O(n). The improvement is crucial for applications with very big number of
features, e.g., image processing. Specifically, fast-food achieves the improvement
by considering a matrix formed from multiplications of several diagonal simple
matrices instead of Z. The fast-food matrix is denoted as V in the following
equation:

V =
1

σ
√
d
SHGΠHB (3.24)

where S,G,B are diagonal matrices. More specifically, Gii∼N (0, 1), Bii∈{±1},
the scaling matrix S can be adjusted to produce different kinds of kernels desired.
For the RBF case, it follows Chi-distribution, namely Sii ∼ rd−1e−

r2

2 . Π ∈ {0, 1}
is a permutation matrix, H is the Walsh-Hadamard matrix of the form:

H2 =

[
1 1

1 −1

]
and H2d =

[
Hd Hd

Hd −Hd

]

Matrices S,G,B are once computed and stored. The Walsh-Hadamard matrix
H can be obtained via the fast Walsh-Hadamard transform. The detail of gener-

29



ating fast-food matrix is provided below, in which the important properties are
explained.

Every row of V is a Gaussian variable
This statement consists of two facts:
(1) The rows of matrix V excluding S are i.i.d. Gaussian variables.
(2) Based on (1), multiplying with the scaling matrix S, rows of the fast-food
matrix S are Gaussian, but no longer independent.

This first fact is because every entry of V excluding S takes the form of
[HGΠHB]ij = BjjH

T
i GΠHj, which is a sum of zero-mean independent Gaussian

variables. According to the fact that adding d independent variables each of
N (0, 1) yields a Gaussian variable of N (0, d), the variance of each entry is d.
The binary matrix B ensures that different entries in a row [HGΠHB]i have zero
correlation, hence guaranteeing that they are i.i.d Gaussian variables.

The second fact is because of that, scaling rows of HGΠHB into a unit-ball
using entries of Sii = si||G||

− 1
2

Frob, si ∼ (2π)−
d
2A−1

d−1r
d−1e−

r2

2 serves the purpose of
making Gaussian random vectors distributed uniformly on the unit-ball [Blum
et al., 2020]. It provides information on sampling, since knowing the radius of
the ball one knows that which regions are more likely to be concentrated with
distributed points, hence the independence no longer holds.

Rows of HGΠHB have the same length
This is because the length can be written as l2 = [HGΠHB(HGΠHB)T ]ii =

[HG2H]jd =
∑

iH
2
ijG

2
iid = ||G||2Frobd.

Fast-food preserves the advantages of RKS, while improves the scalability in
the sense that instead of storing Z computing Zx with complexity O(nd) for
every observation encountered, now the complexity of computing V x drops to
O(n log d) and storing V drops to O(n). This is because S,G,B are diagonal
matrices that cost only 3n storage. The Hadamard matrix H is implicitly rep-
resented using the recursive formula. These two facts show that storage of V is
O(n). To demonstrate that the computation costs O(n log d), one notes that the
computation relies on the Hadamard transform which costs O(n log d) and evalu-
ation of n basis functions which costs O(n), hence the cost in total is O(n log d).
We produce fast-food feature maps using the follow procedure:

30



Algorithm 2: Computing Fast-food feature maps
Require: σ, n, d
Ensure: Feature map φj
compute Fast-food matrix V using Eq.(3.24)
for all x do
Compute the feature map by φj = 1√

n
exp (i[V x]j)

end for

In Section 3.2 Factorial Kernel Dynamic Policy Programming (FKDPP) was
designed by selecting a subset of most informative samples and then compute
the approximated kernel matrices from the subset and whole samples. However,
when the dimensionality increases, the size of the subset also increases drastically,
quickly rendering computation intractable. On the other hand, Fast-food solves
this problem by tranferring the data into the frequency domain and then conducts
sampling. It is mathematically demonstrated that the generated feature map Φ̂

recovers the exact Φ with exponentially decreasing error with increasing sampling
frequency [Rahimi and Recht, 2008]. This is especially suitable for computing
in high dimensional problems. By leveraging Fast-food, the DPP-based value
function and policy are now expressed as:

V̂ t
π̄(s) =

1

η
log
∑
a∈A

exp
(
ηΨ̂t(s, a)

)
, π̂t(a|s) =

exp
(
ηΨ̂t(s, a)

)∑
a′∈A exp

(
ηΨ̂t(s, a

′)
) (3.25)

where Ψ̂t = Φ̂θ, Ψ̂t = [φ1, . . . , φj, . . . ] is now computed by random feature maps
following Alg. 2. Since we have factorial policies, we maintain several weight
vectors θ(m) for each Ψ̂

(m)
t and hence π(m), where the superscript m denotes the

m-th factorized policy. We list the pseudo-code of FFDPP in Alg. 3.

3.3.2 Experimental Settings

To prove the efficacy of the proposed algorithm, ten independent experiments are
repeated and averaged to collect statistical evidence. Each experiment consists
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Algorithm 3: Factorial Fast-food Dynamic Policy Programming
Input: M, τ, γ, η, σ, T, I

Output: weight vectors θ(m),m = 1, . . . ,M

1 Divide A into {A(1), . . . ,A(M)}
2 Random exploration with πrandom = [π

(1)
random, . . . , π

(M)
random]T

3 Compute Fast-food matrix V using τ

4 for i = 1, . . . , I do
5 for t = 1, . . . , T do
6 measure state st
7 for m = 1, . . . ,M do
8 compute φ(m)(x) using Fast-food

9 compute Ψ̂
(m)
t following (3.8)

10 sample action a(m)
t from π(m)

11 x(m) = [st, a
(m)
t ]T

12 collect x(m) in D(m)
i

13 end

14 apply action at = [a
(1)
t , . . . , a

(M)
t ]

15 end
16 for m = 1, . . . ,M do
17 compute Φ̂

(m)
t using D(m)

i

18 θ̂
(m)
t+1 = [Φ̂t

(m)T

Φ̂t
(m)

+ σ2I]−1Φ̂t
(m)TOΨ̂

(m)
t

19 end
20 end

Observation Description Control criteria

Production rate sensor Flow rate of VAM
To be optimized as VAM yield,

part of the profit
Level sensor Level(%) of the decanter < 100%

Quality sensor 1 Acetic acid density < 100 ppm

Quality sensor 2
VAM density (inversely

proportional to the quality)
< 150 ppm

Temperature sensor 1 - 8
Temperature inside the
distillation column

To be optimized as cost,
part of the profit

Gross profit Profit of VAM product (JPY/h)
to be optimized as gross profit

(part of the profit)

Table 3.4: Observation units of the investigated task.

of 70 iterations and each iteration has 1000 steps. Each time step in simulation
corresponds to around five minutes in the real time. Hence 1000 steps is approx-
imately two days of real time plant running. The performance of the proposed
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Control unit Description Effect

Flow controller 1
Control superheated stream flow

rate for the reboiler

Column temperature rises/declines
Affect VAM yield and quality

Steam amount increases/decreases
Steam generation is part of cost

Pressure controller 1
Maintain top pressure of the column

with N2 and gas purge
Acetic acid density rises/declines

N2 density rises/declines

Pressure controller 2
Maintain pressure of the 3rd stage
of the distillation column with

superheated steam

Column temperature rises/declines
Affect VAM yield and quality

Steam amount increase/decreases
Steam generation is part of cost

Flow controller 2
Control decanter feed flow

temperature with cooling water
Control Decanter feed flow

Affect stability of the process

Temperature controller
Maintain temperature profile and
product quality by controlling

the reflux flow rate

Affect VAM yield and quality
Affect stability of the process

Control reverse flow rate

Table 3.5: Control units of the investigated task.

algorithm is evaluated in terms of plant-wide stability, profit and computational
resources needed in the period of simulated two days.

For each of the M control units, corresponding action set is constructed by
uniformly choosing N values from the interval [−0.01, 0.01]. The number of N is
chosen empirically to achieve balance between high resolution of discrete actions
and computational tractability. Here N = 10 to realize high resolution. Note
that without the factorial policy setup, the size of the entire action set to be
considered is MN = 510 � 220, which is intractable for common value function
based RL approaches to efficiently explore.

Aside from maximizing accumulated profit as defined in Eq. (3.20), maintain-
ing process stability is also a learning goal. Stability is defined by violations of
the safety ranges in Table 3.5. When a violation occurs, a corresponding penalty
is added to the reward. The experiment is conducted on a PC with processor
i7-8700k, 3.70GHz and 32GB memory.

The meta parameters of the experiment are summarized in Table 4.1. Pa-
rameter τ controls the balance of Fast-food approximation accuracy and learning
speed and needs to be specified by the user. Here τ =100 and interested readers
are referred to [Rahimi and Recht, 2008] for technical details.
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3.3.3 Experiment results

Performance of FFDPP

Quality 1 Quality 2 VAM Profit
A B C

A

B

C

Iteration
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Step

Figure 3.4: Black dashed line marked by A show the performance at
10th iteration; green dashed line B the performance at 40th iteration;
yellow line C the performance at 70th iteration. The y-axis for righthand
subplots are: Quality 1-(ppm), Quality 2-(ppm), VAM (Production rate)-
(t/h), Profit (Gross profit)-(103 yen/h).

The learning performance evolving is shown in the left part of Figure 3.4,
averaged over ten independent learning results for statistical evidence. The blue
curve shows the mean reward, while the transparent blue area depicts variance.
The y-axis is the accumulated reward given in Eq. (3.20) summed over 1000
steps of every iteration. On the right are subplots illustrating the performance
evolving through iteration: after 10, 40 and 70 iterations. It can be seen from
the figure that after trial-and-error learning and without any prior knowledge
about the model, the learned FFDPP policy successfully learns a control policy
to maximize the reward, solving the process control problem of 13-dimension
state space and 5-dimension action space in 70 iterations within 70,000 samples.

To visualize the correspondence between states and learning progress, t-SNE
[van der Maaten, 2014] is applied to compress the 13 dimensional state vectors
into two dimensions to draw the scatter plot in Figure 3.5. By trial-and-error
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High
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A
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C

Figure 3.5: The t-SNE plot shows a trajectory of the agent in one experiment.
Undesirable states, i.e., overflow of Quality sensor 1 or 2, low production rate,
etc., are marked with blue, desirable states are marked in red. Markers A,B,C
refer to the performance plots in Figure 3.4.

learning the agent explores state space and finds a path that cycles around the
optimal region indicated by deep red. Intermediate iterations might take the
agent through some desirable states, but cannot control it to be within the op-
timal regions. Likewise, optimal states might be reached by some policies, but
undesirable states will be experienced along the paths. Optimal policy is derived
as circling regularly within the optimal region.

Performance of learned policies is further examined in Figure 3.6. To testify to
the robustness and stability of FFDPP, independent experiments are performed.
The rollout is conducted with length of 2000 steps, 100% more than the length of
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(b) Readings of the Quality sensor 2 un-
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(d) Profit per time unit under the three
learned policies.

Figure 3.6: Learned results of FFDPP on the plant-wide control task.

learning phase. Comparison is made between performance of the learned policies
and of the model-based controller proposed in [Machida et al., 2016, Seki et al.,
2010]. Policies are shown here in blue solid line, red dot line and green dashed
line. The red solid straight lines indicate performance under the model-based
controller which have minor oscillation, while the three curves show adaptations
made by the learned policies. In each subfigure, the black dashed line indicates
the mean value of the three curves averaged over 2000 steps. Figure 3.6(a) and
3.6(b) show the readings of two product quality measurers. Their readings are
inversely proportional to the product quality. The product quality controlled by
the learned policy is better on average than that of the model-based controller in
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the simulated period. Figures 3.6(c) and 3.6(d) show the VAM production rate
and profit per time unit, respectively. As the result of adapting to the process
dynamics, the curves are changing, hence mean values are needed to be compared
with performance of the model-based controller in terms of VAM produced and
profit made. It is clear that without any model knowledge, in the simulated
period corresponding to around 5 real days, the FFDPP agent succesfully learns
a policy that yields comparative performance to the state-of-the-art model-based
controller.
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Figure 3.7: The analysis of controlled behavior using the learned FFDPP policy.
The agent changed behavior from A, followed by B and C. After time step D the
agent managed to restore the normal temperature of the distillation column.

Comparison to Other RL Methods

The computational mitigation brought by the factorial framework and Fast-food
kernel approximation is examined in Table 3.7 to serve as the ablation test, which
compares the computational resources that DPP-based algorithms require. It
is worth mentioning that in the original DPP paper [Azar et al., 2012], DPP
has been compared with the classic model-free algorithm Q-learning and demon-
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Figure 3.8: Comparison between unfactorized FDPP and FFDPP. FFDPP per-
formance is marked in blue, unfactorized FDPP is marked in red.

strated superior performance. Hence in this comparison only DPP-based algo-
rithms are considered. The configurations for KDPP and FKDPP respectively
follow the definition in [Cui et al., 2017a] and [Cui et al., 2018], with the ex-
ception the sample threshold is set to η = 0.9, which is equivalent to discarding
90% of samples and retaining the rest 10% most informative ones. For ablation
test, unfactorized Fast-food DPP is also evaluated (see Section 3.3.3 for details).
All parameters of the compared algorithms were tuned to yield best performance
empirically.

In the described experiment, Success is defined as after 70 iterations’ learn-
ing, the learned policy does not violate any constraint and perform comparable
to the model-based controller (with cumulative reward approximately equal or
better than 1.97 × 105 units). An indicator Error is also defined as the situa-
tion where the computing software reports error due to intractable computational
time or running out of memory resulted from the large amount of high dimen-
sional samples. The second column of Table 3.7 shows the maximum number
of samples that each algorithm can handle before triggering the Error indicator.
The computation time, policy evaluation time are evaluated with the maximum
acceptable number of samples. For factorial algorithms, time costs are recorded
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Table 3.6: Meta parameters of the FFDPP process control experiment.

Parameter
Description
(Number of)

Value

T steps 1000
I iterations 70
M factorial agents 5
N discrete actions per agent 10
τ sampling basis functions 100

for one agent, hence the total time cost is that cost multiply by the number of
agents.

It is worth noting that the large acceptable number of samples of FFDPP
not only relies on Fast-food, but also on the factorial policy for decomposing the
one-time evaluation of huge number of action preferences to several sequential
evaluations, as will be verified in the next section.

Algorithm
Acceptable number

of samples
Maximum

computation time (s)
Maximum policy
evaluation time (s)

Success Error

DPP 5000 552.5 0.0152 No Yes
KDPP (η = 0.9) 20000 586.8 0.0015 No Yes
FKDPP (η = 0.9) 30000 178.5 × 5 0.0014 × 5 No Yes
FDPP (Unfactorized) >70000 285.9 0.1405 No No
FFDPP >70000 31.9 × 5 0.0044 × 5 Yes No

Table 3.7: Performance comparison between DPP, KDPP, FKDPP, Fast-food
DPP and FFDPP on the investigated task. Acceptable number of samples indi-
cates maximum capacity of each algorithm before triggering the Error indicator.
Maximum computation time and policy evaluation time are evaluated for the
maximum acceptable number of samples.

Unfactorized Fast-food DPP

In this section the efficacy of factorial policy is empirically verified. Unfactorized
Fast-food DPP (UFDPP) is run on the same task to give empirical evidence. As
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shown in Figure 3.8, the failure of UFDPP could be due to ineffective exploration,
insufficient samples or large number of action preferences to learn. The learning
curve is averaged over ten independent experiments.

To conclude, RL on plant-wide process control dictates a large amount of
samples for building robust controller. The bottleneck of KDPP and FKDPP lies
in their failure to process such huge number of samples. On the other hand, the
ability to efficiently search in high dimensional actions space is also indispensable
even equipped with the capability of processing that large number of samples. In
this experiment, Fast-food approximation is exploited to tackle the first problem,
factorial policy is leveraged to handle the latter problem.

3.4 Discussion and Conclusions

In this chapter we investigated how KL divergence as a regularization could help
greatly improve the performance as well as sample efficiency, even with simple
linear function approximation. Intuitively, KL divergence between two consecu-
tive policies helped reducing the aggressiveness of updates which often resulted
in brittle value functions especially in high dimensional spaces. It is worth men-
tioning that our use of KL regularization was in the form of DPP, which is a value
iteration method rather than the conventional policy iteration style. This spe-
cial formulation also contributed greatly to the sample efficiency of the proposed
method, since the policy loop was removed from the algorithm.

It is worth noting that the proposed method in this chapter concerned only
how to efficiently realize autonomous control by using RL, without considering
realistic factors such as safety. Real-world control problems often necessitate safe
control which refers to minimized risk or constraint violation during learning,
which will be the topic of the next chapter. Another important research direc-
tion is to apply the proposed method to some small-scale real-world plant to
demonstrate the effectiveness of FFDPP continue to hold.
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4 | Safety

4.1 Introduction

While RL has achieved tremendous success in games [Silver et al., 2017] or robot
manipulation [Andrychowicz et al., 2020, Levine et al., 2018], unlike supervised
learning which has already been massively applied to real-world applications, RL
deployments remain largely in game playing and laboratories. One major reason is
that there lacks a constraint satisfying mechanism that guarantees constraint sat-
isfaction during RL agent’s trial-and-error exploration, where constraint is used
to model scenarios that dictates safety. Safe reinforcement learning algorithms
that can simultaneously minimize the total cost and the risk of constraint viola-
tion are crucial. The paradox of ensuring good learning performance and avoiding
constraint violation of safe RL can be likened to that of exploration-exploitation
tradeoff. An RL agent obtain knowledge from environment by experiencing both
constraint satisfaction and violation, nonetheless in real-world applications it is
desired to minimize or even completely eliminate constraint violations.

In this chapter, we aim to propose a scalable and efficient safe reinforcement
learning algorithm applicable to high dimensional systems such as robots. The
safe RL algorithm should be capable of simultaneously satisfying constraint while
minimizing cost leveraging limited number of samples. Existing methods, how-
ever, has more or less failed in doing so. Lyapunov-based approaches, originally
proposed by [Perkins and Barto, 2002], has been gaining interests recently as the
Lyapunov property is suitable for modeling safe learning problem: starting from a
point inside the attraction region, the agent is forced to stay in the region during
the learning course [Berkenkamp et al., 2017, Chow et al., 2018]. This concept
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is also known as the Lyapunov stability and is naturally suitable for safe RL.
However, despite the theoretical attractiveness, their applications are limited to
low dimensional systems that are hard to transfer to robot control since it is still
unclear how to efficiently find a Lyapunov function in a systematic manner. More
seriously, it is shown in [Banijamali et al., 2019, Moldovan and Abbeel, 2012] that
optimizing over a restricted class of policies is in general an NP-hard problem.

Another candidate of safe RL is to model the safety via a natural extension of
MDP maintaining a ’budget’ or ’constraint’ term, which results in Constrained
Markov Decision Processes (CMDPs) [Altman, 1999]. Geibel et al. adopt CMDP
to compute optimal deterministic policy [Geibel and Wysotzki, 2005]. Chow et al.
[Chow et al., 2018] propose to solve CMDP using Lyapunov functions constructed
by adding an auxiliary constraint to the original value function. However, though
with a known model CMDPs can be solved using linear programming methods,
extending to situations of unknown model or large state and action spaces is non-
trivial. Reducing constraint violation is easier by constrast, as keeping a memory
for states of constraint violation is one popular method [Garcia and Fernandez,
2012, Lipton et al., 2016]. Nonetheless, it brings memory storage burden which
might be a heavy burden if the state and action spaces are large and continuous.

One of the most scalable memory-free methods is to maintain an additional
advisor policy aside from the decision maker or actor. The advisor learns from
experiences to prevent actor from causing constraint violation. In [Eysenbach
et al., 2018], forward and backward policies are trained as a special case of actor-
advisor setting to reduce the number of hard reset, an extreme form of constraint
violation in robot experiments. The advisor requires training an ensemble of
advice functions Qadvice, whose estimation in high dimensional spaces may be
difficult and limited to the number of samples. Advisor ’advises’ actor or triggers
the reset when Qadvice > Qdecision, which may result in very slow learning as
opposed to the sample efficiency of using KL divergence in high dimensional
systems [Cui et al., 2017a, Tsurumine et al., 2019]. Moreover, since the above
scheme trains actor and advisor independently, which renders actor and advisor
focus on different regions of the state space and hence requires extra samples for
individual training.

Motivated by the above-mentioned observation, we propose to address the
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safe learning problem by intertwining actor and advisor in policy updates and
introduce it into the KL-regularized RL, specifically, Dynamic Policy Program-
ming (DPP) framework that we extensively leveraged in Chapter 3. However,
unlike in Chapter 3 (and many RL algorithms), our proposed method leverage
one set of state-action samples and two set of rewards for efficiently control-
ling the agent to safely learn: one as the conventional task reward the agent
attempts to maximize, the other one as the safety indicator suggesting which
part of the state-action spaces is dangerous. Dynamic Actor-Advisor Program-
ming (DAAP) intertwiningly trains two policies respectively for optimizing the
cost and minimizing constraint violation leveraging smoothness of policy update.
The intertwining update scheme uses Kullback-Leibler (KL) divergence update
to smoothly shift the policy to consider more about cost reduction while preserv-
ing constraint satisfaction. DAAP inherits the scalability from well-established
DPP-based algorithms as [Cui et al., 2017a, 2018, Tsurumine et al., 2019]. To
produce safer exploration during learning, the actor and advisor are mixed using
the idea of conservative policy update proposed by [Kakade and Langford, 2002].
Constraint satisfaction, scalability and sample-efficiency of DAAP are demon-
strated through its applications to simulated arm control tasks with performance
comparisons to baselines.

