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CNN-based Scene Modeling:
From Depth Estimation to 3D Reconstruction∗

Zhaofeng Niu

Abstract

With the rapid improvement of image sensors and computer vision technolo-
gies, scene modeling has become more and more popular. For applications like
augmented reality (AR) and virtual reality (VR), quick and precise 3D reconstruc-
tion of the real world, which describes actual objects in a data format that can be
used for displaying and computing, is necessary. Therefore, researchers have paid
lots of attention to developing an efficient yet accurate scene modeling method
and have achieved many encouraging results. However, most of these methods
are based on expensive depth sensors and are vulnerable to errors, which largely
limit their application areas. In the dissertation, the main purpose is to design
and implement the convolutional neural networks (CNNs)-based scene modeling,
to get rid of expensive depth sensors, and to make a more robust reconstruction.

Firstly, the monocular depth estimation is studied for easing the task of depth
acquisition. It is an essential technique in the field of computer vision, for tasks
like 3D reconstruction. Although many works have emerged in recent years, they
can be further improved by better utilizing the multi-scale information of the
input images, which is proved to be one of the keys to generating high-quality
depth estimations. A novel monocular depth estimation method named HMA-
Depth is proposed, in which an encoder-decoder scheme is adopted and combined
with several techniques such as skip connections and the atrous spatial pyramid
pooling (ASPP). To obtain more precise local information from the image while
keeping a good understanding of the global context, a hierarchical multi-scale

∗Ph.D. Dissertation, Graduate School of Science and Technology, Nara Institute of Science and
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attention module is designed and its outputs are combined to generate the final
output that is with both good details and great overall accuracy. Experimental
results on two commonly-used datasets prove that HMA-Depth can outperform
the state-of-the-art approaches.

Then a new 3D reconstruction method is developed, which is robust to errors
in both depth maps and camera poses. The truncated signed distance function
(TSDF) fusion is one of the key operations in the 3D reconstruction process.
However, existing TSDF fusion methods usually suffer from inevitable sensor
errors. A TSDF fusion-based network named DFusion is proposed, to minimize
the influences from the two most common sensor errors, i.e., depth errors and pose
errors. To the best of my knowledge, this is the first depth fusion approach for
resolving both depth errors and pose errors. DFusion consists of a fusion module,
which fuses depth maps, as well as the following denoising module, which removes
the noise, caused by both depth errors and pose errors, for TSDF volumes. To
utilize the 3D structural information, 3D convolutional layers are used in the
encoder and decoder parts of the denoising module. Also, a specially-designed
loss function is adopted to improve the fusion performance in object and surface
regions. The experiments are conducted on a synthetic dataset as well as a real-
scene dataset. The results prove that the proposed method outperforms existing
methods.

Keywords:

Scene Modeling, Depth Estimation, 3D Reconstruction, Depth Fusion, Convolu-
tional Neural Networks (CNNs), Deep Learning.
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Chapter 1

Introduction

3D scene modeling is a process to obtain the 3D shapes of actual objects. It
consists of a series of procedures including depth acquisition, camera pose esti-
mation, 3D reconstruction, triangulation, texturing, 3D rendering, etc. 3D scene
modeling is of great significance to a lot of applications, e.g., augmented real-
ity (AR), computer-aided design (CAD), autonomous driving, robotic automatic
control, etc.

3D Scene Modeling

Depth Acquisition

Camera Pose Estimation

3D Reconstruction

Triangulation

Texturing

Rendering

∙∙∙

Figure 1.1: 3D scene modeling steps. The procedures marked with blue are the
focus of this research.
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As shown in Fig. 1.1, 3D scene modeling can generate the 3D shape (right)
of the real-world scene (left). There are several steps in the 3D scene modeling
pipeline, from obtaining the data of the scene (including the depth information
and sensor pose) to the modeling process (including depth fusion, triangulation,
and texturing) and displaying the digital shapes on the computer screen. Lots of
works have been proposed for the steps in the 3D scene modeling pipeline. How-
ever, there still exist many problems and the performance needs to be improved.
In recent years, technologies of artificial intelligence (AI) are experiencing rapid
development, bringing a breakthrough for 3D modeling. To address these prob-
lems and to make progress in the 3D scene modeling field, this research will focus
on two key processes of 3D scene modeling with convolutional neural networks
(CNNs), i.e., depth acquisition and 3D reconstruction. This chapter gives a gen-
eral view of the dissertation, starting with the existing problems of current depth
acquisition and 3D reconstruction approaches in Section 1.1. Next, the research
goals are explained in Section 1.2. Then in Section 1.3, the contributions have
been summarized and listed. Finally, the outline of this dissertation is described
in Section 1.4.

1.1. Background

The first step of 3D modeling is depth acquisition. Using depth sensors, such
as RGBD cameras (e.g., Microsoft Azure Kinect) and LiDARs (e.g., Velodyne
HDL-32E LiDAR sensor), the depth information of the real world can be directly
obtained. These sensors can capture and output pixel-level depth maps along
with RGB images, however, they suffer from several technical limitations that
largely limit their broad uses (as shown in Table. 1.1).
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Table 1.1: Comparison among depth acquisition methods.

Methods
Depth Sensors

Depth Estimation
Structured Light Time of Flight

Technical Basis Known pattern Known speed Scene understanding
Sensor Cost High Medium Low
Sensor Size Large Large Small

Weight Large Large Light
Power Consumption High Medium Low

Effective Range <5m∗ <7m∗ Unlimited
Depth Accuracy mm-accurate† cm-accurate† Depended on algorithms

* Highly dependent on the power of the light projector/emitter.
† Rapid fall-off beyond effective range.

High costs. Depth acquisition with depth sensors is expensive. This kind of
sensor usually costs $100 ∼ $10,000 dollars with various performances of depth
sensing. Therefore, they are unsuitable for applications with low-cost yet high-
performance requirements.

Inconvenience. It brings inconvenience to carry the depth sensors (both RGBD
cameras and LiDAR sensors) due to the large size and high power consumption,
which also affects their application in small robots such as drones as well as in
mobile devices like mobile phones.

Insufficient sensing abilities. Depth sensors are usually with low resolution,
which makes them unsuitable for applications with requirements on the resolu-
tion, and limited measurement range, which makes them struggle in close-range
and long-range 3D modeling.

Therefore, depth acquisition approaches that are not relying on depth sensors
are urgently needed by a lot of 3D scene applications. As a cheaper, smaller,
lighter, battery-friendly, high-resolution enabled, and distance-insensitive device,
the monocular camera has attracted much attention. Depth estimation, which
indicates the dense depth map from 2D RGB images and makes it possible to use
a monocular camera or existing video frames in 3D scene modeling, is increasingly

3



popular and is under rapid development.
After obtaining the depth maps, depth fusion can be performed with other

information (including camera intrinsics and camera poses), for achieving 3D
reconstruction. Considering the performance of fused shapes and the limitations
of conventional reconstruction methods, however, several problems need to be
solved during the process.

Heavy parameters. There are lots of parameters when fusing the depth data
among different views (i.e., 3D reconstruction). However, traditional methods
need to adjust the parameters manually, which is a heavy task and very diffi-
cult to obtain high performance, generally leading to thickening artifacts on thin
geometry.

Errors. Depth acquisition methods, no matter depth sensors or depth estima-
tion approaches, always involve errors (e.g., missing data and outliers) in the
depth output. Besides, for depth fusion, the information of camera poses is also
required to be collected. However, the error in camera poses is usually ignored in
past research. These two types of errors would introduce noise on fused shapes.

Noise. Due to the heavy parameters and errors generated in the estimation of
depth maps and camera poses, the results of conventional reconstruction methods
usually struggle with noise artifacts, which may tend to cause outlier blobs, coarse
surfaces, thickening objects as well as incomplete components, thereby resulting
in defective 3D shapes.

Therefore, people need a novel deep learning-based depth fusion method,
which can adjust the parameters automatically and intelligently. In addition, the
error in depth maps and camera poses should be taken into account, and then
the noise on the fused shapes needs to be removed, to improve the reconstruction
performance.
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1.2. Research Goal

This research focuses on 3D scene modeling and the ultimate objective is to
enable cheap, convenient, high-performance, and robust 3D scene reconstruction.
To address the aforementioned problems and achieve this objective, the research
goals are as follows.

Goal 1: High-Performance Monocular Depth Estimation

• 2D RGB sensors are featured as low-cost, convenient, and universal alterna-
tives for the 3D depth sensors. Therefore, for making full use of 2D sensors,
a new depth estimation method has to be designed, which can generate ac-
curate depth maps from RGB images. Although there are existing related
methods, the performance is not good enough for applications. Therefore,
high-performance estimation is urgently needed.

Goal 2: Robust 3D Reconstruction for Noisy Data

• The noise problem is inevitable in actual depth maps and camera poses, no
matter whether they are obtained from depth sensors or estimated from 2D
images. However, this problem has not attracted much attention. There-
fore, a robust 3D reconstruction method can help a lot when dealing with
these noisy data, without which the reconstructed shapes would usually
be incomplete or with significant errors and the 3D modeling performance
deteriorates.

1.3. Contributions

In this research, I attempt to achieve better 3D scene modeling based on CNNs
and I focus on two steps during the process, that is, monocular depth estimation
and depth fusion. The main contributions can be explained as follows.
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(1) Improve the Performance of Monocular Depth Estimation

Monocular depth estimation provides an efficient and low-cost way to obtain
depth information in the 3D reconstruction process. Lots of research have pro-
posed various methods for monocular depth estimation. However, the perfor-
mance of existing methods still needs to be improved for real applications. In
this research, I achieve better performance of monocular depth estimation (as
shown in Fig. 1.2) with the HMA-Depth method, for which the contributions
include:

• I propose a backbone network that can generate features at different scales
of the input image, each of which provides different information about the
image. Generally, a larger scale can provide better local details while a
smaller scale shows better global knowledge.

• A hierarchical multi-scale attention module generates depth maps and at-
tention maps of each scale. The attention maps provide the confidence
of depth maps so that the final output is estimated with both good local
details and overall accuracy.

(2) Denoise the 3D Shape of Depth Fusion

Depth fusion is a popular approach to achieving 3D reconstruction. Unfortu-
nately, errors are inevitable produced when capturing the depth maps and camera
poses. To achieve denoised and robust 3D reconstruction (as shown in Fig. 1.3),
I propose a method that removes the noise caused by errors in depth maps and
camera poses, thereby gaining more complete objects and more smooth surfaces
of the 3D shape. The contributions include:

• A new reconstruction network named DFusion is proposed, which considers
both depth errors and pose errors in the fusion process, avoids the per-
formance drops caused by both types of errors and conducts accurate and
robust depth fusion.

• Novel fusion loss functions focus on all the voxels while emphasizing the
object and surface regions, which can improve the overall reconstruction
performance.
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Results of an existing method Results of HMA-Depth method
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OursGround Truth BTSinput
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(a) (b)

Depth estimation Depth estimation
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(b)
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(b)

Figure 1.2: Performance improvement of monocular depth estimation.
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Expected scene 
(Synthetic 3D model)

Depth fusion result of the existing method

Denoised depth fusion result of DFusion method

Figure 1.3: Denoising the 3D shape of depth fusion.
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1.4. Outline of Dissertation

The dissertation has six chapters in total and the remaining content is organized
as follows:

• Chapter 2 introduces related works of depth acquisition and 3D reconstruc-
tion respectively.

