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Traffic Measurement and Control Methods
using Autonomous Learning∗

Arnan Maipradit

Abstract

Traffic management is an essential part of intelligent transportation systems
(ITS). It monitors and controls traffic to reduce congestion and to improve traffic
flow. In order to implement appropriate traffic control, it is necessary to un-
derstand the traffic volume at more locations in real time, and to control the
signal for efficient traffic scheduling. To improve traffic control, traffic control
based on accurate traffic information and global traffic information is necessary.
Therefore, in this thesis, we address these two challenges. To address the first
challenge, we propose PAVEMENT, a novel autonomous incremental learning
based traffic-census sensor system using a piezoelectric vibration sensor and a
video camera without human intervention. PAVEMENT consists of two models:
the video-based model which detects vehicles by using bounding boxes (detected
by YOLOv3 and DeepSORT) and the vibration-based model which uses road
vibrations to detect passing vehicles. To reduce the burden of collecting ground
truth labels, we apply supervised learning to train the vibration-based model by
using the result of the video-based model as ground truth. Once the vibration-
based model is trained, it can be used for traffic census on roads without the
video camera for various conditions. We collected the video and vibration data
of more than 4,000 passing vehicles on roads in different places and applied our
method to the data. As a result, PAVEMENT achieved over 98.4% accuracy and
98.0% f1-score in detecting passing vehicles with the model trained by 15 steps
of incremental learning in 1-minute interval. To address the second challenge,
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we propose an adaptive traffic control algorithm based on back-pressure and Q-
learning. Adaptive traffic control is a strategy to control traffic signals based on
actual traffic information. To improve adaptive traffic control, our approach uses
back-pressure routing which was originally developed for routing packets based
on queue length differentials (also called pressure gradients) in wireless commu-
nication networks. We apply back pressure routing to signal control at junctions
regarding vehicles as packets. We also use Q-Learning to predict real-time traffic
information at junctions and global traffic information that are input to our algo-
rithm. We evaluated the proposed algorithm through computer simulations and
confirmed that our algorithm reduces average vehicle traveling time from 17% to
38% compared with a state-of-the-art algorithm in some test scenarios.

Keywords:

autonomous incremental learning, passing vehicle detection, vibration sensor,
LDA, traffic control, traffic measurement, back-pressure
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1 Introduction

1.1 Background
The increasing of urban vehicle cause traffic congestion. Implementation of ap-
propriate traffic control will distribute congestion of the road network. In order
to implement appropriate traffic control, it is necessary to understand the traffic
volume on each road in real-time, and to control the signal for efficient traffic
scheduling.

Currently, vehicle detection systems are widely used in ITS (Intelligence Trans-
port Systems) due to their wide applicability to traffic management such as traffic
monitoring and analysis traffic scheduling. Nowadays, many detection techniques
use cameras and sensors to collect traffic data, such as vehicles’ number, speed,
and type. These techniques must produce results accurate enough to produce
precise data for traffic management.

In implementing video-based passing vehicle detection, it is known that de-
tection accuracy depends on weather conditions, shadows, camera blurriness,
and obstacles [1–3]. Previous studies [4, 5] have used YOLO for object detec-
tion and Simple Online and Real-time Tracking (SORT) for tracking objects.
However, the efficiency of the SORT algorithm decreases due to the occlusions.
The DeepSORT algorithm introduced distance metric to improve the SORT al-
gorithm [6]. Non-video-based passing vehicle detection methods using vibration
sensors, Doppler sensors, and others are unaffected by weather conditions or time.
However, getting ground truth data requires manual labeling, which is costly and
labor-intensive.

Traffic congestion and increase in vehicle travel time occur because most traffic
light control systems use fixed time cycle scheduling [7]. This is led by the al-
gorithms in the control systems not considering real-time or real-situation traffic
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information. Congestion can be reduced by smartly controlling traffic signals [8].
With the development of technology of ITS and Internet of Things (IoT) [9], many
researchers have adopted such technology to improve the efficiency of transporta-
tion. ITS is a traffic management system that uses an intelligent algorithm to
reduce vehicle travel time and improve traffic safety.

As an implementation of the intelligent traffic control systems, SCOOT [10]
and SCATS [11, 12] were studied. However, these adaptive traffic signals still
cannot guarantee specific performance. In addition, decentralized algorithms are
required to realize intelligent traffic control in a practical large-scale urban road
network. Currently, decentralized traffic control algorithms have been proposed
based on back-pressure [13–17]. Moreover, some back-pressure based algorithms
have also been proposed to coordinate different vehicles [18]. In a road network,
however, vehicles need time to travel from one road to another road which depends
on the vehicle speed and road length. Directly applying a back-pressure algorithm
is not appropriate to control traffic as in [18].

1.2 Related Works and Limitations
There are various methods for vehicle detection. Detection systems using com-
puter vision detect vehicles by automatically analyzing real-time or recorded video
from a camera [19–26]. Other detection systems use piezoelectric traffic sensors
installed on the side of the road and detect vehicles by the voltage signal gener-
ated when a vehicle passes over the sensor [27–30]. When a vehicle’s tires pass
over the tube, pneumatic road tube sensors send a detection signal by air pres-
sure along a rubber tube [31]. The induction loop method, in which a square
wire is embedded under the road, detects the vehicle using the principle of mag-
netic fields introduced near electrical conductors causing electrical currents to
be induced [32]. The approach using a magnetic sensor detects the vehicle that
measures parameters of the magnetic field in that area [33–36]. Passive infrared
devices detect vehicles by measuring the infrared energy radiating from the de-
tection zone [30, 37]. Doppler microwave method or radio detection detects the
vehicle based on reflected microwave or radio waves [38]. Acoustic detection sys-
tems provide traffic information based on noise generated by passing vehicles

2



through a network of recorders [39,40].
Several methods have high accuracy, but each has its drawbacks. Video Image

Processing is affected by inclement weather, shadows, and poor lighting. The
infrared and ultrasonic methods affect environmental conditions such as rain,
fog, temperature, humidity, and air turbulence. The inductive loop method and
the magnetometer method require a pavement cut and a lane closure to install.
Microwave Radar requires a license for operation and maintenance. Acoustic
detection systems can not distinguish between vehicles on the adjacent lanes
when they generate noise at various levels of intensity.