4.2 Dynamic Actor-Advisor Programming

Since we have introduced the general formulation of DPP in Chapter 3, we skip
it here. We address safe RL by introducing an additional constraint function
into the DPP framework. Script d is reserved for constraint policy (advisor) and
value function, as c denotes the counterparts for cost (actor). For simplicity, we
consider the problem of {0, 1} constraint violation (CV) coding. Another cost
rd is associated with each state-action pair such that rd : S × A → {0, 1}. For
every state-action pair there is only one fixed constraint. Now every state-action
pair has two fixed ‘costs’: rc and rd. The expected reward in Eq. (3.2) now is
computed with respect to both the probability of yielding a sequence of rc and a
sequence of rd.

One might propose to use DPP by simply mixing rc and rd for the DPP update
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rule Eq. (3.11) such that:

V ∗π̄ (s) = min
π

∑
a∈A
s′∈S

π(a|s)
[
T a
ss′

(
(ra
ss′

)c + (ra
ss′

)d + γV ∗π̄ (s′)

)
− 1

η
log

(
π(a|s)
π̄(a|s)

)]
.

(4.1)

This style incurs loss on individual information carried by rc and rd and might
induce poor balance between cost and constraint.

Motivated by the need to separately consider cost and constraint yet to closely
relate them to achieve sample-efficiency, our proposed method intertwines the
actor and advisor to learn a near-optimal balance between safer exploration and
better goal reaching.

By substituting the advisor and actor counterparts to the baseline policy in
Eq. (3.10) and (3.11), we propose to intertwiningly update two policies in the
following fashion:

V c
π̄d(s) =

∑
a∈A
s′∈S

πc(a|s)
[
T a
ss′

((
ra
ss′
)
c

+ γV c
π̄d(s

′)

)
− 1

ηc
log

(
πc(a|s)
π̄d(a|s)

)]
, (4.2)

V d
π̄c(s) =

∑
a∈A
s′∈S

πd(a|s)
[
T a
ss′

((
ra
ss′
)
d

+ γV d
π̄c(s

′)

)
− 1

ηd
log

(
πd(a|s)
π̄c(a|s)

)]
, (4.3)

in which we alternately use actor preference as the baseline for next step advisor
preference update and vice versa. ηc, ηd denotes KL regularization coefficients for
the actor and advisor, respectively. In practice it is desirable to have ηc, ηd at
different time scales to promote learning depending whichever of reward maxi-
mization and constraint violation minimization is more important. Since we care
more about constraint observation, we set ηd > ηc in experiments. Specifically,
ηc = 0.01 and ηd = 0.1.

By initializing πc = πd := πexplore, the two policies are tightly unified by
KL divergence. Following Eq. (3.10), two action preference functions Ψc,Ψd are
introduced to leverage update rule of DPP and can be approximated by linear
or nonlinear function approximation. We choose linear function approximation
(LFA) since DPP with LFA is well-studied in robotics domain [Cui et al., 2017a,
Tsurumine et al., 2019]. For a given state s, Ψ is approximated as: Ψ(s) =
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φT (s)θ, where φ is a basis function and θ is the weight parameter. One specifies
an optimal policy by finding an optimal θ∗, usually given by the solution of the
least-square problem: ||OΨ − Φθ||2,Φ = [φ(s1), . . . ,φ(sN)]T . θ may vary in
size depending on the approximation method used, e.g. FKDPP or FFDPP as
introduced in Chapter 3.

4.2.1 Scaling Constraint Violation

We propose to scale up the {0, 1} encoding of rd as it is taken expectation with
respect to rc with unknown magnitude. If the magnitudes of cost and constraint
vary drastically, huge number of samples are needed for convergence. Motivated
by [Bušić and Meyn, 2018] that scaling reward is equivalent to solving a family
of MDPs, in our approach rd is scaled up in accordance to the magnitude of rc
with interpretation that different values of scaling factor correspond to different
levels of conservativeness.

4.2.2 Conservative Exploration

Intertwining πc and πd renders actor considers advisor and vice versa. However,
optimal balance between safe exploration and goal reaching requires more than
individual roles played by πc, πd. Drawing inspiration from [Kakade and Langford,
2002], we propose the exploration policy:

πexplore = (1− β)πc + βπd. (4.4)

In [Kakade and Langford, 2002], πd is the assumed given greedy policy chooser.
We interpret greedy as considering only safety and ignore goal reaching. Coeffi-
cients β is reweighting the importance of cost and constraint to strengthen ex-
ploration and convergence. In practice, one can gradually increase β to shift the
exploration policy towards greedy constraint satisfaction. The resultant policy
takes both cost minimization and constraint satisfaction into account. We formal-
ize Dynamic Actor-Advisor Programming in Alg. 4. N, τ, γ, σ are the parameters
from original DPP. β is the new parameter introduced in the DAAP framework.
At every time step t, safe action is generated by Eq. (4.4), cost rc and constraint
violation rd are stored in the buffers. At the end of every iteration i, we update
the action preferences Ψc,Ψd following Eqs. (4.2) and (4.3), respectively.
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Algorithm 4: Dynamic Actor-Advisor Programming
Input: γ, η, T, I, σ, β
Output: weight vectors θc, θd

1 Initialize policy Ψc
explore = Ψd

explore := Ψrandom,
2 Buffer Di = {}, Rc

i = {}, Rd
i = {}

3 for i = 1, . . . , I do
4 for t = 1, . . . , T do
5 compute V c

π̄d
, V d

π̄c(s) by Eqs. (4.2) (4.3)
6 compute Ψ̂c

t , Ψ̂
c
t following standard DPP Eq. (3.10)

7 sample at following Eq. (4.4)
8 collect xt = [st, at] in Di
9 collect rct in Rc

i

10 collect rdt in Rd
i

11 end
12 compute OΨ̂c

t using Di, Rc
i

13 compute OΨ̂d
t using Di, Rd

i

14 update θ using least square solution:
15 θct+1 = [Φt

TΦt + σ2I]−1Φt
TOΨ̂c

t

16 θdt+1 = [Φt
TΦt + σ2I]−1Φt

TOΨ̂d
t

17 update β → 0

18 end

4.3 Experimental Results

In this section DAAP is examined in two simulations: a 5-DOF reaching task with
obstacle and a robot arm peg-in-hole assembly task with movable peg. We call
the method DPP that simply mixes cost and constraint shown in Eq. (4.1); the
method Least Square Actor-Advisor Iteration (LSAAI) that adopts independent
actor and advisor using Eq. (3.2) but without KL divergence [Lagoudakis and
Parr, 2003]. Performance of DAAP on two tasks is compared with DPP and
LSAAI to show respectively the importance of KL divergence and intertwining
actor and advisor. All three methods use their kernel version [Cui et al., 2017a,
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(a) Comparison of cost during 80 iterations’
learning, plotted with mean and variance.
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(b) Comparison of number of states in con-
straint violation during 80 iterations’ learn-
ing, plotted with mean.

Figure 4.1: Comparisons on cost and constraint violation between DAAP, LSAAI
and DPP, averaged over ten independent experiments.

Xu et al., 2007] for efficient calculation.

4.3.1 5-DOF Reaching Task

A 5-DOF reaching task with an obstacle blocking some possible ways to the goal
is inspected. N-DOF reaching task is a good testbed for RL algorithms [Cui
et al., 2017a] and obstacle avoidance is an open problem that is difficult to solve
efficiently.

Experimental Setting

The continuous state space of the 5-DOF reaching task is [θ1, θ2, . . . , θ5]T , θi ∈
[−π

2
, π

2
] rads that represent joints of the arm. Each joint has discrete actions of

increasing/decreasing 0.0175 or 0.0875 rad angle, or stay unchanged. Hence the
discrete action space is of size 5 × 21. Each segment connecting two joints has
length 1

5
. The goal is set at [XTarget, YTarget] = [0.68, 0] while the obstacle square

is fixed at [0.475, 0.6] with length 0.2. The experiment consists of 80 iterations
and each iteration comprises 500 steps. All iterations begin with the same point
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Figure 4.2: Performance comparison between DAAP, LSAAI and DPP. Success
rates are obtained from 100 independent experiments. DAAP learns to avoid
danger after one iteration of zero CV. LSAAI only learns to stay away from
danger zone but not the goal reaching. Information loss of cost and CV renders
DPP touch danger zone even after iterations of zero CV.

with all segments being vertical. Reward is set to be proportional to the distance
of the end effector to the goal:

rc = −1000×
(

(X −XTarget)
2 + (Y − YTarget)2

)
, (4.5)

rd =

−1, if the obtacle is hit

0, otherwise
(4.6)
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Table 4.1: Meta parameters of the DAAP used for both experiments.

Parameter
Description
(Number of)

Value

T steps 500
I iterations 80
η DPP parameter 0.01
γ DPP parameter 0.95
β Mixture policy parameter 0.7
σ Parameter preventing singularity 0.01

Results

The comparison in cost and constraint violation of DAAP, DPP and LSAAI dur-
ing the 80 iterations’ learning is shown in Fig. 4.1(a) and 4.1(b), respectively.
Learning curves in Fig. 4.1(a) are plotted with mean and variance of ten inde-
pendent experiments. It can be seen the proposed method outperforms LSAAI
and DPP in both cost minimization and constraint satisfaction. Mixing cost and
constraint violation in a single policy corresponds to heuristic that adds penalty
term when undesired situations happen. The loss of individual information car-
ried by the rc and rd incurs the poor performance. On the other hand, though
LSAAI learns complete constraint satisfaction, it fails to minimize the cost.

Fig. 4.2 shows the evolution of learning. DAAP learns a path that bypass
the danger and leads to the goal. KL-divergence between policy updates plays
a key role in remembering the path. On the opposite, LSAAI does not share
this property, the agent moves back and forth between constraint violation and
satisfaction. The limited number of samples further deteriorates learning to suc-
cess rate of around 10% due to random exploration. DPP performs better than
LSAAI as a heuristic approach. However the information loss disables the agent
from learning constraint violation distribution and further improving the success
rate.
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Figure 4.3: Best-case performance comparison on the assembly task by three
algorithms. DAAP successfully learns to release the hole at a proper position.
The blend of CV and cost renders DPP hit the peg which is near the goal. LSAAI
forcefully inserts the hole and induces more CV as shown in Fig. 4.4(b).

4.3.2 Assembly Task

In this section the proposed algorithm is examined on a peg-in-hole assembly task
using UR5 robot arm in simulation against LSAAI and DPP.

Experimental Setting

UR5 robot arm has six DOF. Analogously, the continuous state space is formed
by [θ1, θ2, . . . , θ6]T , θi ∈ [−π, π] rads representing joints of the arm. Each joint
has same discrete actions as in 5-DOF reaching task, hence the size of action
space is 6 × 25. The robot arm needs to pick up the hole and reach an appro-
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(a) Comparison of cost during 80 iterations’
learning, plotted with mean and variance.
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(b) Comparison of number of states in con-
straint violation during 80 iterations’ learn-
ing, plotted with mean.

Figure 4.4: Comparisons on cost and constraint violation between DAAP, LSAAI
and DPP, averaged over ten independent experiments.

priate position to release it to the bottom of the cylinder(peg). The cylinder
is not fixed and can be knocked down by the robot arm or incorrect placement
of the hole. Besides resetting the experiment immediately, fallover of the cylin-
der will assign the rest of state-action pairs and rc, rd the same values as that
of the hitting state. All iterations begin with the same point after the grip-
per picking up the hole. Reward is the distance to the target joint configura-
tion [θTarget1 , . . . , θTarget6 ] = [−1.458, 0.925, 0.901,−0.281,−1.570, 1.683], likewise
in Eq. (4.5), the reward function is:

rc = −1000×
( 6∑

i=1

(θi − θTargeti )2

)
(4.7)

rd =

−1, if the cylinder falls over

0, otherwise
(4.8)

When the gripper reaches the point to release the hole, an impetus of 500 is added
to the reward. Except that every iteration comprises 200 steps, meta parameters
are same with the 5-DOF reaching task and is summarized in Table 4.1.

This task is challenging as the cylinder is movable, and radius of the hole is
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Figure 4.5: Policy comparison between DAAP and LSAAI in the assem-
bly task over one rollout. Horizontal axis of colormaps indicates states to
the goal. Vertical axis is the 25 discrete actions. Colors indicate the prob-
ability of that action being chosen. DAAP achieves sufficient estimation
of actor, advisor and their agreement marked by similar colors in similar
states. Sample-inefficiency of LSAAI incurs insufficient estimation and
disagreement of actor and advisor.

only slightly larger than that of the cylinder. Performance should be evaluated
in terms of both cost and constraint satisfaction rather than just one of them.

Results

Best-case performance of three algorithms is depicted in Fig. 4.3. Learning
curves and the number of states in constraint violation shown in Fig. 4.4(a) and
4.4(b) are averaged over ten independent experiments. From Fig. 4.3, DAAP
successfully learns to reach a safe position to release the hole and ensure the
hole reaches the bottom of the cylinder. It can be seen from Fig. 4.4(b) that the
number of states in constraint violation is significantly decreased compared to the
DPP and LSAAI. Since the danger and goal are close, DPP learns a poor balance
between constraint satisfaction and goal reaching due to the information loss
caused by mixing rc and rd: instead of placing the hole at appropriate positions,
the agent holds the hole at somewhere near the peg without releasing it, testifying
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to the importance of separately considering cost and constraint. Even constraint
violation happens sparsely in the later stage of learning, DPP performs the worst
in Fig. 4.4(a). On the other hand, LSAAI also learns a policy to reach the desired
joint configuration but forcefully inserts the hole, which causes the cylinder to fall
over and induce constraint violation, which is due to the absense of smoothness
in policy updates of LSAAI.

Intertwining actor and advisor in KL divergence of DPP update is crucial for
exploiting limited number of samples to reach an agreement in decision making,
as can be see in Fig. 4.5. Horizontal axis shows the states to goal and vertical
axis correspond to 25 discrete actions. Colors indicate the probability of an ac-
tion being chosen in different states. DAAP achieves effective estimation of actor,
advisor and their agreement marked by similar color in every column with limited
number of samples. The success of hole placing and reduction in constraint vio-
lation is owing to this agreement. On the other hand, LSAAI trains independent
actor and advisor that leads to great disagreement and subsequent knockdown of
the peg or incorrect placement of the hole especially when the agent is close to
destination. Further, the problem is compounded by the sample-inefficiency of
LSPI that has uniform policy in many columns shown in Fig. 4.5.

4.4 Discussion and Conclusion

In this chapter we proposed a novel KL-regularized formulation that concerned
about maximizing the task reward as well as minimizing constraint violation.
Aside from the KL-regularized actor that tackles the main task as usual, an
additional advisor was introduced to handle the constraint such as the robot
hand hitting the obstacle or sensor reading crossing over some prespecified. The
reason for considering KL-regularized advisor is that (1) it generalizes the greedy
advisor and provides an additional degree of freedom for making the advisor
more flexible; (2) a greedy advisor caring only about minimizing the constraint
violation can actually lead the actor astray into achieving low reward also, as was
shown in Figure 4.2. The formulation of DAAP is general and can acommodate
a wide range of tasks where safety or constraint is of concern, as long as the
constraint can be readily captured as a scalar value (0 or 1 here).
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It is worth noting that, the proposed method DAAP is meant only as a pro-
totype rather than a complete, off-the-shelf algorithm. Many possible extensions
exist. For example, using the binary constraint violation variable actually intro-
duced a sparse-reward problem, which is known to be challenging in practice,
since the advisor had zero value at most of the states. We could apply some
transform to the constraint violation to turn it into a continuous variable, or
re-define it using multiple categorical values such as {0, 1, 2, . . . } to avoid the
sparse-reward issue.

Another important observation is that the proposed method, as well as an
entire catogory of safe RL methods to which it belongs to, can only learn to
minimize the constraint violation when it has experienced violation. This is
undesirable in practice since such violation may be prohibitive or unacceptable.
Possible solutions to this issue are to employ the CMDP formulation which assigns
violation budgets for every state so in critical states constraint violation might be
ruled out. Another solution is to use the proposed method DAAP in simulation
to learn a safe policy, but concatenate a sim2real downstream training procedure
to transfer the learned policy to real-world systems.
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5 | Robustness: policy oscil-
lation

Reminder: The topic of robustness is divided into two chapters according
to their respective different definitions: the first part, being more theoreti-
cal and concerned with robustness against policy oscillation which is a long
unsolved problem in RL, is presented in this chapter. The second chap-
ter, aiming to solve practical problems, focuses on the robustness againist
configurations which refer to hypeparameters, MDP design, etc. to achieve
better learning efficiency since RL is notorious for being unstable and sen-
sitive to the above-mentioned ingredients of an algorithm. We present it in
Chapter 6.

5.1 Introduction

Aside from safety in RL, another crucial reason for the limitation of real-world
RL deployment is the lack of guarantee that the performance of RL policies will
improve monotonically: they often oscillate during policy updates, which is un-
acceptable for some applications such as in recommender systems, chemical pro-
cesses, self-driving, etc. For example, it is expected that alone with the collection
of user data, the system should be increasingly accurate on capturing the items
the user is most interested in. In such cases, oscillation in performance might re-
sult in the system recommending items the customer does not have interest. As
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such, deploying such policies that have oscillated performance without examining
their reliability might bring severe consequences in real-world scenarios.

Dynamic programming (DP) [Bertsekas, 2005b] offers a well-studied frame-
work under which strict policy improvement is possible: with a known state
transition model, reward function, and exact computation, monotonic improve-
ment is ensured and convergence is guaranteed within a finite number of iter-
ations [Ye, 2011]. However, in practice an accurate model of the environment
is rarely available. In situations where either model knowledge is absent or the
DP value functions cannot be explicitly computed, approximate DP and corre-
sponding RL methods are to be considered. However, approximation introduces
unavoidable update and Monte-Carlo sampling errors, and possibly restricts the
policy space in which the policy is updated, leading to the policy oscillation phe-
nomenon [Bertsekas, 2011, Wagner, 2011], whereby the updated policy performs
worse than pre-update policies during intermediate stages of learning. Inferior
updated policies resulting from policy oscillation could pose a physical threat
to real-world RL applications. Further, as value-based methods are widely em-
ployed in the state-of-the-art RL algorithms [Haarnoja et al., 2018], addressing
the problem of policy oscillation becomes important in its own right.

Previous studies [Kakade and Langford, 2002, Pirotta et al., 2013b] attempt to
address this issue by optimizing lower bounds of policy improvement: the classic
conservative policy iteration (CPI) [Kakade and Langford, 2002] algorithm states
that, if the new policy is linearly interpolated by the greedy policy and the baseline
policy, non-negative lower bound on the policy improvement can be defined. Since
this lower bound is a negative quadratic function in the interpolation coefficient,
one can solve for the maximizing coefficient to obtain maximum improvement at
every update. CPI opened the door of monotonic improvement algorithms and the
concept of linear interpolation can be regarded as performing regularization in the
stochastic policy space to reduce greediness. Such regularization is theoretically
sound as it has been proved to converge to global optimum [Neu et al., 2017,
Scherrer and Geist, 2014]. For the last two decades, CPI has inspired many studies
on ensuring monotonic policy improvement. However, those studies (including
CPI itself) are mostly theory-oriented and hardly applicable to practical scenarios,
in that maximizing the lowerbound requires solving several state-action-space-
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wise maximization problems, e.g. estimating the maximum distance between
two arbitrary policies. One significant factor causing the complexity might be
its excessive generality [Kakade and Langford, 2002, Pirotta et al., 2013b]; these
bounds do not focus on any particular class of value-based RL algorithms, and
hence without further assumptions the problem cannot be simplified.

Another recent trend of developing algorithms robust to the oscillation is by
introducing regularizers into the reward function. For example, by maximizing
reward as well as Shannon entropy of policy [Ziebart, 2010], the optimal policy
becomes a multi-modal Boltzmann softmax distribution which avoids putting unit
probability mass on the greedy but potentially sub-optimal actions corrupted by
noise or error, significantly enhancing the robustness since optimal actions always
have nonzero probabilities of being chosen. On the other hand, the introduction
of Kullback-Leibler (KL) divergence [Todorov, 2006] has recently been identified
to yield policies that average over all past value functions and errors, which enjoys
state-of-the-art error dependency theoretically [Vieillard et al., 2020a]. Though
entropy-regularized algorithms have superior finite-time bounds and enjoy strong
empirical performance, they do not guarantee to reduce policy oscillation since
degradation during learning can still persist [Nachum et al., 2018].

It is hence natural to raise the question of whether the practically intractable
lowerbounds from the monotonic improvement literature can benefit from entropy
regularization if we restrict ourselves to the entropy-regularized policy class. By
noticing that the policy interpolation and entropy regularization actually perform
regularization in different aspects, i.e. in the stochastic policy space and reward
function, we answer this question by affirmative. We show focusing on the class
of entropy-regularizede policies significantly simplifies the problem as a very re-
cent result indicates a sequence of entropy-regularized policies has bounded KL
divergence [Kozuno et al., 2019]. This result sheds light on approximating the
intractable lowerbounds from the monotonic improvement algorithms since many
quantities are related to the maximum distance between two arbitrary policies.

