
Doctoral Dissertation

Massively Parallel Empirical Dynamic Modeling

for Network Traffic Analysis

Wassapon Watanakeesuntorn

Program of Information Science and Engineering

Graduate School of Science and Technology

Nara Institute of Science and Technology

Supervisor: Professor Hajimu Iida

Software Design and Analysis Laboratory (Division of Information Science)

Submitted on September 16, 2022

A Doctoral Dissertation

submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Wassapon Watanakeesuntorn

Thesis Committee:

Supervisor Hajimu Iida

(Professor, Division of Information Science)

Kazutoshi Fujikawa

(Professor, Division of Information Science)

Kohei Ichikawa

(Associate Professor, Division of Information Science)

Keichi Takahashi

(Assistant Professor, Tohoku University)

Gerald M. Pao

(Assistant Professor, Okinawa Institute of Science and Technology)

Chawanat Nakasan

(Lecturer, Kasetsart University)

Massively Parallel Empirical Dynamic Modeling

for Network Traffic Analysis∗

Wassapon Watanakeesuntorn

Abstract

A nonlinear dynamical system is a dynamical system in which the next state

of the system is described as a nonlinear function of time and current state. Mod-

eling a nonlinear dynamical system is one of the challenging topics. Empirical

Dynamic Modeling (EDM) is a data-driven framework for modeling nonlinear dy-

namical systems. EDM has traditionally been used to model nonlinear dynamical

systems in biology, neurology, oceanography, and other fields. However, EDM is

rarely applied in computer science. In computer science, time series prediction

is a popular topic that many researches propose multiple machine learning tech-

niques to tackle it. This presents an opportunity to introduce EDM into computer

science.

In this dissertation, I aim to utilize EDM to predict incoming traffic in a

network and classify anomalous traffic in real-time. To achieve this goal, I tackle

the following three challenges: (1) accelerating EDM computation to enable real-

time analysis of network traffic, (2) capturing network traffic in an SDN in real-

time with low-overhead, and (3) applying EDM for network traffic prediction.

First, a new EDM library, named mpEDM, is implemented that supports large-

scale analysis on HPC systems. mpEDM uses an improved EDM algorithm and

it is fully optimized to accelerate the computation. mpEDM is up to 1,530×
faster compared to an existing EDM implementation. Second, a transparent

and low-overhead monitoring system for SDN-based networks, named Opimon,

is developed. Opimon monitors a network by interposing a proxy between the

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Sci-

ence and Technology, September 16, 2022.

i

controller and switches and intercepting every control message exchanged between

them. This design allows Opimon to be compatible with any SDN switch or

controller. The overhead imposed to the network latency by Opimon is less

than 0.5 𝜇s at maximum. Finally, I leverage EDM to predict the network traffic

in SDN environments. EDM is used to predict the incoming network traffic

and detect DDoS attacks. I compared the prediction and classification results

with traditional machine learning algorithms, which are auto regression (AR)

and Long short-term memory (LSTM). The results show that EDM is capable

of predicting the time series faster than LSTM and the classification result using

EDM prediction provides higher classification accuracy than the AR-based model.

Keywords:

Empirical Dynamic Modeling (EDM), High Performance Computing (HPC), Software-

Defined Networking (SDN), Machine Learning, Time Series Analysis

ii

Contents

1. Introduction 1

1.1 Motivation and Goal . 1

1.2 Organization of the Dissertation 6

2. AMassively Parallel Implementation of Empirical Dynamic Mod-

eling (EDM) 7

2.1 Introduction . 7

2.2 Background . 8

2.2.1 Causal Map of the Zebrafish Brain at Single Neuron Reso-

lution . 8

2.2.2 Empirical Dynamic Modeling 9

2.2.3 cppEDM . 12

2.3 mpEDM . 13

2.3.1 Original Algorithm . 13

2.3.2 Improved Algorithm . 15

2.3.3 Inter-Node Parallelism . 18

2.3.4 Intra-Node Parallelism . 20

2.4 Evaluation . 21

2.4.1 Evaluation Environment 21

2.4.2 Performance Evaluation 22

2.4.3 Scientific Outcomes . 29

2.5 Conclusion & Future Work . 31

3. A Transparent, Low-overhead Monitoring System for OpenFlow

Networks 32

3.1 Introduction . 32

3.2 Related Work . 36

3.2.1 Network Monitoring . 36

3.2.2 Support Vector Machine and Deep Learning 38

3.2.3 DDoS Attack Detection 39

3.3 Opimon . 40

3.3.1 High-level Architecture . 41

iii

3.3.2 Monitoring Module . 41

3.3.3 Visualization Module . 47

3.3.4 Security Analysis Module 51

3.4 Evaluation . 57

3.4.1 Correctness of Monitoring Results 57

3.4.2 Overhead Imposed by Opimon 59

3.4.3 Performance Comparison to OpenNetMon 63

3.4.4 Accuracy of DDoS Attack Detection 63

3.5 Conclusion & Future Work . 70

4. Network Traffic Time Series Analysis with Empirical Dynamic

Modeling (EDM) 72

4.1 Introduction . 72

4.2 Related Work . 73

4.2.1 kEDM: a performance-portable implementation of EDM . 73

4.2.2 Other Time Series Prediction Methods 73

4.3 Implementation . 77

4.4 Evaluation . 80

4.4.1 Incoming Network Traffic Prediction 81

4.4.2 DDoS Attack Traffic Classification 88

4.5 Conclusion & Future Work . 89

5. Conclusion 90

5.1 Summary . 90

5.2 Future Work . 91

Acknowledgements 93

References 95

List of Publication 106

iv

List of Figures

1 Concept of a high-performance EDM with mpEDM 3

2 Concept of a transparent SDN monitoring system with Opimon . 4

3 Concept of network traffic predictions with EDM 5

4 Basic idea behind Empirical Dynamic Modeling (EDM) 10

5 Strong scaling performance (absolute runtime) 24

6 Strong scaling performance (relative speedup) 24

7 Breakdown of simplex projection (average runtime per time series) 25

8 Breakdown of cross mapping (average runtime per time series) . . 26

9 Runtime with varying number of time series (10,000 time steps) . 27

10 Runtime with varying number of time steps (1,000 time series) . . 27

11 Breakdown of CCM - varying number of time series (10,000 time

steps) . 28

12 Breakdown of CCM - varying number of time steps (1,000 time

series) . 28

13 GPU speedup with varying number of time steps (1,000 time series) 29

14 Scientific results . 30

15 An OpenFlow network . 33

16 Comparison between conventional and proposed monitoring system 35

17 Support Vector Machine (SVM) 38

18 High-level Architecture of Opimon 41

19 Monitoring Module . 42

20 Visualization of the virtual network using Opimon 46

21 Simple deep feed forward (DFF) neural network 53

22 Overview of data pre-processing 54

23 Visualization of the PRAGMA-ENT network using Opimon . . . 59

24 Experimental Environment . 60

25 Controller latency (Ryu L2 learning switch) 62

26 Controller throughput (Ryu L2 learning switch) 62

27 Controller latency (OpenNetMon routing switch) 64

28 Controller throughput (OpenNetMon routing switch) 64

29 Relationship between 𝛾, 𝑑, and accuracy 67

v

30 Relationship between 𝛾, 𝑑, and calculation time for training the

model . 67

31 Relationship between 𝛾, 𝑑, and calculation time for testing the model 68

32 Distributed Denial of Service (DDoS) attack 72

33 The structure of Recurrent Neural Network (RNN) 75

34 The structure of Long Short-Term Memory (LSTM) 75

35 Overview to apply EDM and ML for DDoS attack classification . 77

36 Time series splitting for inputs of AR and LSTM when 𝐸 = 3 and

𝜏 = 2 . 80

37 Comparison of RMSE when predicting flags count S with τ=1 . 82

38 Comparison of prediction value when predicting flags count S

between three models and observation (1,200 seconds) 83

39 Comparison of prediction value when predicting flags count S

between three models and observation (120 seconds) 83

40 Comparison of RMSE when predicting packets count with τ=1 . 84

41 Comparison of prediction value when predicting packet counts

between three models and observation 84

42 Comparison of average runtime of every prediction target 85

43 Comparison of DDoS attack classification accuracy with τ=1 . . . 86

List of Tables

1 Datasets used in the evaluation 22

2 Performance comparison between cppEDM and mpEDM 22

3 Example of OpenFlow Messages Types 34

4 Fields in flow mods table . 49

5 Fields in switch port table . 50

6 Fields in topology table . 50

7 Fields in port stats table . 51

8 Time Window Aggregated Features 55

9 Packet Specific Features . 56

10 Number of samples in each dataset 57

11 Virtual machines used for evaluation 61

vi

12 Confusion matrix . 65

13 Best accuracy from each kernels 66

14 Time used for each kernel . 66

15 Best results in terms of accuracy for each algorithm 69

16 Features of time series . 78

17 Time series dataset . 78

18 Hyperparameters for predicting important features of set2 normal 82

19 The highest classification accuracy and F1-scores of the classifica-

tion results . 86

20 Confusion matrix for Observation only 86

21 Confusion matrix for EDM . 87

22 Confusion matrix for AR . 87

23 Confusion matrix for LSTM . 87

vii

1. Introduction

A dynamical system is a system where its state evolves over time based on a fixed

set of rules. A nonlinear dynamical system is a dynamical system in which the

next state of the system is described as a nonlinear function of time and cur-

rent state [1]. Nonlinear dynamical systems commonly appear in a wide variety

of problems in science and engineering [2, 3]. Since even a simple nonlinear dy-

namical system can exhibit extremely complex and seemingly unpredictable (i.e.,

chaotic) behaviors, finding out the underlying rules of a nonlinear dynamical sys-

tem and predicting its future state is challenging.

Empirical Dynamic Modeling (EDM) is a data-driven framework for modeling

nonlinear dynamical systems. EDM is non-parametric, meaning that it does not

assume any prior knowledge of the underlying rules of a dynamic system to be

modeled. Instead, it reconstructs the trajectory of a system in the state space and

uses the reconstructed trajectory to model the system. EDM is capable of pre-

dicting the future state of a system, determining the complexity of a system, and

finding causal relationships between variables in a system. EDM has traditionally

been used to model nonlinear dynamical systems in biology, neurology, oceanog-

raphy, and other fields [4–7]. However, EDM has rarely been applied in computer

science [8]. In computer science, time series prediction is a popular topic that

many researches propose multiple machine learning techniques to tackle it [9].

This presents an opportunity to introduce EDM into computer science field.

1.1 Motivation and Goal

Predicting computer network traffic is one of the challenging tasks. In particular,

the recently emerged Software-Defined Networking (SDN), which provides flexi-

bility to the network control, makes this problem even more challenging. This is

because the flexible network control and management enabled by SDN allow the

network traffic to change rapidly. This behavior of SDN traffic could be viewed as

a nonlinear dynamical system, which is suitable for analyzing with EDM. There-

fore, in this dissertation, I aim to utilize EDM to predict network traffic in SDN.

In particular, I use EDM to predict incoming traffic in a network and classify

anomalous traffic in real-time. To achieve this goal, I tackle the following three

1

challenges:

1. Accelerating EDM computation to enable real-time analysis of

network traffic: A high-performance EDM library is needed to predict

large-scale time series. The current de facto standard EDM implementation,

cppEDM, is designed for commodity PCs and does not support modern

High-Performance Computing (HPC) hardware such as GPUs that enable

large-scale analysis. cppEDM also suffers from performance issues due to

redundant computation. As a result, processing long time series takes hours.

2. Capturing network traffic in an SDN in real-time with low-overhead:

Time series of the network is used as an input for network traffic prediction

of EDM. The network information is required to be collected from actual

network traffic before converting into a time series dataset. To collect the

highest-quality network traffic dataset, a low-overhead SDN monitoring sys-

tem is needed to precisely collect network traffic information in real-time

and feed it as an input to EDM. The example of network information is

network throughput, traffic volume, and packet headers. However, a low-

overhead and framework-independent SDN monitoring system does not yet

exist. Existing monitoring systems either rely on a specific controller frame-

work or require a modification to the controller. This makes it difficult to

monitor production network without causing interference, which makes it

difficult to monitor the network and convert the network traffic data into

the time series.

3. Applying EDM for network traffic prediction: EDM is introduced to

replace machine learning for computer network prediction. Computer net-

work prediction with EDM is executed with the combine of the achievements

from mpEDM and Opimon. The monitored network traffic is processed to

time series by Opimon and fed as an input of the EDM library to predict the

incoming network traffic. The results of the prediction are compared with

existing machine learning techniques to evaluate the capability of EDM in

network traffic prediction.

To tackle the first challenge, I implement a new EDM library, named mpEDM,

that supports a large-scale analysis on HPC systems. mpEDM uses an improved

2

Time Series of

Each Neurons

Output:

Causal Relationship

Master

Worker 2Worker 1 Worker 3 Worker 511

Parallel
File System

Input:

Fish Neurons

TS1
TS3

TS4

TS2

2 CPUs

4 GPUs

2 CPUs

4 GPUs

2 CPUs

4 GPUs

2 CPUs

4 GPUs

EDM

Library

2 CPUs

4 GPUs

Worker 1

Figure 1: Concept of a high-performance EDM with mpEDM

EDM algorithm from cppEDM and it is fully optimized for modern GPU-centric

supercomputers to accelerate the computation. It fully utilizes hardware re-

sources such as GPUs and SIMD units. It also supports intra-node and inter-node

parallelism, which is not supported in cppEDM. Figure 1 shows the concept of

mpEDM along with its first application, building a causal map of neurons in a

Zebrafish brain. The performance of mpEDM was evaluated on the AI Bridging

Cloud Infrastructure (ABCI), one of the most powerful supercomputers in Japan.

I compared the performance of mpEDM with cppEDM using the same dataset

and hardware resources. The results show that mpEDM reduces the runtime from

8.5 hours of cppEDM down to 20 seconds, which is 1,530× faster. Additionally,

mpEDM is capable of processing a 13× larger dataset under 200 seconds.

To tackle the second challenge, I develop Opimon, a transparent and low-

3

Monitoring
Module

Database

Switches

OpenFlow

Controller

Visualization

Module

Data Plane Traffic

Control Plane

Traffic

Security Analysis

Module

Web Interface

Figure 2: Concept of a transparent SDN monitoring system with Opimon

overhead monitoring system for SDN-based networks. The concept of Opimon

is shown in Fig. 2. Opimon monitors a network by interposing a proxy between

the controller and switches and intercepting every control message exchanged

between them. This design allows Opimon to be compatible with any SDN switch

or controller. Opimon monitors the network topology, switch statistics, and flow

tables in a SDN network and visualizes the result through a web interface in real-

time. The information from Opimon is used for visualization on web interface

and analysis of the network traffic in the SDN network to detect issues on the

network, such as Distributed Denial of Service (DDoS) attacks. Additionally, the

monitored network traffic is converted the network packets into time series for

feeding to EDM. I tested the functionalities of Opimon on a virtual network and

a large-scale international SDN testbed. I also measured the monitoring overhead

4

SDN
Controller EDM-based Model

Network

Metrics

Monitoring
Module

Attacker

Attack

Traffic

Victim

Control

Traffic

Time

N
et

w
or

k
M

et
ric

s

Actual Prediction
Normal

Traffic

DDoS

Traffic

Figure 3: Concept of network traffic predictions with EDM

of Opimon. The results indicated that the overhead in terms of latency is less

than 0.5 𝜇s at maximum, which is just 3% compared to the total latency.

To solve the third challenge, I leverage EDM to predict the network traffic

in SDN environments. The concept of this work is shown in Fig. 3. In this

research, EDM is used to predict the future values of various network metrics (e.g.,

throughput of the network traffic) from recent observations. Simplex projection

function, one of the fundamental EDM algorithms, is used to predict and evaluate

the prediction. In the preliminary experiment, the data plane dataset only is used

to evaluate the predictions. Opimon is used to collect, pre-process, and extract

various network metrics from the network traffic. kEDM, an improved version

of mpEDM, is used to carry out EDM computations. The prediction result is

compared with the prediction results from auto regression (AR) and long short-

term memory (LSTM). A classification model is trained to distinguish between

normal traffic and anomalous traffic, which is assumed to be a DDoS attack

traffic. The results show that EDM is capable of predicting the time series faster

than LSTM and the classification result using EDM prediction provides higher

classification accuracy than the AR-based model.

5

1.2 Organization of the Dissertation

The rest of this dissertation is structured as follows. Chapter 2 describes the

design and implementation of a massive parallel implementation of Empirical

Dynamic Modeling (EDM) library, mpEDM. It also describes the first applica-

tion to evaluate the performance of mpEDM, which is a causal inference of a

whole Zebrafish brain at single neuron resolution. Chapter 3 describes the design

and implementation of an OpenFlow network monitoring system, Opimon. This

chapter describes the architecture of Opimon to monitor the network, visualize

the information of the network on web interface, and detect an DDoS attack in

the network with machine learning. I also describe the experimental results of

Opimon on a simulated network and a real OpenFlow network testbed. In this

chapter, I benchmark Opimon for evaluating the practicality of the tool under

normal and heavily-loaded traffic conditions. Additionally, I describe the prelimi-

nary result of the performance comparison of several machine learning techniques

in terms of detection accuracy and runtime. Chapter 4 describes traffic predic-

tion and classification with EDM. This chapter describes a feasibility study of

applying EDM to network traffic predictions. I also compared the predicted per-

formance of EDM, auto regression (AR), and long short-term memory (LSTM)

to predict the upcoming traffic loads. I also used the predicted traffic results

to classify between normal traffic and DDoS attack traffic. Finally, Chapter 5

concludes this dissertation and discusses future work.

6

2. A Massively Parallel Implementation of Em-

pirical Dynamic Modeling (EDM)

2.1 Introduction

Reverse-engineering and building a digital reconstruction of the brain is one of

the greatest scientific challenges of today. A recent study on the mouse cortex [10]

showed that 97% of the possible connections between neurons exist. This result

suggests that it is likely more informative to investigate the dynamic interac-

tions between neurons rather than the static connectivity between them to fully

understand the function of the brain. Based on this insight, mathematical and

computational tools are being built to analyze the dynamic interactions between

neurons based on Empirical Dynamic Modeling (EDM).

EDM is a nonlinear time series causal inference framework based on the gen-

eralized Takens’ embedding theorem on state space reconstruction [11]. EDM is

used to study and predict the behavior of nonlinear dynamical systems. Conver-

gent Cross Mapping (CCM) is one of the EDM algorithms that allows to estimate

the existence and strength of the causal strength between two time series in a

dynamical system [12].

This study utilizes CCM to infer the causal relationships between every neu-

ron in an entire brain and construct a causal map that describes the dynamic

interactions among neurons. For this purpose, the neural activity (i.e. firing

rate) of an entire larval zebrafish brain (Danio rerio) have been recorded at

singe-neuron resolution by using light sheet fluorescence microscopy. The origi-

nal implementation of EDM, cppEDM, has mostly been used for individual time

series of relatively short length and and mostly small numbers of variables for

its computational cost. Since a larval zebrafish brain contains approximately 105

neurons, a staggering number of 1010 cross mappings need to be performed in

total. CCM of this enormous scale has never been achieved so far because of the

sheer amount of computation required.

The goal of this paper is to develop a highly scalable and optimized implemen-

tation of EDM that is able to analyze the whole zebrafish brain dataset within

7

a reasonable time. I present mpEDM1, a parallel distributed implementation of

EDM optimized for execution on modern GPU-centric supercomputers. I im-

prove the original algorithm in cppEDM to reduce redundant computation and

optimize the implementation to fully utilize hardware resources such as GPUs

and SIMD units.