• Chapter 3 describes how to perform high-quality depth estimation, i.e.,
from RGB images to depth maps. It also includes an example application
of depth estimation.

• Chapter 4 expresses the process of depth fusion and how to remove the
noises of fused results caused by the errors in depth data and camera poses.

• Chapter 5 makes some discussion about this research and explains a feasi-
ble approach to achieving monocular depth fusion, that is, performing 3D
reconstruction directly from RGB images.

• Chapter 6 concludes the dissertation.
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Chapter 2

Related Work

2.1. Depth Acquisition

Since depth information is highly important in many applications, such as 3D
reconstruction, there are a lot of existing methods, aiming to achieve accurate
depth acquisition. It can be generally divided into three types, i.e., 1) using
a depth camera, which adopts the structured light [44], etc.; 2) using stereo
images or a video stream, which can provide more spacial or temporal [62, 70,
104, 112, 128]; 3) using monocular images [32, 124], which estimates the depth
information only based on an RGB image. Among these methods, monocular
depth estimation is the cheapest and most convenient way, but very challenging
as an ill-posed problem without any depth cue.

2.1.1 Depth Cameras

There are many different technologies to enable depth sensing. Some of the most
important ones are summarized below.

Structured light. The structured light is implemented as a known light
pattern from the projector, reflected from the target objects, and received by at
least one camera. The light patterns may be dots, strips, or color patterns. The
reflected light pattern received by the cameras is usually slightly different from
the projected one, which indicates the depth changes. Therefore, by calculating
the changes from the projected light pattern and the received light pattern, the

10



sensor can get the depth information of the objects. However, this method is not
suitable for transparent objects, highly-reflective objects, or long-range objects.
Also, it may be influenced by other structured light sensors.

Time of flight (ToF). ToF means the time that light travels in a distance.
With the known speed of light, people can calculate the distance between the
light emitter and receiver. The advantages of ToF include high accuracy, low
influences from outside light sources, and the ability to obtain depth information
from surfaces without textures.

2.1.2 Depth Estimation based on Stereo Images

Depth estimation technologies with stereo images can be divided into the fol-
lowing categories [54]. The first-generation methods generally rely on matching
pixels in multiple images captured by precisely-calibrated cameras. While they
may achieve good results, they are largely limited in many aspects. For exam-
ple, they are not suitable for handling occlusions, featureless regions, or highly-
textured regions with repeating patterns. Second-generation approaches attempt
to address these problems by regarding depth estimation as a learning task. In
this task, researchers can formulate prior knowledge, which is about how the 3D
world should look like, into the estimation model and let the model learn how
to map from the stereo images into the 3D space. Then, the rapid development
of deep learning techniques in computer vision, as well as the emergence of large
datasets, has given rise to third-generation methods that can learn in an end-to-
end manner, without humans’ guidance. These models are usually trained from
scratch and all the model knowledge is automatically extracted from the large
datasets. Then the recent progress in the deep learning-based approaches will be
expressed in the following.

Depth by stereo matching. Based on the traditional stereo matching tech-
niques, some deep learning-based methods explicitly learn how to match or put
in correspondence for the input images. Then the correspondences can produce
a disparity map or an optical flow, which can be converted into pixel-wise depth
in the reference image. Typically, there are four modules: 1) a feature learning
module [6,36,127], 2) cost aggregation module [20,126], 3) a disparity/depth es-
timation module [38, 73], and 4) a post-processing and refinement module [94].
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The modules can be trained independently, as a result, many methods pay more
attention to one or two modules. For example, a matching network is proposed
in [69], where the matching problem is trained as multi-class classification and
here the classes are all possible disparities. Ye et al. [123] focus on the matching
cost computation and disparity refinement. For the matching cost computation,
two patch-based network architectures are designed to achieve the trade-off be-
tween speed and accuracy, while for the disparity refinement, the initial optimal
and sub-optimal disparity maps are incorporated before outlier detection.

End-to-end depth from the stereo. Some methods adopt an end-to-
end pipeline to achieve the stereo matching problem and they can be divided
into two classes. The first class formulates the depth estimation as a regression
problem without explicitly matching features across the views [29, 73], which is
simple and fast at runtime. For example, FlowNet [29] uses a simple end-to-end
CNN architecture and regresses the disparity map directly, which is trained in a
supervised manner. To perform training, however, a large synthetic Flying Chairs
dataset is generated since it requires a large amount of training data, which is
hard to obtain. Therefore, lots of methods in the second class are proposed, which
learn from the traditional stereo matching pipeline and achieve end-to-end deep
learning-based training. According to stereo matching pipeline, methods focus
on different stages, which includes: 1) feature learning [39, 46], 2) cost volume
estimation and regularization [49,129], 3) disparity/depth estimation [17,103], 4)
post-processing and refinement [52, 57, 125]. For example, a multi-level context
ultra aggregation scheme is proposed in [79] for unary features descriptor and
cost volume calculation, which can take good advantage of multi-level features
and achieve the image-to-image prediction.

2.1.3 Depth Estimation based on Monocular Images

Monocular depth estimation has been studied for many years and much progress
has been made. However, achieving high accuracy is still a challenging task since
there is no depth cue on a single RGB image [66]. It is a feasible way to combine
other information to help estimate the depth information since there is additional
information related to depth information (for example, the sky is always far away
and the pixels on the same building should have similar depth values). Therefore,

12



depth estimation technologies based on monocular images can be divided into two
categories: with additional information and without additional information. I will
introduce the related works of these two categories in the following.

With additional information. In traditional methods, additional informa-
tion is initially obtained by data labeling [89]. However, it takes a high cost to
obtain the pixel labeling by user annotation. Liu et al. [61] predict the semantic
labels by performing semantic segmentation of the image first, then use the se-
mantic labels to guide the monocular depth estimation. Sparse depth data from
depth sensors can also be used as additional information for estimating dense
depth data. Aodha et al. [72] provide a list of high-resolution depth patches, and
the selection of candidate patches is regarded as a Markov Random Field (MRF)
labeling problem, thereby synthetically increasing the resolution of sparse depth
input. In the deep learning-based methods, in order to improve the performance
of depth estimation, it is also popular to combine other geometric information,
including semantic information [107], surface normals [59], and optical flow [7]).
Generally, it is designed as a multi-task network that achieves depth estima-
tion tasks and other one or two geometric-based tasks simultaneously. Zhang
et al. [130] introduce a multi-task network, which includes a shared backbone
and task-specific heads to predict the depth, surface normal, and semantic seg-
mentation simultaneously. Lyu et al. [71] try to improve the depth estimation
performance on high-resolution images, and they find that the core problem is the
inaccurate depth estimation on object boundaries. Hence, the authors propose
a self-supervised method, named HR-Depth, that utilizes semantic and spatial
information to obtain get more accurate depth estimation at object boundaries.

Without additional information. Using additional information will in-
evitably increase the estimation cost [84], as a result, many researchers focus
on monocular depth estimation without additional information. It is firstly con-
ducted by learning the parameters of an MRF [91,92]. Saxena et al. [92] predict
a set of “plane parameters” that capture both the location and orientation infor-
mation of the patch, obtaining depth cues as well as the relationships between
different parts of the image. Then several nonparametric approaches are pro-
posed [47, 50, 51], which exploit the availability of depth in a set of images and
optionally warp the depth using SIFT flow, making the result more smooth. For
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example, Karsch et al. [47] utilize nonparametric depth sampling, automatically
generating plausible depth maps from videos. In this technology, local motion
cues are adopted to improve the inferred depth maps, while the optical flow is
used to ensure depth consistency among video frames. Furthermore, the authors
in [66] formulate the estimation process as a discrete-continuous optimization
problem, structuring a more complex relationship between neighboring pixels.
In the CNN models, however, it is usually regarded as a regression problem for
generating a dense depth map [32, 55]. Specifically, CNNs have shown better
performance than traditional methods. In some research, statistical modeling
methods are integrated into the CNN models [119]. Xu et al. [118] propose a
multi-scale CNN, in which the integration of the outputs is performed by em-
ploying continuous Conditional Random Fields (CRFs). Liu et al. [63] propose
a CNN model with a CRF loss, which is used to minimize the log-likelihood
between neighboring superpixels generated by the model, while Cao et al. [14]
design a fully connected CRF to do the post-processing for refining the output.
To obtain more information for depth estimation, some researchers utilize a video
stream as the input [62,70,104,121]. Kumar et al. [23] propose a novel long short-
term memory (LSTM) based network architecture, using frame sequences as the
input, from which not only spatial information but also temporal information
could be learned. Also, some researchers focus on exploiting more features only
based on single images. Generally, the information for depth estimation is less
rich when the depth value is getting larger. Therefore, in the DORN method [32],
authors adopt a spacing-increasing discretization (SID) strategy that divides con-
tinuous depth values into discrete values and trains the network with an ordinary
regression loss, regarding it as an ordinal regression problem. This kind of strat-
egy achieves much higher accuracy and faster convergence. Recently, the self-
supervised method is increasingly important in monocular depth estimation due
to its great potential and low annotation cost. However, it is more challenging
when not using additional information. Peng et al. [84] propose a novel approach
for data augmentation, which can explore more features for depth estimation,
and a self-distillation loss that generates more supervised signals for the network.
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2.2. 3D Reconstruction

3D reconstruction is the creation of 3D shapes from a set of images. It is the
reverse process of obtaining 2D images from 3D scenes. Due to its significance
in many applications, it has been a popular research field for decades and lots
of researchers have promoted its development and proposed related algorithms
and technologies, which can be categorized as sparse reconstruction, dense re-
construction, and deep learning-based reconstruction. Here I will introduce the
related works of these three categories in following.

2.2.1 Sparse Reconstruction

Starting with the seminal work of Longuet-Higgins [67], structure from motion
(SfM), which generates the sparse reconstruction from multi-view stereo images,
becomes the fundamental technology and one of the cornerstones of 3D recon-
struction. It recovers the 3D structure of a stationary scene from a set of 2D
images with the motion estimation of the cameras corresponding to these images.
Typically, there are three main stages for SfM [81]: 1) feature extraction in im-
ages and feature matching among the images, 2) camera motion estimation, and
3) 3D structure recovery.

Many different approaches have been proposed to optimize the process of SfM.
Also, there are lots of other computer vision technologies that have been adopted
into the SfM process. Classically, a sequential pipeline for SfM is presented in
[96], which can produce accurate reconstructions for a large number of images.
In the pipeline, after detecting keypoints in each image, the SIFT descriptor [68]
is utilized to compare the keypoints and generate matches across images. Then
random sampling and consensus (RANSAC) [10] is used to robustly estimate fun-
damental matrices between pairs of images and discard outlier matches. Finally,
to refine the estimation, bundle adjustment [75] is performed greedily starting
with a pair of images that involves the largest number of inlier matches.

According to the initial camera poses estimation manner, SfM can be broadly
categorized into three classes [133]: incremental SfM [3,96], global SfM [133], and
hybrid SfM [24]. Arguably, incremental SfM is the most popular approach for
3D reconstruction [24]. For example, Snavely et al. [97] take an incremental SfM
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approach for the 3D modeling of scenes based on Internet imagery. It begins the
estimation from a single pair of cameras with a large number of matches so that
the initial two-frame reconstruction can be robustly performed. Then another
camera is added and new points observed by the camera are adopted into the
optimization. This procedure is repeated until there are no more valuable camera
points for reliable reconstruction.