In this chapter, we aim to tackle the policy oscillation problem by ensuring
monotonic improvement via optimizing a more tractable lowerbound. This novel
entropy regularization aware lower bound of policy improvement depends only
the expected policy advantage function. We call the resultant algorithm cau-
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tious policy programming (CPP). CPP leverages this lower bound as a criterion
for adjusting the degree of a policy update for alleviating policy oscillation. By
introducing heuristic designs suitable for nonlinear approximators, CPP can be
extended to working with deep networks. The extensions are compared with the
state-of-the-art algorithm [Vieillard et al., 2020b] on monotonic policy improve-
ment. We demonstrate that our approach can trade off performance and stability
in both didactic classic control problems and challenging Atari games.

The contribution of this chapter can be succinctly summarized as follows:

• we develop an easy-to-use lowerbound for ensuring monotonic policy im-
provement in RL.

• we propose a novel scalable algorithm CPP which optimizes the lowerbound.

• CPP is validated to reduce policy oscillation on high-dimensional problems
which are intractable for prior methods.

5.2 Policy Oscillation and entropy regularization

The policy oscillation phenomenon, also termed overshooting by [Wagner, 2011]
and referred to as degraded performance of updated policies, frequently arises in
approximate policy iteration algorithms [Bertsekas, 2011] and can occur even un-
der asymptotically converged value functions [Wagner, 2011]. It has been shown
that aggressive updates with sampling and update errors, together with restricted
policy spaces, are the main reasons for policy oscillation [Pirotta et al., 2013b]. In
modern applications of RL, policy oscillation becomes an important issue when
learning with deep networks when various sources of errors have to been taken
in to account. It has been investigated by [Fu et al., 2019, Fujimoto et al., 2018]
that those errors are the main cause for typical oscillating performance with deep
RL implementations.

To attenuate policy oscillation, the seminal algorithm conservative policy iter-
ation (CPI) [Kakade and Langford, 2002] propose to perform regularization in the
stochastic policy space, whereby the greedily updated policy is interpolated with
the current policy to achieve less aggressive updates. CPI has inspired numerous
conservative algorithms that enjoy strong theoretical guarantees [Abbasi-Yadkori
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et al., 2016, Metelli et al., 2018, Pirotta et al., 2013a,b] to improve upon CPI
by proposing new lower bounds for policy improvement. However, since their
focus is on general Markov decision processes (MDPs), deriving practical algo-
rithms based on the lower bounds is nontrivial and the proposed lower bounds are
mostly of theoretical value. Indeed, as admitted by the authors of [Papini et al.,
2020] that a large gap between theory and practice exists, as manifested by the
their experimental results that even for a simple Cartpole environment, state-of-
the-art algorithm failed to deliver attenuated oscillation and convergence speed
comparable with heuristic optimization scheme such as Adam [Kingma and Ba,
2015]. This might explain why adaptive coefficients must be introduced in [Vieil-
lard et al., 2020b] to extend CPI to be compatible with deep neural networks.
To remove this limitation, our focus on entropy-regularized MDPs allows for a
straightforward algorithm based on a novel, significantly simplified lower bound.

Another line of research toward alleviating policy oscillation is to incorporate
regularization as a penalty into the reward function, leading to the recently boom-
ing literature on entropy-regularized MDPs [Azar et al., 2012, Fox et al., 2016,
Haarnoja et al., 2017, Kozuno et al., 2019, Mei et al., 2019, Vieillard et al., 2020a].
Instead of interpolating greedy policies, the reward is augmented with entropy of
the policy, such as Shannon entropy for more diverse behavior and smooth opti-
mization landscape [Ahmed et al., 2019], or Kullback-Leibler (KL) divergence for
enforcing policy similarity between policy updates and hence achieving superior
sample efficiency [Uchibe, 2018, Uchibe and Doya, 2021]. The Shannon entropy
renders the optimal policy of the regularized MDP stochastic and multi-modal
and hence robust against errors and noises in contrast to the deterministic pol-
icy that puts all probability mass on a single action [Haarnoja et al., 2018]. On
the other hand, augmenting with KL divergence shapes the optimal policy an
average of all past value functions, which is significantly more robust than a sin-
gle point estimate. Compared to the CPI-based algorithms, entropy-regularized
algorithms do not have guarantee on per-update improvement. But they have
demonstrated state-of-the-art empirical successes on a wide range of challenging
tasks [Cui et al., 2017a, Tsurumine et al., 2019, Zhu et al., 2020, 2022]. To the
best of the authors’ knowledge, unifying those two regularization schemes has not
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been considered in published literature before.
It is worth noting that, inspired by [Kakade and Langford, 2002], the con-

cept of monotonic improvement has been exploited also in policy search scenar-
ios [Akrour et al., 2018, Mei et al., 2020, Papini et al., 2020, Schulman et al.,
2015, Shani et al., 2019]. However, there is a large gap between theory and prac-
tice in those policy gradient methods. On one hand, though [Schulman et al.,
2015, 2017] demonstrated good empirical performance, their relaxed trust region
is often too optimistic and easily corrupted by noises and errors that arise fre-
quently in the deep RL setting: as pointed out by [Engstrom et al., 2019], the
trust region technique itself alone fails to explain the efficiency of the algorithms
and lots of code-level tricks are necessary. On the other hand, exactly following
the guidance of monotonic improving gradient does not lead to tempered oscilla-
tion and better performance even for simple problems [Papini et al., 2017, 2020].
Another shortcoming of policy gradient methods is they focus on local optimal
policy with strong dependency on initial parameters. On the other hand, we focus
on value-based RL that searches for global optimal policies.

5.3 Preliminary

This chapter requires additional notations besides that in Section 3.2.3. Let
us consider the reward r ass′ as bounded in the interval [−1, 1]. γ ∈ (0, 1) is the
discount factor. For simplicity, we consider the infinite horizon discounted setting
with a fixed starting state s0. Recall that a policy π is a probability distribution
over actions given some state. We also define the stationary state distribution
induced by π as dπ(s) = (1− γ)

∑∞
t=0 γ

tT (st = s|s0, π).

5.3.1 Lower Bounds on Policy Improvement

To frame the monotonic improvement problem, we introduce the following lemma
that formally defines the criterion of policy improvement of some policy π′ over
π:
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Lemma 5.3.1. [Kakade and Langford, 2002] For any stationary policies π′ and
π, the following equation holds:

∆Jπ
′

π,dπ′
:= Jπ

′

d − Jπd =
∑
s

dπ
′
(s)
∑
a

π′(a|s)Aπ(s, a),

where Jπ
′

d := Es0,a0,...

[
(1− γ)

∞∑
t=0

γtrt

]
=
∑
s

dπ
′
(s)
∑
a

π′(a|s)rass′ ,
(5.1)

J is the discounted cumulative reward, and Aπ(s, a) := Qπ(s, a)− Vπ(s) is
the advantage function. Though Lemma 5.3.1 relates policy improvement to the
expected advantage function, pursuing policy improvement by directly exploit-
ing Lemma 5.3.1 is intractable as it requires comparing π′ and π point-wise for
infinitely many new policies. Many existing works [Kakade and Langford, 2002,
Pirotta et al., 2013b, Schulman et al., 2015] instead focus on finding a π′ such that
the right-hand side of Eq. (5.1) is lower bounded. To alleviate policy oscillation
brought by the greedily updated policy π̃, [Kakade and Langford, 2002] proposes
adopting partial update:

π′ = ζπ̃ + (1− ζ)π. (5.2)

Eq. (5.2) corresponds to performing regularization in the stochastic policy space
by interpolating the greedy policy and the current policy to achieve conservative
updates.

The concept of linearly interpolating policies has inspired many algorithms
that enjoy strong theoretical guarantees [Akrour et al., 2018, Metelli et al., 2018,
Pirotta et al., 2013b]. However, those algorithms are mostly of theoretical value
and have only been applied to small problems due to intractable optimization or
estimation when the state-action space is high-dimensional/continuous. Indeed,
as admitted by the authors of [Papini et al., 2020], there is a large gap between
theory and practice when using algorithms based on policy regularization Eq.
(5.2): even on a simple CartPole problem, a state-of-the-art algorithm fail to
compete with heuristic optimization technique. Like our proposal in this paper,
a very recent work [Vieillard et al., 2020b] attempts to bridge this gap by propos-
ing heuristic coefficient design for learning with deep networks. We discuss the
relationship between it and the CPP in Section 5.4.6.
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In the next section, we detail the derivation of the proposed lower bound by
exploiting entropy regularization. This novel lower bound allows us to signif-
icantly simplify the intractable optimization and estimation in prior work and
provide a scalable implementation.

5.4 Proposed Method

This section features the proposed novel lower bound on which we base a novel
algorithm for ensuring monotonic policy improvement.

5.4.1 Entropy-regularized RL

In the following discussion, we provide a general formulation for entropy-regularized
algorithms [Azar et al., 2012, Haarnoja et al., 2018, Kozuno et al., 2019]. At itera-
tion K, the entropy of current policy πK and the Kullback-Leibler (KL) divergence
between πK and some baseline policy π̄ are added to the value function:

V πK
π̄ (s) :=

∑
a∈A
s′∈S

π(a|s)
[
T ass′
(
rass′ + γV πK

π̄ (s′)
)
− IπKπ̄

]
,

IπKπ̄ = −τ log πK(a|s)− σ log
πK(a|s)
π̄(a|s)

,

(5.3)

where τ controls the weight of the entropy bonus and σ weights the effect of KL
regularization. The baseline policy π̄ is often taken as the policy from previous
iteration πK−1. Based on [Nachum et al., 2017, 2018], we know the state value
function V πK

π̄ defined in Eq. (5.3) and state-action value function QπK
π̄ also satisfy

the Bellman recursion:

QπK
π̄ (s, a) := rass′ + γ

∑
s′

T ass′V πK
π̄ (s′).

For notational convenience, in the remainder of this paper, we use the following
definition:

α :=
τ

τ + σ
, β :=

1

τ + σ
. (5.4)
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An intuitive explanation to Eq. (5.3) is that the entropy term endows the optimal
policy with multi-modal policy behavior [Haarnoja et al., 2017] by placing nonzero
probability mass on every action candidate, hence is robust against error and noise
in function approximation that can easily corrupt the conventional deterministic
optimal policy [Puterman, 1994]. On the other hand, KL divergence provides
smooth policy updates by limiting the size of the update step [Azar et al., 2012,
Kozuno et al., 2019, Schulman et al., 2015]. Indeed, it has been recently shown
that augmenting the reward with KL divergence renders the optimal policy an
exponential smoothing of all past value functions [Vieillard et al., 2020a]. Limiting
the update step plays a crucial role in the recent successful algorithms since it
prevents the aggressive updates that could easily be corrupted by errors [Fu et al.,
2019, Fujimoto et al., 2018]. It is worth noting that when the optimal policy is
attained, the KL regularization term becomes zero. Hence in Eq. (5.3), the
optimal policy maximizes the cumulative reward while keeping the entropy high.

5.4.2 Entropy-regularization-aware Lower Bound

Recall in Eq. (5.2) performing regularization in the stochastic policy space for
the greedily updated policy π̃ requires preparing a reference policy π. This pol-
icy could be from expert knowledge or previous policies. The resultant π′, has
guaranteed monotonic improvement which we formulate as the following lemma:

Lemma 5.4.1 ([Pirotta et al., 2013b]). Provided that policy π′ is generated by
partial update Eq. (5.2), ζ is chosen properly, and Aπ̃π,dπ ≥ 0, then the following
policy improvement is guaranteed:

∆Jπ
′

π,dπ′
≥
(
(1− γ)Aπ̃π,dπ

)2

2γδ∆Aπ̃π
,

with ζ = min (1, ζ∗),

where ζ∗ =
(1− γ)2Aπ̃π,dπ

γδ∆Aπ̃π
,

δ = max
s

∣∣∣∣∣∑
a∈A

(
π̃(a|s)− π(a|s)

)∣∣∣∣∣,
∆Aπ̃π = max

s,s′
|Aπ̃π(s)− Aπ̃π(s′)|,

(5.5)
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where Aπ̃π,dπ :=
∑

s d
π(s)

∑
a (π̃(a|s)− π(a|s))Qπ(s, a).

Proof. The proof follows the similar derivation in the classic CPI [Kakade and
Langford, 2002] and similar results appeared many times in e.g. [Metelli et al.,
2018, Pirotta et al., 2013b]. We also show that the role of ζ and (1 − ζ) in
Eq. (5.2) can be exchanged by solving a similar problem. To begin, we leverage
Theorem 3.5 of [Pirotta et al., 2013b] that:

∆Jπ
′

π,dπ′
≥ Aπ

′

π,dπ −
γ∆Aπ

′
π

2(1− γ)2
max
s

∣∣∣∣∣∑
a∈A

(
π′(a|s)− π(a|s)

)∣∣∣∣∣. (5.6)

Substituting in π′ = ζπ̃ + (1− ζ)π, we have:

Aπ
′

π,dπ =
∑
s

dπ(s)
∑
a

π′(a|s)Aπ(s, a)

=
∑
s

dπ(s)
∑
a

(
ζπ̃(a|s) + (1− ζ)π(a|s)

)
Aπ(s, a)

= ζ
∑
s

dπ(s)
∑
a

π̃(a|s)Aπ(s, a) = ζAπ̃π,dπ ,

(5.7)

∆Aπ
′

π = max
s,s′
|Aπ′π (s)− Aπ′π (s′)|

= max
s,s′
|ζAπ̃π(s)− ζAπ̃π(s′)|,

δ = max
s

∣∣∣∣∣∑
a∈A

(
π′(a|s)− π(a|s)

)∣∣∣∣∣,
= max

s

∣∣∣∣∣∑
a∈A

(
ζπ̃(a|s)− ζπ(a|s)

)∣∣∣∣∣.
(5.8)

Hence, Eq. (5.6) is transformed into:

∆Jπ
′

π,dπ′
≥ ζAπ̃π,dπ −

γζ2∆Aπ̃π
2(1− γ)2

max
s

∣∣∑
a∈A

(
π̃(a|s)− π(a|s)

)∣∣. (5.9)

The right hand side (r.h.s.) is a quadratic function in ζ and has its maximum at

ζ∗ =
(1− γ)2Aπ̃π,dπ

γ∆Aπ̃π maxs
∣∣∑

a∈A
(
π̃(a|s)− π(a|s)

)∣∣ . (5.10)
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By substituting ζ∗ back to Eq. (5.9), we obtain:

∆Jπ
′

π,dπ′
≥
(
(1− γ)Aπ̃π,dπ

)2

2γδ∆Aπ̃π
. (5.11)

When ζ∗ > 1, we clip it using min(1, ζ∗).
Note that, if we exchange the roles of ζ and (1 − ζ), the coefficients in Eq.

(5.7) should be (1 − ζ). Equation (5.9) would become a quadratic function in
(1 − ζ); hence the r.h.s. of Eq. (5.11) would be the maximum of (1 − ζ∗). This
concludes the proof.

The interpolated policy π′ optimizes the bound and the policy improvement is
a negative quadratic function in ζ. However, this optimization problem is highly
non-trivial as δ and ∆Aπ̃π require searching the entire state-action space. This
challenge explains why CPI-inspired methods have only been applied to small
problems with low-dimensional state-action spaces [Metelli et al., 2018, Papini
et al., 2020, Pirotta et al., 2013b]. When the expert knowledge is not available,
we can simply choose previous policies. Specifically, at any iteration K, we want
to leverage the monotonic policy improvement given policy πK . We propose
constructing a new monotonically improving policy as:

π̃K+1 = ζπK+1 + (1− ζ)πK . (5.12)

It is now clear by comparing Eq. (5.2) with Eq. (5.12) that our proposal takes
π′, π̃, π as π̃K+1, πK+1, πK , respectively. It is worth noting that πK+1 is the up-
dated policy that has not been deployed.

However, the intractable quantities δ and ∆Aπ̃π in Lemma 5.4.1 are still an
obstacle to deriving a scalable algorithm. Specifically, by writing the component
Aπ̃π(s) of ∆Aπ̃π as

Aπ̃π(s) =
∑
a

(
π̃(a|s)− π(a|s)

)
Qπ(s, a),

we see that both δ and ∆Aπ̃π require accurately estimating the total variation
between two policies. This could be difficult without enforcing constraints such as
gradual change of policies. Fortunately, by noticing that the consecutive entropy-
regularized policies πK+1, πK have bounded total variation, we can leverage the
boundedness to bypass the intracatable estimation.
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Lemma 5.4.2 ([Kozuno et al., 2019]). For any policies πK and πK+1 generated by
taking the maximizer of Eq. (5.3), the following bound holds for their maximum
total variation:

max
s
DTV (πK+1(·|s) ‖ πK(·|s)) ≤ min

{√
1− e−4BK−2CK ,

√
8BK + 4CK

}
,

where BK =
1− γK

1− γ
εβ, CK = βrmax

K−1∑
k=0

αkγK−k−1,

(5.13)

K denotes the current iteration index and 0 ≤ k ≤ K − 1 is the loop index. ε is
the uniform upper bound of error.

Proof. By the Fenchel conjugacy of the Shannon entropy and KL divergence
[Boyd and Vandenberghe, 2004], it is clear that the maximizing policies for the
regularized MDP are Boltzmann softmax [Geist et al., 2019] as shown in Section
5.4.4. The relationship between Boltzmann softmax policies has recently been
actively investigated [Asadi and Littman, 2017, Azar et al., 2012]. We leverage
the very recent result [Kozuno et al., 2019, Propsition 3], which states that:

max
s
DKL (πK+1(·|s) ‖ πK(·|s)) ≤ 4BK + 2CK ,

where BK =
1− γK

1− γ
εβ, CK = βrmax

K−1∑
k=0

αkγK−k−1,
(5.14)

where ε is the uniform upper bound of errors.
While Pinsker’s inequality DTV (p‖q) ≤

√
2DKL(p‖q), where p, q are distribu-

tions can be used to directly exploit Eq. (5.14), there is a gap between the total
variation and KL divergence since DTV ≤ 1 and DKL is potentially unbounded.
Leveraging Pinsker’s inequality on Eq. (5.14) and then on Eqs. (5.7,5.8) will
result in large errors when DKL ≥

√
2

2
.

To tackle this problem, we introduce the following bound due to [Bretagnolle
and Huber, 1978] that has more benign behavior1:

DTV (p‖q) ≤
√

1− e−DKL(p‖q). (5.15)

1Eq. (5.15) appears in other places in different forms such as in [Sason and Verdú, 2016,
Eq. (4)]). It is worth mentioning they are the same in essence and differ only in notations.
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A similar bound appears also in [Tsybakov, 2008] but is a slightly looser. More
relevant inequalities of such kind can be found in [Sason and Verdú, 2016].
Both [Bretagnolle and Huber, 1978] and [Tsybakov, 2008] feature the component
e−DKL(p‖q) that ensures the total variation bound is well-defined: the upperbound√

1− e−DKL(p‖q) is guaranteed to be no large than 1. Hence we can combine Eq.
(5.15) with Eq. (5.14) by taking the maximization on both sides, yielding the
following relationship:

max
s
DTV (πK+1(·|s)‖πK(·|s)) ≤

√
1− e−maxsDKL(πK+1(·|s)‖πK(·|s)

≤
√

1− e−4BK−2CK .
(5.16)

Now by applying Pinsker’s inequality on Eq. (5.14), we have the following rela-
tionship:

max
s
DTV (πK+1(·|s) ‖ πK(·|s)) ≤

√
8BK + 4CK , (5.17)

taking the minimum of Eqs. (5.16, 5.17) yields the promised result.

Lemma 5.4.2 states that, entropy-regularized policies have bounded total vari-
ation (and hence bounded KL divergence by Pinsker’s and Kozuno’s inequality
[Kozuno et al., 2019]). This bound allows us to bypass the intractable estima-
tion in Lemma 5.4.1 and approximate π̃K+1 that optimizes the lowerbound. We
formally state this result in the Theorem 5.4.3 below.

For convenience, we assume there is no error, i.e. BK = 0. Setting BK = 0

is only for the ease of notation of our latter derivation. Our results still hold
by simply replacing all appearance of CK to BK + CK . On the other hand, in
implementation it requires a sensible choice of upper bound of error which is
typically difficult especially for high dimensional problems and with nonlinear
function approximators. Fortunately, by the virtue of KL regularization in Eq.
(5.3), it has been shown in [Azar et al., 2012, Vieillard et al., 2020d] that if the
sequence of errors is a martingale difference under the natural filtration, then the
summation of errors asymptotically cancels out. Hence it might be safe to simply
set BK = 0 if we assume the martingale difference condition.
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Theorem 5.4.3. Provided that partial update Eq. (5.12) is adopted, AπK+1

πK ,d
πK ≥ 0,

and ζ is chosen properly as specified below, then any maximizer policy of Eq. (5.3)
guarantees the following improvement that depends only on α, β, γ and AπK+1

πK ,d
πK

after any policy update:

∆J
π̃K+1

πK ,d
π̃K+1

≥
(
1− γ)3(A

πK+1

πK ,d
πK )2

4γ
max

{
1

1− e−2CK
,

1

4CK

}
,

with ζ = min (1, ζ∗), CK = β

K−1∑
k=0

αkγK−k−1,

where ζ∗ =
(1− γ)3A

πK+1

πK ,d
πK

2γ
max

{
1

1− e−2CK
,

1

4CK

}
,

(5.18)

α, β are defined in Eq. (5.4) and

A
πK+1

πK ,d
πK :=

∑
s

dπK (s)AπK+1
πK

(s), (5.19)

AπK+1
πK

(s) :=
∑
a

(
πK+1(a|s)− πK(a|s)

)
QπK (s, a) (5.20)

are the expected policy advantage, and the policy advantage function, respectively.

