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In-Vehicle Network Attack Detection Using Deep
Neural Networks Trained On Features Extracted

From CAN Data∗

Araya Kibrom Desta

Abstract

Advanced Electronic Control Units (ECU) have been included in automobiles
in recent years to ensure safe and comfortable driving. Unlike in the past, when
ECUs were connected by point-to-point wire, today’s automobiles employ a de
facto networking standard known as the controller area network (CAN). CAN
is vulnerable to cyber attacks because, despite its capacity to identify errors,
maintain data integrity, and maintain consistency, it fails to secure the network by
utilizing authentication, encryption, and network segmentation. The dissertation
proposes an intrusion detection systems (IDS) for the CAN bus using deep learning
that is trained on the CAN bus data. Four methods are experimented to secure
the CAN bus. In the first two methods, the arbitration ID of the CAN frames
is used to train Long Short-Term Memory Networks (LSTM) and Convolutional
Neural Networks (CNN). The LSTM-based IDS is trained to learn the sequence of
arbitration IDs in the CAN bus. The trained model is used to predict the future
sequence of arbitration IDs with wrong predictions being flagged as an attack.
In such a way, LSTM-based IDS has improved the conventional IDS method
that studies arbitration ID patterns. Even though LSTM managed to improve
the conventional method performance in detecting spoofing the gear attack and
spoofing the RPM attacks, its results are not very accurate. The spoofing attack
detection in the gear has improved from F1 score of 0.59 to 0.953 and spoofing
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attack detection in the RPM has improved from F1 score of 0.628 to 0.63. CNN-
based IDS called Rec-CNN is proposed as an improvement to the LSTM-based
IDS. Images generated using recurrence plots from the CAN bus arbitration IDs
are used to train the CNN architecture. Using recurrence plots helps in capturing
the temporal data in the CAN bus data through images. Using these images
of recurrence plots, the experiment is done on how CNNs can easily be trained
to classify attack and benign sequences of arbitration ID for a secure CAN bus
communication. Both the works use CAN arbitration IDs to train LSTMs and
CNNs. If the arbitration ID is not affected during an attack, attacks will be left
undetected. To improve this drawback, two other methods are proposed using
the data section of the CAN frame. The first work, named MLIDS, trains an
LSTM architecture that is capable of handling the high dimensional CAN bus
data without requiring reveres-engineering of the CAN bus data. Training LSTM
can be difficult in the CAN bus data as it contains millions of parameters. Our
last work called U-CAN is proposed as an improvement to the MLIDS. U-CAN is
trained using the hamming distance (HAMD) distribution of CAN frame bits. All
the works have been tested against different sets of attacks including fuzzy attacks,
drop attacks, denial of service (DoS) attacks, insertion attacks, and spoofing
attacks.

Keywords:

Convolutional Neural Networks, Long Short-Term Memory Networks,In-vehcile
Networks, Intrusion Detection, IoT Security, Recurrence plots

ii



Contents

1 Introduction 1
1.1 The need for an in-vehicle network intrusion detection system . . 2
1.2 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of this dissertation . . . . . . . . . . . . . . . . . . . 7

2 Background and related work 8
2.1 Controller area network . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Security issues of the CAN bus . . . . . . . . . . . . . . . 10
2.1.2 CAN attack surfaces . . . . . . . . . . . . . . . . . . . . . 10

2.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Sequential data analysis for CAN bus intrusion detection:
LSTM-IDS 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Long short-term memory networks . . . . . . . . . . . . . . . . . 16
3.3 Input data preprocessing . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 IDS network architecture . . . . . . . . . . . . . . . . . . . 19
3.4.2 Hyperparameter search . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Attack frames and anomaly signal . . . . . . . . . . . . . . 23
3.4.4 Training and test set description . . . . . . . . . . . . . . . 24

3.5 Experiment results and discussion . . . . . . . . . . . . . . . . . . 24
3.5.1 Hyperparameter search results . . . . . . . . . . . . . . . . 25
3.5.2 Softmax-based anomaly detection . . . . . . . . . . . . . . 25
3.5.3 Loss-based anomaly detection . . . . . . . . . . . . . . . . 26

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



4 Application of Image classification in the CAN bus intrusion
detection: Rec-CNN 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . 35
4.3 Hyperparameter optimization . . . . . . . . . . . . . . . . . . . . 36
4.4 Recurrence plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 The proposed method: Rec-CNN . . . . . . . . . . . . . . . . . . 38

4.5.1 Datasets and feature engineering . . . . . . . . . . . . . . 38
4.5.2 CAN attack simulations . . . . . . . . . . . . . . . . . . . 43
4.5.3 Network architecture . . . . . . . . . . . . . . . . . . . . . 44
4.5.4 Hyperparameter search . . . . . . . . . . . . . . . . . . . . 47

4.6 Experimental results and discussion . . . . . . . . . . . . . . . . . 50
4.6.1 Dataset collection . . . . . . . . . . . . . . . . . . . . . . . 50
4.6.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . 51
4.6.3 Model training . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6.4 Binary classification . . . . . . . . . . . . . . . . . . . . . 54
4.6.5 Multi-class classification . . . . . . . . . . . . . . . . . . . 56
4.6.6 Real-world IDS implementation . . . . . . . . . . . . . . . 58

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Handling high-dimensional CAN bus data: MLIDS 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Proposed method: handling high-dimensional CAN bus data . . . 64

5.2.1 Input data pre-processing . . . . . . . . . . . . . . . . . . 64
5.2.2 MLIDS’s network Architecture . . . . . . . . . . . . . . . . 64
5.2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 67
5.2.4 Hyperparameter search . . . . . . . . . . . . . . . . . . . . 67

5.3 Experimental Results and Discussion . . . . . . . . . . . . . . . . 69
5.3.1 Data set collection . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 simulated attacks . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.3 Network training results . . . . . . . . . . . . . . . . . . . 70
5.3.4 MLIDS execution time . . . . . . . . . . . . . . . . . . . . 74

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

iv



6 Application of image segmentation in the CAN bus intrusion
detection: U-CAN 76
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 CAN bus data and adversary model . . . . . . . . . . . . . . . . . 77
6.3 U-CAN: Securing the CAN network through convolutional neural

networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Building blocks of U-CAN . . . . . . . . . . . . . . . . . . 80
6.3.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Experimental results and discussion . . . . . . . . . . . . . . . . . 85
6.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4.2 Performance evaluation metrics . . . . . . . . . . . . . . . 86
6.4.3 U-CAN training . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusion and future work 94
7.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.1 Inherent machine learning issues . . . . . . . . . . . . . . . 97
7.2.2 Low computational capability of the CAN bus . . . . . . . 98
7.2.3 Extension of this work to other CAN-based systems . . . . 98
7.2.4 Post attack detection stage . . . . . . . . . . . . . . . . . . 99

Publication List 113

v



List of Figures

2.1 In-vehicle network system architecture . . . . . . . . . . . . . . . 9
2.2 CAN frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Block diagram of the LSTM recurrent network cell . . . . . . . . 17
3.2 RawHyu_data Scattered plot of the first 5000 frame sequences of

all the 27 arbitration IDs. . . . . . . . . . . . . . . . . . . . . . . 19
3.3 PRV_data Scattered plot of the first 5000 frame sequences of all

the 42 arbitration IDs. . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 ID prediction network architecture . . . . . . . . . . . . . . . . . 21
3.5 ID Sequence Prediction IDS process . . . . . . . . . . . . . . . . . 22
3.6 Confusion matrix for RawHyu_data . . . . . . . . . . . . . . . . 27
3.7 Confusion matrix for PRV_data . . . . . . . . . . . . . . . . . . . 28
3.8 Loss based gear attack detection . . . . . . . . . . . . . . . . . . . 29
3.9 Loss based RPM attack detection . . . . . . . . . . . . . . . . . . 30
3.10 F1 score comparison of the proposed and transition-matrix-based

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 A general CNN architecture for image classification . . . . . . . . 35
4.2 A graphical representation of Rec-CNN . . . . . . . . . . . . . . . 39
4.3 Excerpt of training data for datasets A and B . . . . . . . . . . . 40
4.4 Recurrence plots of dataset A for all label types . . . . . . . . . . 41
4.5 Recurrence plots of dataset B for all label types . . . . . . . . . . 42
4.6 CAN frame count in a second, dataset A . . . . . . . . . . . . . . 45
4.7 CAN frame count in a second, dataset B . . . . . . . . . . . . . . 45
4.8 Binary anomaly classification . . . . . . . . . . . . . . . . . . . . 46
4.9 Multi-class anomaly classification . . . . . . . . . . . . . . . . . . 47
4.10 Combination of hyperparameters . . . . . . . . . . . . . . . . . . 48

vi



4.11 Training history plot of the binary classifier . . . . . . . . . . . . 53
4.12 Proposed method ROC curve comparison with the Inception-

ResNet-based Method. For all the tested attack windows . . . . . 57
4.13 ROC of the proposed and Inception-ResNet-based method . . . . 58
4.14 Confusion for multi-class classifier . . . . . . . . . . . . . . . . . . 59
4.15 IDS real-world implementation . . . . . . . . . . . . . . . . . . . . 60
4.16 Model Execution Time . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 MLIDS system architecture . . . . . . . . . . . . . . . . . . . . . 65
5.2 One path in the intrusion detection system . . . . . . . . . . . . 66
5.3 Hyperparameter search results . . . . . . . . . . . . . . . . . . . 68
5.4 Average frequency of all available arbitration IDs in a second . . 70
5.5 The first arbitration ID’s all 64 bits training and validation loss

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6 Scattered plot of results in the prv_data in a window of 1 second 73
5.7 Execution time of the IDS system in making predictions . . . . . 75

6.1 Hamming distribution of arbitration ID 0130 of RAW dataset. . 78
6.2 Plateau attack of Arbitration ID 10 which has four signals . . . . 79
6.3 Boxplot of the time difference between consecutive frames of the

same ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 Saliency residual of plateau attack for Arbitration ID 10 . . . . . 85
6.6 HAMD segmentation using U-CAN for RAW datasets . . . . . . . 88
6.7 Arbitration ID 1’s first signal segmentation using U-CAN prediction

for PHY datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.8 ROC of plateau attack detection for all arbitration IDs in PHY

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



1 Introduction

Vehicles have undergone a succession of developments since the advent of the first
steam-powered automobile to ensure safe and enjoyable driving. Electronic control
units (ECU) in modern vehicles enable them to do remarkable tasks, such as driver
assistance technology, making them smarter. Ten years ago only luxurious cars had
these advanced ECUs that can reach up to 100. But in recent years the number of
ECUs even in average cars surpasses 100 ECUs while those of luxurious cars can
go beyond 150 [1]. These ECUs can react to a user’s engagement with the vehicle
or they can operate on their own. Unlike in the past, when networks of ECUs
were built via point-to-point wiring, most automobiles today employ networking
and the communication between the ECUs is governed by a networking protocol.
There are quite a few in-vehicle network protocols used by modern vehicles, the
networking standard a car uses is decided by the manufacturers according to their
needs. One such protocol that is most widely used is the controller area network
(CAN). CAN serial bus system was introduced by Robert Bosch GmbH at the
Society of Automotive Engineers (SAE) congress [2]. CAN define a standard
for efficient and reliable communication between sensor, actuator, controller, and
other nodes in real-time applications. CAN is a de facto standard in a variety of
networked embedded control systems. CAN protocol standardizes the physical
and data link layers [3]. Due to its efficiency in carrying out diagnostics and
coordination of operations in separate subsystems, it easily proliferated not only
in in-vehicle networks but also in medical apparatuses, agriculture, etc [4].

ECUs can also communicate with devices outside the vehicle for various infor-
mation exchanges for the purposes of awareness-based driving. This information
exchange between the vehicles and the outside world can be a target of attack [5].
In spite of CAN’s design that is lightweight, robust, fast capable of running in
low-performance electronic devices, its current implementation supports no au-
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thentication or encryption to enhance the integrity of messages sent from different
ECUs [6]. This shows us the need for a system that can monitor the CAN net-
work traffic for any kind of suspicious activity. Such systems are called intrusion
detection systems (IDS), which we are mainly focusing on in this thesis.

1.1 The need for an in-vehicle network intrusion
detection system

Drivers nowadays can get road information through Vehicular Ad-hoc NET-
works (VANETs). This types of networks include Vehicle-to-Vehicle (V2V) and
Vehicle-Infrastructure (V2I) networks that are used to assist drivers by providing
information about other vehicles and the surrounding environment [7]. Aside
from these networks, vehicule manufacturers might also provide services such
as Global Positioning Systems (GPS) and related information through cellular
networks that are integrated with the vehicles. These types of networks can be
used as a means to get into the in-vehicle networks. Although the security of these
networks is outside the subject of this study, regardless the source of the attack,
an intrusion detection system (IDS) should be able to identify these attacks aimed
at the in-vehicle networks.

Error detection, data integrity, and data consistency are implemented in the
CAN, but it does not apply security measures to secure the network communication.
CAN lucks authentication, data encryption, and network segmentation [8, 9].
Researchers have considered this vulnerability when remotely controlling cars,
including a 2014 Jeep Cherokee [10], which showed the possibility of remote attacks
against unaltered vehicles. They have managed to send attack packets through the
compromised head unit (radio) to the CAN bus because the head unit in the 2014
Jeep Cherokee car is connected to the CAN bus. Similar research from the Keen
Security Lab also showed how a Tesla Model S/X could be remotely attacked [9].
Moreover, CAN uses a broadcast communication protocol, that enables attackers
to easily snoop on all communication channels or send packets to any other node.
It uses arbitration to control the priority of resource usage in the arriving packets.
This makes it vulnerable to DoS attacks that can be performed by continuously
flooding the bus with high-priority packets [11, 12]. It is also not possible to know
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the source of certain CAN frames. These and other security vulnerabilities have
been studied by researchers which lead to us to believe there is a need for an
intrusion detection system in the CAN bus [13, 14].