An evaluation on AI Bridging Cloud Infrastructure (ABCI), Japan’s most

high performance supercomputer as of today, demonstrated the unprecedented

performance of mpEDM. mpEDM was used to analyze a dataset containing the

activity of 53,053 neurons in only 20 seconds using 512 ABCI nodes. In contrast,

cppEDM took 8.5 hours to analyze the same dataset using the same number of

nodes [13]. Furthermore, mpEDM analyzed a larger dataset containing 101,729

neurons in 199 seconds on 512 nodes. To my knowledge, this is the largest CCM

calculation achieved to date. This result shows the potential for mpEDM and

ABCI to analyze even larger datasets in the future.

2.2 Background

2.2.1 Causal Map of the Zebrafish Brain at Single Neuron Resolution

To understand the human brain activity dynamics with a complexity of 1011

neurons and 1015 synapses at single neuron resolution is currently a technically

impossible task. Similarly a mouse brain with 7.6 × 107 neurons is not tractable

because mammalian brains are opaque and it is impossible to image a complete

mouse brain. With this in mind, the zebrafish embryo is an attractive model

system with 120,000 neurons and transgenic technology as well as natural brain

transparency. The zebrafish embryo is sufficiently complex to exhibit interesting

behaviors and is technologically feasible to study to infer basic principles of sys-

tems neuroscience. Even in the case of the larval zebrafish with about 120,000

neurons we do not have the physical connectivity map, that is the connectome

of the larval zebrafish, nor do we have the synaptic strengths which are pieces of

information required to understand the brain starting from the physical connec-

tivity.

Complicating this notion, recent work from the mouse brain shows that 97%

1https://github.com/keichi/mpEDM

8

of possible physical connections exist within the mouse cortex thus making it

difficult to analyze. Given this difficulty, using an analogy of a city; to under-

stand how a city works it will be easier to understand the city from the traffic

patterns than from the street map. Thus, we wished to analyze the fish brain at

single neuron resolution from a network activity dynamics perspective. Although

imperfect, neural activity imaging data of an entire brain at single cell resolution

in a behaving larval zebrafish (a transparent vertebrate) is used to extract all

relationships in an intact vertebrate brain.

To achieve this, Whole brain neural activity patterns are recorded in mul-

tiple animals experiencing hypoxia using a Selective Plane Illumination Micro-

scope (SPIM) [14]. The data was obtained from the entire 5-day-old larval brain

(120,000 neurons) at 2 Hz in response to hypoxia for varying amounts of time

typically ranging from 1,500 time steps to up to 8,000+ [15].

CCM allows the inference of causation from nonlinear time series even with

substantial noise and complete absence of correlation [16, 17]. CCM and other

tools from the EDM framework are used for the inference of existence, strength

and sign of causal relationships within the neural activity network of the trans-

parent larval fish brain [14]. CCM determines whether and how much causality

exists between individual neurons. The adjacency in the network is determined

by time delay cross mapping [17]. Predictive accuracy values give the interac-

tion strength allow us to infer relationships within the neural network without

observing the physical connectivity. A test case has collected multiple data sets

of lengths around 1600 time steps at 2 Hz which contain 50,000–80,000 active

neurons in most cases. This data has been analyzed and show that the generated

time series are suitable for causal network inference using the EDM framework

and thus demonstrated a proof of principle of computational tractability.

2.2.2 Empirical Dynamic Modeling

EDM is a mathematical framework designed for studying nonlinear dynamical

systems. EDM is based upon the concept of state space reconstruction (SSR) [18].

Takens’ theorem states that the attractor manifold of a multivariate dynamical

system can be reconstructed from time lagged coordinates of a single time series

variable [19]. Figure 4 illustrates the concept of state spaces reconstruction. In

9

x(t)
x(t-τ)

x(t-2τ)

y(t)
y(t-τ)

y(t-2τ)

x(t)
y(t)

z(t)

Reconstructed Manifold Mx Reconstructed Manifold My

Manifold M

x(
t)

t

y(
t)

t

z(
t)

t

Time Delayed Embedding

Time series

Smooth Mapping

Predictable?

Figure 4: Basic idea behind Empirical Dynamic Modeling (EDM)

10

this example, three causally related time series variables 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) that
constitute a dynamical system form an attractor manifold 𝑀 in the state space.

A shadow manifold 𝑀𝑥 can be reconstructed using the time delayed embeddings

of 𝑥 (𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑥(𝑡 − 2𝜏), . . .), where 𝜏 denotes the time lag. In the same

manner, lags of 𝑦 form a shadow manifold 𝑀𝑦. Takens’ theorem states that the

reconstructed manifolds 𝑀𝑥 and 𝑀𝑦 preserve essential mathematical properties

(such as the topology) of the true manifold 𝑀. In particular, there exist smooth

mappings between 𝑀, 𝑀𝑥, and 𝑀𝑦, suggesting that neighbors in 𝑀𝑥 are neighbors

in 𝑀𝑦 as well.

Simplex projection is a nonlinear forecasting algorithm often used for estimat-

ing the dimensionality of a dynamical system. In simplex projection, the input

time series is split into two halves: library 𝑥 and target 𝑦. Both halves are embed-

ded into 𝐸-dimensional state space by using delayed embeddings. Given a point

y(𝑡𝑝) = (𝑦(𝑡𝑝), 𝑦(𝑡𝑝 −1), . . . , 𝑦(𝑡𝑝 −𝐸 +1)) in the target state space, its 𝐸 +1 near-

est neighbors (i.e. vertices of the simplex enclosing y(𝑡𝑝)) are searched from the

embedded library. Suppose those neighbors are x1(𝑡1),x2(𝑡2), . . . ,x𝐸+1(𝑡𝐸+1). A
forecast y(𝑡𝑝 + 1) can be made by averaging the future of the neighbors in the

library: x1(𝑡1 + 1),x2(𝑡2 + 1), . . . ,x𝐸+1(𝑡𝐸+1 + 1). This prediction is performed

for every point in y and the results are compared with the true 𝑦 to evaluate the

prediction accuracy. This entire procedure is repeated for different 𝐸 values and

the 𝐸 that achieves the highest prediction accuracy is determined as the optimal

embedding dimension of the dynamical system.

CCM determines the existence and strength of causality between two time

series variables [20]. It works similar to simplex projection, but instead of pre-

dicting within a single time series, CCM predicts one time series from another.

If 𝑦 can be predicted from 𝑥 with significant accuracy, I conclude that 𝑦 CCM

causes 𝑥.

There have been extensive studies on causal inference. Structural Causal

Model (SCM) is one of the most popular causal models [21] based on statistical

modeling of equilibrium systems. In contrast to SCM, EDM is based on the prin-

ciple of state-space reconstruction shown in Takens’theorem of non-equilibrium

systems. Granger causality is another causal inference technique based on statis-

tical modeling [22]. Granger causality however as stated by Granger himself, only

11

works with linear and stochastic systems and cannot be applied to a nonlinear dy-

namical system. Compared to these alternatives, EDM is better suited to find the

causal relationships in a nonlinear dynamical system such as the brain. Tajima et

al. [23] also applied embedding theorems in nonlinear state-space reconstruction

to analyze a dynamic system. They also built on the causality inference method

from Sugihara et al. [12] in their work.

EDM has been successfully applied to diverse research fields [2]. In neuro-

science, CCM was applied to identify the effective connectivity between brain

areas from magnetoencephalography (MEG) data [4]. In ecology, Grziwotz et al.

found the causal relationships between the environment and mosquito abundance

by using CCM [5]. Environmental factors, such as temperature, precipitation,

dew point, air pressure, and mean tide level were identified to causally affect

mosquito abundance. Ma et al. applied simplex projection to forecast wind gen-

eration [6]. In [7], an EDM algorithm called S-Map [24] was used to find the

relationship between harvested and unharvested fish in terms of size, age, and

others. Luo et al. applied CCM to estimate the causal relationships of user be-

havior in an online social network [25]. These use cases demonstrate the wide

applicability of EDM to analyze nonlinear dynamical systems.

2.2.3 cppEDM

cppEDM [26] is the latest implementation of the EDM framework. cppEDM is a

general purpose C++ library used as a backend by rEDM [27] and pyEDM [28],

which are EDM implementations for the R and Python language, respectively.

Two major issues have been identified in cppEDM that hinder large-scale

analysis on HPC systems: redundant computation and lack of GPU support.

Since cppEDM is a general purpose library, it provides a one-to-one cross map-

ping function to identify the causality between a selected combinations of time

series variables. The all-to-all cross mapping function is implemented by reusing

the one-to-one cross mapping function. This results in redundant computation.

Additionally, cppEDM is a reference implementation of EDM; therefore, it is

not optimized for a specific hardware architecture such as GPUs. Furthermore,

cppEDM suffers from significant load imbalance among workers because it per-

forms static decomposition of the problem. In fact, a performance evaluation in

12

a previous work showed that the runtime of workers varied greatly from 5 hours

to 8.5 hours [13].

2.3 mpEDM

In this section, I first outline the original causal inference algorithm in cppEDM.

Then, I describe the algorithmic improvement and the design of the inter-node

and intra-node parallelization in mpEDM.

2.3.1 Original Algorithm

Algorithm 1 outlines the causal inference algorithm in cppEDM. The input to

the algorithm is an 𝐿 × 𝑁 array 𝑡𝑠, where 𝐿 is the number of time steps within a

time series and 𝑁 is the number of time series. In addition to the input dataset,

maximum embedding dimension 𝐸𝑚𝑎𝑥 and time lag τ need to be supplied. The

output is an 𝑁 × 𝑁 casual map ρ. The algorithm consists of two phases: (1)

simplex projection and (2) CCM. Simplex projection finds the optimal embedding

dimension for each time series. CCM estimates the causal relationship between

two time series using the optimal embedded dimension obtained in the first phase.

Note that in the original definition of CCM, predictions are made multiple times

using randomly subsampled library sets of different sizes and it is tested whether

increasing the library set size improves the prediction accuracy. This research

excluded this step since the convergence test passes in most cases if the prediction

using the full library set achieves high accuracy.

In the first phase, simplex projection (line 1–11) takes a time series in the

dataset and splits into 𝑙𝑖𝑏𝑟𝑎𝑟𝑦, the first half, and 𝑡𝑎𝑟𝑔𝑒𝑡, the second half (line

3–4). Next, both library and target are embedded into 𝐸-dimensional space using

time delayed embeddings. A 𝑘-nearest neighbors (kNN) search is performed in

the state space to find the 𝐸 + 1 nearest target points from each library point

(line 5). The search results are stored in two lookup tables 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠,

both of which are two-dimensional arrays of shape 𝐿 × (𝐸 + 1). Element (𝑖, 𝑗) in
the indices array is the index of the 𝑗-th nearest target point from library point

𝑖, whereas element (𝑖, 𝑗) in the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 array is the Euclidean distance between

the library point 𝑖 and its 𝑗-th nearest target point. The 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 array is then

13

Algorithm 1: Causal Inference in cppEDM

Input: Dataset 𝑡𝑠 (𝑁 time series of length 𝐿), maximum embedding

dimension 𝐸𝑚𝑎𝑥

Output: 𝑁 × 𝑁 causal map ρ

// Phase 1: Simplex projection

1 for 𝑖 ← 1 to 𝑁 do

2 for 𝐸 ← 1 to 𝐸𝑚𝑎𝑥 do

3 𝑙𝑖𝑏𝑟𝑎𝑟𝑦← First half of 𝑡𝑠[𝑖]
4 𝑡𝑎𝑟𝑔𝑒𝑡 ← Second half of 𝑡𝑠[𝑖]
5 𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠← kNN(𝑙𝑖𝑏𝑟𝑎𝑟𝑦, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝐸)
6 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠←normalize(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)
7 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛← lookup(𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠, 𝑙𝑖𝑏𝑟𝑎𝑟𝑦, 𝐸)
8 ρ[𝐸] ← corrcoef(𝑡𝑎𝑟𝑔𝑒𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)
9 end

10 𝑜𝑝𝑡𝐸 [𝑖] ← argmax
𝐸

ρ[𝐸]

11 end

// Phase 2: CCM

12 for 𝑖 ← 1 to 𝑁 do

13 for 𝑗 ← 1 to 𝑁 do

14 𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠← kNN(𝑡𝑠[𝑖], 𝑡𝑠[𝑖], 𝑜𝑝𝑡𝐸 [𝑗])
15 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠←normalize(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)
16 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛← lookup(𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠, 𝑡𝑠[𝑗], 𝑜𝑝𝑡𝐸 [𝑗])
17 ρ[𝑖, 𝑗] ← corrcoef(𝑡𝑠[𝑗], 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)
18 end

19 end

14

converted to exponential scale and each row is normalized (line 6). A one step

ahead prediction of a target point is made by (1) obtaining the indices of its 𝐸 +1
library neighbors from 𝑖𝑛𝑑𝑖𝑐𝑒𝑠, (2) obtaining the one step ahead values of those

library points from 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 and (3) computing a weighted average of the future

library points using 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 (line 7). Finally, Pearson’s correlation coefficient

is computed to evaluate the predictive skill of the simplex projection using the

prediction results and real observed withheld values (line 8). This is repeated for

every 𝐸 ranging from 1 to 𝐸𝑚𝑎𝑥 (≤20 in practice). The 𝐸 value that achieves the

highest accuracy is determined to be the optimal embedding dimension for the

time series and stored in 𝑜𝑝𝑡𝐸 (line 10).

In the second phase, CCM (line 12–19) works similar to simplex projection

but predicts between two different time series. A given 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 time series is used

to cross predict another 𝑡𝑎𝑟𝑔𝑒𝑡 time series in the dataset to evaluate whether the

latter is the cause of the former. It computes and normalizes the kNN tables from

the library time series (line 14–15) and uses the tables to predict the target time

series (line 16). Note that simplex projection predicts within the same time series

while CCM predicts across two different time series. Therefore, the kNN tables

computed in the simplex projection phase cannot be reused in the CCM phase.

The correlation between the predicted values and the actual values represents

strength of causality (line 17). In this manner, causal inference is performed for

all combinations of time series in the dataset.

I have profiled cppEDM and found out that over 97% of the total runtime is

spent in the kNN search. In addition, I have discovered that the time delayed

embedding in cppEDM replicates the time series 𝐸+1 times and causes significant

memory overhead.

2.3.2 Improved Algorithm

The key observation behind the algorithmic improvement is that the kNN lookup

table for CCM is constructed from the library time series only, and the target

time series is not used. This suggests that once the kNN lookup table is computed

for a particular library time series, the precomputed table can be reused to make

predictions for every target time series. This improvement is trivial if 𝑁 is in the

same order as 𝐸𝑚𝑎𝑥, which was the case in previous use cases of EDM. However,

15

in this use case, 𝑁 is equal to the number of active neurons in a zebrafish brain,

which is roughly 105. Therefore, the potential speedup becomes significantly

large.

Algorithm 2 shows the pseudocode of the improved causal inference algorithm

in mpEDM. The simplex projection algorithm is unchanged from cppEDM but its

kNN and lookup functions are parallelized and optimized. The CCM algorithm

in mpEDM is improved in the following manner. For each library time series,

I first compute the kNN lookup tables for every embedding dimension ranging

from 1 to 𝐸𝑚𝑎𝑥 (line 4–7). Then, I iterate through all 𝑡𝑎𝑟𝑔𝑒𝑡 time series and use

the precomputed lookup table for the optimal embedding dimension of the 𝑡𝑎𝑟𝑔𝑒𝑡

time series to predict the 𝑡𝑎𝑟𝑔𝑒𝑡 time series (line 9–10). Finally, I compute the

correlation between the prediction and the actual 𝑡𝑎𝑟𝑔𝑒𝑡 to estimate the causality

(line 11).

Algorithms 3 outlines the kNN function for CPU. I first calculate the all-to-all

distances between every library and target point in the state space. Note that

I do not explicitly create the time series embeddings on memory but I compute

them on-the-fly to reduce memory footprint and increase cache hit. In addition,

both 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 are stored in row-major format to match the access

pattern. Then, each row in the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 and 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 arrays is partially sorted in

descending order using the distances as sort keys. I use heap sort to implement

partial sort. After the sorting, both arrays are trimmed from 𝐿 × 𝐿 to 𝐿 × (𝐸 + 1)
and returned. Algorithm 4 shows the kNN function for GPU. In the GPU version,

I create time series embeddings on the host and transfer them to the device. The

kNN search is executed on the GPU and the resulting kNN tables are returned

to the host.

Algorithm 5 outlines the lookup function. It uses the kNN lookup tables

𝑖𝑛𝑑𝑖𝑐𝑒𝑠 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 of the 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 time series. For each target point, the indices

of its 𝐸 + 1 neighbors are retrieved from the 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 table. Then, those neighbors

are accumulated using the weights stored in the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 table. Finally, the

function returns the predicted 𝑡𝑎𝑟𝑔𝑒𝑡 time series.

The average time complexity of each algorithm is analyzed as follows. The

time complexity of the kNN function in Algorithm 3 and 4 is 𝑂 (𝐿2𝐸) because
the all-to-all distance calculation is 𝑂 (𝐿2𝐸) and the sorting is approximately

16

Algorithm 2: Causal Inference in mpEDM

Input: Dataset 𝑡𝑠 (𝑁 time series of length 𝐿), maximum embedding

dimension 𝐸𝑚𝑎𝑥

Output: 𝑁 × 𝑁 causal map ρ

// Phase 1: Simplex projection

1 for 𝑖 ← 1 to 𝑁 do

// Same as cppEDM (Algorithm 1)

2 end

// Phase 2: CCM

3 for 𝑖 ← 1 to 𝑁 do

4 for 𝐸 ← 1 to 𝐸𝑚𝑎𝑥 do

5 𝑖𝑛𝑑𝑖𝑐𝑒𝑠[𝐸], 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝐸] ← kNN(𝑡𝑠[𝑖], 𝑡𝑠[𝑖], 𝐸)
6 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠←normalize(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)
7 end

8 for 𝑗 ← 1 to 𝑁 do

9 𝐸 𝑗 ← 𝑜𝑝𝑡𝐸 [𝑗]
10 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛← lookup(𝑖𝑛𝑑𝑖𝑐𝑒𝑠[𝐸 𝑗], 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝐸 𝑗], 𝑡𝑠[𝑗], 𝐸 𝑗)
11 ρ[𝑖, 𝑗] ← corrcoef(𝑡𝑠[𝑗], 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)
12 end

13 end

17

𝑂 (𝐿2 log 𝐸). The time complexity of the lookup function in Algorithm 5 is

𝑂 (𝐿𝐸). By combining these results, the time complexity of simplex projection

in mpEDM is 𝑂 (𝑁𝐿2𝐸), which is the same as cppEDM. The time complexity of

CCM in mpEDM, on the other hand, is 𝑂 (𝑁𝐿2𝐸2 + 𝑁2𝐿𝐸). In cppEDM, the

time complexity of CCM is 𝑂 (𝑁2𝐿2𝐸). As a result, the time complexity of the

whole causal inference algorithm in mpEDM is 𝑂 (𝑁𝐿2𝐸2 + 𝑁2𝐿𝐸).

