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Relation Extraction: Perspective from Various
Supervised Approaches1

Tran Van Hien

Abstract

Information extraction transforms unstructured text into structured information

on raw data. A vital step in information extraction is relation extraction, which

aims to identify semantic relationships between named entities in text. The ex-

tracted relations help construct knowledge bases and support various natural

language processing applications such as information retrieval and question an-

swering.

Relation extraction has been widely studied in a fully supervised learning ap-

proach by training models on large-scale labeled data. Following this approach,

existing supervised models have achieved excellent performance. However, these

supervised models cannot solve relation extraction in real-world scenarios, such

as recognizing new relations or identifying entities and their relations jointly.

In this dissertation, we focus on two other supervised approaches for rela-

tion extraction task, namely zero-shot relation extraction and end-to-end relation

extraction. These two supervised approaches help solve relation extraction in

real-world scenarios, which are more realistic and challenging.

The first part of this dissertation addresses zero-shot relation extraction, which

aims to recognize (new) unseen relations that cannot be observed during train-

1Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science

and Technology, September 10, 2022.
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ing. We propose two new methods to improve task performance. In the first

method, we present a new model that mainly boosts discriminative feature learn-

ing on both sentence and relation spaces. This model is also equipped with a

self-adaptive comparator network to judge whether the relationship between a

sentence and a relation is consistent. Experimental results show that the pro-

posed method significantly outperforms the state-of-the-art methods. In the sec-

ond method, we argue that enhancing the semantic correlation between instances

and relations is key to solving the zero-shot relation extraction task effectively. A

new model entirely devoted to this goal through three main aspects was proposed:

learning effective relation representation, designing purposeful mini-batches, and

binding two-way semantic consistency. Experimental results on two benchmark

datasets demonstrate that our approach significantly improves task performance

and achieves state-of-the-art results.

The second part of this study concentrates end-to-end relation extraction, which

aims to detect entity pairs along with their relations to extract relational triplets.

We propose an improved decomposition strategy that overcomes two major prob-

lems of the previous decomposition strategy by Yu et al. (2020). Our improved

decomposition strategy considers each extracted entity in two roles (head and

tail) and allows a model to predict multiple relations (if any) of an entity pair.

In addition, a corresponding model framework is presented to deploy our new

decomposition strategy. Experimental results show that our method significantly

outperformed the previous method of Yu et al. (2020) and achieved state-of-the-

art performance on two benchmark datasets. Besides, we also present CovRelex

(Tran et al., 2021), a scientific paper retrieval system that can automatically

detect both entities with various types and their diverse relations through pa-

pers, primarily when COVID-19 articles are published rapidly. The system aims

to support users efficiently in acquiring such knowledge across many COVID-19

scientific papers.

Keywords:

relation extraction, fully supervised learning, zero-shot learning, joint extrac-

tion, supervised learning, end-to-end learning, decomposition strategy, covid-19

relation extraction, neural networks
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Chapter 1

Introduction

1.1 Motivation

In the current digital age, people easily create, share, and obtain information on

the Internet, leading to the exponential growth of various digital contents such as

images, video, speech, and text. It is infeasible for humans to read through such

a large amount of text. Thus, we expect computers to automatically understand

natural language to extract meaningful information in desirable structures.

Information extraction, an important area of natural language processing,

develops methods to support computers for this target. It aims to transform

unstructured text into machine-readable structures for further applications such

as knowledge base construction, question answering, and information retrieval.

In particular, information extraction methods disclose the underlying structures

by recognizing entities and semantic relations between them. Such methods help

readers grasp essential information over a large amount of text.

In this dissertation, we study relation extraction, a sub-field of informa-

tion extraction. Relation extraction aims to identify semantic relations between

named entities within a given unstructured text.

Previous studies considered relation extraction in a fully supervised learning

approach, which identifies semantic relation between given pairs of entities by

training models on large-scaled labeled datasets. Following this approach, tradi-

tional models usually rely on heavily haft-crafted features and linguistic resources,

or elaborately designed kernels, which are time-consuming and challenging to

adapt to novel domains. Recently, neural network models have dominated this
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Figure 1.1: A high-level overview of my research.

task since they can effectively learn meaningful hidden features without human

intervention. Existing supervised neural network models have achieved excellent

performance on this approach. However, these supervised models cannot solve

the relation extraction task in real-world scenarios, such as recognizing new re-

lations or identifying entities and their relations jointly. Thus, in this study,

instead of only considering relation extraction in a fully supervised classification

approach, we further deal with this task in two other supervised approaches:

zero-shot relation extraction and end-to-end relation extraction, where zero-shot

relation extraction focuses on recognizing new relations and end-to-end relation

extraction aims to extract entities and their relations jointly.

The high-level overview of my research is shown in Figure 1.1. In my Mas-

ter’s thesis (Tran, 2019), we dealt with relation extraction in a fully supervised

learning approach. Specifically, in our work (Tran et al., 2019), we proposed

a new model effectively combining Segment-level Attention-based Convolutional

Neural Networks (SACNNs) and Dependency-based Recurrent Neural Networks

(DepRNNs). While SACNNs allow the model to selectively focus on the vital

information segment from the raw sequence, DepRNNs help handle the long-

distance relations from the shortest dependency path between the related enti-

2



ties. Experiments on the SemEval-2010 Task 8 dataset showed that our model is

comparable to the state-of-the-art without using any external lexical features.

In this doctoral dissertation, we further consider relation extraction in the two

other supervised approaches: zero-shot relation extraction and end-to-end relation

extraction, which are more challenging and realistic in real-world scenarios.

First, “zero-shot relation extraction” aims to recognize (new) unseen relations

that cannot be observed during the training phase. Due to the lack of infor-

mation, recognizing unseen relations with no corresponding labeled training in-

stances is a challenging task. We propose two new methods to improve task

performance. In the first method, we present a new model incorporating dis-

criminative embedding learning for both sentences and semantic relations. In

addition, a self-adaptive comparator network is used to judge whether the rela-

tionship between a sentence and a relation is consistent. Experimental results

on two benchmark datasets show that the proposed method significantly outper-

forms the state-of-the-art methods. In the second method, we argue that enhanc-

ing the semantic correlation between instances and relations is a key to solving

the zero-shot relation extraction task effectively. A new model entirely devoted

to this goal through three main aspects was proposed: learning effective relation

representation, designing purposeful mini-batches, and binding two-way semantic

consistency. Experimental results on two benchmark datasets demonstrate that

our method significantly improves task performance and achieves state-of-the-art

results.

Second, “end-to-end relation extraction” is a critical and challenging task in

NLP. Given an unstructured text, it aims to extract pairs of entities with seman-

tic relations to create relational triplets, in the form of (head entity, relation, tail

entity). One of the biggest challenges of this task is the overlapping triplet prob-

lem, where the same entity pair exists multiple semantic relations or two different

triplets overlap one entity. To alleviate this problem, Yu et al. (2020) presented

a novel decomposition strategy that decomposes this task into two interrelated

subtasks, namely head entity extraction and tail entity relation extraction. How-

ever, this strategy still has some limitations that hinder the model from solv-

ing the problem effectively. We, therefore, propose an improved decomposition

strategy that overcomes the existing limitations of the previous strategy. Ex-

3



perimental results show that our method significantly outperformed the method

of Yu et al. (2020) and achieved state-of-the-art performance on two benchmark

datasets. Furthermore, we exploit end-to-end relation extraction in a realistic

project to process COVID-19 scientific papers. Due to the COVID-19 outbreak,

researchers have been focusing on studying the virus and publishing a large num-

ber of COVID-19-related scientific papers rapidly. Thus, it is essential to grasp

valuable knowledge from these papers for dealing with the pandemic effectively.

We present CovRelex (Tran et al., 2021), a scientific retrieval system that focuses

on grasping entities and their relations. Specifically, the CovRelex can auto-

matically detect entities with various types and their diverse relations through

papers. By acquiring such valuable knowledge of biomedical entities, CovRelex

can answer several questions regarding the entities and their relations with users.

1.2 Contribution

The main contribution of this dissertation are as follows:

• A new model incorporating discriminative embedding learning for both sen-

tences and semantic relations is proposed for zero-shot relation extraction

task.

• Experimental results on two benchmark datasets showed that the proposed

model significantly outperforms the state-of-the-art methods in the zero-

shot relation extraction task.

• A new method that focuses on enhancing this semantic correlation by learn-

ing high-quality relation representation, designing strategic mini-batches,

and binding two-way semantic consistency is proposed.

• Extensive experiments on two benchmark datasets demonstrated the effec-

tiveness and robustness of the new method, as it significantly outperformed

the existing state-of-the-art methods.

• For the end-to-end relation extraction task, an improved decomposition

strategy is presented to overcome some limitations of the prior decomposi-

tion strategy by Yu et al. (2020).

4
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• A corresponding model framework is introduced to deploy the new decom-

position strategy for the end-to-end relation extraction.

• Experimental results showed that the new decomposition strategy signifi-

cantly outperformed the previous approach of Yu et al. (2020) and achieved

state-of-the-art performance on two benchmark datasets.

1.3 Organization of the Dissertation

This dissertation is structured as follows:

• Chapter 1 presents this dissertation’s motivation, contributions, and orga-

nization.

• Chapter 2 provides a background of relation extraction and related work

on various supervised approaches for this task.

• Chapter 3 introduces our proposed method of improving discriminative

learning for zero-shot relation extraction.

• Chapter 4 presents our new method that focuses on enhancing semantic

correlation between instances and relations for solving zero-shot relation

extraction.

• Chapter 5 investigates the effectiveness of our improved decomposition

strategy for joint entity and relation extraction.

• Chapter 6 concludes the dissertation with a summary of research results,

open problems, and future work for the relation extraction task.

5



Chapter 2

Background and Related Work

As introduced in Figure 1.1, the overview of my research investigates relation ex-

traction task into three different supervised approaches: fully supervised relation

extraction, zero-shot relation extraction, and end-to-end relation extraction. First,

we introduce background on relation extraction and each of the three supervised

approaches for this task in detail. Then, we present related work on zero-shot re-

lation extraction and end-to-end relation extraction since this dissertation focuses

on these two supervised approaches.

2.1 Background

2.1.1 Relation Extraction Task

Relation extraction is a fundamental task in natural language processing (NLP)

that aims to recognize semantic relations between concepts, also called named

entities or arguments. A named entity, known also as entity, can be expressed

by a word or a sequence of words that indicate a concept of interest. Figure 2.1

illustrates a semantic relation between two entities: Edsel Ford and Henry Ford

in a given sentence1.

Relation extraction (RE) has attracted much research effort as it plays a vital

role in many NLP applications. Specifically, the extracted results can be used

in downstream applications such as information retrieval (Wei et al., 2013; Soto

et al., 2019), textual entailment (Szpektor et al., 2004; Eichler et al., 2016), and

1In this dissertation, “sentence” and “instance” are interchangeable.

6



Figure 2.1: An example expressing the semantic relation between two entities in

a given sentence from the TACRED dataset (Zhang et al., 2017).

question answering (Xu et al., 2016). Entities that participate in a relation can

be located within a sentence, in a short paragraph, or in a document. Previous

work mainly studies sentence-level relation extraction (intra-sentence RE). In the

scope of this dissertation, we also focus on identifying semantic relations between

entities within a single sentence. However, in reality, many entities can have

semantic relations across sentences (inter-sentence), either in a paragraph or a

document. Recognizing relations between entities over multiple sentences will be

our future work.

2.1.2 Fully Supervised Relation Extraction

Traditionally, a fully supervised relation extraction task is naturally cast as a

supervised classification problem. Conventional approaches (Kambhatla, 2004a;

Zhang et al., 2006b; Chan and Roth, 2010; Sun et al., 2011; Nguyen and Grish-

man, 2014; Nguyen et al., 2015) usually rely heavily on linguistic and hand-crafted

features, or elaborately designed kernels, which are time-consuming and challeng-

ing to adapt to new domains. Recently, neural network models have dominated

the work on fully supervised relation extraction task since they can effectively

learn meaningful hidden features without human intervention. We follow this

approach and propose a new model which effectively solves the task.

We briefly introduce our prior work (Tran et al., 2019) on a fully supervised

relation extraction task. Most previous neural network models only exploit one

of the following structures to represent relation instances: raw word sequences

(Zhou et al., 2016; Wang et al., 2016) and dependency trees (Wen, 2017; Le

et al., 2018). While raw sequences can provide all the information of relation

7



Figure 2.2: Our model for fully supervised relation extraction.

instances, they also add noise to the models from redundant information. While

dependency tree structures help the models focus on the concise information

captured by the shortest dependency path (SDP) between two entities, they lose

some supplementary context in the raw sequence. It is clear that the raw sequence

and SDP highly complement each other. We, therefore, combine them to be more

effective in determining the relation without losing any information.

The architecture of our model is presented in Figure 2.2. First, we combine

Entity Tag Feature (ETF) (Qin et al., 2016) and Tree-based Position Feature

(TPF) (Yang et al., 2016) to improve the semantic information between the two

entities in the raw input sentences. Then, we propose Segment-Level Attention-

based Convolutional Neural Networks (SACNN), which automatically pay special

attention to the critical text segments from the raw sentence for relation classifi-
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Model Input F1

CNN Original Sentence 83.5

CNN Middle Segment 84.1

Segment-Level Attention-based CNN Three Segments 85.1

Table 2.1: Effectiveness of the segment-level attention.

Model F1

Dependence-based RNN 83.8

Segment-Level Attention-based CNN 85.1

Combined 85.8

Table 2.2: Evaluation of our combined model.

cation. While the SACNN can learn local features, it cannot handle long-distance

dependency between two entities. Meanwhile, the RNN could tackle the problem

of long-distance pattern learning (Zhang and Wang, 2015). Besides, the SDP

naturally offers the relative positions of subjects and objects through the path

directions (Xu et al., 2015). We, therefore, exploit SDP based on the RNN to

gain the information in the directional relation. Finally, we combine the SACNN

and the DepRNN models to exploit their distinct advantages fully.

We evaluate our model on the benchmark dataset SemEval-2010 Task 8 (Hen-

drickx et al., 2010). We first examine the segment-level attention mechanism of

the SACNN. In Table 2.1, with the same input features, the segment-level atten-

tion mechanism makes a great contribution by increasing the F1 score by 1 point.

Furthermore, to check the effect of combining the SACNN and the DepRNN, in

Table 2.2, we compare the performance of each model to our combined model.

First, the SACNN’s performance is superior to the DepRNN. One possible reason

is that while the SACNN selectively focuses on the essential segments and gains

local features from the raw sentences, the DepRNN based on the SDP in the Se-

mEval2010 Task 8 dataset can only provide the entity’s roles (subject or object)

effectively. Then, by combining the SACNN and the DepRNN, our model can

exploit the vital information and achieve the best performance.
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2.1.3 Zero-Shot Relation Extraction

Although neural network models (Tran et al., 2019; Pouran Ben Veyseh et al.,

2020; Tian et al., 2021) for the fully supervised relation extraction task have

achieved excellent performance, these models cannot recognize new (unseen) re-

lations that have never been seen in the training process. When putting relation

extraction in real-world scenarios where many new relations always exist, the

current supervised models cannot recognize new relations because they are un-

observed during training. Therefore, it is worth inventing models capable of

identifying new relations that have never been observed before. This task is

called zero-shot relation extraction (ZSRE), where a model is trained on labeled

instances of the seen relations but then targeted to predict unseen relations for

testing instances. Additionally, information on all unseen relations is at the test-

ing stage, including their labels (required information) and descriptions (optional

information). Although the ZSRE task is essential for extracting new relations

in real-world scenarios, relevant studies on ZSRE are still limited. Thus, we try

to improve task performance by proposing effective methods in this study.

We follow the exact definition of ZSRE from previous works (Chen and Li,

2021; Gong and Eldardiry, 2021) to introduce the task. Let YS = {y1s , . . . , yns }
and YU = {y1u, . . . , ymu } denote the sets of seen and unseen relation labels, re-

spectively, where n = |YS | and m = |YU | denote the numbers of relations in the

two sets. These two sets are disjoint, i.e., YS ∩ YU = ∅. Given a training set

with N samples, the ith sample comprises the input instance Xi, the entities ei1

and ei2, and description Di of the corresponding seen relation label yis ∈ YS ,

hereby denoted as {Si = (Xi, ei1, ei2, Di, y
i
s)}

N
i=1. Note that, while relation label

information is compulsory, relation description information is optional according

to its availability. Using the training set, our goal is to train a model M, i.e.,

M (Si) → yis ∈ YS . In the testing stage, given a testing instance S ′ with two

entities, and all unseen relation labels in YU (required information) and their de-

scriptions (optional information), M predicts the unseen relation label yju ∈ YU

for S ′.