1.2 Research contributions
The dissertation mainly deals with training deep neural networks using CAN bus
data for intrusion detection. CAN has an arbitration ID part and a data part that
can be used as a training data. The methodologies in this work are grouped in to
CAN arbitration ID based and CAN data based intrusion detection. In the first
work, we have improved the security drawbacks of the CAN bus by proposing
an intrusion detection system (IDS) that is trained using the sequence of CAN
packets’ arbitration IDs. In addition to other information, CAN packets have an
arbitration ID that is used to control the priority of CAN packets. Our intrusion
detection method extracts the IDs to train Long Short-term Memory Networks
(LSTM). Once, the LSTM network learns the pattern of the IDs, if there is any, it
is used to predict an arbitration ID that might appear after a certain sequence of
arbitration IDs. Relying on the predicted arbitration ID, an anomaly signal is
prepared from a softmax probability of all the available classes (all the arbitration
IDs). An anomaly is detected using two ways. The first approach compares the
probability values of all the classes and selects the one with the highest probability
as a predicted arbitration ID. The predicted ID is then compared with the true ID
for anomaly detection. The second approach gets an aggregated log loss value of
the predicted classes that will be later compared with a predefined anomaly signal
threshold to detect for intrusions. The conventional method proposed by [15]
trains a single transition matrix that will be used to test the possible transitions
between two different IDs. Even if this performs with near perfect precision value
(0.999), it has a very low recall value (0.4) as it is impossible to grab millions
of arbitration ID sequences in a single transition matrix. In this work, we have
proposed an IDS using LSTM that greatly outperforms the conventional method.
The main contribution of this research study is to improve the anomaly detection
accuracy of the conventional method. In addition, we tested both the conventional
and trained network against a publicly available dataset. The method is referenced
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as LSTM-IDS in rest of the dissertation.
The IDS in the CAN bus must be fast and effective, capable of identifying any

kind of attacks targeting the in-vehicle network. The LSTM-based system was
incapable of learning the sequence of arbitration IDs with a perfect accuracy. In
our second work, we took advantage of advancements in deep neural networks
for intrusion detection. Deep learning has shown promising results in various
fields, especially in image detection and classifications most notably, CNNs [16].
In this work, we show how CNNs performance in images could solve intrusion
detection problems. To do so, we need to change the intrusion detection problem
to an image classification problem. Previous research has employed CNNs for
in-vehicle network intrusion detection [17]. It builds a 2D grid data frame from
arbitration IDs as an input to the deep CNN network. The generated images
are then trained using a simplified Inception-ResNet model for in-vehicle network
intrusion detection. However, the images generated in this method do not grasp
the temporal dependency in the sequence of arbitration IDs in the CAN bus.
As far as our knowledge, this is the only research that uses CNNs trained on
arbitration IDs for in-vehicle network security. Improving the Inception-ResNet-
based method would require an image generation-algorithm that can also keep
the temporal dependency. We have solved this issue using recurrence plots to
create an image from the CAN bus’s time-series data. First packets that have
arrived in the CAN bus are collected. These packets contain signal information
and arbitration IDs. The arbitration IDs are used to control the priory of using
CAN bus resources with lower arbitration IDs having a high priority. To generate
the images, extraction of these sequence of arbitration IDs is required. With the
sequence of arbitration IDs, a square matrix is created using a recurrence plot
algorithm, but unlike normal recurrence plots [18], categorical recurrence plots
are used. The main reason for this is for plots to show no special effect to closer
encoding of arbitration IDs than the further encoding of arbitration IDs. The
formal operation of recurrence plots is performed if and only if the two arbitration
IDs are encoded similarly. Using these images of recurrence plots, experiment is
done on how CNNs can easily be trained to classify attack and benign sequences
of arbitration ID for a secure CAN bus communication.

Table 1.1 also shows the contribution of our works that study the sequential
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Table 1.1: Methods trained on the CAN arbitration IDs
Method Matrix-transition-based LSTM-IDS GAN-based ResNet-based Rec-CNN

[15] (Our work) [19] [17] (our work)
Features used Arbitration ID Arbitration ID Arbitration ID Arbitration ID Arbitration ID
Method Transition matrix LSTM GANs ResNets CNN
Attacks tested Spoofing gear Spoofing gear Spoofing gear Drop Drop

spoofing RPM Spoofing RPM Spoofing RPM Fuzzy Fuzzy
Insertion Insertion
Spoofing RPM Spoofing RPM
Spoofing gear Spoofing gear
DoS DoS

Using the method Low performance Improved performance Improved Performance Better Performance Improved accuracy of all
Fast Not accurate Lower accuracy Temporal information Recurrence plots

than ResNet-based not used used to incorporate
temporal information

Attack detection Worst Improved Improved Improved Best
Matrix-transition-based LSTM-IDS GAN-based

information of arbitration IDs in CAN frames. The subsequent work is added as an
improvement to the proceeding work. In the table, "Features used" is arbitration
ID for all the methodologies. "Attacks tested" refers to the different types of
attacks tested. The performance of the existing methods in comparison with our
work is shown in the "Using method" row reflecting Rec-CNN outperforming all
our previous works and existing research. A detailed comparison of our work with
the existing research is explained in detail in the related works section.

The CAN arbitration IDs are used in the preceding two works, however if the
attacker can retain the sequence of arbitration IDs while changing the data section
of the CAN, the IDS will be bypassed. To overcome the issue, we have proposed
an intrusion detection system using LSTM using the data part of the CAN data.
Unlike the conventional methods which either require reverse-engineering the CAN
bus data or multiple architecture implementation, the work requires no reverse-
engineering and only has a single anomaly signal for a window of detection. It is
tested on insertion, drop and fuzzy attacks to analyse the security aspects of the
CAN bus. The proposed method effectively identified insertion and drop attacks
with 100% precision except for some drop attacks with a very short detection
windows. Drop attacks can easily be detected with 100% precision when the
detection windows is above 1 second, but when the detection window is below 1
second its precision drops low as most of the packets in that short time window
might be dropped.

Because the CAN data contains so many features, training the LSTM-based

5



Table 1.2: Methods trained on the data part of CAN frames
Method CANET MLIDS U-CAN

[20] (Our work) Our work
Features used CAN data CAN data CAN data
Method LSTM LSTM CNN
Attacks tested Playback Spoofing gear Platuea

Flooding Spoofing RPM DoS
Suppress Insertion Fuzzy
Continuous Drop Spoofing RPM
Plateau attacks Spoofing gear

Using the method Reverese engineering requirement Works in raw CAN data Works in both raw and reverse-engineered
Too big of a model to train Too big of a model to train and deploy Lower parameters to train

Attack detection Low High High

IDS can be problematic. If we have 20 arbitration IDs and a data frame size of
64 bits, the total features are 20 × 64, making it too large a feature to search
the LSTM hyperparameters. U-CAN is an improvement to the LSTM-based IDS
that is trained on the data-part of the CAN frames. It takes the advancements in
CNN’s image segmentation to in-vehicle network intrusion detection. Previous
research works have used CNNs to detect CAN intrusions, but the vast majority
of studies have dealt with either raw CAN data or reverse-engineered CAN data.
Unlike previous studies, U-CAN can be used for both types of data. U-CAN
uses a hamming distance (HAMD) distribution of CAN frame bits to deal with
raw CAN frames that are used to train a model. The trained model can be
deployed to listen in the OBD II port of vehicles for intrusion detection. We
have also added a rule-based system that checks the HAMD of counter bits in
a CAN frame. The rule-based system flags any sequence that deviates from a
predefined hamming value. For reverse-engineered CAN frames, we applied a
saliency detection algorithm before feeding the data to U-CAN. This helps us to
easily segment attack windows of the CAN signal sequences.

Table 1.2 shows the summary of the second group of work that uses the data part
of CAN frames. The methods as shown in the table use LSTMs, and CNNs that
are trained using features preprocessed from the data part of CAN frames. Various
types of attacks have been tested. The detailed description of the methodologies
with regard to previous research works is shown in the related works section.
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1.3 Organization of this dissertation
The dissertation’s remaining chapters are arranged as follows. In chapter 2, the
CAN bus is described in depth, along with any security flaws and potential entry
points for hackers looking to access in-vehicle networks. This chapter also provides
an introduction to related works that are pertinent to our research. The specifics of
our initial research, which concerns the sequence of arbitration IDs, are discussed
in full in chapter 3. The chapter describes how LSTM may be used to identify
CAN bus attacks. Given that LSTMs may be challenging to train, in chapter
4 we looked at how CNNs could be used to train models that could distinguish
between attack and non-attack images that are generated using recurrence plots.
Only arbitration IDs are used to train a deep learning model in each of the
approaches discussed in chapters 3 and 4. Attacks won’t be detected if the ID
sequence isn’t affected. We suggested an LSTM-based IDS in chapter 5 that is
trained on the data portion of the CAN frames to address this problem. This
technique can manage the CAN bus data’s high-dimensional feature. However, as
was previously said, LSTM training can be challenging. Thus, we switched the
LSTM to a CNN-based IDS in our most recent proposal in chapter 6. In contrast
to chapter 4, this approach is trained on the data portion of the CAN frames. We
used a spectral residual algorithm to prepare the CAN data for CNN training.
The last chapter provides a summary of all the dissertation’s research as well
as recommendations on how the suggested approaches could be improved in the
future.
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2 Background and related work

The available in-vehicle network standards are discussed in this chapter, with an
emphasis on the CAN bus. The security challenges of automobiles that use the
CAN bus are then discussed in depth. Knowing merely the CAN bus’s security
issues may not be enough to exploit in-vehicle networks. As a result, we’ve
included the CAN attack surfaces in the following sections. After constructing
the research challenge, we included a section for related works, which outlines
past research contributions by scholars attempting to address the same problem
as ours.

2.1 Controller area network
The ECUs found in vehicles react to drivers’ interactions with the host car. The
ECUs send a packet to the bus protocol that governs the packet transfer in vehicles.
The CAN protocol, SAE J1850 protocol, KWP2000 protocol, (local interconnect
network) LIN protocol, media-oriented systems transport (MOST protocol), and
FlexRay are among the most used protocols in in-vehicle networks [21]. Even
though a protocol in a car is determined by the demands of its makers, the CAN
is the de facto standard in today’s automobiles. As a result, we’ll be focusing on
the CAN bus for this study.

Figure 2.1 shows the general structure of in-vehicle network architecture. In
the figure, a single CAN is acting as a communication medium for the connected
ECUs. In cases where a vehicle integrates a few more communication protocols, the
gateway acts as an interface between different connection protocols. As depicted
in the figure, the architecture only shows a single CAN network but a vehicle can
also have more than one CAN that is connected through a bridge. Despite the
number of CAN buses used in a vehicle, most of the packets generated in the
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SOF Arbitration Control Data CRC ACK EOF

1 bit 11 or 29 bits 6 bits 0-8 bytes 16 bits 2 bits 10 bits

Figure 2.2: CAN frame

ECUs are accessed via the OBD II port that is usually found under the driving
wheel of most modern cars [22, 23, 24, 25].

The CAN protocol is a serial communication protocol that was created with real-
time communication in mind. Since its first release in the 1980s by BOSCH [26],
it got proliferated in vehicles due to its design simplicity and cost-effectiveness.
CAN is a multi-master broadcast communication protocol based on arbitration.
The arbitration allows highly critical ECUs to be given priority in using the CAN
bus resources. The bit size of the arbitration ID is 11 bits in the standard CAN
and 29 bits in the extended CAN. The general structure of the CAN frame is
shown in Figure. 2.2. It begins with the Start of Frame (SOF) field that is only
represented by a single dominant bit. Then the arbitration ID comes with 11
or 29 bits which ECUs use to identify the meaning of the frame to decide on
whether to act upon it or not. The control field is a placeholder for the data
length code (DLC). The value of DLC depends on the data field that carries the
actual message to the respective destinations. DLC value records the number of
bytes the data field is carrying which can be a maximum of 8 bytes long. The
rest of the fields are there to ensure smooth frame delivery. In this research, we
will be making use of the arbitration ID and the data part of the CAN frame.
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2.1.1 Security issues of the CAN bus
CAN has several vulnerabilities that mostly arise from its design characteristics.
The real-time communication requirements hinder the CAN bus from incorporating
security measures in its communication. We want our car to stop immediately
when we press the brake pedal; it would be disastrous otherwise. This makes the
CAN bus vulnerable to insertion attacks, as none of the frames coming to the CAN
would be authenticated. Moreover, non-authenticated systems can be vulnerable
to fuzzy attacks. Attackers can cause unintended vehicle behavior by sending
messages of randomly spoofed identifiers with arbitrary data [27]. The CAN
network is not segmented. An attacker might compromise one type of network to
take control of the network with safety-critical ECUs. CAN is also vulnerable to
DoS attacks due to its design scheme in collision detection through carrier-sense
multiple access with collision detection (CSMA/CD). When two arbitration IDs
appear in the CAN bus, the resource is prioritized for the frame with a lower
arbitration ID backing off the frame with a higher ID. By flooding the CAN bus
with a high-priority CAN frame, attackers can quickly exploit this attribute and
launch a DoS attack. An ECU’s frame is broadcast to all other ECUs connected
to the network. Each connected ECU decides whether it should act upon the
received frame or not. This can be taken advantage of by simply eavesdropping
on the CAN bus to learn the characteristics of CAN frames [25].

So far, we have discussed attacks that make use of the CAN bus design features.
The other types of CAN attacks are those that are based on the generation of
errors. Considering an attacker has remotely controlled a node, he might have the
capability of forcing the ECU node to a bus-off state by creating a collision with
multiple frames having the same arbitration IDs [28]. In this research, we aim to
detect all the attack types regardless of the attack target.

2.1.2 CAN attack surfaces
Attackers should always find a way to send their attack packets to the internals
of the vehicle so as for them to manipulate the network of vehicles. According
to [12], attackers might gain access to a car’s internals in two ways. The first
is to physically approach the target vehicle and insert a malicious component
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into a car’s internal network via the ubiquitous OBD-II port or tapping into
the CAN bus network. This can be easier to do but doing in so in bulk can
be expensive. The other is through the various wireless interfaces available in
present-day vehicles which is more complicated and multi-layered [29, 30, 31].
It can be by first intruding into the driver’s phone that the driver might later
connect it to their vehicle for entertainment purposes.

2.2 Related works
Over the past few years, the automotive industry has evolved from a blind
and disconnected system to a connected system that can sense the surrounding
environment [32]. While these advancements in technology have made our lives
easier, they pose a security risk. As a countermeasure for the security risks
involved, attack prevention and detection mechanism has been studied.

Network segmentation, encryption, and authentication on top of the vulnerable
CAN bus can help in preventing attacks in in-vehicle networks. Such techniques
will prevent attacks by automatically triggering predefined policies against uniden-
tified threats [33, 34]. Network segmentation helps secure the CAN bus by
implementing subnetworks. The segmentation over the subnetworks provides
control over who can access a subnetwork. [35] applied network segmentation
approach. Authentication and encryption are also among the techniques used to
prevent attacks on the CAN bus. In [36], replay attacks have been avoided by an
authentication method that is created using combination of SHA3 and HMAC
function that expire with a session keys. Other approaches that use the technique
of authentication include [24, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. [48]
implemented an algorithm that encrypts the 8 bytes CAN frame using a sym-
metric key. They have managed to secure the CAN bus with synchronized key
generators that can change the key dynamically. [49] has also brought encryption
and authentication to the CAN bus. The method exploits the use of the stream
cipher RC4 to encrypt and authenticate each CAN message. [50, 51, 52, 53, 54, 55]
are also among the research works which apply encryption for secure CAN bus
communication. One drawback of implementing encryption and authentication
methods in the CAN bus is the real-time communication requirements.
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Another way to secure the CAN bus is through anomaly detection approaches.
The goal of anomaly detection is to establish a notion of normality that describes
most of a given dataset. Thereafter, deviation from this normality of any sort will
be detected as an anomaly [56]. It involves the use of CAN bus information to
detect attacks and take appropriate measures. The IDS in in-vehicle networks
can be categorized into four classes: fingerprint-based, parameters-monitoring-
based, information-theoretic-based, and machine-learning-based [29]. Fingerprints-
based methods [57, 58, 59, 60, 61] methods take into consideration the fact that
different ECU on the in-vehicle networks usually have unique hardware fingerprint
information, like electric signals, and using this information it analyzes the change
of these signals for intrusion detection. It is a physical level approach, but
attacks can be bypassed if they are applied at the application level. Parameters-
monitoring-based [62, 63, 64, 65, 66, 67, 68] methods collect different static values
(frequency, mean, variance, etc) that will later be compared with predefined values
for intrusion detection. These approaches also have the drawback of heavily
depending on periodic packets and being ineffective for unknown security threats.
The other two categories, information-theory-based and machine learning-based,
come here to solve this issue. The information-theoretic-based method [69, 70] is
based on the fact that malicious messages injected into the normal communication
will affect the network stability, and the information entropy can reflect the
anomaly. Even if this has a small computational overhead, it is mostly ineffective
in attacks that modify the data portion of CAN packets. Usually, IDSs further
train machine learning models by taking features from the statistical-based or
fingerprinting-based methods to further improve the problem at hand.