Proof. The proof follows similarly to the proof of Lemma 2 and hence [Pirotta
et al., 2013b]. We prove Theorem 5.4.3 by noticing the following inequalities hold
for δ and ∆Aπ̃π of Eq. (5.5), respectively:

∆Aπ̃π = max
s,s′
|Aπ̃π(s)− Aπ̃π(s′)|

≤ 2 max
s
|Aπ̃π(s)| = 2 max

s

∣∣∑
a

π̃(a|s)
(
Qπ(s, a)− Vπ(s)

)∣∣
= 2 max

s

∣∣∑
a

(
π̃(a|s)Qπ(s, a)− π(a|s)Qπ(s, a)

)∣∣
≤ 2 max

s

∑
a

∣∣(π̃(a|s)− π(a|s)
)
Qπ(s, a)

∣∣
≤ 2
∣∣∣∣Qπ

∣∣∣∣
∞max

s

∑
a

∣∣π̃(a|s)− π(a|s)
∣∣

≤ 2
√

2Vmax max
s

√
DKL

(
π̃(·|s)||π(·|s)

)
,

(5.21)
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where Vmax := 1
1−γ rmax is the maximum possible value function. Since we assume

reward is upper bounded by 1, Vmax = 1
1−γ . The second inequality makes use of

the triangle inequality:

δ ≤ max
s

∑
a∈A

∣∣(π̃(a|s)− π(a|s)
)∣∣, (5.22)

and the third inequality makes use of Hölder’s inequality 1
p

+ 1
q

= 1, with p set to
1 and q set to ∞. The last inequality is because of Pinsker’s inequality:

max
s

∑
a∈A

∣∣π̃(a|s)− π(a|s)
∣∣ ≤ max

s

√
2DKL(π̃(·|s)‖π(·|s)), (5.23)

and the fact that ‖Qπ‖∞ ≤ Vmax = 1
1−γ .

Following [Pirotta et al., 2013b], by incorporating Eqs. (5.22, 5.23) and Eqs.

(5.16, 5.17) into ∆Jπ
′

π,dπ′
≥
(

(1−γ)Aπ̃π,dπ

)2

2γδ∆Aπ̃π
, we have:

∆Jπ
′

π,dπ′
≥
(
(1− γ)Aπ̃π,dπ

)2

2γδ∆Aπ̃π

≥
(
(1− γ)Aπ̃π,dπ

)2

2γ

1

max
s
DTV︸ ︷︷ ︸

δ, Eq.(A.15)

1

2Vmax max
s
DTV︸ ︷︷ ︸

∆Aπ̃π , Eq.(A.13)

=
(1− γ)3(Aπ̃π,dπ)2

2γ

1

2 maxsD2
TV

(A.9)
≥

(1− γ)3(Aπ̃π,dπ)2

4γ

1

4CK
,

or
(A.11)
≥

(1− γ)3(Aπ̃π,dπ)2

4γ

1

1− e−2CK
,

(5.24)

by taking the maximum of the two possible outcomes, the result becomes:

∆Jπ
′

π,dπ
′ ≥

(1− γ)3

4γ
· (Aπ̃π,dπ)2 ·max

{
1

1− e−2CK
,

1

4CK

}
.

The way of choosing ζ is same as Eq. (5.11) solving the equation that is negative
quadratic in ζ.

69



While theoretically we need to compare 1− e−2CK and 4CK when computing
ζ∗, in implementation the exponential function e−2CK might be sometimes close
to 1 and hence causing numerical instability. Hence in the rest of the paper we
shall stick to using the constant CK rather than the exponential function.

In the lower bound Eq. (5.18), only AπK+1

πK ,d
πK needs to be estimated. It is worth

noting that ∀s, AπK+1
πK (s) ≥ 0 is a straightforward criterion that is naturally sat-

isfied by the greedy policy improvement of policy iteration when computation is
exact. To handle the negative case caused by error or approximate computations,
we can simply stack more samples to reduce the variance, as will be detailed in
Sec. 5.4.7.

5.4.3 The CPP Policy Iteration

We now detail the structure of our proposed algorithm based on Theorem 5.4.3.
Specifically, value update, policy update, and stationary distribution estimation
are introduced, followed by discussion on a subtlety in practice and two possible
solutions.

Following [Scherrer et al., 2015], CPP can be written in the following succinct
policy iteration style:

CPP =


πK+1 ← GQπK

π̄

QπK+1
← (TπK+1

)mQπK

ζ = min
{

(4CK)−1CγA
πK+1

πK ,d
πK , 1

}
π̃K+1 ← ζπK+1 + (1− ζ)πK ,

(5.25)

where Cγ := (1−γ)3

2γ
is the horizon constant. Note that for numerical stability

we stick to using (4CK)−1 as the entropy-bounding constant rather than using
1

1−e−2CK
.

Like CPI, CPP can obtain global optimal policy rather than just achieving
monotonic improvement (which might still converge to a local optimum) by the
argument of [Scherrer and Geist, 2014]. The first step corresponds to the greedy
step of policy iteration, the second step policy estimation step, third step com-
puting interpolation coefficient ζ and the last step interpolating the policy.
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5.4.4 Policy Improvement and Policy Evaluation

The first two steps are standard update and estimation steps of policy iteration
algorithms [Sutton and Barto, 2018]. The subscript of QπK

π̄ indicates it is entropy-
regularized as introduced in Eq. (5.3).

The policy improvement step consists of evaluating GQπK
π̄ , which is the greedy

operator acting on QπK
π̄ . By the Fenchel conjugacy of Shannon entropy and KL

divergence, GQπK
π̄ has a closed-form solution [Beck, 2017, Kozuno et al., 2019]:

GQπK
π̄ (a|s) =

π̄(a|s)α exp (βQπK
π̄ (s, a))∑

b π̄(b|s)α exp (βQπK
π̄ (s, b))

,

where α, β were defined in Eq. (5.4).
The policy evaluation step estimates the value of current policy πK+1 by re-

peatedly applying the Bellman operator TπK+1
:

(TπK+1
)mQπK := TπK+1

. . . TπK+1︸ ︷︷ ︸
m times

QπK ,

TπK+1
QπK := rass′ + γ

∑
s′

T ass′
∑
a

πK+1(a|s′)QπK
π̄ (s′, a).

(5.26)

Note that m = 1,∞ correspond to the value iteration and policy iteration, re-
spectively [Bertsekas and Tsitsiklis, 1996]. Other interger-valued m ∈ [2,∞)

correspond to the approximate modified policy iteration [Scherrer et al., 2015].
Now in order to estimate AπK+1

πK ,d
πK in Theorem 5.4.3, both A

πK+1
πK and dπK

need to be estimated from samples. Estimating AπK+1
πK (s) is straightforward by

its definition in Eq. (6.3c). We can first compute QπK (s, a) − VπK (s), ∀s, a for
the current policy, and then update the policy to obtain πK+1(a|s). On the other
hand, sampling with respect to dπK results in an on-policy algorithm, which is
expensive. We provide both on- and off-policy implementations of CPP in the
following sections, but in principle off-policy learning algorithms can be applied
to estimate dπK by exploiting techniques such as importance sampling (IS) ratio
[Precup, 2000].

5.4.5 Leveraging Policy Interpolation

Computing ζ in Eq. (5.18) involves the horizon constant Cγ := (1−γ)3

2γ
and policy

difference bound constant CK . The horizon constant is effective in DP scenarios
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where the total number of timesteps is typically small, but might not be suitable
for learning with deep networks that feature large number of timesteps: a van-
ishingly small Cγ will significantly hinder learning, hence it should be removed in
deep RL implementations. We detail this consideration in Section 5.4.7.

The updated policy πK+1 in Eq. (5.25) cannot be directly deployed since it
has not been verified to improve upon πK . We interpolate between πK+1 and πK
with coefficient ζ such that the resultant policy π̃K+1 by finding the maximizer of
a negative quadratic function in ζ. The maximizer ζ∗ optimizes the lowerbound
∆J

π̃K+1

πK ,d
π̃K+1

. Here, ζ is optimally tuned and dynamically changing in every update.
It reflects the cautiousness against policy oscillation, i.e., how much we trust the
updated policy πK+1. Generally, at the early stage of learning, ζ should be small
in order to explore conservatively.

However, a major concern is that Lemma 5.4.2 holds only for Boltzmann
policies, while the interpolated policies are generally no longer Boltzmann. In
practice, we have two options for handling this problem:

1. we use the interpolated policy only for collecting samples (i.e. behavior
policy) but not for computing next policy;

2. we perform an additional projection step to project the interpolated policy
back to the Boltzmann class as the next policy.

The first solution might be suitable for relatively simple problems where the safe
exploration is required: the behavior policy is conservative in exploring when
ζ≈0. But learning can still proceed even with such small ζ. Hence this scheme
suits problems where interaction with the environment is crucial but progress is
desired. On the other hand, the second scheme is more natural since the off-
policyness caused by the mismatch between the behavior and learning policy
might be compounded by high dimensionality. The increased mismatch might
be perturbing to performance. In the following section, we introduce CPP using
linear function approximation for the first scheme and deep CPP for the second
scheme.

For the second scheme, manipulating the interpolated policy is inconvenient
since we will have to remember all previous weights and more importantly, the
theoretical properties of Boltzmann policies do not hold any longer. To solve
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this issue, heuristically an information projection step is performed for every
interpolated policy to obtain a Boltzmann policy. In practice, this policy is found
by solving minπDKL(π‖ζπ̄K+1 + (1− ζ)πK). Though the information projection
step can only approximately guarantee that the CVI bound continues to apply
since the replay buffer capacity is finite, it has been commonly used in practice
[Haarnoja et al., 2018, Vieillard et al., 2020b]. In our implementation of deep
CPP, the projection problem is solved efficiently using autodifferentiation (Line
7 of Algorithm 6).

5.4.6 Approximate Interpolation Coefficient

The lowerbound of policy improvement depends on A
πK+1

πK ,d
πK . Though it is gen-

eral difficult to compute exactly, very recently [Vieillard et al., 2020b] propose
to estimate it using batch samples. We hence define several quantities following
[Vieillard et al., 2020b]: let Bt denote a batch randomly sampled from the re-
play buffer B and define ÂK(s) := maxaQ(s, a)− V (s) as an estimate of Aπ̃π(s),
ÂK := Es∼B[ÂK(s)] as an estimate of Aπ̃π,dπ , and ÂK,min := mins∼B ÂK(s) as the
minimum of the batch. The reward term rmax

1−γ in CPI can be approximated by
batch maximum Q̂K := maxs,a,···∈B QK(s, a) which itself approximates the maxi-
mum norm ‖QπK‖∞. When we use linear function approximation with on-policy
buffer BK , we simply change the minibatch B in the above notations to the
on-policy buffer BK .

Given the notations defined above, we can compare the existing interpolation
coefficients as the following:

• CPI: the classic CPI algorithm proposes to use the coefficient:

ζCPI =
(1− γ)ÂK

4rmax
, (5.27)

where rmax is the largest possible reward. When the knowledge of the largest
reward is not available, approximation based on batches or buffer will have
to be employed.

• Exact SPI: SPI proposes to extend CPI by using the following coefficient:

ζE-SPI =
(1− γ)2ÂK

γδ∆A
πK+1
πK

, (5.28)
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where δ,∆AπK+1
πK were specified in Lemma 5.4.1. When δ,∆A

πK+1
πK cannot

be exactly computed, sample-based approximation will have to employed.

• Approximate SPI: as suggested by [Pirotta et al., 2013b, Remark 1],
approximate ζ can be derived if we naïvely leverage δ∆AπK+1

πK < 4
1−γ :

ζA-SPI =
(1− γ)3ÂK

4γ
. (5.29)

• Linear CPP: if policies are entropy-regularized as indicated in Eq. (5.3),
we can upper bound δ∆AπK+1

πK by using Lemma 5.4.2:

ζCPP =
(1− γ)3ÂK

8γCK
. (5.30)

By the definition of CK in Eq. (5.13), ζCPP can take on a wider range of
values than ζA-SPI.

• Deep CPI: for better working with deep networks, the following adaptive
coefficient was proposed in deep CPI (DCPI) [Vieillard et al., 2020b]:

ζDCPI = ζ̂0
mK

MK

,

mK = ρ1mK−1 + (1− ρ1)ÂK

MK = max(ρ2MK−1, Q̂K),
(5.31)

where ρ1, ρ2 ∈ (0, 1) are learning rates, and ζ̂0 = 1
4
same with CPI [Kakade

and Langford, 2002].

• Deep CPP: we follow the DCPI coefficient design for making ζCPP suitable
for deep RL. Specifically, we modify DCPP by defining ζ̂0 = 1

CK
:

ζDCPP = clip
{

1

CK

mK

MK

, 0, 1

}
, (5.32)

where mK ,MK are same as Eq. (5.31).

Based on Eqs. (5.30), (5.32), we detail the linear and deep implementations of
CPP in the next section.
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Algorithm 5: Linear Cautious Policy Programming
Require: α, β, γ CPP parameters, I the total number of iterations, T the

number of steps for each iteration
1: Initialize θ, π̃0 at random, empty on-policy buffer BK = {};
2: while K ≤ I do
3: while t ≤ T do
4: Interact with the environment using policy πε;
5: Collect a transition tuple (s, a, r, s′) into buffer B ;
6: Interact using policy π̃K−1;
7: Collect (sKt , a

K
t , r

K
t , s

K
t+1) into buffer BK ;

8: if K mod C == 0 then
9: Compute basis matrix ΦK using BK ;

update θ by Eq. (5.33);
10: Compute ζ̂0 = 1

CK
and ζ̂ = ζ̂0

mK
MK

using Eq. (5.31);
11: Empty on-policy buffer BK ;
12: end if
13: end while
14: end while

5.4.7 Approximate CPP Implementation

We introduce the linear implementation of CPP following [Azar et al., 2012,
Lagoudakis and Parr, 2003] and deep CPP inspired by [Vieillard et al., 2020b] in
Algs. 5 and 6, respectively. It is worth noting that in linear CPP we assume the
interpolated policy π̃ is used only for collecting samples (line 5 of Alg. 5) hence
no projection is necessary as it does not interfere with computing next policy.
• Linear CPP. We adopt linear function approximation (LFA) to approxi-

mate the Q-function byQ(s, a) = φ(s, a)T θ, where φ(x) = [ϕ1(x), . . . , ϕM(x)]T , x =

[s, a]T , ϕ(x) is the basis function and θ corresponds to the weight vector. One
typical choice of basis function is the radial basis function:

ϕi(x) = exp
(
− ‖x− ci‖

2

σ2

)
,

where ci is the center and σ is the width. We construct basis matrix Φ =
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Algorithm 6: Deep Cautious Policy Programming
Require: α, β, γ CPP parameters, T the total number of steps,

F the interaction period, C the update period
1: Initialize θ at random, set θ− = θ, K = 0 and buffer B to be empty;
2: while K ≤ T do
3: Interact with the environment using policy πε;
4: Collect a transition tuple (s, a, r, s′) into buffer B ;
5: if K mod F == 0 then
6: Sample a minibatch Bt and compute Lvalue and Lpolicy using Eqs.

(5.34), (5.35);
7: Do one step of gradient descent on the loss Ltrain = Lvalue + Lpolicy;

compute ÂK , ÂK and moving average mK ,MK using Eq. (5.31);
8: end if
9: if K mod C == 0 then
10: θ− ← θ ;
11: Compute ζ̂0 = 1

CK
and ζCPP = ζ̂0

mK
MK

using Eq. (5.31);
12: end if
13: end while

[φ1(x1), . . . , φM(xN)] ∈ RT×M , where T is the number of timesteps. Specifi-
cally, at K-th iteration, we maintain an on-policy buffer BK . For every timestep
t ∈ [1, T ], we collect (sKt , a

K
t , r

K
t , s

K
t+1) into the buffer and compute the basis

matrix at the end of every iteration.
To obtain the best-fit θK+1 for theK+1-th iteration, we solve the least-squares

problem ‖TπK+1
QπK − ΦθK‖2:

θK+1 =
(
ΦTΦ + εI

)−1
ΦTTπK+1

QπK , (5.33)

where ε is a small constant preventing singular matrix inversion and TπK+1
QπK

is the empirical Bellman operator defined by

TπK+1
QπK (sKt , a

K
t ) := r(sKt , a

K
t ) + γ

∑
a

πK+1(a|sKt+1)QK(sKt+1, a).

Since the buffer is on-policy, we empty it at the end of every iteration (line 11).
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• Deep CPP. Though CPP is an on-policy algorithm, by following [Vieil-
lard et al., 2020b] off-policy data can also be leveraged with the hope that random
sampling from the replay buffer covers areas likely to be visited by the policy in
the long term. Off-policy learning greatly expands CPP’s coverage, since on-
policy algorithms require expensively large number of samples to converge, while
off-policy algorithms are more competitive in terms of sample complexity in deep
RL scenarios.

We implement CPP based on the DQN architecture, where the Q-function is
parameterized as Qθ, where θ denotes the weights of an online network, as can
be seen from Line 2. Line 3 begins the learning loop. For every step we interact
with the environment using policy πε, where ε denotes the epsilon-greedy policy
threshold. As a result, a tuple of experience is collected to the buffer.

Line 6 of Alg. 6 begins the update loop. We sample a minibatch from the
buffer and compute the loss Lvalue,Lpolicy defined in Eqs. (5.34), (5.35), respec-
tively. Since our implementation is based on DQN, we do not include additional
policy network as done in [Vieillard et al., 2020b]. Instead, we denote the policy
as πθ to indicate that the policy is a function of Qθ as shown in Eq. (5.36).
The base policy is hence denoted by π−θ to indicate it is computed by the target
network of θ−. We define the regression target as:

Q̂(st, at, rt, st+1)=rt+γ
∑
a∈A

πθ(a|st+1)
(
Q(st+1, a)+τ log πθ(a|st+1)+σ log

πθ(a|st+1)

π−θ (a|st+1)

)
.

Hence, the loss for θ is defined by:

Lvalue(θ) = E(st,at,... )∼B

[(
Qθ(st, at)− Q̂(st, at, rt, st+1)

)2
]
. (5.34)

It should be noted that the interpolated policy cannot be directly used as it
is generally no longer Boltzmann. To tackle this problem, we further incorporate
the following minimization problem to project the interpolated policy back to the
Boltzmann policy class:

Lpolicy(θ) = E(st,at,... )∼B
[
DKL

(
πθ(at|st)

∥∥ ζGQθ + (1− ζ)π−θ (at|st)
)]
, (5.35)

where GQθ takes the maximizer of the action value function. The reason why we
can express the policy π and GQθ with the subscript θ is because the policy is a
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function of action value function, which has a closed-form solution (see [Kozuno
et al., 2019] for details):

GQθ(a|s) =
π−θ (a|s)α exp (βQθ(s, a))∑

a′∈A π
−
θ (a′|s)α exp (βQθ(s, a′))

, (5.36)

which by simple induction can be written completely in terms ofQθ as GQθ(a|s) ∝
exp

(∑
j=0Qθj(s, a)

)
[Vieillard et al., 2020a]. Line 8 performs one step of gradient

descent on the the compound loss and line 9 computes the approximate expected
advantage function for computing ζ.

There is one subtlety in that the definition of K is unclear in the deep RL
context: there is no clear notion of iteration. If we naïvely define K as the
the number of steps or the number of updates, then by definition CK in Eq.
(5.32) could quickly converge to 0 or explode, rendering CPP losing the ability of
controlling update. Hence in our implementation, we increment K by one every
time we update the target network (every C steps), which results in a suitable
magnitude of K.

5.4.8 Experimental Results

The proposed CPP algorithm can be applied to a variety of entropy-regularized
algorithms. In this section, we utilize conservative value iteration (CVI) as the
base algorithm in [Kozuno et al., 2019] for our experiments. In our implementa-
tion, for the K + 1-th update, the baseline policy π̄ in Eq. (5.3) is πK .

For didactic purposes, we first examine all algorithms (specified below) in a
safety gridworld and the classic control problem pendulum swing-up. The tabular
gridworld allows for exact computation to inspect the effect of algorithms. On the
other hand, pendulum swing-up leverages linear function approximation detailed
in Alg. 5. We then apply the algorithms on a set of Atari games to demonstrate
the effectiveness of our proposed method. It is worth noting that even state-of-
the-art monotonic improving methods failed in complicated Atari games [Papini
et al., 2020]. The gridworld, pendulum swing-up and Atari games manifest the
growth of complexity and allow for comparison on how the algorithms trade off
stability and scalability.