However, the performance of incremental SfM heavily depends on the initial
seed selection and the reconstruction error is accumulated along with the itera-
tions [22]. In addition, the bundle adjustment is performed repeatedly, thereby
decreasing the scalability and efficiency [93]. To overcome these weaknesses,
global SfM approaches become popular with superior efficiency and accuracy.
For example, Zhu et al. [133] propose a global SfM approach for large-scale im-
ages, for which the key is motion averaging. Here, a distributed motion averaging
method is performed, and the large-scale motion averaging problem is formulated
on a camera graph in a distributed manner.

Global SfM approaches, however, are more sensitive to possible erroneous
epipolar geometry [132]. To embrace the advantages of both incremental and
global SfM strategy, the hybrid SfM strategy is proposed. For example, the HSfM
method [24] is proposed to improve the efficiency, accuracy, and robustness of
previous SfM methods, in a unified framework. Specifically, camera rotations are
estimated in a global manner, based on which, camera centers are computed in-
crementally. Experiments prove that the hybrid method combines the advantages
of incremental and global SfM methods, achieving great computational efficiency
as well as reconstruction accuracy and robustness.

2.2.2 Dense Reconstruction

Sparse reconstruction is not sufficient for most applications, hence, dense recon-
struction is studied. After estimating camera poses with SfM, an early strategy
is multi-view stereo (MVS), which aims at reconstructing disparity maps from a
collection of images. Recently, due to the availability of depth cameras, RGBD
image-based strategy becomes popular. Related works of these two strategies will
be explained in the following.

MVS reconstruction. It is an approach that reconstructs a 3D scene from
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a set of images captured from different viewpoints. Typically, two stages are
operated in MVS reconstruction [12]: 1) estimate depth maps from neighboring
images, and 2) merge depth maps into a global representation. Some research
mainly focuses on one of the stages. For example, Campbell et al. [13] propose an
algorithm for the first stage. Usually, errors in the matching process will cause
outliers on depth maps. Therefore, The algorithm aims to remove the outliers.
Firstly, a spatial consistency constraint is used to extract the true depth. Sec-
ondly, unknown states are allowed to return in the algorithm if a true depth
estimation cannot be found. The performance is improved when obtaining highly
accurate depth maps with fewer outliers. Merrell et al. [74] focus on both stages.
For the first stage, the errors and inconsistencies among depth maps are mini-
mized by a rigorous formulation based on the stability of depth estimation while
for the second stage, two alternative algorithms are proposed for multiple stereo
depth maps. One of the algorithms selects the candidate depth map consider-
ing the constraints of occlusions and free space. The other algorithm performs
selection based on confidence. Both algorithms are computationally cheap, as a
result, the reconstruction can be achieved at up to 25 frames per second.

RGBD image-based reconstruction. The availability of depth sensors has
sparked a revolution in many applications of computer vision. It becomes easier
to obtain the RGBD data, with which depth fusion can be performed directly.
KinectFusion [78] is the first work that achieves real-time dense reconstruction.
It uses the depth data captured from a Kinect sensor into a global surface shape
of the indoor scene in real time. The camera pose is collected simultaneously us-
ing an estimation algorithm for relative sensor motion. And the principle of the
fusion process is based on the truncated signed distance function (TSDF) fusion
method [25] which is one of the most important classical fusion methods, fusing
depth maps with camera intrinsics and camera poses into a discretized signed
distance function and weight function, thereby obtaining a volumetric represen-
tation. KinectFusion achieves tracking and mapping results in constant time
with high accuracy and limited drift. Inspired by KinectFusion, many versions
of RGBD-based dense reconstruction approaches are proposed afterward. For
example, Kintinuous [115], an extension of KinectFusion, builds a hierarchical
multi-threaded system that can be operated in real time. It improves the origi-
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nal algorithm of KinecFusion, extracts a dense point cloud, and adds the points
into a mesh representation incrementally. ElasticFusion [116] achieves an incre-
mental online fusion and generates dense globally consistent surfel-based maps of
the scene. To improve the mapping quality and tracking robustness, a real-time
approach is explored for discrete light source detection with the camera. Dy-
namicFusion [77] is the first work presented for the real-time reconstruction of
non-rigidly deforming scenes. A dense volumetric 6D motion field is estimated
and then warps the estimated geometry into a live frame. It can be applied to
moving objects and scenes since no template or scene shape is required. Bundle-
Fusion [26] optimizes the pose estimation strategy with a hierarchical algorithm.
It considers the whole history of RGBD input and discards heavy reliance on
temporal tracking, thereby achieving robust tracking with global consistency.

2.2.3 Deep Learning-based Reconstruction

All traditional methods have limitations to balance reconstruction quality, scene
assumptions, speed, and spatial scale due to the large and complex computation
but limited memory. With the rise of deep neural networks, replicating tradi-
tional approaches with learning-based methods has achieved promising results.
According to the categories of traditional approaches, deep learning-based re-
construction consists of SfM-based, MVS-based, and RGBD image-based deep
learning approaches.

SfM-based deep learning. In the PoseNet method [48], SfM is used to au-
tomatically generate camera poses, as training labels, from a video of the scene.
Then an end-to-end CNN is trained to regress the 6-DOF camera pose from a
single RGB image. It has been proved that PoseNet can localize from high-level
features and outperforms point-based SIFT registration where there are motion
blur and various camera intrinsics. A common assumption in most traditional
geometry-aware motion estimation approaches is that the scene is static, as a re-
sult, they are usually susceptible to moving objects in the scene. To overcome this
problem, SfM-Net [106] adopts motion masks for segmenting the moving objects
and robustly extracts features for 3D translation and rotation prediction. Simul-
taneous localization and mapping (SLAM) is also for 3D scene reconstruction,
typically used in the robotics field, but it shares similar principles and basic tech-
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nologies with SfM, which is mainly used in computer vision [102]. DeepVO [109]
provides a novel end-to-end network framework using deep recurrent convolu-
tional neural networks (RCNNs), focusing on monocular visual odometry (VO)
problems in SLAM, which include feature extraction, feature matching, motion
estimation, local optimization, etc. in a conventional pipeline. However, the
CNN-based method predicts camera poses directly from a sequence of raw RGB
images, and it can also generate sequential dynamics and relations among the
inputs. Therefore, it proves that the deep learning-based technique is perfectly
suitable for stereo matching tasks since it can process the image sequences directly
without computing feature correspondences [90].

MVS-based deep learning. The effectiveness has been proved in addressing
the limitations of traditional MVS techniques like repetitive patterns, low-texture
regions, and reflections [120]. Learned stereo machine(LSM) [46] enables end-to-
end learning for multi-view stereo, by directly leveraging underlying 3D geometry
via feature projection and unprojection along viewing rays. Particularly, unseen
surfaces are refined and completed, and the reconstruction can be achieved from
much fewer images than conventional approaches, even from a single image. Sim-
ilarly, DeepMVS [43] can also take an arbitrary number of posed images and a
reference image as input for high-quality estimation of disparity maps. Before
performing the DeepMVS network, a standard SfM reconstruction is adopted for
the recovery of camera calibration and camera pose on each image. In the net-
work, a plane-sweep volume is firstly generated and features are extracted from
the patch pair in the plane-sweep volume. Then disparity predictions are oper-
ated by aggregating the features. Although DeepMVS follows the process of a
standard MVS pipeline, it achieves better performance, particularly for texture-
less regions and thin structures. Aiming at efficient large-scale reconstruction,
MVSNet [120] estimates depth map one by one in sequence, rather than the
whole scene at once. Several source images are input into the network and used
to infer the depth of the reference image. Then a 3D cost volume, generated by
feature mapping among 2D images, is analyzed with multi-scale 3D convolutional
layers and an initial depth map is produced. Finally, depth map refinement is
conducted with the reference image, thereby boosting the accuracy, especially on
boundaries. To improve the scalability of learned MVS approaches, Recurrent
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MVSNet [121] provides a scalable MVS framework based on a recurrent neural
network (RNN). Similar to MVSNet [120], Recurrent MVSNet also decouples
the MVS reconstruction, sequentially regularizing the 2D cost volumes along the
depth direction, which can dramatically reduce memory consumption and make
it possible for high-resolution reconstruction.

RGBD image-based deep learning. Since it is available to obtain depth
maps with depth estimation technologies or depth cameras, some research mainly
focuses on how to achieve high performance of depth fusion with deep learn-
ing. Compared with conventional methods, deep learning-based methods often
show advantages in handling thickening artifacts and increasing diversity and ef-
ficiency. Although TSDF is still utilized as the fundamental principle in most
deep learning-based fusion methods, it is not able to reconstruct occluded sur-
faces. To solve this problem, a 3D CNN, named OctNetFusion [87], is proposed to
deal with the occluded regions and fill in gaps in the reconstruction. In addition,
OctNetFusion [87] can refine the surfaces by removing the noise on depth inputs
with the networks while conventional methods usually use variational techniques
with local smoothness assumptions. Weder et al. [113] also consider the fusion
noise and propose the RoutedFusion method that mainly focuses on removing
the noise caused by depth maps. It involves two network components: a depth
routing network that denoises the depth map while generating a corresponding
confidence map; a depth fusion network that takes the results of the depth routing
network and achieves TSDF fusion sequentially. To evaluate the performance, it
adds artificial noise into synthetic data to mimic the real sensor noise for training.
It has been proved that RoutedFusion better handles the noise and has great ad-
vantages on surface edges and thin objects. Then Weder et al. improve the work
with an end-to-end network, i.e., NeuralFusion [114]. Instead of operating depth
fusion and outlier filtering in the output representation, NeuralFusion performs
the fusion step in a latent scene representation, and a translator sub-network
filters the learned representation before generating the final output, as a result,
the reconstruction is with significantly higher completeness.
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Chapter 3

From RGB Images to Depth
Maps

3.1. Introduction

Depth sensing is an important technique for various applications [85, 102, 113],
such as 3D reconstruction, autonomous driving, AR, etc. Although there have
existed various types of depth sensors like structured-light 3D scanners and ToF
cameras, they have the following drawbacks [62]. Firstly, the resolution and
sensing range of the existing 3D sensors are very limited. Secondly, 3D sensors
usually cost significantly more than 2D cameras. Thirdly, 3D sensors also cause
higher power consumption, which is a big concern for mobile devices. Therefore,
to overcome these limitations, monocular depth estimation has drawn a lot of
attention.

Monocular depth estimation is a process that obtains the depth map from
a single 2D image. Since a single 2D image could be matched with infinite 3D
scenes, monocular depth estimation is a very challenging task [32]. However, with
the rapid development of deep learning theories and CNNs in recent years, many
encouraging works [23, 34, 108] have emerged, showing greatly-improved results
on mainstream datasets (e.g., the KITTI [33] and NYU V2 [95] dataset).