In recent years, the introduction of new types of malware has been increasing
at a staggering speed. It shows that we need an algorithm capable of coping with
future unknown attacks because signature-based approaches only detect known
attacks. Machine-learning algorithms work better at detecting unknown attacks.
[71] proposed a classification-based support vector machine that classifies benign
and anomalous CAN frames. Similarly, [72] also uses deep neural networks for
classifying attack packets. They have trained a Deep Neural Network (DNN) that
is capable of identifying intrusions. The features they used to train the DNN are
extracted directly from the CAN packet by counting an occurrence of "1" in the
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bit-field "DATA" field of a packet. Another deep learning technique is proposed
by [73]. It is based on a time series prediction method called Long Short-Term
Memory (LSTM) networks. [20] uses CAN signals reverse-engineered from the
proprietary CAN bus data to train a multi-dimensional LSTM. Besides LSTM,
CNNs have also shown tremendous success in various applications. Apart from
solving the known image classification problems, CNNs have been used on the
general Internet for malware classification [74, 75, 76, 77]. As an extension of this
work, CNNs have been used for in-vehicle network classifications. [19] proposed a
Generative Adversarial Network (GAN) based IDS that trains on images generated
from the extracted arbitration IDs. These same researchers have improved the
GAN-based performance by proposing a new inception-ResNet-based IDS [17].
To train their model, they extracted arbitration IDs from CAN packets. The
arbitration IDs, which are in a hexadecimal format, are later changed to binary
form. The binary form of 29 consecutive arbitration IDs is then used to create an
image with a dimension of 29 × 29. They managed to correctly classify most of
the attack packets and benign packets into the correct classes.

To enhance intrusion detection on the CAN system with machine learning, we
must first identify the resources from which features will be collected. Dumping
CAN data from the in-vehicle network gives the timing information, arbitration
IDs, and data. The timing information is usually used to just keep the sequence
of frames. In our first work in this thesis, arbitration ID sequences are analyzed
to improve a previously studied work. [15], was the first work in this category
when our publication was made. It trains a single transition matrix that will be
used to test the possible transitions between two different arbitration IDs. Our
work has improved on this work by implementing an LSTM system that learns
the sequence of arbitration IDs.

The LSTM-based ID sequence predictor works in most frequent arbitration IDs,
but it fails in learning the sequence of less frequent and non-periodic arbitration
IDs. It has also been improved by a CNN-based approach in [17]. The images used
to train the CNN in this work are generated from a sequence of arbitration IDs.
A simplified Inception-ResNet model is then trained using the images. However,
the images generated in this method do not grasp the temporal dependency in the
sequence of arbitration IDs. Improving this cutting-stage research would require
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us to handle the temporal dependency of arbitration IDs. We did so in our work
titled Rec-CNN using recurrence plots [18] that is capable of showing temporal
information in images.

If only arbitration ID sequences are used to train machine learning models, no
matter how good the sequence is learned, the models will not detect attacks that
alter the data part of CAN frames without altering the sequences of IDs. Using the
data part of the CAN frame can also be difficult as it contains multi-dimensional
data. In [73], the method proposed needed to implement a single architecture
for all the available arbitration IDs. In [20], they handled the high-dimensional
CAN bus data but their method requires reverse-engineering of the CAN bus
data. Our research comes in handy in solving these two issues, avoidance of
reverse-engineering and handling high-dimensional CAN bus data. We wanted
to avoid the reverse-engineering part so as for the IDS system to work in all
types of vehicles independent of the make and model. And the handling of the
high-dimensional CAN bus data is required so that this IDS system could easily
be optimized as part of other IDS systems. Similar to LSTM-based arbitration
ID sequence analysis, training LSTM using CAN data can be challenging due to
the high number of features and LSTM hyperparameters. We chose CNN over
LSTM due to this reason. Current studies have already applied CNNs to detect
CAN intrusions, but the features used are extracted from either only arbitration
IDs or raw CAN data. Our last proposal called U-CAN uses a hamming distance
(HAMD) distribution of CAN frame bits to extract features. It can also be used
with reverse-engineered CAN frames.
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3 Sequential data analysis for
CAN bus intrusion detection:
LSTM-IDS

In-vehicle network attacks often disrupt the regular flow of data inside the network.
Studying the flow of data inside in-vehicle networks can be one approach to
identifying such attacks. This chapter introduces the use of LSTM to learn the
sequence of arbitration IDs in the CAN bus. If LSTM can learn the sequence of
arbitration IDs, it can detect any in-vehicle network attacks that deviate from
the normal sequence of the IDS. In this chapter, we have explained in detail how
LSTM can be used for detecting in-vehicle network attacks.

3.1 Introduction
To improve the security flaws of the CAN bus, in this section we have devised an
IDS by analyzing the sequence of CAN frames’ arbitration IDs. In addition to
other information, CAN frames have an arbitration ID that is used to control the
priority of CAN frames. Our intrusion detection method extracts the IDs to train
Long Short-term Memory Networks (LSTM). Once, the LSTM network learns
the pattern of the IDs, if there is any, it is used to predict an arbitration ID that
might appear after a certain sequence of arbitration IDs. Relying on the predicted
arbitration ID, an anomaly signal is prepared from a Softmax probability of all
the available classes (all the arbitration IDs). An anomaly is detected using two
ways. The first approach compares the prediction probability of all the classes
and selects the one with the highest probability as a predicted arbitration ID.
The predicted ID is then compared with the true ID for anomaly detection. The
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second approach gets an aggregated categorical cross-entropy loss of the predicted
classes that will be later compared with a predefined anomaly threshold to detect
intrusions. The transition-matrix-based method proposed by [15] trains a single
transition matrix that will be used to test the possible transitions between two
different IDs. Even if this performs with a near-perfect precision value, it has a
very low recall value as it is impossible to grab millions of arbitration ID sequences
in a single transition matrix. In this section, we proposed an IDS system using
LSTM that greatly outperforms the transition-matrix-based method.

The main contribution of this research study is summarized as follows:

- We have proposed an intrusion detection system using LSTM. The LSTM
is trained on the sequence of CAN frames arbitration IDs.

- Two ways of anomaly detection methodologies are proposed. The first
compares LSTM predicted arbitration ID with true ID for intrusion detection.
That is, an attack is flagged if the predicted and true IDs are not the same.
The second is using a categorical cross-entropy loss. For a batch of data, the
loss is calculated from the LSTM’s Softmax output and one hot encoded true
label. This loss is then compared with a predefined threshold for intrusion
detection.

- Our LSTM-based IDS outperforms the first work that studies the sequence
of IDs [15] for intrusion detection in RPM (revolution per minute) attacks
and gear attacks.

3.2 Long short-term memory networks
LSTM was proposed to avoid the vanishing and exploding gradient problems in
Recurrent Neural Networks (RNNs) so as for it to learn to bridge time intervals
over 1000 steps without loss of short time lag capabilities. Figure 3.1 shows a
block diagram of the LSTM network. Unlike conventional RNN, LSTM has LSTM
cells that have an internal recurrence gates that are updated according to the
forward propagation equations shown in equations 3.1 to 3.5.
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Figure 3.1: Block diagram of the LSTM recurrent network cell

The most important is the state unit s
(t)
i , which has a linear self-loop that is

controlled by forgetting gate unit f
(t)
i (for time step t and cell i), equation 3.1,

which sets the self-loop weights to a value between 0 and 1 via the sigmoid unit.
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x(t) is the current input vector and h(t) is the current hidden layer vector,
containing the outputs of all the LSTM cells, and bf , U f , W f are respectively
biases, input weights, and recurrent weights for the forget gates. The LSTM cell
internal state is thus updated using (2), but with a conditional self-loop weight
f
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i .
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b denotes the biases and U and W are input weights and recurrent weights
respectively. The external input gate unit g

(t)
i is computed similarly to the forget

gate (with a sigmoid unit to obtain a gating value between 0 and 1), but with its
parameters as in equation 3.3.
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The output, h
(t)
i , of the LSTM cell can also be shut off, via the output gate,

q
(t)
i , which also uses a sigmoid unit for gating. The equations used to calculate

h
(t)
i and q

(t)
i are shown in equations 3.4 and 3.5 respectively.
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Parameters bo,U o,W o are for its biases, input weights and recurrent weights
respectively. Once all these parameters are updated, there is a need for backprop-
agation that is calculated from the selected loss of the LSTM. The loss calculation
is similar to RNN and it can be referenced from [78].

3.3 Input data preprocessing
Two datasets are used in the experiment. The initial dataset was collected from a
Hyundai’s YF Sonata car and is available for use at [19]. Throughout this section,
it is referenced as RawHyu_data. The second dataset was collected from a public
passenger vehicle, however owing to privacy considerations, we are not going to
publish it here. This dataset will be referenced as PRV_data.

The input to the LSTM network is only a sequence of IDs. Like all types of
neural networks, LSTM also accepts only numeric tensors. Each arbitration ID is
tokenized to convert the sequence of the IDs to a numeric tensor. After tokenization
of each arbitration ID to a numeric value, the sequence of numbers is one hot
encoded before it is fed to the network. Figure 3.2 shows the RawHyu_data’s list
of arbitration IDs and corresponding frequency in a sequence of 5000 frames. For
an arbitrary sequence length, seq_len, the one-hot encoded input to the network
will have a shape of [seq_len, 27]. Similarly, Figure 3.3 shows the PRV_data’s
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Figure 3.2: RawHyu_data Scattered plot of the first 5000 frame sequences of all the 27 arbitration IDs.

list of arbitration IDs and corresponding frequency in a sequence of 5000 frames.
One hot encoded shape of the input will be [seq_len, 42] for this dataset as it has
42 unique arbitration IDs.

3.4 Proposed method

3.4.1 IDS network architecture
The input to the neural network is the sequence of IDs extracted from CAN
frames. The network architecture of this IDS is dependent on the target dataset
(RawHyu_data, PRV_data). In this section, the general skeleton of the network
architecture is presented excluding the hyperparameters considered in the hyper-
parameter search algorithm. The network consists of 6 layers in the sequence
dense, dense, dropout, LSTM, LSTM, and dense. The two top dense layers are
ReLu (Rectified Linear Unit) activated and the node size in both layers is searched
from Dense 1 nodes and Dense 2 nodes of Table 3.1. Next, there is a dropout
layer that is also searched using the hyperparameter search algorithm from the
list of values in Table 3.1. The output from the dropout layer is then fed to two
LSTM layers that are both tanh (Hyperbolic tangent) activated with a dropout
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Figure 3.3: PRV_data Scattered plot of the first 5000 frame sequences of all the 42 arbitration IDs.

value of 0.2. Two LSTM layers are stacked in the architecture and doing so would
require us to return the sequence hyperparameter to true in the first LSTM layer.
Likewise, the first LSTM layer in the network architecture is returned to the
second LSTM layer. The number of nodes in both the LSTM layers is considered
in the hyperparameter search. The dimensions of these nodes are shown in LSTM1
nodes and LSTM2 nodes in Table 3.1. The general network is shown in Figure 3.4.
As shown in the figure, the top layer has a dense layer with a sigmoid activation
function that gives a sigmoid probability of the available classes. The node size
in this layer is the same as the number of classes (arbitration IDs) in the target
dataset. The number of nodes is 27 for RawHyu_data and 42 for PRV_data each
representing the number of unique arbitration IDs in the dataset.

The arbitration ID prediction process for the CAN bus of PRV_data is shown
in Figure 3.5. Depending on the shape of the input selected, seq_len, the process
first collects seq_len arbitration IDs from the CAN bus. Using this sequence
of IDs as an input to the model, it outputs the Softmax probability of all the
available classes.

The one given with the highest probability will be the predicted arbitration ID.
Next, we compare the predicted arbitration ID with the one that has appeared
after seq_len arbitration IDs. If the predicted and true arbitration IDs are not
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Figure 3.4: ID prediction network architecture

the same, an anomaly signal is flagged. But, if both of these values are the same,
we update the input and the true values in the next step. The input value will be
a tensor that grabs seq_len arbitration IDs again but this time the start pointer
is updated by one to point to the ID next to the first one. And the last pointer
will also be incremented by one to incorporate the last predicted arbitration ID.
Using these arbitration IDs we again go through the same process to monitor for
intrusions. This process starts from when the engine of the car is started and
continues till the car’s engine is stopped.

3.4.2 Hyperparameter search
LSTM has a lot of parameters that need to be set to an optimal value. Setting
these hyperparameters is usually done using hyperparameter search algorithms.
For the thesis, we mainly used Hyperband [79] which speeds up hyperparameter
settings using a random search algorithm. For both datasets, we searched through
the set of hyperparameters listed in table 3.1. In the table, sequence length refers
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Table 3.1: hyperparameter values used for searching the LSTM network architecture

Hyperparameter type List of values
Sequence length 20, 40, 80
Batch size 32, 64, 128
Dense 1 nodes 32, 64, 128, 256
Dense 2 nodes 32, 64, 128, 256
Dropout 0.1, 0.5, 0.9
optimizers Adadelta, Adagrad, Adam

Adamax, Ftrl,Nadam
RMSprop, SGD

LSTM 1 nodes 128, 256, 512
LSTM 2 nodes 128, 256, 512

to the total number of arbitration IDs LSTM looks back to make a single ID
prediction. The rest of the hyperparameters are self-explanatory.

3.4.3 Attack frames and anomaly signal
PRV_data is collected from a public passenger vehicle and it only consists of a
normal sequence of arbitration IDs. In this dataset, we will only be showing how
LSTM can learn the sequence of the IDs. In doing so, we will show if LSTM can
detect attacks that alter the ID sequences. RawHyu_data has both benign and
attack data. LSTM in this dataset will be trained on the attack-free dataset. It
is then used to detect attacks in the attack dataset. The attacks are targeted at
"spoofing the gear" and "spoofing the revolution per minute (RPM) gauge" of the
vehicle.

The IDS system uses two approaches. The first approach simply takes the
last layer’s Softmax output. The class with the highest probability will be the
predicted arbitration ID. Attacks will be flagged in this stage if the prediction
doesn’t match the actual class label. This approach requires us to go through each
arbitration ID which can be resource-consuming. The second approach is based
on the loss value of predictions in a batch of data. The model takes any batch size
and makes a prediction at a single run. Then categorical-cross entropy is used
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to evaluate the loss in this batch. Categorical cross-entropy loss is used because
it penalizes higher errors than low errors. In a batch of data, it is calculated
from the Softmax probability output of the model and the one-hot encoded true
labels. Let the true labels for our predicted arbitration ID be encoded as 1-of-K
binary indicator matrix Y , i.e.,Yi,k = 1 if sample i has label k taken from the
set of K arbitration ID labels. Let P be a matrix probability estimates, with
pi,k = Pr(ti,k = 1). Then the log loss of the whole set is calculated by using
Equation, 3.6.