Algorithm 3: kNN for CPU

Input: 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 and 𝑡𝑎𝑟𝑔𝑒𝑡 time series, embedding dimension 𝐸 , time lag

τ

Output: Arrays 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 and 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 for lookup

// All-to-all distance calculation

1 for 𝑖 ← 1 to 𝐿 do

2 for 𝑘 ← 1 to 𝐸 do

3 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑖, :] ← 0

4 for 𝑗 ← 1 to 𝐿 do

5 𝑖𝑛𝑑𝑖𝑐𝑒𝑠[𝑖, 𝑗] ← 𝑗

6 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑖, 𝑗] ←
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑖, 𝑗] + (𝑡𝑎𝑟𝑔𝑒𝑡 [𝑘τ+𝑖] − 𝑙𝑖𝑏𝑟𝑎𝑟𝑦[𝑘τ+ 𝑗])2

7 end

8 end

9 end

// Sorting

10 𝑡𝑜𝑝 𝑘 ← E+1

11 for 𝑖 ← 1 to 𝐿 do

12 𝑖𝑛𝑑𝑖𝑐𝑒𝑠[𝑖, :] ← partialSort(𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠, 𝑡𝑜𝑝 𝑘)
13 end

2.3.3 Inter-Node Parallelism

To distribute the work across multiple compute nodes, I naturally choose the

loops with the highest granularity. That is, the two outermost loops that it-

erate over the time series (line 1–2 and 3–13 in Algorithm 2). I implement a

18

Algorithm 4: kNN for GPU

Input: 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 and 𝑡𝑎𝑟𝑔𝑒𝑡 time series, embedding dimension 𝐸 , time lag

τ

Output: Arrays 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 and 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 for lookup

// Embedding

1 for 𝑖 ← 1 to 𝐸 do

2 for 𝑗 ← 1 to 𝐿 do

3 𝑙𝑖𝑏𝑟𝑎𝑟𝑦𝐵𝑙𝑜𝑐𝑘 [𝑖, 𝑗] ← 𝑙𝑖𝑏𝑟𝑎𝑟𝑦[𝑖τ+ 𝑗]
4 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑙𝑜𝑐𝑘 [𝑖, 𝑗] ← 𝑡𝑎𝑟𝑔𝑒𝑡 [𝑖τ+ 𝑗]
5 end

6 end

// All-to-all distance calculation and sorting

7 𝑡𝑜𝑝 𝑘 ← E+1

8 Copy 𝑙𝑖𝑏𝑟𝑎𝑟𝑦𝐵𝑙𝑜𝑐𝑘 and 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑙𝑜𝑐𝑘 to device

9 𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠←
nearestNeighbour(𝑙𝑖𝑏𝑟𝑎𝑟𝑦𝐵𝑙𝑜𝑐𝑘, 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑙𝑜𝑐𝑘, 𝑡𝑜𝑝 𝑘)

10 Copy 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 to host

Algorithm 5: Lookup

Input: Array of 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠, 𝑡𝑎𝑟𝑔𝑒𝑡 time series, embedding

dimension 𝐸 of 𝑡𝑎𝑟𝑔𝑒𝑡

Output: Prediction of the time series 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

1 for 𝑖 ← 1 to 𝐿 do

2 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛[𝑖] ← 0

3 for 𝑗 ← 1 to 𝐸 + 1 do

4 𝑖𝑑𝑥 ← 𝑖𝑛𝑑𝑖𝑐𝑒𝑠[𝑖, 𝑗]
5 𝑑𝑖𝑠𝑡 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑖, 𝑗]
6 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛[𝑖] ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛[𝑖] + 𝑡𝑎𝑟𝑔𝑒𝑡 [𝑖𝑑𝑥] · 𝑑𝑖𝑠𝑡
7 end

8 end

19

simple master-worker framework based on MPI to distribute these loops. To dy-

namically distribute work and mitigate load imbalance among workers, I adopt

self-scheduling in a master-worker framework. In self-scheduling, the master ac-

counts and dispatches tasks to workers. Each worker performs assigned tasks,

and once it completes, the worker asks the master for a new task.

The high-level organization of the inter-node parallelism is as follows. First,

the workers execute the simplex projection phase. The optimal embedding di-

mension for each time series is reported back to the master. Once the first phase

is complete, the master broadcasts 𝑜𝑝𝑡𝐸 to all workers. Subsequently, the work-

ers execute the all-to-all CCM phase. The final results are written to the file

system by each worker to alleviate the load on the master.

Both the input dataset and the inferred causal map are stored as HDF5 [29]

files for easy integration with the pre/post processing workflow. The workers read

the input HDF5 file in parallel and keep the entire dataset on memory during

the execution. Every time a worker completes a cross map, the worker writes an

element of the causal map asynchronously to the output HDF5 file. This small

random write pattern, however, is known to be slow on parallel file systems. In

fact, I observed that write I/O becomes a significant bottleneck of the application

on GPFS. I therefore take advantage of BeeOND (BeeGFS On Demand) [30], the

burst buffer deployed on ABCI. BeeOND combines local SSDs installed on the

compute nodes and provides an on-demand parallel file system to a job. The

workers write the results to BeeOND to minimize I/O overhead.

2.3.4 Intra-Node Parallelism

I focus the efforts to parallelize and optimize the kNN kernel since it is the primary

bottleneck in cppEDM as discussed in section 2.3.1. I design and implement kNN

kernels for both CPU and GPU architecture to ensure that mpEDM can efficiently

run on a wide variety of computing platforms. In the kNN kernel for CPU shown

in Algorithm 3, the two loops that iterate over the time steps within a time

series are parallelized using OpenMP (line 1–9 and 10–13 in Algorithm 3). I also

utilize OpenMP 4.0 SIMD directives to vectorize the innermost loop explicitly.

Note that the nested loops are ordered such that the memory accesses in the

innermost loop are contiguous.

20

In the kNN kernel for GPU shown in Algorithm 4, I take advantage of Array-

Fire [31], a highly optimized library for GPU-accelerated computing. ArrayFire

provides backends for CUDA, OpenCL and CPU, but in this paper I only use

the CUDA backend since ABCI is installed with Tesla V100 GPUs. The kNN

algorithm implemented in ArrayFire is essentially the same as the CPU imple-

mentation. ArrayFire uses a block-wide parallel radix sort implementation in

the CUDA UnBound (CUB) template library. Since each ABCI compute node is

equipped with four GPUs, I also distribute the work across multiple GPUs. To

achieve this, the loop that iterates over 𝐸 (line 4–7 in Algorithm 2) is parallelized

such that each GPU computes lookup tables for one or more 𝐸 . I dynamically

schedule this loop to ensure load balancing across GPUs because the runtime of

the kNN kernel depends on 𝐸 as discussed in section 2.3.2.

For the lookup kernel shown in Algorithm 5, I currently only have a CPU

version of this kernel. The time step loop is parallelized using OpenMP (line

1–8 in Algorithm 5). This kernel is heavily memory bandwidth bound since it

requires random memory access.

2.4 Evaluation

The computational performance of mpEDM was evaluated on ABCI. Further-

more, I present the scientific outcomes obtained using mpEDM.

2.4.1 Evaluation Environment

ABCI [32] is the world’s first large-scale Open AI Computing Infrastructure. It

is constructed and operated by the National Institute of Advanced Industrial

Science and Technology (AIST). According to the latest TOP500 list published

in November 2019 [33], ABCI is the most powerful supercomputer in Japan and

the 8th in the world. ABCI has 1,088 compute nodes, each equipped with two

20-core Intel Xeon Gold 6148 CPUs, four NVIDIA Tesla V100 SXM2 (16GB)

GPUs, 384GB of RAM and 1.6TB of local NVMe SSD. The parallel file system

is based on GPFS with a total capacity of 22PB.

21

2.4.2 Performance Evaluation

I compared mpEDM with cppEDM from the following three aspects: total run-

time, parallel scalability and impact of dataset size on the runtime. I used three

real-world datasets recorded from larval zebrafish under different conditions. Ta-

ble 1 shows the list of datasets used in the evaluation.

Table 1: Datasets used in the evaluation

Dataset # of Time Steps # of Time Series Size

Fish1 Normo 1,450 53,053 0.7 GB

Subject6 3,780 92,538 3.0 GB

Subject11 8,528 101,729 9.5 GB

Total Runtime mpEDM shows significantly higher performance compared to

cppEDM. Table 2 shows the performance comparison between cppEDM and

mpEDM. cppEDM took 8.5 hours to analyze the Fish1 Normo dataset using

512 ABCI nodes [13], whereas mpEDM took only 20 seconds to analyze the same

dataset using 512 ABCI nodes with GPU architecture. The result shows that

mpEDM is 1,530× faster than cppEDM. Moreover, mpEDM finished the causal

inference of two larger datasets: Subject6 in 101 seconds and Subject11 [15] in

199 seconds. The reason for the missing cppEDM runtimes for the Subject 6 and

Subject 11 datasets is that those datasets are too large for cppEDM to complete

the calculations in a realistic time.

Table 2: Performance comparison between cppEDM and mpEDM

cppEDM mpEDM

Dataset 512 Nodes 1 Node 512 Nodes

Fish1 Normo 8.5h 1,973s 20s

Subject6 N/A 13,953s 101s

Subject11 N/A 39,572s 199s

22

Parallel Scalability I measured the parallel scalability of mpEDM by varying

the number of workers and measuring the runtime of mpEDM with and without

GPU. I used the largest Subject11 dataset in this evaluation.

Figure 5 shows the strong scaling performance of mpEDM. In the Single Node

setup, mpEDM is executed on a single node without MPI. In the 𝑋 Workers

setup, mpEDM is executed with MPI using the specified number of workers. I

measured up to 511 workers since ABCI allows a maximum of 512 nodes per job

(except for jobs running under the ABCI grand challenge program, which can use

the full 1,088 nodes). The result shows that the GPU version runs as twice as fast

as the CPU version in every case. I noticed that the CPU version ran in the single

worker setup 10% slower than the single node setup. I believe this slowdown is

caused from the interference between the background tasks performed by the

BeeOND daemon and the computation in mpEDM. This does not happen with

the GPU version because the average CPU utilization is lower than the CPU

version.

Figure 6 shows the relative speedup of the multi-node setup in relation to the

single node setup. It reveals that the speedup is nearly linear with both GPU

and CPU. However, the speedup of the GPU version drops when the number of

nodes is 64 or more.

I measured the breakdown of each phase to investigate the cause behind the

scalability decline. I compared 32 workers and 128 workers since the GPU version

declines beyond 64 nodes. Figures 7 and 8 show the breakdown of average run-

time for processing a single time series in simplex projection and CCM. The two

figures clearly indicate that memory copy, MPI communication and I/O are not

bottlenecks and do not significantly increase with the number of workers. How-

ever, the kNN function becomes slower when the number of workers increases. I

found out that the kNN search for the first time series processed on a worker is

significantly slower (ranging from 3.3 seconds to 16.4 seconds) than the subse-

quent ones. I believe this is caused by the initialization process of the GPUs. This

issue could come from job distribution and initialization on each worker node in

the supercomputer. Some nodes might need an extra time to initialize, such as

mapping a unified memory of CUDA, clearing memory from previous job, etc.

which needs some extra initialization time to make the GPU be ready to run the

23

0

200

400

600

800

1,000

1,200

1,400

Single Node

1 Worker

2 Workers

4 Workers

8 Workers

16 Workers

32 Workers

64 Workers

128 Workers

256 Workers

511 Workers

T
im
e

 [
m
in
]

CPU
GPU

Figure 5: Strong scaling performance (absolute runtime)

1

2

4

8

16

32

64

128

256

512

 1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

Number of workers

CPU
GPU

Figure 6: Strong scaling performance (relative speedup)

24

0

5

10

15

20

25

30

35

40

kNN Lookup

T
im
e

 [
m
s
]

32 Nodes 128 Nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Memory
Copy

MPI

Figure 7: Breakdown of simplex projection (average runtime per time series)

job.

To verify this, I created a simple program that initializes the GPUs and al-

locates some GPU memory on a single node. I submitted a job that run this

program 100 times and measured the initialization time. The result revealed that

the initialization time follows a long-tailed distribution: the median was 4.6 sec-

onds while the maximum was 22.9 seconds. This suggests that a few stragglers

impact the total runtime and degrade the scalability as the number of workers

increases.

Impact of Dataset Size I evaluated how the size of the dataset impacts the

runtime of mpEDM using dummy datasets with different sizes. Furthermore, I

measured the time spent in each function. I also measured the speedup of the

GPU version over the CPU version with varying number of time steps.

Figures 9 and 10 show the runtime of mpEDM when increasing the number of

time series and time steps, respectively. I confirmed that the increase of runtime is

not bigger than the increase predicted from the time complexity. I also confirmed

25

0

100

200

300

400

500

600

kNN Lookup

T
im
e

 [
m
s
]

32 Nodes 128 Nodes

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Memory
Copy

MPI IO

Figure 8: Breakdown of cross mapping (average runtime per time series)

that CCM consumed the majority of the total runtime and other tasks including

I/O and MPI communication are ignorable.

Figures 11 and 12 show the runtime breakdown of each function in CCM when

increasing the number of time series and time steps, respectively. Figure 11 shows

that the runtime of the lookup function becomes dominant when increasing the

number of time series. On the other hand, Fig. 12 shows that the runtime of

the kNN function becomes dominant when increasing the number of time steps.

These trends can be explained from the time complexity analysis of each algorithm

described in section 2.3.2.

Figure 13 shows the speedup of the GPU version over the CPU version when

varying number of time steps. I compared the performance between a single

CPU socket and one or more GPUs to evaluate the GPU speedup. Evidently,

the GPU speedup increases with the number of time steps. Single GPU is slower

than the CPU if the number of time steps is 2,000 or less. This is because of the

overhead inherent to offloading computation to the GPU. However, single GPU

26

0

100

200

300

400

500

600

700

800

900

1,000

1,000 5,000 10,000 50,000 100,000

T
im
e

 [
m
in
]

Number of time series

Simplex Projection
CCM
Others

Figure 9: Runtime with varying number of time series (10,000 time steps)

0

100

200

300

400

500

600

700

800

900

1,000 2,000 5,000 10,000 20,000 40,000

T
im
e

 [
s
]

Number of time steps

Simplex Projection
CCM
Others

Figure 10: Runtime with varying number of time steps (1,000 time series)

27

0

20

40

60

80

100

1,000 5,000 10,000 50,000 100,000

%
 o
f
to
ta
l

Number of time series

kNN
Lookup

Figure 11: Breakdown of CCM - varying number of time series (10,000 time steps)

0

20

40

60

80

100

1,000 2,000 5,000 10,000 20,000 40,000

%
 o
f
to
ta
l

Number of time steps

kNN
Lookup

Figure 12: Breakdown of CCM - varying number of time steps (1,000 time series)

28

101

102

103

104

105

1,000
2,000

5,000
10,000

20,000

40,000

T
im
e

 [
s
]

Number of time steps

Single CPU
Single GPU
2 GPUs
3 GPUs
4 GPUs

Figure 13: GPU speedup with varying number of time steps (1,000 time series)

consistently surpasses the CPU if the number of time steps if 5,000 or more. If

the number of time steps is 40,000, the speedup of a single GPU is 3.5 times

compared to CPU. When four GPUs are used, the speed up is 13.4 times.

2.4.3 Scientific Outcomes

Figure 14 shows the scientific outcomes obtained using mpEDM. The results

showed that it could determine the causal connectivity across the entire brain

across two behaviors. This shows that depending on task, the network of rela-

tionships between individual neurons change and become more connected, ho-

mogeneous and simplified with a goal directed task. In the resulting network

connectivity increased and became simpler. Furthermore, we were able identify

individual neurons that integrate signals from multiple other neurons that con-

tain decision making information. These neurons allow the prediction of fish turn

behaviors while swimming and generate low dimensional manifold models based

on data geometry that are able to predict the fish’s behavior at least 0.5 seconds

29

A

B

Normoxia Hypoxia

E F G
Normoxia

201550

0

5

10

10

15

20D

Hy
po

xi
a

C

#
of

N
eu

ro
ns

Figure 14: Scientific results

(A) Zebrafish larvae were imaged to study their response to low oxygen.

(B) The day larvae were imaged using a SPIM lightsheet microscope and whole

brain calcium activity was recorded at single cell resolution.

(C) The calculation of the dimensionality of the neuronal populations show a

decrease under low oxygen (hypoxia) as seen in the distribution.

(D) Measured transitions between normal oxygen concentrations (normoxia) to

hypoxia show a bias below to the right of the diagonal line showing that dimen-

sionality decreases as oxygen decreases.

(E, F) Whole brain CCM all vs all causal inference matrix of an all vs all neu-

rons. Results show a more homogeneous map in hypoxia (F) than normoxia (E)

indicating a simplification of behavior consistent with the above dimensionality

drop.

(G) An identified signal integration manifold capable of predicting turns of the

fish at least 0.5 seconds (a single time step) ahead of time. Whenever the neural

activity trajectory enters one of the loops of the manifold, the fish will turn.

30

(a single time step) ahead. A three dimensional projection of one of these man-

ifolds is shown in Fig. 14 (G), where entering the loop predicts turn behavior.

Based on the combined activity of two neurons and information on prior states

we are able to predict when the fish will turn. Beyond this, this is the first map

of causal connectivity of any vertebrate animal at single neuron resolution.

2.5 Conclusion & Future Work

EDM is a nonlinear time series analysis framework proven its applicability in

various fields. However, EDM has only been applied to small datasets due to

its computational cost. In this paper, I designed and implemented mpEDM, a

parallel distributed implementation of EDM optimized for execution on modern

GPU-centric supercomputers. mpEDM improves the EDM algorithm to reduce

redundant computation and optimizes the implementation to fully utilize hard-

ware resources such as GPUs and SIMD units. mpEDM took only 20 seconds to

finish the causal inference of a dataset containing the activity of 53,053 zebrafish

neurons on 512 ABCI nodes. This is 1,530× faster than cppEDM, the current

standard implementation of EDM. Moreover, mpEDM could analyze a 13× larger

dataset in 199 seconds. This is the largest EDM causal inference achieved to date.

I will continue to optimize the performance of mpEDM. As discussed in sec-

tion 2.4.2, I need to improve the performance of the lookup as it becomes the

primary bottleneck when scaling up the number of time series further. NEC vector

engine processor is examined for seeking the hardware acceleration of the lookup

function. I will also explore other efficient implementations of nearest neighbor

search on GPUs. Currently, mpEDM uses the exact kNN search implementa-

tion provided by ArrayFire. There exist many studies on efficient Approximate

Nearest Neighbor (ANN) search [34,35]. However, it is unclear how ANN affects

the accuracy of EDM predictions. Another well-known approach is to use spatial

indices such as KD-trees and Ball-trees to accelerate kNN search [36,37].

Additionally, EDM algorithms other than simplex projection and CCM will

be implemented in mpEDM to expand mpEDM to a standard implementation

of EDM on HPC systems. I will make this EDM library widely available to the

community with a hope to assist scientists in need to analyze large-scale time

series datasets of nonlinear dynamical systems.

31

3. A Transparent, Low-overhead Monitoring Sys-

tem for OpenFlow Networks

3.1 Introduction

In the current networking architecture, network devices in a network are in-

dividually and manually configured by the administrator. This design makes

it challenging to manage large and complex networks. Software-Defined Net-

working (SDN) [38] is an alternative networking architecture that centralizes the

control of network devices to a centralized software controller and introduces

programmability to the network infrastructure. In current networks, the packet

forwarding function (data plane) and the routing decision function (control plane)

are inseparably implemented in the same network device. In SDN, these two are

disaggregated. The packet forwarding is handled by SDN switches, whereas the

routing decision is handled by a centralized software controller. Each SDN switch

maintains a flow table, which is a collection of flow entries. A flow entry contains

a set of (1) matching conditions, which specify the packets that the flow matches,

and (2) actions, which specify how matched packets are processed. Flow entries

are generated by the controller and installed to switches.

The OpenFlow protocol [39] is widely used to communicate between SDN

switches and the centralized SDN controller. OpenFlow defines multiple message

types for different purposes, such as installing flow entries and collecting switch

information and statistics, for example. Some examples of OpenFlow messages

are shown in Table 3. Hardware vendors such as Mellanox, Pica8 and NoviFlow

produce hardware OpenFlow switches. There are also several software Open-

Flow switches including Open vSwitch [40] and Lagopus [41]. Furthermore, soft-

ware frameworks that facilitate the development of OpenFlow controllers, such

as Ryu [42], Faucet [43], Open Network Operating System (ONOS) [44, 45], and

OpenDaylight [46], are available.

