
Doctoral Dissertation

Unlocking Software Documentation: Sentiment
Classification and On-hold Self-Admitted

Technical Debt Identification

Rungroj Maipradit
Program of Information Science and Engineering

Graduate School of Science and Technology
Nara Institute of Science and Technology

Supervisor: Kenichi Matsumoto
Software Engineering Lab. (Division of Information Science)

Submitted on August 22, 2022

A Doctoral Dissertation
submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of Engineering

Rungroj Maipradit

Thesis Committee:
Supervisor Kenichi Matsumoto

(Professor, Division of Information Science)
Shoji Kasahara
(Professor, Division of Information Science)
Takashi Ishio
(Associate Professor, Division of Information Science)
Hideaki Hata
(Associate Professor, Shinshu University)
Raula Gaikovina Kula
(Assistant Professor, Division of Information Science)
Christoph Treude
(Senior Lecturer, University of Melbourne)

Unlocking Software Documentation: Sentiment
Classification and On-hold Self-Admitted

Technical Debt Identification∗

Rungroj Maipradit

Abstract

Software documents refer to all written documents in software development,
which play a crucial role in knowledge sharing between software developers. De-
spite the benefits of software documentation, document creation and maintenance
are frequently overlooked. Many software documents are often outdated, and
many small to medium software projects have little to no software documenta-
tion.

This thesis presumes that the problem of little to no software documenta-
tion and outdated documents can be tackled by unlocking software documents to
show the benefit of existing information. To address this, this thesis first unlocks
software document information by proposing a new technique for accessing exist-
ing information on software engineering data sets using sentiment classification.
The results show that using automated machine learning with n-gram inverse
document frequency shows promising results in tackling this problem. Second,
to reduce outdated documents by finding what kinds of tasks are amenable to
automated management. And found one particular class of debt amenable to
automated management: on-hold SATD, i.e., debt which contains a condition to
indicate that a developer is waiting for a certain event or an updated function-
ality to be implemented elsewhere. Third, this thesis investigates the potential
of removing outdated documents by automatically detecting on-hold SATD and
identifying its condition. The results show that the proposed design can reliably

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
and Technology, August 22, 2022.

i

identify on-hold SATD and also mine the issue tracker to check if the On-hold
SATD instances are "superfluous" and can be removed.

In all, this thesis emphasizes the benefit of unlocking software documents for
software development. Furthermore, this thesis provides practical implications for
extracting information from software documents through sentiment classification
and for managing outdated software documents through suggesting the removal
of outdated on-hold SATD comments.

Keywords:

Software document classification, N-gram IDF, Automated machine learning,
Self-admitted technical debt, Sentiment Classification

ii

Acknowledgements

I would first like to express my sincere gratitude to my thesis supervisor, Prof.
Kenichi Matsumoto, for giving me opportunities to study a doctoral’s degree and
also provide guidance and encouragement during my time in NAIST.

I would also like to express my gratitude to my co-supervisor, Assoc. Prof.
Hideaki Hata for providing a suggestion, teaching and help me to start research-
ing.

Besides my supervisor and my co-supervisor, I would like to thank the rest
of my thesis committee, Prof. Shoji Kasahara, Assoc. Prof. Takashi Ishio, and
Assist. Prof. Raula Gaikovina Kula, and Senior lecturer Christoph Treude, for
their invaluable comments and suggestions to improve the quality of my research.

I would also like to sincerely thank Shade Ruangwan, and Bodin Chinthanet,
who have been like brothers to me, for sharing their experience and advice.

I would like to thank my friends in NAIST and my labmates in Software
Engineering laboratory for a very enjoyable time during my time in NAIST.

Last but not least, I would like to thank my family: my parents, my brother
for their love, support and encouragement to pursue my study in a doctoral’s
degree. Without them, this thesis might not be written. Finally, I would like
to express my most sincere appreciation to MEXT and NAIST for all kind of
supports.

iii

List of Publications

• Wait for it: identifying “On-Hold” self-admitted technical debt
Rungroj Maipradit, Christoph Treude, Hideaki Hata, Kenichi Matsumoto
Empirical Software Engineering (EMSE), 25: 3770–3798 (2020). (Accepted
as a journal paper)

– Present at ICSE 2021 Journal-First.

– Received SIGSE Outstanding Paper Award 2021.

• Automated Identification of On-hold Self-admitted Technical Debt
Rungroj Maipradit, Bin Lin, Csaba Nagy, Gabriele Bavota, Michele Lanza,
Hideaki Hata, Kenichi Matsumoto 2020 IEEE 20th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2020, pp.
54-64 (Accepted as a conference paper)

• Sentiment Classification Using N-Gram Inverse Document Fre-
quency and Automated Machine Learning
Rungroj Maipradit, Hideaki Hata, Kenichi Matsumoto in IEEE Software,
vol. 36, no. 5, pp. 65-70, Sept.-Oct. 2019 (Accepted as a journal paper)

iv

Contents

Abstract ii

Acknowledgements iii

List of publications iv

Contents iv

List of Figures ix

List of Tables x

1 Introduction 1
1 Contributions . 2
2 Outline . 3

2 Background 4
1 Component . 4

1.1 N-gram IDF . 4
1.2 Automated Machine Learning 5

2 Scope . 5
2.1 Documentation through code comments 5
2.2 Documentation through discussion channels 6

3 Relationship between sentiment analysis and self-admitted techni-
cal debt . 6

v

3 Related Studies 7

4 Sentiment Classification Using N-gram IDF and Automated Ma-
chine Learning 15
1 Introduction . 15
2 Method . 17
3 Evaluation . 18

3.1 Datasets and Settings . 18
3.2 Sentiment Classification Tools 18
3.3 Result . 19

4 Discussions . 21
4.1 Threats to Validity . 21
4.2 Obtained N-gram Phrases 21

5 Conclusion . 22

5 Identifying on-hold self-admitted technical debt 23
1 Introduction . 23
2 Research Methodology . 26

2.1 Research Questions . 26
2.2 Data Collection . 27
2.3 Data Analysis . 28
2.4 Online Appendix . 30

3 Findings . 31
3.1 Initial Analysis . 31
3.2 RQ1.1 What kinds of self-admitted technical debt do de-

velopers indicate? . 31
3.3 RQ1.2 Do commits which remove the comments indicating

self-admitted technical debt actually fix the debt? 33
3.4 RQ1.3 What kinds of fixes are applied to address self-admitted

technical debt? . 33
3.5 RQ1.4 Is the removal of self-admitted technical debt the

primary reason for the commits which remove the corre-
sponding comments? . 36

vi

3.6 RQ1.5 Could the fixes applied to address self-admitted tech-
nical debt be applied to address similar debt in other projects? 37

3.7 RQ1.6 How many of the comments indicating self-admitted
technical debt contain a condition to specify that a devel-
oper is waiting for a certain event or an updated function-
ality having been implemented elsewhere? 40

4 Design . 40
4.1 Data Preprocessing . 41
4.2 N-gram Feature Extraction 43
4.3 Classifier Learning . 44
4.4 On-hold Condition Detection 44

5 Evaluation . 45
5.1 Data Preparation and Annotation 46
5.2 Evaluation Settings . 46
5.3 RQ2.1 What is the best performance of a classifier to au-

tomatically identify on-hold SATD? 48
5.4 RQ2.2 How well can our classifier automatically identify

the specific conditions in on-hold SATD? 49
5.5 Developer Feedback . 50

6 Discussions . 51
7 Threats to Validity . 53
8 Conclusions and Future Work . 54

6 Automated identification of on-hold self-admitted technical debt 61
1 Introduction . 61
2 Method . 63

2.1 Issue Reference Detection 63
Project Selection . 63
Comment Extraction . 65
Issue Identification . 65

2.2 Dataset Creation . 67
2.3 Data Preprocessing . 68

Term Abstraction . 68
Lemmatization . 68

vii

Special character removal 68
2.4 On-hold SATD Classification 69

N-gram Feature Extraction 69
Classifier Selection . 69
Condition Checking . 70

3 Study Design . 70
3.1 Research Questions . 70
3.2 Context Selection & Data Collection 71
3.3 Data Analysis . 72

4 Evaluation . 73
4.1 RQ1: What is the accuracy of our approach in identifying

On-hold SATD? . 73
4.2 RQ2: How does On-hold SATD evolve in open source projects? 77
4.3 RQ3: To what extent can our approach identify “ready-to-

be-removed” On-hold SATD? 78
4.4 Replication . 79

5 Towards a On-Hold SATD Recommender 80
6 Threats to Validity . 80
7 Conclusion . 81

7 Conclusion 86
1 Implications . 87
2 Opportunities for Future Research 88

viii

List of Figures

1.1 An overview of the scope of the thesis. 3

4.1 An overview of our sentiment classification approach 17

5.1 Caption for LOF . 25
5.2 Distribution of answers to “Does the comment represent Self-Admitted

Technical Debt?”. Initial agreement among the annotators before
resolving disagreements: weighted kappa κ = 0.820 across 333
comments, i.e., “almost perfect” agreement [83]. 31

5.3 Distribution of answers to “What kind of Self-Admitted Techni-
cal Debt was it?”. Initial agreement among the annotators before
consolidating the coding schema: 45.07% across 284 comments. . . 32

5.4 Distribution of answers to “Did the commit fix the Self-Admitted
Technical Debt?”. Initial agreement among the annotators before
resolving disagreements: kappa κ = 0.731 across 284 comments,
i.e., “substantial” agreement [83]. 33

5.5 Distribution of answers to “What kind of fix was it?”. Initial
agreement among the annotators before consolidating the coding
schema: 83.90% across 118 comments. 34

5.6 Distribution of answers to “Was removing the Self-Admitted Tech-
nical Debt the primary reason for the commit?”. Agreement among
the annotators: weighted kappa κ = 0.630 across 118 comments,
i.e., “substantial” agreement [83]. 37

ix

5.7 Distribution of answers to “Could the same fix be applied to similar
Self-Admitted Technical Debt in a different project?”. Agreement
among the annotators: kappa κ = 0.540 across 118 comments, i.e.,
“moderate” agreement [83]. 38

5.8 Distribution of answers to “Does the Self-Admitted Technical Debt
comment include a condition?”. Initial agreement among the anno-
tators before resolving disagreements: weighted kappa κ = 0.618

across 284 comments, i.e., “substantial” agreement [83]. 39
5.9 Classification overview. 40
5.10 Similarity between project names and words. 41
5.11 Caption for LOF . 49
5.12 Caption for LOF . 50

6.1 Motivating Example . 62
6.2 Approach for On-hold SATD detection and removal 67
6.3 An example issue report. 72
6.4 Results of each round in 10-fold evaluation for different classifier

implementations . 83
6.5 Distribution of life spans of removed issue-referring comments . . 84
6.6 Distribution of days needed to address SATD comments after issues

were resolved . 84
6.7 A mockup of On-hold SATD identification tool 85

x

List of Tables

4.1 The comparison result of the number of corrected prediction, pre-
cision, recall, and f1-score . 20

4.2 Obtained n-gram phrases (selected) 22

5.1 Data set . 28
5.2 Qualitative annotation schema . 29
5.3 Types of Self-Admitted Technical Debt and the Corresponding

Fixes. Each row represents a type of self-admitted technical debt,
and each column represents a type of fix. The sum of each row and
column indicates the overall numbers for the corresponding codes,
respectively. 35

5.4 Example of self-admitted technical debt on “on-hold” and “wait” . 39
5.5 Regular expressions for term abstraction 55
5.6 Annotated self-admitted technical debt comments 56
5.7 Number of on-hold SATD comments in each project 57
5.8 Performance comparison . 58
5.9 Top 10 N-gram TF-IDF frequent features only appear in on-hold

comments. 58
5.10 Cross-project classification on projects which contain on-hold more

than 2% . 59
5.11 Within-project classification on projects which contain on-hold

more than 2% . 59
5.12 Examples of specific conditions in on-hold SATD comments 60
5.13 On-hold SATD sent for developer feedback 60

xi

6.1 Details of the projects in my dataset. SLOC is calculated on Java
files using SLOCCounts [87]. 64

6.2 Regular expressions to identify issue in comments 65
6.3 Regular expressions for term abstraction 66
6.4 Statistics of annotated comments containing issue references . . . 68
6.5 Performance of classifiers in identifying On-hold SATD 73
6.6 Statistical results of performance comparisons of classifiers 74
6.7 N-gram features which frequently appear in On-hold SATD com-

ments . 75
6.8 Example of classification results of my approach 76
6.9 Two “ready-to-be-removed” On-hold SATD comments which re-

ceived developers’ feedback . 79

xii

1 | Introduction

Software documents refer to all written documents in software development which
provide information about software for developers and users, including how soft-
ware works, how to use it, and how it provides different types of information to
people in different roles [29].

Correct, consistent, and complete software documentation plays an important
role for developers in terms of knowledge sharing and software maintenance [33].
Additionally, high-quality and useful software documents improve the perfor-
mance of engineers working on software projects and are believed to be one of
the key factors in producing high-quality software [21, 64].

Despite the benefits of software documentation, document creation and main-
tenance are frequently overlooked. Especially in small to medium software projects,
which have little to no software documentation [20]. Moreover, software docu-
mentation is often poorly written and frequently outdated. In the worst cases,
some parts of the documentation are untrustworthy [39].

Sentiment analysis is defined as the task of finding the opinions of authors
behind the texts. This allows users and companies to monitor their reputation
and receive feedback in a timely manner [17]. In software development, sentiment
analysis helps developers to analyze emotions behind various tasks, such as app
reviews, responses to bug reports, and emotions in commit messages. Despite
the benefit of sentiment analysis, current tools provide unreliable results when
applied to software documents due to the fact that these tools are not developed
for software engineering tasks [44].

One of the software documents is code comments, which exist within source
code and are used by developers. Code comments assist developers understand

1

source code and also help in software maintenance [78]. In many cases, software
developers know that their current implementation is not optimal and indicate
this using a source code comment (i.e., self-admitted technical debt) [58]. How-
ever, current research is largely focused on the detection and classification of
self-admitted technical debt, but has spent less effort on approaches to address
the debt automatically.

This thesis focuses on two challenges in software documentation: (1) the lack
of a liability sentiment analysis tool that works in a software engineering en-
vironment; and (2) assisting in software document management by identifying
and removing unnecessary self-admitted technical debt (i.e., situations where a
software developer knows that their current implementation is not optimal and
indicates this using a source code comment).

1 Contributions

The main contributions of this thesis can be classified into two categories: senti-
ment analysis, self-admitted technical debt.

Access existing information using sentiment analysis

• The design and evaluation of a classifier for sentiment analysis in software
documents. (Chapter 4)

Managing software documents by removing outdated self-Admitted
Technical Debt

• A qualitative study on the removal of self-admitted technical debt. (Chapter
5)

• The definition of self-admitted technical debt which is amenable to auto-
mated management (on-hold SATD). (Chapter 5)

• The design and evaluation of a classifier for on-hold self-admitted technical
debt. (Chapter 5)

2

• Large-scale empirical study to automatically detect on on-hold SATD. (Chap-
ter 6)

• Large-scale empirical study to identify ready to be removed on-hold SATD.
(Chapter 6)

2 Outline

C
ha

pt
er

 2
: B

ac
kg

ro
un

d Chapter 4: Sentiment Classification
Using N-gram IDF and

Automated Machine Learning

Chapter 5: Identifying on-hold
self-admitted technical debt

Chapter 6: Automated Identification
of on-hold self-admitted technical debt

Unlocking Software Documentation:
Sentiment Classification and On-hold Self-

Admitted Technical Debt Identification

C
ha

pt
er

 1
: I

nt
ro

du
ct

io
n

C
ha

pt
er

 7
: C

on
cl

us
io

n

C
ha

pt
er

 3
: R

el
at

ed
 S

tu
di

es

Figure 1.1. An overview of the scope of the thesis.

In this section, I provide an outline of this thesis. Figure 1.1 illustrates the
structure of the thesis and the outcomes of each section. The details of the rest
of this thesis is structured as follows:

• Chapter 4 presents analysis of sentiment in software documents. I design
and implement sentiment classification using N-gram IDF and automated
machine learning.

• Chapter 5 introduces a new type of self-admitted technical debt that is
able to manage management called “on-hold SATD”. Then propose tool
support that can help developers manage self-admitted technical debt more
effectively.

• Chapter 6 presents large-scale empirical study to automatically detect
on-hold SATD and identify ready to be removed on-hold SATD.

3

2 | Background

In this section, I introduce the component of classifier, scope of software docu-
ments, and relationship between sentiment analysis and self-admitted technical
debt.

1 Component

I introduce the component of the classifier. The classifier consists of two part:
N-gram IDF and automated machine learning.

1.1 N-gram IDF

N-gram is all sequences of word length n that appear in a text. Generally, n-
gram phrases are considered to be informative and useful compared to single
words. Nevertheless, using all n-gram terms is not useful because they provide
a large volume of data. To overcome such problem of using n-grams, we utilize
N-gram IDF.

N-gram IDF is a theoretical extension of IDF for handing multiple terms and
phrases by bridging the theoretical gap between term weighting and multi-word
expression extraction [68, 71]. N-gram IDF is able to find dominant N-grams
among overlapping ones and extract key terms of any length.

Difference between N-gram IDF and IDF, IDF does not handle N-gram phrases
when N>1 properly. IDF gives higher weight to term that appears less in docu-
ments, however unnatural n-gram terms are less likely to appear in documents.

4

1.2 Automated Machine Learning

Machine learning is an application based on algorithms which have an ability to
automatically learn from data without being explicitly programmed.

In machine learning, two problems are known: (1) no single machine learning
method performs best on all data sets, and (2) some machine learning methods
rely heavily on hyperparameter optimization.

Automated machine learning aims to optimize choosing a good algorithm and
feature preprocessing steps [18]. To obtain the best performance, we apply auto-
sklearn [18], a tool of automated machine learning.

Auto-sklearn addresses these problems as a joint optimization problem [18].
Auto-sklearn includes 15 base classification algorithms from Scikit-learn libraries
and produces results from an ensemble of classifiers derived by Bayesian opti-
mization [18].

2 Scope

Software documentation refer to all written software documents in software de-
velopment. However, only some software documents are consider in this thesis.

2.1 Documentation through code comments

Code comments are key to understand source code implementation by enhance
the readability of the code. In many cases, developers know when they are about
to cause technical debt, and they leave documentation to indicate its presence.
Furthermore, when numerous developers work on the same project, it implies
that other people will examine the code and comments to understand it.

Code comments have the following characteristics: (1) they are primarily used
by developers; (2) they are used as a remainder or explanation of the code; (3)
they exist within the code file ; and (4) they contain technical keywords.

5

2.2 Documentation through discussion channels

The other documents which are considered in this thesis are those that provide
feedback through discussion channels, which come from three sources. A question
and answer from Stack Overflow, a question and answer platform for software
developers; reviews of mobile applications from Google Play and the Android
application store; and comments in the Jira issue tracker.

Documents inside discussion channels have the following characteristics: (1)
they are used by both developers and users; (2) they are used for various tasks
(e.g., providing feedback for app reviews; providing answers for stack overflow;
and providing comments for issue trackers); (3) they exist in an outside repository
; and (4) they contain technical keywords.

3 Relationship between sentiment analysis and self-
admitted technical debt

The sentiment analysis chapter analyses software documents through discussion
channels, whereas the self-admitted technical debt chapter analyses documenta-
tion through code comments. The similarities between these two challenges are
that they both contain technical terms and use n-gram IDF to extract keywords.

The term abstraction in the data preparation process is one of the primary
distinctions between the two challenges. Due to keyword inside technical debt
specific to the project, and we are not interested in their content but instead
interested in their types.

6

3 | Related Studies

Complementary related works are introduced throughout the paper, in this Chap-
ter, I discuss some key related works.

Sentiment analysis in software engineering documents

Panichella et al. [54] classified app reviews into categories relevant to software
maintenance and evolution. One of the features the authors used was sentiment
analysis. Combining three features: Natural Language Processing, Text Anal-
ysis, and Sentiment Analysis, classifier achieved better results than using each
technique individually.

Ortu et al. [52] analyzed the relationship between sentiment, emotions, and
politeness of developers’ comments in Jira issue tracker and the duration it takes
to fix that issue. They found that positive emotions such as joy and love in com-
ments were linked to shorter fix times, while negative emotions such as sadness
in comments were linked to longer fix times.

Zhang and Hou [95] extracted problematic APIs from online discussions. The
authors also discovered that negative sentence-based solutions are more likely
than other approaches to contain problematic API features.

Tourani et al. [82] applied sentiment analysis tool namely Sentistrength to
extract information from mailing lists. However, they found the tool has low
percision 29.56% for positive, and 13.18% for negative. Due to ambiguities from
technical term.

Islam and Zibran [30] performed indepth exploratory study on public bench-
mark dataset which created from Jira issue tracker to exposing the difficulties in

7

automatic sentiment analysis. And also proposed a tool called SentiStrength-SE
to tackle problem, the tools achieved 73.85% precision and 85% recall.

Jongeling et al. [31], Lin et al. [44] conducted sentiment analysis using existing
tools on software documents, which include the tools proposed by Islam and
Zibran [30]. In all cases they found that current tools are not ready to use due
to low accuracy and lack of agreement between tools.

Impact of self-admitted technical debt

Sierra et al. [74] conducted a survey about self-admitted technical debt by
investigating three categories: (i) detection, (ii) comprehension, and (iii) repay-
ment. Detection focuses on identifying and detecting self-admitted technical debt.
Comprehension studies the life cycle of self-admitted technical debt. Repayment
focuses on removal of self-admitted technical debt. This research found a lack of
research related to the repayment of self-admitted technical debt.

Maldonado et al. [48] studied the removal of self-admitted technical debt
by applying natural language processing to self-admitted technical debt. They
found that (i) the majority of self-admitted technical debt was removed, (ii) self-
admitted technical debt was often removed by the person who introduced it, and
(iii) self-admitted technical debt lasts between 18 to 172 days (median). Using
a survey, the authors also found that developers mostly use self-admitted techni-
cal debt to track bugs and code that requires improvement. Developers mostly
remove self-admitted technical debt when they are fixing bugs or adding new
features.