Llog(Y, P ) = − 1
N

N−1∑
i=0

K−1∑
k=0

(yi,k log Pi,k) (3.6)

Some arbitration IDs appear to be less frequent than others. Due to prediction
errors, such IDs may result in a greater loss value. To circumvent this issue, the
overall cross-entropy loss is evaluated in consideration of the ratio of arbitration
ID frequencies. This gives the loss value for frequent arbitration IDs a larger
weight than for less frequent IDs.

3.4.4 Training and test set description
The RawHyu_data is publicly available data with 988,871 sequences of arbitration
IDs. Out of this data, we used 70% for training, 15% for validation, and the last
15% is used as testing data. The purpose here is if the model can accurately
predict the sequence of arbitration IDs. If it can do so, it can detect any kind
of attacks that may disturb the correct sequence of arbitration IDs. The last
15% of the dataset will show if the model is capable of doing so. PRV_data is a
sequence of 1,360,000 arbitration IDs obtained from a public passenger vehicle.
Same as RawHyu_data, this is also divided into 70%, 15%, and 15% for training,
validation, and testing, respectively.

3.5 Experiment results and discussion
The experimental results of the methodology are described in this section. In
the beginning, we demonstrate how the neural network’s hyperparameters are
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Table 3.2: Hyperband search results

Hyperparameter type List of values
Sequence length 40
Batch size 32
Dense 1 nodes 64
Dense 2 nodes 64
Dropout 0.1
optimizers RMSprop
LSTM 1 nodes 512
LSTM 2 nodes 256

tweaked. The creation of an anomalous signal using Softmax or aggregated loss is
then accomplished using the chosen hyperparameters, as is further explained in
the sections that follow. This section goes into great length to discuss the findings
from utilizing both anomaly signal methods.

3.5.1 Hyperparameter search results
The hyperparameters of neural networks are among the most important factors that
must be fine-tuned to achieve the best outcomes. In this work, a hyperparameter
search algorithm called Hyperband is used to fine-tune the hyperparameters.
Table 3.2 shows the search results for the hyperparameter values listed in Table 3.1.
RawHyu_data is used to search the hyperparameters. These similar values are
then applied to train the PRV_data to see if these hyperparameters can be
generalized for a different kind of data. For better performance, one needs to do a
hyperparameter search for each make and model of a car.

3.5.2 Softmax-based anomaly detection
The Softmax-based approach works by hard coding an ID prediction neural
network. The approach tests for anomalies by considering an arbitrary sequence
of arbitration IDs. And a prediction is selected by taking the one with the highest
probability from the Softmax output of the last layer in the model. Table 3.3
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Table 3.3: Softmax based ID prediction results

Level RawHyu_data PRV_data
Top-1 0.894 0.893
Top-3 0.975 0.965
Top-5 0.988 0.984

shows the arbitration ID prediction accuracy for RawHyu_data and PRV_data.
In the table, top-1 refers to the conventional way of calculating accuracy by
considering a class with the highest probability as a predicted class. Top-3 and
top-5 consider the top 3 and 5 prediction probabilities, respectively. A correct
class is taken as correctly classified if the class appears in the top 3 or top 5 of
the highest probabilities.

Figures 3.6 and 3.7 show confusion matrix results in a heat map graph. As it
can be seen in the figures, the models fail to correctly classify the less frequent
arbitration IDs. These IDs are in the lowermost corner of the graph. Due to this,
we devised a second approach that calculates anomaly signals using log loss of the
predicted and true classes.

3.5.3 Loss-based anomaly detection
In this method, a categorical cross-entropy loss is used as an anomaly signal.
The loss value of the Softmax output and the true value of a batch of data
multiplied by the ratio of arbitration ID appearance in the CAN bus is used. The
ratio of arbitration IDs is added so as for the most frequent arbitration IDs to
have more effect on the loss values than the less frequent IDs. In such a way,
"spoofing the gear" attack, and "spoofing the revolution per minute (RPM) gauge"
attacks released with RawHyu_data have been tested. In the dataset, ’041f’ is
the arbitration ID for gear and ’0316’ is the arbitration ID for RPM. Figures 3.8
and 3.9 show the scatter plot of loss values of attack and non-attack windows.
The horizontal dotted line represents the attack detection threshold. Any loss
value above the boundary is classified as an attack; otherwise, it is considered
benign. Minding the results shown in figure 3.6 for these two arbitration IDs, the
scattered plots also show similar values. The gear attack is better detected than
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Figure 3.6: Confusion matrix for RawHyu_data
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Figure 3.7: Confusion matrix for PRV_data
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Figure 3.8: Loss based gear attack detection

Table 3.4: Confusion matrix for gear attack detection

Attack Benign
Attack 0.909 0.091
Benign 0.0002 0.9998

the RPM attack as the sequence prediction model better predicts gear IDs than
RPM IDs.

Tables 3.4 and 3.5 show the confusion matrix of attack detection for gear and
RPM attacks, respectively. The model prediction performance for RPM (0.81) is
lower than the gear (0.86). This small difference has created a big gap in detection
performance as shown in the tables. This shows us that for the other IDs with
higher prediction accuracy, attacks will be better detected.

The experimental result of this work is compared with the transition-matrix-
based method that uses a transition matrix for ID sequence prediction. As it
is shown in figure 3.10, the F1 score of the proposed method outperforms the
transition-matrix-based method.

29



0 500 1000 1500 2000 2500 3000 3500 4000
Batch of data

5

6

7

8

9

10

11

12

Lo
ss

Benign windows loss
attack windows loss

Figure 3.9: Loss based RPM attack detection

Table 3.5: Confusion matrix for RPM attack detection

Attack Benign
Attack 0.460 0.540
Benign 0.0002 0.9998
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Figure 3.10: F1 score comparison of the proposed and transition-matrix-based methods

3.6 Conclusion
In this chapter, an intrusion detection system using LSTM based is proposed by
analyzing the sequence of arbitration IDs. The experiment focused on intrusion
detection in in-vehicle networks, but the idea can be extended to anomaly detection
of other types of sequential data. The model is based on two approaches. Once the
LSTM network is trained, the first approach uses the highest Softmax probability
to select the next arbitration ID. The predicted arbitration ID is then compared
with the true ID for detecting anomalies. The second approach is an improvement
to the first one by using a categorical cross-entropy loss anomaly signal. The
Softmax probability for each arbitration ID is used to calculate the log loss of the
predicted ID and the true ID. The log loss is then compared with a predefined
threshold for intrusion detection. The first approach can be impossible for real-
world use because single ID predictions will take longer but the experimental
results from the second approach show that our model can be implemented in a
real vehicle. Attacks that can be detected using these approaches are the kind of
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attacks that might alter the normal sequence of arbitration IDs. However, attacks
that don’t alter the sequence (e.g. impersonation attacks) will not be detected
using these approaches. In the subsequent chapters, we have incorporate more
features from the data sequence so as for our system to identify these kinds of
attacks and improve the detection performance of the selected attack types.
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4 Application of Image
classification in the CAN bus
intrusion detection: Rec-CNN

This chapter is also an improvement to the previous chapter’s arbitration ID
sequence analysis. LSTM might be the best sequence learning algorithm but
it didn’t capture the sequence of arbitration IDs accurately. As a result, We
proposed a CNN-based intrusion detection system that has improved performance
than the LSTM-based method.

4.1 Introduction
The methodology that is proposed in this chapter takes advantage of advancements
in deep neural networks for intrusion detection. Deep learning has shown promising
results in various fields, especially in image detection and classifications most
notably, CNNs [16]. In this work, we show how CNN’s performance in images could
solve intrusion detection problems. To do so, we need to change the intrusion
detection problem to an image classification problem. Previous research has
employed CNNs for in-vehicle network intrusion detection [17]. It builds a 2D grid
data frame from arbitration IDs as an input to the deep CNN network. Each CAN
frame has an arbitration ID that is used in the CAN bus to resolve collisions through
a bit-wise arbitration. The generated images are then trained using a simplified
Inception-ResNet model for in-vehicle network intrusion detection. However, the
images generated in this method do not grasp the temporal dependency in the
sequence of arbitration IDs in the CAN bus. As far as our knowledge, this is the
only research that uses CNNs trained on arbitration IDs for in-vehicle network
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security. We will report a comparison to this state-of-the-art Inception-ResNet-
based method throughout our work.

Improving the Inception-ResNet-based method would require an image genera-
tion algorithm that can also keep the temporal dependency. We have solved this
issue using recurrence plots to create an image from the CAN bus’s time-series
data, hence Rec-CNN. We first collect packets that have arrived on the CAN bus;
these packets contain signal information and arbitration IDs. The arbitration IDs
are used to control the priority of using CAN bus resources with lower arbitration
IDs having a high priority. To generate the images, we first extracted these
arbitration IDs in a sequence. With this sequence of arbitration IDs, a square
matrix is created using a recurrence plot algorithm, but unlike normal recurrence
plots [18], we have used categorical recurrence plots. The main reason for this
is for plots to show no special effect to closer encoding of arbitration IDs than
the further encoding of arbitration IDs. The formal operation of recurrence plots
is performed if and only if the two arbitration IDs are encoded similarly. Using
these images of recurrence plots, we have experimented on how CNNs can easily
be trained to classify attack and benign sequences of arbitration ID for a secure
CAN bus communication.

The main contributions of this work are as follows:

- To the best of our knowledge, this is the first work that uses recurrence
plots to generate images out of in-vehicle network data. Using recurrence
plots helps us show the temporal dependency of a sequence to images.

- We have shown how a simple two-layered CNN with carefully selected
hyperparameters can outperform state-of-the-art research in this field. We
have selected the hyperparameters using a hyperparameter search algorithm
called Hyperband.

- We have trained and tested the proposed model with a publicly available
dataset and a dataset we have collected from our target vehicle. Our
experiments prove the better performances of the proposed method over the
state-of-the-artwork based on Inception-ResNet [17] in both datasets.

We have used two types of datasets to train Rec-CNN, simulated attack datasets,
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Figure 4.1: A general CNN architecture for image classification

and real-world datasets. In the next section, we explain in detail the steps we
followed to simulate CAN attacks.

4.2 Convolutional neural networks
Inspired by the study of the brain’s visual cortex, convolutional neural networks
(CNNs) have been used for image recognition and classification problems since
their inception in 1980 [16]. There are various types of CNNs, but in general,
CNNs consist of convolutional and pooling layers, which are grouped into modules.
Depending on the problem at hand, one or more standard fully connected neural
networks are added on top of these modules. The top layer is mostly used for
predicting the class label with some activation functions [80].

Describing each interaction between input units and output units in artificial
neural networks (ANNs) can be prone to over-fitting and expensive to very deep
architectures. The motivation for using convolutional layers comes out of this.
Convolutional layers of CNNs have sparse interactions, which is accomplished by
smaller kernels than the input. On top of that, CNNs, unlike ANNs, are capable
of sharing parameters that make CNNs faster in operations. This property of
parameter sharing causes the layers to have an equivariance property to translation;
when the input changes, the output changes in the same way [81].

A general CNN architecture looks like Figure 4.1. The convolutional operation

35



in the figure refers to the computation of the input image with a weighted kernel
that revolves in the input image. Equation 4.1 shows this operation, for an input
image I, and a kernel K with an m × n dimension. The resulting pixel value at
row i and column j would be Si,j.

S(i,j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(m, n)K(i − m, j − n) (4.1)

We still need to discard irrelevant information from the convolutional operation
done by the pooling layer. The pooling function does so by replacing the previous
layer’s output with a summary of the nearby outputs. The two most common
pooling layers are the max pooling and average pooling layers. The max-pooling
layer propagates the maximum value within a receptive field to the next layers.
The average pooling layer takes the average of all the values in the receptive field.
Equations 4.2 and 4.3 are the formulas for max pooling and average pooling of a
region Rk,l, respectively, in the resulting matrix of Si,j.

yzkl = max
(p,q)∈Rk,l

Sz(i,j) (4.2)

yzkl = 1
|Rk,l|

∑
(p,q)∈Rk,l

Sz(i,j) (4.3)

The fully connected layers are normal feed-forward network layers with or
without activation functions. The output from the pooling layers is used as input
for multiplication with each node in the layer. Training of the CNN, or deep
learning in general, is done using backpropagation; for a detailed explanation on
this topic, we recommend referring to [81].

4.3 Hyperparameter optimization
Hyperparameter optimization is the process of searching for an optimal set of
hyperparameters of a machine learning architecture, CNNs in our case, that
would result in better performance. Machine learning algorithms have no way of
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learning these variables. Machine learning practitioners are expected to carefully
select the parameters for a better-performing model. In practice, we can have
different data types for these hyperparameters, including categorical, discrete, and
continuous. Tuning these variables manually would be expensive for big machine
learning models that take days or even weeks to finish. This has raised a new
research direction that automates hyperparameter tuning called hyperparameter
optimization. A few hyperparameter optimization algorithms are currently being
used to automate this process. Babysitting, grid search, random search, gradient-
based optimization, and Bayesian optimization is among the popular methods [82].
For our work, we have used Hyperband [79], which takes advantage of random
search.

4.4 Recurrence plots
CNN has shown promising results in image classification, image detection, and
image segmentation problems. To take advantage of these improvements, we
needed to change our intrusion detection problem to an image classification
problem. This is where recurrence plots (RPs) come into play to generate images
out of time-series data. RPs are used to visualize recurrences in sequence and are
expressed by a square matrix [18].

Ri,j(ε) = Θ(ε − ∥x⃗i − x⃗j∥), i, j = 1, ..., N (4.4)

In Equation 4.4, N is the number of measured points x⃗i, and ε is a threshold
distance. Θ is a Heaviside function as defined in Equation 4.5, whose value is
zero for negative arguments and one for positive arguments. ∥∥ is a norm. The
matrix obtained with the recurrence equation is projected to image pixels, with
1 representing a dark color and 0 representing a white color. In the resulting
recurrence plot, the main diagonal will always be black because Ri,i ≡ 1, i ∈
1, ..., N . This black line is called the line of identity.

Θ(x) =

0, x < 0.

1, otherwise.
(4.5)
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The most crucial parameter of RP is the threshold ε, but the RP we are
employing in this research is categorical RP, and the threshold serves no purpose
in this regard. Categorical RPs can use no meaningful distance metric to compare
neighboring values. The values in categorical datasets are simply labels, and closer
numerical labels have no special effect over further numerical labels. The pixel in
the plot is flipped if and only if two classes have the same labels.

4.5 The proposed method: Rec-CNN
The proposed system is an IDS for in-vehicle networks. The general structure of
the IDS system is shown in Figure 4.2. The system has three stages: preprocessing,
training, and testing stages. The preprocessing stage deals with converting CAN
frames to a datatype suitable for CNN model training. Section 4.5.1 describes in
detail how a sequence of categorical frames is encoded and converted to a recurrence
plot. In the training stage, we train the IDS model using the preprocessed stage
results. Optimal hyperparameters are also selected using Hyperband. The details
for this stage are available in sections 4.5.3 and 4.5.4. Finally, we need to deploy
our trained model in a real-world environment. The testing stage does two types
of inferences, online and offline, which are explained in section 4.6.