Figure 15 illustrates how an OpenFlow network delivers a packet. Every time

a switch receives a packet from a host (step 1○ in Fig. 15), the switch searches

its flow table for a flow entry that matches the incoming packet (step 2○). If a

matching flow entry is found, the switch performs the action indicated in the flow

32

Data Plane Control Plane

Switches

Host A Host B

OpenFlow Controller

1

2

3

4

5

6

Packet Path

Data Plane Packet

Control Plane Message

Flow Table

Figure 15: An OpenFlow network

33

Table 3: Example of OpenFlow Messages Types

Message Type Direction Purpose

FlowMod Controller→Switch Modifies the flow table of a switch.

FeaturesRequest Controller→Switch Requests the supported features of a

switch.

FeaturesReply Switch→Controller Responds to a controller’s Features-

Request message.

FlowStatsRequest Controller→Switch Requests statistics about individual

flows on a switch.

FlowStatsReply Switch→Controller Responds to a controller’s FlowStat-

sReply message.

PortStatsRequest Controller→Switch Requests statistics about individual

ports on a switch.

PortStatsReply Switch→Controller Responds to a controller’s PortStat-

sReply message.

PacketIn Switch→Controller Sends an unmatched packet to the

controller.

PacketOut Controller→Switch Injects a packet to the data plane of

a switch.

entry (step 6○). If no matching flow entry is found, the switch sends a PacketIn

message to the controller (step 3○). The controller then examines the PacketIn

message and determines where the packet that generated the PacketIn message

should be forwarded next. Based on this decision, the controller installs a new

flow entry to the switch by sending a FlowMod message (step 4○). This procedure

is repeated until the packet reaches its destination.

Investigating and understanding the behavior of an OpenFlow network is chal-

lenging [47,48]. This is because, although the control logic is logically centralized

in the OpenFlow controller, the state of the network (e.g., flow tables) is dis-

tributed across the network. Since conventional network monitoring systems are

not designed to cope with OpenFlow networks, researchers have developed various

monitoring systems tailored for OpenFlow networks [49–51]. However, existing

34

Switches

OpenFlow Controller

Switches

OpenFlow Controller

Data Plane

Control Plane

(A)
Conventional Monitoring

(B)
Opimon Monitoring

Monitoring ModuleMonitoring
Module

Figure 16: Comparison between conventional and proposed monitoring system

systems either rely on a specific controller framework or require modifications to

the controller. This is often unacceptable when monitoring production networks.

Additionally, Security is one of the major issues that the network administra-

tor needs to concern. Denial of Service (DoS) is one of the common cyber-attacks,

which aims to make the resource or service unavailable for legitimate users. If the

attack traffic comes from multiple sources, the attack is called Distributed Denial

of Service (DDoS). In DDoS attack, an attacker sends a huge number of network

packets from many sources to a victim until the service or resource becomes un-

available. There are many types of packets that can be used in a DDoS attack.

Some types of DDoS attacks (e.g. HTTP-based DDoS attacks [52]) are difficult

to detect or separate from the heavily-loaded production traffic. DDoS attack

also causes many problems in an OpenFlow network in terms of performance and

reliability.

This section proposes a monitoring system for OpenFlow networks, which I

refer to as Opimon (OpenFlow Interactive Monitoring)2. Opimon is completely

2https://github.com/wassapon-w/opimon

35

transparent to the network and works with any OpenFlow switch or controller

without requiring any modification. Furthermore, Opimon imposes little over-

head to the network performance and can be used in production networks. Opi-

mon collects the topology, flow tables, and switch statistics from the target net-

work, and interactively visualizes the state of the network through a web interface

in real-time. Additionally, Opimon has a security analysis module to detect DDoS

attack with machine learning. Opimon is based upon previous work [53], but its

monitoring module is redesigned to minimize the incurred overhead.

Figure 16 compares the design of a conventional OpenFlow monitoring system

and Opimon. In a conventional design, the monitoring system was integrated into

the OpenFlow controller as a sub component. Thus, the monitoring system was

dependent on the OpenFlow controller or the framework it uses. Opimon, on the

other hand, acts as a transparent proxy between the controller and switches, and

works with any controller. However, this design causes an unavoidable overhead

when forwarding and collecting OpenFlow messages. I minimize the overhead by

employing a multi-process architecture that scales with the number of switches.

Furthermore, I decouple the message forwarding and collection into different pro-

cesses so that messages are forwarded with minimum delay.

3.2 Related Work

3.2.1 Network Monitoring

Various monitoring protocols and tools are available in traditional network ar-

chitectures. Simple Network Management Protocol (SNMP) is one of the most

widely used protocols for monitoring networks [54]. SNMP is used to collect infor-

mation from network devices as well as to configure network devices. sFlow [55]

is another popular technology for monitoring the traffic flows in a network. sFlow

agents reside on network devices and sample traffic flows from the network, and

the sampled traffic is aggregated and analyzed by a sFlow collector. Both SNMP

and sFlow are, however, not designed for OpenFlow networks and are unable to

obtain OpenFlow-specific information such as the content of flow tables.

Therefore, researchers have designed and implemented monitoring systems

tailored for OpenFlow networks. OpenNetMon is a extension module for the

36

POX [56] OpenFlow controller that provides monitoring capabilities [49]. Open-

NetMon polls statistics from switches and calculates the throughput and packet

loss of each flow. The polling interval is adaptively controlled to reduce the switch

CPU load while ensuring measurement accuracy.

OOFMonitor is a monitoring system for OpenFlow networks that collects the

delay, jitter, packet loss rate, and link utilization [50]. Since OOFMonitor relies

on the API exposed by the Ryu OpenFlow controller, it is incompatible with other

controllers. In addition, OOFMonitor does not provide any feature to visualize

the collected network information.

Isolani et al. proposed a modular system for interactive monitoring, visualiza-

tion and configuration of OpenFlow networks [51]. Their system uses the RESTful

API provided by the Floodlight OpenFlow controller to collect the topology of

the network and the traffic counter of every flow entry present on switches.

Warraich et al. developed a system to monitor the traffic statistics at Inter-

net eXchange Points (IXPs), called SDX-Manager [57]. It integrates a traditional

IXP-Manager with an SDN controller. Grafana is used to visualize the traffic

statistics. However, SDX-Manager is build on top of the Faucet OpenFlow con-

troller framework and lacks support for other controllers.

These existing monitoring systems share a common limitation: they depend on

a specific controller or API, which are not part of the OpenFlow specification and

not standardized. This limitation clearly hinders practicality because network

designers or administrators are forced to choose a specific OpenFlow controller

that is compatible with the monitoring system. In contrast, Opimon does not rely

on a specific controller or API and can be integrated in any OpenFlow networks.

Network hypervisors such as FlowVisor [58] and AutoVFlow [59] enable vir-

tualization of OpenFlow networks by slicing a physical network into multiple

isolated virtual networks. Both of them employ a proxy-based design, where a

transparent proxy is placed between the OpenFlow controllers and switches. The

proxy examines and modifies the exchanged OpenFlow messages to isolate the

network slices with one another. This design allows the hypervisors to be compat-

ible with any OpenFlow controllers or switches. However, monitoring capabilities

are not provided.

37

Optimal
Hyperplane

Support

Vector

Support

Vector

Maximum

Margin

Figure 17: Support Vector Machine (SVM)

3.2.2 Support Vector Machine and Deep Learning

Support Vector Machine (SVM) is one of the most widely used machine learning

algorithms for classification problems. Figure 17 illustrate components of SVM.

SVM finds a separating line, or called hyperplane, that classifies the data into

categories. Support vectors are a data point that nearest to the hyperplane. SVM

calculates a margins, or a distance between the hyperplane and support vectors.

The goal of SVM is to find a maximum margins for optimal hyperplane. SVM is

applied to a wide spectrum of tasks [60].

Meanwhile, deep learning, a machine learning algorithm that utilize deep

hierarchical layers of neural networks are gaining much attention from researchers.

Much research has been conducted to compare the performance and accuracy of

these two algorithms for various applications. For instance, the development of

Myocardial Infarction detection also compares the performance of SVM against

Artificial Neural Networks (ANN) algorithm [61], a fundamental structure of deep

learning. In their study, LIBSVM is used for the SVM classification [62]. The

38

works on a development of a detection tool for SDN use some features from the

NSL-KDD dataset in their DDoS attack detection tool [63, 64]. Additionally,

the performance of the machine learning library affects the performance of the

classification. However, some studies on SVM compared the performance between

LIBSVM and ThunderSVM [65, 66], and concluded that ThunderSVM is faster

on both CPU and GPU.

In a review of deep learning frameworks [67], many deep learning frameworks,

including Theano (with Keras), Torch, Caffe, Tensorflow, and Deeplearning4J,

were compared in terms of speed and accuracy of classification. The results

showed that Theano (with Keras) used less time for training models when tuning

with large epochs and achieved higher accuracy. However, Theano stopped its

development since 2017 [68]. Hence, this experiment employs Keras with Ten-

sorFlow as the backend engine for handling low-level operations such as tensor

products, convolutions, and others. For the model evaluation, precision, recall,

accuracy, and F1 score are selected as the metrics based on the studies done

in [60, 61]. Some features were determined based on the previous research about

the development of DDoS attack detection tools using information from pack-

ets [69].

3.2.3 DDoS Attack Detection

There has been much research on SDN and OpenFlow networks. However, very

few studies have addressed the security issues in OpenFlow networks. A literature

proposed a method to detect DDoS attacks in OpenFlow networks [70]. There is

a comprehensive survey about security measures against DDoS attacks in SDN

or OpenFlow networks. In this survey, the authors reviewed literatures on DDoS

detection and mitigation in SDN and OpenFlow networks. One of the interesting

techniques in the survey uses machine learning to detect DDoS attacks in SDN.

In this survey, it suggests a research that they use a SVM classifier to detect

DDoS attack in SDN [71]. In addition, they compared SVM with other machine

learning techniques and they concluded that SVM achieved the best performance.

DARPA dataset [72], which contains DDoS traffic in a traditional network, was

used in this research.

Deep learning is frequently used to detect DDoS attack in SDN. A review [73]

39

analyzed machine learning techniques for handling the issues of intrusion and

DDoS attacks in SDN. This research compared five machine learning techniques,

which include Neural Networks, Bayesian Network, Support Vector Machine, Ge-

netic Algorithm, and Fuzzy Logic. They showed the pros and cons of these five

machine learning techniques when applied to DDoS detection. They concluded

that each machine learning technique has a unique characteristic and provides

different results in terms of training time and accuracy. They concluded that

neural network is capable to generalize from limited, noisy, and incomplete data.

In addition, neural network does not require expert knowledge for classification.

However, they mentioned that neural network trains slower than the other ma-

chine learning techniques and may not be suitable for real-time detection. They

concluded that SVM is better in handling small dataset and provides high decision

rate and training rate, insensitiveness to dimension of input data. Based on this

review, I compare the performance between neural network and SVM. However,

SVM requires long training time and can only be used for binary classification.

A research used deep learning to detect DDoS traffic in SDN [64]. The au-

thors implemented DDoS detection on top of the SDN controller. They showed

that their tool was able to classify normal and attack traffic with an accuracy of

99.82% with a very low false-positive rate. However, their DDoS detection system

was implemented as a network application uses a Northbound API which may not

be compatible with every controller because Northbound API is not standard-

ized. Through the literature of DDoS detection, I aim to provide appropriate

information to choose an optimal machine learning technique for DDoS detection

algorithms in terms of accuracy and performance. In a preliminary experiment,

SVM and deep learning is chosen to compare the effectiveness on DDoS detection

in terms of classification accuracy and speed of classification.

3.3 Opimon

This section describes the design and implementation of Opimon. I first describe

the high-level architecture of Opimon and then elaborate on each component.

40

Switches

Monitoring

Module

OpenFlow

ControllerWeb Interface

DatabaseVisualization

Module

Security Analysis

Module

Figure 18: High-level Architecture of Opimon

3.3.1 High-level Architecture

Figure 18 illustrates the high-level architecture of Opimon. Opimon is mainly

composed of three modules: (1) the monitoring module, (2) the visualization

module and (3) the security analysis module. The monitoring module behaves

as a transparent proxy and intercepts every OpenFlow message exchanged be-

tween the controller and the switches. The intercepted messages are stored into

a database. The current implementation uses MongoDB as a database. The vi-

sualization module queries the collected messages from the database and shows

various network information via a web interface in real-time.

3.3.2 Monitoring Module

Overall Design The monitoring module is responsible for collecting the Open-

Flow messages exchanged in the control plane of an OpenFlow network. Since I

41

Message

Parser

Message Queue

Monitoring

Module

Database

Switches

OpenFlow Controller

Message Watcher

2

1

3

4

5

Connection

Listener

Process Forking Data Collection Flow

Data Plane Control Plane OpenFlow Message

Figure 19: Monitoring Module

42

found out that message parsing is the primary bottleneck in collecting OpenFlow

messages, I decouple message forwarding and parsing into different processes so

that OpenFlow messages can be forwarded with minimal delay. The monitoring

module is implemented in Python. This module runs the following three types

of processes: connection listener process, message watcher process, and message

parser process.

• Connection listener process : This process is responsible for handling new

connections from switches and coordinating other processes. The connec-

tion listener waits for incoming connections from switches and forks a new

message watcher process every time a switch is connected. The connection

listener also creates a set of message parser processes.

• Message watcher process : This process is responsible for forwarding and

collecting messages exchanged between the switches and the controller. A

message watcher process is created for each switch. Every time a message

watcher receives a new message from a switch or a controller, it pushes

a copy of the raw message into the message queue and then forwards the

message to the other side.

• Message parser process : This process is responsible for parsing each message

in the message queue and storing the parsed message into MongoDB. This

process uses the Ryu OpenFlow framework to parse the raw message. An

example of a FlowMod message stored in MongoDB is shown in Listing 1.

Interaction of Processes Figure 19 shows the interaction of processes inside

the monitoring module. When a switch connects to the monitoring module,

the connection listener process forks a new message watcher process. The newly

forked message watcher process accepts the connection from the switch and opens

another connection to the OpenFlow controller. Every time a message watcher

receives a message from a switch (step 1○ in Fig. 19), the message watcher clones

the received message and forwards a copy to the controller (step 2○). Another

copy of the message is pushed into the message queue (step 3○). The message

parser asynchronously processes pop messages from the message queue (step 4○)

and store the parsed messages into MongoDB along with the current timestamp

43

Listing 1: Example of a FlowMod message stored in MongoDB

1 "_id" : ObjectId("5f8408271650602248ff3b5d"),

2 "switch" : "0x2",

3 "message" : {

4 "header" : {

5 "version" : 1,

6 "type" : 14,

7 "length" : 80,

8 "xid" : 679114503

9 },

10 "match" : {

11 "wildcards" : 4194294 ,

12 "in_port" : 1,

13 "dl_src" : "00:00:00:00:00:00",

14 "dl_dst" : "80:00:00:00:00:02",

15 "dl_vlan" : 0,

16 "dl_vlan_pcp" : 0,

17 "dl_type" : 0,

18 "nw_tos" : 0,

19 "nw_proto" : 0,

20 "nw_src" : "0.0.0.0",

21 "nw_dst" : "0.0.0.0",

22 "tp_src" : 0,

23 "tp_dst" : 0

24 },

25 "cookie" : 0,

26 "command" : 0,

27 "idle_timeout" : 0,

28 "hard_timeout" : 0,

29 "priority" : 32768,

30 "buffer_id" : NumberLong("4294967295"),

31 "out_port" : 65535,

32 "flags" : 1,

33 "actions" : [{

34 "type" : 0,

35 "len" : 8,

36 "port" : 2,

37 "max_len" : 65509

38 }]

39 },

40 "timestamp" : ISODate("2020 -10 -12 T07 :39:19.017Z")

(step 5○). Messages sent from the controller to switches are handled in the same

manner.

The previous version of Opimon [53] employed a single-process and multi-

threaded design using Python’s threading3 module, where the monitoring module

3https://docs.python.org/3/library/threading.html

44

launched multiple threads each responsible for receiving, parsing, and forward-

ing of messages. However, this design suffered from low forwarding performance

caused by the Global Interpreter Lock (GIL)4 of Python. GIL is a mutex that

ensures only a single Python interpreter thread can execute at a time. Although

GIL simplifies the handling of thread-safety, CPU-intensive multi-threaded pro-

grams cannot benefit from multi-core CPUs. Using profilers, I found out that

message parsing in Opimon is CPU-intensive and blocks the receiving and for-

warding of messages. This induced prohibitive latency and packet drops at high

traffic load.

In this version, I redesign the monitoring module based on the Python’s mul-

tiprocessing5 module and separate the collection and parsing of messages into

different processes. Since multi-processing is not limited by GIL, the new design

allows the monitoring module to utilize multiple CPU cores. In addition, the

message watcher processes and the message parser processes are loosely coupled

through an asynchronous inter-process queue. This design allows the monitor-

ing module to adapt to sudden changes in the message traffic and to scale the

message watchers and parsers independently.

Collection of Network Information In addition to passively intercepting the

messages exchanged in the control plane, Opimon actively queries the switches to

collect more information. This design, however, causes a side effect because the

OpenFlow controller will receive replies to queries that it has not issued. This

potentially causes unexpected behavior of the controller and violates the goal of

being transparent. Thus, Opimon marks injected messages with a special trans-

action identifier (xid) to distinguish them from OpenFlow messages generated by

the controller. Replies from switches carrying the same special xid are filtered

out and not forwarded.

The monitoring module collects the three types of network information in the

following manner:

• Network Topology: The network topology is detected using the Link Layer

Discovery Protocol (LLDP). The monitoring module injects LLDP packets

4https://docs.python.org/3/glossary.html#term-global-interpreter-lock
5https://docs.python.org/3/library/multiprocessing.html

45

N
et

w
or

k
To

po
lo

gy
 G

ra
ph

Sw
itc

h
St

at
is

tic
s

Fl
ow

 T
ab

le

N
et

w
or

k
H

is
to

ry
 In

fo
rm

at
io

n

Figure 20: Visualization of the virtual network using Opimon

46

into a switch using a PacketOut message. When an adjacent switch receives

an LLDP packet, it encapsulates the packet in a PacketIn message and sends

to the controller. The monitoring module intercepts and parses this message

and records the adjacency between switches.

• Switch Information: The switch ID, number of ports, and port MAC ad-

dresses are collected by querying the individual switches using FeaturesRe-

quest messages. Port statistics are obtained using PortStatsRequest mes-

sages.

• Flow Table: The flow table of each switch is monitored by intercepting

FlowMod messages sent out from the controller, which are used to add,

modify or delete flow entries on a switch. The statistics of each flow en-

try is collected by periodically querying switches using FlowStatsRequest

messages.

Opimon can detect topology changes in the network caused by incidents such

as switch and link failures. When a switch fails and disconnects from Opimon,

Opimon stops monitoring the switch and removes it from the web interface. When

a link fails, the failed link is detected by LLDP and removed from the web inter-

face.

3.3.3 Visualization Module

Overall Design The visualization module is responsible for showing the col-

lected network information to the user in real-time. The visualization module is

a web application consisting of a front-end and a back-end.

The front-end periodically polls the back-end to retrieve the latest network

information and renders the result as a web page. D3.js is used to render the

network topology and jQuery is used to show a table of port statistics and a

flow table of the selected switch. The back-end exposes a RESTful API that

queries MongoDB and returns the latest network information in JSON format.

The back-end is built upon the Express web application framework and Node.js

JavaScript runtime.