In summary, existing methods have a drawback such as installation cost, in-
stallation process, maintenance process, and environmental condition, while some
have advantages such as flexible re-location, cost-effectiveness, accuracy, and ro-
bustness to the environment. Primarily, computer vision-based methods are cost-
effective as they can count in many directions at once but have the drawback that
weather conditions impact their accuracy. On the other hand, non-vision-based
methods are robust against weather conditions but suffer from ground truth data
for training. In our approach, we propose a new method that combines the advan-
tages of the computer vision-based method and piezoelectric sensor-based method
to achieve robustness against weather conditions and easy deployment.

The intelligent traffic control systems have been implemented in an urban road
network such as SCOOT [10] and SCATS [11, 12]. These systems use adaptive
traffic signals which consider real-time traffic information [41] to become more
effective than a fixed cycle signal control. However, these adaptive traffic signals
still cannot guarantee global optimality. Genetic Algorithm [42] and Fuzzy Logic
Control [43, 44] are also considered as the solution to smartly controlling traffic
signals. However, these algorithms are centralized and do not suit a large urban
road network that has many entities and requires decentralized algorithms.

Dynamic vehicle routing problems have also been widely studied [45]. The
earlier literature only allows vehicles with some minor adjustments to the prior
routes [46, 47]. With the development of technology, researchers started us-
ing Markov Decision Process to route vehicles dynamically without any prior
route [48, 49]. Unfortunately, this method failed to be applied in the relatively
large-scale road networks which exist mostly in the real world. To tackle this
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limitation, an approach based on Approximate Dynamic Programming has been
proposed [50], yet all of the solutions above do not integrate with adaptive signal
control. Recent research considered adaptive signal control and dynamic vehicle
routing [51,52]. However, they only focused on providing adaptive route guidance
for individual vehicles, not coordinating different vehicles. With the development
of self-driving technology, it will be more efficient to coordinate different vehicles
to reduce overall traffic congestion.

Recently, decentralized traffic control algorithms have been proposed based on
back-pressure [13–17], as the back-pressure based traffic signal control algorithm
shows superior performances to the signal control of fixed time cycles. These
back-pressure based traffic control algorithms do not consider the adaptive con-
trol of vehicle routes, e.g., the shortest path algorithm easily results in traffic
congestion especially during rush hours. Some research consider jointly control-
ling traffic signals and vehicle routing [14, 52]. However, these works only focus
on giving individual vehicles adaptive route guidance. Coordination between dif-
ferent vehicles will further reduce traffic congestion.

Some back-pressure based algorithms have also been proposed to coordinate
different vehicles [18]. In a road network, however, vehicles need time to travel
from one road to another road which depends on the vehicle speed and road
length. Directly applying a back-pressure algorithm is not appropriate to control
traffic as in [18].

Compared to the existing back-pressure based algorithms mentioned above, this
thesis is positioned to an adaptive traffic control algorithm which uses a back-
pressure algorithm by considering vehicle traveling time on a road. Specifically,
our algorithms control traffic signal and vehicle routes based on real-time traffic
information such as the vehicle speed and vehicle position. As a result, our
algorithm significantly reduces traffic congestion. In addition, not only based on
local traffic information, i.e., every control agent considers information of vehicles
around its own junction, this thesis covers more efficient traffic control which uses
global traffic information and coordination between different junctions.
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1.3 Thesis Statement and Contributions
In this dissertation, we introduce the methods that can distribute traffic con-
gestion in road networks using autonomous learning. In order to implement
appropriate traffic control, it is necessary to understand the traffic volume and
control the traffic signal for efficient traffic scheduling. Therefore, in this the-
sis, we address these two challenges. To address the first challenge, we propose
PAVEMENT, a novel autonomous-learning traffic-census sensor system using a
piezoelectric vibration sensor and a video camera. To address the second chal-
lenge, we propose an adaptive traffic control algorithm based on back-pressure
and Q-learning. Adaptive traffic control is a strategy to control traffic signals
based on actual traffic information.

1.4 Organization of the Thesis
This dissertation shows how traffic measurement and control methods using Au-
tonomous Learning can distribute and reduce traffic congestion in a road network.
The organization of this thesis is as follows.

Chapter 2 introduces our PAVEMENT: self-learning passing vehicle detection
system with camera and vibration-based Reinforcement Learning in detail. We
first describe the architectural model, as well as provide our approaches. Then
we show an experimental evaluation and the result.

Chapter 3 introduces our adaptive traffic control algorithm based on back-
pressure and Q-Learning. We first describe the road network system, as well as
provide our back-pressure and Q-learning algorithm. Then we show an experi-
mental evaluation and the result. In Chapter 4, we present our conclusions.
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2 PAVEMENT: Passing Vehicle
Detection System with
Autonomous Incremental
Learning using Camera and
Vibration Data

2.1 Introduction
This chapter proposes PAVEMENT (passing vehicle detection by autonomous
incremental learning), a novel traffic-census sensor system using a piezoelectric
vibration sensor and a video camera, to solve the weather condition and manual
labeling problems in existing methods.

PAVEMENT consists of two models: the video-based model that detects vehi-
cles using bounding boxes and the vibration-based model that uses road vibra-
tions to detect passing vehicles. To reduce the burden of collecting ground truth
labels, we use the result of the video-based model as ground truth to train the
vibration-based model by applying linear discriminant analysis and incremental
learning. Once the vibration-based model is trained on a road, it can continue de-
tecting vehicles passing through the road without the video camera regardless of
conditions like weather, lighting, and other environmental factors. For the video-
based model, we have developed a vehicle detection model using YOLOv3 [53]
which detects objects in each video frame. We also use DeepSORT [54] which
is a real-time tracking algorithm for multiple 2D objects over subsequent video
frames. Once the vehicle is detected and tracked over several frames, a simple
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mathematical calculation is applied to count the vehicles where an orthogonal
line is defined on the road, and the intersection of the detected object (vehicle)
and the line is calculated so that the number of vehicles passing the defined line
is obtained. This is used as ground truth for training the vibration-based model.
For the vibration-based model, we use data collected from a traffic census sensor
(vibration sensor) and the output of the video-based model to train the model by
applying linear discriminant analysis and incremental learning. Linear discrimi-
nant analysis (LDA) is implemented to reduce feature dimensionality of vibration
data for later classification. The typical implementation of the LDA technique
requires that all the samples are available in advance. However, there are situa-
tions where the entire data set is not available and the input data are observed as
a stream. In this case, the LDA feature extraction should have the ability to up-
date the computed LDA features by observing the new samples without running
the algorithm on the whole data set. Thus, incremental learning is implemented
to further train the model.