4.5.1 Datasets and feature engineering
We have tested the proposed method with two types of datasets. The first dataset
is collected from our test vehicle, and the second is published with the Inception-
ResNet-based method. These datasets are referred to as dataset A and dataset B,
as mentioned earlier. The structure of both datasets is shown in Figure 4.3. In
this research, we are using the timestamp and arbitration ID of the CAN packet
to train our model. The timestamp is not directly used in training but is only
used to keep the precedence of the packets. The arbitration ID of the dataset is
extracted and encoded to a value between 0 and N , where N represents the total
number of unique arbitration IDs. As shown in Figure 4.3, dataset A’s arbitration
ID is eight characters long, while dataset B’s is only four characters long. This is
because of the type of CAN network implemented in both test cars. Our test car
runs on CAN 2.0-B whereas dataset B is collected from a car that runs on CAN

38



Preprocessing

Training

Testing

Arbitration ID extraction

Encoding

Recurrence plotting

Flatten
Dropout

Pooling 2Conv 2Conv 1Input 
image

.
.

.

.
.

.

.
.

.
.

.
.

.
.

.
.

.
.

Convolutional 
layers

Fully 
connected layer

Output 
class

Pooling 1

12
8

128

3
3

64 64

64
64

64

64
64

256

3

3

256

32
32

0.9

262144
.

.
.

.
.

.
16

ReLu ReLu ReLu

Sigmoid

Dense

Trained model

Hyperparameer 
Tuning

Online Offline

OBDII Port

JETSON TX2

1 0

Collected data

JETSON TX2

1 0

Figure 4.2: A graphical representation of Rec-CNN

2.0-A. CAN 2.0-B can have more arbitration IDs as it is 29 bits long. But, this did
not affect our model as both datasets have a comparable number of arbitration
IDs.

First, we collect 128 arbitration IDs of packets arriving on the CAN bus. The
arbitration IDs are then encoded to a number between 0 and N , and the encoded
sequence of arbitration IDs is converted to CNN’s input image using RPs. The
training image is subsequently generated out of the square matrix in the RPs
with a dimension of 128 × 128. In the benign dataset, there are only N unique
arbitration IDs and encoding starts from 0. But a new arbitration ID not found in
the available arbitration IDs list might appear in the CAN bus. When these new
arbitration IDs appear in the CAN bus, they are encoded as −1. For instance,
the DoS attack in dataset B uses an arbitration ID of 0X000 to send high-priority
packets, which we encoded as −1 whenever it shows up in the sequence.

Figures 4.4 and 4.5 show the RPs for the normal and all types of attacks in
datasets A and B. In dataset A, the difference between the images for benign,
drop attacks, fuzzy attacks, and insertion attacks look similar since there are
few attack packets in the dataset. But in the case of dataset B, the images for
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Timestamp                 Interface          Arbitraion_ID Data

(1557264444.790225)            can0             0CF00400#F4857D000000F07D 
(1557264444.792290)            can0             0CF00300#C1000000FFFFFFFF 
(1557264444.798501)            can0             18FEF100#C3000000001E00CF

(a) Benign dataset A

Timestamp: 1479121434.850423 ID: 02c0 000 DLC: 8 14 00 00 00 00 00 00 00 
Timestamp: 1479121434.850977 ID: 0430 000 DLC: 8 00 00 00 00 00 00 00 00 
Timestamp: 1479121434.851215 ID: 04b1 000 DLC: 8 00 00 00 00 00 00 00 00 

(b) Benign dataset B

Timestamp                Arbitration_ID DLC               Data                        Label

1478198376.389427    0316                        8         05,21,68,09,21,21,00,6f     R 
1478198376.389636              018f                       8        fe,5b,00,00,00,3c,00,00    R 
1478198376.389864              0260                        8         19,21,22,30,08,8e,6d,3a   T

(c) Attack dataset B

Figure 4.3: Excerpt of training data for datasets A and B

benign, DoS attacks, fuzzy attacks, and spoofing attacks look more distinct due
to the large number of attacks sent. This is because the attack frequency value
in dataset B is very low, making it easy for the IDS models to classify. As a
result, we added a subtler dataset when comparing our proposed method with
the Inception-ResNet-based method. When we prepare the recurrence plots, all of
the arbitration IDs are considered because, in both datasets, all the arbitration
IDs appeared in the CAN bus in a range of frequencies. There are cases of a
CAN bus receiving a non-cyclic arbitration ID or a slight change in the sequence
of arbitration IDs due to each ECU’s clock skews. In such cases, deep learning
should also learn this behavior of arbitration IDs.

In the recurrence plots, we can see minor pattern variations that are captured
in the images generated from the different attack types. The goal of this research
would be to see if CNNs can learn this minor pattern variation. In doing so,
it will be used to classify images into attack and non-attack types. We have
experimented with binary and multi-class classification. In binary classification,
the label for all the attack images is 1, and the label for the normal sequence is
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(a) Benign plots
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(b) Drop attack plots
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(c) Fuzzy attack plots
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(d) Insertion attack plots

Figure 4.4: Recurrence plots of dataset A for all label types
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(a) Benign plots

(b) DoS attack plots

(c) Fuzzy attack plots

(d) Spoofing gear attack plots

(e) Spoofing RPM plots

Figure 4.5: Recurrence plots of dataset B for all label types
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0. However, the multi-class classification has five class labels of 0, 1, 2, 3, or 4
in dataset B. The label 0 is for benign images, 1 for DoS attack images, 2 for
fuzzy attack images, 3 for spoofing gear attack images, and 4 is for spoofing RPM
attack images. Dataset A, only has 0, 1, 2, and 3 labels representing benign, drop,
fuzzy, and insertion attacks. Both datasets have the same fully connected single
node top layer with a sigmoid activation function. However, in the multi-class
classification, the top layer has four nodes for dataset A and five nodes for dataset
B with a Softmax activation function.

4.5.2 CAN attack simulations
We have collected a dataset to compare the proposed and the Inception-ResNet-
based method. This is because the comparison was impossible in the public dataset
as both methods result in near-perfect accuracy. Dataset A consists of benign
data, drop attack data, fuzzy attack data, and insertion attack data. Except for
the benign dataset, the simulated attacks are prepared by attacking a benign flow
of packets. Attacking is performed in a period of random uniform time. Here are
the details of how each attack is prepared:

• Drop attack: This attack simulates a remote attacker that drops packets
from arriving at the connected ECU. The remote attacker can do so by
compromising an ECU. This is done in our dataset by dropping a single
packet in a period of selected length. A drop attack is similar to a DoS attack
because packets are being dropped in both cases. A DoS attack is created
by continuously flooding the CAN bus with a high-priority arbitration ID.
The difference between the two is a drop attack does not need to send a new
packet as a replacement for the dropped one, but a DoS attack sends packets
in huge amounts for other packets to be dropped. We have used the time
windows of 10ms, 50ms, 80ms, 100ms, and 150ms for all attack types. After
the last packet is dropped, our attack system waits for a uniformly generated,
random number between zero and the selected time window before making
another attack. In our experiment, we have shown the performance of the
proposed IDS on attack windows of 10ms, 50ms, 80ms, 100ms, and 150ms.

• Fuzzy attack: Attackers usually use this to learn how ECUs react to certain
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packet types. A random CAN packet is inserted into the CAN bus to
simulate this attack. This is different from the insertion attack because we
have used a random arbitration ID that might not appear in the benign
data of the arbitration IDs list.

• Insertion attack: As the name implies, an insertion is an attack done by
inserting packets to the CAN bus. But unlike the fuzzy attack, insertion
attack packets have genuine arbitration IDs and data frames.

Dataset B is publicly available at [83]. It contains five data types: DoS attack,
fuzzy attack, "spoofing the gear" attack, "spoofing the revolution per minute
(RPM) gauge" attack, and attack-free datasets. A DoS attack is prepared by
injecting high-priority CAN messages in a short cycle of 0.3 milliseconds. Similarly,
a fuzzy attack is prepared by injecting messages of spoofed random CAN ID and
data values at a frequency of 0.5 milliseconds. The last Revolution Per Minute
RPM/gear attack is prepared by injecting messages with CAN IDs related to
RPM/gear to the CAN bus every millisecond.

The attack windows selected in the public dataset are very low compared to our
dataset. If attacks occur more frequently, detection is easier, as there are more
disturbances.

Figures 4.6 and 4.7 show the number of CAN frames in a one-second window for
datasets A and B. Dataset A only has an average of 680 CAN frame in a second.
Attacks are made in longer periods of 10ms, 50ms, 80ms, 100ms, and 150ms. For
instance, in the 150ms period, there can only be as few as 6.6 attack frames,
making it a lot more difficult than the public dataset. In dataset B, however, at
least 1,953 frames are arriving at the CAN bus on average. When preparing the
attack datasets, they have used time windows of 0.3ms, 0.5ms, and 1ms. This
implies the one-second data may contain as much as 50% of attack packets.

In both datasets, a set of frames collected in a time window are labeled as an
attack if there is at least one attack frame. It is labeled benign otherwise.

4.5.3 Network architecture
Our final target is secure in-vehicle network communication. We would like to
detect as many attacks as possible, but implementing a very deep network that
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Figure 4.7: CAN frame count in a second, dataset B
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Figure 4.8: Binary anomaly classification

takes forever to make a prediction is not ideal. Therefore, we kept our network
simple with only a few layers.

We have trained two classifiers: a binary classifier, and a multi-class classifier.
The binary classifier classifies the images into two classes: benign and anomaly.
A convolutional layer and a max-pooling layer are assembled in two stages. As
shown in Figure 4.8, the first convolution has 64 filters with a kernel size of
3 × 3. For the output to have the same height/width dimension as the input, we
have evenly padded the input image with zeros to the left/right and up/down.
The activation function used in this layer is ReLu. The results from the first
convolution are diminished with a max-pooling layer of a dimension of 2 × 2,
no padding, and a stride of 2. The second convolutional layer has 256 filters,
each with a kernel size of 3 × 3. Like the first layer, this layer also has a ReLU
activation function and padding to keep the dimensions of the resulting matrix.
Next to the convolutional layers, there is a dropout layer used for regularizing
the network to fight overfitting. Since the output from the convolutional layers
cannot be used directly, we flattened the resulting matrix to a one-dimensional
vector. This one-dimensional vector is then fed to a dense layer with 16 nodes. In
the top layer, there is one more feed-forward layer with only a single node and
an activation function of the sigmoid. The sigmoid activation function gives a
value between 0 and 1. If the resulting value from the layer is above 0.5, it will be
classified as an anomaly image and otherwise benign.
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Figure 4.9: Multi-class anomaly classification

We have also created a multi-class classifier, Figure 4.9, to see if CNN can
correctly classify the different types of attacks to their correct labels. It has a
network architecture that is similar to the binary classifier, except for the top layer.
Unlike the binary classifier’s, the top dense layer has four or five nodes, depending
on the type of dataset used. The resulting values from these nodes are finally
fed to a Softmax activation function that gives probabilistic values of multi-class
labels. The predicted class would be the one with the highest probabilistic value.

4.5.4 Hyperparameter search
In the current stage of deep learning, there is no easy way to set hyperparameters
which often requires more manual work done manually or work done with com-
putationally expensive hyperparameter search algorithms, like a grid search or a
random search [84]. Without a good set of hyperparameters, the final model might
not have a small training error and have a good generalization. To optimize the
hyperparameters of our architecture, we have used an algorithm called Hyperband
that speeds up the random search algorithm through adaptive resource allocation
and early stopping [79].

Algorithm 1 is the Hyperband algorithm for searching hyperparameters. The
algorithm requires two inputs: R, the maximum amount of resource that can be
allocated to a single configuration, and η, an input that controls the proposition
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Algorithm 1 Hyeprband Search
input: R,η (default η = 3)
initialization: smax = logη(R), B = (smax + 1)R
for s ∈ {smax, smax − 1, . . . , 0} do

n = [B
R

ηs

(s+1) ], r = Rη−s

T = get_hyperparameter_configuration(n)
for i ∈ {0, . . . , s} do

ni = [nη−i]
ri = rηi

L = run_then_return_val_loss(t, ri)
T = top_k(T, L, [ni/η])

end for
end for
return Configuration with the smallest loss

Figure 4.10: Combination of hyperparameters

of configurations discarded in each round of the inner for loop. Applying the
algorithm requires the implementation of three methods. The first method,
get_hyperparameter_configuration(n), returns a set of n random identical and
independently distributed (i.i.d) configurations from the total hyperparameter
configuration space. The total number of configurations we used reached 38,880.
These configurations are created by uniquely combining the hyperparameter,
Figure 4.10, with values shown in Table 4.1.

The second method, run_then_return_val_loss(t, r), takes a hyperparam-
eter configuration t and a resource, r. The method trains the model for r

epochs and returns the validation loss. This validation loss is then used in the
top_k(configs, losses, k) method with the corresponding configurations. The
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Table 4.1: hyperparameter values used for searching network architecture

Hyperparameter type List of values
Convolutional 16, 64, 256
Layer 1
Convolutional 16, 64, 256
Layer 2
Dropout 0.1, 0.5, 0.9
Dense nodes 16, 32
optimizers Adadelta, Adagrad, Adam

Adamax, Adamax, Ftrl, Nadam
RMSprop, SGD

Learning_rate 0.1, 0.01, 0.001, 0.0001
0.00001

Learning_schedule Inverse time decay,
Exponential decay

Decay_steps 1000, 2000, 3000
Decay_rate 0.1, 0.5, 0.9
Batch_size 16, 32, 64

49



top_k(configs, losses, k) returns top k best performing configurations, and run-
ning these configurations until a single configuration remains will do the work.

4.6 Experimental results and discussion
In this section, we present the tools and techniques we have used for the experiment.
We show the model’s intrusion detection performance in the two types of datasets.
We have implemented the model in a controlled CAN to check its execution time
when used in a real-world environment.

4.6.1 Dataset collection
We have collected dataset A from a real vehicle doing its day-to-day activities.
The vehicle is a public passenger vehicle: a city bus. We have connected our CAN
data-collection tools to the car’s OBD-II port, which is found under the steering
wheel of most present-day vehicles. We have connected our data-collection tools
to the city bus for more than a week. In this range of days, we have collected
millions of CAN traffic. We randomly took eight hours worth of CAN data for
our experiment, which adds up to 16 million packets. One does not need to
collect data from the entire lifetime of a car for training. There are only countable
arbitration IDs, and learning the sequence of these arbitration IDs would only
require a little training data.

After collecting the datasets, we have prepared the simulated attacks for dataset
A. Since we have experimented with binary and multi-class classifications, we have
prepared two different data types. Table 4.2 shows the binary classification’s data
sizes. In the binary classification, we have only two classes, benign and attack.
For our model to be unbiased, the two classes need to be proportional. Therefore,
we split the 16 million datasets into two. The first half was left intact as a benign
dataset, but we used the second half to simulate the three types of attacks: drop
attacks, fuzzy attacks, and insertion attacks. Then the whole dataset is combined
and split into training, testing, and validation datasets in the proportion of 60%,
20%, and 20%.

Similarly, the multi-class classifier is prepared from the 16 million packets with
the same proportion for all the data types. Table 4.3 shows the data types’
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Table 4.2: Binary classification datasets of dataset A

Attack Data #CAN Number of
frequency type frames images
(seconds) (millions)
0.01 Benign 8 62,499

data
0.01 Drop 2.5 15,167

attack
0.01 Fuzzy 2.5 23,896

attack
0.01 Insertion 2.5 23,894

attack
Total 125,456

proportional split. Unlike the binary classifier, this has four classes, and all the
class datasets need to have a proportional amount of training data. Therefore,
the dataset is split into four classes, each containing 4 million packets.