In depth estimation and other encoder-decoder-based computer vision tasks,
there usually is a trade-off between preserving the fine details and achieving a
good understanding of the global context [31, 101]. Due to the model structure
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Figure 3.1: Depth estimation with hierarchical multi-scale attention. (a) and
(b) are two local details that need prediction at a large scale (1x), while (c) and
(d) need a good overall understanding of the relationships among objects, where
prediction at a small scale (0.125×) is preferred.

and the mechanisms of convolutions, CNNs are good at keeping local information
while are relatively weak at extracting global knowledge. Therefore, when people
need a model that can well analyze the relationships among all the objects in
the image, which is necessary for depth estimation, people have to down-scale
the input image to let the model better learn the overall information. However,
at the same time, prediction with the down-scaled image will also lose some
details that are too small to analyze. On the contrary, when fine details are
required, people prefer the large-scaled image, which, however, often leads to poor
overall accuracy. A common solution is to use the images with multiple scales
and combine their predictions [31, 56]. However, most of the existing methods
simply use some operations like averaging or max pooling, which combine good
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predictions with poorer ones, therefore, they are not theoretically optimal.
To address the aforementioned problems, I propose a new monocular depth

estimation model called hierarchical multi-scale attention-based depth estimation
network (HMA-Depth) in the chapter. The input of the network is an RGB image
obtained from a normal camera or a video stream. The encoder-decoder scheme
is adopted, which is commonly used in computer vision tasks. In addition, an
atrous spatial pyramid pooling (ASPP) module [18], which uses convolutional
kernels with different dilation rates, is adopted to improve the feature quality.
To enable the multi-scale depth estimation, the initial feature is upsampled to
larger scales, for some of which I attach a pair of a depth head and an attention
head to the corresponding features. The depth head estimates the depth map
and the attention head is for choosing (using a weight map A in which every
weight Ai ∈ [0, 1]) the preferred regions in the generated depth map. Inspired by
some semantic segmentation methods [19, 101], a hierarchical design is adopted
for the attention heads, in which ∑

A∈A Ai = 1, where i is an arbitrary point
on the attention map A and A is the whole attention map set. The final result
of depth estimation is a weighted sum of all depth maps generated at different
scales.

As mentioned above, depth estimation at different scales has different advan-
tages and disadvantages. I notice that the attention maps can accurately pick up
the advantages of the prediction at each scale. As shown in Fig. 3.1, the predic-
tion at the large scale (1×) is good at details, e.g., (a) the handle and (b) the
edge, while the prediction at the small scale (0.125×) is good at global under-
standing, e.g., (c) the ground near the camera and (d) the wall far away. After the
weighted sum, a depth estimation with both details and overall accuracy would
be obtained. There is another work, that is BTS method [56], which operates
multi-scale prediction. In the BTS method, a local planar guidance (LPG) layer
is introduced for each scale to generate the prediction with the local planar as-
sumption. Specifically, the LPG layers are used to guide 1/8, 1/4, and 1/2 of the
original scale back to the original resolution. Four scales of resolution are consid-
ered and the final result is obtained from a convolutional layer after concatenating
the results of the four scales. In the proposed method, the attention mechanism
is used, instead of the LPG layers, to help generate the estimated depth map
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for each scale. The main differences between the proposed method and the BTS
method include two parts: 1) The result for each scale includes a scaled depth
map and attention map in HMA-Depth while the intermediate outputs are not
depth values in BTS, which are not naturally explainable; 2) In HMA-Depth,
the final result is summed up by the depth of four scales while in BTS, the final
output is generated by an extra convolutional layer using the concatenation of
intermediate outputs as the input, which is hard to tell the contributions of each
scale. According to the experiment results, the HMA-Depth method outperforms
BTS and other state-of-the-art methods.

In sum, the contributions are three-fold:

• I design a network that can generate features at different scales, each of
which provides different information about the input image.

• A hierarchical multi-scale attention module is designed to generate depth
estimations with both good local details and overall accuracy.

• An ablation study is conducted to find the optimal network settings for the
architecture.

3.2. Technical Background

Encoder-decoder networks have shown great potential in computer vision-
related research, such as image classification [122], semantic segmentation [5,88],
and depth estimation [56]. Usually, the encoder part is used to extract the fea-
tures from the input image, then the decoder part analyzes the features and
generates the output. This kind of network structure can explicitly study the
performance attribution of each module in the CNN model. Also, one or more
encoder-decoder modules are used as a sub-part in some methods [65]. In this
work, I follow the encoder-decoder structure, and four decoder modules are used
for analyzing the features for four scales of the input image respectively.

Multi-scale method for depth estimation is firstly proposed by Eigen et
al. [31], a kind of classical method for depth estimation since it can obtain the
different benefits from different scales of the input images. Afterward, many re-
searchers have proposed lots of multi-scale methods for various estimation tasks.
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Inspired by BTS [56], the proposed method generates four scales of the input
image, to make full use of different advantages of each scales.

Attention mechanism is firstly used in machine translation [105] and then
becomes popular in the field of computer vision [40] [110], such as for object
detection and image classification. Recently, It is adopted for monocular depth
estimation [60]. There are also a few works that use an attention mechanism for
multi-scale features. For example, Xu et al. [119] propose a multi-scale attention
method that guides a CRFs model. It shows that depth estimation can benefit
from an attention module. However, compared with these works, the proposed
method is intuitive and not complex but with high accuracy.

3.3. Methodology

In this section, I will describe the network architecture for monocular depth
estimation and explain the details of the hierarchical multi-scale attention mech-
anism.

3.3.1 Network Architecture

As shown in Fig. 3.2 (a), the proposed HMA-Depth model follows the encoder-
decoder scheme, in which the backbone module is the encoder part and the re-
maining modules are the decoder part. The input of the network is a single RGB
image with original resolution R = H ×W . As the encoder part, a CNN model is
used as the backbone to obtain the feature maps at different scales (the features
generated by the last layer of the backbone as well as the intermediate features),
of which the heights and widths are equally down-sampled and the resolutions
are H/32 × W/32, H/16 × W/16, H/8 × W/8, H/4 × W/4, and H/2 × W/2 (I
will only use H/s to represent the scales for short and s ∈ S = {1, 2, 4, 8, 16, 32}),
respectively. The direct output from the backbone will be up-sampled to larger
scales and be concatenated with the skip connection from the intermediate fea-
tures of the backbone. I use the bilinear interpolation and a 3 × 3 convolutional
layer for the up-sampling process. Besides, an ASPP module is utilized for con-
textual information extraction. Similar to [56], the dilation rates of the ASPP
module are set as r ∈ {3, 6, 12, 18, 24}, and the output of the ASPP module is to
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concatenate with the feature of H/4 resolution from the backbone module after
upsampling. Afterward, the feature of H/2 resolution is obtained in the same
way and produces the feature of H resolution after the process of upsampling
and a convolutional module.

The output feature from ASPP will be further upsampled several times. After
each upsampling process, there is a convolutional module to process the features,
which is a 3 × 3 convolution layer for scale H/4 and H/2 (the first two Convs in
Fig. 3.2(a)) and a 1×1 convolution layer for resolution H (the last Conv). For the
feature H/s with s ∈ S ′ = {1, 2, 4, 8}, the decoder block is attached to analyze
the scaled features, which can output the weighted depth map for each scale. The
decoder block will be explained in detail in the next subsection. Finally, all four
weighted depth maps are added together to generate the final output.

As for the loss function, I adopt the scale-invariant error proposed by Eigen et
al. [31], which calculates the error between a predicted depth map y and ground
truth y∗ as follows:

Loss = 1
n

∑
i

g2
i − λ

n2 (
∑

i

gi)2 (3.1)

where gi = log yi − log y∗
i and λ ∈ [0, 1]; n indicates the number of pixels that

have valid depth values. Similar to [56], λ = 0.85 is set to minimize the variance
of the error.

3.3.2 Hierarchical Multi-Scale Attention

As shown in Fig. 3.2 (b), the decoder block can generate the depth map D and
the attention map A, respectively with the depth head and attention head. The
depth map is the depth estimation of different scales, using the scaled features,
while the attention map can extract the preferred regions for each depth map,
according to the image contents and the characteristics of the predictions at the
corresponding scale. I use DH/8, DH/4, DH/2, and DH to represent the scaled
depth maps, and AH/8, AH/4, AH/2, and AH to indicate the attention maps for
the corresponding prediction. In this implementation, each depth head has two
3 × 3 and one 1 × 1 convolution layers; each attention head has one 3 × 3 and one
1 × 1 convolutional layers.
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Figure 3.2: Network architecture. (a) The HMA-Depth model; (b) Details of the
decoder block.
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A key point is how to combine the predictions at different scales. In the
proposed method, I adopt a hierarchical design to generate the weight masks, as
shown below.

MH/8 = AH/8 (3.2)
MH/4 = AH/4(1 − AH/8) (3.3)
MH/2 = AH/2(1 − AH/8)(1 − AH/4) (3.4)
MH = (1 − AH/8)(1 − AH/4)(1 − AH/2) (3.5)

It can be seen that the prediction at each scale needs to pay different attention to
the regions of the input image. Specifically, the sum of the masks is 1, which is a
matrix with all elements equal to 1 (as shown in Fig. 3.3, where the white regions
in each mask image are complementary and the sum of masks would be a whole
white image, which means all areas in the image can be covered by amplifying
the benefits of each scales).

Then the scaled depth maps and masks are element-wise multiplied into the
weighted depth map Dm and the final depth map Dfinal is obtained by summing
up the weighted depths of all predictions, which can be represented as follows:

Dfinal =
∑
s∈S′

Ms · Dm
s (3.6)

In addition, the visualization of the depth maps and attention maps is pro-
vided for each scale in Fig. 3.3, which shows example images processed by the
network. The left column shows the scaled depth for each resolution and the right
column is the attention maps accordingly. In each depth map, the color value
represents the distance of pixels. The pixels with colors closer to blue are closer
to the camera. It can be seen that the attention module reasonably chooses the
preferred regions for each scale. A trend is that the model pays more attention
to the depth values in small-scaled predictions while relying on the large-scaled
predictions for fine details, such as the edge and local information, which conform
to the intention of the network design.
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Figure 3.3: Depth and attention maps generated at different scales.
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Table 3.1: Quantitative results on KITTI dataset

Methods Higher is better Lower is better
δ1 δ2 δ3 AbsRel RMSE RMSElog

Make3D. [92] 0.601 0.820 0.926 0.280 8.734 0.361
Eigen et al. [31] 0.702 0.898 0.967 0.203 6.307 0.282
Liu et al. [64] 0.680 0.898 0.967 0.201 6.471 0.273
Xu et al. [119] 0.818 0.954 0.985 0.122 4.677 -

Kuznietso et al. [53] 0.862 0.960 0.986 0.113 4.621 0.189
Yin et al. [124] 0.938 0.990 0.998 0.072 3.258 0.117

DORN [32] 0.932 0.984 0.994 0.072 2.727 0.120
BTS-ResNet 50 [56] 0.950 0.991 0.998 0.062 2.878 0.101

BTS-DenseNet 161 [56] 0.952 0.992 0.998 0.062 2.871 0.094
Proposed-ResNet 50 0.953 0.992 0.998 0.062 2.870 0.096

Proposed-ResNeXt 50 0.951 0.992 0.998 0.062 2.867 0.094
Proposed-DenseNet 121 0.952 0.991 0.998 0.063 2.874 0.096
Proposed-DenseNet 161 0.955 0.993 0.998 0.060 2.850 0.092

3.4. Experiments

To have a complete evaluation of the HMA-Depth model, I conduct several dif-
ferent experiments on two commonly-used datasets, i.e., KITTI dataset [33] and
NYU V2 dataset [95], and the results are compared with the state-of-the-art
approaches.

3.4.1 Implementation

PyTorch [83] is adopted to implement the proposed network. The number of the
epoch is set as 50 and the batch size is 16. A server with four NVIDIA V100 32G
GPUs is used for all the experiments.