Evaluation experiments were conducted using a video camera and a vibration
sensor on a road in Osaka city, Japan. The video camera collected day-time data
while the vibration sensor collected day and night time data. The developed
video-based model achieved 99% accuracy of passing vehicle detection. With the
detection results of the video-based model as the ground truth, we applied the
proposed method to incrementally train the vibration-based model. As a result,
the trained vibration-based model showed a saturated accuracy and F1-score
after applying 15 incremental learning steps in 1 minute interval, with a 98.4%
accuracy and 98.0% F1-score in detecting passing vehicles.
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2.2 Passing Vehicle Detection: Requirements
and Approaches

Our goal is to realize a system for detecting (counting) passing vehicles on the
road. The requirements are as follows.

R1: The system can detect passing vehicles accurately on a target lane regardless
of time (day or night) and weather conditions (clear, rain, etc).

R2: The system is easy to deploy and maintain (installation and re-location are
easy).

R3: The system does not require manual labeling for ground truth data collec-
tion.

R4: The system can adapt to any different road by autonomously learning from
the data collected on the road without human intervention.

To fulfill the requirements R1–R4, we take the following approaches.

• For R1 and R2, we utilize a Piezoelectric vibration sensor module developed
in [28] that can be easily deployed at the road side and capture the road
vibrations generated when vehicles pass near the module on the road.

• For R3, we develop a video-based passing vehicle detection model to auto-
matically get ground truth labels using image analysis and object detection.

• For R4, on each new road where a vibration sensor module and a video
camera are deployed, we train a passing vehicle detection model based on
road vibration data by applying LDA and incremental learning where labels
(ground truth) are obtained by the video-based model.
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2.3 PAVEMENT: Self-Learning Passing Vehicle
Detection System

Figure 2.1: PAVEMENT: System Architecture.

In this section, we describe our approach PAVEMENT for vehicle detection
with a vibration sensor and video camera based on LDA and autonomous incre-
mental learning.

2.3.1 Outline
The PAVEMENT system automatically collects the ground truth labels (i.e.,
passing vehicles) from video camera data using image analysis [22]. We collect
data for detecting passing vehicles by using a vibration sensor in the same way as
a traffic census sensor [28]. PAVEMENT uses Linear discriminant analysis (LDA)
and Incremental Learning to train the vibration-based model. LDA is a gener-
alization of Fisher’s linear discriminant, a method used in statistics and other
fields, to find a linear combination of features that characterizes or separates two
or more classes of objects or events. The resulting combination may be used as
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a linear classifier, or, more commonly, for dimensionality reduction before classi-
fication. Incremental Learning is a method of machine learning in which input
data is continuously used to extend the existing model’s knowledge i.e. to further
train the model. It represents a dynamic technique of supervised learning and
unsupervised learning that can be applied when training data becomes available
over time. With the proposed system, the passing vehicle detection model using
vibration data is autonomously trained without human intervention by setting
the camera and the vibration sensor on the roadside. Once the vibration-based
model is trained, it is used to detect passing vehicles without cameras.

The architecture of the proposed system is shown in Fig. 2.1. PAVEMENT
system consists of two parts: 1) video-based passing vehicle detection model
(right of Fig. 2.1), and 2) Vibration-based model (left of Fig. 2.1). The details of
these parts are described in the following sections.

2.3.2 Video-based Passing Vehicle Detection
As shown in Fig. 2.1 (right), the proposed video-based passing vehicle detection
method utilizes YOLOv3 [53] for object detection and DeepSORT [54] for ob-
ject tracking. The detection of vehicle passing is performed by checking if the
bounding box of the vehicle crosses the detection line drawn on the road in video
frames.

The goal of object tracking is to locate the position of a moving object in one
video frame. Object detection is the first phase in any object tracking program.
The purpose of object detection is to determine whether any instance of an object
is in an image or video frame. After object detection, the tracking operation is
used to find the positions of the detected objects in each frame. The input is the
bounding box of an object detected by YOLO. The tracking phase will track the
detected objects until the end of the video stream.
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Figure 2.2: Video-based Passing Vehicle Detection.

An example of our video-based passing vehicle detection is shown in Fig. 2.2,
where a Total shows the number of vehicles (sum of upstream and down-stream)
that passed detect line, and Up and Down show the number of vehicles on the
upstream (opposite direction) lane and downstream (forward direction) lane, re-
spectively. The developed method also collects vehicle speed by using timestamp
and distance from speed line and check line for each vehicle. When a vehicle
passes through detect line, the system records a timestamp.

The procedure of the developed method is as follows:

1. import video file from a video camera, loop over frames from the video file
stream, construct a blob from the input frame and then perform a forward
pass of the YOLO object detector that gives us bounding boxes of vehicles
and associated probabilities.

2. initialize the list of detected bounding boxes, confidences, and class IDs,
respectively, and extracts the class ID and confidence (i.e., probability) of
the object detection.

3. filters out weak predictions by ensuring that the detected probability is
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greater than the minimum probability.

4. scale bounding box coordinates relatively to the size of the image and up-
dates the list of bounding box coordinates, confidences, and class IDs.

5. applies non-maxima suppression to suppress weak, overlapping bounding
boxes.

6. extracts the bounding box coordinates, draw a bounding box rectangle, and
labels on the image.

7. draws detection line and checks if a bounding box intersects with the de-
tection line with linear system calculation.

2.3.3 Vibration-based model with Incremental Learning
As shown in Fig. 2.1 (left), the proposed method for training vibration-based
model utilizes a vibration sensor, LDA, and incremental learning by using the
vibration data and the ground truth labels obtained by the video-based model.