Zampetti et al. [93] conducted an in-depth quantitative and qualitative study
of self-admitted technical debt. They found that (i) 20% to 50% of the corre-
sponding comments were accidentally removed when entire methods or classes
were dropped, (ii) 8% of self-admitted technical debt removals were indicated in
the commit messages, and (iii) most of the self-admitted technical debt requires
complex changes, often changing method calls or conditionals.

Bavota and Russo [4] introduced a large-scale empirical study across 159 soft-
ware projects. From this data they performed manual analysis of 366 comments,
showing (i) an average of 51 self-admitted technical debt comments per system,

8

(ii) that self-admitted technical debt consists of 30% code debt, 20% defect debt,
and 20% requirement debt, (iii) the number of self-admitted technical debt com-
ments is increasing over time, and (iv) on average it takes over 1,000 commits
before self-admitted technical debt is fixed.

Wehaibi et al. [86] studied the relation between self-admitted technical debt
and software quality based on five open source projects (i.e., Hadoop, Chromium,
Cassandra, Spark, and Tomcat). Their result showed that (i) there is no clear
evidence that files with self-admitted technical debt had more defects than other
files, (ii) compared with self-admitted technical debt changes, non-debt changes
had a higher chance of introducing other debt, but (iii) changes related to self-
admitted technical debt were more difficult to achieve.

Mensah et al. [51] introduced a prioritization scheme. After running this
scheme on four open source projects, they found four causes of self-admitted tech-
nical debt which was code smells (23.2%), complicated and complex task (22.0%),
inadequate code testing (21.2%), and unexpected code performance (17.4%). The
result also showed that self-admitted technical design debt was prone to software
bugs, and that for highly prioritized self-admitted technical debt tasks, more than
ten lines of code were required to address the debt.

Kamei et al. [34] used analytics to quantify the interest of self-admitted tech-
nical debt to see how much of the technical debt incurs positive interest, i.e., debt
that indeed costs more to pay off in the future. They found that approximately
42–44% of the technical debt in their case study incurred positive interest.

Palomba et al. [53] conducted an exploratory study on the relationship be-
tween changes and refactoring and found that developers tend to apply a higher
number of refactoring operations aimed at improving maintainability and com-
prehensibility of the source code when fixing bugs. In contrast, when new features
are implemented, more complex refactoring operations are performed to improve
code cohesion. In most cases, the underlying reasons behind the application of
such refactoring operations were the presence of duplicate code or previously
introduced self-admitted technical debt.

Mensah et al. [50] propose a new technique to estimate Rework Effort, i.e.,
the effort involved to resolve self-admitted technical debt. They performed an
exploratory study using text mining to extract self-admitted technical debt from

9

source code comments. In order to extract source code comments, the authors
apply text mining on four open source projects. The result from four projects
shows a rework effort between 13 and 32 commented lines of code on average per
self-admitted technical debt comment.

Self-admitted technical debt Identification and Classification

Potdar and Shihab [58] tried to identify self-admitted technical debt by looking
into source-code comments in four open source project (i.e., Eclipse, Chromium
OS, Apache HTTP Server, and ArgoUML). Their study showed that (i) the
amount of debt in these project ranged between 2.4% and 31% of all files, (ii)
debt was created mostly by developers with more experience, and time pressures
and code complexity did not correlate with the amount of self-admitted technical
debt, and (iii) only 26.3% to 63.5% of self-admitted technical debt comments were
removed.

de Freitas Farias et al. [15] proposed a tool called CVM-TD (Contextualized
Vocabulary Model for identifying Technical Debt) to identify technical debt by
analyzing code comments. The authors performed an exploratory study on two
open source projects. The result indicated that (1) developers use dimensions of
CVM-TD when writing code comments, (2) CVM-TD provides vocabulary that
may be used to detect technical debt, and (3) models need to be calibrated.

de F. Farias et al. [14] investigated the use of CVM-TD with the purpose of
characterizing factors that affect the accuracy of the identification of technical
debt, and the most chosen patterns by participants as decisive to indicate tech-
nical debt items. The authors conducted a controlled experiment to evaluate
CVM-TD, considering factors such as English skills and experience of developers.

Silva et al. [75] investigated the identification of technical debt in pull requests.
The authors found that the most common technical debt categories are design,
test, and project convention.

da Silva Maldonado et al. [13] tried identifying design-related and requirement-
related self-admitted technical debt using a maximum entropy classifier.

Huang et al. [26] tried classifying comments in terms of whether they con-
tained self-admitted technical debt or not, and reported that their proposal out-

10

performed the baseline method.
Maldonado and Shihab [47] studied types of self-admitted technical debt using

source code comments. This study classified types of self-admitted technical debt
into design debt, defect debt, documentation debt, requirement debt, and test
debt. The most common type of self-admitted technical debt is design debt and
the second most common type is requirement debt. Self-admitted technical debt
consist of 42% to 84% design debt, and 5% to 45% requirement debt.

Zampetti et al. [92] developed a machine learning approach to recommend
when design technical debt should be self-admitted. They found their approach
to achieve an average precision of about 50% and a recall of 52%. When predicting
cross-projects, the performance of the approach improved to an average precision
of 67% and a recall of 55%.

Yan et al. [89] identify self-admitted technical debt using change-level self-
admitted technical debt determination. This model identifies whether a change
introduces self-admitted technical debt. In order to create the model, they iden-
tified technical debt using all versions of source code comments. Then, they
manually label changes that introduce technical debt in comments and extract
25 features which belong to three groups, i.e., diffusion, history, and message.
After that, they create a classifier using random forest. Across seven projects,
this model achieves an AUC of 0.82 and cost-effectiveness of 0.80.

Flisar and Podgorelec [19] developed a new method to detect self-admitted
technical debt using word embedding trained from unlabeled code comments.
They then apply feature selection methods (Chi-square, Information Gain, and
Mutual Information), and use three classification algorithms (Naive Bayes, Sup-
port Vector Machine, and Maximum Entropy) to test on ten open source projects.
Their proposed method was able to achieve 82% correct predictions.

Liu et al. [46] proposed a self-admitted technical debt detector tool which is
able to detect debt comments using text mining and is able to manage detected
comments in an IDE via an Eclipse plug-in.

Ren et al. [61] proposed a Convolutional Neural Network for classifying code
comments as self-admitted technical debt or not, based on ten open source projects.
Their approach outperforms text-mining-based methods both in terms of within-
project and cross-project prediction.

11

Empirical Studies on (self-admitted) Technical Debt

Storey et al. [79] studied how annotations in code comments (e.g., TODO,
FIXME) are used by developers to keep track of tasks. Several types of activities
are supported by these annotations, e.g., the usage of TODOs to ask questions
to other developers during code comprehension. These annotations are a subset
of the ones used nowadays to detect SATD.

Guo et al. [23] studied a specific technical debt instance to assessing its impact
on the project costs. Their findings confirmed the harmfulness of technical debt,
showing that the delayed task resulted in tripled implementation costs.

Klinger et al. [35] investigated how decisions to acquire technical debt are
made within IBM by interviewing four technical architects. They found that
technical debt is often due to imposed requirements to meet a specific dead-
line sacrificing quality. Also, the interviewed architects reported a lack of effec-
tive communication between technical and non-technical stakeholders involved in
technical debt management.

Lim et al. [42] interviewed practitioners (35 in this case) to investigate their
perspective on TD. They found that most of the participants were familiar with
the notion of TD and they do consider it as a poor programming practice, but
more as an intentional decision to trade off competing concerns during develop-
ment [42]. Practitioners also highlighted the difficulty in measuring the cost of
TD. Similarly, Kruchten et al. [38] reported their understanding of the technical
debt in industry as the result of a four-year interaction with practitioners.

Spinola et al. [77] asked 37 practitioners to validate 14 statements about
TD (e.g., “The root cause of most technical debt is pressure from the customer ”
[62]). The statement achieving the highest agreement was “If technical debt is not
managed effectively, maintenance costs will increase at a rate that will eventually
outrun the value it delivers to customers”.

Kruchten et al. [37] provided theoretical foundations to the concept of TD
by presenting the “technical debt landscape”, classifying TD as visible or invisible
and highlighting the debt types causing evolvability and maintainability issues.
Alves et al. [3] proposed an ontology of terms on technical debt.

Potdar and Shihab [57] introduced the notion of SATD by mining five software

12

systems to investigate (i) the amount of SATD they contain, (ii) the factors
promoting the introduction of the SATD, and (iii) how likely is the SATD to
be removed. Bavota and Russo [5] performed a differentiated replication of that
study involving a larger set of subject systems (159), confirming the findings of
the original study.

Zazworka et al. [94] studied the overlap between the technical debt instances
detected by automated tools and by manual inspection, finding very little overlap.

Maldonado and Shihab [12] used the TD classification by Alves et al. [3] to
investigate the types of SATD more diffused in open source projects. They iden-
tified 33k comments in five software systems reporting SATD. These comments
have been manually read by one of the authors who found as the vast majority
of them (∼60%) reported design debt.

Wehaibi et al. [86] studied the relationship between SATD and software qual-
ity, finding that files with SATD do not have more defects compared to files
without SATD, but that changes in the context of SATD are more complex.
Sierra et al. [73] conducted a survey about SATD research, categorizing it into:
detection, comprehension, and repayment. They found a lack of research related
to repayment and management of SATD.

Automatic detection/management of SATD

Potdar and Shihab [57], the authors identified SATD using 62 textual patterns.
The patterns can be matched in code comments of a previously unseen project to
identify SATD. Farias et al. [10] built on top of these 62 patterns and developed
a model called CVM-TD (Contextualized Vocabulary Model for identifying TD)
that exploits combinations of the patterns to identify different types of technical
debt.

Maldonado et al. [11] presented an approach to automatically identify design
and requirement SATD by applying Natural Language Processing (NLP) on code
comments. A study performed on ten open source projects showed the superiority
of their approach as compared to the state-of-the-art, represented at that time
by the above-described pattern-based techniques. Wattanakriengkrai et al. [85]
developed a classifier to identify design and requirements SATD using N-gram

13

IDF and automated machine learning on Maldonado’s dataset. Comparing the
result with the previous study [11], the classifier outperforms the NLP approach
in both design and requirement. A similar idea has also been exploited by Huang
et al. [26] that leveraged text-mining for SATD identification. Also in this case,
the approach performed better than the pattern-based approach by Potdar and
Shihab [57]. This approach is also available as an Eclipse plug-in [45].

Ren et al. [60] proposed an approach based on Convolution Neural Networks
to classify code comments into SATD or non-SATD. An experiment performed
on ten projects and 63k comments showed that their approach outperforms text
mining techniques both for within-project and cross-project prediction.

Zampetti et al. [90] presented TEDIOUS (TEchnical Debt IdentificatiOn Sys-
tem), an approach to train a recommender to suggest developers writing new
code when to self-admit design TD, or improve the code being written. TE-
DIOUS achieves an average precision of ∼50%. Yan et al. [89] proposed a model
to determine whether a change introduces SATD. They manually labeled changes
that introduced SATD in the past and built a model exploiting 25 features to char-
acterize SATD-introducing changes. An empirical study across ∼100k changes
reported an AUC for the model of 0.82.

14

4 | Sentiment Classification Us-
ing N-gram IDF and Au-
tomated Machine Learning

Sentiment analysis is the process to classify the writer’s opinion in text into pos-
itive, neutral or negative. Sentiment analysis has been used to several practical
purposes in software development. However, it is reported that no tool is ready
to accurately classify sentences to negative, neutral, or positive, even if tools are
specifically customized for certain software engineering tasks. In this chapter we
propose a machine-learning based approach using n-gram features and an auto-
mated machine learning tool for sentiment classification.

1 Introduction

As software development is a human activity, identifying affective states in mes-
sages has become an important challenge to extract meaningful information. Sen-
timent analysis has been used to several practical purposes, such as identifying
problematic API features Zhang and Hou [95], assessing the polarity of app re-
views Panichella et al. [54], clarifying the impact of sentiment expressions to the
issue resolution time Ortu et al. [52], and so on.

Because of the poor accuracy of existing sentiment analysis tools trained with
general sentiment expressions Jongeling et al. [31], recent studies have tried to
customize such tools with software engineering datasets Lin et al. [44]. However,

15

it is reported that no tool is ready to accurately classify sentences to negative,
neutral, or positive, even if tools are specifically customized for certain software
engineering tasks Lin et al. [44].

One of the difficulties in sentiment classification is the limitation in a bag-of-
words model or polarity shifting because of function words and constructions in
sentences Li et al. [40]. Even if there are positive single words, the whole sentence
can be negative because of negation, for example. For this challenge, Lin et al.
adopted Stanford CoreNLP, a recursive neural network based approach that can
take into account the composition of words Socher et al. [76], and prepared a
software-engineering-specific sentiment dataset from a Stack Overflow dump Lin
et al. [44]. Despite their large amount of effort on fine-grained labeling to the tree
structure of sentences, they reported negative results (low accuracy) Lin et al.
[44].

In this chapter we propose a machine-learning based approach using n-gram
features and an automated machine learning tool for sentiment classification.
Although n-gram phrases are considered to be informative and useful compared
to single words, using all n-gram phrases is not a good idea because of the large
volume of data and many useless features Bespalov et al. [7]. To address this
problem, we utilize n-gram IDF, a theoretical extension of Inverse Document
Frequency (IDF) proposed by Shirakawa et al. Shirakawa et al. [69]. IDF measures
how much information the word provides; but it cannot handle multiple words.
N-gram IDF is capable of handling n-gram phrases; therefore, we can extract
useful n-gram phrases.

Automated machine learning is an emerging research area targeting the pro-
gressive automation of machine learning. Two important problems are known in
machine learning: no single machine learning technique give the best result on
all datasets, and hyperparameter optimization is needed. Automated machine
learning addresses these problems by running multiple classifiers and tries differ-
ent parameters to optimize the performance. In this study, we use auto-sklearn,
which contains 15 classification algorithms (random forest, kernel SVM, etc.),
14 feature pre-processing solutions (PCA, nystroem sampler, etc.), and 4 data
pre-process solutions (one-hot encoding, rescaling, etc.) Feurer et al. [18]. Us-
ing n-gram IDF and auto-sklearn tools, Wattanakriengkrai et al. outperformed

16

Feature Extraction
using N-gram IDF

Text
Preprocessing

Positive

Negative

Neutral
Automated Machine

Learning

Jira issues

App reviews

Stack Overflow

Figure 4.1. An overview of our sentiment classification approach

the state-of-the-art self-admitted technical debt identification Wattanakriengkrai
et al. [84].

2 Method

Figure 4.1 shows an overview of our method with the following three components.
Text Preprocessing. Messages in software document sometimes contain

special characters. We remove characters that are neither English characters nor
numbers. Stop words are also removed by using spaCy library. spaCy tokenizes
text and finds part of speech and tag of each token and also checks whether the
token appears in the stop word list.

Feature extraction using N-gram IDF. N-gram IDF is a theoretical ex-
tension of IDF for handling words and phrases of any length by bridging the
gap between term weighting and multiword expression extraction. N-gram IDF
can identify dominant n-grams among overlapping ones Shirakawa et al. [69]. In
this study, we use N-gram Weighting Scheme tool Shirakawa et al. [69]. The
result after applying this tool is a dictionary of n-gram phrases (n ≤ 10 as a
default setting) with their frequencies. N-gram phrases appear only one time in
the whole document (frequency equal one) are removed, since they are not useful
for training.

Automated machine learning. To classify sentences into positive, neutral,
and negative, we use auto-sklearn, an automated machine learning tool. Auto-

17

mated machine learning tries running multiple classifiers and applying different
parameters to derive better performances. Auto-sklearn composes two steps:
meta-learning and automated ensemble construction Feurer et al. [18]. We ran
auto-sklearn with 64 gigabytes of memories, set 90 minutes limitation for each
round, and configure it to optimize for a weighted F1 value, an average F1 value
for three classes weighted by the number of true instance of each class.

3 Evaluation

3.1 Datasets and Settings

We employ a dataset provided by Lin et al.’s work Lin et al. [44]. There are three
types of document in the dataset; sentences in questions and answers on Stack
Overflow, reviews of mobile applications, and comments on Jira issue trackers.
Each dataset has texts and labels of positive, neutral and negative.

Since our method requires just labeled (positive, neutral, or negative) sen-
tences, we can use dataset-specific data for training. For training and testing,
we apply 10-fold cross-validation for each dataset, that is, we split sentences in a
dataset into ten subsets with maintaining the ratio from the oracles by using the
function StratifiedShuffleSplit in scikit-learn.

3.2 Sentiment Classification Tools

To assess the performance of our method, we compare our method with tools
presented in the previous work Lin et al. [44].
SentiStrength estimates the strength of positive and negative scores based on
the sentiment word strength list prepared from MySpace comments Thelwall et al.
[81].
NLTK is a natural language toolkit and is able to do sentiment analysis based on
lexicon and rule-based VADER (Valence Aware Dictionary and sEntiment Rea-
soner), which is specifically tuned for sentiments expressed in social media Hutto
and Gilbert [27].
Stanford CoreNLP adopts a deep learning model to compute the sentiment
based on how words compose the meaning of the sentence Socher et al. [76]. The

18

model has been trained on movie reviews.
SentiStrength-SE is a tool build on top of SentiStrength and has been trained
on JIRA issue comments Islam and Zibran [30].
Stanford CoreNLP SO prepared Stack Overflow discussions to train a model
of Standford CoreNLP Lin et al. [44].

3.3 Result

Table 4.1 shows the number of correct predictions, precision, recall, and F1 val-
ues with all tools including our method (n-gram auto-sklearn). These values
were presented in Lin et al. [44] (F1 values are calculated by us). Precision, re-
call, and F1 values are derived as the average from the 10 rounds of our 10-fold
cross-validation, since same data can appear in different rounds with Stratified-
ShuffleSplit.

We can see that the number of correct predictions are higher with our method
in all three datasets, and our method achieved the highest F1 values for all three
positive, all three negative, and one neutral. Although the values are low for the
neutral class in App reviews, this is because the amount of neutral sentences is
small in this dataset. In summary, our method using n-gram IDF and automated
machine learning (auto-sklearn) largely outperformed existing sentiment analysis
tools. Since our method relies on n-gram phrases, it cannot properly classify
text without known n-gram phrases. Although a negative sentence “They all
fail with the following error” was correctly classified with SentiStrength, NLTK,
and Stanford CoreNLP, our method classified as neutral. Preparing more data is
preferable to improve the performance.

Note that only our method trains within-dataset for all three cases. Although
within-dataset training can improve the performances of other tools, preparing
training data for those sentiment analysis tools require considerable manual ef-
fort Lin et al. [44]. Since our method can automatically learn dataset-specific
text features, learning within-dataset is practically feasible.

The following are classifiers achieved the top three performances in auto-sklearn
for each dataset.

• Stack Overflow: Linear Discriminant Analysis, LibSVM Support Vector
Classification, and Liblinear Support Vector Classification

19

Ta
bl

e
4.

1.
T

he
co

m
pa

ri
so

n
re

su
lt

of
th

e
nu

m
be

r
of

co
rr

ec
te

d
pr

ed
ic

ti
on

,p
re

ci
si

on
,r

ec
al

l,
an

d
f1

-s
co

re

d
at

as
et

to
ol

#
co

rr
ec

t
p
re

d
ic

ti
on

p
os

it
iv

e
n
eu

tr
al

n
eg

at
iv

e
p
re

ci
si

on
re

ca
ll

F
1

p
re

ci
si

on
re

ca
ll

F
1

p
re

ci
si

on
re

ca
ll

F
1

S
ta

ck
O

ve
rfl

ow
Se

nt
iS

tr
en

gt
h

10
43

0.
20

0
0.

35
9

0.
25

7
0.

85
8

0.
77

2
0.

81
3

0.
39

7
0.

43
3

0.
41

4
po

si
ti

ve
:

17
8

N
LT

K
11

68
0.

31
7

0.
24

4
0.

27
6

0.
81

5
0.

94
1

0.
87

3
0.

62
5

0.
08

4
0.

14
8

ne
ut

ra
l:

1,
19

1
St

an
df

or
d

C
or

eN
LP

60
4

0.
23

1
0.

34
4

0.
27

6
0.

88
4

0.
34

4
0.

49
5

0.
17

7
0.

83
7

0.
29

2
ne

ga
ti

ve
:

13
1

Se
nt

iS
tr

en
gt

h-
SE

11
70

0.
31

2
0.

22
1

0.
25

9
0.

82
6

0.
93

0
0.

87
5

0.
50

0
0.

18
5

0.
27

0
su

m
:

1,
50

0
St

an
fo

rd
C

or
eN

LP
SO

11
39

0.
31

7
0.

14
5

0.
19

9
0.

83
6

0.
88

6
0.

86
0

0.
36

5
0.

36
5

0.
36

5
N

-g
ra

m
au

to
-s

kl
ea

rn
13

17
0.

66
7

0.
31

6
0.

41
8

0.
87

1
0.

93
9

0.
90

4
0.

60
0

0.
47

2
0.

51
4

N
-g

ra
m

au
to

-s
kl

ea
rn

w
it

h
SM

O
T

E
†

-
0.

68
0

0.
00

5
0.

00
9

0.
34

4
0.

93
0

0.
49

9
0.

65
7

0.
16

0
0.

25
1

A
p
p

re
vi

ew
s

Se
nt

iS
tr

en
gt

h
21

3
0.

74
5

0.
86

6
0.

80
1

0.
11

3
0.

32
0

0.
16

7
0.

81
5

0.
33

8
0.

47
8

po
si

ti
ve

:
18

6
N

LT
K

18
4

0.
75

1
0.

81
2

0.
78

0
0.

09
3

0.
44

0
0.

15
4

1.
00

0
0.

16
9

0.
28

9
ne

ut
ra

l:
25

St
an

df
or

d
C

or
eN

LP
23

7
0.

83
1

0.
71

5
0.

76
9

0.
17

6
0.

24
0

0.
20

3
0.

66
7

0.
75

4
0.