4.6.2 Evaluation metrics
We used the area under the ROC curve plot (AUC) to compare the proposed and
Inception-ResNet-based methods. We selected AUC because it reflects the overall
ranking performance of our proposed and the Inception-ResNet-based method.
ROC curve is a graph; the x-axis represents the false-positive rate, Equation 4.7,
and the y-axis represents the true positive rate, Equation 4.6. In the equations,
TP, FN, FP, and TN are acronyms for true positive, false negative, false positive,
and true negative.

TruePositiveRate(TPR) = TP

TP + FN
(4.6)

FalsePositiveRate(FPR) = FP

FP + TN
(4.7)
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Table 4.3: Multi-class classification dataset of dataset A

Attack Data #CAN Number of
frequency type frames images

(millions)
0.01 Benign 4 21,201

data
0.01 Drop 4 18,838

attack
0.01 Fuzzy 4 20,223

attack
0.01 Insertion 4 20,219

attack
Total 80,481

4.6.3 Model training
The best-performing model parameters are shown in Table 4.4. The selected
architecture is trained on the Nadam optimizer with a 0.0001 initial learning rate,
0.1 decay rate, and a decay step value of the selected decay step multiplied by
the ratio of training size to the batch size. The loss function we used is a binary
cross-entropy for the binary classifier and a sparse categorical cross-entropy for
the multi-class classifier.

Using the hyperparameters shown in Table 4.4, the model is trained for 343
iterations with a constraint of early stopping when the model stops improving for
more than ten epochs. The training metrics (loss and accuracy) from the training
traces of both datasets are shown in Figure 4.11. We used validation data for
hyperparameter tuning. Training/Validation accuracy and loss of dataset A are
shown in Figures 4.11(a) and 4.11(b), respectively. Even though the total iteration
selected is 343, the graphs do not show this. This happened due to the early
stopping constraint we used during training. The model stops training when over-
fitting starts to show at around epoch 60 of dataset A. Similarly, Figures 4.11(c)
and 4.11(d) show the training metrics of training and validation in dataset B. In
this dataset, the early stopping constraint appears earlier at around epoch 24.
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Table 4.4: Hyperparameters of the architecture

Hyperparameter type List of values
Convolutional 64
Layer 1
Convolutional 16
Layer 2
Dropout 0.9
Dense_nodes 32
optimizers Nadam
Learning_rate 0.0001
Learning_schedule Exponential decay
Decay_steps 1000
Decay_rate 0.1
Batch_size 32

4.6.4 Binary classification
The research aims to classify a sequence of arbitration IDs as benign or anomalous
and take measures accordingly. In the binary classification type, the labeled
dataset has only two labels, 0 for benign and 1 for an anomaly. On the top of the
binary class classifier, we have used a sigmoid activation function. The sigmoid
activation function takes an input of a multi-dimensional tensor and produces a
value between 0 and 1. Depending on the output from this node, the classifier
labels test data as benign if the output is below 0.5 and anomalous otherwise.

Tables 4.5 and 4.6 show the binary classification results of dataset A and dataset
B. In datasets A, attack frequency refers to the time we wait to make a new
attack after the last attack. In Table 4.5, the attack detection rate decreases as
the attack window increases. When there are only a few attacks in the sequence,
as low as only one, it gets difficult for the model to classify it to its correct label.
This is because this kind of attack looks a lot like benign recurrent plots.

We have compared the results of our proposed method and the Inception-ResNet-
based method. The ROC curves in Figure 4.12 show the ROC curve comparison
results of the proposed and Inception-ResNet-based methods in dataset A. As
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Table 4.5: Binary Classification results for dataset A

Attack Predicted Predicted
frequency normal attack
0.01 True_normal 1.0 0.0

True_attack 0.0 1.0
0.05 True_normal 1.0 0.0

True_attack 0.004 0.996
0.08 True_normal 1.0 0.0

True_attack 0.029 0.971
0.1 True_normal 1.0 0.0

True_attack 0.045 0.955
0.15 True_normal 0.919 0.081

True_attack 0.067 0.933

Table 4.6: Binary Classification results for dataset B

Predicted normal Predicted attack
True normal 1.0 0.0
True attack 0.002 0.998
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Table 4.7: Parameter sizes comparison

Parameter type Size
Proposed Trainable params 534,225

Non-trainable params 0
Total params 534,225

Inception-
ResNet-
based

Trainable params 1,691,490
Non-trainable params 0
Total params 1,691,490

we can see from the graphs, the Inception-ResNet-based works best when the
attack frequency is high. Our model outperforms the Inception-ResNet-based
significantly when there are only a few attacks in a window.

Similarly, we have compared the performance of the two methods in dataset B.
The ROC curves in Figure 4.13 show how the proposed and Inception-ResNet-
based performance on this dataset. We have implemented a recurrent plot with a
window size of 128.

Models that have fewer parameters are preferred over large models for an
intrusion detection system. This helps us in making inferences fast. Table 4.7
compares the parameter sizes of both Inception-ResNet-based and proposed
methods. Figures 4.12 and 4.13 show that the proposed method outperforms the
Inception-ResNet-based with yet fewer parameters, as shown in Table 4.7.

4.6.5 Multi-class classification
The multi-class classifier has the same architectural structure as the binary, except
for the top layer. The top layer in the multi-class classifier has four nodes in
training dataset A and five nodes for dataset B. The Softmax activation function
in this layer gives the probability values for each class that sums to one. The
one class with the highest probabilistic value will be selected during predictions.
Figure 4.14 shows the multi-class classification results of both datasets.

The multi-class classifier can be used when users would like to know about the
properties of the attacks even though they fail in some cases. The multi-class
classifier works better in dataset B than in dataset A. The attack types in dataset
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Figure 4.12: Proposed method ROC curve comparison with the Inception-ResNet-based Method. For all the
tested attack windows
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Figure 4.13: ROC of the proposed and Inception-ResNet-based method

A are distinct with no overlaps. But in dataset B, insertion and fuzzy attacks can
sometimes present the same kind of images because the fuzzy attack is similar
to the insertion attack when the attack ID selected is from the list of available
arbitration IDs in the CAN bus. In such cases, the multi-class classifier fails to
distinguish between insertion and fuzzy attacks.

The hyperparameters selected for the binary classifiers are the same as those
used for the multi-class classifiers. The main goal here is not to improve the
accuracy but to show how the proposed method can be extended to a multi-class
classifier. For better accuracy, it is recommended to do a hyperparameter search
for this type as well.

4.6.6 Real-world IDS implementation
Deploying the proposed method to a vehicle for intrusion detection in the CAN
bus requires an external host that will be connected to the CAN bus. This
host needs to be capable of accessing the CAN bus data and making inferences
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Table 4.8: Jetson TX2’s specification

Description specification
GPU 256-core GPU

max operating frequency: 1.12GHz
CPU ARMv8 HMP CPU

max operating frequency: 2.0GHz
Clocks system clock: 38.4MHz

sleep clock: 32.768MHz
Memory type: 4ch x 32-bit LPDDR4

max frequency: 1866MHz
capacity: 8GB

CAN transceiver PowerJetson TX2

Combination 
meter ECU

Figure 4.15: IDS real-world implementation

using the trained model. For this purpose, we have used NVIDIA’s Jetson TX2.
Table 4.8 shows the Jetson TX2’s specification. The Jetson TX2 has 2 CAN
controllers but no CAN transceiver. Therefore, an external CAN transceiver is
required to access the CAN bus data. We have connected a CAN transceiver to
J26 GPIO of the TX2, which later is connected to the CAN high and CAN low
of the CAN network. Figure 4.15 shows the experimental IDS implementation.
In the figure, the dashboard is extracted from a real vehicle that has an ECU
capable of transmitting CAN frames to the Jetson TX2. The CAN transceiver
is SN65HVD230 CAN Bus Transceiver Communication Module, enabling Jetson
TX2 to access and interact with the CAN network.
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Our intrusion detection model makes two types of attack predictions: online and
offline predictions. In the online prediction, the IDS system first collects packets
from the real CAN network through the CAN transceiver. These collected packets
are then preprocessed to make them suitable for the model input. The model then
decides based on the model’s inference results. In offline prediction, the model
makes inferences for datasets preprocessed beforehand. The execution time for
both cases is shown in Figure 4.16. The execution time of the live implementation
is a bit slower than the offline implementation due to the preprocessing stage
required for live implementation. The trained model will need an average of 117ms
to make a single inference if Jetson TX2 [85] is used, but the current automotive
controllers have lower processing power to execute deep learning models. Therefore,
for this system to work, we need an external computational device like Jetson
TX2 or similar devices.

If this system is going to be used as an IDS system in a real-world environment,
what is trained on one vehicle can’t be used as an IDS system in another. We
need to create different models for each make and model of a vehicle. But a single
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model in a vehicle can be used for any driving condition as long as most conditions
are considered during training. Driving conditions might also not also affect the
ID part of a CAN frame but affect the data part.

4.7 Conclusion
The proposed method trains a convolutional neural network model using images
generated through recurrence plots. Recurrence plots can show temporal relations
between arbitration IDs as most of the in-vehicle network arbitration IDs are
periodic. Using these images, we have trained a CNN model that classifies in-
vehicle network attacks into either binary or multi-class labels. We have compared
the proposed with the Inception-ResNet-based method. The proposed method
outperforms the Inception-ResNet-based method in performance with comparable
execution time.

When we see neural networks in general, model retraining is required when the
data used for training is significantly different from the data being collected for
inference. Such situations can occur in our case when new arbitration IDs start
to appear in the CAN bus due to software updates or similar situations. In such
cases, we need to retrain the IDS model again from scratch.

Another shortcoming of the proposed method is that it can only detect attacks
that disturb the CAN packet flow’s normal sequence. Attacks like impersonation,
which manipulate the CAN frame’s data without affecting the arbitration ID,
would be left undetected. In chapter 5 and chapter 6, we have extended the
promising results found in this research to an IDS that can also detect such
attacks.
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5 Handling high-dimensional
CAN bus data: MLIDS

The biggest disadvantage of training an IDS solely on arbitration IDs is that it
will miss attacks that do not impact the sequence of arbitration IDs. We will
be required to take a look into the data part of the CAN frames to detect such
attacks. In this chapter, LSTM-based IDS is proposed that is capable of handling
the high-dimensional nature of the CAN bus data.

5.1 Introduction
In this chapter, we propose an anomaly detection in the CAN bus using LSTM
that is capable of handling the high-dimensional CAN bus data without the need
for reverse-engineering of the CAN frames. Similar approaches are available,
but all of them either require reverse-engineering of the CAN bus data or they
don’t handle the high-dimensional property of the CAN bus. In [73], the method
proposed needed to implement a single architecture for all the available arbitration
IDs. In [20], they handled the high-dimensional CAN bus data but their method
requires reverse-engineering of the CAN bus data. Our research comes in handy
in solving these two issues, avoidance of reverse-engineering and handling high-
dimensional CAN bus data. We wanted to avoid the reverse-engineering part so
as for the IDS system to work in all types of cars independent of the make and
model. And the handling of the high-dimensional CAN bus data is required so
that this IDS system could easily be optimized as part of other IDS systems. As
it only provides a single anomaly signal, it can be used together with other IDS
systems as part of one conditional statement.

63



5.2 Proposed method: handling
high-dimensional CAN bus data

In this section we show how the high-dimensional structure of the CAN bus data
is handled and the preparation of the anomaly signal. Our IDS system handles
the high-dimensional structure of the CAN bus data by filtering each frame using
its arbitration ID. Each filtered arbitration ID is fed to its corresponding LSTM
models. Each of the models makes a subsequent frame prediction. The prediction
errors from all of the LSTM models are later combined to create a single anomaly
signal that can capture the attack state of the CAN bus in a certain time window.

5.2.1 Input data pre-processing
Dumping a CAN data gives row of packets sequenced by the time they arrived in
the CAN bus. For this particular research, we have used the timing information,
arbitration IDs and the frame values. The timing information is not used in
the actual network training, it was only used for the sole purpose of keeping the
sequence of the packets. Since packets from each of the arbitration IDs need to
pass through a single LSTM architecture, the arbitration ID is used to distribute
each of the packets to their respective architectures. After all the packets are
filtered by their corresponding arbitration IDs, the packets which is in hexadecimal
form is pre-processed so as for all the features to be binary.

5.2.2 MLIDS’s network Architecture
In this section, we will describe the anomaly detection flow with the help of some
notations. Let F = {f1, f2, f3, ..., fn} be the sequence of all, n ∈ N, frames in order
of their arrival time at the CAN bus. Before training, each frame f ∈ F is filtered
according to its arbitration ID to create a data set that contains a sequence of
frames that have identical arbitration IDs, DS = {DSid0 , DSid1 , DSid2 , ..., DSidi

}.
The model is trained in a time window of a second. In a second, some arbitration
IDs, idi, might appear more frequently than others, therefore the data set, DS,
is a ragged tensor with unknown shapes. Each of the ragged tensors, DS ∈ DS,
observed in one second for each arbitration ID are fed to their corresponding
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Figure 5.1: MLIDS system architecture

LSTM column as shown in Figure 5.1.
The main idea behind this architecture is to create a single anomaly signal

that can be used to tell if there has been any kind of intrusion in the CAN bus.
The detailed process that goes through one of the paths, let it be idi, in the IDS
system architecture is shown in Figure 5.2. In a second, all packets related to
arbitration ID of idi are collected and pre-processed as described in 5.2.1. During
pre-processing, the collected packets are changed to input and output sequence
that has a length of k − 1, where k is the packets count in 1 second. The input
contains all the packets from index 0 to index k − 1 and the output contains
elements from 1 to k. Packets 0 to index k − 1 are then fed to the network to
predict all the subsequent packets, 1′ to k′. During backpropagation, we update
all the weights connecting the layers using binary cross-entropy loss function. We
trained the model until the binary loss between packets 1 to k and packets 1′ to
k′ stops improving using early stopping and a hyper-parameter search algorithm
introduced in 4.5.4.

Since the LSTM model we selected is stateful, the model can make predictions
in any duration. If the selected time window is w seconds for w ∈ R, the system
makes predictions or anomaly searches in every w seconds. In a time window
of w seconds, there might be an arbitrary number of packets, k, related to an
arbitration ID of idi. In this time window, the architecture predicts k number
of subsequent packets. These predicted subsequent packets are then compared
with packets which appeared in the CAN bus to calculate inner anomaly signal,
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Figure 5.2: One path in the intrusion detection system

Pac_L, related to arbitration idi. The CAN packet we used for training or testing
is in binary format which means each value is a 0 or 1. As shown in Figure 5.2,
each bit in a frame passes as an independent input to the architecture before
it is concatenated in the lower layer. Inner anomaly signal is calculated using
binary-cross entropy.

Pac_L = − 1
64

63∑
i=0

(yi log(p(yi)) + (1 − yi) log(1 − p(yi)) (5.1)

The binary loss equation, Pac_L, gives the loss function in a single packet, but
as we have returned all the sequences in the LSTM layer, we will have n number of
loss values related to the total number of packets collected, k, in the time window
of w. The arbitration ID level loss values are then calculated.