For the gridworld and pendulum experiments, we compare Linear CPP using
coefficient Eq. (5.30) against safe policy iteration (SPI) [Pirotta et al., 2013b]
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which is the closest to our work. We employ Exact-SPI (E-SPI) coefficient in Eq.
(5.28) on the gridworld since in small state spaces where the quantities δ,∆AπK+1

πK

can be accurately estimated. As a result, SPI performance should upper bound
that of CPP since CPP was derived by further loosening on SPI. For problems
with larger state-action spaces, SPI performance may become poor as a result
of insufficient samples for estimating those quantities, hence Approximate-SPI
(A-SPI) Eq. (5.29) should be used. However, leveraging A-SPI coefficient often
results in vanishingly small ζ values.

For Atari games, we compare Deep CPP leveraging Eq. (5.32) against on-
and off-policy state-of-the-art algorithms, see Section 5.4.8 for a detailed list.
Specifically, we implement deep CPP using off-policy data to show it is capable
of leveraging off-policy samples, hence greatly expanding its coverage since on-
policy algorithms typically have expensive sample requirement.

Gridworld with Danger

Experimental Setup. The agent in the 5 × 5 grid world starts from a fixed
position at the upper left corner and can move to any of its neighboring states
with success probability p or to a random different direction with probability
1 − p. Its objective is to travel to a fixed destination located at the lower right
corner and receives a +1 reward upon arrival. Stepping into two danger grids
located at the center of the gridworld incurs a cost of −1. Every step costs
−0.1. We maintain tables for value functions to inspect the case when there is no
approximation error. Parameters are tuned to yield empirically best performance.
For testing the sample efficiency, every iteration terminates after 20 steps or upon
reaching the goal, and only 30 iterations are allowed for training. For statistical
significance, the results are averaged over 100 independent trials.
Results. Figure 5.1(a) shows the performance of SPI, CPP, and CVI, respec-
tively. Recall that SPI used the exact coefficient Eq. (5.28). The black, blue, and
red lines indicate their respective cumulative reward (y-axis) along the number of
iterations (x-axis). The shaded area shows ±1 standard deviation. CVI learned
policies that visited danger regions more often and result in delayed convergence
compared to CPP. Figure 5.1(b) compares the average policy oscillation defined
in Eq. (5.37).
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Figure 5.1: Comparison between SPI, CPP, and CVI on the safety grid world.
The black line shows the mean SPI cumulative reward, the blue line CPP, and
the red line CVI in Figure 5.1(a), with the shaded area indicating ±1 standard
deviation. Figure 5.1(b) compares the respective policy oscillation value defined
in Eq. (5.37).

The slightly worse oscillation value of CPP than SPI with ζE-SPI is expected
as CPP exploited a lower bound that is looser than that of SPI. However, as
will be shown in the following examples when both linear and nonlinear function
approximation are adopted, SPI failed to learn meaningful behaviors due to the
inability to accurately estimate the complicated lower bound.

Pendulum Swing Up

Since the state space is continuous in the pendulum swing up, E-SPI can no
longer expect to accurately estimate δ∆AπK+1

πK , so we employ A-SPI in Eq. (5.29)
and compare both E-SPI and A-SPI against Linear CPP Eq. (5.30).

Experimental Setup. A pendulum of length 1.5 meters has a ball of mass 1kg
at its end starting from the fixed initial state [0,−π]. The pendulum attempts
to reach the goal [0, π] and stay there for as long as possible. The state space is
two-dimensional s = [θ, θ̇], where θ denotes the vertical angle and θ̇ the angular
velocity. Action is one-dimensional torque [−2, 0, 2] applied to the pendulum.
The reward is the negative addition of two quadratic functions quadratic in angle
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Figure 5.2: Comparison of SPI, CPP, and CVI on the pendulum swing up task.
5.2(a) illustrates the policy oscillation value defined in Eq. (5.37). 5.2(b) shows
the cumulative reward with ±1 standard deviation. 5.2(c) shows the ζ values.

and angular velocity, respectively:

R = −1

z
(aθ2 − bθ̇2),

where 1
z
normalizes the rewards and a large b penalizes high angular velocity.

We set z = 10, a = 1, b = 0.01. To demonstrate that the proposed algorithm
can approximately ensure monotonic improvement even with a small number of
samples, we allow 80 iterations of learning; each iteration comprises 500 steps.
For statistical evidence, all figures show results averaged over 100 independent
experiments.
Results. We compare CPP with CVI and both E-SPI and A-SPI in Figure 5.2.
In this simple setup, all algorithms showed similar trend. But CPP managed to
converge to the optimal solution in all seeds, as can be seen from the variance
plot. On the other hand, both SPI versions exhibited lower mean scores and
large variance, which indicate that for many seeds they failed to learn the optimal
policy. In Figure 5.2(a), both E-SPI and CVI exhibited wild oscillations, resulting
in large average oscillaton values, in which the oscillation criterion is defined as:

∀K, s.t. RK+1 −RK < 0,

‖OJ‖∞ = max
K
|RK+1 −RK |,

‖OJ‖2 =

√(∑
K

(RK+1 −RK)2
)
,

(5.37)
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(a)

(b)

Figure 5.3: CPP and E-SPI policies π̃(aright|st) (z-axis).

where RK+1 refers to the cumulative reward at the K+1-th iteration. It is worth
noting that the difference RK+1−RK is obtained by π̃K+1, π̃K , which is the lower
bound of that by π̃K+1, πK . Intuitively, ‖OJ‖∞ and ‖OJ‖2 measure maximum
and average oscillation in cumulative reward. The stars between CPP and CVI
represent statistical significance at level p = 0.05.

The reason for SPI’s drastic behavior can be observed in Figure 5.2(c) (trun-
cated to 30 iterations for better view); in E-SPI, insufficient samples led to very
large ζ. The aggressive choice of ζ led to a large oscillation value. On the other
hand, A-SPI went to the other extreme of producing vanishingly small ζ due to
the loose choice of ζ for ensuring improvement of ∆Jπ

′

π,dπ′
≥ (1−γ)3(Aπ̃π)2

8γ
, as can
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Figure 5.4: Comparison on Atari games averaged over 3 random seeds. CPP,
MoDQN, MDQN and CVI are implemented as variants of DQN and hence are
off-policy. PPO and A2C are on-policy. Correspondence between algorithms and
colors is shown in the lower right corner. Overall, CPP achieved the best balance
between final scores, learning speed and oscillation values.

be seen from the almost horizontal lines in the same figure; A-SPI had average
value ∆J

π̃K+1

πK ,d
π̃K+1

= 2.39× 10−9 and ζ = 1.69× 10−6. CPP converged with much
lower oscillation thanks to the smooth growth of the ζ values; CPP was cautious
in the beginning (ζ ≈ 0) and gradually became confident in the updates when it
was close to the optimal policy (ζ ≈ 1).

However, it might happen that ζ values are large but probability changes
are actually small and vice versa. To certify CPP did not produce such patho-
logical mixture policy and indeed cautiously learned, we plot in Figure 5.3 the
interpolated policies of CPP and E-SPI yielding action probability of the pen-
dulum swinging right π̃(aright|st). The probability change is plotted in z-axis,
timesteps t = 1, . . . , 500 of all iterations are drawn on x, y axes. For both cases,
π̃(aright|s) ≈ 0.33 which is uniform at the beginning of learning. However, E-
SPI policy π̃(aright|s) gradually peaked from around 10th iteration, which led to
very aggressive behavior policy. Such aggressive behavior was consistent with the
overly large ζ values shown in Figure 5.2(c). On the other hand, CPP policy
π̃(aright|s) was more tempered and showed a gradual change conforming to its
ζ change. The probability plots together with ζ values in Figure 5.2(c) indicate
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that the CPP interpolation was indeed effective in producing non-trivial diverse
mixture policies.

Atari Games

Experimental Setup. We applied the algorithms to a set of challenging
Atari games: MsPacmann, SpaceInvaders, Beamrider, Assault and Seaquest
[Bellemare et al., 2013] using the adaptive ζ introduced in Eq. (5.32). We compare
deep CPP with both on- and off-policy algorithms to demonstrate that CPP
is capable of achieving superior balance between learning speed and oscillation
values.

For on-policy algorithms, we include the celebrated proximal policy gradient
(PPO) [Schulman et al., 2017], a representative trust-region method. We also
compare with Advantage Actor-Critic (A2C) [Mnih et al., 2016] which is a stan-
dard on-policy actor-critic algorithm: our intention is to confirm the expensive
sample requirement of on-policy algorithms typically render them underperfor-
mant when the number of timesteps is not sufficiently large.

For the off-policy algorithms, we decide to include several state-of-the-art
DQN variants: Munchausen DQN (MDQN) [Vieillard et al., 2020c] features the
implicit KL regularization brought by the Munchausen log-policy term: it was
shown that MDQN was the only non-distributional RL method outperforming
distributional ones. We also include another state-of-the-art variant: Momentum
DQN (MoDQN) [Vieillard et al., 2020d] that avoids estimating the intractable
base policy in KL-regularized RL by constructing momentum. MoDQN has been
shown to obtain superior performance on a wide range of Atari games. Finally,
as an ablation study, we are interested in the case ζ = 1, which translates to con-
servative value iteration (CVI) [Kozuno et al., 2019] based on the framework Eq.
(5.3). CVI has not seen deep RL implementation to the best of our knowledge.
Hence a performant deep CVI implementation is of independent interest.

All algorithms are implemented using library Stable Baselines 3 [Raffin et al.,
2021], and tuned using the library Optuna [Akiba et al., 2019]. Further, all on-
and off-policy algorithms share the same network architectures for their group
(i.e. MDQN and CPP share the same architecture and PPO and A2C share
another same architecture) for fair comparison. The experiments are evaluated
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Criterion Algorithm Assault Seaquest SpaceInvaders MsPacman BeamRider

‖OJ‖2

CPP 151 622 89 249 460
MDQN 129 2149 77 202 220
MoDQN 162 813 91 288 718
CVI 77 449 83 292 220
PPO 74 68 72 280 74
A2C 218 98 48 395 87

‖OJ‖∞

CPP 59 561 42 26 292
MDQN 51 2141 16 52 149
MoDQN 111 716 36 124 665
CVI 6 361 51 98 105
PPO 16 9 7 36 33
A2C 52 15 8 249 34

Table 5.1: The oscillation values of algorithms measured in ‖OJ‖2 and ‖OJ‖∞
defined by Eq. (5.37). CPP achieved the best balance between final score, learn-
ing speed and oscillation values. Note that CPP was implemented to leverage
off-policy data. Algorithms of small oscillation values, such as PPO, failed to
compete with CPP in terms of final scores and convergence speed.

over 3 random seeds. We expect that on simple tasks PPO and A2C might be
stable due to the on-policy nature, but too slow to learn meaningful behaviors.
However, PPO is known to take drastic updates and heavily needs code-level
optimization to correct the drasticity [Engstrom et al., 2019]. On the other hand,
for complicated tasks, too drastic policy updates might be corrupted by noises and
errors, leading to divergent learning. By contrast, CPP should balance between
learning speed and oscillation value, leading to gradual but smooth improvement.

Results: Final Scores. As is visible from Figure 5.4, Deep CPP achieved
either the first or second place in terms of final scores on all environments, with
the only competitive algorithm being MDQN which is the state-of-the-art DQN
variant, and occasionally CVI which is the case of ζ=1. However, MDQN suffered
from numerical stability on the environment Seaquest as can be seen from the
flat line at the end of learning.

CVI performed well on the simple environment MsPacman, which can be in-
terpreted as that learning on simple environments is not likely to oscillate, and
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hence the policy regularization imposed by ζ is not really necessary, setting ζ=1

is the best approach for obtaining high return. However, in general it is better to
have adjustable update: on the environment BeamRider the benefit of adjusting
the degree of updates was significant: CPP learning curve quickly rised at the
beginning of learning, showing a significant large gap with all other algorithms.
Further, while CVI occasionally performed well, it suffered also from numerical
stability: on the environment Assault, CVI and MoDQN achieved around 1000
final scores but ran into numerical issues as visible from the end of learning. This
problem has been pointed out in [Vieillard et al., 2020d].

On the other hand, on all environments on-policy algorithms A2C and PPO
failed to learn meaningful behaviors. On some environment such as Assault A2C
showed divergent learning behavior at around 4 × 106 and PPO did not learn
meaningful behavior until the end. This observation suggests that the sample
complexity of on-policy algorithms is high and generally not favorable compared
to off-policy algorithms.

Results: Oscillation. The averaged oscillation values of all algorithms are
listed in Table 5.1. While MDQN showed competitive performance against CPP,
it exhibited wild oscillation on the difficult environment Seaquest [Fortunato
et al., 2018] and finally ran into numerical issue as indicated by the flatline near
the end. The oscillation value reached to around 2100. Since MDQN is the state-
of-the-art regularized value iteration algorithm featuring implicit regularization,
this result illustrates that on difficult environments, only reward regularization
might not be sufficient to maintain stable learning. On the other hand, CPP
achieved a balance between stable learning and small oscillation, with oscillation
value around 600, attaining final score slightly lower than MDQN and higher than
MoDQN and CVI.

The oscillation values and final scores should be combined together for eval-
uating how algorithms perform. CVI, MoDQN sometimes showed similar perfor-
mance to CPP, but in general the final scores are lower than CPP, with higher
oscillation values. On the other hand, MDQN showed competitive final scores,
but sometimes it exhibited wild oscillation and ran into numerical issues, imply-
ing that on some environments where low oscillation is desired, CPP might be
more desirable than MDQN. On-policy algorithms even showed low oscillation
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Figure 5.5: Learning curves of DCPI on Seaquest with four coefficient designs.
All designs achieved the final score of 50, while CPP achieved around 3000 in
Figure 5.4.

values, but their final scores are considered unacceptable.

Ablation Study

We are interested in comparing the performance of DCPI with CPP to see the
role played by ζDCPP. It is also enlightening by inspecting the result of fixing ζ
as a constant value. In this subsection, we perform ablation study by comparing
the the following four designs:

• DCPI with fixed ζ = 0.01: this is to inspect the result of constantly low
interpolation coefficient.

• DCPI with fixed ζ = 0.5: this is to examine the performance of equally
weighting all policies.

• CPI: this uses the coefficient from Eq. (5.27).

• SPI: this uses the DCPI architecture, but we compute ζA-SPI by using Eq.
(5.29).

We examine those four designs on the challenging environment Seaquest. Other
experimental settings are held same with Sec. 5.4.8.
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As can be seen from Figure 5.5, all designs showed a similar trend of con-
verging to some sub-optimal policy. The final scores were around 50, which was
significantly lower than CPP in Figure 5.4. This result is not surprising since for
ζ = 0.01, almost no update was performed. For ζ = 0.5, the algorithm weights
contribution of all policies equally without caring about their quality. On this en-
vironment, ζA-SPI is vanishingly small similar with that shown in Figure (5.2(c)).
Lastly, for CPI the number of learning steps is not sufficient for learning mean-
ingful behavior.

5.5 Discussion and Conclusion

This chapter developed a novel robust RL algorithm applicable to high dimen-
sional problems with the help of Shannon entropy and KL divergence. Specifically,
the intractable lower bound from prior work was simplified by exploiting the up-
per bound introduced by KL-regularized policy sequence to yield a slightly looser
but readily computable new bound. By computing interpolation coefficient ac-
cording to this new lower bound, we demonstrated that better tradeoff between
performance of policy oscillation could be attained.

Though the proposed method improved upon the prior MI methods, it did not
achieve state-of-the-art performance compared to other coefficient-free methods
such as soft actor-critic (SAC) or Munchausen DQN. This suggests that the inter-
polation coefficient, despite being theoretically attractive, might hamper learning
in practice due to the presence of a variety of errors which possibly shift the
optimum of the lower bound and hence cause the mismatch between the coeffi-
cient and the bound. From another perspective, the inferior performance of MI
methods can be viewed from the fact that the lower bound is not subject to any
optimizaion, but is determined once the new policy is obtained. We could in prin-
ciple, add another optimization procedure on top of the existing MI algorithm to
explicitly maximize the lower bound and hence further improve the performance.
This interesting direction is left to future work.
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6 | Robustness: configuration

Reminder: This chapter presents entropy regularization for robustness
which is defined as the insensitivity against configurations such as algo-
rithmic hyperparameters or MDP design. The plant-wide chemical pro-
cess control problem introduced in Chapter 3 is used as the testbed. The
method leveraged is the monotonic improvement algorithm we developed
in Chapter 5.

6.1 Introduction

As modern industrial process controllers necessitate high quality models and re-
medial model re-identification upon performance degradation that typically lasts
for weeks [Kano and Ogawa, 2009], model-free RL is a potentially powerful tool
for replacing the above-mentioned laborious procedures by adaptively learning
control policies in a limited period of time [Spielberg et al., 2019]. However, the
application of RL algorithms to such realistic time-limited problems is hindered
by the need for repeated human-agent interactions such as searching for perfor-
mant parameters. Brute-force search is only suitable for small-sized problems
with few number of parameters. In practice, human-agent interaction accounts
for the most time-consuming part of modeling [Winder, 2020].

It is not a surprise that conventional RL algorithms fail to deliver on the
promise within a short, limited time for realistic applications: convergence results
of RL typically state guarantees under the assumption that state-action pairs be
visited infinitely often and the Markov Decision Process (MDP) parameters such
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as state-action space or reward function perfectly characterize the underlying
problem [Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 2018]. This is at odds
with requirements of realistic applications, e.g. fixed training time and partial
knowledge of the model [Kano and Nakagawa, 2008, Spielberg et al., 2017]. In
practice, a large portion of time is spent on identifying suitable parameters that
include

1. MDP parameters such as state, action, reward function (an MDP is formally
defined in Section 5.3).

2. Algorithmic parameters that characterizes the performance with a fixed
learning horizon.

Identifying a performant set of parameters might be difficult as RL algorithms are
sensitive to parameters: slight varying a parameter might cause huge difference in
the learning performance [Henderson et al., 2017]. Generally, extensive human-
agent interaction for finding performant parameters is required and it accounts
for most of the time spent for an RL algorithm to work. This time-consuming
interaction might be the bottleneck or even problematic since for complicated
algorithms it takes long time to inspect the utility of one set of parameters [Yoo
et al., 2021]. Those parameters determine the solvability of the modelled MDP
and the quality of learned controller [Bertsekas and Tsitsiklis, 1996, Puterman,
1994]. The relationship between the final performance and parameters is compli-
cated and needs extensive empirical validation. Therefore, given limited time, an
algorithm that is robust to both MDP and algorithmic parameters is naturally
desired, since the agent is promised to achieve adequate performance for a given
task for a range of parameters rather than exhibiting good performance only for
some specific choices, greatly saving human-agent interaction time.

The consideration above motivates us to introduce monotonic policy improve-
ment algorithms into process control problems. Monotonic improvement (MI)
refers to that one can ensure nonnegative improvement in terms of return of the
new policy over the current one. By placing the problem under the monotonic im-
provement framework, it is expected that improving policies can still be obtained
even with underperforming parameters and hence robustness against parameters
could be achieved. In this paper we focus on a very recent algorithm of mono-
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Figure 6.1: The illustration of monotonic improvement (MI) mechanism. The
outer circle between policy π and value function V indicates standard policy
iteration loop [Sutton and Barto, 2018]. In MI the policy evaluation step (dashed
curve) is modified to be the MI step in the middle that leads to the monotonic
improving policy π′ and its evaluation.

tonic improvement algorithm family: cautious policy programming (CPP) [Zhu
and Matsubara, 2020] that combines the theoretical guarantees of monotonic im-
provement and the scalability of entropy-regularized methods. CPP lays down
the foundation for our proposal on enhancing robustness against parameters on
large-scale process control problems. Specifically, the concept of monotonic im-
provement can be visualized as Fig. 6.1. The outer loop between a policy π

and value function V corresponds to standard policy iteration that iteratively
evaluates/improves the policy [Sutton and Barto, 2018]. In the monotonic im-
provement scheme, the evaluation step (upper dashed curve) is replaced with the
MI step that leads to the monotonic improving policy π′ and its evaluation.

Original CPP algorithm might not be applicable for large-scale process con-
trol problems that require simultaneous control of multiple PID controllers which
constitute high dimensional action space. This might render any algorithm suffer
from the curse of dimensionality [Bellman, 2003] if the high-dimensional state-
action space issue is not properly handled. Inspired by the recent success on
leveraging RL on process control [Zhu et al., 2020], we introduce the key ingredi-
ents for efficiently solving control problems with large state-action spaces to the
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(a) Curves show the cumulative rewards of
FFDPP [Zhu et al., 2020] with different action
space design.

(b) Curves show the cumulative rewards of
FFDPP with different combinations of algo-
rithmic parameters.