70
8

ne
ga

ti
ve

:
13

0
Se

nt
iS

tr
en

gt
h-

SE
20

1
0.

74
1

0.
81

7
0.

77
7

0.
10

6
0.

40
0

0.
16

8
0.

92
9

0.
30

0
0.

45
4

su
m

:
34

1
St

an
fo

rd
C

or
eN

LP
SO

14
2

0.
77

0
0.

25
3

0.
38

1
0.

08
4

0.
32

0
0.

13
3

0.
47

0
0.

66
9

0.
55

2
N

-g
ra

m
au

to
-s

kl
ea

rn
29

3
0.

82
2

0.
89

4
0.

85
3

0.
08

3
0.

06
6

0.
07

3
0.

82
3

0.
80

8
0.

80
7

N
-g

ra
m

au
to

-s
kl

ea
rn

w
it

h
SM

O
T

E
†

-
0.

52
0

0.
88

5
0.

64
1

0.
10

0
0.

05
8

0.
07

3
0.

64
8

0.
62

2
0.

60
7

Ji
ra

is
su

es
Se

nt
iS

tr
en

gt
h

71
4

0.
85

0
0.

92
1

0.
88

4
-

-
-

0.
99

3
0.

70
3

0.
82

3
po

si
ti

ve
:

29
0

N
LT

K
27

6
0.

84
0

0.
36

2
0.

50
6

-
-

-
1.

00
0

0.
26

9
0.

42
4

ne
ut

ra
l:

0
St

an
df

or
d

C
or

eN
LP

62
6

0.
72

6
0.

62
1

0.
66

9
-

-
-

0.
94

5
0.

70
1

0.
80

5
ne

ga
ti

ve
:

63
6

Se
nt

iS
tr

en
gt

h-
SE

70
4

0.
94

8
0.

88
3

0.
91

4
-

-
-

0.
99

6
0.

70
4

0.
82

5
su

m
:

92
6

St
an

fo
rd

C
or

eN
LP

SO
33

3
0.

63
5

0.
25

2
0.

36
1

-
-

-
0.

72
4

0.
40

9
0.

52
3

N
-g

ra
m

au
to

-s
kl

ea
rn

88
4

0.
96

0
0.

83
9

0.
89

3
-

-
-

0.
93

2
0.

98
2

0.
95

6

N
-g

ra
m

au
to

-s
kl

ea
rn

w
it

h
SM

O
T

E
†

-
0.

98
6

0.
70

4
0.

80
9

-
-

-
0.

78
1

0.
98

8
0.

87
2

†
A

pp
ly

in
g

SM
O

T
E

,a
ov

er
sa

m
pl

in
g

te
ch

ni
qu

e,
fo

r
m

y
m

et
ho

d.

20

• App reviews: Random forest, LibSVM Support Vector Classification, and
Naive Bayes classifier for multinomial models

• Jira issues: Naive Bayes classifier for multinomial models, Adaptive Boost-
ing, and Linear Discriminant Analysis

If we have a new unlabeled dataset, we can first try one of the common classifiers.
By manually annotating labels, we can try auto-sklearn to find the best classifier
for the dataset.

4 Discussions

4.1 Threats to Validity

Competitive sentiment classification tools are trained only with specific
dataset. Since our method is based on a general text classification approach,
we could conduct within-dataset training. However, because of a considerable
amount of manual effort for training sentiment classification tools, they had been
trained only with specific datasets. Although we think this is an advantage of
our method, the comparison is not with the same condition.

Imbalanced data. In this multi-class classification, some datasets are not
balanced; neutral class is the majority for Stack Overflow and no neural data
for Jira issues. Applying some balancing techniques may improve the overall
performances.

Our study might not be generalize to other datasets. Our approach
is applied to comments, reviews, and questions and answers. Other types of
document related to software engineering may derive different results.

4.2 Obtained N-gram Phrases

Why our method achieved high accuracy performance in sentiment classification?
Table 4.2 shows selected n-gram phrases, which were useful for classifying pos-
itive, neutral, and negative statements, obtained in each dataset. For negative,
we see ‘bug’, a software-engineering-specific negative word, and many negation
expressions. We can also see reasonable n-gram phrases for positive cases, such

21

Table 4.2. Obtained n-gram phrases (selected)
dataset positive neutral negative

Stack Overflow

‘useful’ ‘suggest’, ‘using’ ‘wrong’
‘the’, ‘simplest’, ‘solution’ ‘everyone’ ‘bug’
‘more’, ‘efficient’, ‘to’ ‘limitation’ ‘i’, ‘do’, ‘n’, ‘t’, ‘understand’
‘helpful’ ‘appointment’ ‘i’, ‘do’, ‘n’, ‘t’, ‘know’
‘a’, ‘good’, ‘example’ ‘technical’ ‘does’, ‘n’, ‘t’, ‘work’

App reviews

‘thanks’, ‘for’ ‘let’, ‘me’, ‘know’ ‘impossible’, ‘to’, ‘use’
‘really’, ‘like’, ‘this’, ‘app’ ‘gets’, ‘the’, ‘job’, ‘done’ ‘game’, ‘constantly’, ‘freezes’
‘well’, ‘done’ ‘android’, ‘device’ ‘uninstalled’
‘awesome’ ‘allow’ ‘disappointing’
‘easy’, ‘to’, ‘use’, ‘and’ ‘suggestions’ ‘lack’, ‘of’, ‘features’

Jira issues

‘thank’, ‘you’, ‘very’, ‘much’ - ‘problems’
‘looks’, ‘good’, ‘we’ - ‘is’, ‘bad’
‘awesome’, ‘work’ - ‘i’, ‘disagree’
‘thanks’, ‘for’, ‘your’, ‘help’ - ‘really’, ‘sucks’
‘awesome’, ‘stuff’ - ‘this’, ‘bug’

as ‘useful’, ‘really like this app’, ‘awesome work’, and so on. We can think that
because of these dataset-specific positive, neutral, and negative patterns, n-gram
IDF worked well for resolving the limitation in a bag-of-words model and our
method have resulted in good performance.

5 Conclusion

In this chapter, we proposed a sentiment classification method using n-gram IDF
and automated machine learning. We apply this method on three datasets in-
cluding question and answer from Stack Overflow, reviews of mobile applications,
and comments on Jira issue trackers.

Our good classification performance is not based only on an advanced auto-
mated machine learning. N-gram IDF also worked well to capture dataset-specific,
software-engineering-related positive, neutral, and negative expressions. Because
of the capability of extracting useful sentiment expressions with n-gram IDF, our
method can be applicable to various software engineering datasets.

22

5 | Identifying on-hold self-admitted
technical debt

Self-admitted technical debt refers to situations where a software developer knows
that their current implementation is not optimal and indicates this using a source
code comment. However, current research is largely focused on the detection
and classification of self-admitted technical debt, but has spent less effort on ap-
proaches to address the debt automatically. In this chapter, we introduce new par-
ticular class of self-admitted technical debt of self-admitted technical debt amenable
to automated management: on-hold SATD. We define on-hold SATD as self-
admitted technical debt which contains a condition to indicate that a developer
is waiting for a certain event or an updated functionality having been imple-
mented elsewhere and to propose tool support that can help developers manage
self-admitted technical debt more effectively.

1 Introduction

The metaphor of technical debt is used to describe the trade-off many software
developers face when developing software: how to balance near-term value with
long-term quality [16]. Practitioners use the term technical debt as a synonym for
“shortcut for expediency” [49] as well as to refer to bad code and inadequate refac-
toring [36]. Technical debt is widespread in the software domain and can cause
increased software maintenance costs as well as decreased software quality [43].

In many cases, developers know when they are about to cause technical debt,
and they leave documentation to indicate its presence [13]. This documenta-

23

tion often comes in the form of source code comments, such as “TODO: This
method is too complex, [let’s] break it up” and “TODO no methods yet
for getClassname”.1 Previous work [28] has explored the use of visualization
to support the discovery and removal of self-admitted technical debt, incorpo-
rating gamification mechanisms to motivate developers to contribute to the debt
removal. Current research is largely focused on the detection and classification of
self-admitted technical debt, but has spent less effort on approaches to address
the debt automatically, likely because work on the detection and classification is
still very recent.

Previous work [13] has developed an approach based on natural language
processing to automatically detect self-admitted technical debt comments and to
classify them into either design or requirement debt. Self-admitted design debt
encompasses comments that indicate problems with the design of the code while
self-admitted requirement debt includes all comments that convey the opinion of
a developer suggesting that the implementation of a requirement is incomplete.
In general terms, design debt can be resolved by refactoring whereas requirement
debt indicates the need for new code.

In this chapter, we hypothesize that it is possible to use automated techniques
based on natural language processing to understand a subset of the technical debt
categories identified in previous work in more detail, and to propose tool support
that can help developers manage self-admitted technical debt more effectively.
We make three contributions:

• A qualitative study on the removal of self-admitted technical debt. To un-
derstand what kinds of technical debt could be addressed or managed au-
tomatically, we annotated a statistically representative sample of instances
of self-admitted technical debt removal from the data set made available by
the authors of previous work [48]. While the focus of our annotators was
on the identification of instances of self-admitted technical debt that could
be automatically addressed, as part of this annotation, we also performed
a partial conceptual replication [72] of recent work by Zampetti et al. [93],2

1Examples from ArgoUML and Apache Ant, respectively [13].
2Note that Zampetti et al. [93] was published after we commenced this project, i.e., we do

not use their data.

24

// TODO the following code is copied from AbstractSimpleBeanDefinitionParser
// it can be removed if ever the doParse() method is not final!
// or the Spring bug http://jira.springframework.org/browse/SPR-4599 is resolved

Figure 5.1. Motivating Example3

who found that a large percentage of self-admitted technical debt removals
occur accidentally. We were able to confirm this finding: in 58% of the cases
in our sample, the self-admitted technical debt was not actually addressed,
but the admission was simply removed. This finding is also in line with
findings from Bazrafshan and Koschke [6] who reported a large number of
accidental removals of cloned code. Zampetti et al. [93] further reported
that in removing self-admitted technical debt comments, developers tend to
apply complex changes. Our work indirectly confirms this by finding that
a majority of changes which address self-admitted technical debt could not
easily be applied to similar debt in a different project.

• The definition of on-hold self-admitted technical debt (on-hold SATD). Our
annotation revealed one particular class of self-admitted technical debt
amenable to automated management: on-hold SATD. We define on-hold
SATD as self-admitted technical debt which contains a condition to indicate
that a developer is waiting for a certain event or an updated functionality
having been implemented elsewhere. Figure 5.1 shows an example of on-
hold SATD from the Apache Camel project. The developer is waiting for
an external event (the visibility of doParse() changing or an external bug
being resolved) and the comment admitting the debt is therefore on hold.

• The design and evaluation of a classifier for self-admitted technical debt.
Since software developers must keep track of many events and updates in
any software ecosystem, it is unrealistic to assume that developers will be
able to keep track of all self-admitted technical debt and of events that signal
that certain self-admitted technical debt is now ready to be addressed. To

3cf. https://github.com/apache/camel/blob/53177d55053a42f6fd33434895c60615713
f4b78/components/camel-spring/src/main/java/org/apache/camel/spring/handler/Be
anDefinitionParser.java

25

https://github.com/apache/camel/blob/53177d55053a42f6fd33434895c60615713f4b78/components/camel-spring/src/main/java/org/apache/camel/spring/handler/BeanDefinitionParser.java
https://github.com/apache/camel/blob/53177d55053a42f6fd33434895c60615713f4b78/components/camel-spring/src/main/java/org/apache/camel/spring/handler/BeanDefinitionParser.java
https://github.com/apache/camel/blob/53177d55053a42f6fd33434895c60615713f4b78/components/camel-spring/src/main/java/org/apache/camel/spring/handler/BeanDefinitionParser.java

support developers in managing self-admitted technical debt, we designed a
classifier which can automatically identify those instances of self-admitted
technical debt which are on hold, and detect the specific events that de-
velopers are waiting for. Our classifier achieves an area under the receiver
operating characteristic curve (AUC) of 0.98 for the identification, and 90%
of the specific conditions are detected correctly. This is a first step towards
automated tool support that can recommend to developers when certain
instances of self-admitted technical debt are ready to be addressed.

The remainder of this chapter is structured as follows: In Section 2, we present
our research questions and the methods that we used for collecting and analyz-
ing data for the qualitative study. The findings from this qualitative study are
presented in Section 3. Section 4 describes the design of our classifier to identify
on-hold SATD, and we present the results of our evaluation of the classifier in
Section 5. Section 6 discusses the discussions of this work, before Section 7 high-
lights the threats to validity. Section 8 outlines the conclusions and highlights
opportunities for future work.

2 Research Methodology

In this section, we detail our research questions as well as the methods for data
collection and analysis used in our qualitative study. We also describe the data
provided in our online appendix.

2.1 Research Questions

Our research questions focus on identifying how self-admitted technical debt
is typically removed and whether the fixes applied to this debt could be ap-
plied to address similar debt in other projects. To guide our work, we first ask
about the different kinds of self-admitted technical debt that can be found in
our data (RQ1.1), whether the commits which remove the corresponding com-
ments actually fix the debt (RQ1.2), and if so, what kind of fix has been applied
(RQ1.3). To understand the removal in more detail, we also investigate whether
the removal was the primary reason for the commit (RQ1.4), before investigating

26

the subset of self-admitted technical debt that could be managed automatically
(RQ1.5). Based on the definition of on-hold SATD which emerged from our
qualitative study to answer these questions, we then investigate its prevalence
(RQ1.6) and the accuracy of automated classifiers to identify this particular class
of self-admitted technical debt (RQ2.1) and its specific sub-conditions (RQ2.2):

RQ1 How do developers remove self-admitted technical debt?

RQ1.1 What kinds of self-admitted technical debt do developers indi-
cate?

RQ1.2 Do commits which remove the comments indicating self-admitted
technical debt actually fix the debt?

RQ1.3 What kinds of fixes are applied to address self-admitted technical
debt?

RQ1.4 Is the removal of self-admitted technical debt the primary reason
for the commits which remove the corresponding comments?

RQ1.5 Could the fixes applied to address self-admitted technical debt
be applied to address similar debt in other projects?

RQ1.6 How many of the comments indicating self-admitted technical
debt contain a condition to specify that a developer is waiting for a certain
event or an updated functionality having been implemented elsewhere?

RQ2 How accurately can our classifier automatically identify on-hold SATD?

RQ2.1 What is the best performance of our classifier to automatically
identify on-hold SATD?

RQ2.2 How well can our classifier automatically identify the specific
conditions in on-hold SATD?

2.2 Data Collection

To obtain data on the removal of self-admitted technical debt, we used the online
appendix of Maldonado et al. [48] as a starting point. In their work, Maldonado
et al. conducted an empirical study on five open source projects to examine how

27

Table 5.1. Data set
project SATD removal commits sample

Apache Camel 987 128
Apache Tomcat 910 125
Apache Hadoop 370 52
Gerrit Code Review 133 19
Apache Log4j 107 9

Total 2,507 333

self-admitted technical debt is removed, who removes it, for how long it lives in a
project, and what activities lead to its removal. They make their data available
in an online appendix4, which contains 2,599 instances of a commit removing
self-admitted technical debt. After removing duplicates, 2,507 instances remain.
The first two columns of Table 5.1 show the number of commits for each of the
five projects available in this data set. Note that as a consequence of reusing
this data set, we are implicitly also reusing Maldonado et al. [48]’s definition of
technical debt as well as their interpretation of what constitutes debt removal.

Based on this data set of commits which removed a comment indicating self-
admitted technical debt (after removing duplicates), we created a statistically
representative and random sample (confidence level 95%, confidence interval 5 of
333 commits. The last column of Table 5.1 shows the number of commits from
each project in our sample.

2.3 Data Analysis

To answer our first research question “How do developers remove self-admitted
technical debt?” and its sub-questions, we performed a qualitative study on the
sample of 333 commits which had removed self-admitted technical debt according
to the data provided by Maldonado et al. [48].

In the first step, the second and third author of this chapter independently
analyzed twenty commits from the sample to determine appropriate questions

4http://das.encs.concordia.ca/uploads/2017/07/maldonado_icsme2017.zip

28

http://das.encs.concordia.ca/uploads/2017/07/maldonado_icsme2017.zip

Ta
bl

e
5.

2.
Q

ua
lit

at
iv

e
an

no
ta

ti
on

sc
he

m
a

qu
es

ti
on

an
sw

er
s

m
ot

iv
at

io
n

D
oe

s
th

e
co

m
m

en
t

re
pr

es
en

t
se

lf-
ad

m
it

te
d

te
ch

ni
ca

ld
eb

t?
ye

s/
no

O
bs

er
va

ti
on

th
at

so
m

e
co

m
m

en
ts

th
at

M
al

do
na

do
et

al
.

[4
8]

ha
d

au
to

m
at

ic
al

ly
id

en
ti

fie
d

as
se

lf-
ad

m
it

te
d

te
ch

ni
ca

l
de

bt
di

d
no

t
ac

tu
al

ly
co

ns
ti

tu
te

de
bt

R
Q

1.
1

W
ha

t
ki

nd
of

se
lf-

ad
m

it
te

d
te

ch
ni

ca
ld

eb
t

w
as

it
?

op
en

D
is

ti
ng

ui
sh

in
g

di
ffe

re
nt

ki
nd

s
of

se
lf-

ad
m

it
te

d
te

ch
-

ni
ca

ld
eb

t,
w

it
h

th
e

ul
ti

m
at

e
go

al
of

id
en

ti
fy

in
g

on
es

th
at

ca
n

be
ad

dr
es

se
d

au
to

m
at

ic
al

ly
R

Q
1.

2
D

id
th

e
co

m
m

it
fix

th
e

se
lf-

ad
m

it
te

d
te

ch
ni

ca
ld

eb
t?

ye
s/

no
O

bs
er

va
ti

on
th

at
co

m
m

it
s

w
hi

ch
re

m
ov

e
se

lf-
ad

m
it

te
d

te
ch

ni
ca

l
de

bt
do

no
t

ne
ce

ss
ar

ily
fix

th
e

de
bt

,a
s

al
so

fo
un

d
by

Za
m

pe
tt

ie
t

al
.[

93
]

R
Q

1.
3

W
ha

t
ki

nd
of

fix
w

as
it

?
op

en
D

is
ti

ng
ui

sh
in

g
di

ffe
re

nt
ki

nd
s

of
fix

es
fo

r
se

lf-
ad

m
it

te
d

te
ch

ni
ca

ld
eb

t,
to

st
ud

y
w

he
th

er
fix

es
co

ul
d

be
ap

pl
ie

d
au

to
m

at
ic

al
ly

R
Q

1.
4

W
as

re
m

ov
in

g
th

e
se

lf-
ad

m
it

te
d

te
ch

ni
ca

l
de

bt
th

e
pr

i-
m

ar
y

re
as

on
fo

r
th

e
co

m
m

it
?

ye
s/

no
O

bs
er

va
ti

on
th

at
ev

en
fo

r
th

os
e

co
m

m
it

s
w

hi
ch

ad
-

dr
es

se
d

se
lf-

ad
m

it
te

d
te

ch
ni

ca
ld

eb
t,

th
is

w
as

no
tn

ec
-

es
sa

ri
ly

th
ei

r
m

ai
n

pu
rp

os
e

R
Q

1.
5

C
ou

ld
th

e
sa

m
e

fix
be

ap
pl

ie
d

to
si

m
ila

r
se

lf-
ad

m
it

te
d

te
ch

ni
ca

l
de

bt
in

a
di

ffe
re

nt
pr

oj
ec

t?

po
ss

ib
ly

/n
o

Id
en

ti
fy

in
g

fix
es

th
at

co
ul

d
po

te
nt

ia
lly

be
ap

pl
ie

d
au

-
to

m
at

ic
al

ly

R
Q

1.
6

D
oe

s
th

e
se

lf-
ad

m
it

te
d

te
ch

ni
ca

ld
eb

t
co

m
m

en
t

in
cl

ud
e

a
co

nd
it

io
n?

ye
s/

no
E

xp
lo

ri
ng

th
e

ph
en

om
en

on
of

on
-h

ol
d

SA
T

D
—

w
hi

ch
em

er
ge

d
fr

om
an

sw
er

in
g

th
e

pr
ev

io
us

qu
es

ti
on

—
in

m
or

e
de

ta
il

29

to be asked during the qualitative study, aiming to obtain insights into how
developers remove self-admitted technical debt and to identify the kinds of debt
that could be addressed or managed automatically. After several iterations and
meetings, the second and third author agreed on seven questions that should
be answered for each of the 333 commits during the qualitative study. These
questions along with their motivation and answer ranges are shown in Table 5.2.

The first author annotated all 333 commits following this annotation schema,
and the second and third author annotated 50% of the data each, ensuring that
each commit was annotated according to all seven questions by two researchers.
Note that not all questions applied to all commits. For example, all instances
which we classified as not representing self-admitted technical debt were not con-
sidered for future questions, and all commits which we classified as not fixing
self-admitted technical debt were not considered for questions such as “Could
the same fix be applied to similar Self-Admitted Technical Debt in a different
project?”.

After the annotation, the first three authors conducted multiple meetings
in which they determined consistent coding schemes for the two questions which
allowed for open answers and collaboratively resolved all disagreements in the an-
notation until reaching consensus on all ratings. We report the initial agreement
for each question before the resolution of disagreements as part of our findings in
the next section.5

2.4 Online Appendix

Our online appendix contains descriptive information on the 333 commits which
were labeled as removing self-admitted technical debt according to Maldonado
et al. [48] along with our qualitative annotations in response to the seven ques-
tions. Our online appendix also includes the data set we use in testing and
training our classifier. The appendix is available at https://tinyurl.com/onho
lddebt.

5We calculated kappa values using https://www.graphpad.com/quickcalcs/kappa1/.

30

https://tinyurl.com/onholddebt
https://tinyurl.com/onholddebt
https://www.graphpad.com/quickcalcs/kappa1/

0 50 100 150 200 250 300

yes
no

N/A

284 (85%)
19 (6%)
30 (9%)

Does the comment represent
Self-Admitted Technical Debt?