Arb_L = 1
n

n∑
j=0

Pac_Lj (5.2)

In a time window of w, each of the arbitration IDs, idi, will each have a col-
lective loss value. The final anomaly signal will be the mean results obtained
from loss value of each arbitration ID. When calculating the final anomaly sig-
nal, frequency of the arbitration IDs is considered. If each of the arbitration
IDs have a frequency as in F1, F2, F3, ..., Fi and arbitration ID level loss as in
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Arb_L1, Arb_L2, Arb_L3..., Arb_Li the final anomaly signal is calculated using
5.3.

Cumulative_Loss =
∑i

y=1(Fy ∗ Arb_Ly)∑i
y=1 Fy

(5.3)

5.2.3 Evaluation Metrics
We used recall, precision, and F1 score to show the performance results of our
proposed method. These metrics are commonly used in binary classification
problems. Equations 5.4, 5.5, and 5.6 are used to calculate the metrics in order of
recall, precision and F1 score. In the equations TP is for "true positive", FN is for
false negative and FP is for false positive.

Recall = TP

TP + FN
(5.4)

Precision = TP

TP + FP
(5.5)

F1score = 2 · Precision · Recall

Precision + Recall
(5.6)

5.2.4 Hyperparameter search
To tune the neural network’s hyper parameters we used hparams algorithms from
tensorflow [86]. Our parameter search goes through three phases. In the first
phase, we run 108 configurations created with the combination of parameter values
shown in Table 5.1. With a condition of early stopping callback that checks if
the validation loss is improving in less than 15 epochs, all the configurations are
trained for 200 epochs. The result from the first run of the hyperparameters is
shown in the Figure 5.3.

In the second step of the hyperparameter search, 9 best results are selected for
further run. These configurations are run for 200 more epochs. The configuration
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Table 5.1: hyperparameter values used for searching network architecture

Hyperparameter type Values
Embedding_dim [4, 8 , 16]
RNN_layers [1]
RNN_units [32, 64, 128]
Learning_rate [0.001, 0.01, 0.1]
Learning_schedule [Inverse time delay, Exponential decay]
Optimizer [SGD, RMSprop]

Figure 5.3: Hyperparameter search results
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with the best result is then tuned again manually to see if there is a room for
improvement. In the final step a single best hyperparameter is used to train
and test the IDS system. The details of the selected hyperparameter values are
described in 5.3.3.

5.3 Experimental Results and Discussion

5.3.1 Data set collection
We collected data from a real vehicle, prv_data, for about 14 hours that count
to a total of 36 million packets. We split the data set into a ratio of 70%, 15%
and 15% for training, validation and testing respectively. Since CAN bus data
is proprietary, we couldn’t release our dataset for researchers to use. Instead we
experimented MLIDS with a public CAN bus data from [19], pub_data. This
dataset contains normal data (attack free), targeted attack (gear and RPM), DoS
and Fuzzy attacks. To train the MLIDS we split the normal data to the same
proportion as prv_data.

For both of the datasets, we tested the performance of MLIDS with a time
window of 0.5, 1 and 2 seconds. For an arbitration ID to be used for training,
it has to appear in the CAN bus in the minimum time window. As shown in
Figure 5.4 , some of the IDs appear in the CAN bus less frequently in the time
window of 0.5 seconds. Due to this we considered the top 21 arbitration IDs
in both of the test data. In the prv_data, 21 arbitration IDs were considered
because these arbitration IDs cover 94% of all the test car’s CAN bus data. The
top 21 arbitration IDs in the pub_data also cover more than 97% of the data.

5.3.2 simulated attacks
To evaluate the performance of our IDS system, we have fabricated three types of
attacks in the the prv_data.

InsertionAttack - In every 0.01 seconds, a randomly selected genuine frame is
inserted in a sequence. The duration of the attack depends on detection
window selected during testing (0.5, 1, or 2 seconds). If the selected window
is 0.5 seconds, the insertion attack is made in every 0.5 seconds.
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Figure 5.4: Average frequency of all available arbitration IDs in a second

DropAttack - We drop a single packet in every 0.01 seconds. This attack also
continues for a duration of time selected during testing.

FuzzyAttack - This type of attack is often used to learn how ECUs react to
injected frames. We fabricated this attack by randomly preparing a 64-bit
frame. The arbitration ID for this frame is also randomly selected from the
available arbitration IDs in the test car. Same as the other two attacks,
fuzzy attacks period depends on the selected window.

But for the case of pub_data, all the data is used as it is except for the DoS
attack. In this dataset arbitration ID ’0000’ is sent in high frequency to create a
DoS attack in the CAN bus. But, this particular arbitration ID is not in the IDS.
Therefore, we replaced this arbitration ID in the DoS test data with an ID that
has a highest priority, arbitration ID ’0002’.

5.3.3 Network training results
The network architecture is carefully selected using a hyperparameter search
algorithm called Hparams. The best architecture has an embedding layer, LSTM
layer and a dense layer, that is used to predict the forthcoming frame bits. An 8
bytes long packet has 64 bits with each being 0 or 1. The architecture predicts
the probability of each of the 64 bits. These values are considered categorical
with two classes, 0 and 1. To handle these categorical values, we used embedding
in the first layer with 16 units. The output from this layer is fed to a single
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Figure 5.5: The first arbitration ID’s all 64 bits training and validation loss values

LSTM layer with 32 units. During searching for hyperparameter, only a single
LSTM layer is considered due to its expensive computations that is not suitable
for a slow-performing network like CAN bus. At the top of the architecture, we
have a dense layer that predicts the probability of the frame being all 1’s with an
activation function of sigmoid. The loss function used is a binary cross-entropy
between labels from the training data and output from the dense layer. The loss
function combined with an optimizer of Stochastic Gradient Descent (SGD) that
has a momentum of 0.8 and a clip value of 1.0 is used to compile the model. We
have also tuned the learning rate upon which SGD is learnt. The learning rate is
scheduled for the SGD using Inverse Time Decay.

Figure 5.5 shows the training and validation loss values of the first arbitration
ID considered in prv_data. As it can be seen in the figure some of the bits in the
packets are not fitting well while the others are perfectly fit. This is because it is
impossible to find a collection of hyperparameters that works best for all the bits.
When tuning the architecture, the average loss of all the bits is checked for early
stopping.

The trained model makes a prediction in a specific time window. The anomaly
signal is calculated from a loss between the predicted values and true values.
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Table 5.2: Prv_data detection results for all types of attacks and window of duration

Duration Metrics Insertion Drop Fuzzy

0.5
recall 1.0 0.96 1.0
precision 1.0 0.52 1.0
F1_score 1.0 0.68 1.0

1
recall 1.0 1.0 1.0
precision 1.0 1.0 1.0
F1_score 1.0 1.0 1.0

2
recall 1.0 1.0 1.0
precision 1.0 1.0 1.0
F1_score 1.0 1.0 1.0

Figure 5.6 shows, scattered plot of the anomaly signal calculated for insertion,
drop and fuzzy attacks in 1 second.

After the results are scattered as the result figures, a threshold is manually
selected that gives maximum performance for all types of attacks and window
sizes. Table 5.2 and Table 5.3 show precision, recall and F1 score results of all the
cases. As we can see from the result tables, the system effectively detects all types
of attacks except for drop attack in prv_data. This is because some windows
have a lower frequency of frames and dropping a frame in between will not have a
big of an effect on the anomaly signal calculations.

The IDS system can effectively incorporate any size of CAN frame. For most
present-day cars which use the CAN network, all that is needed to use this
implementation is extract the bits in a CAN frame and train a model with the
architecture presented. The training and threshold selection will be done offline
as part of the IDS system. The final IDS system would be a trained model that
will be placed anywhere in a car where there is a full access to the CAN bus.
Depending on the status of intrusions, the IDS system can be used to notify the
driver about attacks. In times where this system comes short, it can be used in
collaboration with other types of IDS systems. To make this simple, we have
found a way to prepare a single anomaly signal that can be easily used with a
conditional statement.
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Figure 5.6: Scattered plot of results in the prv_data in a window of 1 second
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Table 5.3: Pub_data detection results for all types of attacks and window of duration

Duration Metrics DoS Fuzzy RPM Gear

0.5
recall 1.0 0.999 1.0 1.0
precision 0.999 0.999 1.0 1.0
F1_score 0.999 0.999 1.0 1.0

1
recall 1.0 1.0 1.0 1.0
precision 1.0 1.0 1.0 1.0
F1_score 1.0 1.0 1.0 1.0

2
recall 1.0 1.0 1.0 1.0
precision 1.0 1.0 1.0 1.0
F1_score 1.0 1.0 1.0 1.0

5.3.4 MLIDS execution time
The execution time it takes for the trained model to make a single packet prediction
is shown in Figure 5.7. The IDS system is implemented in Ubuntu 18.04 OS,
Intel Xeon E5-1620 CPU and GM200 (GeForce GTX TITAN X)3072 CUDA cores
GPU that has a clock speed 33MHz and a RAM size of 16GB. The prediction
time is almost similar in all time windows.

5.4 Conclusion
For a secure CAN communication protocol, in this work we have presented an
intrusion detection system using LSTM. The novelty of this work is the ability
to handle multidimensional data without the need for reverse-engineering of the
training data. Our research managed to extract a single anomaly signal for
a window of seconds. In a real-time communication a delay of 1 second in a
prediction might have a disastrous effect. To improve the prediction delay, we will
continue researching on placing the trained model in a cloud and see if this delay
could be improved.
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Figure 5.7: Execution time of the IDS system in making predictions
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6 Application of image
segmentation in the CAN bus
intrusion detection: U-CAN

This chapter also used CAN data portion instead of arbitration ID. This way, it can
be possible to detect attacks that keep ID sequences intact. As an improvement
to MLIDS, this chapter discusses the use CNN on the data portion of the CAN
bus data for intrusion detection.

6.1 Introduction
In this chapter a CNN-based intrusion detection for CAN bus is proposed. Since
the proposed work has similar network architecture as U-NET [87], it will be
referenced U-CAN. U-CAN takes the advancements in CNN’s image segmentation
to in-vehicle network intrusion detection. Previous research works have used CNNs
to detect CAN intrusions, but the vast majority of studies have dealt with either
raw CAN data or reverse-engineered CAN data. Unlike previous studies, U-CAN
can be used for both types of data. U-CAN uses a hamming distance (HAMD)
distribution of CAN frame bits to deal with raw CAN frames that are used to
train a model. The trained model can be deployed to listen in the OBD II port
of vehicles for intrusion detection. We have also added a rule-based system that
checks the HAMD of counter bits in a CAN frame. The rule-based system flags any
sequence that deviates from a predefined hamming value. For reverse-engineered
CAN frames, we applied a saliency detection algorithm before feeding the data
to U-CAN. This helps us to easily segment attack windows of the CAN signal
sequences.
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The following is a summary of the research’s significant contributions:

• U-CAN is the first one-dimensional (1D) segmentation method applied to
in-vehicle networks for intrusion detection, which can be applied to both
raw and reverse-engineered CAN frames.

• It is the first work that studies the pattern of HAMD in CAN frames for
in-vehicle network intrusion detection.

• U-CAN is tested in a publicly available dataset of both raw and reverse-
engineered CAN frames resulting in promising F1 Scores.

6.2 CAN bus data and adversary model
Despite the fact that CAN is standardized, vehicle manufacturers determine the
meaning of each CAN frame. Each vehicle’s CAN frames may also differ depending
on the brand and model. One needs to reverse engineer these proprietary frames
to understand how vehicles react to certain CAN frames. U-CAN can be used in
both raw and reverse-engineered CAN frames. In the case of the raw CAN frames,
a reverse engineering algorithm is used from [88]. But in the second scenario,
we deal with the physical value of signals that have been reverse-engineered to a
human-readable format and is available at [20].

Two datasets are considered in the experiment, which we will be referring
to as the RAW dataset and the PHY dataset. The RAW dataset is publicly
available at [17]. The dataset contains five data types: DoS attack, fuzzy attack,
"spoofing the gear" attack, "spoofing the revolution per minute (RPM) gauge"
attack, and attack-free datasets. As per the work by [88], a CAN frame can
contain continuous values (e.g., speed), pseudo-random values (e.g., checksum),
enumeration signals (e.g., door open status), and cyclic signals (e.g., counters and
clocks). To understand which of the CAN frame bits represent the different CAN
signals, we need to reverse engineer the dataset using HAMD distribution. This
distribution helps us in identify the bits in a frame that are used as counter bits.
HAMD is computed by dividing the number of bit flips by the total frames that
have arrived on the bus in a duration of a selected time window. Figure 6.1, shows
the HAMD of the RAW dataset for arbitration ID 0130. The top three bits in the
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Figure 6.1: Hamming distribution of arbitration ID 0130 of RAW dataset.

figure represent the counter bits in this particular arbitration ID. We will follow
along with these kinds of bits for all arbitration IDs to detect attacks in the CAN
bus.

The second dataset, the PHY dataset, is publicly available at [20]. The dataset
contains benign and attack sequences of reverse-engineered and preprocessed CAN
signals. It contains 10 arbitration IDs, each with different sizes of signals to
represent the information carried in a single CAN frame. There are a total of 20
signals with all the arbitration IDs. In our work, we will extract all the signals
and train a single model for each arbitration ID. The dataset contains a train
and testing dataset. Since it got released with encoder/decoder-based IDS, the
training dataset contains only benign data. The only dataset with attack data is
the test dataset. In our case, we will be training a classifier network, and hence,
we would need to simulate similar types of attacks in the training data.

We first need to understand how the test data is prepared in the dataset released.
The test data for the plateau attack is prepared by overwriting true signals with
a constant value over time. Figure 6.2 shows the plateau attack of arbitration
ID 10, which has four signals and a label to show which of the signal values are
manipulated. As shown in the figure, if we want to repeat this attack on our
training data, all we need to do is select an attack window and replace the values
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Figure 6.2: Plateau attack of Arbitration ID 10 which has four signals

in the window with a randomly selected constant signal value. In Figure 6.2, it is
the second signal from the top that was attacked to simulate the plateau attack.

Similar to the test data, we have simulated plateau attacks on the training data.
Figure 6.3 shows a box plot of the time difference between two frames of the same
arbitration ID. In each attack window, the test data selects a single arbitration
ID signal to be taken over by a single constant value. This attack continues for
a random time window of between 4,169 ms and 8,332 ms. We have followed
this exact approach to create plateau attacks in our training data. Attacks in
our simulation are made for a random uniform time between 4,169 ms and 8,332
ms. Once the attack window time has elapsed, we leave the frames intact for a
random uniform time between 16,000 ms and 24,000 ms before making the next
attack. Our neural network model will be trained on this simulated training data
and tested on the real attack frames.