Vibration Sensor

We use a piezoelectric vibration sensor system [28] which is developed to collect
traffic census data. The collected data can be used to count passing vehicles on
the road. This system is based on a piezoelectric vibration sensor that senses
road vibrations from passing vehicles by deploying the system on sidewalks next
to the target road. The system consists of a piezoelectric sensor unit, an am-
plifier, and an audio interface. As a sensor unit, a 7BB-41-2L0 sensor (Murata
Manufacturing) is used to convert vibrations into electrical voltage signals in this
system. The system employs the amplifier which has an impedance conversion
circuit to improve the signal-to-noise ratio (SNR) of the input signal. Finally,
UA-25EX Universal Serial Bus (USB) (Roland DG Corp.) is utilized as an audio
interface to convert analog signals from the amplifier into pulse code modulation
(PCM) signals (16 bit, 44.1 kHz). To avoid clipping the input signal, the gain of
the USB is adjusted so that a –15 dBV sinusoidal 1 kHz analog signal is recorded
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as 0 decibels relative to the full scale (dBFS). Signal data was then recorded to
a PC from the vibration sensor as audio data.

Data Preprocessing

We extract the vibration peaks from the acquired vibration data in a fixed interval
(e.g., 1 minute) using the algorithm proposed in [28]. Only the extracted vibration
peaks data is input to incremental learning. The process of detecting vibration
peaks is as follows.

• Apply a short-time Fourier transform to vibration data with a window
length of 16,384 samples (about 0.37 s) and a hop length of 8,192 samples
(about 0.19 s).

• Exclude frequency components higher than 300 Hz from short-time Fourier
transformed data.

• Mark and record timestamp of peak points in energy trend data that exclude
from previous step.

• For each peak point, extract 2 second of vibration data so that the peak
point is located at the center of the data.

Preprocessing

We extract 8 features from each 2 seconds data including the peak point. We
apply Mel-frequency cepstral coefficients (MFCCs) since vehicle sound data is
similar to a human voice signal in terms of frequency range. The process reshapes
the matrix (8 × 173) to a vector (1 × 1384), PAVEMENT uses this data as an
input to Linear discriminant analysis (LDA).
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Linear discriminant analysis (LDA)

Listed below are the 5 general steps for performing LDA.

• Compute the d-dimensional mean vectors for the different classes from the
data set.

• Compute the scatter matrices (in-between-class and within-class scatter
matrix).

• Compute the eigenvectors (e1, e2, ..., ed) and corresponding eigenvalues (λ1,

λ2, ..., λd) for the scatter matrices.

• Sort the eigenvectors in decreasing order and choose k eigenvectors with
the largest eigenvalues to form a d× k dimensional matrix W (where every
column represents an eigenvector).

• Use this d×k eigenvector matrix to transform the samples onto the new sub-
space. This can be summarized by the matrix multiplication: Y = X ×W

(where X is a n× d-dimensional matrix representing the n samples, and y

are the transformed n× k-dimensional samples in the new subspace).

To apply LDA, we assign one of the two data label classes below to each
extracted 2 second data including the peak point.

• 1 (a vehicle is passing through the target measurement lane)

• 0 (a vehicle is not pass through the target measurement lane; a vehicle may
be passing through the other, e.g., opposite lane)

Here, labels are given automatically by the video-based passing vehicle detec-
tion system.

This LDA process generates a new axis onto which it projects data in a way
that minimizes the variance and maximizes the distance between the means of
the classes. Since PAVEMENT inputs a time series data, we apply incremental
learning to LDA. In our approach, we use labels (given automatically), features
extracted from a fixed time interval (e.g., 1 minute) of vibration data and a
model already trained at the previous intervals data to update the model until
the classification accuracy is saturated.
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2.4 Experimental Evaluation
This section shows the experimental environment and the dataset used for eval-
uation and then the performance of the video-based detection model and the
vibration-based detection model trained by LDA and Incremental learning. Our
approach uses a road vibration sensor [28] developed as non-intrusive detector
which can be mounted on a structure above the surface of the pavement. We use
performance index consisting of Recall, Precision, F1-score, and Accuracy.

Figure 2.3: Piezo sensor deployment location.

2.4.1 Experimental environment and dataset
We collected video data and vibration data on an actual two-lane road in Osaka
city, where a video camera and a vibration sensor system are deployed as shown
in Fig. 2.3. Fig. 2.4 and Fig. 2.5 show the photos of the road with a video camera
and a vibration sensor system deployed.
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Figure 2.4: System deployment during training phase.

Figure 2.5: System deployment during operation phase.

We collected the following video and vibration data.

• Video: 1920×1080 pixels and 60 frames per second, Duration: daylight
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hours, Locations: three

• Vibration: raw PCM data with 16bit, 44.1kHz, Duration: day and night
time, Locations: two

We extracted the common time period where both the video data and the
vibration data are available and created the dataset of the common time period
for autonomous incremental learning. The created dataset includes the data of
7,147 passing vehicles. The dataset was divided into two parts with a ratio of 7:3
for training and test.

2.4.2 Performance of video-based passing vehicle
detection

Fig. 2.6 shows the procedure to count the passing vehicles from the recorded
video.
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Figure 2.6: Video-based Passing Vehicle Detection process.

Computation time

Experiments were run on a computer with an Intel Core i5–8400 2.8 GHz with
6 cores and 6 threads, GPU NVIDIA GTX 1080, RAM 32GB, Windows 10 OS.
Video-based passing vehicle detection took up to 60 minutes to process each 15-
minute video. It means that we cannot train the model in real time. However,
our proposed approach is still feasible by intermittently training the model, for
example, using 15 minutes video of each hour for training. If we use faster PC,
we can shorten this intermittent period.
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Results

We tested video-based passing vehicle detection with real video camera recordings
from Osaka prefecture consisting of over 100 videos collected at three locations
during daytime, each containing 15 minutes of footage and has more than 10,000
vehicles. We achieved 99% accuracy for passing vehicle detection and were also
able to collect the speed of vehicles. The 1% missing was found to occur when
a smaller vehicle stays too close to a bigger vehicle, making our system unable
to detect that vehicle as shown in Fig. 2.7. To achieve higher accuracy video
camera angle should be more on the side of the vehicle so it can record every
vehicle passing through the video camera or filter a bicycle and motorcycle out of
the measurement target. Table 2.1 shows the detail of detection results. There is
no false positive and the false negative is also reasonably small (87 among 11,742).
The F1-score is 99.63%.