We give an example of the ZSRE task in Table 2.3. In the training stage, the set

YS of seen relation labels is {mother, mountain range, member of}. Meanwhile,

the unseen relation label set YU :{residence, successful candidate} is for the testing

10



Input Instance Relation Label Relation Description

T
ra

in
in
g

Jinnah and his wife [Rattanbai Petit]e2 had separated soon after

their daughter [Dina Wadia]e1 was born.
mother female parent of the subject

It is approximately 8 km away from [Mount Korbu]e1 , the tallest

mountain of the [Titiwangsa Mountains]e2 .
mountain range

range or subrange to which

the geographical item belongs

South Africa is part of the [IBSA Dialogue Forum]e2 , alongside

[Brazil]e1 and India.
member of

organization or club to which

the subject belongs

T
e
st
in
g In 1959, along with his family, [Gene Chen]e1 moved to the USA

and settled in [San Francisco]e2 .
residence

the place where the person is

or has been, resident

In the [1982 General Election]e2 , [Sir Anerood Jugnauth]e1 (SAJ)

coalition was elected, he became Prime Minister.

successful

candidate

person(s) elected after the

election

Table 2.3: Example of the ZSRE task with the training and testing stages. Each

input instance contains two entities (e1 and e2 ) and expresses their

semantic relation. The seen relation set YS :{mother, mountain range,

member of} is for the training stage and the unseen relation set

YU :{residence, successful candidate} is for the testing stage.

stage. The two sets are disjoint, i.e., YS∩YU = ∅. For simplicity, we provide only

one labeled instance for each seen relation type in the set YS in the training phase,

although it may be many training labeled instances provided for each seen relation

type in fact. Additionally, the descriptions of all seen and unseen relations are

available from open-source Wikidata2. Using the training data, which includes

labeled training instances and the information on all seen relations, we train a

model M. In the testing phase, the model M will predict the unseen relation

type for each given testing instance. For example, given the testing instance: “In

1959, along with his family, [Gene Chen]e1 moved to the USA and settled in [San

Francisco]e2.”, M is expected to predict unseen relation: “residence”.

2.1.4 End-to-end Relation Extraction

Another supervised approach for relation extraction task that we focus on is end-

to-end relation extraction. Given an unstructured text, it aims to extract pairs

of entities with semantic relations to create relational triplets, in the form of

(head, relation, tail). For example, given the unstructured text: “John Smiths

lives and works in Paris, the capital and an administrative division of France.”,

2https://www.wikidata.org/wiki/Wikidata:Main_Page
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Figure 2.3: An example of the entity pair overlap (EPO) and single entity overlap

(SEO) triplets.

it is expected to extract all relational triplets: {(“Paris”, “Capital of”, “France”),

(“Paris”, “Administrative division of”, “France”), (“Paris”, “Located in”, “France”),

(“John Smiths”, “Work in”, “Paris”), (“John Smiths”, “Live in”, “France”)}.
The relational triplets extraction has attracted considerable research effort as it

plays a vital role in many NLP applications such as knowledge graph construction

(Tran et al., 2021) and question answering (Hao et al., 2017).

One of the biggest challenges of this task is the overlapping triplet problem,

which is expressed in two scenarios: entity pair overlap (EPO) and single entity

overlap (SEO). Specifically, EPO occurs when triplets share the same entity pair

but with different relations, such as: (“Paris”, “Capital of”, “France”), (“Paris”,

“Located in”, “France”), and (“Paris”, “Administrative division of”, “France”),

as shown in Figure 2.3. SEO occurs when two relational triplets share only

one common entity, such as: (“John Smiths”, “Work in”, “Paris”) and (“John

Smiths”, “Live in”, “France”).

Most previous works could not efficiently address the overlapping triplet prob-

lem. This encourages us to consider this problem and propose a new method

to solve it productively. The detail of our proposed method for the end-to-end

relation extraction task is presented in Chapter 5.
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2.2 Related Work

In this section, we introduce related work on fully supervised relation extraction,

zero-shot relation extraction, and end-to-end relation extraction in turn.

2.2.1 Related Work on Fully Supervised Relation

Extraction

As introduced, this task is naturally treated as a supervised classification prob-

lem. Traditional approaches for this task usually rely on hand-crafted features or

elaborately designed kernels.

Feature-based methods were firstly used for the relation extraction task among

classical supervised machine learning approaches. They rely on lexical, syntactic,

and semantic information of an entity pair and their corresponding context. The

features include entity mentions, context words, base phrase chunking, part-of-

speech (POS) tags, syntactic parse tree, and dependency tree (Kambhatla, 2004b;

Zhou et al., 2005). Besides, the tree-based features were also exploited to solve

the RE task in some works (Nguyen et al., 2007; Jiang and Zhai, 2007). Other

linguistic features were also utilized for the RE. For example, word clusters were

used to group similar words into the same cluster (Chan and Roth, 2010; Sun

et al., 2011). In addition, several attempts were proposed to exploit entity in-

formation such as semantic entity categories (Zhou et al., 2005; Roth and Yih,

2007) and entity statistics from the Web and Wikipedia (Rosenfeld and Feldman,

2007; Chan and Roth, 2010).

In another approach, kernel-based methods aim to design kernels elaborately,

which help explore the original representation of a given sentence. They com-

pute similarities between representations by kernel functions performing on sub-

sequences, entire sequences, and grammatical structures such as constituent trees

and dependency trees. A popular kernel-based method for RE is sequence ker-

nels that evaluate similar subsequences between sentences. Inspired by Lodhi

et al. (2002), Mooney and Bunescu (2005) utilized different types of subsequence

patterns such as words before, between and after relation arguments for the RE.

Besides, tree-based kernels were also proposed for solving the RE. Zelenko et al.

(2003) introduced a tree-based kernel performing on base phrase chunking infor-
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mation. Bunescu and Mooney (2005) presented a new kernel for RE based on

the shortest dependency path (SDP) between the two relation entities in the de-

pendency graph. They demonstrated that using SDP yielded significantly higher

performance than previous subtree approaches. Zhang et al. (2006a) used a con-

volutional tree kernel to explore multiple tree representations constructed from

the constituent tree structure of a sentence for RE. Several studies made efforts

to solve RE by adding richer features into the tree or modifying kernel functions

(Khayyamian et al., 2009; Sun et al., 2014).

Recently, neural network models have dominated the work on fully supervised

relation extraction task since they can effectively learn meaningful hidden features

without human intervention. Zeng et al. (2014) proposed position features to

capture target entity information in the sentence. These position features are the

relative distances of each word to two entities, which are mapped into continuous-

valued vectors, also called position embeddings. Zeng et al. (2015) developed a

method of piecewise max pooling and incorporate multi-instance learning into

convolutional neural networks for distant supervised relation extraction. Zeng

et al. (2017) built inference chains between two target entities via intermediate

entities, and proposed a path-based neural relation extraction model to encode

the relational semantics from both direct sentences and inference chains. Zhang

et al. (2017) presented an entity position-aware attention mechanism in an long

short-term memory model to focus on important context words. Guo et al. (2019)

proposed attention mechanisms to softly prune the dependency for solving the

RE.

More recently, with the appearance of pretrained language models, performance

on a wide range of NLP downstream tasks have been significantly improved, in-

cluding relation extraction. Baldini Soares et al. (2019a) simply inserted entity

marker tokens in the original sentence to indicate entity positions and inputted

it to a BERT-based model for classifying the relation type. Zhang et al. (2019)

enhanced language representation with external knowledge by incorporating in-

formative entities in knowledge graphs, thereby improving the performance on

the related downstream tasks such as named entity recognition and relation ex-

traction. Wang et al. (2019) built upon BERT with an entity-aware self-attention

mechanism to integrate information from all entity pairs in a sentence. Zhou and
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Chen (2021) improved the baseline methods for RE by revisiting two problems

that affect the performance of existing relation classifiers, namely entity repre-

sentation and noisy or ill-defined labels.

2.2.2 Related Work on Zero-Shot Relation Extraction

Only a few relevant studies have been conducted on zero-shot relation extraction

(ZSRE). Levy et al. (2017) regarded ZSRE as a question-answering task. They

first manually defined 10 question templates to represent each relation type and

then made predictions by training a reading comprehension model to determine

which relation satisfies the given instance and question. Because this method re-

quires human effort to define question templates for unseen relations, it is possibly

unfeasible and impractical to prepare such templates for multiple new unseen re-

lations in real-world scenarios. Obamuyide and Vlachos (2018) formulated ZSRE

as a textual entailment task, where the input instance with two entities is the

premise P, whereas the relation description is the hypothesis H. They then used

existing textual entailment models and required the models to predict whether

P matches H. Specifically, they adopted the enhanced sequential inference model

(ESIM) (Chen et al., 2017) and conditioned inference model (CIM) (Rocktäschel

et al., 2016) as their base models.

Recently, Chen and Li (2021) presented a model called ZS-BERT, which learns

two functions to project sentences and relation descriptions into an embedding

space by jointly minimizing the distances between them and classifying the seen

relations. ZS-BERT then uses the nearest neighbor search to obtain the pre-

diction of unseen relations, although this technique is prone to suffering from

the hubness problem (Radovanovic et al., 2010). Another severe problem is re-

lation representations generated by feeding their relation descriptions into the

frozen pre-trained Sentence-BERT (Reimers and Gurevych, 2019). These rela-

tion representations were fixed during the training. This hinders the learning of

meaningful relation representations, thereby affecting task performance.

Gong and Eldardiry (2021) proposed a prompt-based model with semantic

knowledge augmentation (ZS-SKA) to recognize unseen relations under the zero-

shot setting. They generated augmented instances with unseen relations from

instances with seen relations following a new word-level sentence translation rule.
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By creating representations of the seen and unseen relations with augmented

instances and prompts through prototypical networks, the distance between each

query instance and all prototype embeddings of all relations are calculated for

prediction. This approach requires the provision of unseen relation labels and

external knowledge graphs during the training phase. Thus, it is impractical and

infeasible in real-world scenarios because the required information is not readily

available at the training stage.

More recently, Wang et al. (2022) proposed a novel Relation Contrastive Learn-

ing framework (RCL) to mitigate above two types of similar problems: Similar

Relations and Similar Entities. By jointly optimizing a contrastive instance loss

with a relation classification loss on seen relations, RCL can learn subtle differ-

ence between instances and achieve better separation between different relation

categories in the representation space simultaneously. Especially in contrastive

instance learning, the dropout noise as data augmentation is adopted to am-

plify the semantic difference between similar instances without breaking relation

representation, so as to promote model to learn more effective representations.

Experimental results on two benchmark datasets demonstrated the effectiveness

of their framework.

2.2.3 Related Work on End-to-end Relation Extraction

Researchers have made great efforts to extract relational triplets from unstruc-

tured text, which can be directly used for automatic knowledge graph construc-

tion. There are two main methods for solving this task, namely pipeline methods

and joint learning methods.

Early works (Choi et al., 2006; Yang and Cardie, 2013; Singh et al., 2013)

regarded the joint extraction task in a pipeline manner. They extracted relational

triplets in two isolated steps, firstly identifying entities, and then classifying the

relations between entities.

Choi et al. (2006) employed linear-chain Conditional Random Fields (CRFs) to

develop two separate token-level sequence-tagging classifiers for the entity recog-

nition. The sequence-tagging classifiers were trained using only local syntactic

and lexical information to extract each type of entity without knowledge of any

nearby or neighboring entities or relations. Besides, they also developed a relation
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classifier using Markov order-0 CRFs, which is trained using only local syntactic

information potentially useful for connecting a pair of entities, but has no knowl-

edge of nearby or neighboring extracted entities and link relations. However, the

entity recognition and the relation extraction are separated to train. Thus, these

methods cannot transform the internal association between entities and relations

into contextual information that should be integrated into methods. Yang and

Cardie (2013) presented a joint inference model based on conditional random

field (CRF) to get the optimal prediction for both entity recognition and relation

extraction. Specifically, the proposed model leveraged knowledge from predictors

that optimizes subtasks with constraints of enforcing global consistency to seek

the optimal solution. Singh et al. (2013) developed a joint probabilistic graph-

ical model to construct a circular pipeline consisting of entity tagging, relation

extraction, and coreference. Since the resulting model has a high tree-width and

contains a large number of variables, they also presented a novel extension to

belief propagation that sparsifies the domains of variables during inference. More

recently, Zhong and Chen (2021) introduced a simple and pipelined approach for

entity and relation extraction and established the new state-of-the-art on stan-

dard benchmarks. Their approach essentially learns independent two encoders

for entity recognition and relation extraction and merely uses the entity model

to construct the input for the relation model. They also presented an efficient

approximation, obtaining a large speedup at inference time with a small reduc-

tion in accuracy. Although these pipeline methods are quite simple, they often

suffer from the error propagation problem and ignore the relevance between the

two steps.

To ease the two issues above, subsequent works attempted to build joint learn-

ing models that learn entities and relations simultaneously in a single manner.

They can be divided into two main approaches: feature-based models (Yu and

Lam, 2010; Li and Ji, 2014; Miwa and Sasaki, 2014; Ren et al., 2017) and neu-

ral network-based models (Gupta et al., 2016; Katiyar and Cardie, 2017; Zheng

et al., 2017; Zeng et al., 2018; Fu et al., 2019; Yu et al., 2020). The former rely

heavily on feature engineering and require intensive manual efforts, whereas the

latter are mainly based on neural network architectures. Zheng et al. (2017) in-

troduced a unified tagging scheme and converted the joint entity and relation
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extraction task to an end-to-end sequence tagging problem. This method can di-

rectly model relational triplets as a whole at the triplet level because the unified

tagging scheme already integrates the information of both entities and relations.

However, most previous studies ignored the problem of overlapping relational

triplets. Zeng et al. (2018) presented three patterns of overlapping triplets and

made an effort to address the problem via a sequence-to-sequence model with a

copy mechanism. Subsequently, Fu et al. (2019) also focused on this problem and

proposed a GCN-based method to address it. Recently, Yu et al. (2020) intro-

duced a novel decomposition strategy that decomposes the task into HE and TER

extractions, where the HE extractor detects head entities and the TER extractor

identifies the corresponding tail entity and relation for each given HE. Although

this approach significantly outperforms previous works, it still cannot solve the

entity pair overlap problem as Yu et al. (2020) stated in their work. Yuan et al.

(2020) proposed a relation-attentive sequence labeling framework named RSAN

for joint entity and relation extraction. It decomposes the overlapping triplets

extraction problem into several relation-specific entity tagging processes, and ap-

plies attention mechanism to incorporate finegrained relational information as the

guidance of entity extraction.

On a related note, pre-trained language models have also been exploited for

entity and relation extraction, thereby utilizing prior knowledge and achieving

superior results. Zhao et al. (2020) adopted BERT (Devlin et al., 2019) as the

machine reading comprehension model to solve the joint entity and relation ex-

traction. Wang and Lu (2020) introduced table sequence encoders architecture

for joint extraction of entities and their relations. It learns two separate encoders

rather than one – a sequence encoder and a table encoder where explicit inter-

actions exist between the two encoders. They also presented a new method to

effectively employ useful information captured by the pre-trained language mod-

els for such a joint learning task where a table representation is involved. Hang

et al. (2021) proposed BERT-JEORE, an end-to-end neural network model that

is based on BERT for the joint extraction of entities and overlapping relations.

They used source-target BERT to generate an entity label for each token in the

sample and utilized an overlapping relation extraction model to create an unlim-

ited number of relational triplets. Shang et al. (2022) proposed novel joint entity
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and relation extraction model, named OneRel, which casts joint extraction as a

fine-grained triple classification problem. Specifically, their model consists of a

scoring-based classifier and a relation-specific horns tagging strategy. The former

evaluates whether a token pair and a relation belong to a factual triple. The

latter ensures a simple but effective decoding process.
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Chapter 3

Improving Discriminative

Learning for Zero-Shot Relation

Extraction

3.1 Introduction

As introduced in Section 2.1.3, the zero-shot relation extraction (ZSRE) task is

essential for extracting new relation in real-world scenarios. However, relevant

studies on ZSRE are still limited. Levy et al. (2017) tackled this task by using

reading comprehension models with predefined question templates. Obamuyide

and Vlachos (2018) simply reduced ZSRE to a text entailment task, utilizing

existing textual entailment models. Recently, Chen and Li (2021) presented ZS-

BERT, which projects sentences and relations into a shared space and uses the

nearest neighbor search to predict unseen relations.