Figure 5.2. Distribution of answers to “Does the comment represent Self-Admitted
Technical Debt?”. Initial agreement among the annotators before resolving dis-
agreements: weighted kappa κ = 0.820 across 333 comments, i.e., “almost perfect”
agreement [83].

3 Findings

In this section, we describe the findings derived from our qualitative study, sep-
arately for each sub-question of RQ1.

3.1 Initial Analysis

As shown in Figure 5.2, we found that not all commits which were automatically
classified as removing self-admitted technical debt by the work of Maldonado
et al. [48] actually removed a comment indicating debt. In some cases (9%)—
indicated as N/A in Figure 5.2—the comment was not removed but only edited,
and in other cases (6%), the comment had been incorrectly tagged as self-admitted
technical debt, e.g., in the case of “It is always a good idea to call this
method when exiting an application”.

3.2 RQ1.1 What kinds of self-admitted technical debt do
developers indicate?

Our first research question explores the different kinds of self-admitted technical
debt found in our sample. Figure 5.3 shows the final result of our coding after con-
solidating the coding schema. The two most common kinds of debt in our sample
are “functionality needed” (44%) and “refactoring needed” (17%). An example for
the former is the comment “TODO handle known multi-value headers” while

31

0 50 100

functionality needed
refactoring needed

clarification request
workaround

wait
bug

explanation
other

124 (44%)
49 (17%)
43 (15%)

24 (8%)
13 (5%)
12 (4%)
5 (2%)
14 (5%)

RQ1.1 What kind of Self-Admitted
Technical Debt was it?

Figure 5.3. Distribution of answers to “What kind of Self-Admitted Technical
Debt was it?”. Initial agreement among the annotators before consolidating the
coding schema: 45.07% across 284 comments.

“XXX move message resources in this package” is an example for the latter.
We also identified a number of clarification requests (15%), such as “TODO: why
not use millis instead of nano?”. We coded self-admitted technical debt
comments that explicitly stated that they were temporary as workaround (8%),
e.g., “TODO this should subtract resource just assigned TEMPROARY”. We
identified some comments which indicated that the developer was waiting for
something (5%), such as “TODO remove these methods if/when they are available
in the base class!!!”. We will focus our discussion on these comments in the
later parts of this chapter. Finally, some comments which indicated technical
debt describe bugs (4%, e.g., “TODO this causes errors on shutdown...”) or
focus on explaining the code (2%, e.g., “some OS such as Windows can have
problem doing rename IO operations so we may need to retry a couple
of times to let it work”). Note that for this annotation, we assigned exactly
one code to each comment.

Previous classifications of self-admitted technical debt focused less on the
actions required to remove the debt and more on what part of the software devel-
opment lifecycle a debt item can be assigned to. For example, the categorisation
of Maldonado and Shihab [47] revealed five categories (design, defect, documen-
tation, requirement, and test), and the categorisation of Bavota and Russo [4]

32

0 50 100 150

yes
no

118 (42%)
166 (58%)

RQ1.2 Did the commit fix the Self-Admitted
Technical Debt?

Figure 5.4. Distribution of answers to “Did the commit fix the Self-Admitted
Technical Debt?”. Initial agreement among the annotators before resolving dis-
agreements: kappa κ = 0.731 across 284 comments, i.e., “substantial” agree-
ment [83].

revealed the same five categories plus a sixth category called “code”. In com-
parison, guided by our ultimate goal of identifying certain kinds of self-admitted
technical debt which can be fixed automatically, our categorisation focuses more
on what needs to be done in order to fix the debt, leading to categories such as
“functionality needed” or “refactoring needed”.

3.3 RQ1.2 Do commits which remove the comments in-
dicating self-admitted technical debt actually fix the
debt?

For the majority of commits (58%) which removed the comment indicating tech-
nical debt, the commit did not actually fix the problem described in the comment,
see Figure 5.4. Instead, these commits often removed the comment along with
the surrounding code. These findings are in line with recent work by Zampetti
et al. [93] who found that between 20% and 50% of self-admitted technical debt
is accidentally removed while entire classes or methods are dropped.

3.4 RQ1.3 What kinds of fixes are applied to address self-
admitted technical debt?

In the cases where the commit fixed the self-admitted technical debt, we also
coded the kind of fix that was applied. Figure 5.5 show the results of this coding:
Debt was either fixed by implementing new code (58%), by refactoring existing

33

0 50 100 150 200

implementation
refactoring

removing code
uncommenting code

removing workaround
other
N/A

68

18

14

8

5

5

215

RQ1.3 What kind of fix was it?

Figure 5.5. Distribution of answers to “What kind of fix was it?”. Initial agreement
among the annotators before consolidating the coding schema: 83.90% across 118
comments.

code (15%), by removing code (12%), by uncommenting code that had been pre-
viously commented out (7%), or by removing a workaround (4%). Note that we
used the commit message and/or related issue discussions to determine whether
a change was meant to remove a workaround or was truly a refactoring. Other
cases, such as uncommenting code, were easy to decide.

In the 215 cases where the commit does not fix the self-admitted technical
debt, 30 commits do not remove the self-admitted technical debt comments or
are tagged incorrectly, 19 comments do not represent self-admitted technical debt,
and 166 commits do not fix self-admitted technical debt.

Our categorisation of the different kinds of fixes is at a slightly more coarse-
granular level compared to that presented by Zampetti et al. [93] who identified
five categories (add/remove method calls, add/remove conditionals, add/remove
try-catch, modify method signature, and modify return) in addition to “other”.
In their categorisation, “other” accounts for 44% (339/779) of all instances. In
comparison, our categorisation is less fine-grained, but contains fewer “other”
cases.

Table 5.3 shows the relationship between the two coding schemes that emerged
from our qualitative data analysis: one for the kinds of technical debt indicated
in developer comments, and one for the kinds of fixes applied to this debt. Un-
surprisingly, many instances where new functionality was needed were addressed
by the implementation of said functionality, and cases where refactoring was

34

Ta
bl

e
5.

3.
T

yp
es

of
Se

lf-
A

dm
it

te
d

Te
ch

ni
ca

l
D

eb
t

an
d

th
e

C
or

re
sp

on
di

ng
F
ix

es
.

E
ac

h
ro

w
re

pr
es

en
ts

a
ty

pe
of

se
lf-

ad
m

it
te

d
te

ch
ni

ca
ld

eb
t,

an
d

ea
ch

co
lu

m
n

re
pr

es
en

ts
a

ty
pe

of
fix

.
T

he
su

m
of

ea
ch

ro
w

an
d

co
lu

m
n

in
di

ca
te

s
th

e
ov

er
al

ln
um

be
rs

fo
r

th
e

co
rr

es
po

nd
in

g
co

de
s,

re
sp

ec
ti

ve
ly

.
im

pl
em

en
ta

ti
on

re
fa

ct
or

in
g

re
m

ov
in

g
co

de
un

co
m

m
en

ti
ng

co
de

re
m

ov
in

g
w

or
ka

ro
un

d
ot

he
r

no
t

fix
ed

fu
nc

ti
on

al
ity

ne
ed

ed
54

1
0

0
0

0
69

re
fa

ct
or

in
g

ne
ed

ed
2

16
1

0
0

1
29

cl
ar

ifi
ca

ti
on

re
qu

es
t

5
0

4
0

0
1

33
w

or
ka

ro
un

d
2

0
2

3
5

0
12

w
ai

t
2

0
2

3
0

0
6

bu
g

2
0

1
2

0
1

6
ex

pl
an

at
io

n
0

0
0

0
0

0
5

ot
he

r
1

1
4

0
0

2
6

35

needed were addressed by refactoring. Interestingly, all comments of developers
explaining technical debt were removed without addressing the debt. An exam-
ple is the self-admitted technical debt comment “some OS such as Windows can
have problem doing delete IO operations so we may need to retry a couple
of times to let it work” in the Apache Camel project which was removed in
commit f10f55e6 together with the surrounding source code. We hypothesise that
in some cases, developers decide to replace code which requires an explanation
with simpler code. More work will have to be conducted to test this hypothe-
sis. Waits could sometimes be addressed by uncommenting code that had been
written in anticipation of the fix. A large number of comments indicating debt
were not addressed—for example, out of 43 comments which we coded as clari-
fication request, 33 (77%) were “resolved” by simply deleting the comment (e.g.,
the comment “TODO why zero?” was removed from the Apache Camel source
code in commit 3d8f4e97 without further explanation. Note that in cases where
more than one of our codes could apply, we noted the most prominent one. This
could for example occur in cases of long comments which were used to commu-
nicate different concerns. In such rare cases, we applied the code for the longest
section of the comment. This explains the small number of inconsistencies, e.g.,
a “functionality needed” debt fixed by a “refactoring”.

3.5 RQ1.4 Is the removal of self-admitted technical debt
the primary reason for the commits which remove the
corresponding comments?

The removal of technical debt was often not the primary reason for commits
which removed self-admitted debt, see Figure 5.6. We did not attempt to resolve
disagreements between annotators for this question as the concept of “primary
reason” can be ambiguous. Instead, instances where annotators disagreed are
shown as “unclear” in Figure 5.6.

An example of a commit which removed self-admitted technical debt even
6https://github.com/apache/camel/commit/f10f55e38945686827dc249703b16066826

57a62
7https://github.com/apache/camel/commit/3d8f4e9d68253269b4f5cf7e3cfea4553b4

6d74f

36

https://github.com/apache/camel/commit/f10f55e38945686827dc249703b1606682657a62
https://github.com/apache/camel/commit/f10f55e38945686827dc249703b1606682657a62
https://github.com/apache/camel/commit/3d8f4e9d68253269b4f5cf7e3cfea4553b46d74f
https://github.com/apache/camel/commit/3d8f4e9d68253269b4f5cf7e3cfea4553b46d74f

0 20 40

yes
no

unclear

46 (39%)
41 (35%)

31 (26%)

RQ1.4 Was removing the Self-Admitted Technical Debt
the primary reason for the commit?

Figure 5.6. Distribution of answers to “Was removing the Self-Admitted Technical
Debt the primary reason for the commit?”. Agreement among the annotators:
weighted kappa κ = 0.630 across 118 comments, i.e., “substantial” agreement [83].

though it was not the main purpose of the commit is Apache Camel commit
f47adf.8 The commit removed the following comment: “TODO: Support ordering
of interceptors”, but this was part of a much larger refactoring as described in
the commit message: “Overhaul of JMX”. On the other hand, the commit mes-
sage of commit 88ca359 from the same project “Added onException support
to DefaultErrorHandler” is very similar to the self-admitted technical debt
comment that was removed in this commit “TODO: in the future support
onException”, which suggests that removing the debt was the primary reason
for this commit.

3.6 RQ1.5 Could the fixes applied to address self-admitted
technical debt be applied to address similar debt in
other projects?

We annotated the 118 self-admitted technical debt comments which had been
fixed by a commit in terms of whether the fix applied in this commit could be
applied in a similar context in a different project. While this annotation was
subjective to some extent—as also indicated by our kappa agreement of 0.540

which was the lowest across all questions we answered about the self-admitted
8https://github.com/apache/camel/commit/f47adf75510ef71a5b4071e8c77af7abb9c

07dc9
9https://github.com/apache/camel/commit/88ca359343c3a96786d435985f46841eeff

cfb6e

37

https://github.com/apache/camel/commit/f47adf75510ef71a5b4071e8c77af7abb9c07dc9
https://github.com/apache/camel/commit/f47adf75510ef71a5b4071e8c77af7abb9c07dc9
https://github.com/apache/camel/commit/88ca359343c3a96786d435985f46841eeffcfb6e
https://github.com/apache/camel/commit/88ca359343c3a96786d435985f46841eeffcfb6e

0 20 40 60 80

possibly
no

40 (34%)
78 (66%)

RQ1.5 Could the same fix be applied to similar
Self-Admitted Technical Debt in a different project?

Figure 5.7. Distribution of answers to “Could the same fix be applied to similar
Self-Admitted Technical Debt in a different project?”. Agreement among the an-
notators: kappa κ = 0.540 across 118 comments, i.e., “moderate” agreement [83].

technical debt comments—we used our intuition about whether we could envision
tool support to address a comment automatically. We used our experience of
conducting research on automated tool support for source code manipulation for
this step.

We identified two kinds of self-admitted technical debt that could possibly be
handled automatically. The first kind are comments which are fairly specific, e.g.,
“TODO gotta catch RejectedExecutionException and properly handle it”.
Automated tool support could be built to at least catch the exception based on
this description. The second kind are comments which indicate that a developer
is waiting for something, which we will discuss further in the next subsection.
Figure 5.7 shows the ratio of fixes that could possibly be automated and ap-
plied in other settings, which is one third of all fixes. Note that we counted all
those comments as “possibly” that were rated as “possibly” by at least one anno-
tator. This finding supports Zampetti et al. [93] who found that most changes
addressing self-admitted technical debt require complex source code changes. The
primary goal of investigating this research question was the identification of types
of self-admitted technical debt likely amenable to being fixed automatically.

38

0 50 100 150 200 250

yes
no

27 (10%)
257 (90%)

RQ1.6 Does the Self-Admitted Technical Debt
comment include a condition?

Figure 5.8. Distribution of answers to “Does the Self-Admitted Technical Debt
comment include a condition?”. Initial agreement among the annotators before
resolving disagreements: weighted kappa κ = 0.618 across 284 comments, i.e.,
“substantial” agreement [83].

Table 5.4. Example of self-admitted technical debt on “on-hold” and “wait”

Example of SATD Category / On-hold or not

// TODO change to file when this is ready wait / non on-hold
// FIXME: Code to be used in case wait / non on-hold
route replacement is needed
// TODO: is needed when we add add functionality / on-hold
support for when predicate
// TODO: Camel 2.9/3.0 consider refactor / on-hold
moving to org.apache.camel

39

Data
 Preprocessing

N-gram
Feature

Extraction
 Classification Condition

Detection
On-hold

Comments

 SATD
 Comments

Conditions
Specified

Figure 5.9. Classification overview.

3.7 RQ1.6 How many of the comments indicating self-admitted
technical debt contain a condition to specify that a de-
veloper is waiting for a certain event or an updated
functionality having been implemented elsewhere?

A theme that emerged from answering the previous research question is the con-
cept of self-admitted technical debt comments which include a condition to indi-
cate that a developer is waiting for a certain event or an updated functionality
having been implemented elsewhere. Since no other obvious class of self-admitted
technical debt emerged which seemed amenable to automated tool support, we
focus on this kind of self-admitted technical debt for building a classifier (see
next section). We refer to this kind of debt as on-hold SATD—the comment is
on hold until the condition is met (see Figure 5.1 for examples). In our sample,
we identified 27 such comments, see Figure 5.8. These comments are also related
to the “wait” category shown in Figure 5.3, but not necessarily identical since
the question addressed by Figure 5.3 did not explicitly ask about conditions. Ta-
ble 5.4 shows examples of “on-hold” comments and those classified in the “wait”
category.

4 Design

Figure 5.9 shows the overview of our classifier for on-hold SATD identification
and the detection of the specific conditions that developers are waiting for. Given
self-admitted technical debt comments, data preprocessing and n-gram feature ex-
traction are applied before classifying them into on-hold or not. Within identified
on-hold SATD comments, specific conditions are detected.

40

0 50 100 150 200 250
Number of words

0.5

0.6

0.7

0.8

0.9

1.0
Si

m
ila

rit
y

Figure 5.10. Similarity between project names and words.

4.1 Data Preprocessing

Three preprocessing steps are applied, namely, term abstraction, lemmatization,
and special character removal.

Term Abstraction. Similar to a previous text classification study [59], we per-
form abstraction as a preprocessing step. The previous study [59] abstracted key-
words from GitHub README files. Their abstraction included mail-to links, hy-
perlinks, code blocks, images, and numbers. We also apply abstraction for hyper-
links (URLs), however, we do not apply the others because images, mail-to links,
and code blocks do not usually appear in comments. Instead, we introduce four
kinds of abstraction which are related to on-hold conditions. We target the follow-
ing terms: date expression, version, bug id, URL, and product name. Each term is
abstracted into a string: @abstractdate, @abstractversion, @abstractbugid,
@abstracturl, and @abstractproduct. Table 5.5 shows the regular expres-
sions we use to detect @abstractdate, @abstractversion, @abstractbugid,
and @abstracturl.

For abstracting product names for @abstractproduct, we try finding seman-

41

tically similar words to the project names and their sub-project names in our
data set, i.e., Apache, Camel, Tomcat, Hadoop, Gerrit, Log4j, Yarn, Mapreduce,
Hdfs, Ant, Jmeter, ArgoUML, Columba, Emf, Hibernate, Distribution, JEdit,
JFreechart, JRuby, and SQuirrel. Figure 5.10 shows the similarity between each
word in comments and project name and their related project using Spacy [25].10

According to the result, the similarity score drops drastically from 1.0—therefore,
we consider words with similarity 1.0 as project names. We obtained 77 words.

We apply this process because we are more interested in the existence of these
types rather than the actual terms, which do not appear frequently. For example,
considering the comment “TODO: CAMEL-1475 should fix this”, CAMEL-1475
will be changed to the string “@abstractproduct @abstractbugid”. Table 5.5
summarizes the regular expressions we used for identifying targeted terms. Re-
placements using the regular expressions are conducted from top to bottom in
the table. Subsequently, URLs linking to specific ids of bugs are abstracted to
“@abstracturl @abstractbugid”.

Lemmatization. Lemmatization is a process to reduce the inflection form of
words into dictionary form by considering the context in the sentences. This
process is applied to increase the frequency of words appearing by changing words
into dictionary forms using tools from Spacy [25].

Special character removal. Since non-English characters and non-numeric
ones do not represent words, we use the regular expression [^A-Za-z0-9]+ to
remove them. Stop word removal is not applied in this work because a stop word
list contains important keywords for identifying on-hold SATD (e.g., when, until).
We use Spacy to apply lemmatization which will change words into their dictio-
nary form. However, some single characters will appear, e.g., when lemmatising
“// TODO: Removed from UML 2.x” to “todo remove from uml 2 x”.

10Spacy has recently been found to achieve a higher accuracy when applied to software-related
text compared to other libraries [2].

42

4.2 N-gram Feature Extraction

We extract n-gram term features by applying N-gram IDF [68, 71]. Inverse Doc-
ument Frequency (IDF) has been widely used in many applications because of its
simplicity and robustness; however, IDF cannot handle phrases (i.e., groups of
more than one term). Because IDF gives more weight to terms occurring in fewer
documents, rare phrases are assigned more weight than good phrases that would
be useful in text classification. N-gram IDF is a theoretical extension of IDF for
handing multiple terms and phrases by bridging the theoretical gap between term
weighting and multi-word expression extraction [68, 71].

Terdchanakul et al. [80] reported that for classifying bug reports into bugs
or non-bugs, classification models using features from N-gram IDF outperform
models using topic modeling features. In addition to this, we consider that n-
gram word features are beneficial for comment classification rather than topic
modeling because source code comments are generally short and contain only a
small number of words.

Wattanakriengkrai et al. [85] created classification models to identify design
and requirement self-admitted technical debt using source code comments. By
using N-gram IDF and auto-sklearn automated machine learning, classification
models outperform models with single word features.

In this study, we use an N-gram Weighting Scheme tool [65], which uses an
enhanced suffix array [1] to enumerate valid n-grams. We obtain a list of all
valid n-grams that contain at most 10 terms from the on-hold self-admitted tech-
nical debt comments and remove n-grams which have frequency equal to one.
We obtain about one thousand two hundred n-gram terms from our 267 on-
hold self-admitted technical debt comments. After that, we apply Auto-sklearn’s
feature selection. Auto-sklearn includes two feature selection functions from
the sklearn library, sklearn.feature_selection.GenericUnivariateSelect (Univariate
feature selector) and sklearn.feature_selection.SelectPercentile (Select features
according to percentile). Calling these functions is part of Auto-sklearn’s fea-
ture preprocessing—it selects suitable feature processing based on meta-learning
automatically.

43

4.3 Classifier Learning

Given the set of n-gram term features from the previous step, we build a clas-
sifier that can identify on-hold SATD by classifying self-admitted technical debt
comments into on-hold or not.

In machine learning, two problems are known: (1) no single machine learning
method performs best on all data sets, and (2) some machine learning methods
rely heavily on hyperparameter optimization. Automated machine learning aims
to optimize choosing a good algorithm and feature preprocessing steps [18]. To
obtain the best performance (RQ2.1), similar to Wattanakriengkrai et al. [85]’s
work, we apply auto-sklearn [18], a tool of automated machine learning.

Auto-sklearn addresses these problems as a joint optimization problem [18].
Auto-sklearn includes 15 base classification algorithms, and produces results from
an ensemble of classifiers derived by Bayesian optimization [18].

For classifier learning, we prepare feature vectors with N-gram TF-IDF scores
of all n-gram terms. The score is calculated with the following formula:

n-gram TF-IDF = log(
|D|
sdf

) ∗ gtf

where |D| is the total number of comments, sdf is the document frequency of a
set of terms composing an n-gram, and gtf is the global term frequency.

4.4 On-hold Condition Detection

After on-hold SATD comments are identified, we try to identify their on-hold
conditions. During our annotation, we found conditions of self-admitted technical
debt that are related to waiting for a bug to be fixed, a release of a library, or a
new version of a library.

• For a bug to be fixed, we abstract the bug report number. In a bug report
tracking system, the bug report number is created by using the project name
and report number which we abstract using the keywords @abstractproduct
and @abstractbugid.

• For release date, we abstract it using the keyword @abstractdate.

44

• For a new version of a library, the library version usually appears in a
project name and release version (e.g., 1.9.3, 4.0), which we abstract using
the keywords @abstractproduct and @abstractversion.

As we have already replaced these terms with specific keywords shown in Ta-
ble 5.5, we can derive conditions by recovering the original terms. The following
is our detection process.

1. Extract keywords of @abstractdate, @abstractversion, @abstractbugid,
and @abstractproduct by preserving the order of appearance in the iden-
tified on-hold SATD comments.

2. Group keywords to make valid conditions. Only the following sets of key-
words are considered to be valid conditions, and other keywords that do
not match the following orders are ignored.