The backbone network is used to extract the dense feature. To prove the effec-
tiveness of the proposed network, multiple networks are utilized as the backbone
network, including ResNet 50 [39], ResNeXt 50 [117], DenseNet 121 [41], and
DenseNet 161 [41]. To avoid over-fitting, I adopt data augmentation techniques
including random horizontal flipping and rotation, as well as color adjustment.
As for the image size, the image is cropped to 352 × 704 for the KITTI dataset
and 416 × 544 for the NYU Depth V2 dataset.
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Table 3.2: Quantitative results on NYU V2 dataset

Methods Higher is better Lower is better
δ1 δ2 δ3 AbsRel RMSE log10

Make3D [92] 0.447 0.745 0.897 0.349 1.214 -
Wang et al. [107] 0.605 0.890 0.970 0.220 0.824 -

Liu et al. [64] 0.650 0.906 0.976 0.213 0.759 0.087
Eigen et al. [31] 0.769 0.950 0.988 0.158 0.641 -

Li et al. [59] 0.621 0.886 0.968 0.232 0.821 0.094
Xu et al. [119] 0.806 0.952 0.986 0.125 0.593 0.057

Laina et al. [55] 0.811 0.953 0.988 0.127 0.573 0.055
DORN [32] 0.828 0.965 0.992 0.115 0.509 0.051

Yin et al. [124] 0.875 0.976 0.994 0.108 0.416 0.048
BTS-ResNet 50 [56] 0.862 0.975 0.994 0.120 0.421 0.051

BTS-DenseNet 161 [56] 0.879 0.980 0.995 0.112 0.399 0.048
Proposed-ResNet 50 0.866 0.977 0.994 0.118 0.417 0.050

Proposed-ResNeXt 50 0.862 0.976 0.994 0.121 0.419 0.051
Proposed-DenseNet 121 0.865 0.974 0.993 0.121 0.421 0.051
Proposed-DenseNet 161 0.882 0.980 0.996 0.110 0.394 0.047

3.4.2 Evaluation Results

KITTI dataset is obtained by an autonomous driving platform, which is equipped
with a laser scanner, a GPS localization system, and a stereo camera rig. In total,
there are over 93 thousand depth maps with corresponding raw LiDaR scans and
RGB images in the KITTI dataset. To compare with other methods, I use the
commonly used Eigen split [31], which involves 23488 images from 32 scenes for
training and 697 images from 29 scenes for testing.

The quantitative results of the evaluation on the KITTI dataset are shown in
Table 3.1. It can be seen that the proposed method outperforms other methods
on most metrics except for a slight disadvantage on the RMSE metric. Also,
ResNet 50, ResNeXt 50, and Densenet 121 are with similar performance, while
Densenet 161 can achieve the best performance due to its bigger capacity.

NYU V2 dataset is recorded by RGB and depth cameras of the Microsoft
Kinect and includes various indoor scenes. It contains densely labeled pairs of
RGB and depth images for 464 indoor video scenes. In the experiments, I utilize
the official split as previous works, that is, 120K images from 249 training scenes
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Figure 3.4: Visualization results of NYU V2 dataset

for training and 694 images from 215 scenes for testing. The proposed method
is compared with other models and the quantitative results are provided in Ta-
ble 3.2. According to the results, the proposed method shows better performance
for all metrics except for a slight disadvantage in the absolute relative error (Ab-
sRel). Fig. 3.4 gives some qualitative results. It can be seen that HMA-Depth
can better understand the relationship among objects (such as the walls in the
first and second rows), and it can extract better local details (the bookshelf in
the third row).
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Table 3.3: Ablation results

Methods Higher is better Lower is better
δ1 δ2 δ3 AbsRel RMSE log10

base 0.866 0.977 0.994 0.118 0.417 0.050
3-scale w/o H 0.866 0.975 0.994 0.120 0.417 0.051

3-scale w/o H/8 0.864 0.975 0.994 0.121 0.418 0.051
4-scale w/o attention 0.855 0.974 0.993 0.123 0.049 0.052

3.4.3 Ablation Study

To look for the optimal settings, an ablation study is conducted with three vari-
ants of the HMA-Depth model. The first two are variants using three scales,
rather than four scales, by removing the scale H and H/8, respectively. In addi-
tion, I make another variant by removing all the attention modules to show the
significance of hierarchical multi-scale attention, in which the final output is the
average of all intermediate predictions. For all variants as well as the base model,
ResNet 50 is used as the backbone network and compares their performance on
the NYU V2 dataset. The results are shown in Table 3.3, which proves that the
base model achieves the best performance in all the metrics, which demonstrates
the effect of multi-scale attention.

3.5. Application of Monocular Depth Estimation

3.5.1 Application Background

Based on the technology of monocular depth estimation, I design an application of
augmented navigation for visually impaired people. There is no doubt that vision
plays an essential role in understanding the environment. However, according to
the report by WHO [2], at least 2.2 billion people have near or distant vision
impairment in the world. In almost half of these cases, there are some ways
to alleviate the problems but still, the people may meet a lot of difficulties in
their daily lives. An effective navigation application, which provides accurate
navigation information and helps to avoid obstacles, would be a great tool for
them.
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Many researchers have proposed and developed various navigation applica-
tions, most of which are based on audio instruction to guide people with visual
impairment. For example, Microsoft Soundscape [1] enables users to build a richer
understanding of their surroundings. Ahmetovic et al. propose NavCog [4],
a smartphone-based turn-by-turn navigation application for blind users. Some
researchers also consider that people with low vision could use visual cues. For
example, Zhao et al. [131] propose visual and audio wayfinding guidance for blind
and sighted people; Huang et al. [42] develop a sign-reading application that could
assist visually impaired users. However, most of the research still has drawbacks:
1) they fail to consider the visual rating of users; 2) the guidance is not intelli-
gent and flexible according to the road condition; 3) some devices are too heavy
to carry. To overcome these problems, I attempt to develop a new navigation
application. The target users of the application are the visually impaired people
and it can provide both audio and specially-designed visual cues along with the
detection of obstacles. In sum, the main idea of the application can be described
three-fold:

• I consider both blind people and people with low vision. For blind people,
the device includes a normal camera and an earphone, which are very simple
and portable; for people with low vision, the device is an AR glasses that
provide both visual and audio cues.

• For people with low vision, I propose a concept that different visual ratings
should be matched to different strategies on visual cues, and the visual
rating can be tested on an AR device.

• Object detection and depth estimation technologies are utilized to detect
obstacles and estimate the distance between the user and the obstacle so
that the application can achieve efficient guidance according to the road
condition.

3.5.2 Key Functionalities

The application has three main functionalities, which are 1) visual rating measure-
ment, 2) strategy design for people with low vision, and 3) scene understanding
for detecting obstacles. Next, I will introduce the details.
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(a)

(b)

(c)

Figure 3.5: Three main parts of the indoor navigation application: (a) Visual
rating measurement by Snellen chart; (b) Virtual guidance for navigation; (c)
Object detection and depth estimation result.

35



Visual rating measurement. For people with low vision, using visual cues
can provide them with more guidance information. However, the visual impair-
ment rating should be measured before providing the visual solutions, which is
neglected in most research. Here, I adopt the Snellen chart, a common-used tool,
to quantify the visual acuity and the standard instruction is displayed with AR
glasses. As shown in Fig. 3.5 (a), the chart is displayed virtually on AR glasses
where the block letters are visual objects shown in the scene. The user can be
tested along with the audio instruction. Compared with the traditional method,
AR-based measurement has several advantages: 1) It can be used wherever the
user is; 2) It is easy to set the specific distance between the Snellen chart and
the user; 3) The audio instruction is clear to understand so that the user can
complete the testing independently.

Strategy design. It is promising to enhance visual capabilities for peo-
ple with low vision by AR information [98]. Therefore, after the visual rating
measurement, a different visual guidance strategy is provided. According to the
definition proposed by WHO [2], three levels of low vision are considered, i.e.,
mild, moderate, and severe, as shown in Tab. 3.4. For each level, the visual cue
should be specially-designed. For example, if the virtual pie is utilized as the
guidance information, as shown in Fig. 3.5 (b), an effective method of compen-
sating for visual loss is magnifying the virtual tags. For the mild level, the size
of the pie should be smaller in case of occluding the road too much; otherwise,
for the severe level, the size should be larger to be more clear. Also, other types
of visual cues, such as arrows, can be used but the effectiveness of all types of
visual cues needs to be verified by a user study.

Table 3.4: An example of visual strategies for low vision levels.

Rating Snellen Fraction Virtual Pie Diameter

Mild <6/12 m 0.1m
Moderate <6/18 m 0.2m

Severe <6/60 m 0.4m

Besides the visual strategy, the application provides audio guidance that works
for both people with low vision and blind people. It is generated in real time based
on the results of scene understanding.
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Scene understanding. In some scenarios, the navigation application can
obtain the map of the indoor environment in advance. However, there may exist
some obstacles on the floor, which may cause danger in both indoor and outdoor
scenarios. It is necessary to detect and avoid obstacles in real time during nav-
igation. To achieve this goal, two computer vision technologies, that is, object
detection and depth estimation, are utilized (as shown in Fig. 3.5 (c)). Firstly,
object detection is performed, then some potential obstacles, such as chairs, balls,
or other things on the floor, could be detected and labeled. Next, depth estima-
tion is adopted to estimate the distance between users and obstacles. Finally, the
information will be transmited to the user in the form of audio guidance. It is
worth mentioning that both these two parts can be implemented with a normal
camera so that the application is portable and convenient.

3.5.3 Experiments and Discussions

For blind people, the application is implemented on an Android platform, an
Android phone as an example. The other devices are a normal camera (the
camera of the phone or an external camera) and a Bluetooth earphone. For
people with low vision, the application is configured on Microsoft HoloLens 2
which provides AR and audio functions. All the scene images will be transmitted
to a severe, where object detection and depth estimation are performed. Then
the results are sent back to the platform.

In the experiment, the main parts of the application have been completed
separately: 1) The Snellen Chart can be displayed on HoloLens with audio in-
struction, which has been tested with 3 myopic participants; 2) Different sizes of
the virtual pie or other visual cues are provided to show the route incorporates
with audio cues; 3) The Android application has been developed on a phone;
4) YOLO4 method [9] is adopted to perform object detection and HMA-Depth
method [80] is used for depth estimation (Fig. 3.6 shows an example for the
results), and both of these two methods can be run in real time.

According to the metrics of object detection and depth estimation, the results
are convincing. As for an application, however, it is necessary and crucial to
conduct user studies. Therefore, there is some remaining work before releasing
the application. In the next step, the functionalities first need to be integrated,
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Figure 3.6: Scene understanding results: Raw image (top); Object detection
result (middle); Depth estimation result (down).
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then the effectiveness should be tested by a user study.
For the preliminary test, participants who suffer from myopia, hyperopia, and

presbyopia would be considered since these types may be easier to recruit. To
measure the performance of the navigation, two metrics will be considered, i.e.,
navigation time and error rate. Once the testing has good results, it would be a
feasible way to collaborate with related organizations for further testing. Accord-
ing to the feedback from user studies, the user interface design will be improved
including the virtual Snellen chart and virtual tags. As for the technology, the
kinds of detected objects are limited and depth estimation should be conducted
more efficiently. These two limitations need to be dealt with for future work.