The previous studies overlooked the importance of learning discriminative em-

beddings. In essence, discriminative learning helps models distinguish relations

better, especially on similar ones. Our study focuses on this aspect and demon-

strates its significance for improving ZSRE. Specifically, we propose a new model

incorporating discriminative embedding learning (Han et al., 2021) for both sen-

tences and semantic relations, which is inspired by contrastive learning (Chen

et al., 2020) commonly used in computer vision. In addition, instead of using dis-

tance metrics to predict unseen relations as done by Chen and Li (2021), we use

a self-adaptive comparator network to judge whether the relationship between a
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sentence and a relation is consistent. This verification process helps the model

to learn more discriminative embeddings. Experimental results on two datasets

showed that our method significantly outperforms the existing methods for ZSRE.

3.2 Proposed Model

3.2.1 Framework

Sentence Encoder. We use BERT (Devlin et al., 2019) as the basic encoder

to generate contextualized representations of input sentences. Following Bal-

dini Soares et al. (2019b), we first augment each input sentence with four re-

served word pieces ([E1], [/E1], [E2], and [/E2]) to indicate two entities in the

input sentence. For example, in the upper part of Figure 3.1, the input sentence

is “[Amazon]e1 was founded by [Jeff Bezos]e2 in 1994.” becomes “[E1] Amazon

[/E1] was founded by [E2] Jeff Bezos [/E2] in 1994.”. Then, we tokenize the

input sentence with word-piece tokenization (Sennrich et al., 2016). Two special

tokens [CLS] and [SEP] are appended to the first and last positions, respectively.

After that, we input them through a pre-trained BERT encoder (Devlin et al.,

2019). Finally, we obtain the vector representing the semantic relationship be-

tween the two entities by concatenating the two hidden state vectors of the two

start tokens ([E1] and [E2]).

Relation Encoder. Most relations are well defined, and their descriptions are

available from open resources such as Wikidata1 (Chen and Li, 2021). However,

if relation descriptions are not available in a new domain, we can easily create the

necessary relation descriptions manually by humans, as it does not require much

effort. Therefore, for each relation, we feed its corresponding relation description

into a pre-trained Sentence-BERT encoder (Reimers and Gurevych, 2019) and

obtain the representation vector using the mean pooling operation on the outputs.

This procedure is shown in the bottom part of Figure 3.1. The ground truth

relation of the example is “founded by”, along with its description2 “Founder or

1https://www.wikidata.org/
2https://www.wikidata.org/wiki/Property:P112
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Figure 3.1: Sentence Encoder and Relation Encoder.

co-founder of this organization, religion or place”. This relation description is

fed into the Sentence-BERT to obtain the relation representation vector.

Overview of the Model. On the basis of the two modules above, we present

our full model in Figure 3.2. Given a training mini-batch of N sentences, we

feed them into the Sentence Encoder and a subsequent nonlinear projector to

obtain N final sentence embeddings. Simultaneously, we acquire K different rela-

tions from the N sentences. The K corresponding descriptions of the K relations

are then fed into the Relation Encoder and a subsequent nonlinear projector

to acquire the final relation embeddings. To obtain more discriminative embed-

dings, we introduce the learning constraints described in detail later. Finally, we

concatenate pairs from the two spaces and use a network F to judge whether the

relationship between a sentence and a relation is consistent.
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Figure 3.2: Overview of our proposed model with an input training mini-batch of

size N .

3.2.2 Model Training

To boost the learning of discriminative embeddings for sentences and relations,

we consider three main goals in training: (1) discriminative sentence embeddings,

(2) discriminative relation embeddings, and (3) an effective comparator network

F.

Discriminative Sentence Embeddings. In Figure 3.2, given a mini-batch of

N sentences, we obtain N corresponding sentence embeddings: [s1, s2, . . ., sN ].

To learn the discriminative features, we first use a softmax multi-class relation

classifier to predict the seen relation for each sentence:

LSoftmax = − 1

N

N∑
i

yis log(ŷs
i), (3.1)

where yis ∈ YS is the ground-truth seen relation label of the ith sentence and ŷs
i

is the predicted probability of yis. However, such a softmax loss only encourages

the separability of the inter-class features. Meanwhile, discriminative power char-

acterizes features in both the separable inter-class differences and the compact

intra-class variations (Wen et al., 2016). Thus, we use another loss to ensure the

intra-class compactness. First, the similarity distance between two sentences is
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given by

d (si, sj) = 1/(1 + exp(
si
∥si∥

· sj
∥sj∥

)). (3.2)

Clearly, this value should be small for any sentence pair of the same relation (pos-

itive pair) and large for a negative pair. We then apply such distance constraints

on all T unordered sentence pairs, where T = N(N − 1)/2, and formulate the

loss as

(3.3)LS2S = − 1

T

N−1∑
i=1

N∑
j=i+1

(
Iij log d(si, sj) + (1− Iij) log(1− d(si, sj))

)
,

where Iij = 1 if the pair (si, sj) is positive or 0 otherwise. LS2S not only ensures

the intra-relation compactness but also encourages the inter-relation separability

further. Finally, the final loss of learning discriminative sentence embeddings in

the sentence embedding space is defined as follows:

Lsent = LSoftmax + γ · LS2S, (3.4)

where γ is a hyperparameter. With this joint supervision, it is expected that

not only the inter-class sentence embedding differences are enlarged, but also the

intra-class sentence embedding variations are reduced. Thus, the discriminative

power of the learned sentence embeddings will be enhanced.

Discriminative Relation Embeddings. In Figure 3.2, we obtain K corre-

sponding relation embeddings: [r1, r2, . . ., rK ] for K different relations in the

relation embedding space. From the K relations, we have a total of Q pairs

(Q = K(K − 1)/2), where each pair includes two different unordered relations.

Thus, we maximize distance for each of these pairs and define the loss of learning

discriminative relation embeddings by

(3.5)Lrel = − 1

Q

K−1∑
i=1

K∑
j=i+1

log(1− d(ri, rj)),

where d(ri, rj) is the similarity distance between two relations using Equation 3.2.
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Comparator Network. After obtaining the discriminative embeddings of sen-

tences and relations, we use a comparator network F to judge how well a sentence

is consistent with a specific relation. This validation information will guide our

model to learn more discriminative embeddings. In Figure 3.2, we concatenate

sentences and relations as pairs and feed them into F . To enhance the training

efficiency, we control the rate of positive and negative pairs. Specifically, we keep

all positive pairs but randomly select only a part of negative pairs (e.g., posi-

tive:negative rate is 1:3). F is a two-layer nonlinear neural network that outputs

a scalar similarity score in the range of (0,1]. Finally, the loss of training F is

defined as

LF = −

Npos∑
i=1

log vi +
Nneg∑
j=1

log (1− vj)

Npos +Nneg

, (3.6)

where vi and vj are the similarity scores of the ith positive pair and jth negative

pair, respectively; Npos and Nneg are the number of positive pairs and negative

pairs for training.

Total Loss. Based on the three aforementioned losses, the full loss function for

training our model is as follows:

L = LF + αLsent + βLrel, (3.7)

where α and β are hyperparameters that control the importance of Lsent and Lrel,

respectively.

3.2.3 Zero-Shot Relation Prediction

In the testing stage, we conduct zero-shot relation prediction by comparing the

similarity score of a given sentence with all the unseen semantic relation repre-

sentations. We classify the sentence si to the unseen relation that has the largest

similarity score among relations, which can be formulated as

Pzsre (si) = max
j
{vij}|YU |

j=1 . (3.8)
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3.3 Experiments

3.3.1 Dataset

Following the previous work (Chen and Li, 2021), we evaluate our model on

two benchmark datasets: Wiki-ZSL and FewRel (Han et al., 2018). FewRel

is a human-annotated balanced dataset consisting of 80 relation types, each of

which has 700 instances. Wiki-ZSL is a subset of Wiki-KB dataset (Sorokin and

Gurevych, 2017), which filters out both the “none” relation and relations that

appear fewer than 300 times. The statistics of Wiki-KB, Wiki-ZSL, and FewRel

are shown in Table 3.1. Note that descriptions of the relations in the above

datasets are available and accessible from the open source Wikidata3.

#instances #relations avg. len.

Wiki-KB 1, 518, 444 354 23.82

Wiki-ZSL 94, 383 113 24.85

FewRel 56, 000 80 24.95

Table 3.1: The statistics of the datasets.

3.3.2 Experimental Settings

Following Chen and Li (2021), we randomly selected m relations as unseen ones

(m = |YU |) for the testing set and split the entire dataset into the training and

testing datasets accordingly. This guarantees that the m relations in the testing

dataset do not appear in the training dataset. We used macro precision (P),

macro recall (R), and macro F1-score (F1 ) as the evaluation metrics.

We implemented the neural networks using the PyTorch library4. The tanh

function is used with each nonlinear projector in our model. The comparator

network F is a two-layer nonlinear neural network in which the hidden layer is

equipped with the tanh function, and the output layer size is outfitted with the

sigmoid function. The dropout technique was applied at a rate of 0.3 on the

3https://www.wikidata.org/wiki/Wikidata:Main_Page
4PyTorch is an open-source software library for machine intelligence: https://pytorch.org/

26

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://pytorch.org/


hidden layer and embeddings of sentences and relations in the two embedding

spaces. We used Adam (Kingma and Ba, 2015) as the optimizer, in which the

initial learning rate was 5e − 6; the batch size was 16 on FewRel and 32 on

Wiki-ZSL; and α = 0.7, β = 0.3, and γ = 0.5.

3.3.3 Results and Analysis

Main Result. The experimental results obtained by varying m unseen relations

are shown in Table 3.2. It can be observed that our model steadily outperforms

the competing methods on the test datasets when considering different values of

m. In addition, the improvement in our model is smaller when m is larger. There

are two possible reasons for this phenomenon. First, following the experiment

settings of the ZSRE, since the whole dataset of N relations is divided into train

set ((N −m) seen relations) and testing set (m unseen relations), the number of

seen relations for the training phase will be smaller when m is larger. Second, an

increase in m also leads to a rise in the possible choices for prediction, thereby

making it more difficult to predict the correct unseen relation. We plan to over-

come this disadvantage in our future work. We will propose new models that

improve the model robustness to solve ZSRE effectively in case of the limited

training dataset.
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Wiki-ZSL FewRel

m = 5 P R F1 P R F1

ESIM⋆ 48.58 47.74 48.16 56.27 58.44 57.33

CIM⋆ 49.63 48.81 49.22 58.05 61.92 59.92

ZS-BERT⋆ 71.54 72.39 71.96 76.96 78.86 77.90

ZS-BERT† 74.32 71.72 72.97 80.96 78.00 79.44

Ours 87.48 77.50 82.19 87.11 86.29 86.69

m = 10 P R F1 P R F1

ESIM⋆ 44.12 45.46 44.78 42.89 44.17 43.52

CIM⋆ 46.54 47.90 45.57 47.39 49.11 48.23

ZS-BERT⋆ 60.51 60.98 60.74 56.92 57.59 57.25

ZS-BERT† 64.53 58.30 61.23 60.13 55.63 57.80

Ours 71.59 64.69 67.94 64.41 62.61 63.50

m = 15 P R F1 P R F1

ESIM⋆ 27.31 29.62 28.42 29.15 31.59 30.32

CIM⋆ 29.17 30.58 29.86 31.83 33.06 32.43

ZS-BERT⋆ 34.12 34.38 34.25 35.54 38.19 36.82

ZS-BERT† 35.42 33.47 34.42 39.09 36.70 37.84

Ours 38.37 36.05 37.17 43.96 39.11 41.36

Table 3.2: Results with different m values in percentage. ⋆ indicates the results

reported by Chen and Li (2021); † marks the results we reproduced

using the official source code of Chen and Li (2021).
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m = 5 F1

Wiki-ZSL FewRel

Ours 82.19 86.69

Ours w/o Lsent (α = 0) 74.42 81.05

Ours w/o Lrel (β = 0) 78.92 84.27

Ours w/o LS2S (γ = 0) 77.13 82.95

Table 3.3: Ablation study.

Obamuyide and Vlachos (2018) simply used two basic text entailment mod-

els (ESIM and CIM) that may not be entirely relevant for ZSRE. Besides, they

ignored the importance of discriminative feature learning for sentences and rela-

tions. Chen and Li (2021) also overlooked the necessity of learning discriminative

embeddings. In addition, the nearest neighbor search method in ZS-BERT is

prone to cause the hubness problem (Radovanovic et al., 2010). Thus, our model

was designed to overcome the existing limitations. Compared with ZS-BERT,

our model significantly improved its performance when m = 5, by 9.22 and 7.25

F1-score on Wiki-ZSL and FewRel, respectively.

Impact of Discriminative Learning. To gain more insight into the improve-

ment in our model, we analyzed the importance of learning discriminative features

in both the sentence and relation spaces. In Table 3.3, we consider three spe-

cial cases of Equation 3.7: (1) α = 0 means no Lsent; (2) β = 0 means no Lrel;

and (3) γ = 0 means no LS2S, which is a part of Lsent. Clearly, all three losses

are important for training our model to obtain the best performance. In partic-

ular, Lsent for learning discriminative sentence features is more important than

Lrel for learning discriminative relation embeddings, as the performance decreases

significantly after removing it. In addition, LS2S plays a vital role in Lsent since it

mainly ensures the intra-relation compactness property of discriminative sentence

embeddings.

Feature Space Visualization. To gain more insights into the quality of sen-

tence embeddings, we visualized the testing sentence embeddings produced by
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Figure 3.3: Visualization of the sentence embeddings by ZS-BERT and our model

when m = 5 on the FewRel.

ZS-BERT and our model in the case of m = 5 on the FewRel5 dataset using

t-SNE (Maaten and Hinton, 2008). Figure 3.3 shows that the embeddings gener-

ated by our model express not only a larger inter-relation separability but also a

better intra-relation compactness, compared with the embeddings by ZS-BERT.

Let us focus on two relations: country6 and location7. According to the de-

scriptions of these two relations, we can see that they are somewhat similar but

different in some details. Specifically, an ordered entity pair (e1, e2 ) in a sen-

tence expresses the relation “country” if and only if e2 must be a country and

e2 has sovereignty over e1 . Meanwhile, if the entity pair (e1, e2 ) does not hold

the relation “country”, it may appear the relation “location” when e2 is a place

that e1 happens or exists. Thus, the two similar relations make it difficult for

ZS-BERT to distinguish them. Meanwhile, our model can discriminate between

them. These observations again prove the necessity of learning discriminative

features for ZSRE.

3.4 Conclusion

This chapter presents a new model to solve the ZSRE task. Our model aims to

enhance the discriminative embedding learning for both sentences and relations.

5The FewRel dataset is annotated by crowdworkers, thereby ensuring high quality.
6https://www.wikidata.org/wiki/Property:P17
7https://www.wikidata.org/wiki/Property:P276

30

https://www.wikidata.org/wiki/Property:P17
https://www.wikidata.org/wiki/Property:P276


It boosts inter-relation separability and intra-relation compactness of sentence

embeddings and maximizes distances between different relation embeddings. In

addition, a comparator network is used to validate the consistency between a

sentence and a relation. Experimental results on two benchmark datasets demon-

strated the superiority of the proposed model for ZSRE.
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Chapter 4

Enhancing Semantic Correlation

between Instances and Relations

for Zero-Shot Relation Extraction

4.1 Introduction

Zero-shot relation extraction aims to recognize (new) unseen relations that cannot

be observed during training. Due to this point, recognizing unseen relations with

no corresponding labeled training instances is a challenging task. Meanwhile,

information on all unseen relations is given at the testing stage, including their

labels (required information) and descriptions (optional information). Thus, to

make a correct prediction, the model must profoundly understand the seman-

tic relationship between each instance and all unseen relations. Following this

intuitive reasoning, we argue that enhancing the semantic correlation between

instances and relations is the key to solving ZSRE effectively.

While relevant studies on ZSRE are still limited, these studies underestimated

the key solution above and had some other limitations. For example, Levy et al.

(2017) formulated ZSRE as a question-answering task by creating manually pre-

defined question templates for each relation. However, it is infeasible and imprac-

tical to make such human efforts for many new unseen relations in the zero-shot

setting. Obamuyide and Vlachos (2018) reduced ZSRE to a text entailment task

and designed a binary classifier to indicate whether a given relation description

depicts the relationship between two entities in an input instance. This approach
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requires the inefficient execution of multiple binary classifications over all relation

descriptions and cannot make relations comparable.