Figure 6.2: Evaluation of FFDPP on the local control task introduced in Chapter
3 for different action space designs and parameters.

cautious learning mechanism: random features and factorial policy. We apply the
resultant algorithm: factorial cautious policy programming (FCPP) as a specific
instantiation of the proposed framework on the classic simulated Vinyl Acetate
Monomer (VAM) manufacturing process. VAM process has realistic complexity
and is representative of chemical processes [Luyben and Tyréus, 1998, Machida
et al., 2016, Seki et al., 2010]. To emphasize the contribution of the cautious
learning mechanism, we apply the algorithm Factorial Fastfood Dynamic Policy
Programming (FFDPP) of [Zhu et al., 2020] with different parameters under a
fixed horizon and plot the results in Fig. 6.2. It is clear that even slightly al-
tering the parameters will significantly degrade the performance of FFDPP. On
the other hand, by incorporating the cautious learning mechanism, FCPP is both
scalable since it adopts factorial policy and random feature approximation, and
robust to parameters, thanks to the introduction of cautious learning, as will be
shown by extensive results.

The contribution of this chapter consists in introducing the concept of cautious
learning into process control problems to reduce human-agent interaction time.
The central idea is to ensure monotonically increasing improvement even with
underperforming parameters such as MDP or algorithmic parameters. Though
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the notion of monotonic improvement exists for two decades, it has seen few
applications and has never been applied to practical domains such as process
control (see Chapter 5 for survey in the RL side). The second contribution lies
in that we proposed a novel algorithm as a specific instantiation of the cautious
learning: FCPP, by augmenting the cautious mechanism with specific components
such as factorial policy and random features that have been proved suitable for
process control problems. We believe the robustness of FCPP to parameters
renders it valuable for realistic RL applications where time is precious and the
human-agent interaction phase needs to be shortened.

6.2 Robust RL and Process Control

6.2.1 RL for Process Control

RL for process control has a long history [Badgwell et al., 2018, Nian et al.,
2020] and to the best of the authors’ knowledge, the first attempt was made
by Hoskins and Himmelblau [Hoskins and Himmelblau, 1992] that applied Q-
learning to controlling a continuous-stirred-tank-reactor. Since then, there has
been modestly growing interests in optimizing process performance using model-
free RL algorithms, with applications ranging from electricity grid control [Ernst
et al., 2005], dynamic power management [Lee and Wong, 2010, Liu et al., 2010]
to laboratory plant control [Syafiie et al., 2007]. RL has also been studied by
[Harp et al., 2000] to learn a profitable electricity pricing policy for electricity
management. The main algorithm adopted in these works was tabular Q-learning
[Watkins and Dayan, 1992], which is known to be slow to converge and not
scalable.

Recently, with the success of deep RL (DRL), there has been a resurgence of
interest in applying DRL methods to process control [Hubbs et al., 2020, Spiel-
berg et al., 2017]. Kubosawa et al. [2018] used DQN to recover a malfunctioning
component of the VAM process. Yoo et al. [2021] leveraged deep deterministic
policy gradient (DDPG) for the optimal control of batch processes. However,
DRL is notorious for its sample-inefficiency (typically requires more than 108

samples) and difficulty of parameter tuning [Henderson et al., 2017], due to run-
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ning sensitive and expensive stochastic gradient descent on hundreds of thousands
of parameters. For example, DDPG has been reported in [Haarnoja et al., 2018,
Henderson et al., 2017] as highly sensitive to algorithmic parameters. This sample
inefficiency is not limited to the above-mentioned off-policy deep RL methods:
popular on-policy deep policy gradient methods that can also approximately en-
sure monotonic improvement such as Trust Region Policy Optimization (TRPO)
[Schulman et al., 2015] and its improved version Proximal Policy Optimization
(PPO) [Schulman et al., 2017] have even worse sample complexity due to their
on-policy nature: all samples can be used only once and then discarded.

To take realistic factors such as learning horizon (sample complexity), ro-
bustness, expressiveness into consideration, linear function approximation (LFA)
might be a preferable choice than DRL methods. Unlike deep RL that is often
short of theoretical guarantees, the combination of LFA and dynamic program-
ming methods has been well-studied over decades [Bertsekas, 2011, Bertsekas
and Tsitsiklis, 1996], where strong theoretical underpinnings such as convergence
rate or sample complexity are readily available [Antos et al., 2008, Lazaric et al.,
2012]. Policies obtained via LFA can be sufficiently powerful for performing dif-
ficult tasks, such as playing the game of Tetris [Scherrer et al., 2015], achieving
state-of-the-art performance on challenging continuous control problems [Mania
et al., 2018], or realizing plant-wide control on the classic VAM process [Zhu et al.,
2020]. Further, LFA methods tend to be relatively insensitive to algorithmic pa-
rameters [Mania et al., 2018] compared to deep RL methods.

In realistic process control applications, it is unlikely that excessive resources
such as time are allowed for training the agent as assumed in theoretical stud-
ies [Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 2018]. For example, RL is
expected to replace the arduous human system re-identification process that typ-
ically costs 2 - 4 weeks [Spielberg et al., 2019], which means the allowed training
time is at maximum 4 weeks. However, learning meaningful controllers within
such short time is difficult: it is typical that trial-and-error human-agent interac-
tion such as grid search is necessary for finding a performant set of parameters,
including both MDP parameters such as state-action space design and algorith-
mic parameters. In the ideal case, optimal setup and parameters could be found
by the virtue of unlimited resources. However, when the budget is limited, there
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is an exploitation-exploration trade-off of whether to exploit the current configu-
ration or to continue explore. The trade-off subsequently determines the quality
of the learned controller. The above-mentioned scenario can be intuitively cast
as that the agent is only allowed to learn for a fixed horizon and fixed number
of iterations, and hence a trade-off of exploitation-exploration on parameter and
setup must be wisely made.

6.2.2 Cautiousness in RL

Cautiousness in RL is actively studied under different names such as safe RL
[García and Fernández, 2015] or monotonic policy improvement [Kakade, 2003,
Pirotta et al., 2013b] with different focuses. As pointed out by [Nian et al.,
2020], instability (lack of cautiousness) is one of the major shortcomings of RL
for process control problems. Indeed, since RL learns from both good and bad
experiences from trial-and-error interactions, in process control scenarios trial-
and-error learning might incur unacceptable loss such as low quality product or
even damaging the process components and causing emergency shutdown. This
shortcoming is general to RL as the concept of danger or instability is not taken
into account, which partly accounts for the reason why RL falls short of real-world
applications as compared to supervised learning.

To tackle the cautiousness problem, one straightforward criterion is to enforce
a safety constraint or budget that the agent is allowed the spend, this idea natu-
rally leads to the constrained MDP (CMDP) setting [Achiam et al., 2017, Altman,
1999, Berkenkamp et al., 2017, Chow et al., 2018]. While CMDPs can be solved
as shown by [Dogru et al., 2021, Tessler et al., 2019], those approaches are typi-
cally combined with deep learning implementations and hence the computational
resources required are also high [Chow et al., 2018], in this paper we focus on
low-cost linear function approximation. On the other hand, pursuing monotonic
improvement requires less stringent assumptions and the goal is to approximately
ensure the updated policy does not result in lower rewards than the pre-update
one. However, these methods have been mostly evaluated in simple problems
with at most two- or three-dimensional state space and one-dimensional action
space due to the intense computational requirements on accurately estimating
quantities such as total variation between two policies [Kakade, 2003, Pirotta
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et al., 2013a,b]. In general, there is a large gap between theory and practice in
monotonic improvement literature as admitted by the authors of [Papini et al.,
2020]: even for a simple CartPole task, state-of-the-art monotonic improvement
algorithm failed to compete with heuristic optimization technique such as Adam
[Kingma and Ba, 2015]. In this paper, we also bridge this gap by applying mono-
tonic improvement algorithm FCPP on large-scale control problems.

6.3 Factorial Cautious Policy Programming

The name cautiousness is stemmed from our use of scalable entropy-regularized
policies within the monotonic improvement framework. It is worth noting that
the linear mixture of policies performs a regularization in the stochastic space.
This is combined with the entropy regularization detailed in Chapter 5, which
was introduced as a regularization with the reward function. Hence, the two
regularizations are from different aspects and can coexist.

Specifically, suppose the agent is endowed with a redundantly large state-
action space, naturally it needs to see more state-action samples to build up
the probability densities for meaningful control strategy. To effectively build up
the policy with fixed number of samples (learning horizon), one might want to
’reinforce’ the knowledge of experienced state-action pairs. This can be achieved
by the fact that KL regularization averages over all past action values:

πk+1(a|s) ∝ πk(a|s) exp (Qk(s, a)) ∝ πk−1(a|s) exp (Qk(s, a) +Qk−1(s, a))

∝ · · · ∝ exp

(
k∑
j=1

Qj(s, a)

)
.

(6.1)

However, Eq. (6.1) weights the contribution from all state-action value functions
equally, which is undesirable when some value functions have poor estimates.
Linear interpolation introduced in Eq. (5.12) can come to rescue since it has
an interpretation of the momentum of adaptively weighting the contribution of
previous solution, which is also known as the Frank-Wolfe method [Vieillard et al.,
2019], [Beck, 2017, Chapter 13]:

π̃k+1(a|s) = ζk+1πk+1(a|s) + (1− ζk+1)π̃k(a|s),
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where we use π̃k+1 to indicate that the new policy is a linear mixture of the
updated policy πk+1 (output of function approximator) and the current policy
π̃k, which itself is the outcome of interpolation from last round. The subscript of
ζ indicates that it should change dynamically along with the policy. We stick to
this notation in the rest of the paper.

It is clear by induction that we can write the interpolated policy as:

π̃k+1 = ζk+1πk+1 + (1− ζk+1)π̃k

= ζk+1πk+1 + (1− ζk+1)ζkπk + (1− ζk+1)(1− ζk)π̃k−1

= . . .

=
k∑
j=0

ζk−j+1πk−j+1

j∏
i=1

(1− ζk−i+2).

(6.2)

Within the entropy-regularized policy class, the linear interpolation provides an
additional degree of freedom for weighting information from previous value func-
tions. This is desirable as the value functions in early stages of learning tend
to be inaccurate. Combining the above-mentioned ideas, we recall the following
theorem from Chapter 5 for designing a cautious agent against.

Theorem 6.3.1 (Chapter 5). Provided that [1] The policy is interpolated as
π̃k+1 =ζk+1πk+1+(1−ζk+1)πk; [2] A

πk+1

πk,d
πk ≥ 0; [3] ζ is chosen properly. Then the

policy improvement ∆J
π̃k+1

πk,d
π̃k+1

is guaranteed:

∆J
π̃k+1

πk,d
π̃k+1
≥

(1− γ)3(A
πk+1

πk,d
πk )2

16γCK
, (6.3a)

with ζk+1 = min(1,
(1− γ)3A

πk+1

πk,d
πk

2γCK
), (6.3b)

A
πk+1

πk,d
πk = Edπk

[∑
a

πk+1(a|s)Aπk(s, a)

]
, (6.3c)

CK = β
K−1∑
j=0

αkγK−k−1, (6.3d)

where ∆J
π̃k+1

πk,d
π̃k+1

is the improvement of π̃k+1 over πk, and πk+1, πk are consecutive
optimal entropy-regularized policies. If Aπk+1

πk,d
πk < 0, it indicates the update is
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corrupted by noise or error, hence we implement a simple rejection method to
retrain the policy.

It is worth noting that, unlike monotonic improvement methods introduced
in Sec. 5.4.2, there is no term like DTV that is difficult to estimate. The intuition
behind is that the entropy-regularized policies have bounded distance with each
other by the merit of KL divergence. It has been shown by [Kozuno et al.,
2019, Proposition 3] that the maximum distance between consecutive policies is
proportional to the maximum reward. Hence, all we need to estimate within the
cautious learning framework is the term A

πk+1

πk,d
πk .

When the state-action spaces are high dimensional, the term A
πk+1

πk,d
πk might

be difficult to accurately estimate with limited number of samples. The factorial
policy can be used to decompose high-dimensional state-action value functions to
low-dimensional ones learned in a multi-agent framework. Hence, we propose to
specify ζ(m) for every factorial policy π(m), and every ζ(m) is computed by solving
Eq. (6.3b) independently:

π̃
(m)
k+1 = ζ

(m)
k+1π

(m)
k+1 + (1− ζ(m)

k+1)π
(m)
k , (6.4)

ζ
(m)
k+1 = min

(
1, (2γCK)−1(1− γ)3A

π
(m)
k+1

π
(m)
k ,d

π
(m)
k

)
. (6.5)

This strategy allows us to speed up estimation of Aπk+1

πk,d
πk and subsequently achieve

cautious learning.
Same with Chapter 3, we leverage Fast-food approximation for computing

the feature maps. Recall that the use of trigonometric functions and G reduce
computation time to O(n log d) and storage to O(n) [Le et al., 2013], where n
denotes the number of samples and d the dimension of state and action [s, a]. We
use Âπ(m)(·)=θT φ̂(·) to denote the m-th agent’s advantage vector approximated
by random features. The random feature map has a tunable parameter l that
controls the sampling frequency and hence accuracy of the approximation. In-
creasing l results in exponentially more accurate approximation. We follow [Zhu
et al., 2020] for setting l.

Denote by Φ̂(m) the feature matrix for the m-th sub-policy having φ̂(m)T as
rows and following Eq. (5.33), the factorial weight vectors can now be computed
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Algorithm 7: Factorial Cautious Policy Programming
Input: α, β, γ, κ,K, T,M

1 for m = 1, . . . ,M do
2 # Initialization

3 initialize buffer D(m) and policy π(m)
0 ;

4 end
5 for k = 1, . . . ,K do
6 # Collecting samples
7 for t = 1, . . . , T do
8 measure state st;
9 for m = 1, . . . ,M do

10 sample at from π(m)(·|st);
11 observe st+1, rt;

12 collect (st, at, rt, st+1) in D(m)
1:k ;

13 end
14 end
15 # Multi-agent update
16 for m = 1, . . . ,M do
17 compute Φ̂(m), Âπ from D

(m)
1:k ;

18 compute θ(m)
k+1 using Φ̂(m) and Eq. (6.6);

19 compute Â
π
(m)
k+1

π
(m)
k ,dπ

(m)
k

using Eqs. (6.6), (6.7) ;

20 compute ζ(m)
k+1 using Eq. (6.5);

21 output policy π̃(m)
k+1 using Eq. (6.4);

22 end
23 end

as:

θ(m)∗ = (Φ̂(m)T Φ̂(m) + κ2I)−1Φ̂(m)T Âπ(m), (6.6)

where (·)(m) denotes components for the m-th sub-policy.

6.3.1 Summary of the Algorithm

While in general accurately computing the stationary distribution as in Eq. (6.3c)
is non-trivial [Wen et al., 2020], we only need an approximate quantity for comput-
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ing the expected advantage. Hence, we compute the surrogate objective Âπk+1

πk,d
πk :

Â
πk+1

πk,d
πk := Ê(s,a)∼D1:k

[∑
a

πk+1(a|s)Aπk(s, a)

]
, (6.7)

where Ê(s,a)∼D1:k
denotes empirical expectation with respect to the data buffer

D1:k. This combined with the approximation Eq. (6.6) yields Â
π

(m)
k+1

π
(m)
k ,d

π
(m)
k

for ev-

ery m, as shown in Line 19 of Algorithm 7. Note that πk+1 is evaluated by Eq.
(6.1). The proposed algorithm is listed in Algorithm 7. FFDPP, which will be
used as the baseline for comparison in the experiments, differs with FCPP only
in the cautious learning framework: instead of computing ζ and expected advan-
tage function, FFDPP only evaluates factorial Q function and the corresponding
policy.

6.4 Experimental Results

We examine FCPP on the tasks introduced in Chapter 3. To validate the effec-
tiveness of FCPP given limited learning horizon, we examine the algorithm with a
wide range of algorithmic parameters α, β and a variety of MDP parameter A to
inspect their respective insensitivity and final performance (recall from Chapter
5 that popular policy/value iteration algorithms such as Q-learning are covered
by varying α, β).

The MDP parameter A worth a few comments: we focus on redundantly
large action since insufficient actions render the corresponding optimal controller
impotent of learning meaningful control strategy and is considered as a degenerate
case. Efficient exploration in redundantly large action space is crucial and has
not been widely studied before compared to state space design, whose study
falls into the category of partially observable MDPs where rich literature exists
[Krishnamurthy, 2016]. On the other hand, reward function completely specifies
the goal and it necessitates prior knowledge on the objective to optimize.

To deal with redundant action space design, a few definitions are in order. In
manufacturing processes the control variates are often continuous-valued, hence
we focus on discretization of continuous action spaces. We denote the nonnegative
value range as b and resolution as n and collect them into a tuple (b, n), which
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we call redundant action design or just action design, to refer to that we take
n equidistant points from the interval [−b, b]. (b, n) is of primary interest when
comparing the performance of FCPP and FFDPP. In general, different b induces
different MDPs [Puterman, 1994], and larger n increases the sample complexity of
the algorithm. For the ease of reading, we make use of the following definitions on
the action design, which will be referred extensively in the experimental section:

• fine-tuned : refers to the action design is (0.01, 5), same with FFDPP [Zhu
et al., 2020].

• crude: refers to the action design (15× 0.01, 2× 5).

• poor : refers to the action design is (50× 0.01, 2× 5).

• plant-wide crude: refers to (5× 0.01, 2× 5).

To investigate the utility of the proposed method, we pose the following ques-
tions regarding both action design and algorithmic parameters:

1. with algorithmic parameters α, β held fixed and relatively accurate action
design, does FCPP perform similarly with FFDPP? This question is an-
swered in Secs. 6.4.1, 6.4.2.

2. with algorithmic parameters α, β held fixed, is FCPP efficient given redun-
dantly large action design (b, n) and limited learning horizon, i.e. we use
large values of b, n rather than the fine-tuned values in [Cui et al., 2018,
Zhu et al., 2020]? This question is addressed in Secs. 6.4.1, 6.4.2.

3. with action design held fixed, is FCPP efficient for a large range of parame-
ters α, β given limited learning horizon? This question is addressed in Secs.
6.4.3, 6.4.4.

The answer to the first question ensures that given fine-tuned algorithmic pa-
rameters and action design, FCPP indeed performs similarly to FFDPP, hence
achieving sample-efficient control. On the other hand, the second and third ques-
tions examine the utility of FCPP’s robustness against one aspect of parameters
given the other fixed. We answer the three questions in both local and plant-wide
control tasks.
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(a) Learning curves with
fine-tuned action design.

(b) ζ values of FCPP with
the fine-tuned action design.

(c) Learning curves with
crude action design.

(d) ζ values of FCPP with
crude action design.

(e) Learning curves with
poor action design.

(f) ζ values of FCPP with
poor action design.

Figure 6.3: FCPP, CPP and FFDPP on the local control task.

For the local control task, one experiment consists of 50 iterations each com-
prising 500 steps. For the plant-wide control task, one experiment consists of 70
iterations each comprising 1000 steps. All results are averaged over 10 indepen-
dent experiments for statistical evidence.

6.4.1 Local Control - Action Design

We applied FCPP, CPP and FFDPP to the local control problem with linear
function approximation and random features. The 5-dimensional state space is
formed by [VAMSensor, LevelSensor, FlowSensor, QualitySensor1-2]T , the 2-
dimensional action space is formed by [TempController, FlowController]T . The
VAMSensor measures the production rate, QualitySensors measure the quality
of VAM product. Other sensors are related to the process stability. The two
controllers control the production rate and quality by adjusting the temperature
and steam flow inside the process. The action design used in [Cui et al., 2018]
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was fine-tuned.
To examine FCPP with fine-tuned design as in the first question we posed,

we ran FCPP, FFDPP and CPP with the fine-tuned action design following [Zhu
et al., 2020]. The result is shown in Fig. 6.3(a). FCPP and FFDPP did not differ
much and all quickly converged to the optimum thanks to the factorial policy.
On the other hand, CPP curve did not fully converge to zero, indicating some
independent trials failed to converge even with fine-tuned action design.

To see how the algorithms behave with a variety of action designs as in the
second question we posed, we used the same parameters but different action de-
signs. Figs. (6.3(c)), (6.3(e)) show the performance and Figs. (6.3(d)), (6.3(f))
show the ζ values of FCPP and FFDPP with crude and poor action designs,
respectively. It is clear that the performance of FFDPP quickly deteriorates with
the growth of range b. While FFDPP can still converge with crude action design,
the sample complexity increased and hence it converged at around 40-th iteration.
When the action design was poor, FFDPP failed to learn any meaningful behav-
iors. Lastly, the disastrous performance of CPP in Figs. (6.3(c)), (6.3(e)) was
due to the overly large action space (210 as described in Chapter 3, which caused
emergency shutdown of the plant, leading to the lowest cumulative rewards in
the two cases.

On the other hand, increasing both range and resolution did not harm the
performance of FCPP: in both cases FCPP almost converged with almost the
same rate. This is due to the cautious learning nature of FCPP. To be specific,
at k-th iteration, FCPP maintains a linear class of policies spanned by πk+1, πk

(condition [1] in Theorem (6.3.1)), with the next policy chosen by solving ζ,
whose values are shown in Figs. (6.3(d)), (6.3(f)). The values of ζ matched
the corresponding learning curves, which demonstrates that the robustness was
successfully achieved by FCPP. By contrast, FFDPP only has access to a point
estimate πk+1, hence cannot effectively reuse information.