MongoDB is used as a database due to its flexibility, speed, and scalability.

The visualization module uses four tables on MongoDB database as follows:

47

• flow mods: This table collects data obtained from FlowMod messages such

as switch id, matching conditions, action, hard time out, and idle timeout.

Table 4 shows the fields in the flow mods table.

• switch port: This table stores data obtained from the FeaturesReply mes-

sage including the switch id, number of the ports in a switch, and MAC

address of each port. Table 5 shows the fields in the switch port table.

• topology: This table stores data obtained from the LLDP packets. This in-

cludes switch id and port numbers of source and destination switch. Table 6

shows the fields in the topology table.

• port stats: This table stores data obtained from PortStatsReply message.

It contains statistics of each port on a switch. Table 7 shows the fields in

the port stats table.

Web Interface Figure 20 shows the web interface of Opimon. The web in-

terface has three sections (network topology, switch information, and flow table)

divided into two columns.

• Network Topology: This section shows the network topology. A node rep-

resents a switch in the network and an arrow edge represents as a link with

a direction of the data flow. Each node is labeled with the ID of the cor-

responding switch. The labels can be customized in a configuration file to

make them easier to identify. Each node in the graph is clickable to show

the switch information and flow table of that switch. On top of the network

topology, a slider is available to select the time in the past to investigate

the previous status of the network that Opimon collected from the selected

time.

• Switch Information: This section shows the details of the selected switch in

the network topology view as a table. The table shows the MAC address

and statistics of each switch port. This information is collected from Fea-

turesReply message. Each row in the table shows the port statistic that the

monitoring module collects from PortStatsReply of StatReply message.

48

Table 4: Fields in flow mods table

Field Description

header Header of packet

version Version

type Type of packet

length Length of packet

xid Transaction ID

match Instance of OFPMatch

wildcards Wildcard fields

in port Switch input port

dl src Ethernet source address

dl dst Ethernet destination address

dl vlan Input VLAN ID

dl vlan pcp Input VLAN priority

dl type Ethernet frame type

nw tos IP ToS (actually DSCP field, 6 bits)

nw proto IP protocol or lower 8 bits of ARP opcode

nw src IP source address

nw dst IP destination address

tp src TCP/UDP source port

tp dst TCP/UDP destination port

cookie Opaque controller-issued identifier

command One of the following values. OFPFC AD,

OFPFC MODIFY, OFPFC MODIFY STRICT,

OFPFC DELETE, OFPFC DELETE STRICT

idle timeout Idle time before discarding (seconds)

hard timeout Max time before discarding (seconds)

priority Priority level of flow entry

buffer id Buffered packet to apply to (or 0xffffffff)

49

Table 4 continued from previous page

Field Description

out port For OFPFC DELETE* commands, require matching entries to in-

clude this as an output port.

flags One of the following values. OFPFF SEND FLOW REM,

OFPFF CHECK OVERLAP, OFPFF EMERG

actions List of OFPAction* instance

Table 5: Fields in switch port table

Field Description

switch id Switch ID

port no Port number

hw addr MAC address of port

Table 6: Fields in topology table

Field Description

switch dst Destination switch ID

port dst Destination switch port

switch src Source switch ID

port src Source switch port

• Flow Table: This section shows the active flows in the selected switch. A

table shows the match condition and action of each flow. Hard timeout and

idle timeout are shown in the table. The information of the flow table is

collected from FlowMod and FlowStatsReply of StatReply messages.

50

Table 7: Fields in port stats table

Field Description

port no Port number

rx packets Number of received packets

tx packets Number of transmitted packets

rx bytes Number of received bytes

tx bytes Number of transmitted bytes

rx dropped Number of packets dropped by RX

tx dropped Number of packets dropped by TX

rx errors Number of receive errors

tx errors Number of transmit errors

rx frame err Number of frame alignment errors

rx over err Number of packet with RX overrun

rx crc err Number of CRC errors

collisions Number of collisions

3.3.4 Security Analysis Module

The security analysis module analyzes the network traffic and classifies normal

network traffic and a DDoS attack traffic. This module is implemented as a

security analysis server, which uses machine learning techniques for analyzing

the traffic collected from the data plane and control plane. The security analysis

server queries the monitored data from the database. Then, it classifies the traffic

from the data using a pre-trained machine learning model. Opimon employs

SVM and Deep Learning as classification models since they are commonly used

for DDoS attack detection in literature [64,70,71,73].

SVM is often combined with a kernel function, which maps the input data into

a higher dimensional space to classify linearly inseparable data. In this research,

51

I selected Linear, Polynomial, and Radial Basis Function (RBF) as the kernel

functions. The definition of each kernel is shown in Equation (1), (2), and (3).

Linear :𝑘 (𝑥, 𝑦) = 𝑥⊤𝑦 (1)

Polynomial :𝑘 (𝑥, 𝑦) =
(
𝛾(𝑥⊤𝑦) + 𝑟

)𝑑
(2)

RBF :𝑘 (𝑥, 𝑦) = 𝑒−𝛾∥𝑥−𝑦∥
2

(3)

From Equation (1), (2), (3), the tuning parameters are determined as degree

𝑑, gamma 𝛾, and coefficient 𝑟. The parameter of degree indicates the dimension.

The C-Support Vector Machine Classification (SVC) is used for the SVM model.

ThunderSVM Python library is used to implement SVM on the security analysis

server.

Deep learning is a class of machine learning model that uses multiple layers of

neural networks. In Opimon, the Deep Feed Forward (DFF) network is used [74].

Keras with TensorFlow backend engine [75], a high-level API for machine learn-

ing, is used to implement DFF network on the security analysis server. Figure 21

shows the structure of the DFF network.

I use the 2009 DARPA Intrusion Detection dataset to train the machine learn-

ing models [76, 77]. This dataset contains 10 days of network traffic including

HTTP, SMTP, and DNS background traffic, and consists of 7,000 pcap files with

a total size of 6.5TB. DARPA-2009 DDoS Attack-20091105 was assigned as a

sample DDoS attack dataset [78]. This dataset contains about 6 minutes of SYN

flood DDoS attack in three pcap files. The DDoS attack traffic is sent from 100

different IPs. For the normal packet dataset, I selected 1,000 pcap files from the

original dataset that were collected from the same day, based on information from

the ground truth table. The ground truth table shows dates, start-end times and

traffic descriptions for each attack traffic such as packet type, source and destina-

tion IP, source and destination port. Before training the models, I pre-processed

the dataset as shown in Figure 22. After pre-processing the datasets, those files

are converted into a file in Comma-Separated Values (CSV) format. Finally, the

CSV file is converted into SVM-Light format [79] for using with ThunderSVM.

52

Input

Layer

Output

Layer

Hidden Layer

15 Nodes,

for Type 1

25 Nodes,

for Type 2

100 Nodes

50 Nodes

20 Nodes

Drop Out

Drop Out

Figure 21: Simple deep feed forward (DFF) neural network

53

Selecting

pcap file

Selecting

features

Converting pcap file

to csv file

Converting csv file

to svmlight file

ThunderSVM

Figure 22: Overview of data pre-processing

I aggregate packet information for a certain time window, which in this case is

one second. The machine learning model analyzes the patterns on the number of

transferred packets, the number of observed IP addresses and so on over the time

windows, and classifies each time window into the time period where a DDoS

attack is underway or the time period where no attack is detected.

In this work, I have two types of features I am interested in. Table 8 and

Table 9 present the information for these two types of features respect

Table 8 shows time window aggregated features, the first type of network

features are aggregated for each time window. Table 9 shows packet specific fea-

tures, the second type of features on each packet are added with the previous time

window aggregated information. The total numbers of time window aggregated

features and packet specific features are 16 and 26, respectively.

In this experiment, I generated the training dataset and testing dataset by

combining the data of the time windows under the DDoS attack situation and

normal situation. Table 10 shows the number of samples in each dataset. Time

window aggregated dataset denotes the dataset in the type of Table 8. Packet

basis dataset denotes the dataset in the type of Table 9. I have two size datasets

with different sizes for packet specific data, packet specific (S) and (L). Packet

specific (S) is prepared for the purpose of comparing the performance with time

window aggregated dataset so that it has the same sample size. Packet specific

(L) is a prepared to evaluate the performance of SVM and DFF with a huge size

of dataset.

54

Table 8: Time Window Aggregated Features

Feature Description

Status Whether being attacked by DDoS attack or not

All Packets Number of arrived packets within a time window

Num IPpair Number of unique IP source and IP destination address pairs

within a time window

Num IPsrc Number of unique IP source addresses within a time window

Num IPdst Number of unique IP destination addresses within a time win-

dow

Num Portpair Number of unique source and destination port pairs within a

time window

Num Portsrc Number of unique source ports within a time window

Num Portdst Number of unique destination ports within a time window

Num Ether Number of Ethernet packets within a time window

Num Dot3 Number of IEEE 802.3 packets within a time window

Num TCP Number of Transmission Control Protocol packets within a

time window

Num UDP Number of User Datagram Protocol packets within a time win-

dow

Num ARP Number of Address Resolution Protocol packets within a time

window

Num ICMP Number of Internet Control Message Protocol packets within

a time window

Num LLC Number of logical link control packets within a time window

Num Len Number of unique packet lengths within a time window

55

Table 9: Packet Specific Features

Feature Description

Ether or Dot3 Packet is either Ethernet or IEEE 802.3

MAC src MAC address of the source device

MAC dst MAC address of the destination device

Ether type Type of Ethernet packet (e.g. 0x0800 is Internet Protocol

version 4 (IPv4))

LLC Packet is logical link control (LLC)

LLC ssap Source logical address of LLC packet

LLC dsap Destination logical address of LLC packet

IP ttl Time to live value of the packet

IP version The version of IP, such as IPv4

TCP Packet is TCP

UDP Packet is UDP

ARP Packet is ARP

ICMP Packet is ICMP

pLen Packet size

Status Whether the network is attacked by DDoS attack or not

num ip pair Number of source and destination IP paris

all packets Total number of packets arrival within a window

ratio ip Number of IP sources divided by the number of IP destinations

num ip src Number of source IPs

num ip dst Number of destination IPs

num port pair Number of source port pairs

56

Table 9 continued from previous page

Feature Description

ratio port Number of source ports divided by the number of destination

ports

num port src Number of source ports

num port dst Number of source ports

weight ip Weight of the number of top three IP pairs

weight port Weight of the number of top three port pairs

Table 10: Number of samples in each dataset

Dataset DDoS attack Normal Total

Time window aggregated 335 365 700

Packet specific (S) 331 369 700

Packet specific (L) 481,903 518,097 1,000,000

3.4 Evaluation

I evaluated Opimon from two aspects. First, I deployed Opimon to a virtual

network and tested if Opimon can correctly detect the network topology and the

flow table of each switch. I conducted the same test on a large-scale international

OpenFlow testbed, PRAGMA-ENT. Second, I measured the performance of a

controller with and without Opimon and quantified the overhead imposed by

Opimon. In addition, I investigate machine learning techniques for applying with

DDoS attack detection. Support Vector Machine (SVM) and Deep Feed Forward

(DFF) are compared in this preliminary investigation.

3.4.1 Correctness of Monitoring Results

A virtual network was used to verify if Opimon is able to correctly detect the

topology of the network and the flow entries installed on each switch. I used

Mininet [80], a network emulator that creates virtual networks comprising many

57

Listing 2: Mininet script to create the virtual network

1 from mininet.topo import Topo

2

3 class MyTopo(Topo):

4 def __init__(self):

5 # Initialize topology

6 Topo.__init__(self)

7

8 # Create Switch1 to Switch15

9 ...

10

11 # Add links between core switches

12 self.addLink(Switch1 , Switch2)

13 self.addLink(Switch2 , Switch3)

14

15 # Add links between core and edge switches

16 self.addLink(Switch1 , Switch4)

17 self.addLink(Switch1 , Switch5)

18 self.addLink(Switch2 , Switch6)

19 self.addLink(Switch2 , Switch7)

20 self.addLink(Switch2 , Switch8)

21 self.addLink(Switch3 , Switch9)

22 self.addLink(Switch3 , Switch10)

23

24 self.addLink(Switch5 , Switch11)

25 self.addLink(Switch6 , Switch12)

26 self.addLink(Switch6 , Switch13)

27 self.addLink(Switch8 , Switch14)

28 self.addLink(Switch9 , Switch15)

29

30 topos = { 'mytopo ': (lambda: MyTopo ()) }

hosts and switches on a single computer, to create a virtual network. Listing 2

shows the Mininet script to create the virtual network. The virtual network

comprises 15 switches forming a tree topology. I used Ryu’s builtin L2 learning

switch (ryu.ryu.app.simple switch) as the OpenFlow controller.

Figure 20 is a screenshot of Opimon’s web interface when monitoring the

virtual network. I verified that the network topology and the flow entries in each

switch are correct.

Opimon was also deployed to a large-scale international OpenFlow network

testbed referred to as the PRAGMA Experimental Networking Testbed (PRAGMA-

ENT) [81]. This testbed is maintained and used by researchers participating

58

Figure 23: Visualization of the PRAGMA-ENT network using Opimon

in the Pacific Rim Application and Grid Middleware Assembly (PRAGMA).

The OpenFlow switches in this network, including both hardware and software

switches, are deployed at multiple PRAGMA partner institutions in Japan, the

United States, and Taiwan. The switches are connected via VLANs and Generic

Routing Encapsulation (GRE) tunnels. PRAGMA-ENT uses a controller imple-

mentation based on a routing switch of Trema OpenFlow framework to emulates

a layer 2 switch [82]. Figure 23 shows the network topology of PRAGMA-ENT.

It shows the switches deployed at the Nara Institute of Science and Technology

(NAIST), Osaka University, National Institute of Information and Communica-

tions Technology (NICT), University of California San Diego (UCSD), and Uni-

versity of Florida (UF). I confirmed that Opimon was able to correctly monitor

the PRAGMA-ENT network in real-time.

3.4.2 Overhead Imposed by Opimon

I measured the latency and throughput of Ryu’s L2 learning switch controller

with and without Opimon to quantify the overhead imposed by Opimon. A

59

MongoDB

Database

OpenFlow

Controller

Visualization

Module

Data Plane Control Plane Data Collection

Monitoring

Module

Cbench

Controller VM Visualizer VM

Monitoring VM

Network VM

Host A

Host B

Host C

Figure 24: Experimental Environment

60

Table 11: Virtual machines used for evaluation

VM vCPU RAM Software

Controller VM 4 8 GB Ryu L2 Learning Switch

Visualizer VM 8 16 GB Visualization Module & MongoDB

Monitoring VM 16 16 GB Monitoring Module

Network VM 16 16 GB Cbench

benchmark tool for OpenFlow controllers called Cbench [83,84] was used in this

evaluation. Cbench simulates a number of OpenFlow switches by opening multi-

ple connections to the controller and concurrently sending PacketIn messages to

simulate the arrival of packets at switches. In the latency mode, Cbench sends a

PacketIn message and waits for the controller to reply with a FlowMod message.

In the throughput mode, Cbench sends a large number of PacketIn messages and

counts the number of FlowMod messages received from the controller.

I set up four VMs on three hosts for this evaluation as shown in Fig. 24. On

host A, I deployed a VM that ran the OpenFlow controller and another VM that

ran Opimon’s visualization module and MongoDB. I deployed a VM for Opimon’s

monitoring module on host B and a VM for Cbench on host C. All hosts were

equipped with two Intel Xeon Silver 4208 CPUs and 96 GB of RAM. Table 11

shows the resource allocation to each VM.

I used Python 3.8.5 and the latest master version of Ryu [42] (git commit

a394673). The visualization module was executed with Node.js 10.19.0 and Ex-

press 4.17.1. MongoDB 3.6 was used as the database. I used Cbench included in

the latest master version of Oflops [84] (git commit 762d517) and built it with

the reference OpenFlow implementation [85] (git commit 82ad07d). All VMs ran

Ubuntu Server 18.04.

Using Cbench, I measured the latency and throughput of the controller while

varying the number of simulated switches from 16 to 256. I compared the latency

and throughput with and without using Opimon in each case. Each measurement

was repeated 10 times to quantify the performance variability.

Figure 25 shows a comparison of latency. Here the error bars represent the

standard deviation. As expected, the latency of the controller becomes higher

61

0

5

10

15

20

25

30

16 32 64 128 256

T
im
e
 [
m
s
]

Number of switches

w/o Opimon
w/ Opimon

Figure 25: Controller latency (Ryu L2 learning switch)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16 32 64 128 256

R
e
s
p
o
n
s
e
s
 p
e
r
s
e
co
n
d

Number of switches

w/o Opimon
w/ Opimon

Figure 26: Controller throughput (Ryu L2 learning switch)

62

when the number of switches increases. The results indicate that Opimon in-

troduces an overhead of approximately 0.5 𝜇s at maximum. This is only 3%

of the latency without Opimon, even when handling 256 switches. Figure 26

shows a comparison of throughput. The results shows that Opimon decreases the

throughput of the controller for 5% at most.

3.4.3 Performance Comparison to OpenNetMon

In this experiment, I compared the overhead of Opimon to an existing OpenFlow

monitoring system, OpenNetMon [49]. I used the same environment as the pre-

vious experiment (Fig. 24), and deployed OpenNetMon on the controller VM.

Since OpenNetMon only works with its built-in routing switch controller based

on POX, I measured the overhead caused by Opimon and OpenNetMon using

this routing switch controller.

Figures 27 and 28 show the latency and throughput measured using Cbench.

These plots indicate that the performance difference between OpenNetMon and

Opimon is marginal. Furthermore, the fact that Opimon worked with Open-

NetMon’s routing switch controller based on POX demonstrates that Opimon is

transparent to the OpenFlow controller and controller framework. This evalua-

tion shows the advantage of Opimon over OpenNetMon in terms of compatibility

with any OpenFlow controllers and controller frameworks.

3.4.4 Accuracy of DDoS Attack Detection

The experiments were conducted on a server running Ubuntu 18.04 equipped with

an NVIDIA GTX 1080 GPU. The experiments were performed using Keras with

TensorFlow backend for deep learning and ThunderSVM for SVM. The testing

dataset is 10% of dataset randomly selected based on K-Folds cross validation [86].

The remaining data is used as the training dataset. As shown in Table 12,

I classify the prediction results into four categories: True Positive (𝑇𝑝), True

Negative (𝑇𝑛), False Positive (𝐹𝑝), and False Negative (𝐹𝑛). These four categories

are used to calculate the performance metrics including with accuracy, recall,

precision, and F1 score. These values are calculated with K-Folds cross validation

step to reduce the possible overfitting in the model [87].

63

0

2

4

6

8

10

16 32 64 128 256

T
im
e
 [
m
s
]

Number of switches

w/o Monitoring
w/ Opimon
w/ OpenNetMon

Figure 27: Controller latency (OpenNetMon routing switch)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

16 32 64 128 256

R
e
s
p
o
n
s
e
s
 p
e
r
s
e
co
n
d

Number of switches

w/o Monitoring
w/ Opimon
w/ OpenNetMon

Figure 28: Controller throughput (OpenNetMon routing switch)

64

Table 12: Confusion matrix

Actual

Positive Negative

Predicted
Positive True Positive (𝑇𝑝) False Positive (𝐹𝑝)

Negative False Negative (𝐹𝑛) True Negative (𝑇𝑛)

• Accuracy: A ratio of the correct prediction result from the total predic-

tion result. This metric is commonly used to evaluated the performance a

machine learning model.

Accuracy =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
(4)

• Recall (𝑅): A ratio of the correct prediction result from the total positive

of the actual results.

𝑅 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
(5)

• Precision (𝑃): A ratio of the corect prediction result from the total predicted

positive results.