More recently, Chen and Li (2021) presented a model called ZS-BERT, which

first projects instances and relations in a shared space and then minimizes the dis-

tance between each instance and the corresponding relation. However, although

ZS-BERT considers the semantic relationship between instances and relations, it

has a severe limitation. Specifically, as relation representations are fixed during

training, they lead to low-quality relation representations and hinder grasping

the semantic relationship. Gong and Eldardiry (2021) then presented a prompt-

based model with semantic knowledge augmentation to recognize unseen rela-

tions. They initially generated augmented instances with unseen relations from

training instances with seen relations. Then, they designed prompts based on

an external knowledge graph to learn representations for both seen and unseen

relations. However, this model requires unseen relation labels and an external

knowledge graph in the training stage, although such information is not read-

ily available in real-world scenarios. Besides, in Chapter 3, we introduce a new

method that improves discriminative learning for ZSRE. However, although this

method helps significantly boost task performance, it still has two limitations.

First, this method only exploited relation description to create relation represen-

tation via a fixed pre-trained Sentence-BERT model. Meanwhile, we can obtain

a better relation representation by using both relation label and description via

a learnable BERT-based model, thereby expecting to improve the system per-

formance. Second, our prior method only uses a simple comparator network F,

a two-layer nonlinear neural network, to learn the semantic consistency between

sentences and relations. Nevertheless, such a comparator network may not be

good enough to grasp deeply the semantic correlation between sentences and

relations, which is the key to solving ZSRE effectively.

This chapter proposes a new approach to overcome the limitations of previous

studies and our prior method (introduced in Chapter 3). Without any exter-

nal knowledge graphs or unseen relation labels in the training phase, our model

focuses on effectively grasping the semantic correlation between instances and re-

lations because it is a crucial solution for solving the ZSRE. Our model achieves

this by concentrating on the following three aspects.
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First, our model acquires meaningful and high-quality representations for in-

stances and relations. This aspect plays an essential role in understanding the

semantic correlation between instances and relations. Specifically, instead of us-

ing fixed pre-trained relation representations, as in the previous work (Chen and

Li, 2021), our approach obtains the instance and relation representations via a

learnable BERT-based encoder module. We also exploit relation labels and rela-

tion descriptions to attain better relation representations.

Second, the previous studies (Chen and Li, 2021; Gong and Eldardiry, 2021)

prepared mini-batches in a standard manner, where each training mini-batch

comprises some of the labeled instances by a random sampling technique. In

contrast to this approach, we design each mini-batch as a mini-task, including K

different seen relations and K corresponding instances (K is a hyperparameter),

and force the model to pair them exactly. This strategy encourages the model to

grasp the semantic relationship between instances and relations deeply.

Finally, the previous studies (Chen and Li, 2021; Gong and Eldardiry, 2021)

treat relation representations as targets and minimize the probability distribu-

tion from each instance to its corresponding relation in the shared space. This

approach is a one-way interaction that cannot fully exploit the semantic relation-

ship between instances and relations. Instead, we use two-way interaction, which

grasps the interaction not only “from each instance to relations” but also “from

each relation to instances” and constrains the consistency of the two interaction

distributions.

The contributions of this chapter are summarized as follows:

(a) We indicate that enhancing the semantic correlation between instances and

relations is the key to drastically improving the performance of ZSRE.

(b) We propose an approach that focuses on this goal by learning high-quality

relation representation, designing strategic mini-batches, and binding two-way

semantic consistency.

(c) Extensive experiments on two benchmark datasets demonstrated the ef-

fectiveness and robustness of our approach, as it significantly outperformed the

existing state-of-the-art methods.

It can be seen that our proposed model is closely related to dense retrieval

models. Specifically, dense retrieval models aim to retrieve relevant documents
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for a given query in information retrieval research applications. They try to

capture the deep semantic relationship between queries and documents in em-

bedding space by mapping documents and queries to k-dimensional real-valued

vectors. Existing dense retrieval models can be classified into two categories.

One line of research is negative sampling (Karpukhin et al., 2020; Xiong et al.,

2021; Zhan et al., 2021), while the other line is knowledge distillation (Qu et al.,

2020; Lin et al., 2020; Hofstätter et al., 2021), which adopts a cross-encoder to

generate pseudo labels. The negative sampling approach selects several negative

documents from the entire corpus for a given training query. Then, the dense

retrieval model encodes the queries and documents into embeddings and uses the

inner product to compute their relevance scores. The training method uses the

scores to compute a pairwise loss based on the gold annotations. Our proposed

model for the ZSRE task is close to this method but still different. Concretely,

we design each purposeful mini-batch including K relations and K corresponding

instance and force the model to pair them exactly. Besides, we also propose to

put the added constraint using the KL-Divergence Loss to improve the seman-

tic relationship between instances and relations, which has never been suggested

before.

4.2 Approach

This section presents the details of the proposed approach for solving the ZSRE.

Figure 4.1 shows the overall learning framework. This model aims to enhance the

semantic correlation between instances and relations.

4.2.1 Instance Representation

We use BERT (Devlin et al., 2019) as the basic encoder to generate contextualized

representations of input instances. Following Baldini Soares et al. (2019b), we

first augment each input instance with four reserved word pieces ([E1], [/E1], [E2],

and [/E2]) to indicate two entities in the input instance. For example, the input

instance is “In 1959, along with his family, [Gene Chen]e1 moved to the USA

and settled in [San Francisco]e2.” becomes “In 1959, along with his family, [E1]

Gene Chen [/E1] moved to the USA and settled in [E2] San Francisco [/E2] .”.
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Figure 4.1: The overall framework of our approach. The input is a training mini-

batch that consists of K different relations (e.g., K = 3) and K

corresponding instances. The circles and rectangles are relations and

instances, respectively. Distinct colors represent different classes. For

simplicity, we illustrate interactions from only one instance to rela-

tions and only one relation to instances on the right side. As instance-

to-relations classification is the original ZSRE task, then LCE is used

to supervise it. Further, we use LKL to put an added constraint on

the correlation between the two distributions.

We then feed this sequence into the BERT encoder. Finally, the input instance

representation is obtained by concatenating two hidden state vectors of the two

start tokens ([E1] and [E2]) with the final dimension of R2d.

4.2.2 Relation Representation

A BERT-based encoder is also used to obtain semantic relation representations.

As introduced in the ZSRE task definition, while relation label information is

compulsory, relation description is optional according to its availability. Thus, if

only the relation label is provided, we input it into the BERT encoder. Conversely,

when both relation labels and descriptions are given, we initially concatenate

them using a special token: [SEP]. For example, the relation label “residence”

with its description: “the place where the person is or has been, resident” becomes

“residence [SEP] the place where the person is or has been, resident”. Then, we
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feed it into the BERT encoder.

In both cases, the final relation representation is attained by the hidden states

corresponding to the [CLS] token (converted to R2d dimension with a linear trans-

formation). The linear transformation guarantees equal dimension sizes of the

instance and relation representations.

4.2.3 Semantic Correlation Learning

Given a training set with N samples of T different seen relations (T < N),

we create mini-batches to train our model. To facilitate the model in grasping

the semantic correlation between instances and relations, we intentionally design

mini-batches differently. Each mini-batch consists of K different seen relations

(K ≤ T ), randomly sampled, and K corresponding instances. The model is then

required to match instances to the corresponding relations exactly.

We feed each mini-batch into the BERT-based encoder and obtain K rela-

tion representations:
{
ri ∈ R2d; i = 1, . . . , K

}
and K instance representations:{

si ∈ R2d; i = 1, . . . , K
}

. Note that the ith relation has a corresponding ith in-

stance. We encourage mutual interaction between instances and relations to help

the model grasp the semantic correlation in depth. Specifically, in Figure 4.1,

after acquiring representations of the instances and relations, we consider each

ith pair (si, ri) in turn. From the instance si, we first compute its similarity to

all K relations using the dot product operation and then use softmax to obtain

a probability distribution over the K relations as follows:

zij =
exp (si · rj)∑K
k=1 exp (si · rk)

(4.1)

where zij is the estimated probability for the jth relation of the ith instance. Let

zi = [zi1, zi2, . . . , ziK ] denote the probability distribution of the ith instance, which

sums up to 1. The cross-entropy loss is calculated as follows:

LCE = − log (zii) , (4.2)

where the ith instance has a corresponding ground-truth ith relation.

Similarly, we consider the interaction from each relation to instances. In Fig-

ure 4.1, from the relation ri of the ith pair (si, ri), we compute its similarity to
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all K instances using the dot product operation and then use softmax to obtain

a probability distribution over the K instances as follows:

uij =
exp (ri · sj)∑K
k=1 exp (ri · sk)

(4.3)

where uij is the estimated probability for the jth instance of the ith relation. Let

ui = [ui1, ui2, . . . , uiK ] denote the probability distribution, which sums up to 1.

By considering the two-way interaction between instances and relations, for

each ith pair (si, ri), we obtain two corresponding probability distributions (zi

and ui). These two distributions should be consistent to encourage the seman-

tic correlation between the instance si and the relation ri. We then use the

Kullback-Leibler (KL) divergence loss to supervise this consistency. Here, we de-

liberately use DKL (ui∥zi), instead of DKL (zi∥ui) or Jensen-Shannon divergence

DJS (ui∥zi)1.
Because the natural language is highly flexible, a relation can be expressed

using different textual patterns surrounding two entities in instances. For exam-

ple, the relation “per:employee of ” can be reflected via patterns such as “worked

for”, “founded and headed”, and “the CEO of”. Thus, using the loss DKL (ui∥zi),
which promotes ui to be similar to zi, constrains the consistency of the two distri-

butions and further encourages the model to learn richer and more diverse relation

representations according to instances. The loss DKL (ui∥zi) is formulated:

LKL = DKL (ui∥zi) = −
K∑
k=1

uik log
zik
uik

(4.4)

The final objective function of the model is defined as follows:

L = LCE + α · LKL (4.5)

where α is a hyperparameter that balances these two terms. Note that, for

each training mini-batch that includes K different relations and K correspond-

ing instances, we accumulate the losses of all these K pairs following the above

formulation before using back-propagation in training.

1We tested with DKL (ui∥zi), DKL (zi∥ui), and DJS (ui∥zi) in our model. Using the loss

DKL (ui∥zi) gave the best performance.
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4.3 Experiments

4.3.1 Experimental Setup

Datasets. Following previous studies (Chen and Li, 2021; Gong and Eldardiry,

2021), we evaluate our model on two benchmark datasets: FewRel (Han et al.,

2018) and Wiki-ZSL (Chen and Li, 2021). FewRel is a human-annotated bal-

anced dataset comprising 80 relation types, each with 700 instances. Although

FewRel was initially used for a few-shot learning task, it is also relevant for zero-

shot learning, if the relation labels within training and test sets are disjoint.

In contrast, Wiki-ZSL originated from Wiki-KB (Sorokin and Gurevych, 2017)

and is generated with distant supervision. From the Wiki-KB dataset, Chen and

Li (2021) neglected instances with the relation “none”. To ensure sufficient data

instances for each relation in zero-shot learning, they filtered out relations that

appeared less than 300 times. Finally, they obtained Wiki-ZSL, a subset of Wiki-

KB. The statistics for Wiki-KB, Wiki-ZSL, and FewRel are shown in Table 4.1.

Note that descriptions of all relations in Wiki-ZSL and FewRel are available from

open-source Wikidata2.

Zero-shot Settings. We follow the experimental settings of Chen and Li (2021)

to enable the zero-shot relation extraction scenario. We randomly select m rela-

tions as unseen ones (m = |Yu|), thereby splitting the entire dataset into training

and test sets; here, the test set includes all instances belonging to these m rela-

tions and the training set with all remaining instances. This ensures that these

m relations are not in the training data such that YS ∩ YU = ∅. Note that we

repeat the experiment 5 times for 5 different random selections of m and report

the average results. The evaluation metrics macro precision (P), macro recall

(R), and macro F1-score (F1 ) are also used in this study, similar to previous

studies.

Implementation Details. Our approach is implemented using PyTorch (Paszke

et al., 2019) and all experiments are performed on 1 NVIDIA RTX A6000 GPU.

We adopt the transformer library of Huggingface (Wolf et al., 2020) and use the

2https://www.wikidata.org/wiki/Wikidata:Main_Page
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#instances #relations avg. len.

Wiki-KB 1, 518, 444 354 23.82

Wiki-ZSL 94, 383 113 24.85

FewRel 56, 000 80 24.95

Table 4.1: Statistics of the datasets. “avg. len.” stands for the average instance

length.

Model
Wiki-ZSL FewRel

Precision Recall F1 Precision Recall F1

CNN⋆ (Zeng et al., 2014) 14.58 17.68 15.92 14.17 20.26 16.67

Bi-LSTM⋆ (Zhang et al., 2015) 16.25 18.94 17.49 16.83 27.62 20.92

Att Bi-LSTM⋆ (Zhou et al., 2016) 16.93 18.54 17.70 16.48 26.36 20.28

R-BERT⋆ (Wu and He, 2019) 17.31 18.82 18.03 16.95 19.37 18.08

ESIM⋆ (Chen et al., 2017) 27.31 29.62 28.42 29.15 31.59 30.32

CIM⋆ (Rocktäschel et al., 2016) 29.17 30.58 29.86 31.83 33.06 32.43

ZS-BERT⋆ (Chen and Li, 2021) 34.12 34.38 34.25 35.54 38.19 36.82

ZS-BERT† (Chen and Li, 2021) 38.22 33.70 35.72 38.96 37.35 38.06

ZS-SKA (Gong and Eldardiry, 2021) 41.03 40.12 38.13 45.34 51.67 47.02

Ours 64.68 66.01 65.30 66.44 69.29 67.82

Table 4.2: Results with m = 15 on Wiki-ZSL and FewRel. ⋆ indicates the results

reported by Chen and Li (2021); † marks the results we reproduced

using the official source code of Chen and Li (2021).

uncased model of BERTbase as the encoder. The AdamW optimizer (Loshchilov

and Hutter, 2019) is applied to minimize loss. For the hyperparameters, α is set

to 1, and K is set to 5 on FewRel and Wiki-ZSL datasets. The maximum length

of the instances is set to 128. The initial learning rate is 2e− 5. The number of

sampled mini-batches is 40, 000. The hidden size, d is 768. The average runtime

of our model’s training and evaluation is 1.8 hours on Wiki-ZSL, whereas this

number is 4.5 hours on FewRel.
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4.3.2 Results and Analysis

Comparison to Baselines. The proposed approach is compared with the fol-

lowing baseline methods: CNN (Zeng et al., 2014), Bi-LSTM (Zhang et al.,

2015), Attention-based Bi-LSTM (Zhou et al., 2016), R-BERT (Wu and He,

2019), ESIM (Chen et al., 2017), CIM (Rocktäschel et al., 2016), and ZS-BERT

(Chen and Li, 2021). These baselines were reported by Chen and Li (2021). We

further compare our model with the most state-of-the-art model, ZS-SKA by

Gong and Eldardiry (2021).

Table 4.2 presents the experimental results for the Wiki-ZSL and FewRel

datasets. Our approach significantly outperforms the strong baseline models by

a significant margin, particularly for Wiki-ZSL. Specifically, our model improves

the performance by 27.17 points and 20.8 points in F1-score on Wiki-ZSL and

FewRel, respectively, compared to the state-of-the-art model ZS-SKA. The perfor-

mance gain comes from the ability of our model to grasp the semantic correlation

between instances and relations. Indeed, our model was entirely designed for this

goal in three ways. (1) Our model obtains high-quality relation representations.

(2) The strategic design of mini-batches is aimed at semantic correlation learning.

(3) Our approach constrains the consistency of the two-way interaction between

instances and relations. These aspects are discussed in detail in the following

subsections.

Impact of Relation Representation. We investigate the role of the relation

representation quality in affecting the ZSRE task’s performance. Recall that, for

Wiki-ZSL and FewRel datasets, both relation labels and descriptions are pro-

vided.

Chen and Li (2021) exploited only relation descriptions and input them into the

fixed pre-trained Sentence-BERT (Reimers and Gurevych, 2019) to obtain rela-

tion representations. First, we attempt to follow this method to acquire such rela-

tion representations and use them in our model. Table 4.3 reports that our model

achieves F1 -score of 40.31 points and 42.52 points on Wiki-ZSL and FewRel, re-

spectively. Using the same fixed relation representations, our model still achieves

better performance in F1 score by 4.59 points and 4.46 points on Wiki-ZSL and

FewRel, respectively, compared to ZS-BERT by Chen and Li (2021). However,
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Input Module
Wiki-ZSL FewRel

Precision Recall F1 Precision Recall F1

Relation Description Fixed Sentence-BERT Encoder 38.49 42.31 40.31 41.93 43.19 42.52

Relation Label

BERT-based Encoder

53.80 55.01 54.37 58.06 56.67 57.34

Relation Description 61.86 62.40 62.11 62.35 63.08 62.69

Label + Description 64.68 66.01 65.30 66.44 69.29 67.82

Table 4.3: Impact of the different relation representations in our model.

using such fixed relation representations causes overfitting during training. More

severely, this hinders our model from grasping the semantic correlation between

instances and relations effectively.