Table 2.1: Results of Video-based Passing Vehicle Detection

Parameters Values

Actual counts 11,742
Detected counts 11,655
False Positive 0
False Negative 87

Precision 100%
Recall 99.25%

F1 99.63%
Accuracy 99.26%
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Figure 2.7: False negative situation in Video-based passing vehicle detection.

2.4.3 Vibration-based model with incremental learning
We applied the proposed method to use incremental learning to train vibration-
based model to the dataset.

Fig. 2.4 shows deployment of our system during the training phase that consists
of a video camera to collect ground truth data and a vibration sensor to collect
vibration data. Once the vibration-based model reaches the saturated accuracy,
a video camera can be removed as shown in Fig. 2.5.

In this experiment, we assume that the video-based vehicle detection gives
labels in real time.

Computation time

Experiments were run on a computer with an Intel Core i5–8400 2.8 GHz with 6
cores and 6 threads, RAM 32GB, Window 10 20h1 os. Incremental LDA process
at each 1 minute interval took up to 18.7 seconds to process 1 minutes of vibration
data. It also took up to 4 seconds to test the trained model to know the accuracy,
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the f1-score, etc. Thus, it is possible to incrementally train the model in real-time.

Results

Table 2.2 and Fig. 2.8 show the detail of detection results. As seen, the accuracy
saturated when it reaches 15 minutes point.

Results show that accuracy and F1-score gradually as incremental learning
steps proceed as shown in Fig. 2.8. After 15 minutes point of vibration data, it
saturated and got 98.4% accuracy and 98.0% F1-score which are comparable to
the existing method using the same vibration sensor with manually labeled ground
truth data [28] which achieved 98.3% accuracy of passing vehicle detection.

Table 2.2: Results of Vibration-based model Vehicle Detection

Total minutes Accuracy Precision Recall F1-score

1 0.873 0.900 0.900 0.891
2 0.880 0.875 0.875 0.866
3 0.911 0.909 0.952 0.923
4 0.918 1.000 0.960 0.912
5 0.882 0.900 0.900 0.900
6 0.986 1.000 0.966 0.982
7 0.987 1.000 0.970 0.985
8 0.989 0.979 0.974 0.987
9 0.989 1.000 0.976 0.988
10 0.991 1.000 0.979 0.989
11 0.985 1.000 0.980 0.988
12 0.986 0.982 0.964 0.985
13 0.984 0.982 0.965 0.986
14 0.985 0.983 0.967 0.983
15 0.984 0.985 0.976 0.980
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Figure 2.8: Accuracy and F1-score.

Our approach is also suitable for both day-time and night-time while the accu-
racy of video-based passing vehicle detection decreases in night-time situations.
We use the same data with our algorithm as input in Image processing techniques,
existing global detection method [55], Visual Saliency & Deep Learning [56], Seg-
mentation Techniques [57], Weighted Feature Fusion and R-CNN [58], Feature
extraction algorithm, pairing algorithm [59]. For automatic multilevel thresh-
olding and matching algorithm [60] we can not implement these algorithms to
test the accuracy so we use their experimental result to compare with other al-
gorithms. Previous techniques have a detection rate in the range of 81-97%. In
comparison, our approach’s result shows that it can achieve 98% accuracy in
day-time and a similar accuracy could be achieved for night-time situations since
the vibration-based method will not be affected very much by weather and light
conditions. As a result, our approach could achieve high accuracy and is suitable
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for all weather conditions.
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3 Adaptive Traffic Control
Algorithm Based on
Back-Pressure and Q-Learning

3.1 Introduction
In this chapter, we propose an adaptive traffic control algorithm which uses a
back-pressure algorithm by considering vehicle traveling time on a road. Specifi-
cally, our algorithm controls traffic signals and vehicle routes based on real-time
traffic information such as vehicle speed and vehicle position. As a result, our
algorithm significantly reduces traffic congestion. In addition, not only based on
local traffic information, i.e., every control agent considers information of vehicles
around its own junction, we also propose another adaptive traffic control algo-
rithm which uses global traffic information and coordination between different
junctions. The latter algorithm controls traffic based on accurate real-time traf-
fic information and local traffic information to global traffic information, where
neighboring junction agents exchange traffic information to learn global traffic
information.

The proposed algorithms were previously presented in [61] and [62], respec-
tively. This chapter consists of an explanation of the proposed algorithms and
experiment results with additional results. Section 3.2 introduces a road network
system assumed in this chapter. Section 3.3 explains our proposed methods, and
experiment results are shown in Section 3.4.
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Figure 3.1: An example of a junction with roads of three lanes.

3.2 Road Network System
A road system consists of Roads (R) and Junctions (J), where R = {R1, R2, R3, ...,

Rmax} denotes roads, J = {J1, J2, J3, ...Jmax} denotes junctions. It is assumed
that each Ri consists of 3 lanes Lij, an example is given in Fig. 1. Vehicles
of a traffic flow (f) have the same starting road (o) and destination road (d).
We define F as the set of all flows, O = {o(f), f ∈ F} as the set of all starting
roads, D = {d(f), f ∈ F} as the set of all destinations and λf (t) as the number
of vehicles of flow f that enter road network at time slot t.

We define a traffic movement (Ri, Rj) at a junction to be the process of a
vehicle moving from Ri to Rj. We define a traffic phase to include all traffic
movements that can happen simultaneously. Fig. 2. shows all possible phases at
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Figure 3.2: All possible phases at a junction.

a junction. For a junction Ja, we define Ma as the set of all possible movements
and Pa as the set of all possible traffic phases. Traffic signals at junction Ja are
controlled by activating a traffic phase pa

i from Pa.

3.3 Adaptive Traffic Signal Control Based on
Back-Pressure with Global Information

In this section, we describe our proposed algorithms based on back-pressure with
global information.