3.6. Chapter Summary

In this chapter, I propose a novel network architecture named HMA-Depth that
uses a hierarchical multi-scale attention mechanism for monocular depth estima-
tion. For the multi-scale depth maps, attention modules generate the weight
masks, indicating which regions in each depth map the model is paying attention
to. The experimental results prove the effectiveness of HMA-Depth and show
that HMA-Depth outperforms the state-of-the-art methods. An ablation study
is conducted to prove the effectiveness of network settings. In addition, I make
an application of depth estimation, which can navigate blind people and people
with low vision to avoid obstacles.
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Chapter 4

From Depth Maps to 3D Shapes

4.1. Introduction

Depth fusion is of great importance for many applications, such as AR applica-
tions and autonomous driving. Many methods have been proposed in this area
and TSDF [25] is one of the most famous. However, TSDF requires manual ad-
justment of its parameters, possibly leading to thick artifacts. To address this
problem, some depth fusion methods have emerged with improved performance.
Methods like [28, 58] use surfel-based or probabilistic approaches to generate 3D
representations, which may be a voxel grid, a mesh, or a point cloud. In addi-
tion, compared with these classical methods, CNNs-based methods have shown
advantages in fusion performance. However, their results still suffer from noisy
input, which results in missing surface details and incomplete geometry [113].

The data acquired by depth cameras inevitably contains a significant amount
of errors. Although researchers have proposed many methods to remove the
errors, most of the works only focus on removing the errors caused by depth
maps (depth errors for simplicity) but neglect the errors of camera poses (pose
errors for simplicity).

Fig. 4.1 illustrates the two types of errors. Fig. 4.1 (a) shows the situation
where there are no errors and a plane is in sight of the camera. If there are
depth errors, the error may be outliers or missing data, as shown in Fig. 4.1
(b), which leads to noisy TSDF volumes. As for the pose error, Fig. 4.1 (c)
provides an example is when the camera has both translation and rotation errors
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Figure 4.1: Illustration of sensor errors. (a) No errors; (b) With depth errors; (c)
With pose errors.
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compared with Fig. 4.1 (a), which causes troubles when integrating the TSDF
volumes due to the inaccurate camera pose data. Fig. 4.2 and Fig. 4.3 provide
two example scenes of these two types of errors respectively. To illustrate and
mimic the effect of sensor errors, noise is added artificially. Specifically, Fig. 4.2
(a,b) show the original scene with no depth noise, while Fig. 4.2 (c,d,e,f) show the
depth noise that follows N [0, σd] distribution, where σd ∈ {0.005, 0.05}. It can be
seen that the depth noise is more obvious for pixels with larger depth values. In
Fig. 4.3, the input includes two frames of the depth map, which are represented
by two different colors respectively. The pose noise in Fig. 4.3 (b,c) is generated
randomly following the normal distribution, where σt and σr are respectively for
the translation noise and rotation noise (The measurement of pose errors and
the generation of pose noise are detailed in Section 4.3.2 and 4.4.2). It shows
that, compared with Fig. 4.3 (a), in which two frames are merged well, the fused
results in (b,c) have shifts between two frames. It can be seen that both types
of errors may have adverse impacts on depth fusion results. However, there are
only a few works that focus on removing noise caused by sensor errors for TSDF
fusion, even given the fact that both types of errors are inevitable.

The RoutedFusion method [113], as an example, considers depth errors and
aims to obtain a robust TSDF volume against different levels of depth errors.
It uses depth maps derived from synthetic datasets and puts random noise into
the depth maps. It can be performed in real time but in the fusion process, the
camera pose they use is the ground-truth pose from the synthetic dataset, so
that the results can only be robust against depth errors, but not against pose
errors. To achieve better performance of the fusion result, in this chapter, a
method named DFusion is proposed, considering not only depth errors but also
pose errors, as shown in Fig. 4.4. To the best of my knowledge, this is one of the
earliest research that tries to avoid the performance drop caused by pose errors.

Generally, depth fusion is conducted with 2D convolutional models. However,
when considering the pose errors, it is better to remove the errors with the 3D
representation because it is challenging to recognize and remove the surface shifts
in the 2D space. Therefore, I firstly adopt a Fusion Module, as the first part
of DFusion, with the same setting as the fusion network in the RoutedFusion
method, to fuse the depth maps with camera poses into a TSDF volume. After
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(c) (d)
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Figure 4.2: Illustration of depth noise. (a,c,e): RGB image; Depth noise (σd =
0.005); Depth noise (σd = 0.05). (b,d,f): Depth map without noise; Depth map
with noise (σd = 0.005); Depth map with noise (σd = 0.05).
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(a)

(b)

(c)

Figure 4.3: Illustration of pose noise. (a) No pose noise; (b) With pose noise
(σt = 0.005, σr = 0.05); (c) With pose noise (σt = 0.01, σr = 0.1).
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Figure 4.4: DFusion can minimize the influence of both types of noises.
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gaining the integrated TSDF volume, I design a Denoising Module, an UNet-
like neural network, as the second part of DFusion to denoise the TSDF volume.
Since the input of the Denoising Module is a 3D volume, 3D convolutional layers
are utilized to obtain the 3D features. Skip connections are used to avoid the
vanishing gradient problem, which is prone to occur due to the small value of
TSDF volume.

For training the networks, a synthetic dataset is utilized, which can provide
the ground truth value of depth maps and camera poses. The model is trained in
a supervised manner. Besides the commonly-used fusion loss, several specially-
designed loss functions are proposed, including an L1 loss for all voxels in the
whole scene and L1 losses over the objects and surfaces for better fusion perfor-
mance in these regions.

In sum, the contributions of this work are as follows:
• I propose a new fusion network named DFusion, which considers both depth

errors and pose errors in the fusion process. DFusion can avoid the per-
formance drops caused by both types of errors, and conduct accurate and
robust depth fusion.

• I design new fusion loss functions that focus on all the voxels while em-
phasizing the object and surface regions, which can improve the overall
performance.

• The experiments are conducted on a synthetic dataset as well as a real-scene
dataset, measuring the actual error levels with the real-world setting and
demonstrating the denoising effects of the proposed method. The ablation
study proves the effectiveness of the proposed loss function.

4.2. Denoising/Error Reduction

Most of the works consider the error as the depth error and try to remove the
error at the beginning of the fusion process. Authors in [28, 134] adopt Gaus-
sian noise to mimic the real depth error derived from the depth sensors, then
achieve the scene reconstruction. Cherabier et al. [21] also remove some regions
of random shapes, such as circles and triangles, to simulate the missing data.
In RoutedFusion [113], the authors add random noise to the depth maps and
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Table 4.1: Comparison among existing depth fusion-related methods.

Methods Fusion Method Training Depth Errors Pose Errors
KinectFusion [78] TSDF [25] No × ×
BundleFusion [26] TSDF [25] No Partly ×
OctNetFusion [87] 3D CNN Yes ✓ ×
ScanComplete [27] 3D CNN Yes × ×
PointCleanNet [86] 2D CNN Yes times ×
RoutedFusion [113] 2D CNN Yes ✓ ×

DFusion 2D+3D CNN Yes ✓ ✓

propose a routing network that can remove the random noise, then use a fusion
network to fuse the denoised depth maps into a TSDF volume. The experiments
prove that the routing network has a significant effect on improving accuracy.

Another way to cope with the noise is to refine the 3D representation directly.
NPD [30] trains the network by utilizing a reference plane from the noiseless
point cloud as well as the normal vector of each point while PointCleanNet [86]
removes the outlier first and then denoises the remaining points by estimating
normal vectors. Han et al. [37] propose a local 3D network to refine the patch-level
surface but it needs to obtain the global structure from the depth images first,
which is inconvenient and time-consuming. Zollhöfer et al. [134] propose a method
that utilizes the details, such as shading cues, of the color image to refine the fused
TSDF volume since the color image typically has a higher resolution. A 3D-CFCN
model [15], which is a cascaded fully convolutional network, combines the feature
of low-resolution input TSDF volume and high-resolution input TSDF volume to
remove the noise and refine the surface. However, all these methods only consider
either the outliers of the 3D representation or the noises caused by depth errors
(Several representative methods are compared and shown in Table 4.1). In this
section, I design a denoising network, that is the DFusion method, with 2D and
3D convolutional layers, which can remove the noise for the TSDF volume without
any other additional information. Also, I take the error of both depth maps and
camera poses into account, thus the network is robust against not only depth
errors but also pose errors.
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Figure 4.5: The DFusion model.

4.3. Methodology

4.3.1 TSDF Fusion

Standard TSDF fusion, which is proposed by Curless and Levoy [25], integrates
a depth map Di with the camera pose and camera intrinsic into a signed distance
function Vi ∈ RX×Y ×Z and weight function Wi ∈ RX×Y ×Z . For location x, the
integration process can be expressed as follows:

Vi(x) = Wi−1(x)Vi−1(x) + wi(x)vi(x)
Wi−1(x) + wi(x) (4.1)
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Wi(x) = Wi−1(x) + wi(x) (4.2)

It is an incremental process, and V0 and W0 are initially set as zero volumes. In
each time step i, the signed distance vi and its weight wi are estimated according
to the depth map of the current ray, then are integrated into a cumulative signed
distance function Vi(x) and a cumulative weight Wi(x).

Traditionally, the parameters are tuned manually, as a result, it is a heavy
task and difficult to exclude artifacts and maintain high performance. In Rout-
edFusion [113], the TSDF fusion process has been conducted in a convolutional
network, named depth fusion network, which is trained to tune the parameters
automatically. The input of the fusion network is depth maps, camera intrinsics
and camera poses. The depth map is fused into the previous TSDF volume with
the camera intrinsic and camera pose incrementally. The main purpose of the
RoutedFusion method is to deal with the noise of the TSDF volume caused by
the error on depth maps. To remove the depth noise, the authors first adopt
the depth maps with random noises for training, then use a routing network to
denoise the depth maps before fusing them with the fusion network.

In a real application, however, the pose error is also inevitable. Therefore, in
the proposed method, the inputs include noised depth maps and noised camera
poses.

4.3.2 Network Architecture

The proposed DFusion method mainly includes two parts: a Fusion Module for
fusing depth maps and a Denoising Module for removing the depth errors and
pose errors. These two modules are trained independently, with different loss
functions.

Fusion Module. The Fusion Module follows the design of the fusion network
proposed in the RoutedFusion method [113]. It fused depth maps incrementally
with a learned TSDF updating function, using the information of camera intrin-
sics and camera poses. Then the TSDF update will be integrated to form a TSDF
volume for the whole scene. The process of the Fusion Module is illustrated in
the upper part of Fig. 4.5. Although RoutedFusion can remove the depth errors,
its denoising process is implemented as a pre-processing network, i.e., the routing
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network as mentioned in Section 4.3.1, rather than the Fusion Module which is
used in the proposed method. Also, different from the RoutedFusion method, not
only the depth error but also the pose error are considered, the latter of which is
much more obvious when fusion is finished than before/during fusion. Therefore,
I add a post-processing module to deal with both of these two types of errors.

Denoising Module. After obtaining the TSDF volume, the Denoising Mod-
ule is designed to remove the noise of the TSDF volume. The output of the
Fusion Module, which is also the input of the Denoising Module, is a TSDF
volume with depth noise and pose noise. Since it deals with a 3D volume, I
adopt 3D convolutional layers instead of 2D convolutional layers, aiming to cap-
ture more 3D features to remove the noise (as using 3D convolutional layers is
a natural choice for tasks like 3D reconstruction [15] and recognizing 3D shifts
are extremely difficult for 2D convolutions). As shown in Fig. 4.5, the Denoising
Module is implemented as an UNet-like network, which downsamples the features
in the encoder part and upsamples them back to the original size in the decoder
part. Skip connections are added among encoder layers and decoder layers.