Therefore, we obtain relation representations via a learnable BERT-based en-

coder (Section 4.2.2) in our model. Although relation labels and descriptions are

available, Chen and Li (2021) only used relation descriptions, while Gong and

Eldardiry (2021) only exploited relation labels to create relation representations.

Whereas relation labels provide concise and summary relation information, re-

lation descriptions provide more detailed relation information. Intuitively, they

complement each other to yield the best relation representations. We examine

this intuition by feeding different inputs into the BERT-based encoder of our

model to generate relation representations.

In Table 4.3, using only the relation label with the learnable BERT-based

encoder, our model also achieves an impressive performance in F1 scores of 53.47

points and 57.34 points on Wiki-ZSL and FewRel, respectively. It significantly

enhances F1 score by 14.06 points and 14.82 points on Wiki-ZSL and FewRel,

compared to using the fixed relation representations in our model. This result

proves the vital role of learning high-quality relation representations in solving

ZSRE. Furthermore, we also consider using only relation descriptions via the

BERT-based encoder in our model. Compared with only relation labels, using

only relation descriptions achieves better performance and improves the F1 score

by 7.74 and 5.35 points on Wiki-ZSL and FewRel, respectively. This may be

reasonable because relation descriptions provide better relation representations

with more detailed information.

Finally, using relation labels and descriptions to generate relation representa-

tions, our model achieves the best performance for Wiki-ZSL and FewRel. Specif-
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ically, this combination improves the F1 score by 3.19 points and 5.13 points on

Wiki-ZSL and FewRel, respectively, than using only relation descriptions. This

indicates that relation labels and relation descriptions complement each other to

provide relation information more thoroughly, thereby acquiring the best relation

representations leading to the best performance.

Impact of the Hyperparameter K. Figure 4.1 shows the prepared mini-

batches to train our model, where each mini-batch has K different relations and

K corresponding instances. Such designed mini-batches facilitate the model in

grasping the semantic correlation between instances and relations. Thus, we

inspect how the hyperparameter K affects the system performance.

The numbers of relations in the entire datasets Wiki-ZSL and FewRel are 113

and 80, respectively. To enable the ZSRE scenario, we randomly select m = 15

relations as unseen relations, thereby splitting each dataset into the training and

test sets. Accordingly, the numbers of seen relations in training on Wiki-ZSL

and FewRel are 98 and 65. Therefore, we try K with several values in [2, 98]

on Wiki-ZSL and [2, 65] on FewRel in the training stage. At each value K, the

reported F1 score is the average result obtained by repeating the experiment 5

times for 5 different random selections of m (m = 15) testing unseen relations.

Figure 4.2 shows the experimental results for the two test sets. Our model

achieves the best performance with K = 5 on Wiki-ZSL and FewRel, whereas it

obtains the worst performance with K = 2. Interestingly, using the largest value

K (i.e., K = 98 on Wiki-ZSL and K = 65 on FewRel) does not give the best

performance. Conversely, compared to the best performance with K = 5, using

the largest value K significantly decreases the performance in F1 score on both

the datasets by 13.89 points on Wiki-ZSL and 9.87 points on FewRel. Clearly,

when using a substantial value K (e.g., K = 98 on Wiki-ZSL), our model can

easily be distracted from fully grasping the interaction between a large number

K of relations and K instances in each training mini-batch. It hinders the model

from profoundly gripping the semantic correlation between instances and relations

in the training phase, thereby causing a drop in performance in the testing stage.

This also proves that selecting a relevant value K is essential to aid the model

in effectively grasping the semantic correlation between instances and relations.
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Figure 4.2: Impact of the hyperparameter K.

Our Model
Wiki-ZSL FewRel

Precision Recall F1 Precision Recall F1

LCE + LKL 64.68 66.01 65.30 66.44 69.29 67.82

LCE 60.28 64.05 62.06 61.40 68.22 64.61

Table 4.4: Impact of using the loss LKL (with α = 1) in our model.

Meanwhile, previous studies (Chen and Li, 2021; Gong and Eldardiry, 2021) only

simply compared each instance to the total training seen relations in learning the

semantic relationship. By contrast, our method of controlling the K helps the

model focus on thoroughly gripping the semantic correlation between instances

and relations.

Impact of the Loss LKL. We use the final objective function (Equation 4.5)

in the training stage to encourage the model to grasp the semantic interaction

between instances and relations. As defined in Equation 4.5, the objective func-

tion comprises LCE and LKL. While LCE plays a significant role in learning the

semantic correlation, LKL also helps strengthen this goal by constraining two-way

semantic distribution consistency. Examining the necessity of using LKL in our

model, we attempt to remove LKL from the final objective function. The results
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Figure 4.3: Impact of the hyperparameter α.

are presented in Table 4.4. Without using LKL, the system performance signif-

icantly decreases by 3.24 and 3.21 points in F1 score on Wiki-ZSL and FewRel,

respectively. These results reaffirm the vital role of the loss LKL in supervis-

ing our model to grasp the semantic correlation between instances and relations,

thereby solving the ZSRE effectively.

We further investigate the sensitivity of α to the task performance by chang-

ing different values of α. As shown in Figure 4.3, our model achieves the best

performance with α = 1 on both Wiki-ZSL and FewRel datasets. Besides, when

the value α is small (e.g., α = 0.01) or quite large (e.g., α = 10), it reduces the

beneficial effect of using LKL in improving the system performance.

Performance on Limited Labeled Data. We further examine the robustness

of our model in solving the ZSRE under a limited labeled data scenario. As

described in Table 4.1, FewRel is a human-annotated balanced dataset consisting

of 80 relation types, each of which has 700 instances. First, we randomly split

FewRel into training and test sets, where the training set includes 65 seen relations

and the test set consists of 15 unseen relations. We then fix the test set and change

the rate of the labeled data to train the models. Subsequently, the number of

the seen relations of the training set is fine-tuned in [10, 65]. Note that the

experiment is repeated 5 times for 5 different random data divisions, and we report

the average results. We also run such experiments on ZS-BERT and compare it
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Figure 4.4: Performance on the limited labeled data.

with our model under similar limited training data conditions because only the

official source code of ZS-BERT is available. Figure 4.4 shows the experimental

results. Our model gains 2.0 times higher accuracy than ZS-BERT in F1 score

in all limited data cases. This proves the robustness of our model in dealing with

ZSRE under severely limited data conditions, which are popular in real-world

scenarios.

Impact of Random Seed Sensitivity. All previously reported experimental

results are the average results obtained by running the experiment 5 times with

5 random m selections (m = 15). We used the same fixed random seed in all of

these experiments. Thus, we further check the sensitivity of our model to different

random seeds for system performance.

We first split the entire Wiki-ZSL dataset into a training set and a test set,

where the training set includes 98 seen relations and the test set consists of 15

unseen relations. Then, we try 5 different random seeds to train our model and

report the average testing results. We repeat this process 3 times and report

all the results in Table 4.5. Our model consistently outperforms ZS-BERT by a

significant margin in the F1 score, all three times. More importantly, based on

the standard deviations of the F1 scores, our model is more stable than ZS-BERT

when training with different random seeds.
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id Model Precision Recall F1

1
ZS-BERT 36.82 33.62 35.12± 1.88

Ours 59.58 63.29 61.34± 1.65

2
ZS-BERT 46.28 41.33 43.65± 2.75

Ours 75.59 77.71 76.63± 2.00

3
ZS-BERT 32.23 32.84 32.50± 2.41

Ours 61.47 62.75 62.10± 1.90

Table 4.5: Impact of using different seeds to performance. The scores of ZS-BERT

and our model are the average results of five runs with five different

seeds. F1 score is in the format of mean ± standard deviation.

4.4 Conclusion

This chapter presents a novel approach focusing entirely on enhancing the seman-

tic correlation between instances and relations, which is key to solving ZSRE. Our

approach concentrates on three major aspects to achieve this goal: learning high-

quality relation representations, designing purposeful mini-batches, and binding

two-way semantic distribution consistency. Extensive experiments on two bench-

mark datasets have demonstrated the effectiveness and robustness of our proposed

model, particularly in limited training data scenarios. However, our approach is

tested on the two benchmark datasets in the general domain and might not work

well in specialized domains like the biomedical field. We plan to evaluate our

method in such domains in future work.
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Chapter 5

Improved Decomposition

Strategy for Joint Entity and

Relation Extraction

5.1 Introduction

The extraction of relational triplets is a critical and challenging task in natural

language processing (NLP). Given an unstructured text, it aims to extract pairs

of entities with semantic relations, in the form of (head, relation, tail). The re-

lational triplets extraction has attracted considerable research effort as it plays a

vital role in many NLP applications such as information extraction (Tran et al.,

2021) and question answering (Hao et al., 2017). For example, in information

extraction, given a biomedical text, it is expected to extract both the biomed-

ical entities and their relations in the form of triplets such as (“coronavirus”,

“causes”, “respiratory infections”) and (“tocilizumab”, “treats”, “cytokine release

syndrome”).

Traditional pipeline works (Zelenko et al., 2003; Zhou et al., 2005; Chan and

Roth, 2011) divide this task into two isolated subtasks: named-entity recogni-

tion (NER) (Vu et al., 2015) and relation classification (RC) (Tran et al., 2019).

Specifically, they first recognize all the entities and then predict relations between

the extracted entities. Such methods tend to suffer from error propagation and

ignore the relevance between the two subtasks. To address these problems, sub-

sequent studies proposed joint learning of entities and relations in a single model,
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including feature-based models (Yu and Lam, 2010; Li and Ji, 2014; Ren et al.,

2017) and neural network-based models (Gupta et al., 2016; Katiyar and Cardie,

2017; Zeng et al., 2018; Fu et al., 2019; Yu et al., 2020).

One of the biggest challenges of this task is the overlapping triplet problem,

which is expressed in two scenarios: entity pair overlap (EPO) and single entity

overlap (SEO). Specifically, EPO occurs when triplets share the same entity pair

but with different relations, such as: (“Paris”, “Capital of”, “France”), (“Paris”,

“Located in”, “France”), and (“Paris”, “Administrative division of”, “France”),

as in the sentence: “John Smiths lives and works in Paris, the capital and an

administrative division of France”. SEO occurs when two relational triplets share

only one common entity, such as: (“John Smiths”, “Work in”, “Paris”) and

(“John Smiths”, “Live in”, “France”).

Most previous works could not efficiently address the overlapping triplet prob-

lem. This problem directly challenges conventional sequence tagging schemes, in

which each token represents only a single tag (Zheng et al., 2017). It also creates

significant difficulties in traditional RC approaches, where an entity pair is sup-

posed to hold at most one relation (Miwa and Bansal, 2016). Zeng et al. (2018) is

among the first to solve the problem by proposing a sequence-to-sequence model

with a copy mechanism. Fu et al. (2019) utilized a graph convolutional network

to extract overlapping triplets. In contrast to the previous works, Yu et al. (2020)

presented a unified sequence labeling framework based on a novel decomposition

strategy. However, this method can only deal with the SEO triplets in the sample

and fails to handle the EPO cases, as Yu et al. (2020) stated.

Specifically, Yu et al. (2020) decomposed the joint task into two subtasks: head-

entity extraction and tail-entity relation extraction. The first task detects all

head-entities, whereas the second one detects the corresponding tail-entities and

target relations for a given head-entity. Although this method significantly out-

performs previous methods, it suffers from two issues. First, to create relational

triplets, it always detects head-entities first and then extracts the corresponding

tail-entities and relations for each detected head entity. Thus, observably, if the

first task fails to find a valid head-entity, the model will then miss all the re-

lated triplets containing this head-entity in the head role. Second, as Yu et al.

(2020) stated, their model cannot solve the overlapping triplet problem in the
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EPO scenario. For a given head-entity, the second task predicts only a single

relation between the given head-entity and any corresponding tail-entity, even

though this entity pair can hold multiple relations.

Therefore, we propose an improved decomposition strategy to overcome these

two problems. For the first issue, we designed a more flexible strategy. We

detect all entities first, and then, for each extracted entity, we identify it in

each (head / tail) entity role and extract the corresponding (tail-entities / head-

entities) and relations. For the second issue, we define a set of “unified relation

labels” (URLs), each of which represents a unique (unordered) subset of the

full set of original relations. By using these URLs in a multiclass classifier, our

model can solve the EPO problem. In addition, a corresponding model framework

is introduced to deploy our new strategy. The experimental results on both

two benchmark datasets showed that our approach significantly outperformed

the previous approach of Yu et al. (2020) as well as previous state-of-the-art

approaches.

5.2 Methodology

In this section, we first introduce the decomposition strategy of Yu et al. (2020)

and then present our new strategy. In addition, a corresponding model framework

is proposed for deploying our decomposition strategy.

5.2.1 Tagging Scheme

Yu et al. (2020) decomposed the joint extraction task into two interrelated sub-

tasks: H ead-Entity (HE ) extraction and Tail-Entity Relation (TER) extraction.

The HE extraction task is modeled by two sequence labeling tasks, one for iden-

tifying the start position and the other for the end position of the head-entities,

respectively. The entity type is also labeled simultaneously at the head-entity

positions. Meanwhile, for each identified head-entity, the TER extraction task is

also modeled by two sequence labeling tasks, one for detecting the start position

and the other for detecting the end position of the corresponding tail-entities. As

is done for the HE detection, the relation type between the given head-entity and

its corresponding tail-entity is also labeled in each position.
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Figure 5.1: (a) Tagging scheme of Yu et al. (2020). (b) Our tagging scheme. PER

and LOC stand for PERSON and LOCATION, respectively. HE,

TER, and HTER stand for Head-Entity, Tail-Entity Relation, and

Head/Tail Entity Relation, respectively. The set of gold triplets is:

{(“John Smiths”, R1, “Paris”), (“John Smiths”, R2, “Paris”), (“John

Smiths”, R1, “France”), (“John Smiths”, R2, “France”), (“Paris”, R3,

“France”), (“Paris”, R4, “France”), (“Paris”, R5, “France”)}, where

R1:“Live in”; R2:“Work in”; R3:“Capital of”; R4:“Located in”; and

R5:“Administrative division of”. In (b), R̂1 and R̂2 are URLs, where

R̂1:{R1, R2} and R̂2:{R3, R4, R5}.
Figure 5.1(a) illustrates an example of the above tagging scheme. From the

input sample, the HE tagging detects the HEs: “John Smiths” and “Paris”

because they are HEs in the set of gold triplets. Then, for the given HE “Paris”,

the TER tagging identifies the tail-entity “France” with the expected relation

R3 because of the gold triplet: (“Paris”, R3, “France”). However, this tagging

scheme suffers from two existing problems (as mentioned in Section 5.1) that

hinder a further improvement of the system performance. We explain in detail

how our new decomposition strategy can solve these two issues.

First, to obtain relational triplets in the form of (head, relation, tail), the model

by Yu et al. (2020) always detects the HEs first and then extracts the correspond-

ing tail-entities and relations for each detected HE. Following this strategy, if HE

tagging fails to find a valid HE, the model will then miss all the related triplets.
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For instance, in Figure 5.1(a), if “Paris” is not identified as a HE, the model

will miss all gold triplets containing “Paris” in the head role. Meanwhile, it is

not always easy to extract head entities first for all relations, especially when the

relation types are diverse. To deal with this issue, we designed a new strategy,

which is illustrated in Figure 5.1(b). This strategy allows our model not only to

learn the probability distribution closer to the gold labels but also to increase the

chances of extracting a valid triplet, which may be overlooked by the approach of

Yu et al. (2020). Specifically, we first extract all entities without differentiating

the head/tail role using the Entity tagging in our scheme. For each extracted

entity, the head/tail entity relation (HTER) tagging considers it in each head/tail

role and detects all corresponding tail entities/head entities and relation types,

respectively. For example, in Figure 5.1(b), the Entity tagging detects the enti-

ties: “John Smiths”, “Paris”, and “France”. Then, for the given entity “Paris”,

the HTER tagging considers it in the head role to identify the tail-entity “France”

with the unified relation label (URL) R̂2, and also considers “Paris” in the tail

role to recognize the HE “John Smiths” with the URL R̂1.