3.3.1 Overview
We have proposed adaptive traffic signal control methods based on back-pressure
with global traffic information [61, 62]. [61] describes an adaptive traffic signal
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control method using real-time traffic information with global traffic informa-
tion in a road network. We assume all vehicles are self-driving vehicles that are
amounted with accurate speed sensors and GPS devices, and can communicate
in a timely way with control agents via networks, like vehicle-to-vehicle (V2V),
vehicle-to-Road Side Unit (V2R), etc. The control agents are the computer pro-
grams placed at each junction to collect information of vehicle speed and vehicle
position at every time slot for traffic control. A vehicle is also able to provide
traveling time to control agents. The traveling time includes not only moving
time but also waiting time to turn in junctions. At each time slot, every control
agent performs the following three tasks sequentially. In addition, the communi-
cation loads are greatly increased by control agents if each agent widely exchanges
information. Therefore, [62] employs the approach in which control agents are
placed on static equipment at each junction and exchange information only with
their neighboring agents. Q-learning is used to estimate global congestion infor-
mation from limited information. The procedures in our proposed method using
the estimated information are as follows;

1. Task 1. Learning Global Congestion Information:
Control agents exchange congestion level information with their neighbor-
ing agents to maintain a table of values Rd

ij(t) because the table of values
is usually different among neighboring agents. Congestion level informa-
tion of a road is an index of congestion and is defined by the number of
shadow vehicles at a shadow queue associated with the road. Based on the
exchanged congestion information, the agents update their congestion esti-
mates based on Q-learning. Through exchanging and updating congestion
information, all agents finally obtain global congestion information from
recursive definition (1) in Section 3.3. From recursive definition (1), we can
see that Rd

ij(t) involves all other Rd
ij(t) values, thus called global congestion

information. Although each road is assigned to two different agents at its
junctions, this thesis assumes that global congestion information for a spe-
cific road obtained by the two assigned agents is not so different because
used information is periodically synchronized among neighboring agents.
Global congestion information is used in the following two tasks.

2. Task 2. Traffic Phase Selection:
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Figure 3.3: An example of a shadow network.

The agent selects a traffic phase based on the back-pressure algorithm.

3. Task 3. Vehicle Routing:
After a vehicle passes through the junction and enters the next road under
the traffic phase selected in task 2, the agent determines which lane of that
road the vehicle should join. Since each lane determines the vehicle turning
direction, i.e., going straight, turning left, or turning right, the process of
determining lanes for a vehicle to join forms the routing process of that
vehicle. The following shadow network is constructed to perform these
three tasks.

3.3.2 Shadow Network
An example of a shadow network is given in Fig. 3, where a virtual shadow
vehicle in a shadow network corresponds to an actual vehicle in a road network, a
shadow buffer B̄d

i (t) corresponds to the beginning part of one real road (a vehicle
just passing through a junction will enter this part of the road) and a shadow
queue Q̄d

i (t) corresponds to the end part of one real road (a vehicle running close
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Figure 3.4: A vehicle needs time to travel across a road.

to the next junction will enter this part of the road).
In the shadow network, whenever a real vehicle enters the road network, a

shadow vehicle is generated and enters the shadow network. Furthermore, one
more shadow vehicle is generated with probability ϵ, 0 < ϵ < 1 and also enters
the shadow network. This operation makes sure that the algorithm is stable, i.e.,
queue size will not go infinite (proper value and detail and Simulation Result and
Analysis section of α show in Fig. 12) [18,63].

When an actual vehicle goes into a road network from starting road Ri at t

and wants to go to destination d ∈ D, a shadow vehicle will also go into B̄d
i (t).

When that vehicle approaches the end part of road Ri, the shadow vehicle first
leaves B̄d

i (t) and then enters Q̄d
i (t). We say a vehicle approaches the end part of

one road if its speed is less than 5 km/h or it is within the range of 100 meters
to the next junction.

Similarly, after an actual vehicle destined for destination d ∈ D leaves road Ri

and goes into the adjacent road Rj at t, a shadow vehicle will leave Q̄d
i (t) and goes

into B̄d
j (t). Fig. 4 shows vehicles need time to travel from one road to another

road which depends on the vehicle speed and road length. Directly applying
a back-pressure algorithm without traveling time may decrease the algorithm’s
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performance. The movement of virtual shadow vehicles in the shadow network
can be seen as control information exchange, based on which an agent performs
its three tasks (details are given in the following section).

3.3.3 Adaptive Traffic Control Algorithm Based on
Back-Pressure and Q-Learning

Our adaptive traffic control algorithm based on back-pressure and Q-Learning
(ARD-BP-Q) is decentralized and the agent at each junction runs the following
algorithm independently. At each time slot t, an agent performs the following
three steps sequentially.

Step 1. Learning Global Congestion Information

The agent at a junction is responsible for estimating the route congestion level
Rd

ij(t) for all routes to destination d from road i and by the way of the neighbor
road j. Each agent maintains a table R to store the value of Rd

ij(t). At the
beginning of each time slot, the agent exchanges information of the number of
vehicles Q̄d

j (t) at upstream roads around that junction and the table R with
neighboring agents. After exchanging that information, the agent updates its
route congestion estimate Rd

ij(t) as follows:

Rd
ij(t)← (1− α)Rd

ij(t− 1) + α[Q̄d
j (t) + γ min

k
Rd

jk(t)] (3.1)

where α is learning rate and γ is discount factor of Q-learning parameters, 0 <

α, γ <= 1. If Rd
ij > Cmax, set Rd

ij = Cmax where Cmax is a positive constant. Bias
quantity is a minimum value of estimating the route congestion level that starts
from the origin to the destination, each agent then calculates a bias quantity
Cd

i (t) as follows:

Cd
i (t) = min

j
Rd

ij(t) (3.2)

Finally, the bias quantity Cd
i (t) will be used in Traffic Phase Selection.
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Step 2. Traffic Phase Selection

The agents at each junction compute traffic pressure wd
ij(t) for all destinations

and traffic movement, traffic pressure is the difference of queue length and bias
quantity from the first road to the second road. Traffic pressure in our algorithm
ARD-BP-Q (Algorithm 1) is defined as follows:

wd
ij(t) = max{(Q̄d

i (t) + Cd
i (t))− (Q̄d

j (t) + Cd
j (t)), 0} (3.3)

Then the agent selects the destination d∗
ij that in return maximizes traffic

pressure wd
ij(t) defined as follows:

d∗
ij(t) = arg max

d
wd

ij(t) (3.4)

From the above equation, agents define w
d∗

ij(t)
ij (t) as the weight of traffic move-

ment which corresponds to one d∗
ij(t) at time slot t.