6.4.2 Plant-wide Control - Action Design

This section serves to verify that the results of the previous section continue
to hold in the plant-wide control setting. We examine both algorithms on the
challenging plant-wide control task which comprises a 13-dimensional state space
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(a) Learning curves with fine-tuned action
design.

(b) ζ values with fine-tuned action design.

(c) Learning curves with plant-wide crude ac-
tion design.

(d) ζ values with plant-wide crude action de-
sign.

Figure 6.4: FCPP and FFDPP on the plant-wide control task.
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[VAMSensor, LevelSensor, QualitySensor1-2, TempSensors1-8, Profit]T , and
4-dimensional action space [FlowController, FlowController2, PressureContr-
oller, TempController]T . Beside the sensors and controllers introduced in the
local control task, TempSensors measure the temperature inside the distillation
column and are related to the cost ; Profit directly measures the profit of the
current product rate and quality in unit (yen/h). FlowController2 controls
the reflux flow to the distillation column and PressureController allows for
controlling the pressure of the process.

Fig. 6.4(a) shows the performance of FCPP and FFDPP with the fine-tuned
action design. In this challenging task, FCPP was able to slightly outperform
FFDPP due to the guarantee in Eq. (6.3a).

However, as shown in Fig. 6.4(c) for plant-wide crude action design, since the
task is intrinsically very sensitive, FFDPP failed to learn meaningful behaviors
with the plant-wide crude action design. On the other hand, FCPP still con-
verged robustly at the latest around 50-th iteration. Figs. 6.4(b), 6.4(d) show
the values of ζ(m),m = 1, . . . , 4 in both tasks. All ζ values have the same trend of
gradually converging to the optimum ζ(m) =1, demonstrating the success of fac-
torized policies on decomposing high-dimensional value functions and accurately
computing factorized values, as supported by the convergence in Fig. 6.4(c).

6.4.3 Local Control - Parameters α, β

In this section we examine the utility of FCPP against FFDPP for a wide range
of algorithmic parameters α, β, which are the weighting coefficients introduced in
Eq. (5.4). Intuitively, α determines the optimum of the MDP, which is equivalent
to the final reward. β controls the update step, and is indirectly related to the
process stability.

Since α ∈ [0, 1], we take 5 equidistant points from [0, 1] for α. We also set
the upper and lower bound for β as 10, 10−4, respectively. Recall that β appears
in the form eβ and hence the upper and lower bound cover a wide enough range.
We take 6 equidistant points for β from the interval [10−4, 10] and hence there
are a total of 30 different groups of (α, β) values. For each of the group, we
evaluate 5 independent trials of FCPP and FFDPP on the local control task and
average their final cumulative reward, plotted in Fig. 6.5. With our hardware
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Figure 6.5: Comparison between FCPP and FFDPP on the localcontrol task for
a wide range of algorithmic parameters α, β. Slots are experiments with α, β

values on the axes and the color indicates the corresponding cumulative reward
for the final iteration. All slots are averaged over 5 independent experiments.
Evaluating the total of 300 experiments costed around 800 hours in reality.

specification, the total of 30× 5× 2 = 300 experiments took around 800 hours in
reality (since red slots correspond to fast convergence).

It is obvious from the above part of Fig. 6.5 that FFDPP is not robust towards
different algorithmic parameters α, β: its highest rewards were achieved at the
two extremes (α = 0, β = 10) and (α = 1, β = 10). For β = 10−4 ∼ 10−2, almost
no configuration can provide a reasonable final performance. Even for larger β,
careful tuning of α is still required to avoid the relatively low reward regions
such as (α = 1, β = 0.1) or (α = 0.5, β = 10). On the other hand, the plot for
FCPP demonstrated a much smoother trend: the regions of β = 10−4 ∼ 10−2

has high reward regions for α = 0.75 ∼ 1. From β = 0.1 ∼ 10 almost all
slots indicated high final rewards. This is achieved by effectively reusing previous
information of the FCPPmechanism, demonstraing the importance of introducing
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Figure 6.6: Comparison between FCPP and FFDPP on the plant-wde control task
for a wide range of algorithmic parameters α, β. Slots are experiments with α, β
values on the axes and the color indicates the corresponding cumulative reward
for the final iteration. All slots are averaged over 3 independent experiments.
Evaluating the total of 150 experiments costed around 1500 hours in reality.

the cautiousness into RL for process control problems.

6.4.4 Plant-wide Control - Parameters α, β

This section extends the comparison of algorithmic parameters in Sec. 6.4.3 to the
plant-wide control task. We take 5 equidistant points from [0, 1] for the value of
α and 5 equidistant points from [10−3, 10] for the value of β. Due to the difficulty
for running more experiments with longer learning horizon and more iterations,
we evaluate every (α, β) pair for 3 independent experiments. The total number
of 25× 2 = 150 experiments costed around 1500 hours in reality (since red slots
correspond to fast convergence).

It is clear from Fig. 6.6 that the same trend of local control for FFDPP
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and FCPP continues to hold in the plant-wide case: for FFDPP the optimal
parameter set lies within the region [α = 10−2 ∼ 0.1, β = 0 ∼ 0.25]. However,
slightly changing α to 0.5 or β to 1 causes the final reward to drop significantly,
showing FCPP is highly sensitive to parameter choice. Within the region α ≥
0.25, β ≥ 0.1, slots with poor final performance are dominant.

On the other hand, FCPP exhibits much smoother final performance for slots
β ≤ 1 and all α thanks to the longer learning horizon and more iterations.
The reason why β = 10 exhibits low final performance is possibly due to the
numerical issue associated with exponential function eβ: repeated application of
the Softmax operator can easily cause numerical instability. This suggests that
in practice large values of β should be avoided or some tricks such as subtracting
a constant from the exponential function be employed.

6.5 Discussion and Conclusion

Monotonic improvement and reinforcing experience using policy interpolation is
not novel and has been well studied since the seminal conservative policy iter-
ation algorithm [Kakade and Langford, 2002]. While CPI has inspired many
extensions that have provably guarantees on the monotonic improvement, those
algorithms are theory-oriented and no scalable implementation is available to the
best of authors’ knowledge. On the other hand, strengthening experience us-
ing the exp-over-sum in Eq. (6.1) (called follow-the-leader by [McMahan, 2017,
Shalev-Shwartz, 2012]) exploits entropy regularization has demonstrated superior
performance on a wide variety of tasks. However, it does not guarantee the agent
can achieve any improvement over a given limited period of time.

The cautious learning mechanism introduced in this paper combined the
above-mentioned two approaches to simultaneously ensure monotonic improve-
ment and scalablity in high dimensional spaces, which bridged the gap between
theory and practice in the monotonic improvement literature and provided guar-
antees for the entropy-regularized algorithms. The resultant algorithm was ex-
amined on the representative VAM process control problem, showing that given
limited resources such as learning horizon, meaningful controllers can still be
learned.
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Specifically, from Figs. 6.5 and 6.6 it is obvious that FCPP outperformed
FFDPP in terms of hyperparameter insensitivity: in both local and plant-wide
control tasks FCPP had many available choices of performant parameters, and we
believe that is because the cautious learning framework was in effect. By perform-
ing double regularization in both the reward function and policy space, FCPP
was able to fully utilize past information and hence achieved good performance
for a variety of parameters. This stood in contrast with FFDPP, which only per-
formed one layer of regularization for the reward function and hence the ability
of reusing information was limited. While in some parts there was oscilloation in
the FCPP curves (performance getting low in some iterations), we believe that
was due to the approximation error as a result of linear function approximation.
Such approximation error is unavoidable and will sometimes caused performance
oscillation.

The discretization of action space seems to contribute significantly to the
fast and robust convergence of FCPP. From Fig. 6.3(c) we see that FCPP can
still convergen with crude action design, indicating the valid range for action dis-
cretization is quite large and there might still be room for imporvement. However,
we would like to leave it to the future work.

We think FCPP provides a promising first step towards applying RL algo-
rithms to real-world process control problems, where a proper problem setup as
well as suitable algorithmic parameters should be found with minimum efforts
of trial-and-error adjust. We believe FCPP is a general framework applicable
to various types of systems. However, a certain adaptation might be neces-
sary for application on a different system: since we assumed the state-action
space is representative of the plant, expert knowledge for selecting such relevant
units might be indispensable. Further, the reward definition may vary depend-
ing on the characteristics of the system, e.g. there might not be an equivalent
of StabilityReadings as we had [Hubbs et al., 2020]. Another possibility is
that the target system has high dimensional action space but the dimensions are
strongly correlated and hence the factorial assumption Eq. (6) fail. However,
currently we are unaware of any such systems, and the assumption has been ver-
ified to work well with a variety of systems such as in [Matsubara et al., 2014,
Tang and Agrawal, 2020, Zhu et al., 2020].
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7 | Conclusion

This thesis discussed the use of entropy regularization in reinforcement learning.
The contributions were mainly twofold: first, we formulated the use of Shannon
entropy and KL regularization in the use of value-based algorithms for practical
applications. Specifically, KL divergence played an important role in the regu-
larization by constraining the distance between consecutive updated policies to
not be overly large. This is especially important since in realistic applications
the samples are often scarce and expensive. Ensuring the policies staying close
is helpful in obtaining coheren trajectories of updated policies, and hence the
quality, informativeness of the samples. Also, Shannon entropy can also be seen
as a special case of KL divergence by enforcing the closedness to the uniform
distribution. Arising from such constraint is the stochasticity of the optimal poli-
cies: they are more robust to errors, more efficient in exploring the state-action
spaces compared to prior deterministic greedy optimal policies. Second, we de-
rived useful algorithms for important applications, with examples featuring scal-
ability, safety and robustness. Those applications included controlling industrial
processes and safely manipulating robots, which provided important reference to
today’s RL deployment. We proposed several extensions such as factorial poli-
cies and actor-advisor framework. The factorial policies are suitable for handling
the multi-dimensional action spaces of control problems by assuming the over-
all policy can be factorized into conditionally independent sub-policies. On our
chemical process control problem, such assumption seemed to hold and yielded
superior control performance. On the other hand, the actor-advisor framework
effectively captured the notion of safety in minimizing the risk while simultane-
ously maximizing task reward. We can use the following list to summarize how
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we leveraged KL divergence:

1. Scalability: multi-agent + KL regularization DKL

(
π

(n)
k+1 || π

(n)
k

)
, where (n)

denotes the index of the n-th agent.

2. Safety: actor-advisor, DKL

(
πact || πadv

)
, DKL

(
πadv || πact

)
, where those two

regularizers were added to the actor and advisor, respectively.

3. Robustness: relaxed bounded improvement by DKL(πk+1||πk) ≤ C, where
C is some constant.
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8 | Discussion

There are many potential directions for future work. First, there are still a lot
to explore within the value-based methods by exploiting other entropies such as
the Tsallis entropy and Rényi entropy that generalize the Shannon entropy as
we mentioned in Section 2.5.2. The benefits are more flexible modeling choices:
since the Shannon entropy only corresponds to a specific choice of the entropic
index, it is possible for specific application, the best entropic index varies and
does not lie close to the Shannon case. Another appeal is that the Shannon
entropy induces Boltzmann softmax policy that assigns nonzero probability to
every action. This is especially undesirable in some applications where some
actions are dangerous. Very recently, there has seen literature discussion using
the general Tsallis entropy in place of the Shannon entropy to induce policies that
assign probabilities to only a subset of actions. Rényi entropy was used to explore
the reward-free setting. By using those two entropies, one can formulate more
general regularization known as the Tsallis KL divergence and Rényi divergence
that generalize the KL divergence. It is hence interesting to explore the properties
come with those regularizations.

Another direction is on the deployment: it is possible to go further by ap-
plying the algorithms we developed in this thesis to real-world problems? Those
applications might require integration of the all the techniques such as scalabil-
ity, safety and robustness for practical use. For those applications with strict
requirement for safety, we might have to consider entropy-regulaized constrained
Markov decision processes rather than the standard ones considered in this thesis.
Similarly, more formal requirement of robustness might also bring the techniques
developed here to the robust MDP context.
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A | Cautious Actor-Critic

Reminder: This chapter provides a solution for extending the theoreti-
cally sound value-based methods to the more scalable and popular actor-
critic setting. It can be seen as an extension of Chapter 5 that focuses on
robustness in the finite action setting to continuous action spaces.

A.1 Introduction

Actor-critic (AC) methods of reinforcement learning (RL) have been gaining in-
creasing interests recently due to their scalability to large-scale problems: they
can learn with both on-policy or/and off-policy samples and handle continuous
action spaces [Lillicrap et al., 2016, Schulman et al., 2015]; both in model-free or
model-based setting [Haarnoja et al., 2018, Hafner et al., 2020]. Recently in the
model-free setting there has seen a booming in off-policy AC methods [Fakoor
et al., 2020, Haarnoja et al., 2018, Wang et al., 2017]. However, while these
methods are sample-efficient in exploiting off-policy samples for continuous con-
trol, it is those samples that often bring oscillating performance during learning
as a side-effect due to distribution mismatch. The oscillating performance of off-
policy learning and persisting errors in the AC setting [Fujimoto et al., 2018] call
for algorithms that can conservatively learn to better suit the stability-critical
applications.

The performance oscillation and degradation problems have been widely dis-
cussed in the approximate dynamic programming (ADP) literature [Bertsekas,
2011, Wagner, 2011] that has motivated efficient learning algorithms against var-
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ious sources of error. The seminal work of [Kakade and Langford, 2002] propose a
principled approach to tackle performance degradation by leveraging policy inter-
polation which is conservative in that it reduces greediness of the updated policy.
However, though it enjoys strong theoretical guarantees, its drawbacks limit its
use in the AC setting: (1) it is difficult to obtain a reliable reference policy in
high-dimensional continuous state-action spaces; (2) the interpolation is often
regarded inconvenient to use and it is unclear how to design the interpolation
in continuous action spaces. In practice, two popular variants [Schulman et al.,
2015, 2017] that sidestep the interpolation and directly approximate the updated
policy are more often used in the AC setting. On the other hand, the recently
booming entropy-regularized ADP literature [Azar et al., 2012, Fox et al., 2016,
Kozuno et al., 2019, Vieillard et al., 2020a] also features conservative learning
[Kozuno et al., 2019] as they average over past value functions [Vieillard et al.,
2020a]. Though these methods do not explicitly address the performance oscilla-
tion problem, they have been empirically verified to be error-tolerant and yield
state-of-the-art performance on a wide range of tasks. Extending this conserva-
tive learning to AC has been studied [Haarnoja et al., 2018, Nachum et al., 2018].
However, the resulted conservativeness exists only in the critic: In challenging
tasks, the performance degradation and oscillation still occur.

This paper aims to tackle the performance oscillation problem of off-policy AC
by proposing a novel algorithm: cautious actor critic (CAC), where the naming
cautious comes from the doubly conservative nature as we combine a conservative
actor leveraging the concept of conservative policy iteration (CPI) [Kakade and
Langford, 2002] with a conservative critic exploiting the entropy-regularization of
conservative value iteration (CVI) [Kozuno et al., 2019]. The key observation is
that the entropy-regularized critic can find error-tolerant reference policies and
simplifies the unwieldy interpolated actor update while still ensures robust policy
improvement. CAC leverages automatically adjusted interpolation to reflect the
faith during learning: when performance oscillation is likely to happen, CAC
behaves cautiously to rely more on validated previous policy rather than on the
new policy. Our novel interpolation design is inspired by a very recent study from
the ADP literature [Vieillard et al., 2020b] but improved for the continuous AC
setting.
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A.2 Related Work

It has been noticed that various sources of error such as approximation error in AC
algorithms [Fu et al., 2019, Fujimoto et al., 2018] are the cause of performance
degradation and oscillation during learning. In this section, we briefly survey
some related works (partially) tackling this problem and outline our contributions.

Robust AC. Algorithms learning from off-policy data are sample-efficient
but are also at the risk of divergence. To solve the divergence problem, an ap-
proach is to incorporate the importance sampling (IS) ratio [Precup et al., 2001].
However, the resultant algorithms typically have large variance as the IS ratio is
the product of many potentially unbounded terms. Munos et al. [2016] proposed
to clip the IS ratio and proved the resulting algorithm Retrace (λ) can attain the
globally optimal policy. Retrace (λ) has motivated recent successful AC methods
[Fakoor et al., 2020, Wang et al., 2017] that exploit both on- and off-policy sam-
ples for better stability while retaining sample-efficiency. The robustness comes
from that any off-policy samples can be used without causing divergence and wild
variance thanks to the clipping. However, one still has to trade off the learning
speed with learning stability by the user-defined clipping threshold. If we favor
more learning stability, the agent might fail to learn meaningful behaviors.

Entropy-regularized AC. The recently booming entropy-regularized ADP
literature has established that by augmenting the reward with Shannon entropy,
the optimal policy is multi-modal and hence robust against adversarial settings
[Ahmed et al., 2019, Haarnoja et al., 2018, Nachum et al., 2017]. Another popu-
lar candidate entropy is the relative entropy or Kullback-Leibler (KL) divergence
that renders the optimal policy an average of all past value functions [Azar et al.,
2012, Fox et al., 2016, Kozuno et al., 2019, Vieillard et al., 2020a], which is more
conservative and robust under mild assumptions such as the sequence of errors is
martingale difference under the natural filtration [Azar et al., 2012]. These meth-
ods have been extended to the AC setting including state-of-the-art [Haarnoja
et al., 2018] that exploits the Shannon entropy and [Nachum et al., 2018] that
leverages the KL divergence. Those methods demonstrate strong empirical per-
formance on a wide range of tasks. However, it should be noted that the conser-
vativeness brought by the entropy-regularized reward augmentation exists only
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in the critic. Since the average is prone to outliers, performance degradation can
still happen if the value function estimates at some iterations are poor.

Conservative Policy Iteration. Tackling the performance oscillation
problem has been widely discussed in the ADP literature [Bertsekas, 2011, Wag-
ner, 2011], of which the seminal CPI algorithm [Kakade and Langford, 2002] has
inspired many conservative learning schemes with strong theoretical guarantees
for per-update improvement [Abbasi-Yadkori et al., 2016, Pirotta et al., 2013b].
However, CPI has seen limited applications to the AC setting due to two main
drawbacks: (1) it assumes a good reference policy that is typically difficult to
obtain in high-dimensional continuous state-action spaces; (2) the interpolation
coefficient that interpolates the reference policy and current policy depends on
the horizon of learning, which is typically short in ADP scenarios. In the AC
setting featuring long learning horizon, this coefficient becomes vanishingly small
and hence significantly hinders learning. A very recent work extended CPI to
learning with deep networks and has demonstrated good performance on Atari
games [Vieillard et al., 2020b]. However, it is limited to discrete action spaces
while our method mainly focuses on continuous action spaces and can be easily
adapted to discrete action setting. The above-mentioned drawbacks render CPI
generally perceived as unwieldy [Schulman et al., 2015].

Trust-region Methods. Motivated by the above-mentioned drawbacks
of CPI, two popular variants trust region policy optimization (TRPO) [Schul-
man et al., 2015] and its improved version proximal policy optimization (PPO)
[Schulman et al., 2017] sidestep the interpolation and directly approximate the
resultant conservative policy. TRPO and PPO are welcomed choices for learn-
ing from scratch when the reference policy is unavailable or unreliable, but they
also ignore this knowledge when we have a good reference policy at our disposal.
Further, TRPO and PPO require on-policy samples which are expensive since all
samples can be used only once and then discarded.

A.3 Actor Critic methods

In this section we briefly introduce recent actor-critic algorithms and discuss their
pros and cons and shed light on our proposal in Section A.4.
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Trust Region Methods

TRPO exploits the policy improvement lemma of [Kakade and Langford, 2002]
for ensuring approximately monotonic policy improvement. However, unlike in
[Kakade and Langford, 2002] that at k-th iteration the policy is updated as πk+1 =

ζπ′ + (1 − ζ)πk, where π′ is the greedy policy; TRPO constructs an algorithm
that directly computes πk+1 without resorting to π′. Specifically, TRPO has the
following update rule:

JTRPO
πk

(π) := arg max
π

Eπ,dπk [Aπk ] ,

subject to Cγ ∆πD
max
KL (πk||π) ≤ δ,

with ∆π = max
s,a
|Aπ(s, a)|,

(A.1)

where Cγ is a horizon-dependent constant, DKL is the KL divergence and δ is the
trust region parameter.

As computing JTRPO
πk

(π) requires sampling according to the stationary distri-
bution dπk , it is inherently an on-policy algorithm, which is not sample-efficient
as the samples can only be used only once and discarded.

Off-policy Maximum Entropy Actor-Critic

As state-of-the-art model-free off-policy AC algorithm, soft actor-critic (SAC)
[Haarnoja et al., 2018] maximizes not only task reward but also the Shannon
entropy of policy. The entropy term in the reward function renders the optimal
policy multi-modal as opposed to deterministic policies of algorithms that solely
maximize task reward, which is beneficial due to the multi-modality [Haarnoja
et al., 2017] and has demonstrated superior sample-efficiency due to more effective
exploration of the state-action spaces. Writing in the ADP manner, SAC has
the following update rule (we drop the state-action pair for the Q function for
simplicity): πk+1 ← arg maxπ Eπ [Qπk

H (s, a) + κH (π(·|st))]

Q
πk+1

H ← r(s, a) + γ (PV πk
H )(s, a)

where V π
H(s) =

∑
t≥0

γtEπ
[
r(st, at) + κH (π(·|st))

∣∣∣s0 = s
]
.