• {@abstractdate}: an individual date expression.

• {@abstractproduct, @abstractversion, ...}: a product name fol-
lowed by one or more version expressions, to indicate specific versions
of the product.

• {@abstractproduct, @abstractbugid, ...}: a product name fol-
lowed by one or more bug ID expressions, to indicate specific bugs of
the product.

Identifying these keywords as conditions is not trivial, because they also fre-
quently appear in comments that do not indicate on-hold SATD. Since we limit
this detection to the identified on-hold comments, we expect that this simple
process can work.

5 Evaluation

In this section, we describe the steps we took to evaluate our classifier.

45

5.1 Data Preparation and Annotation

As shown in Figure 5.8, we found fewer than 30 on-hold SATD comments in the
sample of 333 comments. Since it is difficult to train classifiers on such a small
number of instances, we investigated all 2,507 comments again to prepare data for
our classification. After that, the first and third author separately annotated the
remaining comments in terms of (i) whether comments represent self-admitted
technical debt (similar to Figure 5.2) and (ii) whether the self-admitted technical
debt comments include a condition (similar to Figure 5.8). All conflicts in this
annotation were resolved by the second author. Note that we decided to train the
classifier on comments which had been removed through the resolution of self-
admitted technical debt to ensure we were able to consider the entire lifecycle
of the self-admitted technical comment before deciding whether to consider it
on-hold.

We also include a data set from ten open source projects introduced by da Silva
Maldonado et al. [13]. First, we randomly selected a sample of 30 comments out
of all 3,299 comments. The first author, third author, and an external annotator
annotated these comments, resulting in 97.78% overall agreement, i.e., “almost
perfect” according to Viera and Garrett [83]. Then the first author annotated
the remaining comments.

Tables 5.6 and 5.7 show the result of this data preparation. From 5,806
comments, 333 comments are samples of removed self-admitted technical debt and
225 comments that do not represent self-admitted technical debt are excluded.
We obtained 267 on-hold comments and 4,981 other comments, which are used
for our classification. After excluding duplicate comments, our dataset contains a
total of 5,248 comments. Before exclusion, 410 comments were duplicates which
can be grouped into 168 sets of comments. Among these 168 sets of duplicates,
11 sets (24 comments) are on-hold comments, and 157 sets (386 comments) are
non on-hold comments.

5.2 Evaluation Settings

We measure the classification performance in terms of precision, recall, F1, and
AUC. AUC is the area under the receiver operating characteristic curve. The

46

receiver operating characteristic curve is created by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various threshold settings.

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

F1 =
2 · (precision · recall)
(precision+ recall)

TPR =
tp

tp+ fn

FPR =
fp

tn+ fp

where tp is the number of true positives, tn is the number of true negatives,
fp is the number of false positives, and fn is the number of false negatives.

Comparison. A Naive Baseline is created based on the assumption that it is
also possible to find on-hold technical debt comments while using basic searching
similar to the grep command. The words we use for searching are selected from
the top 30 words that appear frequently in comments. We manually classify words
to select those that relate to on-hold technical debt. The words we selected are
“should”, “when”, “once”, “remove”, “workaround”, “fixed”, “after”, and “will”.

To assess the effectiveness of n-gram features in classifying on-hold SATD
comments, we compare the performances of classifiers using N-gram TF-IDF and
traditional TF-IDF [63]. Except for feature extraction, the two classifiers are
prepared using the same settings including term abstraction.

Ten-fold cross-validation. Ten-fold cross-validation divides the data into ten
sets and every set is used as test set once while the others are used for training.
Due to the imbalance between the number of positive and negative instances,
we use the Stratified ShuffleSplit cross validator of scikit-learn made available
by Pedregosa et al. [55], which intends to preserve the percentage of samples
from each class. Because of this process, some instances can appear multiple
times in different sets. Therefore we report the mean values of the evaluation
metrics across all ten runs as the performance.

47

To measure the effect of rebalancing on our classification, we compare the
performance of N-gram TF-IDF with and without Stratified ShuffleSplit.

5.3 RQ2.1 What is the best performance of a classifier to
automatically identify on-hold SATD?

As shown in Table 5.8, our classifier with n-gram TF-IDF achieved a mean pre-
cision of 0.75, a mean recall of 0.78, a mean F1-score of 0.77, and a mean AUC
of 0.98. N-gram TF-IDF has the best performance in every evaluation except
precision which has a similar score with N-gram TF-IDF without rebalancing.
We consider that both precision and recall are essential for this kind of recom-
mendation system. Precision is important since false positives (i.e., unwarranted
recommendations) will annoy developers. However, recall is still important since
false negatives (i.e., recommendations that the system could have made but did
not) might cause problems since developer will be unaware of important infor-
mation. Table 5.9 shows the top features from N-gram TF-IDF ranked by how
frequently our classifier uses them to distinguish on-hold comments from other
self-admitted technical debt comments.

We also run an experiment for both cross-project classification and within-
project classification on projects for which the ratio of on-hold SATD comments
among all self-admitted technical debt comments is more than 2%. For cross-
project classification, we divide data into sets according to their project. Every
set is used as test set once while the other sets are used for training. Table 5.10
shows the results for each project. On average, our classifier with cross-project
classification achieved a mean precision of 0.46, a mean recall of 0.52, a mean
F1-score of 0.45, and a mean AUC of 0.93.

For within-project classification, in each project, we apply a ten-fold classifi-
cation with the Stratified ShuffleSplit cross validator. Table 5.11 shows the result
for each project. Among them, five projects (Camel, Hadoop, Tomcat, ArgoUML,
and JRuby) have a similar score or higher compared to cross-project classification
according to all metrics. Another four projects (Ant, Gerrit, JEdit, and SQuir-
rel) have a lower score compared to cross-project classification according to all
metrics. The difference between these two groups is that the first group has the

48

/*
* TODO: After YARN-2 is committed, we should call containerResource.getCpus()
* (or equivalent) to multiply the weight by the number of requested cpus.
*/

Figure 5.11. On-hold SATD example which we correctly identify11

number of on-hold comments >= 20 while the second group has the number of
on-hold comments < 10.

5.4 RQ2.2 How well can our classifier automatically iden-
tify the specific conditions in on-hold SATD?

Because of our treatment of imbalanced data (see Section 5.3), some comments
can appear multiple times in the test set. We consider that an on-hold comment
is correctly identified only if it has been classified correctly in all cases where it
was part of the test set. Our classifier was able to identify 219 out of 267 on-hold
comments correctly. Among them, 94 comments contain abstraction keywords
which indicate a specific condition, and all those instances were confirmed to be
specific conditions by manual investigation. Table 5.12 shows examples of on-
hold comments and their specific conditions. However, some comments do not
mention specific conditions, such as “This crap is required to work around
a bug in hibernate”. Among the 48 false positives (incorrectly identified com-
ments), 10 comments contain abstraction keywords, but these keywords are used
for references and not for conditions that a developer is waiting for. In summary,
90% (94/(10+94)) of the detected specific conditions are correct, and for 43%
(94/219) of the on-hold comments, we were able to identify the specific condition
that a developer was waiting for.

11cf. https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc6
9bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-serv
er-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/Cg
roupsLCEResourcesHandler.java

12cf. https://github.com/gerrit-review/gerrit/commit/0485172aaa70e3b1f0e98c002
15672657e6f462e/gerrit-gwtui/src/main/java/com/google/gerrit/client/diff/Code
MirrorDemo.java

49

https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/gerrit-review/gerrit/commit/0485172aaa70e3b1f0e98c00215672657e6f462e/gerrit-gwtui/src/main/java/com/google/gerrit/client/diff/CodeMirrorDemo.java
https://github.com/gerrit-review/gerrit/commit/0485172aaa70e3b1f0e98c00215672657e6f462e/gerrit-gwtui/src/main/java/com/google/gerrit/client/diff/CodeMirrorDemo.java
https://github.com/gerrit-review/gerrit/commit/0485172aaa70e3b1f0e98c00215672657e6f462e/gerrit-gwtui/src/main/java/com/google/gerrit/client/diff/CodeMirrorDemo.java

/**
* Ugly workaround because CodeMirror never hides lines completely.
* TODO: Change to use CodeMirror’s official workaround after
* updating the library to latest HEAD.
*/

Figure 5.12. On-hold SATD example which our classifier cannot identify12

Figure 5.11 shows an example of an on-hold SATD comment. Our model
can identify conditions using the keywords @abstractproduct and @abstractbugid
referring to YARN-2. Figure 5.12 shows an example that our classifier could not
identify correctly. The on-hold condition refers to a workaround waiting for an
update to the CodeMirror library.

5.5 Developer Feedback

To evaluate whether our approach for detecting on-hold SATD could be useful
in practice, we ran the cross-project classifier on the source code of the open-
source project JabRef, a graphical Java application for managing BibTEX and
biblatex (.bib) databases.13 We used source code comments containing SATD
keywords from Huang et al. [26] (Table 1 and Table 16) and an abstractkeyword
as input and classified the resulting data into on-hold and not on-hold. From
the classification result, we obtained a total of 22 potential on-hold comments.
A manual analysis revealed that 19 cases were not actually SATD and that 3
cases are on-hold SATD. Note that our classifier was developed to classify SATD
comments into on-hold or not, and not to determine whether any comment is
SATD—this has been done in previous work (Maldonado and Shihab [47]). We
then sent three instances of on-hold SATD to one of JabRef’s core developers.
Table 5.13 shows these comments along with the explanation we sent to the
developer. In addition, for each on-hold SATD comment, we included a link to
the exact line of code from which we had extracted the comment.

Regarding the first comment, the developer pointed out that the comment
had been deleted in the meantime, but noted

13https://github.com/JabRef/jabref/

50

https://github.com/JabRef/jabref/

As a final check, it would be helpful though.

Regarding the second comment, the developer mentioned the potential overlap
between notifications that our approach could produce and other notifications
that the developer would already receive anyway:

Maybe, here an active ‘Comment Checking’ would be more helpful.
Then remembering if the comment should be kept - so that an addi-
tional scan with the same setting does not trigger a notification again.
- For me, getting notified because of new comments additionally, would
not be helpful as I would have been notified of GitHub.

The third comment turned out to be the most useful one, in the developer’s
perception:

In this case, a bot posting a message to the issue with following text
would have been helpful: ‘I found following references to this closed
issue in the code. Maybe, the code has to be adapted, too?’

In response to our final question “Do you think such a tool could be useful?”,
the developer responded

Since the last example was really useful, you hear me saying: “Yes”.
:-).

6 Discussions

The ultimate goal of our work is to enable the automated management of cer-
tain kinds of self-admitted technical debt. Previous work [93] has found that
most changes which address self-admitted technical debt require complex code
changes—as such, it is unrealistic to assume that automated tool support could
handle all kinds of requirement debt and design debt that developers admit in
source code comments. Thus, in this work we set out to first identify a sub-class
of self-admitted technical debt amenable to automated management and second
develop a classifier which can reliably identify this sub-class of debt.

51

Our qualitative study revealed one particular class of self-admitted technical
debt potentially amendable to automated tooling: on-hold SATD, i.e., comments
in which developers express that they are waiting for a certain external event or
updated functionality from an external library before they can address the debt
that is expressed in the comment. In other words, the comment is on hold until
the condition has been met.

Based on the data set made available by Maldonado et al. [48] and da Silva
Maldonado et al. [13], we identified a total of 293 comments which indicate on-
hold SATD, confirming that this phenomenon is prevalent and exists in different
projects. Our classifier to identify on-hold SATD was able to reach an AUC
of 0.98 in identifying comments that belong to this sub-class. In addition, we
were able to identify specific conditions contained within these comments (90%
of conditions are detected correctly). Based on 15 projects, there are 293 on-
hold comments out of 5,529 self-admitted technical debt comments, resulting in
a relative frequency of 5.30%. Out of 15 projects, the ratio of on-hold comments
compared to all self-admitted technical debt comments is larger than 2% for nine
projects.

Given all the events and new releases that happen in a software project at
any given point in time, it is unrealistic to assume that developers will be able
to stay on top of all instances of technical debt that are ready to be addressed
once a condition has been met. Instead, there is a risk that developers forget to
go back to these comments and debt instances even when the event they were
originally waiting for has occurred.

This work builds a first step towards the design of automated tools that can
support developers in addressing certain kinds of self-admitted technical debt.
In particular, based on the classifier introduced in this work, it is now possible
to build tool support which can monitor the specific external events we have
identified in this work (e.g., certain bug fixes or the release of new versions of
external libraries) and notify developers as soon as a particular debt is ready
to be addressed. While the ratio of on-hold comments is fairly low, such com-
ments appeared in almost all of the studied projects, and we argue that alerting
developers when such comments are ready to be addressed can prevent bugs or
vulnerabilities that might otherwise occur, e.g., because of outdated libraries.

52

In terms of tool support, we envision a tool which supports the developer by
indicating comments that are ready to be addressed rather than a tool which
addresses comments automatically. Addressing comments automatically—even
though it is an interesting research challenge—is problematic for two reasons:
(1) the precision of such a tool would have to be really high, and current work
including our own suggests that this is not yet the case; and (2) developers are
unlikely to relinquish control over their code base to a tool which automatically
changes code.

7 Threats to Validity

Regarding threats to internal validity, it is possible that we introduced bias
through our manual annotation. While we generally achieved high agreement
regarding the annotation questions listed in Table 5.2, the initial agreement re-
garding RQ1.1 was low which is explained by the nature of the open-ended ques-
tion. We resolved all disagreements through multiple co-located coding sessions
with the first three authors of this chapter. Note that we do not use the results
of RQ1.1 as an input for our classifier. We may possibly have wrongly classi-
fied the removal of self-admitted technical debt, since in particular for comments
indicating the need for new features, it can be hard to judge whether the new
feature was indeed fully implemented. Another concern is that we did not man-
ually validate the entire data set that we are reusing from previous work. There
might be further quality issues with this which would affect the performance of
our approach, such as self-admitted technical debt being identified in the header
of classes.

For external validity, while we analyzed a statistically representative sample of
commits for RQ1 and the entire data set made available by Maldonado et al. [48]
(after removing duplicates) for RQ2, we cannot claim generalizablity beyond the
projects contained in this data set and our classifier might be biased as a result
of the small number of projects. The limited data set allowed us to perform
an in-depth qualitative analysis, and future work will need to investigate the
applicability of our results to other projects and within-project prediction.

For construct validity, this is related to the manual labeling of on-hold SATD.

53

A label might be affected by annotator misunderstand or mislabeling. Despite
annotators resolving disagreements through discussion, the labels might still be
incorrect.

8 Conclusions and Future Work

Self-admitted technical debt refers to situations in which software developers
explicitly admit to introducing technical debt in source code comments, arguably
to make sure that this debt is not forgotten and that somebody will be able to go
back later to address this debt. In this work, we hypothesize that it is possible
to develop automated techniques to manage a subset of self-admitted technical
debt.

As a first step towards automating a part of the management of certain kinds
of self-admitted technical debt, in this chapter, we contribute (i) a qualitative
study on the removal of self-admitted technical debt in which we annotated a
statistically representative sample of 333 technical debt comments using seven
questions that emerged as part of the qualitative analysis; (ii) on-hold SATD
(debt which contains a condition to indicate that a developer is waiting for a
certain event or an updated functionality having been implemented elsewhere)
which emerged from this qualitative analysis as a particular class of self-admitted
technical debt that can potentially be managed automatically; and (iii) the design
and evaluation of a classifier for self-admitted technical debt which can detect
on-hold debt with an AUC of 0.98 as well as identify the specific conditions that
developers are waiting for.

Building on these contributions, in our future work we intend to build the tool
support that our classifier enables: a recommender system which can indicate
for a subset of self-admitted technical debt in a project when it is ready to be
addressed. We found that self-admitted technical debt is sometimes addressed
by uncommenting source code that has already been written in anticipation of
the debt removal. As another step towards the automation of technical debt
removal, in future work, we will explore whether it is possible to address such
debt automatically.

54

Table 5.5. Regular expressions for term abstraction

abstraction pattern

@abstractdate (0[1-9]|[12]\d|3[01]).(0[1-9]|1[0-2])

.([12]\d3)

year.month.date, e.g.,
21.02.2011

(0[1-9]|[12]\d|3[01])\/(0[1-9]|1[0-2])

(\/([12]\d3))*

day/month(/year), e.g., 25/05,
22/05/2012

((([0-9])|([0-2][0-9])|([3][0-1]))

(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|

Oct|Nov|Dec)\w+ \d4

day month year, e.g., 23 June
2013

\d+-\d+-\d+ \d+:\d+:\d+
[-|+]\d+

year-month-day timestamp,
e.g., 2006-03-06 23:16:24 +0100

@abstractversion [0-9]{1,2}\.[0-9]{1,2}([+-]|\.[0-9]{1,3}|

\.[A-Za-z]{1,2})*(_[0-9]{1,3})*

release version, e.g., 1.9.3, 4.0,
8.0.x, 1.0.12_25

@abstractbugid abstractproduct[|-]*\d+

bug id, e.g., jetty-9.3

@abstracturl https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\

+~#=]{2,256}\.[a-z]{2,6}\b

([-a-zA-Z0-9@:%_\+.~#?&//=]*)

url

55

Table 5.6. Annotated self-admitted technical debt comments
characteristic number

excluded
not self-admitted technical debt 225
sample of removed self-admitted technical debt 333

classification data
with condition (on-hold) 267
without condition 4,981

sum 5,806

56

Table 5.7. Number of on-hold SATD comments in each project

project number example

Apache Camel 88 // @deprecated will be removed on Camel 2.0 ...
Apache Tomcat 20 // TODO This can be fixed in Java 6 ...
Apache Hadoop 20 // TODO need to get the real port number

MAPREDUCE-2666
Gerrit Code Review 6 // TODO: remove this code when Guice fixes

its issue 745
Apache Log4j 1 // TODO: this method should be removed if

OptionConverter becomes a static
Apache Ant 7 // since Java 1.4 ...

// workaround for Java 1.2-1.3
Apache Jmeter 2 // TODO this bit of code needs to be tidied up

... Bug 47165
ArgoUML 77 // TODO: gone in UML 2.1
Columba 0 –
EMF 1 // Note: Registry based authority is being

removed ... which would obsolete RFC 2396.
If the spec is added ... needs to be removed.

Hibernate 5 // FIXME Hacky workaround to JBCACHE-1202
JEdit 6 // undocumented hack to allow browser

actions to work. // XXX - clean up in 4.3
JFreeChart 2 // TODO: In JFreeChart 1.2.0 ...
JRuby 23 // Workaround for JRUBY-4149
SQuirrel 9 // We know this fails - Bug# 1700093

total 267 –

57

Table 5.8. Performance comparison

N-gram TF-IDF
naive baseline TF-IDF N-gram TF-IDF without rebalancing

Precision 0.12 0.73 0.75 0.76
Recall 0.66 0.60 0.78 0.77
F1 0.20 0.66 0.77 0.76
AUC 0.70 0.97 0.98 0.98

Table 5.9. Top 10 N-gram TF-IDF frequent features only appear in on-hold
comments.

N-gram Features frequency

‘remove’, ‘in’, ‘abstractproduct’, ‘abstractversion’ 7
‘in’, ‘uml’, ’2’, ‘x’ 7
‘fix’, ‘in’ 6
‘workaround’, ‘to’ 6
‘todo’, ‘cmueller’, ‘remove’, ‘the’ 6
‘ref’, ‘attribute’ 6
‘be’, ‘remove’, ‘in’, ‘abstractproduct’, ‘abstractversion’ 6
‘for’, ‘abstractversion’ 5
‘after’, ‘abstractproduct’, ‘abstractbugid’ 5
‘workaround’, ‘for’, ‘abstractproduct’, ‘abstractbugid’ 4

58

Table 5.10. Cross-project classification on projects which contain on-hold more
than 2%
Project #, (% of on-hold) Precision Recall F1 AUC

Apache Ant 7, (5.6%) 0.50 0.57 0.53 0.97
Apache Camel 88, (10.9%) 0.81 0.39 0.52 0.96
Apache Hadoop 20, (8.2%) 0.61 0.85 0.71 0.96
Apache Tomcat 20, (2.8%) 0.19 0.50 0.27 0.92
ArgoUML 77, (6.7%) 0.36 0.17 0.23 0.82
Gerrit Code Review 6, (6.3%) 0.60 0.50 0.55 0.91
JEdit 6, (2.6%) 0.33 0.67 0.44 0.91
JRuby 23, (5.0%) 0.46 0.57 0.51 0.97
SQuirrel 9, (3.9%) 0.24 0.44 0.31 0.91

Average - 0.46 0.52 0.45 0.93

Table 5.11. Within-project classification on projects which contain on-hold more
than 2%
Project #, (% of on-hold) Precision Recall F1 AUC

Apache Ant 7, (5.6%) 0.19 0.80 0.30 0.86
Apache Camel 88, (10.9%) 0.91 0.61 0.73 0.99
Apache Hadoop 20, (8.2%) 0.85 0.80 0.79 0.99
Apache Tomcat 20, (2.8%) 0.73 0.65 0.66 0.99
ArgoUML 77, (6.7%) 0.66 0.79 0.71 0.98
Gerrit Code Review 6, (6.3%) 0.15 0.30 0.20 0.86
JEdit 6, (2.6%) 0.11 0.80 0.18 0.90
JRuby 23, (5.0%) 0.70 0.80 0.70 0.99
SQuirrel 9, (3.9%) 0.15 1.00 0.25 0.89

Average - 0.49 0.73 0.50 0.94

59

Table 5.12. Examples of specific conditions in on-hold SATD comments

specific condition example of on-hold SATD comments

@abstractdate // Workaround for, Adobe Read 9 plug-in on
IE bug // Can be removed after 26 June 2013

@abstractproduct, @abstractversion // TODO cmueller:, remove the
“httpBindingRef” look up in Camel 3.0

@abstractproduct, @abstractbugid // FIXME (CAMEL-3091): @Test

Table 5.13. On-hold SATD sent for developer feedback

on-hold SATD explanation

1 “... todo: reenable cus-
tomize entry types feature
(<link to issue 4719>) ...”

we could notify developers
once issue 4719 has been
closed

2 “... we must not clean the
url. this is the deal with
@manastungare - see <link
to comment on issue 684>
...”

we could have notified de-
velopers once issue 684 was
closed and/or if there have
been responses to the com-
ment

3 “... - handling of identically
fields with different names
(<link to issue 521>) ...”

we could have notified de-
velopers once issue 521 was
closed

60

6 | Automated identification of
on-hold self-admitted tech-
nical debt

In the previous chapter, we introduce new particular class of self-admitted techni-
cal debt of self-admitted technical debt amenable to automated management: on-
hold SATD. Hence, in this chapter, an empirical study is performed to identify
cases in which the On-hold SATD should be removed when the waiting condition
has been fulfilled.