Finally, the agent selects and activates the phase pa∗(t) ∈ Pa that releases the
most traffic pressure defined as follows:

pa∗(t) = arg max
pa

l
∈Pa

Σ(Ri,Rj)∈pa
l
w

d∗
ij(t)

ij (t)sij(t) (3.5)

where sij is the number of vehicles that can move from road Ri to road Rj at
time slot t.

Step 3. Vehicle Routing

A vehicle will follow the routing probabilities P d
ij(t) based on σ̂d

ij(t) defined as
follows:

P d
ij(t) =

σ̂d
ij(t)

Σk : (Rj ,Rk)∈Maσ̂d
ik(t) (3.6)

where σ̂d
ij(t) is the estimated value of the expected number of shadow vehicles of

destination d that moves from shadow queue Q̄d
i (t) to shadow buffer B̄d

j (t) which
corresponds to road Ri and Rj. σ̂d

ij(t) is updated by the agent of junction Ja for
all destination d ∈ D and traffic movement (Ri, Rj) ∈Ma as follows :
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σ̂d
ij(t) = (1− β)σ̂d

ij(t− 1) + βσd
ij(t) (3.7)

where 0 < β < 1. After a vehicle enters road Ri at time slot t. it will join lane
Lij with routing probability P d

ij(t).
Since our goal is to reduce vehicle traveling time, a heuristic is that we should

let vehicles with a longer traveling time pass through a junction first. Thus, we
also propose the following Adaptive Traffic Control Algorithm Based on Back-
Pressure and Q-Learning with Vehicle traveling time (ARD-BP-QV Algorithm
2), which is the same as Algorithm 1 except that traffic pressure is defined as
follows:

wd
ij(t) = max{(V̄ d

i (t) + Cd
i (t))− (V̄ d

j (t) + Cd
j (t)), 0} (3.8)

where V̄ d
i (t) is the normalized value of the sum of the traveling time of vehicles in

shadow queue Q̄d
i (t), the normalized value is within range from 50-100. We need

to normalize the vehicle traveling time to make it comparable to the quantity of
bias Cd

i (t) and Cd
j (t).

3.4 Evaluation
In this section, we compare the performance of our algorithms with other algo-
rithms below in an open-source simulator SUMO (Simulation of Urban MObil-
ity) [64]. Table 3.1 shows the compared algorithms in simulation. Our algorithms
are ARD-BP-Q and ARD-BP-QV.

3.4.1 Simulation Setup
We implement a road network that mimics a simple grid road network and a
real Stockholm road network under no roundabout or U-turns situations. The
Stockholm road network was given by OpenStreetMap which can export the
topology of a road network [65,66].
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Table 3.1: Compared algorithms in simulation.
Name Detail
FC Traffic signal control with fixed-cycles
SP-BP Back-pressure and shortest path based traffic control algorithm [14]
AR-BP Back-pressure based adaptive traffic signal control and vehicle routing without real-time control information update [18].
ARD-BP Back-pressure based adaptive traffic signal control and vehicle routing with real-time control information update
ARD-BP-Q Adaptive Traffic Control Algorithm Based on Back-Pressure and Global traffic information
ARD-BP-QV Adaptive Traffic Control Algorithm Based on Back-Pressure and Global traffic information with Vehicle traveling time

Figure 3.5: Grid road network structure that uses in SUMO with 8 pairs of origins
and destinations.

33



Grid Road Network Scenario

The road map we used is given in Fig. 3.5. All roads have different lengths (250-
950 meters) and speed limits (60-140 km/h). There are 8 origin and destination
pairs {(o1, d1), (o2, d2), (o3, d3), ...., (o8, d8)}. All vehicles arrive at the starting
roads with the same rates (360-2520 vehicles/hour) Duration of a slot is configured
to be 15 seconds. Shadow vehicle generating probability ϵ is configured to be 0.02
and vehicle routing parameter β is configured to be 0.02.

Figure 3.6: Road network structure of Stockholm city that uses in SUMO with 6
pairs of origins and destinations.

Stockholm Road Network Scenario

The road network consists of three and four way junctions as shown in Fig. 3.6. All
roads have different lengths (400-1600 meters) and speed limits (60-140 km/h).
Roads in this network are bi-directional. There are 6 pairs of origins and desti-
nations {(o1, d1), (o2, d2), (o3, d3), ...., (o6, d6)}. All vehicles arrive at the starting
roads with the same rates (360-2520 vehicles/hour). The duration of a slot is con-
figured to be 15 seconds. Shadow vehicle generating probability ϵ is configured
to be 0.02 and vehicle routing parameter β is configured to be 0.02.
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3.4.2 Configuration
We define vehicle traveling time to be the time it takes a vehicle to travel from
its starting road to its destination. For algorithms AR-BP, ARD-BP, ARD-BP-Q
and ARD-BP-QV, parameter α = 2.5 (Optimal value of α show in Fig. 14).

During simulations, we collect the following data: vehicle speed, number of
vehicles in the road network, number of arriving vehicles at destinations, and a
vehicle traveling time. Vehicle traveling time is the time it takes a vehicle to
travel from its origin to its destination.

For algorithms FC and SP-BP, we simulate for 12200 seconds. We collect
simulation data of vehicles that enter the road network before 7200 seconds only,
because vehicles entering the road network after 7200 seconds may not arrive at
their destinations.

For algorithms AR-BP, ARD-BP, ARD-BP-Q, and ARD-BP-QV, we simulate
for 18200 seconds. We collect simulation data of vehicles that enter the road
network from 6000-13200 seconds only because these algorithms need time to
learn vehicle routing probabilities and reach a stable routing policy.

3.4.3 Results in Grid Road Network Scenario
In Fig. 3.7, our algorithm ARD-BP-QV achieves almost the lowest average trav-
eling time under different vehicle arrival rates. Compared to ARD-BP, our algo-
rithm ARD-BP-QV decreases the average vehicle traveling time by around 36%.
Compared to ARD-BP-Q, algorithm ARD-BP-QV decreases average vehicle trav-
eling time by around 12%. This indicates that the heuristic of letting vehicles
with longer traveling time pass through the junction first is indeed an effective
way to reduce vehicle traveling time.