(A.2)
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H(π) := −
∑

a π(a|s) log π(a|s) denotes the Shannon entropy of policy π, κ de-
notes the weighting coefficient and V π

H denotes the soft value function when regu-
larized with the Shannon entropy. SAC performs one step look-ahead for updating
the actor, where states are randomly sampled from a replay buffer, and then ac-
tions are generated by feeding the states into the policy network [Haarnoja et al.,
2018]. As such, SAC does not need an IS ratio, but it has been demonstrated
that SAC often oscillates wildly in performance.

A.4 Cautious Actor Critic

In this section we present CAC, an off-policy actor-critic method capable of learn-
ing conservatively against performance oscillation and degradation.

A.4.1 CAC Algorithm

For the ease of understanding, we write CAC in the following approximate policy
iteration style [Vieillard et al., 2020a]. Specifically, the first step corresponds to
the policy (actor) improvement and the last step corresponds to the interpolation:

CAC


πk+1 ← arg maxπ Eπ

[
Qπk
I (s, a) + Iππk(s)

]
Q
πk+1

I ← r(s, a) + γ
(
PV πk+1

I
)
(s, a)

ζ ← (∆̃
πk+1
πk )−1

(
Eπk+1,BK [Aπk(s, a)]

)
π̃k+1 ← ζπk+1 + (1− ζ)πk

with V πk+1

I (s) =
∑
t≥0

γtEπ
[
r(st, at) + Iπk+1

πk
(st)

∣∣∣ s0 = s
]
,

Iπk+1
πk

(s) = Eπk+1

[
−κ log πk+1(a|s)− τ log

πk+1(a|s)
πk(a|s)

]
,

(A.3)

where ζ is the interpolation coefficient computed by ζ∗ in Eq. (A.7), BK denotes
the on-policy replay buffer, with K indicating the number of steps up to now.
κ, τ denote the Shannon entropy and KL divergence regularization coefficient,
respectively. QI , VI (and hence AI) denote the entropy-regularized value func-
tions. For uncluttered notations, in the rest of the paper we drop the subscript
I. Except the computation of ζ, all other steps are computed using samples from
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the off-policy replay buffer B. For later convenience, we define α := κ
κ+τ

and
β := 1

κ+τ
. Note our use of both on- and off-policy replay buffers renders CAC

similar in spirit to [Fakoor et al., 2020, Gu et al., 2017, Wang et al., 2017].
We first compute the greedy policy πk+1. Due to the Fenchel conjugacy [Geist

et al., 2019], when Iπk+1
πk is included in the arg max, the maximizer policy can be

analytically derived as πk+1(a|s) ∝ παk (a|s) exp (βQπk(a|s)) [Kozuno et al., 2019].
Then the entropy-regularized action value function Qπk+1 is evaluated. In the
third step, we use the on-policy replay buffer BK for computing ζ as described
in Eq. (A.7). Finally, the optimal policy in the sense of guaranteeing policy
improvement is obtained by interpolating πk+1 with πk. We present the following
theorem of CAC convergence in the tabular case.

Theorem A.4.1. Repeated application of CAC Eq. (A.3) on any initial pol-
icy π will make it converges to the entropy regularized optimal policy π∗(a|s) =

exp( 1
κ
Q∗(s,a))∫

a∈A exp( 1
κ
Q∗(s,a))

.

From Theorem 1 we see the optimal policy and corresponding optimum of
the MDP is biased by the choice of κ. If we gradually decay the value of κ then
we recover the optimum of the non-regularized MDP [Vieillard et al., 2020a]. In
the following sections, we describe in detail the CAC actor and critic, as well as
the derivation of actor gradient expression and practical interpolation coefficient
ζ design.

Conservative Actor

As discussed in Section A.3, at k-th iteration TRPO directly constructs a new
policy π by maximizing JTRPO

πk
(π). This is useful if the agent learns from scratch,

but it discards the reference policy when available. On the other hand, we follow
the exact form of [Kakade and Langford, 2002] by taking the information of
reference policy into account, where we choose πk+1 to be the reference policy π′:

π̃k+1 = ζπk+1 + (1− ζ)πk. (A.4)

Our objective function JCAC
πk,πk+1

(π) explicitly features the knowledge of the refer-
ence policy [Pirotta et al., 2013b]. Specifically, the objective can be lower-bounded
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as:

JCAC
πk,πk+1

(π) := Eπk+1,d
πk+1 [Aπk(s, a)]

≥ C ′γ (v ∆̃πk+1
πk

)−1
(
Eπk+1,d

πk [Aπk(s, a)]
)2
,

given ζ∗ = 2C ′γ(v ∆̃πk+1
πk

)−1
(
Eπk+1,d

πk [Aπk(s, a)]
)
,

∆̃πk+1
πk

= max
s,s′

∣∣Aπk+1
πk

(s)− Aπk+1
πk

(s′)
∣∣ ,

v = max
s
DTV (πk+1(·|s)||πk(·|s)) ,

(A.5)

whereDTV denotes the total variation. v, ∆̃
πk+1
πk and the expectation wrt πk+1, d

πk

require estimation. C ′γ absorbs the horizon-dependent constants. Hence, when
optimizing the lower bound of JCAC

πk,π′
(π), we can achieve guaranteed improvement.

In the existing literature [Abbasi-Yadkori et al., 2016, Kakade and Langford,
2002, Pirotta et al., 2013b], the difficulties of extending Eq. (A.5) to large-
scale problems are: (1) preparing a reliable reference policy in high dimensional
continuous state-action spaces is difficult; (2) it is hard to accurately estimate v,
the maximum total variation between two policies without enforcing a gradual
change of policies, which is absent in these works. On the other hand, naively
using v ≤ 2 as suggested by [Pirotta et al., 2013b] often yields vanishingly small
ζ, which significantly hinders learning. (3) the horizon-dependent constant C ′γ
developed in the classic ADP literature is not suitable for learning with deep
networks that feature long horizon of learning. As will be demonstrated in the
following sections, we tackle the first and second problems by leveraging entropy-
regularized critic, and the third problem via a novel design of ζ inspired by a very
recent work for discrete action problems [Vieillard et al., 2020b].

Conservative Critic

In Eq. (A.5) we see in order to yield a meaningful interpolation coefficient ζ
one is required to accurately estimate the maximum total derivation v, which is
intractable in high dimensional continuous action spaces. However, by introduc-
ing an entropy-regularized critic, we can leverage the following theorem to avoid
estimating v:

Theorem A.4.2. [Kozuno et al., 2019, Proposition 3] For any two consecutive
entropy-regularized policies πk, πk+1 generated by Eq. (A.3), the following bound
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for their maximum total deviation holds:

max
s
DTV (πk+1(·|s)||πk(·|s)) ≤

√
4BK + 2CK ,

where Bk :=
1− γk

1− γ
εβ, Ck := rmaxβ

k∑
j=0

k − 1αjγk−j−1,
(A.6)

ε is the uniform upper bound of errors.

Recall from Section A.4.1 that α := κ
κ+τ

, β := 1
κ+τ

. Specifically, it has been
proved in [Kozuno et al., 2019] that this bound is non-improvable, i.e. there exists
an MDP such that the inequality becomes equality.

By leveraging an entropy-regularized critic, the objective in Eq. (A.5) be-
comes:

JCAC
πk,πk+1

(π) ≥ C ′γCk (∆̃πk+1
πk

)−1
(
Eπk+1,d

πk [Aπk(s, a)]
)2
,

given ζ∗ = 2C ′γCk(∆̃
πk+1
πk

)−1
(
Eπk+1,d

πk [Aπk(s, a)]
)
,

(A.7)

where C ′γ absorbs horizon-dependent constants and Ck is from Theorem A.4.2.
Estimating the optimal ζ∗ now requires estimating the expectation wrt πk+1, d

πk

and ∆̃
πk+1
πk which have been studied by [Vieillard et al., 2020b].

The KL divergence also manifests its importance for generating reasonable
reference policies even for high dimensional or continuous action problems. Con-
sider the following upper bound due to [Vieillard et al., 2020a] where reward is
augmented by the KL divergence:

||Q∗ −Qπk+1||∞ ≤
2

1− γ

∣∣∣∣∣
∣∣∣∣∣1k

k∑
j=0

εj

∣∣∣∣∣
∣∣∣∣∣
∞

+
4

1− γ
Vmax
k

,

where εj are errors and Vmax = rmax
1−γ . By comparing it with the non-improvable

approximate modified policy iteration (AMPI) bound where the reward is not
augmented [Scherrer et al., 2015]:

||Q∗ −Qπk+1 ||∞ ≤

(
(1− γ)

k∑
j=1

||εj||∞

)
+

2γk+1

1− γ
Vmax,

we see that the error term for the KL regularization case is sup-over-sum. Under
mild assumptions such as εj are iid distributed under the natural filtration [Azar
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et al., 2012], the summation over errors asymptotically cancels out. On the other
hand, the error term for AMPI depends on the summation of maximum of every
iteration, which is typically large. Further, the dependence of error on the horizon
is linear 1

1−γ rather than quadratic, which is a significant improvement as typically
γ ≈ 1.

Network Optimization Perspective

Given the above ADP-style characterization for both the actor and the critic, we
now examine Eq. (A.3) from the optimization perspective. Suppose the critic is
parametrized by a network with parameters θ and the actor by a network with
parameters φ. CAC updates the network weights θ, φ by solving the following
minimization problems:

y = r + γ
(
Ea∼πφ [Qθ̄(s

′, a)] + Iπφπφ̄ (s′)
)
, (A.8a)

θ ← arg minEB
[
(Qθ (s, a)− y)2] , (A.8b)

φ← arg minEB
[
DKL

(
πφ‖(1− ζ)πφ̄ + ζGπφ̄Qθ

)]
, (A.8c)

where the update of φ corresponds to solving an information projection prob-
lem. This is because policies πk+1, πk are Boltzmann softmax [Geist et al., 2019]
but their summation is generally not Boltzmann, which might results in loss of
desirable properties. By the following theorem, in the ideal case we can find a
Boltzmann policy πφ that perfectly represents the interpolation by solving the
information projection problem.

Theorem A.4.3. [Ziebart, 2010, Theorem 2.8] Let π(1), π(2), . . . , π(n) be an
arbitrary sequence of policies and ζ1, . . . ζn be a sequence of numbers such that
ζi ≥ 0,∀i,

∑n
i=1 ζi = 1. Then the policy π′ defined by:

π′(a|s) :=

∑n
i=1 ζi P (S = s,A = a|π(i))∑n

i=1 ζi P (S = s|π(i))
(A.9)

has same expected number of state-action occurrences when the denominator is
nonzero.

In implementation as the states are sampled from the replay buffer, there is
an error term in this information projection step. Taking the above information
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projection into account, we elaborate upon gradient expression of the actor via
the following proposition:

Proposition A.4.4. Let the actor network be parametrized by weights φ and
critic by θ. Define GQφ̄,θ as the greedy policy with respect to the CAC critic. The
subscript φ̄ comes from the baseline policy introduced by KL divergence. Then the
gradient of the actor update can be expressed as:

∇φE s∼B
a∼πφ

[
Dφ

φ̄
− β

1 + X
Qθ(s, a)

]
,

where Dφ

φ̄
= log πφ (a | s)− α + X

1 + X
log πφ̄(a; s)

X =
1− ζ
ζ
·

πφ̄(a | s)
GQφ̄,θ(a | s)

.

(A.10)

This gradient expression is similar to SAC [Haarnoja et al., 2018] which is
off-policy since states s are sampled from the off-policy replay buffer B. However,
CAC has the term log πφ̄(a; s) from the KL regularization. The term X in both
the Qθ and log πφ̄(a; s) involves ζ that encodes the information for guiding the
gradient to cautiously learn.

A.4.2 Design of Interpolation Coefficient

One of the main difficulties to extending CPI to learning with deep networks is
that ζ becomes vanishingly small due to the typically long horizon in the AC
setting. To tackle this problem, [Vieillard et al., 2020b] propose to heuristically
design ζ to be a non-trivial value, which features the consideration of moving
averages.

Recall that in Eq. (A.7), ζ is computed by a function of the form:

ζ = C ′γCk
Eπk+1,d

πk [Aπk(s, a)]

∆̃
πk+1
πk

,

where C ′γ absorbs horizon-dependent constants and Ck is defined in Eq. (A.6).
We propose to remove C ′γ since it tends to zero as the horizon increases. Recall
also that ∆̃

πk+1
πk is the maximum difference of the expected advantage function

defined in Eq. (A.5). We propose the following novel ζ design:

ζCAC = clip

(
Ã

|ÃMaxDiff |
, 0, 1

)
, (A.11)
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Figure A.1: Training curves on the continuous control benchmark problems. The
solid curves show the mean and shaded regions the standard deviation over the
five independent trials. In all tasks CAC achieved comparable performance but
significantly stabilized learning.

where by following the moving average concept of [Vieillard et al., 2020b], we
update Ã and ÃMaxDiff as:

M = E s∼BK
a∼GQπk

[Aπk(s, a)]

Ã←

c, if M ≤ 0

(1− νA) Ã + νAM, else

ÃMaxDiff ← (1− νAMaxDiff ) ÃMaxDiff + νAMaxDiff M.

(A.12)

Here,M is the current estimate of Eπk+1,d
πk [Aπk(s, a)]. We propose to set an if-else

judgement here, as M < 0 indicates the updated policy has worse performance
than the current policy, we let Ã be a negative value c, hence enforcing ζ = 0.
This information is incorporated into Ã by exponential moving average with the
previous estimates. ÃMaxDiff attempts to approximate the maximum difference
∆̃
πk+1
πk . BK is a FIFO replay buffer storingK on-policy samples, and νA, νAMaxDiff ∈

[0, 1] are the hyperparameters controlling the average. Following [Vieillard et al.,
2020b], it is beneficial to have νAMaxDiff ≤ νA for smooth learning.

Computing ζ in Eq. (A.11) using the moving average in Eq. (A.12) is in spirit
similar to [Vieillard et al., 2020b]. However, they focus on general stationary
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Table A.1: The performance oscillation values of all algorithms for all environ-
ments. The bold numbers indicate the smallest performance oscillation values.
× indicates the algorithm failed to learn meaningful behaviors. CAC recorded
the smallest performance oscillation values for all the environments. PPO is the
only on-policy algorithm in the comparison.

‖OJ‖∞ ‖OJ‖2

PPO TD3 SAC
CAC
(ζ = 1)

CAC PPO TD3 SAC
CAC
(ζ = 1)

CAC

Ant 1979 4979 7793 7160 1811 359 510 642 591 297
HalfCheetah × 2337 3717 4200 1870 × 331 425 397 286
Hopper 1598 3515 2598 2944 1944 318 609 454 394 279
Humanoid × × 4115 3092 2199 × × 645 436 313
Walker2d 1673 3729 4577 4310 1345 330 461 499 334 183

policies. As Ã is an off-policy estimate of the on-policy term Eπk+1,d
πk [Aπk(s, a)],

it might corrupt the improvement guarantee. On the other hand, we focus on
entropy-regularized policies which allow one to bound the performance loss of
leveraging off-policy estimate Ã [Zhu and Matsubara, 2020, Theorem 3].

A.5 Experiments

As CAC combines concepts from ADP literature such as KL regularization and
conservative learning that have not seen applications in AC, it is interesting to
examine the combination against existing AC methods in challenging tasks. We
choose a set of high dimensional continuous control tasks from the OpenAI gym
benchmark suite [Brockman et al., 2016].

For comparison, we compare CAC with twin delayed deep deterministic policy
gradient (TD3) [Fujimoto et al., 2018] that comprehensively surveys the factors
causing poor performance of actor-critic methods, to examine the cautious learn-
ing mechanism. As CAC is based on the CPI that has also inspired TRPO and
PPO, we compare it with PPO which is improved over TRPO [Schulman et al.,
2017]. As PPO does not involve computing ζ, we include the curves when ζ = 1.
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We also compare with SAC [Haarnoja et al., 2018] which has similar architecture.
To better illustrate and quantify the stability during learning, we follow [Zhu

and Matsubara, 2020] to define the measure of performance oscillation:

∀k, such that Rk+1 −Rk < 0

‖OJ‖∞ = maxk |Rk+1 −Rk| ,

‖OJ‖2 =
√

1
N

∑N
k=1 (Rk+1 −Rk)

2,

(A.13)

where N is the steps of the learning and Rk refers to the cumulative reward re-
ported at k-th evaluation. Intuitively, ‖OJ‖∞ and ‖OJ‖2 measure the maximum
and average degradation during learning, respectively.

A.5.1 Comparative Evaluation

We run all algorithms with the same set of hyperparameters listed in Section ??
of the Appendix. All figures are plotted with statistics from 10 different random
seeds, with each performing 10 evaluation rollouts every 5000 environment steps.

Figure A.1 shows the learning curves of the algorithms. CAC achieved compa-
rable performance with other AC algorithms while significantly stabilized learning
curves. PPO’s learning speed was the slowest among all algorithms on all envi-
ronments, due to the on-policy nature of PPO which is sample-inefficient. Other
methods were able to leverage off-policy samples to quickly learn meaningful
behaviors. However, the fast learning came at a cost: except the relatively sim-
ple HalfCheetah-v2, on all environments these off-policy algorithms oscillated
wildly, especially on the challenging Humanoid-v2 where both PPO and TD3
failed to learn any meaningful behaviors, and the performance of SAC, CAC
with ζ = 1 degraded frequently. On the other hand, CAC traded off a little
bit slower learning for stability, exhibiting smooth curves. Indeed, the conver-
gence rate of CAC is O

(
e−(1−γ)

∑k
j=1 ζj

)
[Vieillard et al., 2020b], which emphasizes

stability more as ζ → 0.
The comparison on stability of the algorithms can be seen from the Table A.1

that summarized the values of ‖OJ‖∞ and ‖OJ‖2 for all algorithms. It provided
empirical support as CAC showed least oscillation during learning. This is in
contrast to other off-policy algorithms oscillated wildly during learning. Since
CAC with ζ = 1 still showed huge oscillation, it can be concluded that the
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Figure A.2: Top: The learning curves of derived methods of CAC on Ant-v2.
Bottom: The value of the mixture coefficient ζ.

mixture coefficient introduced in CAC is effective in preventing significant policy
degradation.

A.5.2 Ablation study on mixture coefficient

In this section we conduct an ablation test to study the effectiveness of CAC as
well as the proposed ζ design in Section A.4.2. We compare the following setup:

1. Full. This is CAC with the proposed ζCAC in Eq. (A.12). The curve is
same as in Figure A.1.

2. No KL. We remove KL regularization from Eq. (A.3). This corresponds
to SAC with the cautious actor.

3. DSPI. This corresponds to Deep Safe Policy Iteration [Zhu and Matsub-
ara, 2020] that uses the ζ suggested by [Vieillard et al., 2020b].
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4. No BK . We replace the on-policy replay buffer BK with off-policy B as
suggested by [Vieillard et al., 2020b].

5. No If-Else. This corresponds to removing the if term in Eq. (A.12) and
learns with only the else condition.

As is obvious from Figure A.2, while removing the if-else judgement accel-
erated learning, it ignored the warning from M < 0 that the updated policy was
poorer. The consequent curve oscillated drastically as the result of aggressive ζ
in the bottom image. Removing KL regularization induced learning curve similar
with Full in the beginning, but the performance degraded significantly since the
middle stage and failed to recover. This is probably due to the policies were
corrupted by error. Using off-policy replay buffer B demonstrated stable learn-
ing. This is expected as the agent was forced to learn cautiously by the CAC
mechanism. On the other hand, the learning was slow as off-policy samples were
not as informative as on-policy ones, as we observed small ζ values in the bottom
figure.

It is most interesting to examine the DSPI case where ζ was set according
to the suggestion of [Vieillard et al., 2020b]. Though this scheme works well in
Atari games, the resulting algorithm failed to learn any meaningful behaviors in
the challenging control tasks with continuous action spaces. This is because they
estimate with the entire off-policy replay buffer B which tends to produce very
large estimate of ∆̃

πk+1
πk , leading to vanishingly small ζDSPI and subsequent poor

performance.

A.6 Conclusion

We have presented CAC, a novel actor-critic algorithm by introducing several con-
cepts from the approximate dynamic programming literature. The cautiousness
in CAC consists in the doubly conservativeness: the actor follows conservative
policy iteration [Kakade and Langford, 2002] that ensures monotonic improve-
ment and the critic exploits conservative value iteration [Kozuno et al., 2019,
Vieillard et al., 2020a] that has been shown to yield state-of-the-art guarantees in
ADP literature. Our key observation was by introducing an entropy-regularized
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critic the unwieldy interpolated actor update can be simplified significantly while
still ensuring robust policy improvement. CAC performed comparable to the
state-of-the-art AC methods while significantly stabilized learning on the bench-
mark control problems with high dimensional continuous state-action spaces. An
interesting future direction is to incorporate other entropy for different purposes.
For example, α-divergence could be used to achieve sparse optimal policies.
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