In the training phase, to mimic the errors of real-world applications, I add
random noises to the ground-truth depth maps and camera poses of the dataset.
Therefore, the output of the Fusion Module, as well as the input of the Denoising
Module, is noisy and needs to be fixed. For the depth noise, I add noise Bd that
follows a normal distribution to all pixels P in the depth maps (following the
solutions in [87,113]). This process can be represented as

P ′ := P + Bd, (4.3)

and
Bd ∼ N [0, σd], (4.4)

where σd is the pre-defined scale parameter. This parameter should be set to
reflect the actual error levels of the applications. σd = 0.005 is set following
[87,113].

As for pose noises, I add the noise to translation matrix T and rotation matrix
R respectively. Firstly, given random translation noise Bt, random rotation noise
Br, two random unit vectors nt = (n1, n2, n3) and nr = (n4, n5, n6) (respectively
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for translation and rotation noise), the noised translation matrix and rotation
matrix are calculated as follows.

T ′ := T + nt · Bt

R′ := R + Rodri(nr, Br),
(4.5)

where Rodri(nr, Br) follows Rodrigues’s rotation formula and it can be repre-
sented as:


n2

4(1 − cosBr) + cosBr n4n5(1 − cosBr) − n6sinBr n4n6(1 − cosBr) + n5sinBr

n4n5(1 − cosBr) + n6sinBr n2
5(1 − cosBr) + cosBr n5n6(1 − cosBr) − n4sinBr

n4n6(1 − cosBr) − n5sinBr n5n6(1 − cosBr) + n4sinBr n2
6(1 − cosBr) + cosBr


(4.6)

In addition, Bt and Br also follow the normal distribution.

Bt ∼ N [µt, σt]
Br ∼ N [µr, σr]

(4.7)

Since there is no existing method that adds artificial pose noise to improve
the denoising performance, the value of µ and σ is decided based on a real-scene
dataset. More details are given in Section 4.4.2.

4.3.3 Loss Functions

Since there are two modules in the network, i.e., the Fusion module and Denoising
module, the total loss function involves two parts as follows.

Fusion Loss. The loss function of the Fusion Module is expressed as follows:

LF =
∑

a

λF
1 L1(Vlocal,a, V ′

local,a) + λF
2 LC(Vlocal,a, V ′

local,a), (4.8)

where Vlocal and V ′
local are two local volumes along ray a, respectively from the net-

work output and from the ground truth. L1 is the L1 loss and can be represented
as

L1(V, V ′) =
∑

vm∈V,v′
m∈V ′ |vm − v′

m|
|V |

. (4.9)
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Figure 4.6: The focus regions of the loss functions (green masks for the focus
regions). (a) The illustration of the example scene, where one object exists; (b)
The scene loss; (c) The object loss; (d) The surface loss.
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In addition, I use the cosine distance loss LC (on the signs of the output
volume and ground-truth volume) to ensure the fusion accuracy of the surface,
following the setting in [113], which can be represented as

LC(V, V ′) = 1 − cos(sign(V ), sign(V ′)), (4.10)

where sign() is to get the signs of the inputs and cos() is to get the cosine values
of the angles between the input vectors.

In addition, λF
1 and λF

2 are the weights for the loss terms and are empirically
decided as 1 and 0.1 [113], respectively.

Denoising Loss. The Denoising Module is also trained in a supervised man-
ner, considering the fusion accuracy on the whole scene, objects, and surface
regions. The loss function is defined as follows:

LD = λD
1 LSP ACE + λD

2 LOBJECT + λD
3 LSURF ACE, (4.11)

where LSP ACE, LOBJECT , and LSURF ACE are respectively for the losses of the
whole scene, objects, and the surface regions (as shown in Fig. 4.6). λD

1 , λD
2 , and

λD
3 are the weights to adjust their relative importance.

LSP ACE is defined as

LSP ACE = L1(V, V ′), (4.12)

where V is the predicted scene volume while V ′ is the ground-truth volume.
Let VOBJECT ⊆ V , and for each vm ∈ VOBJECT , v′

m ≤ 0, then

LOBJECT = L1(VOBJECT , V ′
OBJECT ) (4.13)

Similarly, let VSURF ACE ⊆ V , and for each vm in VSURF ACE, −S ≤ v′
m ≤ S,

where S is a threshold of the surface range (S is set to 0.02), then

LSURF ACE = L1(VSURF ACE, V ′
SURF ACE) (4.14)
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The values of hyperparameter λD
1 , λD

2 , and λD
3 are set to 0.5, 0.25, and 0.25,

respectively. The effects of object loss and surface loss are explored in the ablation
study.

4.4. Experiments

In this section, I will first explain the details of the experimental implementation.
Then I will introduce the adopted datasets, with which both quantitative and
qualitative results prove that the proposed method outperforms existing methods.

4.4.1 Implementation

All the network models are implemented in PyTorch [83] and trained with NVIDIA
P100 GPU. The RMSprop optimization algorithm [35] is adopted with an initial
learning rate of 10−4 and a momentum of 0.9, for both the fusion network and
denoising network. The networks are trained sequentially, that is, the fusion
network is pre-trained before the training of the denoising network. 10K frames
sampled from the ShapeNet dataset [16] are utilized for training the network.

4.4.2 Dataset and Noise Simulation

Dataset. ShapeNet dataset [16] includes a large scale of synthetic 3D shapes,
such as the plane, sofa, and car. The ground-truth data, including depth maps,
camera intrinsics and camera poses, can be obtained from the 3D shapes. Similar
to RoutedFusion [113], the ShapeNet dataset is used to train the networks. To
simulate the realistic errors, not only depth maps but also camera poses are added
with random noises in the training process.

CoRBS dataset [111], a comprehensive RGB-D benchmark for SLAM, pro-
vides (i) real depth data and (ii) real color data, which are captured with a Kinect
v2 and suffering from real errors, (iii) a ground truth trajectory of the camera
that is obtained with an external motion capture system, and (iv) a ground truth
3D shape of the scene that is generated via an external 3D scanner. In total, the
dataset involves 20 image sequences of 4 different scenes.
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Noise Simulation. As introduced in Section 4.3.2, the parameter µt, σt, µr,
and σr are needed to mimic the real sensor errors. Since the CoRBS dataset pro-
vides not only real-scene data but also ground-truth data, it is adopted to obtain
the realistic pose noise for simulation. To measure the actual error levels, I fol-
low the calculation process of the commonly-used relative pose error (RPE) [99].
RPE is defined as the drift of the trajectory over a fixed time interval ∆. For a
sequence of n frames, firstly, the relative pose error at time step i is calculated
as follows:

Ei = (I−1
i Ii+∆)−1(J−1

i Ji+∆) (4.15)

where I is the ground-truth trajectory and J is the estimated trajectory. Then
m = n − ∆ individual relative pose error matrices can be obtained along the
sequence. Generally, the RPE is considered as two components, i.e., RPE for
translation matrix (T = trans(Ei)) and RPE for rotation matrix (R = rot(Ei)).
I use the following formulas for obtaining the µ and σ parameters for the normal
distribution.

µt = 1
m

m∑
i=1

∥ trans(Ei) ∥ (4.16)

σt =
√√√√ 1

m

m∑
i=1

(∥ trans(Ei) ∥ −µt)2 (4.17)

µr = 1
m

m∑
i=1

∠rot(Ei) (4.18)

σr =
√√√√ 1

m

m∑
i=1

(∠rot(Ei) − µr)2 (4.19)

where ∠rot(Ei) = arccos(T r(R)−1
2 ) and Tr(R) represents the sum of the diagonal

elements of the rotation matrix R.
For the translation noise, µt is 0.006 and σt is 0.004, while for the rotation

noise, µr is 0.094 and σr is 0.068, which are used in the noise simulation for the
experiments.
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4.4.3 Evaluation Results

The experiments are conducted on ShapeNet and CoRBS datasets. For ShapeNet
dataset, it involves the synthetic data without any errors. I add the noise to sim-
ulate the error of depth and camera pose. In the experiment, only depth noises
and both depth noises and pose noises are added respectively. The results are
shown in Table 4.2 and Table 4.3. To compare with state-of-the-art methods,
the proposed method is evaluated with four metrics, i.e., the mean squared error
(MSE), the mean absolute distance (MAD), intersection over union (IoU), and
accuracy (ACC). MSE and MAD mainly focus on the distance between the esti-
mated TSDF and the ground truth, while IoU and ACC quantify the occupancy
of the estimation. According to the results, the proposed method outperforms the
state-of-the-art methods on all metrics for both scenarios. Especially when there
exist both depth noises and pose noises, the proposed method shows a significant
advantage over other methods. When only depth noises exist, the RoutedFu-
sion method and the proposed DFusion method have similar performance, while
the latter shows a slight advantage due to the post-processing of the Denoising
Module. Fig. 4.7, 4.8, 4.9 and Fig. 4.10, 4.11, 4.12 illustrate the fusion results
on the ShapeNet dataset with depth noises or pose noises, respectively, which
is more intuitive to show the advantages of the DFusion method. Consistent
with the metric results, it can be seen that DFusion can give clean and precise
fusion for all these objects. Due to the use of deep learning models, RoutedFu-
sion and DFusion both have satisfactory outputs when depth noises are added,
as shown in Fig. 4.7, 4.8, and 4.9. However, when pose noises exist (as shown
in Fig. 4.10, 4.11, and 4.12), the fusion results of RoutedFusion deteriorate a lot,
while the DFusion model can still have a precise output.

For the CoRBS dataset, I choose four real scenes that involve real errors, to
perform the comparison with KinectFusion and RoutedFusion. However, the pose
information needs to be calculated before fusing the depth maps. The Kinect-
Fusion method involves the process of calculating the pose information, which is
the iterative closest point (ICP) algorithm [8]. Hence, to generate the TSDF vol-
ume, the ICP algorithm is used to obtain pose information for RoutedFusion and
DFusion, then compare the results on the MAD metric. The results are shown in
Table 4.4. For all the scenes, the proposed method achieves the best result. Some
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Table 4.2: Comparison results on ShapeNet dataset (with only depth noise).

Methods MSE MAD ACC IoU
DeepSDF [82] 412.0 0.049 68.11 0.541
OccupacyNetworks [87] 47.5 0.016 86.38 0.509
TSDF Fusion [25] 10.9 0.008 88.07 0.659
RoutedFusion [113] 5.4 0.005 95.29 0.816
DFusion 3.5 0.003 96.12 0.847

Table 4.3: Comparison results on ShapeNet dataset (with depth noise and pose
noise).

Methods MSE MAD ACC IoU
DeepSDF [82] 420.3 0.052 66.90 0.476
OccupacyNetworks [87] 108.6 0.037 77.34 0.453
TSDF Fusion [25] 43.4 0.020 80.45 0.582
RoutedFusion [113] 20.8 0.017 88.19 0.729
DFusion 6.1 0.006 95.08 0.801

Table 4.4: Quantitative results (MAD) on CoRBS dataset.

Methods Human Desk Cabinet Car
KinectFusion [78] 0.015 0.005 0.009 0.009
ICP + RoutedFusion [113] 0.014 0.005 0.008 0.009
ICP + DFusion 0.012 0.004 0.006 0.007

visualization results are also shown in Fig. 4.13, which proves that the proposed
method can denoise the TSDF volume effectively and obtain more complete and
smooth object surfaces (note the desk legs and the human model arms).