Second, the previous tagging scheme cannot solve the EPO problem. For

instance, in Figure 5.1(a), the entity pair (“Paris”, “France”) holds multiple

relations: R3, R4, and R5. However, for the given HE “Paris”, the TER tagging

can predict only one of the original relations to the tail-entity “France”, using

a multi-class classifier of (NR+1) classes, which include NR original relations

and one special class No relation. To overcome this limitation, we propose two

different solutions. First, in a natural way, we use a multi-label classifier to detect

multiple relations (if any) between an ordered entity pair. With this solution, each

tagging position in the HTER tagging can hold multiple original relation types

(if any), instead of only a maximum of a single relation type (if any), as assumed

by Yu et al. (2020). However, in practice, the maximum number of relation types

co-occurring between an entity pair is often small1. For instance, the maximum

1There are two possible reasons for this phenomenon. First, because each relation type is

usually associated with certain entity types (e.g., “Live in” is between Person and Location),

relation types co-occurring in the same entity pair are often required to share the same entity

type pair. Second, in the joint extraction task, as each entity is often mentioned only once

and the length of the input sample is not very long, they lead to the limited expressions of

the possible relations of the same entity pair.
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number of relation types for any entity pair is only 3 in both the NYT (Riedel

et al., 2010) and the WebNLG (Gardent et al., 2017) datasets, while the total

number of original relations on the NYT and WebNLG datasets is 24 and 216,

respectively. Consequently, the sparse label problem on the relation types of the

same entity pair can affect the system performance, especially in the WebNLG

dataset. Therefore, we propose a second solution that uses a multi-class classifier

with a set of URLs to deal with both the sparse label problem and the EPO

problem. In essence, the purpose of using the created URLs is to transform the

“multi-label classification task with a sparse label problem on the set of original

relations” into the “multi-class classification task on the set URLs”.

Using the training set D and a predefined threshold γ, following Algorithm 1,

we create the set URLs. Specifically, first of all, for each ordered entity pair p

in each sample in D , the function F (p) returns a single URL R̂ that represents

a unique (unordered) subset, where this subset includes all the existing original

relations of the pair p. We then count the frequency of each R̂ on the entire

D and only keep R̂ when its frequency is greater than or equal to γ. With the

obtained URLs, for each ordered entity pair (head, tail) in each sample in D ,

we replace the full set of all existing original relations of this entity pair with a

single corresponding URL in the set URLs. Conversely, we ignore relation sets if

they do not match any corresponding URLs in the set URLs. Note that we only

performed this label conversion for the training set, but not for the validation

and test sets. With this procedure, any ordered entity pairs in any sentences in

the training dataset D will now have only a single URL in the set URLs or have

no relation. Finally, we train the model on the training dataset D with the URLs

instead of with the set of original relations.

In Table 5.1, we provide a toy example for creating URLs using Algorithm 1 and

for using them on the training set D. Assume that the training set D includes two

samples, where each sample has its gold relational triplets. By using Algorithm 1,

we obtain the dictionary Q, which contains all the “URLs” along with their

frequencies. With the predefined threshold γ (e.g.; γ=1), we obtain the set

URLs : {R̂1, R̂2, R̂3, R̂4}. Then, using the created set URLs, for each entity pair

in each sample, we replace all existing original relations of this pair with a single

corresponding URL in the set URLs (if any). For instance, in Sample 2, the
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Algorithm 1 Creation of a set of “unified relation labels”

Input: D : training dataset; γ: a pre-defined threshold.

Output: URLs, the expected “unified relation labels” set.

1: Initialize an empty dictionary: Q ←{}
2: for each sample X in D do

3: for each ordered entity pair p in X do

4: R̂ = F (p)

5: if R̂ ̸= ∅ and R̂ not in Q then

6: Q[R̂] = 0

7: end if

8: Q[R̂] = Q[R̂] + 1

9: end for

10: end for

11: for each R̂ in Q do

12: if Q[R̂] ≥ γ then

13: Add R̂ to the set URLs

14: end if

15: end for

16: return URLs

ordered entity pair: (“Alex”, “Spain”) with the original relations: {“Work in”,

“Place of birth”, “Place of death”} will become: (“Alex”, R̂4, “Spain”). Finally,

our designed model will be trained on the training set D with the set URLs.
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D

Sample 1

Harry works as an artist in Rome, the capital of Italy.

(“Harry”, “Occupation”, “artist”), (“Harry”, “Work in”, “Rome”),

(“Harry”, “Work in”, “Italy”), (“Rome”, “Capital of”, “Italy”),

(“Rome”, “Located in”, “Italy”)

Sample 2

Alex, a talented writer, was born and passed away in Spain, where

he worked all his life.

(“Alex”, “Occupation”, “writer”), (“Alex”, “Place of birth”, “Spain”),

(“Alex”, “Place of death”, “Spain”), (“Alex”, “Work in”, “Spain”)

Original Relations
“Occupation”, “Work in”, “Capital of”, “Located in”,

“Place of birth”, “Place of death”

Unified Relation Labels

R̂1: {“Occupation”}, R̂2: {“Work in”},
R̂3: {“Capital of”, “Located in”},
R̂4: {“Place of birth”, “Place of death”, “Work in”}.

Dict Q and the set URLs
Q = {R̂1: 2, R̂2: 2, R̂3: 1, R̂4: 1}.
URLs = {R̂1, R̂2, R̂3, R̂4} when γ = 1.

D with the set URLs

Sample 1
Harry works as an artist in Rome, the capital of Italy.

(“Harry”, R̂1, “artist”), (“Harry”, R̂2, “Rome”),

(“Harry”, R̂2, “Italy”), (“Rome”, R̂3, “Italy”)

Sample 2

Alex, a talented writer, was born and passed away in Spain, where

he worked all his life.

(“Alex”, R̂1, “writer”), (“Alex”, R̂4, “Spain”)

Table 5.1: A toy example of creating and using the set URLs on the training set

D.

5.2.2 Network Structure

Following our tagging scheme in Figure 5.1(b), we present our corresponding

model framework in Figure 5.2. It consists of three main parts: Encoding Layer,

Entity Extractor, and HTER Extractor.

Encoding Layer. Given a sample X = {x1, x2, ..., xN} with N tokens, we

first utilize a bidirectional long short-term memory (BiLSTM) (Hochreiter and

Schmidhuber, 1997) network to encode the contextualized representation for each

token. The initial embedding ei of each input token is concatenated by three

parts: pre-trained word embedding, character-level word embedding generated by

a convolutional neural network (CNN) on the character sequence of xi, and a part-

of-speech (POS) embedding. Then, the contextualized representation sequence

H = {h1, h2, ..., hN} is obtained as follows:
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Figure 5.2: Our framework. We used the same input sample as in Figure 5.1.

Here, the extracted entity “Paris” is entered into the HTER Extractor

as prior knowledge. In the HTER Extractor, R̂1 and R̂2 are in the set

URLs created using Algorithm 1, where R̂1: {“Live in”, “Work in”},
R̂2:{“Capital of”, “Located in”, “Administrative division of”}. Note

that the HTER Extractor was trained with the set URLs, instead of

with the set of original relations.

hi =
[−→
h i;
←−
h i

]
, (5.1)

−→
h i = LSTMf

(
ei,
−→
h i−1

)
,
←−
h i = LSTMb

(
ei,
←−
h i+1

)
, (5.2)

where LSTMf and LSTMb denote the forward and backward LSTM, respectively.

Entity Extractor. The Entity Extractor module aims to recognize the relevant

entities in the input sample by directly decoding the output sequence H of the

Encoding Layer. Specifically, it adopts two identical multiclass classifiers to detect
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the start and end positions of the entities with the corresponding entity type

label. Formally, the detailed operations of the entity tagging on each token are

as follows:

p
start−ent
i = Softmax

(
Wstart−enthi + bstart−ent

)
, (5.3)

p
end−ent
i = Softmax

(
Wend−enthi + bend−ent

)
, (5.4)

where p
start−ent
i and p

end−ent
i represent the probabilities of the entity type labels

for the ith token, which are considered as the start and end positions of an entity,

respectively. In addition, hi is the encoded representation, W(.) represents the

trainable weight, and b(.) is the bias.

We define the training loss (to be minimized) of the Entity Extractor as the

sum of the negative log probabilities of the true start and end tags, using the

predicted distributions:

LE = − 1

N

N∑
i=1

(
logP

(
y
start−ent
i = ŷ

start−ent
i

)
+ logP

(
y
end−ent
i = ŷ

end−ent
i

))
,

(5.5)

where ŷi
start ent and ŷi

end ent are the true start and end tags (gold labels) of the

ith word in the sample X, respectively, and N is the length of the sample X.

HTER Extractor. The HTER Extractor consists of two submodules: Head-

Entity Relation (HER) extractor and Tail-Entity Relation (TER) extractor.

For each given entity, e.g., “Paris”, it uses the TER to identify “Paris” in the

head entity role and detect all the corresponding tail-entities and URLs, such

as (“Paris”, R̂2, “France”), where R̂2:{“Capital of”, “Located in”, “Adminis-

trative division of”}. At the same time, the HTER Extractor utilizes the HER

submodule to identify “Paris” in the tail entity role and detect all the corre-

sponding head-entities and URLs, such as (“John Smiths”, R̂1, “Paris”), where

R̂1:{“Live in”, “Work in”}.
Specifically, from the output sequence H of the Encoding Layer, as an entity

is often composed of multiple tokens, we create a span feature representation for

the given entity. Following Ouchi et al. (2018), for the entity with start and end
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positions: j and k (j ≤ k), we obtain the entity representation vector as follows:

vent = [hj + hk;hj − hk] , (5.6)

xi = [hi;vent] , (5.7)

where i refers to the position of the ith word in the input sample.

Because the information of a given entity is crucial for extracting related

triplets, we therefore concatenate each token vector in the output sequence H

and the given entity representation vent. We take X = {x1,x2, · · · ,xN} as the

input to another BiLSTM layer, to fuse each hi and vent in a single vector hi:

H = BiLSTM(X), (5.8)

where H =
{
h1,h2, · · · ,hN

}
. Then, the sequence H is used as the same in-

put to both TER and HER submodules. The TER submodule detects all the

corresponding tail-entities and relations by directly decoding the sequence H.

Specifically, it uses two identical multiclass classifiers to detect the start and end

positions of the related tail-entities with the corresponding relation type. Thus,

the detailed operations of the tail entity tagging with the relation type on each

token are described as follows:

p
start−tail
i = Softmax

(
Wstart−tailhi + bstart−tail

)
, (5.9)

p
end−tail
i = Softmax

(
Wend−tailhi + bend−tail

)
, (5.10)

where p
start−tail
i and p

end−tail
i represent the probabilities of the relation labels for

the ith token, which are considered as the start and end positions of a tail entity

in the input sample, respectively. Additionally, hi is the encoded representation,

W(.) represents the trainable weight, and b(.) is the bias.

Similarly, the HER submodule utilizes two other identical multi-class classifiers

to detect the start and end positions of the related head-entities with the corre-

sponding relation type. Formally, the detailed operations of the head tagging on

each token are as follows:

p
start−head
i = Softmax

(
Wstart−headhi + bstart−head

)
, (5.11)
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p
end−head
i = Softmax

(
Wend−headhi + bend−head

)
. (5.12)

Therefore, we have the loss function of each submodule in the HTER Extractor

as follows:

LTER = − 1

N

N∑
i=1

(
logP

(
y
start−tail
i = ŷ

start−tail
i

)
+ logP

(
y
end−tail
i = ŷ

end−tail
i

))
,

(5.13)

LHER = − 1

N

N∑
i=1

(
logP

(
y
start−head
i = ŷ

start−head
i

)
+ logP

(
y
end−head
i = ŷ

end−head
i

))
,

(5.14)

where N is the length of the input sample; ŷi
start tail and ŷi

end tail in Equation 5.13

are the true start and end relation tags of the ith word for annotating the related

tail entities, respectively, and ŷi
start head and ŷi

end head in Equation 5.14 are the

true start and end relation tags of the ith word for annotating the related head

entities.

Joint Learning. To boost the interaction between the Entity Extractor and the

HTER Extractor, we combine their loss functions to form the entire loss objective

of our model:

L(θ) = α ∗ LE + (LTER + LHER), (5.15)

where the hyper-parameter α is fine-tuned in the range (0, 1]. Then, we train the

model by minimizing L(θ) through the Adam stochastic gradient descent (Kingma

and Ba, 2015) over shuffled mini-batches. Note that the HTER Extractor is

trained with the gold set URLs, which are created using Algorithm 1, instead of

with the set of original relations.

Inference. In the testing phase, the triplets can be easily inferred on the basis

of the two modules. Specifically, for each input sample, we first extract the enti-

ties by using the Entity Extractor module. Note that entities extracted by this

module will not be considered as an additional constraint on the output of the

other module. Then, for each detected entity, we utilize the HTER Extractor to
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consider it in the head/tail roles and extract all the relational triplets involving

this entity. For example, from the input sample in Figure 5.2, the Entity Ex-

tractor is expected to detect the entities: “John Smiths”, “Paris”, and “France”.

Then, for each extracted entity, e.g., “Paris”, the HTER Extractor uses its two

submodules (HER and TER) to extract all relational triplets containing “Paris”.

Specifically, the TER submodule identifies “Paris” in the head role and extracts:

(“Paris”, R̂2, “France”). Meanwhile, the HER submodule considers “Paris” in

the tail role and extracts: (“John Smiths”, R̂1, “Paris”).

Note that the relation types in the triplets extracted by both the HER and

TER submodules belong to the set URLs because they are trained with this

set. Thus, we need to transform these relations into the original relations by

breaking them down into the original relations and creating the corresponding

triplets. In the above example, for the given entity “Paris”, the TER submodule

extracts the triplets {(“Paris”, R̂2, “France”)}. In addition, as shown in Fig-

ure 5.1, R̂2 represents for the subset {“Capital of”, “Located in”, “Administra-

tive division of”}. Therefore, we obtain the final triplets from the TER submod-

ule for “Paris”: {(“Paris”, “Capital of”, “France”), (“Paris”, “Located in”,

“France”), (“Paris”, “Administrative division of”, “France”)}. Similarly, we

also obtain the triplets from the HER submodule for “Paris”: {(“John Smiths”,

“Live in”, “Paris”), (“John Smiths”, “Work in”, “Paris”)}. Finally, we com-

bine the outputs from both submodules by keeping all the extracted triplets, but

removing the duplicates (if any) for each input sample.

5.3 Experiments

5.3.1 Experimental Settings

Datasets and Evaluation Metrics. Following the previous work (Dai et al.,

2019; Yu et al., 2020), we evaluated our approach on two widely used datasets:

NYT (Riedel et al., 2010) and WebNLG (Gardent et al., 2017). To further study

the capability of our approach to extract overlapping and multiple relations, we

also split the test set into three categories: Normal, EPO, and SEO. A sample

belongs to Normal if none of its triplets overlaps, whereas it belongs to EPO if
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Dataset Train Valid Test
Category

No. of Relations
Normal SEO EPO

NYT 56, 195 5, 000 5, 000 3, 266 1, 297 978 24

WebNLG 5, 019 500 703 216 457 26 216

Table 5.2: Statistics of the two datasets. The number of samples in the test set

that belongs to each category, is also reported. Note that a sample can

belong to both the SEO and EPO categories. In addition, the relation

number of the WebNLG was miswritten as 246, as in (Fu et al., 2019;

Yu et al., 2020), which is the total number of relations in the original

WebNLG dataset instead of the number of the subsets they used. We

recounted and provided the correct number.

some of its triplets share the same entity pair. In addition, a sample belongs to

SEO if some of its triplets share only one common entity. The statistics of the

two datasets are given in Table 5.2.

We report the standard micro precision, recall, and F1-score, as in line with

recent studies. Specifically, a predicted triplet is correct if and only if its relation

type and its two corresponding entities are all the same as those in the gold stan-

dard annotation. The results of the test set were reported when the development

set achieved the best result.

Implementation Details. We implemented the neural networks using the Py-

Torch library2. Batch padding was applied to pad the lengths of all tokens to

make them equal to the maximum length in each batch. The mini-batch training

size was set to 64, which was selected from the set: [32, 50, 64].

We used the 300-dimensional GloVe (Pennington et al., 2014) to initialize the

word embeddings. Each word representation was concatenated by three parts:

pre-trained GloVe embedding, character-based word representation by running

a CNN on the character sequence of the word, and POS embedding. The POS,

character, and position embeddings were randomly initialized with 30 dimensions

(selected from the set: [30, 40, 50]). The filter size of the CNN was set to 3 from

2PyTorch is an open-source software library for machine intelligence: https://pytorch.org/
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the set: [3, 4, 5], and the number of filters was 50 from the set: [30, 40, 50].