𝑃 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
(6)

• F1 score: A measure of a test’s accuracy by using recall 𝑅 and precision 𝑃.

F1 score =
2 × (𝑃 × 𝑅)

𝑃 + 𝑅 (7)

For SVM, I compared several SVM kernels, which are Linear, Polynomial,

and Radial Basis Function (RBF) kernel, to find the best suited kernel for DDoS

attack detection. The results are shown in Table 13 and Table 14. In these tables,

𝑤 denotes the time window aggregated dataset and 𝑝 denotes the packet specific

dataset.

Polynomial kernel has achieved the highest accuracy for overall. The different

of pre-processing dataset affect some kernels by increase the training time and

detection accuracy, especially RBF and Linear kernel. In the experiments of

65

Table 13: Best accuracy from each kernels

Kernel Accuracy Recall Precision F1-score

Linear (w) 76.00% 0.765 0.744 0.754

Linear (p) 90.28% 0.925 0.883 0.902

Polynomial (w) 93.01% 0.922 0.933 0.927

Polynomial (p) 92.58% 0.894 0.933 0.906

RBF (w) 60.05% 0.912 0.599 0.661

RBF (p) 48.43% 1.000 0.479 0.648

Table 14: Time used for each kernel

Kernel Training Time (s) Testing Time (s)

Linear (w) 331.6156 0.0033

Linear (p) 30.6892 0.0030

Polynomial (w) 371.1180 0.0029

Polynomial (p) 379.4168 0.0031

RBF (w) 5.9043 0.0038

RBF (p) 172.5352 0.0034

polynomial kernel, I also plotted graphs to find relationships between the degree

of the polynomial function and accuracy and calculation time. The graphs are

shown below in Figure 29, 30, 31. In these graph, the x-axis represents the value

of 𝛾 and the y-axis shows the a different measurement value on each figure. The

y-axis of Figure 29 shows accuracy of the model, Figure 30 shows the time in

second that uses for training the model, and Figure 31 shows the time in second

that uses for classification.

Table 14 shows that RBF kernel takes the least time to train the model.

However, the model performance is lower compared to the other kernels. From

Figure 29, 30, 31, I found that when degree increased, training time and accuracy

tend to increase while predict time tends to decrease.

66

0.0

20.0

40.0

60.0

80.0

100.0

1 2 3 4 5 6 7 8 9 10

A
c
c
u

ra
cy

 [
%

]

γ

d=1
d=2
d=3
d=4

Figure 29: Relationship between 𝛾, 𝑑, and accuracy

0.0

50.0

100.0

150.0

200.0

1 2 3 4 5 6 7 8 9 10

T
ra

in
in

g
 T

im
e

 [
s]

γ

d=1
d=2
d=3
d=4

Figure 30: Relationship between 𝛾, 𝑑, and calculation time for training the model

67

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

P
re

d
ic

tio
n

 T
im

e
 [

s]

γ

d=1
d=2
d=3
d=4

Figure 31: Relationship between 𝛾, 𝑑, and calculation time for testing the model

For deep learning, Keras was used in the experiment. I used the same dataset

as the SVM experiment. Keras is used to builds the deep learning model. I ran

the test with trial and error by adding the model layer to find the best accuracy.

Accordingly, the best results in terms of accuracy from each algorithm are shown

in Table 15.

The result of the experiment that run with packet specific (L) dataset is used

to evaluate the result for evaluating with huge traffic. Deep learning achieved

the highest accuracy of 99.63%, recall of 0.994, precision with 0.998 and F1-score

is 0.996. On the other hand, SVM achieved an accuracy rate of 81.23%, recall

of 0.927, precision of 0.756 and F1-score is 0.826 when considered with the same

data size and data type. Conversely, SVM took 138.260 seconds for training

and 0.500 seconds for classification, whereas deep learning took 239.614 seconds

for training and 14.651 for classification. Thus, I conclude that deep learning

performs better than SVM in terms of accuracy of classification, whereas SVM

performs better than deep learning in terms of classification time.

68

T
ab

le
15
:
B
es
t
re
su
lt
s
in

te
rm

s
of

ac
cu
ra
cy

fo
r
ea
ch

al
go
ri
th
m

S
V
M

M
o
d
el

P
er
fo
rm

an
ce

T
im

e
U
se
d
(s
)

A
cc
u
ra
cy

R
ec
al
l

P
re
ci
si
on

F
1-
sc
or
e

T
ra
in

T
es
t

T
im

e
w
in
d
ow

ag
gr
eg
at
ed

93
.0
1%

0.
92
2

0.
93
3

0.
92
7

37
1.
11
8

0.
00
3

P
ac
ke
t
sp
ec
ifi
c
(S
)

92
.5
8%

0.
89
4

0.
93
3

0.
90
6

37
9.
41
7

0.
00
3

P
ac
ke
t
sp
ec
ifi
c
(L
)

81
.2
3%

0.
92
7

0.
75
6

0.
82
6

13
8.
26
0

0.
50
0

D
e
e
p

L
e
a
rn

in
g

M
o
d
el

P
er
fo
rm

an
ce

T
im

e
U
se
d
(s
)

A
cc
u
ra
cy

R
ec
al
l

P
re
ci
si
on

F
1-
sc
or
e

T
ra
in

T
es
t

T
im

e
w
in
d
ow

ag
gr
eg
at
ed

61
.3
0%

0.
24
0

0.
45
2

0.
29
5

3.
31
4

0.
11
7

P
ac
ke
t
sp
ec
ifi
c
(S
)

68
.3
0%

0.
36
6

0.
92
2

0.
50
4

3.
43
8

0.
11
5

P
ac
ke
t
sp
ec
ifi
c
(L
)

99
.6
3%

0.
99
4

0.
99
8

0.
99
6

23
9.
61
4

14
.6
51

69

3.5 Conclusion & Future Work

I proposed Opimon, a monitoring system for OpenFlow networks. Opimon col-

lects the topology, flow tables, and switch statistics from the target network,

and interactively visualizes the state of the network through a web interface in

real-time. Opimon is completely transparent to the network and works with any

OpenFlow switch or controller without any modification required. Furthermore,

Opimon imposes little overhead to the network performance and can be used in

production networks. Using Cbench, I simulated up to 256 virtual switches and

measured the latency and throughput of the controller with and without using

Opimon. The results indicated that the overhead to latency introduced by Opi-

mon is less than 0.5𝜇s (or 3%). In addition, the overhead in terms of throughput

was less than 5%.

The preliminary result of machine learning algorithm for the problem of DDoS

attack detection has been addressed. Two algorithms, Support Vector Machine

(SVM) and Deep Feed Forward (DFF) were compared in terms of classification

accuracy and computing time. It was found that DFF can classify the data with

a higher accuracy compared to SVM. Therefore, deep learning is a useful choice

for the classification of DDoS attack packets in terms of accuracy. However, SVM

is an appropriate choice for faster classification.

As future work, I are planning to implement a new module for detecting

anomalous traffic in the network, such as DDoS attacks, using machine learning

algorithms. In contrast to existing Intrusion Detection Systems (IDS) which

require traffic probes to be installed in the data plane, this module will not

require additional traffic probes because it will analyze the OpenFlow messages

collected using Opimon. I will also extend the visualization module to report the

detection results in real-time.

For the next step of network traffic classification, I will apply a deep learning

on the security analysis server in Opimon for detecting the attack traffic in the

OpenFlow network. However, the DARPA dataset, which is used during pre-

liminary experiment, contains traffic from in the data plane only. I believe that

using data plane traffic only is not enough to detect DDoS attack in some cases

for OpenFlow network such as a traffic that aims to flood the OpenFlow mes-

sages to the controller. I plan to use the data plane dataset and control plane

70

dataset to fully detect DDoS attack in the OpenFlow network. The control plane

traffic dataset only could be used for lightweight DDoS attack detection due to

the size of dataset is smaller compare to the size of data plane traffic dataset.

For example, I can use the number of the PacketIn messages in the control plane

to detect DDoS attacks in the data plane. Since a DDoS attack is composed of

many different packet types in the flow and the switch might send the packet

to the controller for getting the action of the flow, a huge number of OpenFlow

messages will be generated in the control plane. I can use this fact and other

behaviors of the control plane to detect a DDoS attack in the data plane. In

the next step, I will simulate the DARPA dataset, which include normal traffic

and DDoS attack traffic obtained from the data plane of a traditional network,

in OpenFlow network. Opimon monitoring tool is used for capturing the packet

to create a control plane traffic dataset. Due to the fact that each controller may

provide different behavior of control plane traffic, multiple of control plane traffic

dataset might be collected from different OpenFlow controller. I will apply the

deep feed forward on the control plane dataset only for detecting DDoS attack

traffic in data plane. Then, the combination of two plane traffic datasets are

used for improve the DDoS attack detection in term of speed of classification

and classification accuracy. I will evaluate the DDoS detection with each dataset

for finding the best accuracy and nearly real-time DDoS attack detection. Addi-

tionally, an automation script will be developed for periodically running machine

learning models to detect DDoS attack. The result of the DDoS attack detection

will be shown in the web interface for alerting the network administrator.

71

4. Network Traffic Time Series Analysis with Em-

pirical Dynamic Modeling (EDM)

4.1 Introduction

Denial of Service (DoS) attack is one of the most common cyber-attacks in com-

puter networks. DoS attack floods the victim with massive traffic and makes

the target service unavailable to legitimate users. If the attack traffic originates

from multiple sources, the attack is called Distributed Denial of Service (DDoS)

attack. The scale of DDoS attacks can be easily expanded by using computers

distributed across the internet. Figure 32 illustrates how the DDoS attack works.

Attacker

Attacker

User Server

DDoS Attack Traffic

Figure 32: Distributed Denial of Service (DDoS) attack

DDoS attack detection has been a long-standing research topic in the network

security field. The difficulty in detecting DDoS attacks stems from the fact that

a variety of packet types and techniques can be employed. As mentioned in

Section 3.2.3, machine learning has been successfully applied to detect DDoS

attacks in previous studies. However, machine learning based models require

a large amount of computational resources and datasets to train, they are not

suitable for building practical and real time detection systems. Therefore, in this

chapter, I propose to use EDM to detect DDoS attacks in networks by predicting

the time series behavior of network traffic.

72

4.2 Related Work

4.2.1 kEDM: a performance-portable implementation of EDM

In this research, another EDM implementation, kEDM, was used. kEDM is

a performance-portable implementation of EDM based on the Kokkos frame-

work [88]. kEDM improves and solves several remaining issues in mpEDM, such

as performance portability and optimization of the kernels. mpEDM uses the Ar-

rayFire [89] library to implement k-nearest neighbors search and lookup functions,

and it performs well across diverse platforms supported by ArrayFire without re-

implementing low level functions. However, it lacks the ability to further optimize

or modify the kernel to increase additional performance.

Kokkos is a performance portability framework that aims to provides abstrac-

tions for both parallel execution of code and data management. Kokkos supports

multiple low-level programming models, such as OpenMP, OpenCL, and CUDA.

It helps developers to manage and support multiple memory patterns on low-level

programming models. Kokkos allows kEDM to remove several inefficiencies from

mpEDM and implement custom-tailored kernels. As a result, kEDM achieves up

to 5.5× higher performance than mpEDM. Additionally, kEDM also provides a

Python binding that allows users to use kEDM with Python programming lan-

guage [90] instead of C++ programming language.

4.2.2 Other Time Series Prediction Methods

In this research, I have compared time series prediction with EDM to other typ-

ical machine learning methods, such as Auto Regression and Long Short-Term

Memory. This section introduces these methods.

Auto Regression (AR) is a basic technique to predict the future values of

the time series. Equation (8) represents an AR model. It is based on a linear

regression with its own past values. AR has a time lag 𝑝 to represent the number

of past values. It uses past 𝑝 time steps values to predict a current value of

the time series. AR model is successfully applied in the multiple works of DDoS

attack detection [91–93].

73

𝑥𝑡 = 𝑐 +
𝑝∑
𝑖=1

𝜙𝑖𝑥𝑡−𝑖 + 𝜀𝑡 (8)

where:

𝑡 : Time step

𝑥𝑡 : Time series at time 𝑡

𝑐 : Constant

𝑝 : Number of past values

𝜙𝑖 : Parameters of the model

𝜀𝑡 : White noise

Meanwhile, Long short-term memory (LSTM) is one of deep machine learn-

ing techniques. The structure of the LSTM is improved from Recurrent Neural

Network (RNN). RNN is a neural network that has a loop back to persist the

information. The loop back can change to connect to the other neural network

for creating the chain. Figure 33 shows the structure of an RNN cell and the

equations are shown in Eq. (9). RNN has a simple structure, which contains only

a single activation layer, such as the hyperbolic tangent (tanh) layer. However,

RNN encounters a long-term dependencies issue that causes RNN unable to learn

the connection between past and future information. LSTM is proposed to solve

this issue.

LSTM was introduced by Hochreiter et al. in 1997 [94]. LSTM is designed

to avoid long-term dependencies. Figure 34 shows the structure of a LSTM cell.

Each layer of LSTM contains input gate 𝑖, output gate 𝑜, and forget gate 𝑓 .

The compact forms of the equations for the forward pass of LSTM is shown in

Eq. (10). Unlike RNN, each layer of the LSTM has a forget gate 𝑓 for selecting

which information to keep or remove from cell state 𝐶. As shown in the Fig. 34,

hyperbolic tangent (tanh) functions are commonly used as activation functions

for cell output or cell state, and sigmoid functions are used as activation functions

for the recurrent steps. This design allows LSTM to hold the information in long-

term. LSTM is suitable for classifications and predictions of time series. LSTM

is applied in many researches and applications in various fields [95–97].

74

tanh

Figure 33: The structure of Recurrent Neural Network (RNN)

σ

X

σ tanh

X

＋

Xσ

tanh

Figure 34: The structure of Long Short-Term Memory (LSTM)

75

ℎ𝑡 = tanh(𝑈𝑥𝑡 +𝑊ℎ𝑡−1 + 𝑏)
𝑜𝑡 = 𝜎(𝑉ℎ𝑡 + 𝑐)

(9)

where:

𝑡 : Time step

𝜎 : Activation function

𝑥𝑡 : Input vector at time 𝑡

ℎ𝑡 : Hidden state vector

𝑜𝑡 : Output gate’s activation vector

𝑈,𝑉,𝑊 : Weight matrices

𝑏, 𝑐 : Bias vectors

𝑓𝑡 = 𝜎(𝑊 𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏 𝑓)
𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)
𝐶𝑡 = tanh(𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ◦ 𝐶𝑡−1 + 𝑖𝑡 ◦ 𝐶𝑡

ℎ𝑡 = 𝑜𝑡 ◦ tanh(𝐶𝑡)

(10)

where:

𝑡 : Time step

𝜎 : Activation function

𝑥𝑡 : Input vector at time 𝑡

𝑓𝑡 : Forgot gate’s activation vector

𝑖𝑡 : Input gate’s activation vector

𝑜𝑡 : Output gate’s activation vector

ℎ𝑡 : Hidden state vector

𝐶𝑡 : Cell input activation vector

𝐶𝑡 : Cell state vector

𝑊 𝑓 ,𝑊𝑖,𝑊𝑜,𝑊𝐶 : Weight matrices

𝑏 𝑓 , 𝑏𝑖, 𝑏𝑜, 𝑏𝐶 : Bias vector

76

Traffic Prediction Model

Time

N
et

w
or

k
M

et
ric

s

Traffic Datasets Time Series of
Network Metrics

Pre

Processing Input

Observation

Prediction

Normal

DDoS

Classification Model

Actual Prediction

Figure 35: Overview to apply EDM and ML for DDoS attack classification

4.3 Implementation

I conduct a preliminary experiment to evaluate the performance of EDM in net-

work prediction and compare it with AR and LSTM. Figure 35 shows the overview

of the process to apply EDM to the network traffic dataset. In the first step, I

pre-process the raw packet trace and convert it into multiple time series. I ex-

tract the features from the header of each packet and aggregate them into a time

series. The temporal resolution of the generated time series is one second. Ad-

ditionally, the values in the time series are normalized between zero and one.

Table 16 lists the features that are aggregated to time series. After that, the time

series is used as an input to train and test the machine learning models to eval-

uate the results. Three machine learning techniques are used to build a DDoS

attack detection model: Simplex projection in EDM, AR, and LSTM. Finally,

classification models are trained to classify normal and DDoS attack traffic.

The DARPA Scalable Network Monitoring 20091103 dataset [76] is used to

evaluate the results. This dataset is a synthetic dataset that imitates 10 days of

benign and DDoS attack traffic. The attack recorded in this dataset is a SYN

flood attack towards a single destination. The dataset is composed of 10 sets,

one set for each day. A set includes 600 to 722 pcap files, each of which contains

raw packets. In this evaluation, set 1 and 2 of the DARPA dataset are used. Set

1 contains monitored network traffic from November, 3rd 2009 at 01:23:36 PM

(GMT) to November 4th, 2009 at 05:01:46 AM (GMT). Set 2 contains monitored

network traffic from November 4th, 2009 at 05:01:47 AM (GMT) to November

5th, 2009 at 5:04:48 AM (GMT). These two sets contain 600 and 720 pcap files,

respectively.

77

Table 16: Features of time series

Feature Description

throughput Number of bytes

packets count Number of packets

avg size Average size of packets

proto set Number of unique packet protocols

proto count TCP Number of TCP packets

proto count UDP Number of UDP packets

proto count ICMP Number of ICMP packets

flags set Number of unique TCP flags

flags count PA Number of packets that have PSH-ACK flags

flags count FPA Number of packets that have FIN-PSH-ACK flags

flags count S Number of packets that have SYN flag

flags count SA Number of packets that have SYN-ACK flags

flags count A Number of packets that have ACK flag

flags count FA Number of packets that have FIN-ACK flags

IP src set Number of unique source IP addresses

IP dst set Number of unique destination IP addresses

IP sport set Number of unique TCP/UDP source ports

IP dport set Number of unique TCP/UDP destination ports

ddos flag DDoS attack label

Table 17: Time series dataset

Name Type of Traffic # of Time Steps # of DDoS Time Steps

set1 normal Normal 56,234 0

set1 ddos DDoS & Normal 56,234 3,889

set2 normal Normal 86,576 0

set2 ddos DDoS & Normal 86,576 4,453

78

During pre-processing, two datasets are created: the DDoS attack time series

dataset and the normal traffic time series dataset. The DDoS attack time series is

created by aggregating all packets in the pcap files. The normal traffic time series

are created by removing the DDoS attack packets using the ground truth labels.

Both datasets have the same number of time series and number of time steps,

but the time series differ at the time steps where the DDoS attack is occurring.

Table 17 shows the time series dataset after packet aggregation. The normal

traffic in set 1 (set1 normal) is used to train the model. The normal traffic time

series and DDoS attack time series in set 2 (set2 normal and set2 ddos) are

used to test the model. However, the load of traffic of each period in a day is

different. To match the training and test dataset period, set 2 time series for

testing are trimmed to have the same time of the day as set 1, which is from

01:23:36 PM (GMT) to 05:01:46 AM (GMT) on the next day.

Three prediction models are created by using various Python libraries. The

model predicts the future values of time series for each individually features. First,

the EDM Simplex projection model is implemented using kEDM6. The Simplex

projection function has three hyperparameters: embedding dimension (𝐸), time

delay (𝜏), and prediction interval (𝑇𝑝). In this experiment, 𝐸 and 𝜏 are varied to

find the best combination for predictions. Second, the AR model is implemented

using the linear regression function from scikit-learn. Third, the LSTM model

is implemented using keras. The LSTM model contains 50 LSTM units and uses

the ReLu activation function. To the inputs to the AR and LSTM models, a time

series splitter is needed to split a time series into a small chunk for X and Y.