1 Introduction

Technical debt (TD) was first mentioned as a concept by Cunningham close to 30
years ago Cunningham [9], when he wrote the following lines: “Shipping first time
code is like going into debt. A little debt speeds development so long as it is paid
back promptly [...] The danger occurs when the debt is not repaid. Every minute
spent on not-quite-right code counts as interest on that debt. Entire engineering
organizations can be brought to a stand-still under the debt.”

In simple words, TD is a short-term “hack” (often induced by industrial re-
ality, which dictates that either time and/or money are short) with long-lasting
consequences if not properly handled. Since developers naturally keep working
on new parts and do not revisit something unless it is strictly necessary, very
often TD results, in the long run, in low maintainability and poor performance

61

Lim et al. [41].
Potdar and Shihab extended the concept of TD to the notion of self-admitted

technical debt (SATD) Potdar and Shihab [57], performed intentionally by de-
velopers, but mentioned/admitted as comments in the source code. They found
that SATD is present, depending on the system, in 2.4% to over 30% of the files
and that only 26%-63% gets removed, i.e., a non-SATD often remains in the
code. Zampetti et al. furthermore found that 20% - 50% of the removals were
accidental and are even unintended Zampetti et al. [91].

Maldonado and Shihab categorized SATD into 5 types: design debt, defect
debt, documentation debt, requirement debt, and test debt Maldonado and Shi-
hab [47], with design debt and requirement debt being the most common ones.
Xavier et al. also found that SATD not only manifests itself as comments in the
source code, but is also present in issue reports Xavier et al. [88].

We focus on a particular type of SATD, first introduced in Chapter 5: “On-
hold SATD”, defined as self-admitted technical debt due to a waiting condition
for an external event to happen before the technical debt can be removed. In
particular, this chapter focuses on On-hold SATD with references to issues.

(a) A SATD code comment referencing an issue

(b) A referenced issue report (https://tinyurl.com/ybunu2dj)

Figure 6.1. Motivating Example

62

https://tinyurl.com/ybunu2dj

Motivating Example. Fig. 6.1-(a) shows code from Apache Hadoop. The
comment in the code indicates that an action will be taken once a condition is
fulfilled, i.e., the closing of issue 6223. As we see from Fig. 6.1-(b), the issue
has in fact already been closed, but the On-hold SATD was not removed, thus
creating confusion to anyone inspecting the code.

In essence, On-hold SATD are intentionally reminders left in the source code
whose sole purpose is to be removed.

We present a large-scale empirical study to ascertain whether (i) On-hold
SATD can be automatically detected, and (ii) it is possible to identify cases
in which the On-hold SATD should be removed, since the “waiting condition”
has been fulfilled, thus making the SATD a form of “wrong documentation” in
the code. Besides quantitatively evaluating the approaches we built to identify
and remove On-hold SATD instances, we also show its usefulness in practice by
collecting feedback from developers of open source projects.

2 Method

We aim to build a classifier which automatically detects On-hold SATD and
indicates whether it is ready to be removed. To achieve this goal, we took the
following four steps (Fig. 6.2): 1) issue reference detection, 2) dataset creation,
3) data preprocessing, and 4) On-hold SATD classification.

2.1 Issue Reference Detection

To detect On-hold SATD, our first step is to locate the code comments referring
to issues.

Project Selection

We selected ten open source projects that consistently used for their entire change
history a specific issue tracking system (ITS). This allowed us to run our study
without the risk of missing important information due to the migration between
different issue tracker systems (e.g., starting on JIRA and then moving to the
GitHub issue tracker). Table 6.1 lists the projects used in this study.

63

Ta
bl

e
6.

1.
D

et
ai

ls
of

th
e

pr
oj

ec
ts

in
m

y
da

ta
se

t.
SL

O
C

is
ca

lc
ul

at
ed

on
Ja

va
fil

es
us

in
g

SL
O

C
C

ou
nt

s
[8

7]
.

#
R

em
ai

n
in

g
co

m
m

en
ts

#
R

em
ov

ed
co

m
m

en
ts

P
ro

je
ct

V
er

si
on

IT
S

S
L
O

C
#

C
on

tr
ib

u
to

rs
th

at
re

fe
r

to
is

su
es

th
at

re
fe

r
to

is
su

es

A
pa

ch
e

A
nt

1.
10

.7
B

ug
zi

lla
14

4,
96

6
47

27
22

A
pa

ch
e

C
am

el
3.

0.
0

Ji
ra

1,
26

7,
90

5
54

4
42

62
A

pa
ch

e
D

ub
bo

2.
7.

4
G

it
hu

b
14

8,
37

7
26

8
8

4
A

pa
ch

e
H

ad
oo

p
2.

10
.0

Ji
ra

1,
88

5,
60

4
23

9
27

2
26

9
A

pa
ch

e
Jm

et
er

5.
2.

1
B

ug
zi

lla
14

2,
03

0
19

11
6

13
6

A
pa

ch
a

K
af

ka
2.

4.
0

Ji
ra

31
9,

99
0

60
6

24
21

A
pa

ch
e

Lo
g4

j
1.

2.
17

B
ug

zi
lla

30
,6

08
7

6
3

A
pa

ch
e

Lo
gg

in
g-

lo
g4

j2
2.

13
.0

Ji
ra

15
9,

35
3

76
17

9
15

3
A

pa
ch

e
To

m
ca

t
10

.0
.0

B
ug

zi
lla

34
1,

19
2

31
82

73
M

oc
ki

to
3.

3.
10

G
it

hu
b

48
,2

92
17

3
15

16

To
ta

l
-

-
4,

48
8,

31
7

2,
01

0
77

1
75

9

64

Table 6.2. Regular expressions to identify issue in comments
ITS Regular expression

Bugzilla (?<![A-Za-z])(?:bug|projectname|bugzilla|bz)[-](?:#)?\d+(?:\.[0-9xX*]+)*
issue IDs, e.g., Bug 34383
https?:\/\/[\w._/]*show_bug.cgi\?id=\d+
URLs, e.g., https://bz.apache.org/bugzilla/show_bug.cgi?id=51687

Github (?<![A-Za-z])(?:bug|issues?)[-](?:#)?\d+(?:\.[0-9xX*]+)*
issue IDs, e.g., issue 55
https?:\/\/github.com/[\w._/]*\/issues\/\d+
URLs, e.g., https://github.com/apache/dubbo/issues/3251

Jira (?<![A-Za-z])(?:bug|projectname)[-](?:#)?\d+(?:\.[0-9xX*]+)*
issue IDs, e.g., HADOOP-7234

Comment Extraction

We iterated over the commits in the repositories of the selected projects, and
extracted all single line comments (e.g., // ...) and multi-line comments (e.g., /*
... */) from Java files. If multiple comments are next to each other (e.g., /* ... */
// ...) they are considered as a single block of comments. Comments from test
files are ignored, as issue references there are most likely to serve as explanations
of what developers are testing, instead of SATD.

Issue Identification

Issue references are identified using regular expressions to match issue IDs and
issue URLs. Table 6.2 shows the regular expressions used for each issue tracking
system. For each identified issue reference, we also recorded its life cycle: We
iterated over the commit history and extracted the date when the issue reference
was first introduced in the comment, and in case, when it was removed.

From the 10 selected projects, we identified 1,530 comments containing issue
references, among which 759 had already been removed, while the remaining 771
still remain in the latest commit by the date of data collection.

65

Ta
bl

e
6.

3.
R

eg
ul

ar
ex

pr
es

si
on

s
fo

r
te

rm
ab

st
ra

ct
io

n

S
tr

in
g

IT
S

R
eg

u
la

r
ex

p
re

ss
io

n

ab
st

ra
ct

is
su

ei
d

B
ug

zi
lla

(?
<!

[A
-Z

a-
z]
)(

?:
bu

g|
pr

oj
ec

tn
am

e|
bu
gz

il
la

|b
z)

[
-]

(?
:#

)?
\d

+(
?:

\.
[0

-9
xX

*]
+)

*
#

is
su

e
ID

s
ht

tp
s?

:\
/\

/[
\w

._
/]

*s
ho

w_
bu

g.
cg

i\
?i
d=

\d
+

#
U

R
Ls

G
it

hu
b

(?
<!

[A
-Z

a-
z]

)(
?:

bu
g|

is
su

es
?)

[
-]

(?
:#

)?
\d

+(
?:

\.
[0
-9

xX
*]

+)
*

#
is

su
e

ID
s

ht
tp

s?
:\

/\
/g

it
hu

b.
co

m/
[\

w.
_/

]*
\/

is
su
es

\/
\d

+
#

U
R

Ls
Ji

ra
(?

<!
[A

-Z
a-

z]
)(
?:

bu
g|

pr
oj

ec
tn

am
e)

[
-]

(?
:#

)?
\d

+(
?:
\.

[0
-9

xX
*]

+)
*

#
is

su
e

ID
s

ht
tp

s?
:\

/\
/i

ss
ue

s.
ap

ac
he

.o
rg

/\
/j

ir
a\
/b

ro
ws

e\
/(

?:
pr

oj
ec

tn
am

e)
-\

d+
#

U
R

Ls

ab
st

ra
ct

ur
l

—
ht

tp
s?

:\
/\

/(
ww

w\
.)

?[
-a

-z
A-

Z0
-9

@:
%.
_\

+~
#=

]{
2,

25
6}

\.
[a

-z
]{

2,
6}

\b
([

-a
-z

A-
Z0

-9
@:

%_
\+

.~
#?

&/
/=

]*
)

66

dataset creation

issue reference detection

comment
extraction

project
selection

data preprocessing

term
abstraction lemmatization

special
character
removal

on-hold SATD classification

n-gram
feature

extraction
classifier
selection

condition
checking

manual
classification

issue
identification

Figure 6.2. Approach for On-hold SATD detection and removal

2.2 Dataset Creation

To build the On-hold SATD classifier, we created a dataset for training and test-
ing, based on the issue-referring comments collected in our previous step. For each
of the 1,530 comments, I and the second researcher independently labeled whether
it is an actual instance of On-hold SATD or, instead, it is used as cross-reference.
We evaluated the inter-rater reliability with the Cohen’s kappa coefficient, and
the score of 0.748 demonstrates a substantial agreement between the two labelers.
The third researcher resolved labeling conflicts. As a result, we got 133 On-hold
SATD and 1,397 cross-reference comments.

Table 6.4 summarizes the annotation results. 133 (8.7%) of the issue-referring
comments are instances of On-hold SATD.

67

Table 6.4. Statistics of annotated comments containing issue references

On-hold SATD Cross-reference Total

Remaining comments 40 731 771
Removed comments 93 666 759

Total 133 1,397 1,530

2.3 Data Preprocessing

Before extracting features from the comments and feeding them into the classifier,
we performed three preprocessing steps: 1) term abstraction, 2) lemmatization,
and 3) special character removal.

Term Abstraction

For all the comments, we abstracted issue IDs and hyperlinks referring to issues
to the string “abstractissueid”, while the hyperlinks unrelated to issues were
abstracted to “abstracturl”. This is done to eliminate the impact of issue IDs
and hyperlinks during classification, as we are not interested in their real content.
Table 6.3 summarizes the regular expressions we used to extract relevant issue
IDs and hyperlinks for different issue tracking systems.

Lemmatization

We applied lemmatization with the Spacy natural language processing tool Hon-
nibal and Montani [25], which normalizes words with the same root but different
surfaces into the same format Jurafsky and Martin [32]. For example, the words
“sang”, “singing”, and “sings” will be converted into “sing”.

Special character removal

We removed all non-English and non-numeric characters using the regular ex-
pression [^A-Za-z0-9]+.

For our study we did not apply stop word removal, a commonly used text
preprocessing step, as it might remove some keywords important for identifying

68

On-hold SATD, such as “when” and “until”.

2.4 On-hold SATD Classification

After preprocessing, we extracted n-gram features from the comments and used
them to train a classifier to identify On-hold SATD. We also checked issue status
and issue resolution to determine whether an On-hold SATD comment is ready
to be removed.

N-gram Feature Extraction

Similar to another SATD classification approach by Wattanakriengkrai et al.
Wattanakriengkrai et al. [85], we extracted n-gram features by applying n-gram
IDF Shirakawa et al. [67, 70]. N-gram IDF is a theoretical extension of IDF (In-
verse Document Frequency). The traditional IDF approach assigns more weight
to terms occurring in fewer documents, which does not work well for n-grams. For
example, “Leonardo da is” might have higher weight than “Leonardo da Vinci”.
N-gram IDF is designed to address this issue and can determine the dominant n-
grams and extract key terms of any length Shirakawa et al. [67, 70]. In this study,
we extracted n-grams from SATD comments using the library n-gram weighting
scheme Shirakawa [66] with default settings. We obtained the list of all valid
n-gram terms containing up to 10-gram terms. In total, we receive 644 terms of
n-grams.

Classifier Selection

After extracting the n-gram terms, we build a classifier to identify bug referenc-
ing comments into On-hold SATD or not. While there many different algorithms
available for supervised classification, it is hard to decide which one to pick, as dif-
ferent datasets and hyper-parameter settings might both impact the performance
of these algorithms. Automated machine learning addresses this problem by run-
ning multiple classifiers with different parameters to optimize performance. In
this study, we used auto-sklearn Feurer et al. [18], which includes 15 classification
algorithms, 14 feature preprocessing and 4 data preprocessing techniques Feurer
et al. [18].

69

Condition Checking

After identifying the On-hold SATD using our classifier, our program automati-
cally checks the referred issue status and resolution to decide whether the SATD
is ready to be removed. In the issue tracking system, if the status of the re-
ferred issue is set to “resolved”, “closed”, or “verified”, and the field of resolution
(if applicable) is set to “fixed”, we consider it ready for removal.

3 Study Design

The goal of this study is to evaluate the accuracy of our approach for On-hold
SATD identification and removal. Moreover, we are interested in the evolution
of On-hold SATD in open source projects. The context of the study consists of
1,530 code comments containing issue references, extracted from the previously
presented 10 open source projects.

3.1 Research Questions

In this study, we answer the following three research questions (RQs):

• RQ1: What is the accuracy of our approach in identifying On-hold SATD?
This RQ investigates the performance of our classifier in identifying On-hold
SATD. We also examined the impact of oversampling, different features and
machine learning algorithms on the performance of our classifier:

– RQ1.1: How do n-grams impact the performance of our classifier as
compared to Bag-Of-Words features?

– RQ1.2: How does oversampling impact the performance of the classi-
fier?

– RQ1.3: How do different machine learning algorithms impact the per-
formance of the classifier?

• RQ2: How does On-hold SATD evolve in open source projects? To gain
deeper insights on how On-hold SATD evolves in the projects, with this RQ

70

we inspect the duration of existence of On-hold SATD in software projects,
and the time it takes to address SATD after the relevant issue is resolved.

• RQ3: To what extent can our approach identify “ready-to-be-removed” On-
hold SATD? This RQ empirically evaluates the reliability of our approach
in identifying On-hold SATD which should be removed, since it was already
“paid back”.

3.2 Context Selection & Data Collection

In this study, we used the dataset presented in Section 2.2, which contains 1,530
annotated comments containing issue references.

To answer RQ1, we built a classifier using auto-sklearn with n-grams extracted
by n-gram IDF Wattanakriengkrai et al. [85] as features. N-grams were extracted
from On-hold SATD comments only. N-grams from Cross-reference comments
are not included because we want to extract important patterns to detect on-
hold SATD, and we use these patterns to discriminate between On-hold SATD
and Cross-reference. We performed a ten-fold cross validation: We divided the
1,530 issue-referring comments into ten different sets, each one composed of 153
comments. Then, we iteratively used one set as the test set, while the remaining
1,377 comments were used for training.

To answer RQ1.1, we ran a different classifier implementation on the dataset,
using Bag-Of-Words (BOW) as features.

To answer RQ1.2, we applied an oversampling technique (i.e., SMOTE) to our
training set, and then compared the results achieved by our classifier with/with-
out oversampling.

To answer RQ1.3, we built three variants of the classifier with different ma-
chine learning algorithms: Naive Bayes, Support Vector Machine (SVM), and
K-Nearest Neighbors (KNN).

To answer RQ2, we inspected the removed issue-referring comments for both
On-hold and cross-reference comments. We first checked the time interval be-
tween the introduction and the removal of these comments. Then, for the in-
stances referring issues that have been solved, we compute the difference between
the issue resolution time and the corresponding On-hold SATD removal event.

71

To answer RQ3, we identified the On-hold SATD comments which are ready to
be removed from the 40 still remaining On-hold issue-referring comments, based
on the corresponding issue status and resolution, as described in Section 2.4. In
total, we identified 10 “ready-to-be-removed” On-hold SATD comments. By the
time we started working on RQ3, 4 of 10 comments had already been removed by
developers (three were removed thanks to code changes addressing the On-hold
SATD, while one was removed due to the deletion of the file containing it). We
reported the remaining six “ready-to-be-removed” On-hold SATD comments to
the developers by creating issue reports in the respective issue tracker. In the
issue report, we inform developers why the On-hold SATD comments should be
removed and where they are located. An example of the issue reports can be seen
in Fig. 6.3.

Figure 6.3. An example issue report.

3.3 Data Analysis

To answer RQ1 we compare the precision, recall, F1-score, and area under the
ROC curve (AUC) of each experimented approach in classifying issue-referring

72

Table 6.5. Performance of classifiers in identifying On-hold SATD
Original approach BOW as feature With Oversampling Different ML algorithms

n-gram +
auto-sklearn

BOW +
auto-sklearn

n-gram + oversampling +
auto-sklearn

n-gram +
Naive Bayes

n-gram +
SVM

n-gram +
KNN

Precision 0.79 0.69 0.38 0.64 0.87 0.88
Recall 0.70 0.68 0.48 0.56 0.38 0.15
F1-score 0.73 0.67 0.41 0.59 0.51 0.25
AUC 0.97 0.94 0.87 0.81 0.95 0.76

comments (as belonging or not to On-hold SATD) for the dataset of 1,530 com-
ments.

The comparisons are also performed via the Mann-Whitney test Conover [8],
with results intended as statistically significant at α = 0.05. For RQ1.3, to control
the impact of multiple pairwise comparisons (e.g., the precision of auto-sklearn
is compared with Naive Bayes, SVM, and KNN), we adjust p-values with Holm’s
correction Holm [24]. We estimate the magnitude of the differences by using the
Cliff’s Delta (d), a non-parametric effect size measure Grissom and Kim [22].
We follow well-established guidelines to interpret the effect size: negligible for
|d| < 0.10, small for 0.10 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and large
for |d| ≥ 0.474 Grissom and Kim [22].

To answer RQ2, we present via violin plots the life spans of both On-hold
SATD and cross-reference comments, as well as the duration between the resolu-
tion of issues and the removal of corresponding SATD comments.

To answer RQ3, we qualitatively analyze the developers’ feedback.

4 Evaluation

4.1 RQ1: What is the accuracy of our approach in identi-
fying On-hold SATD?

Table 6.5 reports the average precision, recall, F1-score, and AUC of each exper-
imented classifier implementations during 10-fold evaluation.

Table 6.6 reports the statistical results of comparisons between different clas-
sifier implementations.

73

Ta
bl

e
6.

6.
St

at
is

ti
ca

lr
es

ul
ts

of
pe

rf
or

m
an

ce
co

m
pa

ri
so

ns
of

cl
as

si
fie

rs

P
-v

al
u
e

E
ff
ec

t
si

ze
P

-v
al

u
e

E
ff
ec

t
si

ze
(P

re
ci

si
on

)
(P

re
ci

si
on

)
(R

ec
al

l)
(R

ec
al

l)

n-
gr

am
+

au
to

-s
kl

ea
rn

vs
B
O

W
+

au
to

-s
kl

ea
rn

<
0.

01
0.

48
(l

ar
ge

)
0.

32
-

n-
gr

am
+

au
to

-s
kl

ea
rn

vs
n-

gr
am

+
ov

er
sa

m
pl

in
g+

au
to

-s
kl

ea
rn

<
0.

01
0.

92
(l

ar
ge

)
0.

01
0.

67
(l

ar
ge

)

n-
gr

am
+

au
to

-s
kl

ea
rn

vs
n-

gr
am

+
N

ai
ve

B
ay

es
0.

06
-

0.
03

0.
58

(l
ar

ge
)

n-
gr

am
+

au
to

-s
kl

ea
rn

vs
n-

gr
am

+
SV

M
0.

30
-

0.
03

0.
8

(l
ar

ge
)

n-
gr

am
+

au
to

-s
kl

ea
rn

vs
n-

gr
am

+
K

N
N

0.
30

-
0.

03
1.

0
(l

ar
ge

)
n-

gr
am

+
N

ai
ve

B
ay

es
vs

n-
gr

am
+

SV
M

0.
06

-
0.

03
0.

58
(l

ar
ge

)
n-

gr
am

+
N

ai
ve

B
ay

es
vs

n-
gr

am
+

K
N

N
0.

30
-

0.
03

1.
0

(l
ar

ge
)

n-
gr

am
+

SV
M

vs
n-

gr
am

+
K

N
N

0.
31

-
0.

03
0.

74
(l

ar
ge

)

74

Fig. 6.4 also shows the results of the 10-fold evaluation for each experimented
classifier in terms of precision, recall, F1-Score, and AUC.