35



Figure 3.7: Average vehicle traveling time under different vehicle arrival rates.

Figure 3.8 shows simulation results of the average number of vehicles in a road
network. This figure shows that the number of vehicles in the road network under
the ARD-BP-QV algorithm is smaller than other algorithms, meaning less traffic
congestion.
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Figure 3.8: Average number of vehicles in the road network under different vehicle
arrival rates.

Figure 3.9 shows that more vehicles can arrive at destinations under our al-
gorithm ARD-BP-QV, meaning that more vehicles under other algorithms get
stuck in the road network.
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Figure 3.9: Number of vehicles arriving at destinations.

3.4.4 Results in Stockholm Road Network Scenario
Also in Fig. 3.10, our algorithm ARD-BP-QV achieves almost the lowest average
traveling time under different vehicle arrival rates. Compared to ARD-BP, our
algorithm ARD-BP-QV decreases the average vehicle traveling time by 17% to
37%. Compared to ARD-BP-Q, algorithm ARD-BP-QV decreases the average
vehicle traveling time by 7% to 18%.
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Figure 3.10: Average vehicle traveling time under different vehicle arrival rates.

Fig. 3.11 shows the simulation results of the average number of vehicles in the
road network. This figure shows that the number of vehicles in the road network
under the ARD-BP-QV algorithm is smaller than the other algorithms and also
in the Stockholm road network scenario.
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Figure 3.11: Average number of vehicles in the road network under different ve-
hicle arrival rates.

Figure 3.12 shows that more vehicles can arrive at destinations under our algo-
rithm ARD-BP-QV. Also in Fig. 3.12, more vehicles under other algorithms get
stuck in the road network.
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Figure 3.12: Number of vehicles arriving at destinations.

In the Stockholm road network scenario, we also evaluate the fairness of our
algorithm. From Fig. 3.13, we see that most of the vehicles arrive at their des-
tinations within 700 seconds, which is less than twice the average traveling time
(385 seconds). So, our algorithm is fair for most vehicles.
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Figure 3.13: Histogram of the number of vehicles of different travelling times.
Vehicle arrival rate is set to be 1080 vehicles/hour and the average
traveling time is 385 seconds.

We also run simulations to check the impact of parameter α on ARD-BP-QV
performance. As shown in Fig. 3.14. we need to properly set α in our algorithm
to achieve the optimal performance.
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Figure 3.14: Performance under parameter α with rate of 450 vehicles/hour.

Finally, we simulate to check our algorithm under the Stockholm road net-
work scenario with both self-driving or human driving vehicles, where all human-
driving vehicles follow the shortest path route and the percentage of human-
driving vehicles range from 10% to 60%. The simulation results are summarized
in Fig. 3.15.
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Figure 3.15: Vehicle traveling time of ARD-BP-QV under scenarios with both
self-driving or human driving vehicles.
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4 Conclusion

4.1 Summary
In this dissertation, we aim to measure traffic volume and control traffic lights us-
ing autonomous learning to reduce traffic congestion. To solve traffic congestion
problems we provide a PAVEMENT, passing vehicle detection system with au-
tonomous incremental learning using camera and vibration data and an adaptive
traffic control algorithm based on back-pressure with global traffic information.

PAVEMENT, self-learning passing vehicle detection system with camera and
vibration-based autonomous incremental learning. Initially, video-based passing
vehicle detection is performed to get a ground truth label by using YOLOv3 +
DeepSORT to detect and track vehicles from multiple frames of video. Then
Vibration-based LDA and Incremental Learning are proposed for real-time au-
tonomous learning. With the proposed system, the passing vehicle detection
model using vibration data is automatically trained by setting the camera and
the vibration sensor on the roadside. The trained models are used to detect
passing vehicles without cameras once it is trained.

The experimental results demonstrate that the proposed method achieves com-
parable performance, 98.4% of accuracy and 98.0% F1-score, with the state-of-
the-art method [28] which requires manual labeling while reducing the cost of
manually labeling the ground truth, with only 15 times incremental learning
steps with 1 minute data.

Since PAVEMENT provides us with a number of passing vehicles, we continue
our research and proposed an adaptive traffic control algorithm based on back-
pressure with global traffic information. Our algorithm controls traffic based on
accurate real-time traffic information (achieved by using a shadow network) and
global traffic information (achieved by using Q-learning). Our algorithm ARD-
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BP-QV achieves almost the lowest average traveling time under different vehicle
arrival rates. Compared to ARD-BP, our algorithm ARD-BP-QV decreases the
average vehicle traveling time by 17% to 37%. Compared to ARD-BP-Q, algo-
rithm ARD-BP-QV decreases the average vehicle traveling time by 7% to 18%.

4.2 Future works & Limitations

4.2.1 Embedded Systems
Through this study, in chapter 2 we implement LDA and incremental learning
to detect passing vehicles in order to fulfill that approach embedded system is
needed to implement our software into the embedded device.

4.2.2 Machine-to-Machine Communications
Through this study, in chapter 3 we assume all vehicles are self-driving vehicles
which are amounted with accurate speed sensors and GPS devices, and can com-
municate in a timely way with control agents via networks, like vehicle-to-vehicle
(V2V), vehicle-to-Road Side Unit (V2R), etc. The control agents are the com-
puter programs placed at each junction to collect information of vehicle speed
and vehicle position at every time slot for traffic control. A vehicle is also able
to provide traveling time to control agents. The traveling time includes not only
moving time but also waiting time to turn in junctions. To fulfill these con-
ditions Machine-to-Machine (M2M) The main components of an M2M system
include sensors, RFID, a Wi-Fi or cellular communications link, and autonomic
computing software programmed to help a network device interpret data and
make decisions. These M2M applications translate the data, which can trigger
preprogrammed, automated actions.

4.2.3 Real-World Experiment
Since our method “adaptive traffic control algorithm based on back-pressure with
Global traffic information” compute on simulation, vehicle accident or another
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event may happen in the road network which may affect the performance of the
proposed algorithm.
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