Figure 36 illustrates the time series splitter when 𝐸 = 3 and 𝜏 = 2. X represents

input time series, which contains past 𝐸 values for predicting a value at time

step 𝑡. X is used during training the model and predicting the time series. Y

represents as output results, which contains an actual value at time step 𝑡. Y

is used during training the model only. This function allows the AR and LSTM

model to accept the same hyperparameters with EDM. Due to the time shift of

the embedding dimension, the first predicted time steps is shifted and start at

step (𝐸−1) ·𝜏+1. In this experiment, the prediction model is capable of predicting

network traffic a one time step ahead, which is 1 second in this experiment. The

6https://github.com/keichi/kEDM

79

1

2

3

4

5

6

7

8

9

10

Time Series

X Y

1 3 5

2 4 6

3 5 7

4 6 8

5 7 9

6

7

8

9

10

Figure 36: Time series splitting for inputs of AR and LSTM when 𝐸 = 3 and

𝜏 = 2

past 𝐸 observation values are needed to predict the next time step.

The classification model is used to classify whether the current network state

is under DDoS attacks or not. The observed and predicted time series are used as

inputs to the classification model. A random forest classifier are used to classify

between normal state and DDoS attack state. Multiple classification methods

were tested with lazypredict Python library [98] to select the best classification

model and the random forest shows the best classification accuracy. Stratified K-

folds cross-validation is applied to split the data for train and test the classification

model. The accuracy and F1-score are measured.

4.4 Evaluation

I evaluated EDM with the network traffic prediction from two aspects. First,

I compared EDM, LSTM, and AR for the incoming network traffic prediction

and measured the error of the prediction to compare with observation. Second,

I compared the prediction results between three models for classifying the DDoS

80

attack.

The cluster nodes of the high-performance computing system operated by the

Information Initiative Center at the Nara Institute of Science and Technology,

were used for evaluation. Each cluster node is equipped with two 12-core Intel

Xeon E5 2650v4 CPUs, one NVDIA Quadro P4000 (8GB) GPU, 256GB of RAM

and 240GB of local SSD. For the software, I used Python 3.8.1 and the following

libraries for building each model. kedm 0.3.1 was used to perform simplex projec-

tion function. scikit-learn 1.1.1 was used to create an AR model, calculate the

Root Mean Square Error (RMSE), and train a random forest classifier. keras

2.9.0 was used to build an LSTM model.

4.4.1 Incoming Network Traffic Prediction

The Root Mean Square Error (RMSE) is a metric to measure a difference between

a pair of observations in the system and prediction value from the model at

the same time steps. Equation (11) is the definition of RMSE where 𝑥𝑖 is the

observation and 𝑥̂𝑖 is the prediction at time steps 𝑖. 𝑁 is the total number of time

steps. A smaller RMSE indicates that the predicted time series is similar to the

observed time series. To compare the prediction performance of each model in

predicting incoming network traffic, I used the RMSE.

RMSE =

√∑𝑁
𝑖=1(𝑥𝑖 − 𝑥𝑖)2

𝑁
(11)

To find the best prediction result, finding the best combination of hyperpa-

rameters was needed. I ran the three models while varying 𝐸 from 1 to 100 and

fixing 𝜏 to 1 to predict every 18 features that listed in Table 16. As mentioned in

section 4.3, 𝐸 refers to the number of past values used for prediction, and τrefers

to the time interval between past values. This experiment used up to consecutive

past 100 seconds to predict the next value. The set1 normal was used to train

the model for predicting set2 normal. As mentioned in section 4.3, the DARPA

dataset contains a SYN flood attack. Therefore, features that are related to the

DDoS attacks were selected to evaluate the RMSE, which are flags count S,

packets count and avg size.

Table 18 compares the RMSE and runtime, including model training time

81

Table 18: Hyperparameters for predicting important features of set2 normal

Feature Model E τ RMSE Runtime [s]

flags count S

EDM 8 1 0.010162145 4.985092640

AR 22 1 0.011150189 0.100373745

LSTM 3 1 0.011257038 8.603404999

throughput

AR 32 1 0.035387852 0.189230442

LSTM 69 1 0.035921140 65.61778855

EDM 59 1 0.037669422 14.20452595

packets count

AR 51 1 0.035663585 0.355469465

LSTM 60 1 0.035795853 70.09596133

EDM 59 1 0.037542822 13.56930447

avg size

LSTM 93 1 0.029716772 89.16635299

AR 66 1 0.030173687 0.732991695

EDM 16 1 0.032064749 6.313738823

0.000

0.005

0.010

0.015

0.020

0.025

 10 20 30 40 50 60 70 80 90 100

R
o
o
t
m

e
a
n
 s

q
u
a
re

 e
rr

o
r

(R
M

S
E

)

Embedding dimension (E)

EDM
AR
LSTM

Figure 37: Comparison of RMSE when predicting flags count S with τ=1

82

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 0 200 400 600 800 1000 1200

P
re

d
ic

tio
n
s

Time steps

Observations
EDM
AR
LSTM

Figure 38: Comparison of prediction value when predicting flags count S be-

tween three models and observation (1,200 seconds)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

 0 20 40 60 80 100 120

P
re

d
ic

tio
n
s

Time steps

Observations
EDM
AR
LSTM

Figure 39: Comparison of prediction value when predicting flags count S be-

tween three models and observation (120 seconds)

83

0.00

0.02

0.04

0.06

0.08

0.10

 10 20 30 40 50 60 70 80 90 100

R
o
o
t
m

e
a
n
 s

q
u
a
re

 e
rr

o
r

(R
M

S
E

)

Embedding dimension (E)

EDM
AR
LSTM

Figure 40: Comparison of RMSE when predicting packets count with τ=1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 0 200 400 600 800 1000 1200

P
re

d
ic

tio
n
s

Time steps

Observations
EDM
AR
LSTM

Figure 41: Comparison of prediction value when predicting packet counts be-

tween three models and observation

84

0

20

40

60

80

100

120

 10 20 30 40 50 60 70 80 90 100

T
im

e
 [
s]

Embedding dimension (E)

EDM
AR
LSTM

Figure 42: Comparison of average runtime of every prediction target

and time series prediction times, of each model. The results show that EDM

is capable of correctly predicting the flags count S feature, better than other

models. Figure 37 shows the RMSE when varying 𝐸 and fixing τ to 1. The

results indicates that the prediction error of EDM increased when 𝐸 is too large.

On the other hand, LSTM and AR were able to make more accurate predictions

than EDM. Figure 38 and 39 show the normalized predictions of the three models

compared along with the observation for 20 minutes and 2 minutes, respectively.

These results show that EDM is capable of predicting stochastic spikes in the

time series. However, EDM is not adequate for predicting features of which

values change dramatically and continuously over the time compared to AR and

LSTM as shown in Fig. 41. Fig. 42 plots the average runtime to predict all 18

features with each model when varying 𝐸 from 1 to 100 and fixing τ to 1. AR, the

most basic time series prediction model, performs the best in terms of prediction

time. EDM is not as fast as AR, but it is up to 8× faster than LSTM when using

100 past values to predict the next time step. The difference of runtime between

EDM and LSTM increases when using more past values.

85

0.980

0.985

0.990

0.995

1.000

 10 20 30 40 50 60 70 80 90 100

A
c
c
u
ra

cy

Embedding dimension (E)

EDM
AR
LSTM

Figure 43: Comparison of DDoS attack classification accuracy with τ=1

Table 19: The highest classification accuracy and F1-scores of the classification

results

Model E τ Accuracy F1-score

Observation only - - 0.988771 0.847440

EDM 92 1 0.996583 0.953906

AR 67 1 0.994753 0.927983

LSTM 91 1 0.997260 0.962595

Table 20: Confusion matrix for Observation only

Predicted

Positive Negative

Actual
Positive 53,808 309

Negative 322 1,754

86

Table 21: Confusion matrix for EDM

Predicted

Positive Negative

Actual
Positive 54,015 102

Negative 90 1,986

Table 22: Confusion matrix for AR

Predicted

Positive Negative

Actual
Positive 54,023 119

Negative 176 1,900

Table 23: Confusion matrix for LSTM

Predicted

Positive Negative

Actual
Positive 54,059 59

Negative 95 1,981

87

4.4.2 DDoS Attack Traffic Classification

In this evaluation, a random forest classifier was trained and evaluated using

a DDoS attack traffic dataset, set2 ddos. The prediction model was trained

on a non-DDoS attack traffic dataset, set1 normal, and then it was used to

predict the network metrics of another traffic dataset, set2 ddos. The classifier

was then trained and evaluated using both the observations (set2 ddos dataset

itself) and the predicted network metrics. The results were evaluated in terms of

classification accuracy and F1 score. The definitions of these metrics are shown

in Equation (4) and Equation (7), respectively. These metrics were calculated

by averaging the results over the stratified 5-folds cross-validation. All random

seeds used in the evaluation were fixed to 42 for reproducibility.

I prepared a baseline case where the classifier was trained and evaluated only

on the observation dataset without using predicted network metrics. Table 19

shows the comparison between the baseline and the three cases using EDM, AR

and LSTM models for prediction. Figure 43 compares the classification accuracy

of the three models when increasing 𝐸 , which represents the number of past

values to be used to predict the next steps. The results show that all three

models achieved better classification accuracy compared to the baseline case using

only the observation dataset for classification. The case using the LSTM model

provided the best classification accuracy and F1 score. The classification accuracy

of EDM increased with increasing 𝐸 . This behavior is because more past values

are used to predict a future value. EDM provided better accuracy than the AR

model. In conclusion, EDM achieves the same level of classification accuracy as

LSTM but requires much shorter runtime.

Table 19 shows that the classification on the observation dataset only also

receives high accuracy and F1 score. The confusion matrices in Tables 20 to 23

summarize the numbers of actual classification results over the stratified 5-folds

cross-validation tests, indicating that the dataset may be imbalanced. The DDoS

attack traffic in the dataset accounts for less than only 5% of the total traffic.

This issue may be degrading the accuracy of the models.

88

4.5 Conclusion & Future Work

This experiment explored the feasibility of applying EDM to network time series

predictions as an application of EDM to the computer science field. In this

experiment, I used the simplex projection algorithm in EDM to predict 18 network

traffic features individually and compared the performance with two popular

time series prediction methods, AR and LSTM. AR is the most simplest method

for time series prediction and LSTM is more advanced neural network based

time series prediction method. The preliminary results of this experiment show

that EDM is capable of predicting the time series faster than LSTM and the

classification result using EDM prediction provides higher classification accuracy

than the AR-based model.

This experiment used univariate simplex projection to forecast a single time

series from the time series only. EDM also includes multivariate forecast algo-

rithms to predict a time series from multiple time series. Further experiments

are needed to investigate if multivariate prediction can improve the accuracy. In

addition, this experiment only covered a limited combination of hyperparameters.

Investigating other parameters is also needed. 𝑇𝑝 parameters is used to declare

the number of time steps to prediction ahead and it needs to be varied for im-

proving the prediction capability. Furthermore, 18 features are currently used to

classify DDoS attacks, but these metrics represent a high-level overview of the

network state, such as network throughput, number of packets, and other packet

header information. To improve the classification accuracy, more specific net-

work metrics, such as the number of packets per second for individual TCP/UDP

ports, should be investigated.

89

5. Conclusion

5.1 Summary

In this dissertation, I have three contributions: accelerating EDM computation to

enable real-time analysis of network traffic, capturing network traffic in an SDN

in real-time with low-overhead, and applying EDM for network traffic prediction.

First, accelerating EDM computation to enable real-time analysis of network

traffic, mpEDM is developed as a massive parallel library of Empirical Dynamic

Modeling (EDM) to support modern supercomputer architecture. mpEDM im-

proves the EDM algorithm from the existing EDM implementation, cppEDM.

Additionally, it also supports GPU to accelerate the computation. From the

result of the first application, Causal Map of the Zebrafish Brain at Single Neu-

ron Resolution, mpEDM can finish the computation within 20 seconds on ABCI,

which is 1,530× faster than cppEDM with the same dataset and hardware re-

sources. mpEDM also analyzes 13× larger dataset under 200 seconds. This is the

largest EDM causal inference achieved to date.

Second, capturing network traffic in an SDN in real-time with low-overhead,

Opimon has been developed as a monitoring system for OpenFlow networks.

Opimon monitors and visualizes the network status to the user via a web in-

terface. Opimon is completely transparent to the network and monitors the

network in real-time. Opimon is also optimized to reduce the monitoring over-

head. I used Cbench to evaluate the Opimon capabilities. I simulated up to 256

virtual switches and measured the latency and throughput of the controller with

and without using Opimon. The results indicated that the overhead to latency

introduced by Opimon is less than 0.5𝜇s (or 3%). In addition, the overhead in

terms of throughput was less than 5%. Opimon also includes a security analysis

module for analyzing and processing monitored network traffic. This module is

used to convert raw network packets to a time series and feed them as input of

the EDM function. Furthermore, it is also used to detect a DDoS attack with ma-

chine learning techniques. I conducted a preliminary experiment of DDoS attack

detection comparison between Support Vector Machine (SVM) and Deep Feed

Forward (DFF) in terms of classification accuracy and computing time. It was

found that DFF can classify the data with higher accuracy compared to SVM.

90

Therefore, deep learning is a useful choice for the classification of DDoS attack

packets in terms of accuracy. However, SVM is an appropriate choice for faster

classification.

Finally, I used Empirical Dynamic Modeling (EDM) to predict network traf-

fic in Software-Defined Networking (SDN) environments. The achievements of

the previous contributions are used in this experiment. Opimon is used to con-

vert raw messages to time series as input of EDM. kEDM, an improved version

of mpEDM, is used to execute EDM functions. I used EDM to compare with

the popular machine learning techniques, Long short-term memory (LSTM) and

auto regression (AR). I compared these three methods in terms of classification

accuracy and prediction time. The preliminary experiment shows that EDM is

the optimal prediction model for traffic classification with high accuracy and fast

prediction.

From the results of this dissertation, EDM shows a potential to apply real-

time time series predictions as an application in the computer science field. It

is also possible to apply EDM in other applications, which can aggregate the

information to the time series such as network traffic. EDM needs, at least, a

single time series of the past behavior as the input. However, EDM model is very

sensitive to the hyperparameters. Varying hyperparameters and time scale of

the time series are recommended to find the best hyperparameter combinations.

Then, the best hyperparameters are used to predict the time series and analyze

data further.

5.2 Future Work

I aim to integrate the EDM into the security analysis module of the Opimon

for automatic network traffic prediction and anomaly traffic detection, especially

DDoS attack. Control plane network traffic is used as an input dataset to feed

into the model. I will analyze the control plane traffic instead of data plane traffic

in SDN. In SDN, events occurring in the network can be grasped to some extent

by monitoring the messages exchanged in the control plane, without monitoring

the actual network traffic in the data plane. Since the amount of control plane

messages is much smaller than the actual traffic in the data plane, this method

will greatly reduce the data size and allow detecting DDoS attacks in real-time.

91

Then, the information of the network predictions will be visualized on the web

interface of Opimon for alerting the users and network administrators.

92

Acknowledgements

I would like to thank the following people for their wisdom, guidance, and support.

Without their help, this work would never have been possible.

First and foremost, I would like to express my gratitude to Professor Hajimu

Iida for providing a great research environment. His laboratory, Laboratory for

Software Design and Analysis, is a great place to pursue research.

To Professor Kazutoshi Fujikawa, I appreciate for his constructive comments

and feedback made my work come this far. Without him, my research work and

the dissertation would not have been possible.

I would like to express deep appreciation to my supervisors, Associate Profes-

sor Kohei Ichikawa and Assistant Professor Keichi Takahashi for their continuous

support and guidance in my research work as well as my life in Japan. Their

valuable suggestions and comments brought this research to fruition. Without

them, I would not have successfully accomplished the doctoral course.

To Assistant Professor Gerald Pao, I would like to thank for his guidance on

my research. Additionally, I appreciate his support during my visiting University

of California San Diego in 2019.

To Assistant Professor Putchong Uthayopas, who was also my advisor during

my time as an undergraduate student at Kasetsart University. He gave me in-

valuable knowledge in research methodology and widened my vision in the area

of high-performance computing. His insightful suggestion helped shape this re-

search in its initial stage. Without him, I could not come this far. Deep in my

mind, I will always keep his image and he will always be remembered forever.

To Assistant Professor Chawanat Nakasan, I appreciate for his informative

feedback and suggestions always helps raise the quality of this research.

I would like to acknowledge my dissertation committee. Thank you so much

for reviewing my dissertation and for the insightful comments and suggestions

that helped me to improve the overall quality of this dissertation.

To PRAGMA, Dr. Peter Arzberger, Ms. Shava Smallen, and Ms. Nadya

Williams, I appreciate for providing me with a lot of assistance, and advice in

organizing PRAGMA workshops and mentoring PRAGMA Students. I also ex-

press my gratitude towards Dr. Jason Haga and Dr. Prapaporn Rattanatamrong

for their guidance to PRAGMA Students Steering Committee.

93

To Pananus Potisat, my best friend, I have no words that can express my

gratitude for your support in these past few years. Thank you for taking care of

me and cheering me up every time when I am depressed. Without you, I might

not overcome multiple issues like this.

To Friendship, I would like to express my thanks to all of my Thai and inter-

national friends, especially to Sukrit Sriratanawilai, Patawat Watakul, Varunyu

Fuvattanasilp, Prom Kantuptim, Kundjanasith Thonglek, Pongsakorn Sihapitak,

Kamolchanok Sarisuta, Norapat Nitaramorn, Setthawut Chotchaicharin, and Pa-

nyawut Sriiesaranusorn, for their kindness and supportive in every aspects. I feel

joyful every time when we stay and travel together. Without them, my daily life

could not be enjoyed like this.

Last but not least, I wish to express my highest gratitude to my dearest family

for the support, raising and educating me with great care since my youth. No

amount of words would sufficiently express my gratitude.

Finally, I would like to thank the Ministry of Education, Culture, Sports,

Science and Technology (MEXT) Scholarship for the monetary support. This

scholarship enables me to live and pursue my research in Japan comfortably. It

is a huge honor to be a recipient of this scholarship.

94

References

[1] Daniel Kaplan and Leon Glass. Understanding nonlinear dynamics.

Springer Science & Business Media, 1997.

[2] Chun-Wei Chang, Masayuki Ushio, and Chih-hao Hsieh. Empirical dynamic

modeling for beginners. Ecological Research, 32(6):785–796, 2017.

[3] Edward L Ionides, Carles Bretó, and Aaron A King. Inference for nonlin-

ear dynamical systems. Proceedings of the National Academy of Sciences,

103(49):18438–18443, 2006.

[4] Hiroaki Natsukawa and Koji Koyamada. Visual analytics of brain effective

connectivity using convergent cross mapping. In SIGGRAPH Asia 2017

Symposium on Visualization, pages 1–9, 2017.

[5] Florian Grziwotz, Jakob Friedrich Strauß, Chih-hao Hsieh, and Arndt

Telschow. Empirical dynamic modelling identifies different responses of

Aedes Polynesiensis Subpopulations to Natural Environmental Variables.

Scientific Reports, 8(1):1–10, 2018.

[6] Jiayi Ma, Ming Yang, Xueshan Han, and Zhi Li. Ultra-short-term wind gen-

eration forecast based on multivariate empirical dynamic modeling. IEEE

Transactions on Industry Applications, 54(2):1029–1038, 2017.

[7] Christian NK Anderson, Chih-hao Hsieh, Stuart A Sandin, Roger He-

witt, Anne Hollowed, John Beddington, Robert M May, and George Sug-

ihara. Why fishing magnifies fluctuations in fish abundance. Nature,

452(7189):835–839, 2008.