As can be seen from Table 6.5, the precision, recall, and F1-score achieved by
our approach (“n-gram + auto-sklearn”) are all between 0.7 to 0.8, while AUC
is as high as 0.97. This result demonstrates the reliability of our approach in
On-hold SATD detection.

To gain a better understanding of how our classifier works, we list the im-
portant n-gram features which frequently appear in On-hold SATD comments in
Table 6.7.

Table 6.7. N-gram features which frequently appear in On-hold SATD comments

N-gram features Frequency

‘after’, ‘abstractissueid’ 20
‘once’, ‘abstractissueid’ 18
‘for’, ‘now’ 12
‘temporary’, ‘fix’ 10
‘workaround’ 10
‘this’, ‘be’, ‘a’, ‘temporary’ 8
‘via’, ‘abstractissueid’ 7
‘be’, ‘commit’ 7
‘can’, ‘be’, ‘remove’ 7
‘remove’, ‘after’, ‘abstractissueid’ 5

These features help discriminate On-hold SATD from cross-reference. We
can see that n-grams such as “once abstractissueid ”, “this be a temporary”, and
“remove after abstractissueid ” are especially important for identifying On-hold
SATD.

Additionally, we also illustrate some classification results in Table 6.8. From
the two true positive examples (correctly identified as On-hold SATD by our ap-
proach), we can clearly see the patterns including “workaround ”, “temporary fix ”
and “remove after abstractissueid ”, which can be related to Table 6.7. Therefore,
it is not surprising that our classifier can correctly identify these On-hold SATD
comments.

75

Table 6.8. Example of classification results of my approach
Type Comment

True TODO: workaround (filling fixed bytes), to remove after HADOOP-11938

Positive ... This is a temporary fix ... See the discussion on HDFS-1965.

False TODO: Temporarily keeping ... This has to be revisited as part of HDFS-11029.

Negative placeholder for javadoc to prevent broken links, until HADOOP-6920

False TODO: after MAPREDUCE-2793 YarnException is probably not
expected here anymore but keeping it for now ...

Positive ... (CAMEL-9657) [TODO] Remove in 3.

If we take a look at the two false negative examples (On-hold SATD classified
as cross-reference), we find that phrases like “to be revisit” and “until abstractis-
sueid ” are probably useful n-grams for identifying On-hold SATD. Due to absence
or infrequent occurrence, these n-grams are not used as features for the classifier.
Expanding the training set can be a potential way for addressing the n-gram
feature limitations.

In the two false positive examples (cross-reference classified as On-hold SATD),
we can see that the n-gram terms like “todo after abstractissueid ” and “todo re-
move” can be actually matched, and our classifier misclassified them into On-hold
SATD. However, if we check the comments carefully, we can find that in the first
sentence, it is clear that the issue has already been resolved, however, for some
reason the developers decided to say “keeping it for now ”, where “it” refers to
YarnException. In the second sentence, what follows “todo remove” is actually
not a reference to an issue, but a reference to a version. Some heuristic rules
might help our classifier to better deal with these cases.

To understand how n-grams impact the performance of our classifier as com-
pared to Bag-Of-Words (BOW) features, we inspect the first two columns of Ta-
ble 6.5, and the first row of Table 6.6. Using n-grams as features leads to a higher
precision with a statistically significant difference and a large effect size. As for
the recall, while the average value is higher when using n-grams, the performed
analysis does not indicate a statistically significant difference. We conclude that
compared to BOW features, n-grams lead to a significantly higher precision.

76

To understand how oversampling impacts the performance of the classifier,
we inspect the first and the third column of Table 6.5, as well as the second row
of Table 6.6.

From the tables we can observe that the classifier obtains a statistically sig-
nificant higher precision and recall when oversampling is not applied. Meanwhile,
the effect sizes for both precision and recall comparisons are large. Indeed, after
applying oversampling, the average precision, recall, F1-score, and AUC drop by
around 40%, 20%, 30%, and 10%, respectively. We conclude that oversampling
reduces the performance of our classifier in identifying On-hold SATD.

To understand how different machine learning algorithms impact the perfor-
mance of the classifier, we inspect the first and the last three columns of Table 6.5,
as well as the last six rows of Table 6.6. From the tables we can see that all the
implementations achieved comparable precisions (from 0.64 to 0.88). Indeed,
there is no statistically significant difference in terms of precision among these
implementations. However, the differences emerge when comparing recall. Us-
ing auto-sklearn achieves a significantly higher recall than classifiers using other
machine learning algorithms (i.e., Naive Bayes, SVM and KNN).

We also inspected which machine learning algorithm was adopted by auto-
sklearn after automatic classifier selection. The records show that in 9 of the
ten rounds of 10-fold evaluation Extra Trees was adopted, while the remaining
one adopted Random Forest. That is, these two machine learning algorithms
would potentially be a good choice for identifying On-hold SATD when automatic
selection of the classifier is not possible.

4.2 RQ2: How does On-hold SATD evolve in open source
projects?

To answer RQ2, we first looked into the life span of removed issue-referring com-
ments for On-hold SATD and cross-reference comments separately. The life span
distributions can be found in Fig. 6.5.

The median life span of On-hold SATD comments is 42 days, while it is 119.5
days for cross-reference comments. That is, overall, the median life span of cross-
reference comments is almost three times of that of On-hold SATD.

77

Indeed, while both types of comments contain issue references, only On-hold
SATD requires maintenance actions from developers. Cross-reference comments
stay much longer as they are usually used for documentation purposes.

We then investigated how long it takes to address On-hold SATD comments
after the corresponding issues are resolved, and plotted the duration distribution
in Fig. 6.6.

Around 53% of On-hold SATD were removed within the same day when the
issue was resolved. However, it takes longer than one year to remove 13% of
On-hold SATD.

Additionally, we observed that some developers did not wait until the issue was
resolved to address On-hold SATD comments. In fact, from a total of 93 removed
On-hold SATD comments, we found that only 30 of them were removed after the
issues were resolved. The corresponding issues of 9 On-hold SATD comments are
still open or have the resolution set to “wontfix”. 54 On-hold SATD comments
were removed before the issues were resolved, although these issues have been
resolved in the meantime.

4.3 RQ3: To what extent can our approach identify “ready-
to-be-removed” On-hold SATD?

To understand how well our approach performs in identifying “ready-to-be-removed”
On-hold SATD comments, we reported six identified cases to developers in three
issue reports, as these six cases correspond to three subsystems of the Apache
Hadoop project (two for Hadoop Common, one for Hadoop HDFS, and three for
Hadoop YARN). By the time of writing, we have received the feedback from the
developers about the two “ready-to-be-removed” On-hold SATD comments in the
Hadoop Common subsystem.

Table 6.9 lists these two instances of On-hold SATD reported to the developers
in JIRA issue tracking system.1

For the first case, the return type had already changed to AFS, and the
resolution of the referred issue “HADOOP-6223” had been set to “resolved”. In the
issue report, we suggested that this On-hold SATD comment should be removed.

1https://issues.apache.org/jira/browse/HADOOP-17047

78

Table 6.9. Two “ready-to-be-removed” On-hold SATD comments which received
developers’ feedback

Ready On-hold SATD
1 “/* return type will change to AFS once

HADOOP-6223 is completed */”

2 “... This should be made deprecated along
with the mapred package HADOOP-1230.
... ”

Developers agree that it can be removed:

“I think this is correct finding. Would you like to put a patch for this”

Later on, the patch we submitted got integrated into the repository.
Regarding the second case, we found that the referred issue “HADOOP-1230”

had also been resolved. Thus, we suggested that developers could apply corre-
sponding changes (i.e., making the setJobConf method deprecated). The devel-
opers agreed that the action should be taken but it is a rather complicated fix,
thus recommending a new JIRA issue thread:

“...we need to update the document in a separate jira.”

“... Given that is a bigger subject than this fix, we should discuss on
that separately ...”

Overall, the two cases for which we have already received feedback on indicate
the practical value of our approach for On-hold SATD identification and removal.

4.4 Replication

To facilitate replication, we released our dataset in our online appendix, which
can be accessed at https://tinyurl.com/onholdissue. The spreadsheet file
of our dataset contains three sheets: removed comments, remaining comments,
and identified “ready-to-be-removed” On-hold SATD. For all the comments in our

79

https://tinyurl.com/onholdissue

dataset, we include the comment context, code file path, line number, referred
issue, and our annotation (On-hold SATD or cross-reference). For removed com-
ments, we also include when the code comment was introduced and removed.
For the “ready-to-be-removed” On-hold SATD, there are also the status and the
resolution of the corresponding issues.

5 Towards a On-Hold SATD Recommender

Our findings can serve as guideline for developers writing reference issues in code
comments:

• Developers should check SATD comments referring to issues which had
already been resolved, as we reported that 13% of comments were removed
with a delay of more than one year.

• When the code comments refer to issues, developers should clearly mention
the intention in the comments, i.e., whether the issue is used for documen-
tation or to denote the condition on which one is waiting on.

While we plan on expanding our work to analyze more projects and to include
also other issue tracking systems, we believe that our work can be synthesized
into a recommender system for On-Hold SATD. In Fig. 6.7 we depicted a mock-up
of such a recommender.

The tool would report the list of On-hold SATD comments, ready to be ad-
dressed On-hold SATD comments, and removed On-hold SATD. Each item would
include comments, links to the original comments and to the pertaining issue (in-
cluding its status and duration).

6 Threats to Validity

Threats to construct validity concern the relation between the theory and the
observation, and in this work they are mainly due to the measurements we per-
formed:

80

• Imprecisions in the identification of issue references in comments. We used
the regular expressions in Table 6.2 to mine issue references in code com-
ments. The regular expressions have been defined and tested by myself, and
are customized for each of the issue trackers used by the subject systems.

• Subjectivity/errors in the manual classification. To mitigate this threat, I
and second researcher independently classified the 1,530 issue-referencing
comments as On-hold SATD or as cross-reference. Then, the third re-
searcher resolved the conflicts.

Threats to external validity concern the generalizability of results. Rather
than going large-scale, we preferred to work on a set of ten well-known Java open
source projects and to manually validate all issue-referencing comments we found
in them in such a way to increase the reliability of the presented data. Other
systems should be included in the analysis to allow for a broader generalizability
of our conclusions. Also, the results of RQ3 are based on only two feedback we
received from developers, thus do not allowing any sort of generalizability but
only serving as pointers for qualitative analysis.

7 Conclusion

Since the definition of the term “technical debt” by Cunningham three decades
ago Cunningham [9], researchers have investigated the phenomenon, leading to
the understanding that it is its creeping, barely visible nature that leads to main-
tenance and evolvability problems down the road. Developers cannot be faulted
for the introduction of technical debt, as software industry functions under great
time and budget pressure, and compromises have to be made to meet said time
and budget constraints. Indeed, developers often admit that they are creat-
ing technical debt, which led to the term “self-admitted technical debt” (SATD)
coined by Potdar and Shihab Potdar and Shihab [57].

A particular type of SATD is the one we named “On-hold” SATD, where a
developer has to make a compromise or halt development because of an external
condition. Human nature dictates that often On-hold SATD is simply forgotten
about.

81

We performed an empirical study to understand whether On-hold SATD can
be automatically detected: We analyzed ten open source projects, and found that
8% of the comments referring to issues are On-hold SATD. To identify On-hold
SATD, we developed a classifier using n-gram and auto-sklearn, resulting in an
average precision of 0.79, an average recall of 0.70, an average F1-score of 0.73,
and an average AUC of 0.97. In short, On-hold SATD can indeed be detected
automatically in a fairly reliable way.

To understand how On-hold SATD evolves, we looked into life-span of re-
moved issue-referring comments. We found that the median life-span of On-hold
comments is 42 days. This is certainly beyond the horizon of human short-term
memory, and indeed we found that after the issues were resolved, 13% of On-
hold SATD takes longer than one year to remove. To evaluate the reliability in
identifying On-hold SATD which should be removed, we collected feedback from
developers from open source projects. Developers agreed with our findings that
the reported On-hold SATD should be fixed or removed.

The next logical step is thus the design and implementation of the recom-
mender system we described in Section 5 and aimed at facilitating the identifica-
tion, understanding, and resolution of On-hold SATD instances.

Acknowledgement

We gratefully acknowledge the financial support of Japan Society for the Pro-
motion of Science for the JSPS KAKENHI Grant No. 16H05857 and 20H05706,
and the Swiss National Science Foundation for the project SENSOR (SNF-JSPS
Project No. 183587).

82

2 4 6 8 10
round

0.0

0.2

0.4

0.6

0.8

1.0

Precision

2 4 6 8 10
round

0.0

0.2

0.4

0.6

0.8

1.0

Recall

2 4 6 8 10
round

0.0

0.2

0.4

0.6

0.8

F1-score

2 4 6 8 10
round

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
AUC

BOW+auto-sklearn
n-gram+auto-sklearn

n-gram+oversampling+auto-sklearn
n-gram+Naive Bayes

n-gram+SVM
n-gram+KNN

Figure 6.4. Results of each round in 10-fold evaluation for different classifier
implementations

83

Onhold Crossreference
1

10

10 2

10 3

10 4
da
ys

42

119.5

Figure 6.5. Distribution of life spans of removed issue-referring comments

1

10

10 2

10 3

10 4

da
ys
 (
lo
g 
sc
al
e)

Figure 6.6. Distribution of days needed to address SATD comments after issues
were resolved

84

on-hold: 3

 Status:
 Resolution:
 Updated:

Open
Unresolved
1 year ago

... Wait for BUG-111 ...

 Status:
 Resolution:
 Updated:

In process
Unresolved
1 month ago

... Workaround for BUG-112

 Status:
 Resolution:
 Updated:

Open
Unresolved
6 months ago

... check after BUG-113 ...

ready: 2

 Status:
 Resolution:
 Updated:

Closed
Fixed
Yesterday

... once BUG-211 is fixed ...

 Status:
 Resolution:
 Updated:

Closed
Fixed
1 week ago

... temporary fix (BUG-212)

done: 2

 Status:
 Resolution:
 Updated:

Resolved
Fixed
3 weeks ago

... once BUG-311 commit ...

 Status:
 Resolution:
 Updated:

Closed
Fixed
2 days ago

... Wait for BUG-312 ...

List of on-hold SATD in a project

Figure 6.7. A mockup of On-hold SATD identification tool

85

7 | Conclusion

Software documentation plays an important role in software development. It pro-
vides information about software for developers and users, including how software
works and how to use it. A well-written software document boosts efficiency and
quality in software development. Despite its benefits, software documentation is
often poorly written and frequently outdated.

In this thesis, I focus on demonstrate the value of existing information in
addressing problems caused by a lack of software documentation and frequently
outdated documents: (1) In order to address the issue of lack of software docu-
mentation, I propose new technique to access existing information using sentiment
analysis, and (2) In order to address the issue of frequently outdated document
problem, I assist in managing software documents by identifying and removing
unnecessary self-admitted technical debt (i.e., situations where a software devel-
oper knows that their current implementation is not optimal and indicates this
using a source code comment).

For the first problem, I designed a new identification tool to help developers
understand the sentiment of the text in a software engineering environment. As
a result, developers could use this tool to automatically understand the intention
underlining messages. The results showed the proposed tool outperformed the
current off-the-shelf tool, especially in predicting positive and negative sentiment.

For the second problem, I identify one type of self-admitted technical debt
that is amenable to automated management “on-hold SATD”. I define on-hold
SATD as self-admitted technical debt which contains a condition to indicate that
a developer is waiting for a certain event or an updated functionality having been
implemented elsewhere. I designed a classifier which can automatically identify

86

those instances of self-admitted technical debt that are on hold and detect the
specific events that developers are waiting for. For that, three types of conditions
are identified, waiting for a bug to be fixed, releasing a library, or releasing a new
version of a library. Among these, one of the conditions, which refers to outside
developer control, is waiting for a bug to be fixed, which refers to the issue tracker
system. From that, it is possible to identify cases in which the On-hold SATD
should be removed, since the “waiting condition” has been fulfilled, thus making
the SATD a form of “wrong documentation” in the code.

The outcomes of this thesis contribute to: (1) designing and evaluating tools
which can identify underlining sentiment from text in software engineering docu-
ments, (2) understanding what kind of self-admitted technical debt is amenable
to automated management (i.e., on-hold SATD), (3) designing and evaluating
tools that can classify on-hold SATD and its waiting condition, (4) suggesting
which on-hold SATD is ready to be removed.

Based on the results of this thesis, by unlocking software documentation, I
could support developers in maintaining and understanding software documents.
Specifically, the first part of this thesis contributes to the unlocking of underlining
messages from various software documents using sentiment analysis. The second
part of this thesis contributes to the managing of software documents, especially
self-admitted technical debt in code comments.

1 Implications

The main goal of this thesis is to help developers unlocking software documents to
show the benefit of existing information (1) proposing new technique to develop
sentiment analysis framework in software engineering environment, and (2) ad-
dress the issue of frequently outdated document problem by assisting in managing
software documents by identifying and removing unnecessary self-admitted tech-
nical debt (i.e., situations where a software developer knows that their current
implementation is not optimal and indicates this using a source code comment).
To achieve these goals, I perform two developer surveys and three empirical stud-
ies with three design of classification tools. As a result, the empirical findings of
this thesis may be useful to both developers and researchers. I summarize the

87

findings and suggestion for each part as follows:

• For developers: Regarding developers writing code comments, my find-
ings can serve as guideline developers should check SATD comments refer-
ring to issues which had already been resolved, as I reported that 13% of
comments were removed with a delay of more than one year. When the
code comments refer to issues, developers should clearly mention the inten-
tion in the comments, i.e., whether the issue is used for documentation or
to denote the condition on which one is waiting on.

• For project maintainers: In terms of the impact of sentiment analysis
classification utilizing the suggested tools, this enables project maintainers
to monitor feedback in real time. Regarding the condition of on-hold SATD
comments, three main conditions are related to waiting for a bug to be fixed,
releasing a library, or releasing a new version of a library. This finding shows
that by maintaining SATD comments that are ready to be addressed can
prevent bugs or vulnerabilities that might otherwise occur, e.g., because of
outdated libraries.

2 Opportunities for Future Research

In this thesis, I investigate (1) sentiment analysis and (2) on-hold self-admitted
technical debt. However, there are still a lot of research aspect that can be done
in order to help developers towards creating the high-quality application. In the
following, I outline the research opportunities for the immediate future.

Sentiment analysis on software engineering documents In Chapter 4, I
design a classification tool for software engineering documents which help develop-
ers in understanding the sentiment in a software engineering context. Additional
research in software engineering documents, such as the relationship between sen-
timent in pull request comments and pull request status, can be further explore
using my suggested method.

88

On-hold self-admitted technical debt condition detection. In Chapter
5, I found that three main types of conditions that developers were waiting for
were waiting for a bug to be fixed, releasing a library, or releasing a new version
of a library. However, those three conditions account for half of the waiting
conditions, implying that more research is needed to expand for other conditions
in on-hold self-admitted technical debt.

A recommender system for On-Hold SATD In Chapter 6, I found that it
is possible to identify which on-hold SATD should be removed when the waiting
condition has been fulfilled. From that, I believe that my work can be synthesized
into a recommended system for On-Hold SATD. One example is a tool developed
by Phaithoon et al. [56].

89

References

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing
suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):
53–86, 2004.

[2] Fouad Nasser A Al Omran and Christoph Treude. Choosing an nlp library for
analyzing software documentation: A systematic literature review and a series of
experiments. In Proceedings of the International Conference on Mining Software
Repositories, pages 187–197, 2017.

[3] N.S.R. Alves, L.F. Ribeiro, V. Caires, T.S. Mendes, and R.O. Spinola. Towards
an ontology of terms on technical debt. In Managing Technical Debt (MTD), 2014
Sixth International Workshop on, pages 1–7, 2014.

[4] Gabriele Bavota and Barbara Russo. A large-scale empirical study on self-admitted
technical debt. In 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR), pages 315–326, 2016.

[5] Gabriele Bavota and Barbara Russo. A large-scale empirical study on self-admitted
technical debt. In Proceedings of the 13th International Conference on Mining
Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, pages 315–
326, 2016.

[6] Saman Bazrafshan and Rainer Koschke. An empirical study of clone removals.
In Proceedings of the International Conference on Software Maintenance, pages
50–59, 2013.

[7] Dmitriy Bespalov, Bing Bai, Yanjun Qi, and Ali Shokoufandeh. Sentiment classifi-
cation based on supervised latent n-gram analysis. In Proceedings of the 20th ACM

90

International Conference on Information and Knowledge Management, CIKM ’11,
pages 375–382, 2011.

[8] William J. Conover. Practical nonparametric statistics. Wiley New York, 3rd
edition, 1998.

[9] Ward Cunningham. The wycash portfolio management system. In Addendum
to the Proceedings on Object-Oriented Programming Systems, Languages, and
Applications (Addendum), OOPSLA ’92, page 29–30, New York, NY, USA, 1992.
Association for Computing Machinery. ISBN 0897916107. doi: 10.1145/157709.1
57715. URL https://doi.org/10.1145/157709.157715.

[10] M. A. d. F. Farias, M. G. d. M. Neto, A. B. d. Silva, and R. O. Spínola. A
contextualized vocabulary model for identifying technical debt on code comments.
In 2015 IEEE 7th International Workshop on Managing Technical Debt (MTD),
pages 25–32, 2015.

[11] E. d. S. Maldonado, E. Shihab, and N. Tsantalis. Using natural language process-
ing to automatically detect self-admitted technical debt. IEEE Transactions on
Software Engineering, 43(11):1044–1062, 2017.

[12] Everton da S. Maldonado and Emad Shihab. Detecting and quantifying different
types of self-admitted technical debt. In 7th IEEE International Workshop on
Managing Technical Debt, MTD 2015, Bremen, Germany, October 2, 2015, pages
9–15, 2015.

[13] Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsantalis. Using natural
language processing to automatically detect self-admitted technical debt. IEEE
Transactions on Software Engineering, 43(11):1044–1062, 2017.

[14] Mário André de F. Farias, Railan Xisto, Marcos S. Santos, Raphael S. Fontes,
Methanias Colaço, Rodrigo Spínola, and Manoel Mendonça. Identifying technical
debt through a code comment mining tool. In Proceedings of the XV Brazilian
Symposium on Information Systems, SBSI’19, New York, NY, USA, 2019. Associ-
ation for Computing Machinery. ISBN 9781450372374. doi: 10.1145/3330204.33
30227.