4.4.4 Ablation Study

To verify the effectiveness of the proposed loss function, an ablation study is
performed, which compares the results with the other three variants of the loss
function, i.e., the loss function without object loss, the loss function without
surface loss, and the loss function without both object and surface loss. The
original loss is the default setting which involves space loss, object loss, and surface
loss. For all variants, the experiment is conducted on the ShapeNet dataset with
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Figure 4.7: Fusion results on ShapeNet dataset with depth noise added (Part 1).
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Figure 4.8: Fusion results on ShapeNet dataset with depth noise added (Part 2).

59



TS
D
F

R
ou
te
dF
us
io
n

D
Fu
si
on

(O
ur
s)

M
od
el
s

TS
D
F

R
ou
te
dF
us
io
n

M
od
el
s

D
Fu
si
on

Figure 4.9: Fusion results on ShapeNet dataset with depth noise added (Part 3).

60



TS
D
F

R
ou
te
dF
us
io
n

D
Fu
si
on

(O
ur
s)

M
od
el
s

TS
D
F

R
ou
te
dF
us
io
n

M
od
el
s

D
Fu
si
on

Figure 4.10: Fusion results on ShapeNet dataset with pose noise added (Part 1).
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Figure 4.11: Fusion results on ShapeNet dataset with pose noise added (Part 2).
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Figure 4.12: Fusion results on ShapeNet dataset with pose noise added (Part 3).
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Figure 4.13: Fusion results on CoRBS dataset. ICP algorithm is used to obtain
the sensor trajectory for RoutedFusion and DFusion.

both depth noises and pose noises added. The results are shown in Table 4.5.
It can be seen that the original setting can achieve the best performance for all
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Table 4.5: Ablation results (with depth noise and pose noise).

Methods MSE MAD ACC IoU
Without object loss 8.3 0.007 92.11 0.744
Without surface loss 7.5 0.006 91.83 0.769
Without object&surface loss 16.3 0.015 90.87 0.740
Original 6.1 0.006 95.08 0.801

metrics, which demonstrates the effectiveness of the proposed loss functions.

4.5. Chapter Summary

In this chapter, not only depth errors but also pose errors for depth fusion are
considered, which is more realistic in 3D reconstruction. To remove the error of
the 3D shapes, a new CNN model is proposed after fusing the depth maps. A
synthetic dataset and a real-scene dataset are adopted to verify the effectiveness of
the proposed method. It has been proved that the proposed method outperforms
the state-of-the-art methods for both quantitative results and qualitative results.
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Chapter 5

Discussions and Future Work

5.1. Current Limitations

(1) Monocular Depth Estimation

As a limitation of the depth estimation method, the generalization ability of the
trained model can still be improved. Currently, this method needs datasets with
a large number of labeled data during the training process, and can only be used
for the specific domain after training.

(2) Noise Deduction in Depth Fusion

One limitation of the depth fusion method is that it can only be used after
all depth sequences have been obtained. Therefore, it cannot be deployed in
systems that require real-time fusion. A possible solution is to involve incomplete
depth sequences in the training process, where I may need to redesign the noise
generation and model optimization methods, which can be one of the future
objectives. In addition, DFusion may have some performance issues if it is only
trained on a small dataset, as the Denoising Module requires enough training
samples. More work is needed to lower its data requirements.
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5.2. Monocular Depth Fusion

As another future work of this project, more research is necessary to fully remove
the requirements of the 3D sensor from the whole scene reconstruction pipeline.
Currently, it is still very difficult to get the 3D shape only from 2D images. Here I
will provide some more background knowledge as well as discussions over possible
solutions.

(1) Existing Related Research

There are two types of solution in this area. The first type of solutions is following
a similar strategy to the approaches using 3D sensors, that is, to get the depth
data and sensor trajectory at first, and then, perform the depth fusion process.
MonoFusion [85] is among the first attempts to use only 2D RGB sensors in the
whole scene reconstruction pipeline. However, due to the noises caused by the
depth estimation operation, the generated 3D shapes are with many artifacts.

To address the problem existing in the first type of solution, researchers are
turning in another direction, that is, removing the depth estimation and fusion
process from the reconstruction pipeline. Instead, researchers propose some end-
to-end solutions that take 2D RGB images as input and directly output the 3D
shapes using deep learning networks. SurfaceNet [45] adopts a 3D convolutional
network to process a pair input of RGB images (from different views), and convert
them into a 3D surface occupancy. This is one of the first works that perform
monocular scene reconstruction in an end-to-end manner. However, SurfaceNet
is designed with one image-pair setting (only two input images from different
views). Therefore, it is not optimized for reconstructing complete 3D shapes. In
addition, the model only uses the color information of the input images, which
may be not enough to well analyze the scenes and harm the reconstruction per-
formance. Atlas [76] enables multi-view input for end-to-end monocular scene
reconstruction. It also leverages higher-level features, rather than the colors, of
the input images. These features are extracted by a trained model. NeuralRe-
con [100] further improves the performance of real-time scene reconstruction using
3D gated recurrent units (GRUs). GRUs help the model fuse the reconstructions
from multiple local windows of frames. TransformerFusion [11] is also focused on
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the online scene reconstruction problem. The difference between Transformer-
Fusion and NeuralRecon is that the former uses the Transformer backbone to
fuse the reconstructions among frames. Transformers can help the model better
analyze the input images and pay more attention to the most relevant informa-
tive features, which is more accurate and efficient. The aforementioned second
type of solution can avoid the noise problem caused by the depth estimation
procedure and they usually can get decent reconstructed shapes. However, the
end-to-end nature of these methods is causing people’s concerns as they are much
more black-boxed than the first type of solution. Therefore, it is very hard to
explain why these models work well on some data while not good on some other
data. It is very challenging to debug the scene reconstruction system built on
the end-to-end models when they make mistakes. Also, it is even more difficult
to further improve the performance of these models, as researchers can hardly
know the inner logic of the reconstruction process. This is one of the reasons that
this research is aiming for enabling scene understanding with 2D sensors only
while not following an end-to-end manner. I make a depth estimation method,
which can give 3D depth out of 2D data while may bring some depth noise, and
the following denoising depth fusion method to remove the noise from the depth
input, which can well address the problem existing in MonoFusion. However,
there are still some more challenges to truly bridge the 2D images to the scene
reconstruction, which will be introduced in the next sub-section, along with the
discussions over possible solutions.

(2) Possible Solutions

As shown in Fig. 5.1, a pipeline is proposed which can serve as a possible solution
for the 2D image-based scene reconstruction. In this pipeline, no data from
the 3D sensor are adopted; also, it is not end-to-end, the final reconstructed
shape comes from several upstream processes like camera pose estimation and
depth estimation. Therefore, this pipeline can fully address the aforementioned
problems.
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Figure 5.1: A scene reconstruction pipeline that uses only 2D inputs.

There are three main differences between this pipeline and the MonoFu-
sion [85]. Firstly, in the depth estimation part, I plan to design a new video-
oriented model that can utilize the temporal-spatial information that exists in
videos. As models may notice prediction errors when dealing with the same ob-
jects in neighboring frames, the video-oriented model can potentially have higher
estimation accuracy. Secondly, I plan to use a depth alignment to refine the pre-
diction results among different frames. That is because the same objects are with
different depth predictions on different frames. Therefore, an alignment module
is necessary to check these kinds of errors and make the objects with consistent
depth prediction. Thirdly, a denoising depth fusion module will be used to pro-
cess the errors in camera pose estimation as well as in depth estimation, which is
inevitable in actual applications and may lead to defective reconstructions.

Among these three modules, I have implemented the denoised fusion module
in this research, while the remaining two modules need further work.
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Chapter 6

Conclusion

Overall, the dissertation shows a valuable attempt to improve the effect and effi-
ciency of 3D scene reconstruction. There are many related research works in the
process of 3D scene modeling, such as depth acquisition, camera pose estimation,
3D reconstruction, texturing, and rendering. In this research, I mainly focus on
two key parts of the process, that is, depth acquisition and 3D reconstruction.
Specifically, I perform the depth estimation from single RGB images and achieve
3D reconstruction with a depth fusion method that can remove the noise of the
fusion data caused by both depth errors and pose errors.

For the depth estimation part, I utilize the RGB images as the input, which
are much easier to obtain compared with depth sensors. However, capturing
the depth information from single RGB images is an ill-posed problem. Lots of
research aims to achieve high performance with the CNN models but the accuracy
still needs to be improved. I propose a novel network architecture named HMA-
Depth that uses a hierarchical multi-scale attention mechanism for monocular
depth estimation. The reason I use a multi-scale scheme is that different scales of
the image have different advantages. Generally, a larger scale has better details
of local regions while the global knowledge can be easier to get on a smaller
scale. Besides, when estimating the multi-scale depth maps, attention modules
are used to generate the weight masks, indicating which regions in each depth
map the model is paying attention to. The experiments are performed on two
commonly-used datasets, i.e., the KITTI dataset and the NYU V2 dataset. The
results prove that the proposed method outperforms the state-of-the-art methods.
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I also conduct an ablation study, which verifies the effectiveness of the attention
module. Due to the inherent advantages of monocular depth estimation, I apply
it to an application that helps detect and avoid obstacles for visually impaired
people. However, the accuracy of depth estimation is not good enough for realistic
application. For the next step, combining the semantic information may be a good
solution.

For the depth fusion part, there are usually some errors when capturing the
depth maps or camera poses. Some researchers have focused on the errors of depth
acquisition but only a few works take the error of the camera pose into account.
In this research, not only depth errors but also camera pose errors are considered
for depth fusion, which is more realistic in 3D reconstruction. To simulate the
error, I add random noise to the depth map and camera pose matrix of a synthetic
dataset named ShapeNet, from which the ground-truth depth and camera pose
information can be obtained. Then to remove the noise, a new CNN model is
proposed, including a module for fusing the depth maps and another module for
denoising. Specifically, I adopt 3D convolutional layers for denoising since they
have advantages in capturing the 3D features. In the experiments, besides the
ShapeNet dataset, a real-scene dataset named CoRBS is utilized. Compared with
other methods, the proposed method outperforms them in denoising with a more
complete scene reconstruction and more smooth object surface. However, one of
the limitations is that all the depth maps have to be obtained before the denoising
process, as a result, it cannot be performed in real time. A possible solution is
to train the network with incomplete depth maps or make two modules work
simultaneously.

The output of depth estimation is depth maps while the input of depth fusion
includes depth maps, camera intrinsics, and camera poses. Theoretically, the
output of depth estimation can be regarded as a part of the input of depth
fusion, and these two parts can be conducted in an end-to-end process. However,
the performance of depth estimation should be further improved for depth fusion.
Also, lots of details still need to be performed and adjusted for the total pipeline.
Therefore, in this research, the depth estimation part and the depth fusion part
are related but studied separately.

For future work, however, these two parts have much potential to be combined
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into monocular depth fusion, which performs 3D reconstruction directly from
2D images. This reconstruction pipeline mainly involves three parts, that is,
depth estimation, camera pose estimation, and denoising depth fusion. To achieve
3D scene modeling, videos could be adopted as input. Then, depth estimation
and camera pose estimation can be conducted respectively. Particularly, the
accuracy of depth estimation may be improved since videos provide not only
spatial information but also temporal information. With the information of depth
maps and camera poses, finally, denoised fusion will be achieved. Monocular
depth fusion is very efficient, hence, it will be a great contribution to the related
technology and application.
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