Thus, the representation of each word had a dimensionality of 380 (as the input

of the BiLSTM layer). For the BiLSTM layer, the hidden vector size was set to

200 from the set: [150, 200]. The Adam optimizer (Kingma and Ba, 2015) with

a learning rate 0.0001 from the set: [0.0001, 0.00001] was employed for training.

Dropout was applied to word embeddings and hidden states at a rate of 0.4 from

the set: [0.3, 0.4]. We also set the gradient clip-norm to 5 to prevent the gradient

explosion problem. The threshold γ was set to 11 for the NYT training set and

to 7 for the WebNLG training set. In addition, the value of α in the final loss

function (Equation 5.15) was set to 0.3 on the NYT and to 0.2 on the WebNLG,

where α was in the range (0, 1]. We trained the model for 100 epochs on both

datasets. Hyperparameters were tuned on the development set. All experiments

were run on a Tesla V100 graphics card in an Ubuntu-based computer system.

5.3.2 Experimental Results and Analyses

Comparison Models. For comparison, we employed the following models as

baselines:

• NovelTagging (Zheng et al., 2017): The first model to introduce a novel

tagging scheme that transforms the joint extraction task into a sequence

labeling problem.

• MultiDecoder (Zeng et al., 2018): A seq2seq model with a copy mech-

anism that converts the joint extraction task to a sequence-to-sequence

problem.

• MultiHead (Bekoulis et al., 2018): A joint neural model that performs

entity recognition and relation extraction simultaneously.

• GraphRel (Fu et al., 2019): An end-to-end relation extraction model that

uses GCNs to jointly learn named entities and relations.

• OrderRL (Zeng et al., 2019): A sequence-to-sequence model with rein-

forcement learning that takes the extraction order into consideration.
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• ETL-Span (Yu et al., 2020): A sequence labeling framework based on

a novel decomposition strategy that has achieved a notable performance;

however, its decomposition strategy still cannot solve the EPO problem, as

the authors stated.

Main Results. Table 5.3 shows the results of our models against those of other

baseline methods on both the NYT and WebNLG datasets. First, ETL-Span (Yu

et al., 2020) with a decomposition strategy significantly outperformed the pre-

vious works by a wide margin. However, because this approach cannot solve

the EPO problem as Yu et al. (2020) stated, further improvement of the system

performance is hindered. Meanwhile, our model framework with a new decompo-

sition strategy overcomes the existing problems of the model of Yu et al. (2020)

and substantially boosts the system performance. Specifically, our approach im-

proved the F1-score by 7.1 points on the NYT and by 2.9 points on the WebNLG,

compared with the results of Yu et al. (2020).

Model
NYT WebNLG

Precision Recall F1 Precision Recall F1

NovelTagging (Zheng et al., 2017) 32.8 30.6 31.7 52.5 19.3 28.3

MultiDecoder (Zeng et al., 2018) 61.0 56.6 58.7 37.7 36.4 37.1

MultiHead (Bekoulis et al., 2018) 60.7 58.6 59.6 57.5 54.1 55.7

GraphRel (Fu et al., 2019) 63.9 60.0 61.9 44.7 41.1 42.9

OrderRL (Zeng et al., 2019) 77.9 67.2 72.1 63.3 59.9 61.6

ETL-Span (Yu et al., 2020) 85.5 71.7 78.0 84.3 82.0 83.1

Ours 82.2 88.2 85.1 84.3 87.7 86.0

Table 5.3: Main results of the performances of the compared models on the NYT

and WebNLG.

Analysis of Our Decomposition Strategy. To gain more insight into the

improvement of our decomposition strategy in our model (in Figure 5.2), we

conducted further experiments, as reported in Table 5.4. We also reproduced the

results of ETL-Span (Yu et al., 2020).
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Model
NYT WebNLG

Precision Recall F1 Precision Recall F1

ETL-Span⋆ 84.4 72.2 77.8 84.5 81.6 83.0

(a) Ours (multiclass) 81.4 76.6 78.9 83.3 86.9 85.1

(b) Ours (multilabel) 81.3 83.7 82.4 81.4 85.3 83.3

(c) Ours (multiclass + URLs) 82.2 88.2 85.1 84.3 87.7 86.0

Table 5.4: Analysis of the performance of our framework on the test sets. The
⋆ marks the results that we reproduced. The URLs are the set of

“unified relation labels” created using Algorithm 1.

First, for case (a) in Table 5.4, we considered our model without using the set

URLs. Specifically, we used multiclass classifiers on the set of original relations in

the two submodules of the module HTER Extractor. Compared with the model

of Yu et al. (2020), our model achieved gains of 1.1 points and 2.1 points in the

F1-score on the NYT and WebNLG, respectively, using only the set of original

relations. The model of Yu et al. (2020) is too strict in regard to the order it

obtains the elements of each triplet, as it always detects the head entities first

and then extracts the corresponding tail entities and relations for the given HE.

Consequently, it will miss all triplets related to an omitted valid HE. Meanwhile,

it is not always easy to extract head entities first for all relations, as in some

cases it might be easier to detect the tail entities first before the head entities.

Thus, our flexible approach overcomes this problem and significantly improves the

recall. Note that our approach achieved a better improvement in the F1-score

on the WebNLG than that on the NYT. One possible reason is that, because the

number of relation types in the WebNLG (216 types) is much larger than that in

the NYT (only 24 types), it increased the probability of relations where it was

easier to detect the tail entities first before the head entities.

Second, as our multiclass model in case (a) cannot solve the EPO problem,

we considered the first solution. Specifically, in case (b), we used multilabel

classifiers, instead of multiclass classifiers, on the set of original relations in the

two submodules of the HTER Extractor. With this solution, each tagging position

in the HTER Extractor can hold multiple original relation types. Thus, we can
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extract multiple relations (if any) of the same entity pair. By doing this, compared

to case (a), our system achieved a gain of 3.5 points in the F1-score on the NYT,

whereas it showed a decreased of 1.8 points in the F1-score on the WebNLG. We

observed that the main difference between the NYT and WebNLG might have led

to this result. Specifically, the number of original relations in the WebNLG (216

types) is much larger than that in the NYT (24 types), although the maximum

number of relations of the same entity pair is 3 on both of these training sets.

Consequently, the sparse label problem of the multilabel classification on the

same entity pair is more severe in the WebNLG than in the NYT. Therefore,

it considerably affected the system performance on the WebNLG. Meanwhile,

although this problem is less severe in the NYT than in the WebNLG, it also

hinders the further improvement of the system performance.

Finally, as our model suffers from the sparse label problem for multilabel clas-

sification of the same entity pair in case (b), we considered the second solution to

solve the EPO problem. Specifically, in case (c), because a multiclass classifica-

tion can alleviate the sparse label problem, we used multiclass classifiers with the

URLs created using Algorithm 1 in the HTER Extractor. Interestingly, by us-

ing this simple solution, we achieved the highest system performance for both the

NYT and WebNLG. Compared with case (a), the solution increased the F1-score

by 6.2 points and 0.9 points on the NYT and WebNLG, respectively. It is worth

mentioning that the improvement gain on the NYT was significantly larger than

that on the WebNLG. One possible reason is that the EPO problem on the NYT

is more serious than that on the WebNLG. In Table 5.2, the number of samples

belonging to the EPO category in the NYT test set is 978 (19.6%), whereas it is

only 26 (3.7%) in the WebNLG test set.

Compared with the ETL-Span model by Yu et al. (2020), in Table 5.4, our best

model (case (c)) achieved a significant improvement of the system performance

with an increase in the F1-score by 7.3 points and 3.0 points on the NYT and

WebNLG test sets, respectively. In addition, on the NYT test set, compared with

the ETL-Span model, although our best model boosted the recall significantly

by 16 points, the precision decreased by 2 points. One possible reason for the

decrease in the precision is that our model tries to train all three parts (i.e.,

Entity Extractor and the two submodules: TER and HER) effectively at the
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Figure 5.3: F1-score of extracting relational triplets from samples in three differ-

ent categories on the NYT test set.

same time, which might be more challenging than training only two elements

simultaneously (i.e., the HE Extractor and TER Extractor), as in the ETL-Span

model of Yu et al. (2020). In future work, we plan to design model architectures

more effectively, to obtain a satisfactory level of not only the recall measure but

also the precision measure, thereby further improving the F1-score.

Analysis of Different Sample Types. To verify the capability of our model

to extract multiple triplets, we followed the procedure in (Zeng et al., 2018; Fu

et al., 2019) and conducted further experiments on the NYT test set. Specifically,

we first split the samples in this test set into three categories: Normal, EPO, and

SEO, and then we investigated the performance of each category.

The results are shown in Figure 5.3. It can be seen from the figure that the

performance improvement in our model mainly comes from its ability to deal

with the EPO and SEO problems more effectively. Compared with the model

of Yu et al. (2020), our model achieved competitive performance in all the three

categories. In addition, we paid special attention to the performance differences

between our approach and that of Yu et al. (2020). Notably, on the NYT test
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Figure 5.4: F1-scores obtained after extracting relational triplets from samples

with different numbers of triplets on the NYT test set.

set, our approach boosted the F1-score significantly in the EPO problem by 27.0

points, whereas that of Yu et al. (2020) cannot solve this problem. In addition, as

the strategy of Yu et al. (2020) strictly constrains the detection of the entities to

the head first, if it fails to find a valid HE, it will then miss the related triplets. It

will be more serious if this HE attends many different triplets in the head entity

role (a case of SEO). Therefore, our flexible approach deals with this issue and

substantially improves the F1-score by 3.4 points in the SEO problem.

We also compared the ability of the models to extract multiple triplets in

a sample. Specifically, we divided the samples of the NYT test set into five

categories, where each category contains samples that have 1, 2, 3, 4, or ≥ 5

triplets, respectively. The results are shown in Figure 5.4. It can be seen from the

figure that our approach achieved a significant improvement in extracting multiple

triplets compared with the other models. In particular, our model showed a more

stable performance when the number of triplets in the sample increased. These

results show that our approach is effective in dealing with the multi-relation

extraction task.
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5.3.3 Case Study

To gain more insight into the effectiveness of our model in overcoming the existing

disadvantages in the approach of Yu et al. (2020), we analyzed the prediction

outputs of both models on a few samples of the NYT and WebNLG test sets and

these are shown in Tables 5.5 and 5.6, respectively.

Dealing With the EPO Problem. In Table 5.5, we show two examples from

the NYT test set and compare the predicted triplets of the model of Yu et al.

(2020) with those of our model.

Sample 1

Anti-Ethiopia riots erupted in Mogadishu, the capital of Somalia, on Friday,

while masked gunmen emerged for the first time on the streets, a day after

Ethiopian-backed troops captured the city from Islamist forces.

Yu et al. (2020) (“Somalia”, “/location/location/contains”, “Mogadishu”)

Our model
(“Somalia”, “/location/country/capital”, “Mogadishu”)

(“Somalia”,“/location/location/contains”, “Mogadishu”)

Ground Truth
(“Somalia”, “/location/country/capital”, “Mogadishu”)

(“Somalia”, “/location/location/contains”, “Mogadishu”)

Sample 2

Though officials in Addis Ababa, Ethiopia’s capital, have said their troops should

not enter downtown Mogadishu, many are camped in the former American

Embassy, a decrepit building that was closed more than 15 years ago after

American soldiers suffered a humiliating defeat at the hands of warlords.

Yu et al. (2020)

(“Ethiopia”, “/location/country/capital”, “Mogadishu”)

(“Ethiopia”, “/location/location/contains”, “Addis Ababa”)

(“Addis Ababa”, “/location/administrative division/country”, “Ethiopia”)

Our model

(“Ethiopia”, “/location/country/capital”, “Addis Ababa”)

(“Ethiopia”, “/location/country/administrative divisions”, “Addis Ababa”)

(“Ethiopia”, “/location/location/contains”, “Addis Ababa”)

(“Addis Ababa”, “/location/administrative division/country”, “Ethiopia”)

Ground Truth

(“Ethiopia”, “/location/country/capital”, “Addis Ababa”)

(“Ethiopia”, “/location/country/administrative divisions”, “Addis Ababa”)

(“Ethiopia”, “/location/location/contains”, “Addis Ababa”)

(“Addis Ababa”, “/location/administrative division/country”, “Ethiopia”)

Table 5.5: Prediction outputs on two samples from the NYT test set.

As mentioned earlier, the model of Yu et al. (2020) cannot solve the EPO

problem. For any entity pairs, their model only predicts a single relation, al-
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though an entity pair can have multiple relations. For instance, in Sample 1,

the ordered entity pair (“Somalia”, “Mogadishu”) has two relations: “/loca-

tion/country/capital” and “/location/location/contains”. However, the model

of Yu et al. (2020) extracted only a single relation and created the triplet: (“So-

malia”, “/location/location/contains”, “Mogadishu”). Similarly, in Sample 2,

although the ordered entity pair (“Ethiopia”, “Addis Ababa”) has three relations:

“/location/country/capital”, “/location/country/administrative divisions”, and

“/location/location/contains”, their model predicted only the relation “/loca-

tion/location/contains” for this pair. Thus, the more serious the EPO problem

is, the more degraded the system performance becomes. Meanwhile, our model

overcomes this disadvantage and effectively solves the EPO problem. For both

samples above, our model fully detected all possible relations for the pair (“So-

malia”, “Mogadishu”) in Sample 1 and the pair (“Ethiopia”, “Addis Ababa”) in

Sample 2.

Effect of the “Exhaustive Search” Strategy. As shown in Figure 5.2, our

model uses the Entity Extractor to detect all entities first. Then, for each detected

entity, the HTER Extractor utilizes its two submodules to identify the entity in

each head/tail role and extracts all the corresponding tail entities/head entities

and relations. The final output of our model is always obtained by combining

the results of the two submodules without any duplicate triplets. In essence,

this approach can be considered as an “exhaustive search” strategy that aims to

increase the chances of extracting a valid triplet that may be overlooked by the

approach of Yu et al. (2020). Therefore, in Table 5.6, we compare the prediction

outputs of both approaches on three samples from the WebNLG test set.
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Sample 3
The Athens International Airport serves the city of Athens , in Greece where

Alexis Tsipras is the leader.

Yu et al. (2020)
(“Athens”, “country”, “Greece”)

(“Greece”, “leaderName”, “Alexis Tsipras”)

Our model

HER+URLs
(“Athens”, “country”, “Greece”)

(“Greece”, “leaderName”, “Alexis Tsipras”)

TER+URLs

(“Athens”, “country”, “Greece”)

(“Greece”, “leaderName”, “Alexis Tsipras”)

(“Athens International Airport”, “cityServed”, “Athens”)

Ground Truth

(“Athens”, “country”, “Greece”)

(“Greece”, “leaderName”, “Alexis Tsipras”)

(“Athens International Airport”, “cityServed”, “Athens”)

Sample 4

Faber and Faber are the publishers of The Secret Scripture, a sequel to A Long

Long Way. That book comes from Ireland which is located in Europe and where

there is an ethnic group of white people.

Yu et al. (2020)
(“A Long Long Way”, “country”, “Ireland”)

(“A Long Long Way”, “followedBy”, “The Secret Scripture”)

Our Model

HER+URLs

(“A Long Long Way”, “country”, “Ireland”)

(“A Long Long Way”, “followedBy”, “The Secret Scripture”)

(“The Secret Scripture”, “publisher”, “Faber and Faber”)

TER+URLs
(“A Long Long Way”, “country”, “Ireland”)

(“A Long Long Way”, “followedBy”, “The Secret Scripture”)

Ground Truth

(“A Long Long Way”, “country”, “Ireland”)

(“A Long Long Way”, “followedBy”, “The Secret Scripture”)

(“The Secret Scripture”, “publisher”, “Faber and Faber”)

(“Ireland”, “location”, “Europe”)

Sample 5
3Arena is located in Dublin, the Republic of Ireland, where Cŕıona Nı́ Dhálaigh

was Lord Mayor. The owner of 3Arena is Live Nation Entertainment.

Yu et al. (2020)

(“Dublin”, “country”, “Republic of Ireland”)

(“Dublin”, “leaderName”, “Cŕıona Nı́ Dhálaigh”)

(“Dublin”, “leaderName”, “Lord Mayor”)

Our model

HER+URLs

(“3Arena”, “location”, “Dublin”)

(“3Arena”, “owner”, “Live Nation Entertainment”)

(“Dublin”, “country”, “Republic of Ireland”)

TER+URLs
(“Dublin”, “country”, “Republic of Ireland”)

(“Dublin”, “leaderName”, “Cŕıona Nı́ Dhálaigh”)

Ground Truth

(“3Arena”, “location”, “Dublin”)

(“3Arena”, “owner”, “Live Nation Entertainment”)

(“Dublin”, “country”, “Republic of Ireland”)

(“Dublin”, “leaderName”, “Cŕıona Nı́ Dhálaigh”)

Table 5.6: Prediction outputs on a few samples from the WebNLG test set.
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First, in Sample 3, the HE Extractor in the model of Yu et al. (2020) missed

the HE “Athens International Airport”, thereby overlooking the valid triplet:

(“Athens International Airport”, “cityServed”, “Athens”) in the ground truth.