[15] Mário André de Freitas Farias, Manoel Gomes de Mendonça Neto, André Batista da
Silva, and Rodrigo Oliveira Spínola. A contextualized vocabulary model for identi-
fying technical debt on code comments. In 2015 IEEE 7th International Workshop

91

https://doi.org/10.1145/157709.157715

on Managing Technical Debt (MTD), pages 25–32, 2015. doi: 10.1109/MTD.2015
.7332621.

[16] Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and Ian Gorton.
Measure it? Manage it? Ignore it? Software practitioners and technical debt. In
Proceedings of the Joint Meeting on Foundations of Software Engineering, pages
50–60, 2015.

[17] Ronen Feldman. Techniques and applications for sentiment analysis. Commun.
ACM, 56(4):82–89, apr 2013. ISSN 0001-0782. doi: 10.1145/2436256.2436274.
URL https://doi.org/10.1145/2436256.2436274.

[18] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. Efficient and robust automated machine learning. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, pages 2962–2970. Curran
Associates, Inc., 2015.

[19] Jernej Flisar and Vili Podgorelec. Identification of self-admitted technical debt us-
ing enhanced feature selection based on word embedding. IEEE Access, 7:106475–
106494, 2019. doi: 10.1109/ACCESS.2019.2933318.

[20] Andrew Forward and Timothy C. Lethbridge. The relevance of software docu-
mentation, tools and technologies: A survey. In Proceedings of the 2002 ACM
Symposium on Document Engineering, DocEng ’02, page 26–33, New York, NY,
USA, 2002. Association for Computing Machinery. ISBN 1581135947. doi:
10.1145/585058.585065. URL https://doi.org/10.1145/585058.585065.

[21] Golara Garousi, Vahid Garousi, Mahmoud Moussavi, Guenther Ruhe, and Brian
Smith. Evaluating usage and quality of technical software documentation: An
empirical study. In Proceedings of the 17th International Conference on Evaluation
and Assessment in Software Engineering, EASE ’13, page 24–35, New York, NY,
USA, 2013. Association for Computing Machinery. ISBN 9781450318488. doi:
10.1145/2460999.2461003. URL https://doi.org/10.1145/2460999.2461003.

[22] Robert J. Grissom and John J. Kim. Effect sizes for research: A broad practical
approach. Mahwah, NJ: Earlbaum, 2005.

92

https://doi.org/10.1145/2436256.2436274
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/2460999.2461003

[23] Yuepu Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F.Q.B. da Silva,
A.L.M. Santos, and C. Siebra. Tracking technical debt - an exploratory case study.
In Software Maintenance (ICSM), 2011 27th IEEE International Conference on,
pages 528–531, 2011.

[24] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, pages 65–70, 1979.

[25] Matthew Honnibal and Ines Montani. spacy - industrial-strength natural language
processing in python. https://spacy.io/, 2017. (Accessed on 13/04/2019).

[26] Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li. Identifying
self-admitted technical debt in open source projects using text mining. Empirical
Software Engineering, 23(1):418–451, 2018.

[27] C. Hutto and Eric Gilbert. Vader: A parsimonious rule-based model for sentiment
analysis of social media text, 2014.

[28] Tomohiro Ichinose, Kyohei Uemura, Daiki Tanaka, Hideaki Hata, Hajimu Iida,
and Kenichi Matsumoto. ROCAT on KATARIBE: Code visualization for commu-
nities. In Proceedings of the International Conference on Applied Computing and
Information Technology, pages 158–163, 2016.

[29] AltexSoft Inc. Software documentation types and best practices. https://blog.p
rototypr.io/software-documentation-types-and-best-practices-1726ca59

5c7f/, 2018. (Accessed on 29/06/2022).

[30] Md Rakibul Islam and Minhaz F. Zibran. Leveraging automated sentiment analysis
in software engineering. In Proceedings of the 14th International Conference on
Mining Software Repositories, MSR ’17, pages 203–214, 2017.

[31] Robbert Jongeling, Proshanta Sarkar, Subhajit Datta, and Alexander Serebrenik.
On negative results when using sentiment analysis tools for software engineering
research. Empirical Softw. Engg., 22(5):2543–2584, October 2017.

[32] Daniel Jurafsky and James H. Martin. Speech and language processing, 2009.

[33] Mira Kajko-Mattsson. A survey of documentation practice within corrective main-
tenance. Empirical Software Engineering, 10(1):31–55, jan 2005. doi: 10.1023/b:

93

https://spacy.io/
https://blog.prototypr.io/software-documentation-types-and-best-practices-1726ca595c7f/
https://blog.prototypr.io/software-documentation-types-and-best-practices-1726ca595c7f/
https://blog.prototypr.io/software-documentation-types-and-best-practices-1726ca595c7f/

lida.0000048322.42751.ca. URL https://doi.org/10.1023%2Fb%3Alida.000004

8322.42751.ca.

[34] Yasutaka Kamei, Everton Maldonado, Emad Shihab, and Naoyasu Ubayashi. Using
analytics to quantify the interest of self-admitted technical debt. CEUR Workshop
Proceedings, 1771:68–71, 2016.

[35] Tim Klinger, Peri Tarr, Patrick Wagstrom, and Clay Williams. An enterprise
perspective on technical debt. In Proceedings of the 2Nd Workshop on Managing
Technical Debt, MTD ’11, pages 35–38, 2011.

[36] Henrik Kniberg. Good and bad technical debt (and how TDD helps), 2013. http://
blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt.

[37] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. Technical debt: From
metaphor to theory and practice. IEEE Software, 29(6):18–21, 2012. ISSN 0740-
7459.

[38] Philippe Kruchten, Robert L. Nord, Ipek Ozkaya, and Davide Falessi. Technical
debt: Towards a crisper definition report on the 4th international workshop on
managing technical debt. SIGSOFT Softw. Eng. Notes, 38(5):51–54, 2013.

[39] T.C. Lethbridge, J. Singer, and A. Forward. How software engineers use doc-
umentation: the state of the practice. IEEE Software, 20(6):35–39, 2003. doi:
10.1109/MS.2003.1241364.

[40] Shoushan Li, Sophia Yat Mei Lee, Ying Chen, Chu-Ren Huang, and Guodong
Zhou. Sentiment classification and polarity shifting. In Proceedings of the 23rd
International Conference on Computational Linguistics, COLING ’10, pages 635–
643, 2010.

[41] E. Lim, N. Taksande, and C. Seaman. A balancing act: What software practitioners
have to say about technical debt. IEEE Software, 29(6):22–27, 2012.

[42] E. Lim, N. Taksande, and C. Seaman. A balancing act: What software practitioners
have to say about technical debt. Software, IEEE, 29(6):22–27, 2012.

[43] Erin Lim, Nitin Taksande, and Carolyn Seaman. A balancing act: What software
practitioners have to say about technical debt. IEEE Software, 29(6):22–27, 2012.

94

https://doi.org/10.1023%2Fb%3Alida.0000048322.42751.ca
https://doi.org/10.1023%2Fb%3Alida.0000048322.42751.ca
http://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt
http://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt

[44] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele
Lanza, and Rocco Oliveto. Sentiment analysis for software engineering: How far
can we go? In Proceedings of the 40th International Conference on Software
Engineering, ICSE ’18, pages 94–104, 2018.

[45] Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li. Satd detec-
tor: A text-mining-based self-admitted technical debt detection tool. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion), pages 9–12, 2018.

[46] Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping
Li. Satd detector: A text-mining-based self-admitted technical debt detection
tool. In 2018 IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion), pages 9–12, 2018.

[47] Everton da S. Maldonado and Emad Shihab. Detecting and quantifying different
types of self-admitted technical debt. In 2015 IEEE 7th International Workshop
on Managing Technical Debt (MTD), pages 9–15, 2015. doi: 10.1109/MTD.2015
.7332619.

[48] Everton Da S. Maldonado, Rabe Abdalkareem, Emad Shihab, and Alexander Sere-
brenik. An empirical study on the removal of self-admitted technical debt. In 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 238–248, 2017. doi: 10.1109/ICSME.2017.8.

[49] Steve McConnell. Technical debt, 2007. http://www.construx.com/10x_Softwa

re_Development/Technical_Debt/.

[50] Solomon Mensah, Jacky Keung, Michael Franklin Bosu, and Kwabena Ebo Ben-
nin. Rework effort estimation of self-admitted technical debt. CEUR Workshop
Proceedings, 1771:72–75, 2016.

[51] Solomon Mensah, Jacky Keung, Jeffery Svajlenko, Kwabena Ebo Bennin, and Qing
Mi. On the value of a prioritization scheme for resolving self-admitted technical
debt. Journal of Systems and Software, 135(C):37–54, 2018.

[52] Marco Ortu, Bram Adams, Giuseppe Destefanis, Parastou Tourani, Michele March-
esi, and Roberto Tonelli. Are bullies more productive?: Empirical study of affec-
tiveness vs. issue fixing time. In Proceedings of the 12th Working Conference on
Mining Software Repositories, MSR ’15, pages 303–313, 2015.

95

http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.construx.com/10x_Software_Development/Technical_Debt/

[53] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. An
exploratory study on the relationship between changes and refactoring. In
Proceedings of the International Conference on Program Comprehension, pages
176–185, 2017.

[54] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A. Visaggio,
Gerardo Canfora, and Harald C. Gall. How can i improve my app? classifying
user reviews for software maintenance and evolution. In Proceedings of the 2015
IEEE International Conference on Software Maintenance and Evolution (ICSME),
ICSME ’15, pages 281–290, 2015.

[55] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of
machine Learning research, 12:2825–2830, 2011.

[56] Saranphon Phaithoon, Supakarn Wongnil, Patiphol Pussawong, Morakot
Choetkiertikul, Chaiyong Ragkhitwetsagul, Thanwadee Sunetnanta, Rungroj
Maipradit, Hideaki Hata, and Kenichi Matsumoto. Fixme: A github bot for detect-
ing and monitoring on-hold self-admitted technical debt. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 1257–
1261, 2021. doi: 10.1109/ASE51524.2021.9678680.

[57] Aniket Potdar and Emad Shihab. An exploratory study on self-admitted techni-
cal debt. In Proceedings of the 2014 IEEE International Conference on Software
Maintenance and Evolution, ICSME ’14, page 91–100, USA, 2014. IEEE Com-
puter Society. ISBN 9781479961467. doi: 10.1109/ICSME.2014.31. URL
https://doi.org/10.1109/ICSME.2014.31.

[58] Aniket Potdar and Emad Shihab. An exploratory study on self-admitted techni-
cal debt. In 2014 IEEE International Conference on Software Maintenance and
Evolution, pages 91–100, 2014. doi: 10.1109/ICSME.2014.31.

[59] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung, Thushari Atapattu,
and David Lo. Categorizing the content of github readme files. Empirical Software
Engineering, 2019.

[60] Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang, and John Grundy.
Neural network-based detection of self-admitted technical debt: From performance

96

https://doi.org/10.1109/ICSME.2014.31

to explainability. ACM Trans. Softw. Eng. Methodol., 28(3), July 2019. ISSN 1049-
331X. doi: 10.1145/3324916. URL https://doi.org/10.1145/3324916.

[61] Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang, and John Grundy.
Neural network-based detection of self-admitted technical debt: From performance
to explainability. ACM Trans. Softw. Eng. Methodol., 28(3), jul 2019. ISSN 1049-
331X. doi: 10.1145/3324916.

[62] Kenneth S. Rubin. Essential Scrum: A Practical Guide to the Most Popular Agile
Process. Addison-Wesley Professional, 1st edition, 2012.

[63] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic
text retrieval. Information Processing and Management, 24(5):513–523, 1988.

[64] CJ Satish and M Anand. Software documentation management issues and prac-
tices: A survey. Indian Journal of Science and Technology, 9(20):1–7, 2016.

[65] Masumi Shirakawa. Github - iwnsew/ngweight: N-gram weighting scheme. https:
//github.com/iwnsew/ngweight, June 2017. (Accessed on 04/13/2019).

[66] Masumi Shirakawa. N-gram weighting scheme, Jul 2017. URL https://github.c

om/iwnsew/ngweight.

[67] Masumi Shirakawa, Takahiro Hara, and Shojiro Nishio. N-gram idf: A global
term weighting scheme based on information distance. In Proceedings of the 24th
International Conference on World Wide Web, WWW ’15, page 960–970, Republic
and Canton of Geneva, CHE, 2015. International World Wide Web Conferences
Steering Committee. ISBN 9781450334693. doi: 10.1145/2736277.2741628. URL
https://doi.org/10.1145/2736277.2741628.

[68] Masumi Shirakawa, Takahiro Hara, and Shojiro Nishio. N-gram idf: A global
term weighting scheme based on information distance. In Proceedings of the
International Conference on World Wide Web, pages 960–970, 2015.

[69] Masumi Shirakawa, Takahiro Hara, and Shojiro Nishio. N-gram idf: A global
term weighting scheme based on information distance. In Proceedings of the 24th
International Conference on World Wide Web, WWW ’15, pages 960–970, 2015.

97

https://doi.org/10.1145/3324916
https://github.com/iwnsew/ngweight
https://github.com/iwnsew/ngweight
https://github.com/iwnsew/ngweight
https://github.com/iwnsew/ngweight
https://doi.org/10.1145/2736277.2741628

[70] Masumi Shirakawa, Takahiro Hara, and Shojiro Nishio. Idf for word n-grams. ACM
Trans. Inf. Syst., 36(1), June 2017. ISSN 1046-8188. doi: 10.1145/3052775. URL
https://doi.org/10.1145/3052775.

[71] Masumi Shirakawa, Takahiro Hara, and Shojiro Nishio. Idf for word n-grams. ACM
Transactions on Information Systems, 36(1):5:1–5:38, 2017.

[72] Forrest J Shull, Jeffrey C Carver, Sira Vegas, and Natalia Juristo. The role of
replications in empirical software engineering. Empirical software engineering, 13
(2):211–218, 2008.

[73] Giancarlo Sierra, Emad Shihab, and Yasutaka Kamei. A survey of self-admitted
technical debt. Journal of Systems and Software, 152:70 – 82, 2019. ISSN 0164-
1212. doi: https://doi.org/10.1016/j.jss.2019.02.056. URL http://www.scienced

irect.com/science/article/pii/S0164121219300457.

[74] Giancarlo Sierra, Emad Shihab, and Yasutaka Kamei. A survey of self-admitted
technical debt. Journal of Systems and Software, 152:70–82, 2019.

[75] Marcelino Campos Oliveira Silva, Marco Tulio Valente, and Ricardo Terra. Does
technical debt lead to the rejection of pull requests? In: Proceedings of the 12th
Brazilian Symposium on Information Systems, ser. SBSI ’16, pages 248–254, 2016.

[76] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts. Recursive deep models for semantic compo-
sitionality over a sentiment treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pages 1631–1642, 2013.

[77] R.O. Spinola, N. Zazworka, A. Vetró, C. Seaman, and F. Shull. Investigating
technical debt folklore: Shedding some light on technical debt opinion. In Managing
Technical Debt (MTD), 2013 4th International Workshop on, 2013.

[78] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. Quality analysis of source
code comments. In 2013 21st International Conference on Program Comprehension
(ICPC), pages 83–92, 2013. doi: 10.1109/ICPC.2013.6613836.

[79] Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, and Janice Singer.
Todo or to bug: Exploring how task annotations play a role in the work practices
of software developers. In Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 251–260, 2008.

98

https://doi.org/10.1145/3052775
http://www.sciencedirect.com/science/article/pii/S0164121219300457
http://www.sciencedirect.com/science/article/pii/S0164121219300457

[80] Pannavat Terdchanakul, Hideaki Hata, Passakorn Phannachitta, and Kenichi Mat-
sumoto. Bug or not? bug report classification using n-gram idf. In 2017 IEEE
international conference on software maintenance and evolution (ICSME), pages
534–538. IEEE, 2017.

[81] Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas.
Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Technol.,
61(12):2544–2558, December 2010.

[82] Parastou Tourani, Yujuan Jiang, and Bram Adams. Monitoring sentiment in open
source mailing lists: Exploratory study on the apache ecosystem. In Proceedings
of 24th Annual International Conference on Computer Science and Software
Engineering, CASCON ’14, page 34–44, USA, 2014. IBM Corp.

[83] Anthony J Viera and Joanne M Garrett. Understanding interobserver agreement:
the kappa statistic. Family Medicine, 37(5):360–363, 2005.

[84] Supatsara Wattanakriengkrai, Rungroj Maipradit, Hideaki Hata, Morakot
Choetkiertikul, Thanwadee Sunetnanta, and Kenichi Matsumoto. Identifying de-
sign and requirement self-admitted technical debt using n-gram idf. In Proc. of
9th IEEE International Workshop on Empirical Software Engineering in Practice
(IWESEP 2018), pages 7–12, 2018.

[85] Supatsara Wattanakriengkrai, Rungroj Maipradit, Hideki Hata, Morakot
Choetkiertikul, Thanwadee Sunetnanta, and Kenichi Matsumoto. Identifying de-
sign and requirement self-admitted technical debt using n-gram idf. In 2018 9th
International Workshop on Empirical Software Engineering in Practice (IWESEP),
pages 7–12, 2018. doi: 10.1109/IWESEP.2018.00010.

[86] Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. Examining the impact of
self-admitted technical debt on software quality. In 2016 IEEE 23Rd international
conference on software analysis, evolution, and reengineering (SANER), volume 1,
pages 179–188. IEEE, 2016.

[87] David A Wheeler. Sloccount user’s guide, 2004.

[88] Laerte Xavier, Fabio Ferreira, Rodrigo Brito, and Marco Tulio Valente. Beyond the
code: Mining self-admitted technical debt in issue tracker systems. arXiv preprint
arXiv:2003.09418, 2020.

99

[89] Meng Yan, Xin Xia, Emad Shihab, David Lo, Jianwei Yin, and Xiaohu Yang.
Automating change-level self-admitted technical debt determination. IEEE
Transactions on Software Engineering, 45(12):1211–1229, 2018.

[90] F. Zampetti, C. Noiseux, G. Antoniol, F. Khomh, and M. Di Penta. Recommending
when design technical debt should be self-admitted. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 216–226, 2017.

[91] F. Zampetti, A. Serebrenik, and M. Di Penta. Was self-admitted technical debt
removal a real removal? an in-depth perspective. In 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR), pages 526–536,
2018.

[92] Fiorella Zampetti, Cedric Noiseux, Giuliano Antoniol, Foutse Khomh, and Mas-
similiano Di Penta. Recommending when design technical debt should be self-
admitted. In Proceedings of the International Conference on Software Maintenance
and Evolution, pages 216–226, 2017.

[93] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. Was self-
admitted technical debt removal a real removal? an in-depth perspective. In
Proceedings of the International Conference on Mining Software Repositories,
pages 526–536, 2018.

[94] Nico Zazworka, Rodrigo O. Spínola, Antonio Vetro’, Forrest Shull, and Carolyn
Seaman. A case study on effectively identifying technical debt. In Proceedings
of the 17th International Conference on Evaluation and Assessment in Software
Engineering, EASE ’13, pages 42–47, 2013.

[95] Y. Zhang and D. Hou. Extracting problematic api features from forum discussions.
In 2013 21st International Conference on Program Comprehension (ICPC), pages
142–151, 2013.

100

	Abstract
	Acknowledgements
	List of publications
	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Outline

	Background
	Component
	N-gram IDF
	Automated Machine Learning

	Scope
	Documentation through code comments
	Documentation through discussion channels

	Relationship between sentiment analysis and self-admitted technical debt

	Related Studies
	Sentiment Classification Using N-gram IDF and Automated Machine Learning
	Introduction
	Method
	Evaluation
	Datasets and Settings
	Sentiment Classification Tools
	Result

	Discussions
	Threats to Validity
	Obtained N-gram Phrases

	Conclusion

	Identifying on-hold self-admitted technical debt
	Introduction
	Research Methodology
	Research Questions
	Data Collection
	Data Analysis
	Online Appendix

	Findings
	Initial Analysis
	RQ1.1 What kinds of self-admitted technical debt do developers indicate?
	RQ1.2 Do commits which remove the comments indicating self-admitted technical debt actually fix the debt?
	RQ1.3 What kinds of fixes are applied to address self-admitted technical debt?
	RQ1.4 Is the removal of self-admitted technical debt the primary reason for the commits which remove the corresponding comments?
	RQ1.5 Could the fixes applied to address self-admitted technical debt be applied to address similar debt in other projects?
	RQ1.6 How many of the comments indicating self-admitted technical debt contain a condition to specify that a developer is waiting for a certain event or an updated functionality having been implemented elsewhere?

	Design
	Data Preprocessing
	N-gram Feature Extraction
	Classifier Learning
	On-hold Condition Detection

	Evaluation
	Data Preparation and Annotation
	Evaluation Settings
	RQ2.1 What is the best performance of a classifier to automatically identify on-hold SATD?
	RQ2.2 How well can our classifier automatically identify the specific conditions in on-hold SATD?
	Developer Feedback

	Discussions
	Threats to Validity
	Conclusions and Future Work

	Automated identification of on-hold self-admitted technical debt
	Introduction
	Method
	Issue Reference Detection
	Project Selection
	Comment Extraction
	Issue Identification

	Dataset Creation
	Data Preprocessing
	Term Abstraction
	Lemmatization
	Special character removal

	On-hold SATD Classification
	N-gram Feature Extraction
	Classifier Selection
	Condition Checking

	Study Design
	Research Questions
	Context Selection & Data Collection
	Data Analysis

	Evaluation
	RQ1: What is the accuracy of our approach in identifying On-hold SATD?
	RQ2: How does On-hold SATD evolve in open source projects?
	RQ3: To what extent can our approach identify ``ready-to-be-removed'' On-hold SATD?
	Replication

	Towards a On-Hold SATD Recommender
	Threats to Validity
	Conclusion

	Conclusion
	Implications
	Opportunities for Future Research