[8] David Crow, Scott Graham, Brett Borghetti, and Patrick Sweeney. En-

gaging empirical dynamic modeling to detect intrusions in cyber-physical

systems. In International Conference on Critical Infrastructure Protection,

pages 111–133, 2020.

[9] Zhongyang Han, Jun Zhao, Henry Leung, King Fai Ma, and Wei Wang. A

review of deep learning models for time series prediction. IEEE Sensors

Journal, 21(6):7833–7848, 2019.

95

[10] Răzvan Gămănuţ, Henry Kennedy, Zoltán Toroczkai, Mária Ercsey-Ravasz,

David C Van Essen, Kenneth Knoblauch, and Andreas Burkhalter. The

mouse cortical connectome, characterized by an ultra-dense cortical graph,

maintains specificity by distinct connectivity profiles. Neuron, 97(3):698–

715, 2018.

[11] Ethan R Deyle and George Sugihara. Generalized theorems for nonlinear

state space reconstruction. PLoS One, 6(3), 2011.

[12] George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle,

Michael Fogarty, and Stephan Munch. Detecting causality in complex

ecosystems. Science, 338(6106):496–500, 2012.

[13] Joseph Park, Gerald M Pao, Erik Saberski, Cameron Smith, Jason Haga,

Ryousei Takano, Chen Min Yeh, Sreekanth Chalasani, and George Sugihara.

Massively parallel empirical dynamic cross mapping. In 37th Meeting of the

Pacific Rim Applications and Grid Middleware Assembly (PRAGMA37),

2019.

[14] Misha B Ahrens, Michael B Orger, Drew N Robson, Jennifer M Li, and

Philipp J Keller. Whole-brain functional imaging at cellular resolution

using light-sheet microscopy. Nature Methods, 10(5):413, 2013.

[15] Xiuye Chen, Yu Mu, Yu Hu, Aaron T Kuan, Maxim Nikitchenko, Owen

Randlett, Alex B Chen, Jeffery P Gavornik, Haim Sompolinsky, Florian

Engert, et al. Brain-wide organization of neuronal activity and convergent

sensorimotor transformations in larval zebrafish. Neuron, 100(4):876–890,

2018.

[16] Adam Thomas Clark, Hao Ye, Forest Isbell, Ethan R Deyle, Jane Cowles,

G David Tilman, and George Sugihara. Spatial convergent cross mapping

to detect causal relationships from short time series. Ecology, 96(5):1174–

1181, 2015.

[17] Hao Ye, Ethan R Deyle, Luis J Gilarranz, and George Sugihara. Distin-

guishing time-delayed causal interactions using convergent cross mapping.

Scientific Reports, 5(14750):1–9, 2015.

96

[18] George Sugihara and Robert M May. Nonlinear forecasting as a way

of distinguishing chaos from measurement error in time series. Nature,

344(6268):734–741, 1990.

[19] Floris Takens. Detecting strange attractors in turbulence. In Dynamical

systems and turbulence, Warwick 1980, pages 366–381. Springer, 1981.

[20] Karin Schiecke, Britta Pester, Martha Feucht, Lutz Leistritz, and Herbert

Witte. Convergent cross mapping: Basic concept, influence of estimation

parameters and practical application. In 37th Annual International Con-

ference of the Engineering in Medicine and Biology Society (EMBC), pages

7418–7421, 2015.

[21] Judea Pearl. Causal inference in statistics: An overview. Statistics surveys,

3:96–146, 2009.

[22] Clive WJ Granger. Investigating causal relations by econometric models

and cross-spectral methods. Econometrica: journal of the Econometric

Society, pages 424–438, 1969.

[23] Satohiro Tajima, Toru Yanagawa, Naotaka Fujii, and Taro Toyoizumi. Un-

tangling brain-wide dynamics in consciousness by cross-embedding. PLoS

computational biology, 11(11), 2015.

[24] George Sugihara. Nonlinear forecasting for the classification of natural time

series. Philosophical Transactions of the Royal Society of London. Series

A: Physical and Engineering Sciences, 348(1688):477–495, 1994.

[25] Chuan Luo, Xiaolong Zheng, and Daniel Zeng. Causal inference in social

media using convergent cross mapping. In 2014 Joint Intelligence and Se-

curity Informatics Conference, pages 260–263, 2014.

[26] cppEDM library. https://github.com/SugiharaLab/cppEDM.

[27] H Ye, A Clark, E Deyle, and G Sugihara. rEDM: an R package for empirical

dynamic modeling and convergent cross-mapping. https://github.com/

SugiharaLab/rEDM, 2016.

97

[28] pyEDM library. https://github.com/SugiharaLab/pyEDM.

[29] Mike Folk, Albert Cheng, and Kim Yates. HDF5: A file format and I/O

library for high performance computing applications. In International Con-

ference for High Performance Computing, Networking, Storage and Analy-

sis, volume 99, pages 5–33, 1999.

[30] BeeOND: BeeGFS On Demand. https://www.beegfs.io/wiki/BeeOND.

[31] James Malcolm, Pavan Yalamanchili, Chris McClanahan, Vishwanath

Venugopalakrishnan, Krunal Patel, and John Melonakos. ArrayFire: a

GPU acceleration platform. In Modeling and Simulation for Defense Sys-

tems and Applications VII, volume 8403, pages 49–56, 2012.

[32] ABCI official website. https://abci.ai/.

[33] TOP500 list, November 2019. https://top500.org/lists/2019/11/.

[34] Wei Chen, Jincai Chen, Fuhao Zou, Yuan-Fang Li, Ping Lu, and Wei Zhao.

RobustiQ: A robust ANN search method for billion-scale similarity search

on GPUs. In Proceedings of the 2019 on International Conference on Mul-

timedia Retrieval, pages 132–140, 2019.

[35] Jia Pan and Dinesh Manocha. Fast GPU-based locality sensitive hash-

ing for k-nearest neighbor computation. In Proceedings of the 19th ACM

SIGSPATIAL international conference on advances in geographic informa-

tion systems, pages 211–220, 2011.

[36] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neigh-

bor search using GPU. In 2008 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, pages 1–6, 2008.

[37] Mohammad Reza Abbasifard, Bijan Ghahremani, and Hassan Naderi. A

survey on nearest neighbor search methods. International Journal of Com-

puter Applications, 95(25):39–52, 2014.

[38] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and

David Walker. Composing software defined networks. In 10th USENIX

98

Symposium on Networked Systems Design and Implementation (NSDI 13),

pages 1–13, 2013.

[39] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry

Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open-

Flow: Enabling innovation in campus networks. ACM SIGCOMM Com-

puter Communication Review, 38(2):69–74, 2008.

[40] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,

Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, and Pravin She-

lar. The design and implementation of Open vSwitch. In 12th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 15),

pages 117–130, 2015.

[41] Lagopus switch and router. http://www.lagopus.org.

[42] Ryu SDN framework. https://github.com/faucetsdn/ryu.

[43] Faucet: Open source SDN controller for production networks. https://

faucet.nz.

[44] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi

Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov,

William Snow, et al. ONOS: Towards an open, distributed SDN OS. In

Proceedings of the Third Workshop on Hot Topics in Software Defined Net-

working, pages 1–6, 2014.

[45] Open network operating system (ONOS). https://www.opennetworking.

org/onos/.

[46] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. OpenDaylight:

Towards a model-driven SDN controller architecture. In Proceeding of IEEE

International Symposium on a World of Wireless, Mobile and Multimedia

Networks 2014, pages 1–6, 2014.

[47] Kazuya Suzuki, Kentaro Sonoda, Nobuyuki Tomizawa, Yutaka Yakuwa,

Terutaka Uchida, Yuta Higuchi, Toshio Tonouchi, and Hideyuki Shimon-

99

ishi. A survey on openflow technologies. IEICE Transactions on Commu-

nications, 97(2):375–386, 2014.

[48] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres,

and Nick McKeown. Where is the debugger for my software-defined net-

work? In Proceedings of the first workshop on Hot topics in software defined

networks, pages 55–60, 2012.

[49] Niels L.M. Van Adrichem, Christian Doerr, and Fernando A. Kuipers.

OpenNetMon: Network monitoring in OpenFlow software-defined net-

works. In 2014 IEEE Network Operations and Management Symposium

(NOMS), pages 1–8, 2014.

[50] Renato B. Santos, Thiago R. Ribeiro, and Cećılia de A. C. César. A net-

work monitor and controller using only OpenFlow. In 2015 Latin American

Network Operations and Management Symposium (LANOMS), pages 9–16,

2015.

[51] Pedro Heleno Isolani, Juliano Araujo Wickboldt, Cristiano Bonato Both,

Juergen Rochol, and Lisandro Zambenedetti Granville. Interactive moni-

toring, visualization, and configuration of OpenFlow-based SDN. In 2015

IFIP/IEEE International Symposium on Integrated Network Management

(IM), pages 207–215, 2015.

[52] Karanpreet Singh, Paramvir Singh, and Krishan Kumar. Application layer

HTTP-GET flood DDoS attacks: Research landscape and challenges. Com-

puters & security, 65:344–372, 2017.

[53] Watanakeesuntorn Wassapon, Putchong Uthayopas, Chantana Chantra-

pornchai, and Kohei Ichikawa. Real-time monitoring and visualization soft-

ware for openflow network. In 2017 15th International Conference on ICT

and Knowledge Engineering (ICT&KE), pages 1–5, 2017.

[54] JD Case, Mark Fedor, Martin Lee Schoffstall, and James Davin. RFC1157:

Simple network management protocol (SNMP), 1990.

100

[55] Peter Phaal, Sonia Panchen, and Neil McKee. RFC3176: InMon Corpo-

ration’s sFlow: A method for monitoring traffic in switched and routed

networks, 2001.

[56] Sukhveer Kaur, Japinder Singh, and Navtej Singh Ghumman. Network

programmability using POX controller. In ICCCS International Conference

on Communication, Computing & Systems, volume 138, pages 134–138,

2014.

[57] Sayyaf Haider Warraich, Zeeshan Aziz, Hasnat Khurshid, Rashid Hameed,

Abdul Saboor, and Muhammad Awais. SDN enabled and OpenFlow

compatible network performance monitoring system. arXiv preprint

arXiv:2005.07765, 2020.

[58] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin

Casado, Nick McKeown, and Guru Parulkar. FlowVisor: A network virtu-

alization layer. OpenFlow Switch Consortium, Tech. Rep, 1:132, 2009.

[59] Hiroaki Yamanaka, Eiji Kawai, Shuji Ishii, and Shinji Shimojo. AutoVFlow:

Autonomous virtualization for wide-area openflow networks. In 2014 third

European workshop on software defined networks, pages 67–72, 2014.

[60] Aditya Nur Cahyo, Risanuri Hidayat, and Dani Adhipta. Performance

comparison of intrusion detection system based anomaly detection using

artificial neural network and support vector machine. In AIP Conference

Proceedings, volume 1755, pages 1–7, 2016.

[61] Nitin Aji Bhaskar. Performance analysis of support vector machine and

neural networks in detection of myocardial infarction. Procedia Computer

Science, 46:20–30, 2015.

[62] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support

vector machines. ACM transactions on intelligent systems and technology

(TIST), 2(3):27, 2011.

[63] Tuan A Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi, and

Mounir Ghogho. Deep learning approach for network intrusion detection in

101

software-defined networking. In 2016 International Conference on Wireless

Networks and Mobile Communications (WINCOM), pages 258–263, 2016.

[64] Quamar Niyaz, Weiqing Sun, and Ahmad Y Javaid. A deep learning

based DDoS detection system in software-defined networking (SDN). arXiv

preprint arXiv:1611.07400, 2016.

[65] Sigurour Pall Behrend. Design, implementation, and optimization of an

advanced I/O Framework for Parallel Support Vector Machines. PhD thesis,

University of Iceland, 2018.

[66] Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. Thun-

derSVM: A fast SVM library on GPUs and CPUs. The Journal of Machine

Learning Research, 19(1):797–801, 2018.

[67] Vassili Kovalev, Alexander Kalinovsky, and Sergey Kovalev. Deep learning

with Theano, Torch, Caffe, TensorFlow, and Deeplearning4J: Which one is

the best in speed and accuracy? 2016 Pattern Recognition and Information

Processing (PRIP 2016), pages 99–103, 2016.

[68] Theano GitHub repository. https://github.com/Theano/Theano.

[69] Nour Moustaf and Jill Slay. Creating novel features to anomaly network

detection using DARPA-2009 data set. In 14th European Conference on

Cyber Warfare and Security, pages 204–212, 2015.

[70] Kubra Kalkan, Gurkan Gur, and Fatih Alagoz. Defense mechanisms against

DDoS attacks in SDN environment. IEEE Communications Magazine,

55(9):175–179, 2017.

[71] RT Kokila, S. Thamarai Selvi, and Kannan Govindarajan. DDoS detec-

tion and analysis in SDN-based environment using support vector machine

classifier. In 2014 Sixth International Conference on Advanced Computing

(ICoAC), pages 205–210, 2014.

[72] DARPA intrusion detection data sets. https://archive.ll.mit.edu/

ideval/data/.

102

[73] Javed Ashraf and Seemab Latif. Handling intrusion and DDoS attacks

in software-defined networks using machine learning techniques. In 2014

National Software Engineering Conference, pages 55–60, 2014.

[74] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

[75] Keras: the Python deep learning API. https://keras.io.

[76] DARPA Scalable Network Monitoring (SNM) Program Traffic, IM-

PACT ID: USC-LANDER/DARPA Scalable Network Monitoring-

20091103/rev8431. Traces taken 2009-11-03 to 2009-11-12. Provided

by the USC/LANDER project. http://www.isi.edu/ant/lander.

[77] Manaf Gharaibeh and Christos Papadopoulos. DARPA-2009 intrusion de-

tection dataset report. Technical Report, 2014.

[78] DARPA Scalable Network Monitoring (SNM) Program Traffic, IMPACT

ID: USC-LANDER/DARPA 2009 DDoS attack-20091105/rev4383. Traces

taken 2009-11-05 to 2009-11-05. Traces taken 2009-11-05 to 2009-11-05. Pro-

vided by the USCLANDER project. http://www.isi.edu/ant/lander.

[79] Thorsten Joachims. SVMlight: Support vector machine. http://

svmlight.joachims.org/, 1999.

[80] Rogério Leão Santos De Oliveira, Christiane Marie Schweitzer, Ailton Akira

Shinoda, and Ligia Rodrigues Prete. Using Mininet for emulation and pro-

totyping software-defined networks. In 2014 IEEE Colombian Conference

on Communications and Computing (COLCOM), pages 1–6, 2014.

[81] Kohei Ichikawa, Pongsakorn U-Chupala, Che Huang, Chawanat Nakasan,

Te-Lung Liu, Jo-Yu Chang, Li-Chi Ku, Whey-Fone Tsai, Jason Haga, and

Hiroaki Yamanaka. PRAGMA-ENT: An international SDN testbed for

cyberinfrastructure in the Pacific Rim. Concurrency and Computation:

Practice and Experience, 29(13):e4138, 2017.

[82] Routing switch. https://github.com/trema/apps/tree/master/

routing_switch.

103

[83] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and An-

drew W Moore. OFLOPS: An open framework for OpenFlow switch eval-

uation. In International Conference on Passive and Active Network Mea-

surement, pages 85–95, 2012.

[84] Cbench: A benchmarking tool for OpenFlow controller. https://github.

com/mininet/oflops/tree/master/cbench.

[85] Stanford OpenFlow 1.0 reference switch/controller. https://github.com/

mininet/openflow.

[86] Tzu-Tsung Wong. Performance evaluation of classification algorithms by

k-fold and leave-one-out cross validation. Pattern Recognition, 48(9):2839–

2846, 2015.

[87] David Martin Powers. Evaluation: from precision, recall and F-measure to

ROC, informedness, markedness and correlation. International Journal of

Machine Learning Technology, 2(1):37–63, 2011.

[88] Keichi Takahashi, Wassapon Watanakeesuntorn, Kohei Ichikawa, Joseph

Park, Ryousei Takano, Jason Haga, George Sugihara, and Gerald M Pao.

kedm: A performance-portable implementation of empirical dynamic mod-

eling using kokkos. In Practice and Experience in Advanced Research Com-

puting, pages 1–8. 2021.

[89] ArrayFire library. https://arrayfire.com/.

[90] kEDM documentation. https://kedm.readthedocs.io/en/latest/

index.html/.

[91] Thanasis Vafeiadis, Alexandros Papanikolaou, Christos Ilioudis, and Ste-

fanos Charchalakis. Real-time network data analysis using time series mod-

els. Simulation Modelling Practice and Theory, 29:173–180, 2012.

[92] Yuichi Uchiyama, Yuji Waizumi, Nei Kato, and Yoshiaki Nemoto. Detecting

and tracing DDoS attacks in the traffic analysis using auto regressive model.

IEICE Transactions on Information and Systems, 87(12):2635–2643, 2004.

104

[93] Mbulelo Brenwen Ntlangu and Alireza Baghai-Wadji. Modelling network

traffic using time series analysis: A review. In Proceedings of the Inter-

national Conference on Big Data and Internet of Thing, pages 209–215,

2017.

[94] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[95] Jinyu Li, Abdelrahman Mohamed, Geoffrey Zweig, and Yifan Gong.

LSTM time and frequency recurrence for automatic speech recognition. In

2015 IEEE Workshop on Automatic Speech Recognition and Understanding

(ASRU), pages 187–191, 2015.

[96] Kundjanasith Thonglek, Kohei Ichikawa, Keichi Takahashi, Hajimu Iida,

and Chawanat Nakasan. Improving resource utilization in data centers

using an LSTM-based prediction model. In 2019 IEEE International Con-

ference on Cluster Computing (CLUSTER), pages 1–8, 2019.

[97] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis Lau. A C-LSTM

neural network for text classification. arXiv preprint arXiv:1511.08630,

2015.

[98] Lazy Predict documentation. https://lazypredict.readthedocs.io/

en/latest/.

105

List of Publication

[1] Wassapon Watanakeesuntorn, Keichi Takahashi, Chawanat Nakasan, Kohei

Ichikawa, and Hajimu Iida. Opimon: A transparent, low-overhead monitoring

system for OpenFlow networks. IEICE Transactions on Communications,

E105.B(4):485–493, 2022.

[2] Keichi Takahashi, Wassapon Watanakeesuntorn, Kohei Ichikawa, Joseph

Park, Ryousei Takano, Jason Haga, George Sugihara, and Gerald M Pao.

kEDM: A performance-portable implementation of empirical dynamic mod-

eling using Kokkos. In 2021 ACM Practice and Experience in Advanced Re-

search Computing (PEARC), pages 1–8, 2021.

[3] Wassapon Watanakeesuntorn, Keichi Takahashi, Kohei Ichikawa, Joseph

Park, George Sugihara, Ryousei Takano, Jason Haga, and Gerald M Pao.

Massively parallel causal inference of whole brain dynamics at single neu-

ron resolution. In 2020 IEEE 26th International Conference on Parallel and

Distributed Systems (ICPADS), pages 196–205, 2020.

[4] Panida Khuphiran, Pattara Leelaprute, Putchong Uthayopas, Kohei Ichikawa,

and Wassapon Watanakeesuntorn. Performance comparison of machine learn-

ing models for DDoS attacks detection. In 2018 IEEE 22nd International

Computer Science and Engineering Conference (ICSEC), pages 1–4. IEEE,

2018.

[5] Wassapon Watanakeesuntorn, Putchong Uthayopas, Chantana Chantraporn-

chai, and Kohei Ichikawa. Real-time monitoring and visualization software

for Open-Flow network. In 2017 15th International Conference on ICT and

Knowledge Engineering (ICT&KE), Bangkok, Thailand, pages 1–5, 2017.

106