Meanwhile, in our model, the entity “Athens International Airport” was detected

by the Entity Extractor. Then, the TER+URLs submodule of the HTER Ex-

tractor identified this entity in the head role and extracted the triplet (“Athens

International Airport”, “cityServed”, “Athens”). Additionally, we compared the

outputs of the HER+URLs and TER+URLs submodules in our model. Al-

though two triplets, namely, (“Athens”, “country”, “Greece”) and (“Greece”,

“leaderName”, “Alexis Tsipras”), were easily obtained by the two submodules,

the HER+URLs submodule failed to extract the valid triplet: (“Athens Interna-

tional Airport”, “cityServed”, “Athens”) when considering the entity “Athens”

in the tail role. Thus, in this example, the TER+URLs submodule achieved a

better result than that of the HER+URLs submodule.

Second, in Sample 4, the approach of Yu et al. (2020) omitted two valid triplets

in the ground truth: (“The Secret Scripture”, “publisher”, “Faber and Faber”)

and (“Ireland”, “location”, “Europe”), because the HE Extractor missed two

HEs: “The Secret Scripture” and “Ireland”. In our model, although the module

Entity Extractor could detect the entity “The Secret Scripture”, its TER+URLs

submodule failed to extract the triplet (“The Secret Scripture”, “publisher”,

“Faber and Faber”) when considering “The Secret Scripture” in the head role.

Meanwhile, thanks to the HER+URLs submodule, it extracted this missed triplet

by considering “Faber and Faber” in the tail role and detecting the corresponding

HE “The Secret Scripture” with the relation type “publisher”. Based on the out-

puts of the two submodules, it is clear that the HER+URLs submodule yielded

a better result for this sample than that of the TER+URLs submodule.

Finally, in Sample 5, the model of Yu et al. (2020) obtained only two valid

triplets in the ground truth: (“Dublin”, “country”, “Republic of Ireland”) and

(“Dublin”, “leaderName”, “Cŕıona Nı́ Dhálaigh”). The HE Extractor of their

model missed the HE “3Arena”, thereby overlooking the triplets: (“3Arena”, “lo-

cation”, “Dublin”) and (“3Arena”, “owner”, “Live Nation Entertainment”). In

our model, the Entity Extractor also missed the entity: “3Arena”. Consequently,

the TER+URLs submodule also overlooked the triplets: (“3Arena”, “location”,

71



“Dublin”) and (“3Arena”, “owner”, “Live Nation Entertainment”). Meanwhile,

the HER+URLs submodule identified the entity “Dublin” in the tail role to ex-

tract the triplet (“3Arena”, “location”, “Dublin”) and also identified the entity

“Live Nation Entertainment” in the tail role to extract the triplet (“3Arena”,

“owner”, “Live Nation Entertainment”). However, the HER+URLs submod-

ule missed the valid triplet (“Dublin”, “leaderName”, “Cŕıona Nı́ Dhálaigh”),

whereas this triplet was detected by the TER+URLs submodule. Our model

obtained the final result by combining the outputs of the two submodules.

We further consider the system performance of the predicted outputs of the

(HER+URLs and TER+URLs) submodules of the HTER Extractor of our model

on the entire WebNLG test set in Table 5.7. We can see that the number of

predicted triplets by the HER+URLs submodule is 1, 510, whereas this number

is 1530 for the TER+URLs submodule. In addition, these two submodules share

1, 368 common predicted triplets. Thus, the overlap percentage of the output of

the HER+URLs submodule is 90.6, whereas this rate is 89.4 for the output of the

TER+URLs submodule. In Table 5.7, our model achieved the best performance

when combining the predicted outputs of the two submodules.

F1

HER+URLs 85.1

TER+URLs 85.3

Combined 86.0

Table 5.7: Results of the performance analysis of the two submodules of our model

on the WebNLG test set. The set URLs was created using Algorithm 1.

On the basis of the results of the analysis of the examples in Table 5.6 and of

the performances of the submodules of our model in Table 5.7, we conclude that

the “exhaustive search” strategy of our model is effective in solving the entity

and relation extraction task.
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5.3.4 Impact of Using Pre-trained Language Models

For a fair comparison, like in Yu et al. (2020), we did not exploit the advantages of

using pretrained language models. In reality, a well-known pretrained language

model named BERT was first proposed by Devlin et al. (2019). It has been

widely applied to various NLP downstream tasks and has achieved considerable

success. For the entity and relation extraction task, Hang et al. (2021) presented

a BERT-based model named BERT-JEORE and obtained superior performance.

Therefore, we further investigated the impact of using pretrained language models

when they were used in our model.

Specifically, for our model in Figure 5.2, we replaced only the first BiLSTM

encoder with a pretrained BERT-Base encoder to extract the representations of

the original words from the input sample. Note that the BERT model first uses its

tokenizer to split each original word into tokens (if necessary) and then outputs

the vectors of these tokens. Thus, we obtained the representation of each original

word by averaging its start token vector and its end token vector. In Table 5.8, we

report the system performance of our model on the NYT and WebNLG datasets.

Model
NYT WebNLG

Precision Recall F1 Precision Recall F1

BERT-JEORE (Hang et al., 2021) 88.5 84.6 86.5 79.1 91.4 84.8

OursLSTM 82.2 88.2 85.1 84.3 87.7 86.0

OursBERT 90.7 92.6 91.6 85.0 87.9 86.4

Table 5.8: Impact of using a pretrained BERT encoder in our model.

Clearly, our model showed further performance boost on both the NYT and

WebNLG datasets when employing a pretrained BERT encoder, significantly im-

proving the F1-score by 6.5 points on the NYT dataset. Compared to a recent

model based on BERT (BERT-JEORE) by Hang et al. (2021) for the entity and

relation extraction task, our BERT-based model achieved a better performance

on the NYT and WebNLG datasets, with gains of 5.1 points and 1.6 points in the

F1-score, respectively. In addition, it is interesting to note that, even without

using the BERT encoder, our model still outperformed the recent model on the

WebNLG test set. This indicates that our approach with a new decomposition
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strategy is simple but very effective in solving the entity and relation extraction

task.

5.4 Conclusion and Future Work

This chapter proposes a new decomposition strategy along with a corresponding

model framework for the joint entity and relation extraction task. Our approach

mainly focuses on solving the overlapping triplet problem, one of the biggest

challenges of this task, as only a few existing works can tackle this problem

effectively. Our model uses a module to extract all the relevant entities, and for

each extracted entity, another module is utilized to consider its head/tail entity

roles and extract all the related triplets. In addition, the use of URLs helps

to sufficiently deal with the sparse label problem of relation types in the same

entity pair (e.g., EPO cases), which can be prevalent in this task. Experimental

results on the two widely used datasets (NYT and WebNLG) showed that our

model achieved a notable performance compared with a recent work (Hang et al.,

2021). The results of further analysis experiments showed the effectiveness of our

approach in handling overlapping and multiple triplet extraction scenarios.

Our proposed methodology has considerable potential for practical NLP appli-

cations such as information extraction, knowledge base population, and question

answering. Moreover, the idea of using URLs may be relevant and promising for

multilabel classification problems in general, not just for a specific task such as

the entity and relation extraction task. In future work, we plan to apply this

idea to the text classification task. Additionally, we also would like to introduce

other methods for solving the overlapping triplet problem more effectively, such

as considering how to change the weight of a label depending on whether it is a

subset of the true label, and integrating available knowledge bases of entities into

current models for boosting the system performance.
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Chapter 6

Conclusion

6.1 Summary of Research Results

For the overview of my research, we focused on relation extraction task and

investigated the task in three supervised approaches: “fully-supervised relation

extraction”, “zero-shot relation extraction”, and “end-to-end relation extraction”.

While my Master’s thesis concentrated on the perspective of “fully-supervised

relation extraction”, this dissertation devoted on the two remaining perspectives.

Specifically, we proposed several methods to improve performance on “zero-shot

relation extraction” in Chapters 3 and 4, while Chapter 5 devoted to “end-to-end

relation extraction”.

In Chapter 3, we presented a method improving discriminative learning for

zero-shot relation extraction. This aspect is overlooked in previous works. Thus,

we investigated if discriminative learning can help improve task performance. Our

method incorporated discriminative embedding learning for both sentences and

semantic relations. It guaranteed two important properties of embedding rep-

resentations: intra-relation compactness and inter-relation separability, thereby

enhancing the quality of sentence and relation embeddings. Experimental re-

sults on two benchmark datasets showed that the proposed method significantly

outperforms the state-of-the-art methods. Additionally, visualizing the testing

sentence embeddings produced by the state-of-the-art model and our model in

Figure 3.3 indicated the better quality of the sentence embeddings generated by

our model.

In Chapter 4, we proposed a new method to improve performance on zero-shot

75



relation extraction. We argued that enhancing the semantic correlation between

instances and relations is the key to drastically improving the performance of

ZSRE. A new model entirely devoted to this goal through three main aspects was

proposed: learning high-quality relation representation, designing strategic mini-

batches, and binding two-way semantic distribution consistency. Specifically, our

model acquired meaningful and high-quality representations for instances and re-

lations in the first aspect. This aspect plays an essential role in understanding

the semantic correlation between instances and relations. Second, we designed

each mini-batch as a mini-task, including K different seen relations and K corre-

sponding instances (K is a hyperparameter), and forced the model to pair them

exactly. This strategy encourages the model to grasp the semantic relationship

between instances and relations deeply. Finally, to fully exploit the semantic

relationship between instances and relations, we use two-way interaction, which

grasps the interaction not only “from each instance to relations” but also “from

each relation to instances” and constrains the consistency of the two interaction

distributions. Extensive experiments on two benchmark datasets have demon-

strated the effectiveness and robustness of our proposed model, particularly in

limited training data scenarios.

In Chapter 5, we concentrated on “end-to-end relation extraction”, which aims

to jointly extract entities and their semantic relations in text. We introduced

a new decomposition strategy along with a corresponding model framework for

this joint entity and relation extraction task. Our approach mainly focused on

solving the overlapping triplet problem, one of the biggest challenges of this task,

as only a few existing works can tackle this problem effectively. Our model used a

module to extract all the relevant entities, and for each extracted entity, another

module is utilized to consider its head/tail entity roles and extract all the related

triplets. In addition, the use of “unified relation labels” set helped to sufficiently

deal with the sparse label problem of relation types in the same entity pair (e.g.,

EPO cases), which can be prevalent in this task. Experimental results on the

two widely used datasets (NYT and WebNLG) showed that our model achieved

a notable performance compared with the state-of-the-art model. The results of

further analysis experiments demonstrated the effectiveness of our approach in

handling overlapping and multiple triplet extraction scenarios.
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6.2 Open Problems and Future Work

In this dissertation, we made efforts to solve relation extraction in two supervised

approaches:“zero-shot relation extraction” and “end-to-end relation extraction”.

Although the performance task on the two approaches is significantly improved,

it still has some remaning problems, and we plan to resolve them in our future

work. Specifically, they are two main issues as follows:

First, for “zero-shot relation extraction”, we assumed that the set of seen re-

lation labels (YS) in training stage and the set of unseen relation labels (YU) in

testing stage are disjoint, i.e., YS ∩ YU = ∅. Here, we consider training phase

to testing phase as: YS → YU . Following this setting, a testing sentence will be

classified in one of unseen relations of YU . However, it is more generalized and

realistic when assuming a testing sentence may express semantic relation which

can belong to YU or YS , thereby setting from the training phase to the testing

phase as: YS → YS ∪ YU . Following this new setting, the task is called “general-

ized zero-shot relation extraction” (GZSRE), where a model is trained on labeled

sentences of the seen relations but then targeted to predict both seen and unseen

relations for testing sentences. Intuitively, the new task GZSRE is more chal-

lenging but relevant for real-world scenarios. For the preliminary measures, we

use our proposed models for ZSRE to tackle GZSRE and further propose more

effective models in future work.

Second, for both the supervised approaches: “zero-shot relation extraction” and

“end-to-end relation extraction”, we tested our proposed methods on benchmark

datasets in the the general domain. Although our methods effectively improve

the task performance significantly, they might not work well in some specialized

domains like the biomedical domain. Thus, we plan to evaluate our methods in

such domains in future work. Additionally, our study mainly focused on intra-

sentence relation extraction, where entities with their relations appear in the

same sentence. In fact, entities may hold semantic relation over sentences. This

phenomenon has become more and more popular in real-world scenarios. For

example, in the document: “[John Stanistreet]e1 was an Australian politician.

He was born in [Bendigo]e2 to legal manager John Jepson Stanistreet and Maud

Mcllroy.”. The semantic relation between the first entity “John Stanistreet”

and the second entity “Bendigo” is place of birth. Therefore, we plan to tackle
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inter-sentence relation extraction as part of our future work. Specifically, we

first extend our current works to solve the document-level relation extraction

task, which is more challenging but might be helpful for real-world scenarios.

However, it has some limitations to our current sentence-level RE methods when

adapting them to solve the document-level RE task. For example, in the sentence-

level context, entities are often close to each other and express their semantic

relations (if any) in a simple and explicit manner. Conversely, in the document-

level context, two entities can be very far from each other, thereby challenging

our models to profoundly grip semantic relations expressed in an implicit and

complex manner. We will need to consider this limitation carefully in solving the

document-level RE task in our future work.

Considering the two open problems above, we plan to investigate and solve

these problems in our future work. The final target is to resolve the relation

extraction task more effectively, thereby benefiting related NLP applications such

as information extraction, knowledge base construction, and question answering.

Finally, in this study, we proposed an improved decomposition strategy for joint

entity and relation extraction in Chapter 5. However, this method only works in

a supervised learning manner requiring the given training dataset. In fact, such

training datasets are not always available in real-world scenarios, especially in

some specialized domains like the biomedical domain. Meanwhile, we expect to

build systems that can automatically extract entities and relations jointly with-

out requiring any training corpus in the COVID-19 field. Specifically, due to

the COVID-19 outbreak, it is essential to grasp valuable knowledge from a large

number of COVID-19-related papers for dealing with the pandemic effectively.

However, there is still a lack of a system that has the ability to automatically

detect both entities with various types and their diverse relations through pa-

pers, especially when COVID-19 papers are published rapidly. This motivates

us to build the CovRelex system (Tran et al., 2021), which aims to exploit such

information.

The overview of the CovRelex system is introduced in Figure 6.1. It consists

of five main modules: Relation Extraction, Entity Recognition, Relation

Clustering, Relation Scoring, and Graph Construction. Now, we briefly

introduce each of them. For the Relation Extraction module, we employ sev-
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Figure 6.1: Overview of the CovRelex system.

eral relation extraction methods, including ReVerb (Fader et al., 2011), OLLIE

(Mausam et al., 2012), ClausIE (Del Corro and Gemulla, 2013), OpenIE (Angeli

et al., 2015), and ReLink (Tran and Nguyen, 2021). Meanwhile, for the Entity

Recognition module, we use biomedical entity recognition models specialized

for predicting entity type and provided by SciSpacy (Neumann et al., 2019). In

the Relation Clustering module, we build a cluster hierarchy on a subset of the

extracted relations using the clustering algorithm FINCH (Sarfraz et al., 2019),

so users can quickly find their interesting relation expressions, or they can choose

some clusters which may contain their interesting relation expressions. Besides,

the Relation Scoring module is designed to calculate the informativeness of each

relation, based on Pointwise Mutual Information (Church and Hanks, 1990). Fi-

nally, the Graph Construction module helps enable a more sophisticated paper

search covering a complex graph describing relations among entities. The final

goal of the CovRelex system is to automatically extract entities and their diverse

relations not only in the same paper but also across many different papers.

Although the current CovRelex system helps support users in acquiring knowl-

edge efficiently across a huge number of COVID-19 scientific papers published

rapidly, it still has some challenges. First, the quality of relation extraction needs

to be further improved. Second, the system should be able to solve the perfor-

mance issue (e.g., the response time for user requests) when utilizing the present

methods in the nick of time to fight pandemics. Therefore, we plan to improve

the current CovRelex system according to the two challenges above, as the sys-
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tem is expected to be more effective and efficient for users in fighting with the

coronavirus pandemic.
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