6.3 U-CAN: Securing the CAN network through
convolutional neural networks

This section begins with a quick overview of deep learning frameworks that are
used in the IDS model. These frameworks include CNNs and encoder/decoder
models. In the later sections, we will describe in detail the preprocessing stages
we followed to finally train the U-CAN model.
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Figure 6.3: Boxplot of the time difference between consecutive frames of the same ID

6.3.1 Building blocks of U-CAN
To segment timestamps of attack windows, U-CAN employs an encoder/decoder
technique. The work is an extension of the U-NET image segmentation system,
which was the first to be used in the segmentation of medical images [87]. The
model consists of an encoder path and a decoder path that is built on blocks of
CNNs. The network architecture of the U-CAN model is similar to the one used in
the sleep staging paper [89]; however, unlike the U-NET model, which was applied
to 2D images, our work, similar to U-Sleep, is applied to a 1D dataset. Figure 6.4
shows the U-CAN network architecture. U-CAN, which is similar to U-Sleep in
that it consists of an encoder, a decoder, and a segment classifier module.

The encoder module takes an input of a single arbitration ID signals. We
have used a fixed size of single arbitration ID signals to train the model which
we will refer to as sequence length, (S). During testing, inferring is done for a
number of windows instead of a single window. The number of windows selected
is referred to as period (P). Therefore, the total signal train size would be S × P .
The encoder then takes this input and encodes it through 12 blocks. Each block
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Figure 6.4: Model Architecture

consists of a convolutional layer, batch normalization, and max-pooling layers.
The convolutional layer has a kernel size of 9 with no kernel dilation, a stride of
1, and an activation function called ELU. Unlike these parameters, the filter of
the convolutional layer has an initial filter of 5 and decreases by a ratio through
all the blocks of the encoder. The parameters for batch normalization are left
with the default values of the Tensorflow implementation. The last layer in the
block is a max-pooling layer with a kernel size of 2 and a stride of 2. The main
success behind the U-NET model is the use of layer outputs in an encoder as an
input to the decoder. Similar to the U-NET model, U-CAN also collects residual
connections from the batch normalization of each block in the encoder, which
can later be reshaped and concatenated with the decoder’s batch normalization
output.

The decoder/up-sampler part also consists of 12 blocks, with each containing an
up-sampling layer, a convolutional layer, a batch normalization layer, a concate-
nating layer, and a second batch normalization layer. The up-sampling layer has
a kernel size of 2 for doubling the length of the feature maps. The convolutional
layer has a kernel size of 2 and a stride of 1 with ELU activation. The residual
connections from the encoder are cropped and concatenated with the outputs
of the batch normalization layer, which is next to the convolutional layer. The
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Table 6.1: List of hyperparameters

Hyperparameter Search parameters
Batch size 16, 32, 64

Learning rate 0.1, 0.01,0.001, 0.0001,0.00001
Learning decay 0.1, 0.5 0.9
Learning steps 10000, 20000, 30000

Scheduler Exponential Decay, Inverse Time Decay
Optimizer Adadelta, Adagrad, Adam, Adamax, Ftrl,

Nadam, RMSprop, SGD

decoder then finishes with one more batch normalization layer, which takes the
concatenated output from the previous layer. The last module is the segment
classifier, which is used to classify each window of signals to its correct class.

The last module, the segment classifier, takes outputs from the decoder to
attack prediction to the same size as the sequence length. The selected sequence
length is 128, which is also the parameter for the average pooling layer at this
stage. These results are then fed to two point-wise convolution operations (with a
kernel width of 1 and stride of 1) that have ELU activation and Softmax activation
functions, respectively. The Softmax classifier at the last convolutional layer gives
a probabilistic prediction for each of the available classes. The network architecture
and parameters selected are similar to U-Sleep [89]. We have only tuned the
hyperparameters found during training that are outside of the network layers.
These hyperparameters include: the batch size, learning rate, learning decays,
learning steps, schedulers, and optimizer. Hyperband [79], an algorithm that takes
advantage of random search, is used to search through the hyperparameters listed
in Table 6.1.

6.3.2 Data preprocessing
As introduced earlier, this IDS is used in two datasets: RAW dataset and PHY
dataset. Not much preprocessing is done in the RAW dataset, except for applying
HAMD to the dataset. HAMD helps us in identifying counter-bits in CAN frames.
These counter bits are first studied carefully to learn a rule-based IDS and U-CAN,
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Table 6.2: Sample dataset

Label Time ID signal1 signal2 signal3 signal4
0 2088.41... id5 0.0 0.96 - -
0 2089.55... id8 0.25 - - -
0 2090.88... id3 0.2 1.0 - -
0 2091.65... id7 0.06 0.0 - -
0 2100.36... id1 0.46 0.11 0.95 0.17

which is an extension of the rule-based IDS. The U-CAN used in this dataset
is not much more than a segmentation model that segments time windows with
disturbed HAMD of the counter bits.

The second dataset, PHY dataset, includes multi-dimensional data. Each
arbitration ID carries a variable number of signals. We have trained a single
U-CAN model for each arbitration ID after concatenating zeros to make the signal
size four as the maximum number of signals carried in one arbitration ID is four.
The sample dataset for the training data is shown in Table 6.2.

After the attacks were simulated as explained in the previous sections, we
extracted frames of each arbitration ID to train the U-CAN architecture. However,
training the model with the available format of CAN signals did not yield us
good results. We further preprocessed the signal values by applying the spectral
residual model to all the training and testing data. This changes the problem we
are trying to solve from detection of attack windows to saliency detection. The
spectral residual model was first applied in image saliency detection by [90]. Its
application is also extended in time series anomaly detection by [91]. Similarly, we
have applied a spectral residual algorithm to each signal value of an arbitration
ID.

Given an arbitration ID a, with four signals, a = [s1, s2, s3, s4]. The sequence
of frames for this particular arbitration ID would be A = [a0, a1, ..., ai], i ∈ N
representing the total CAN frames of ID a. For each column of A, we have
used a spectral residual algorithm that is mathematically represented in equa-
tions 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6 applied in the respective order of their
appearance. In the equations, F and F−1 denote Fourier Transform and Inverse
Fourier Transform, respectively. For each column of signals, A[:, si], in A, we
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apply the spectral residual algorithm, which starts with applying the Amplitude
spectrum, A(f), of the Fourier transformed input. P (f) is the phase spectrum;
L(f) is the log transformation of A(f); AL(f) is the average spectrum of L(f)
after convolving it with hq(f) that is a square matrix of one’s with shape q × q.
When applying the log transformation, we used an ϵ value 10−8 that overwrites
the resulting value to 0 for items less than the ϵ. R(f) is a spectral residual
calculated from L(f) and AL(f). In this equation, we need moving average values
of the sequence. The moving average size selected is, n = 3. The last equation is,
S(A) gives us the final transformed sequences.

A(f) = Amplitude(F(A)) (6.1)

P (f) = Phrase(F(A)) (6.2)

L(f) = log(A(f)) (6.3)

AL(f) = hq(f).L(f) (6.4)

R(f) = L(f) − AL(f) (6.5)

S(A) = ||F−1(exp(R(f) + iP (f)))|| (6.6)

Figure 6.5 shows the spectral residual algorithm applied to the original signal
values shown in Figure 6.2. In Figure 6.2, the plateau attack only appears on the
second signal from the top. In Figure 6.5, the same signal attack window is more
salient than the rest of the signals. But one thing we can see from the figure is
that the areas around the middle of the attack are not as salient as the corners.
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Figure 6.5: Saliency residual of plateau attack for Arbitration ID 10

Especially when the attack window is very long, the saliency seems to disappear
giving no information about an attack. To overcome this issue, we changed our
label to only the start and finish of the attack. When calculating R(f) in the
spectral residual equation, we used n as a moving average size. If the attack starts
at signal s, we label 2n + 1 signals as an attack. That is n signals before the
attack starts, 1 right when the attack starts and n for the three consecutive attack
signals. The same labeling strategy is used when the attack finishes too. 2n + 1
labels, n attacks while we are still in the attack window, 1 for the last attacked
signal, and n for the upcoming signals. The reason we labeled n benign signals
as an attack is due to the moving average size we selected, n, that will affect n

benign signals’ saliency value.

6.4 Experimental results and discussion
In this section, we show the experimental results of both datasets and a discussion
of the results.

6.4.1 Datasets
The RAW dataset we used in the experiment has a total of 17.5 million frames.
Using HAMD, we have identified the arbitration IDs and the counter locations in
the CAN frames. The dataset contains 27 arbitration IDs, of which 9 IDs have 2
or more counter bits. In this dataset, we have managed to detect attacks by only
following the counter bits of the arbitration IDs listed in Table 6.3.
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Table 6.3: Arbitration IDs with segmented counter bits

Arbitration ID Counter bits
0002 [52,53,54,55]
0130 [52,53,54,55]
0131 [52,53,54,55]
0140 [52,53,54,55]
0260 [58,59]
02a0 [1,2]
02b0 [36,37,38,39]
0329 [0,1]
0350 [[16,17,18],[56,57,58,59]]

The PHY dataset has 4 training data that aggregates to 29,669,723 CAN frames
and testing data for the plateau attack with 2,150,053 frames. As mentioned
earlier, the training dataset has no attack frames. We prepared the attack frames
on the training data by studying how attacks are prepared in the test data. The
final training dataset is shown in Table 6.4. In the table, the arbitration ID
column is the frame arbitration ID, attack# is the number of plateau attacks,
and benign# is the number of benign frames. Using these datasets, we trained a
U-CAN model that correctly segments attack signals from non-attack signals. In
prediction, a window of 128 CAN signals is classified as an attack even if a single
signal is segmented as an attack in the window. For each of the arbitration IDs, we
used 80% of the data shown in Table 6.4 for training, and the rest for validation
to tune the hyperparameters. No testing data is used from the simulation; we
used the plateau attack test data to test the trained U-CAN.

6.4.2 Performance evaluation metrics
To evaluate the performance of U-CAN, we used confusion metrics. The confusion
matrix we created has true a positive rate (TPR), a false positive rate (FPR),
a false negative rate (FNR), and a true negative rate (TNR), each of which is
calculated using equations 6.7, 6.8, 6.9, and 6.10 respectively. We have also added
the F1 Score, equation 6.11, to compare the performance of the proposed method
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Table 6.4: PHY dataset’s training data

Arbitration ID Attack# Benign# Total
ID 1 988,745 3,151,074 4,139,819
ID 2 492,530 1,577,613 2,070,143
ID 3 989,255 3,150,571 4,139,826
ID 4 330,489 1,049,608 1,380,097
ID 5 985,057 3,154,763 4,139,820
ID 6 492,050 1,578,094 2,070,144
ID 7 984,140 3,155,675 4,139,815
ID 8 987,421 3,152,397 4,139,818
ID 9 495,600 1,574,544 2,070,144
ID 10 329,708 1,050,389 1,380,097

Total 29,669,723

with Rec-CNN [92] and ResNet-based [17] methods.

TPR = TP

TP + FN
(6.7)

FPR = FP

FP + TN
(6.8)

FNR = FN

FN + TP
(6.9)

TNR = TN

TN + FP
(6.10)

F1 Score = TP

TP + 1
2(FP + FN) (6.11)

In equations 6.7, 6.8, 6.9, and 6.10, TP (True Positive) is for correctly detected
attacks, FN (False Negative) is for misclassified attacks, FP (False Positive) is
for benign classified as attacks, and TN (True Negative) is for correctly classified
benign. On top of the confusion matrix, we have also used ROC (receiver operating
characteristic curve) to show the prediction capabilities of U-CAN.
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Figure 6.6: HAMD segmentation using U-CAN for RAW datasets

6.4.3 U-CAN training
We trained U-CAN using Tensorflow [93], a machine learning library. We first
selected network training hyperparameters using Hyperband. From the list of
hyperparameters in Table 6.1, hyperband found the best performing model with
values; batch size: 32, learning rate: 0.0001, learning decay: 0.9, learning steps:
10000, scheduler: Exponential Decay, and optimizer: Ftrl. Using the selected
hyperparameters, we trained U-CAN for 343 epochs with an early stopping callback
that monitors the validation loss with the patience of 30 epochs.

For both datasets, the input has a period of 3 and a sequence length of 128.
This means that 3 sets of 128 sequences of values are used during single-step
training. In the testing, each of these sequences is segmented into either attack
or non-attack. A segment is classified as an attack window if even one signal is
segmented as an attack. Figures 6.6 and 6.7, show the RAW and PHY dataset
segmentation results, respectively. In the RAW dataset, U-CAN does nothing
special except select HAMD values that deviate from the HAMD constant value.
The U-CAN in the PHY dataset has one more step of saliency detection before
inserting the values for prediction. It only detects the start and finish of attacks,
unlike the U-CAN used for the RAW dataset.
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Figure 6.7: Arbitration ID 1’s first signal segmentation using U-CAN prediction for PHY datasets

6.4.4 Evaluation
We checked the RAW dataset first with a rule-based system. The rule-based
system initially collects CAN frames for 5 seconds. This collection of frames is
then separated with respect to the frame arbitration IDs. For each arbitration
ID, a HAMD is performed to each bit of the frames. Then, the HAMD value of
the last counter bit is checked in the window. If, for instance, we take arbitration
ID 0002, the HAMD value of bit 55 should be 0.5 in a window of 5 seconds, as
this bit value flips every time it appears in the CAN bus. Similarly, the rest of
the arbitration ID’s last bit is compared with the HAMD value of 0.5. This time
window is labeled as an attack if any of the HAMD values are different from 0.5.
In doing so, we have found the results shown in Table 6.5 for all the attack types.

We have compared these results with the currently available CNN-based IDS:
a Rec-CNN method [92] and the paper that released the original dataset, and a
ResNet-based method [17] using an F1 Score. The rule-based system’s F1 Score

is 0.997, which is slightly lower than the ReC-CNN method with an F1 Score of
0.999 and slightly higher than the ResNet-based method with an F1 Score of 0.991.
This result helps us to only show the comparable results of the methodologies,
but in reality, comparison can be troublesome since the rule-based system uses
no training data unlike the other two. U-CAN for RAW dataset only segments
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Table 6.5: RAW dataset testing results

Data type Benign Attack
Normal Benign 1.0 0.0

Attack 0.0 0.0
Dos Benign 0.972 0.038

Attack 0.0 1.0
Fuzzy Benign 0.950 0.05

Attack 0.0 1.0
RPM Benign 0.950 0.05

Attack 0.0 1.0
gear Benign 0.970 0.03

Attack 0.0 1.0

Table 6.6: RAW dataset U-CAN segmentation results

Benign Attack
Benign 1.0 0
Attack 0 1.0

areas where the HAMD has deviated from its actual value. It does this with 100%
accuracy in Table 6.6. This implies the result is exactly the same as the rule-based
for the whole training data.

For the PHY dataset, Figure 6.8 shows the ROC of the plateau attack detection
for all the arbitration IDs. From the figure, we can see that U-CAN accurately
detects all the attacks except for two arbitration IDs; arbitration ID 2 and
arbitration ID 9. Segmentation in these IDs doesn’t work well as in the other
arbitration IDs due to the type of signal generated by these arbitration IDs. Some
signal sequences resemble a plateau attack. Table 6.7 also shows the confusion
matrix results of the detection.

Similarly, we compared the U-CAN to the CANeT [20], the most recent study
on the use of CAN physical data, as well as the original publication that provided
the PHY dataset. Table 6.8 shows the TPR-to-TNR ratio of U-CAN and CANeT.
U-CAN detects plateau attacks better than CANeT does.
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Table 6.7: PHY dataset U-CAN attack detection results

Arbitration ID Attack Benign
ID 1 Attack 1.0 0.0

Benign 0.001 0.999
ID 2 Attack 0.885 0.115

Benign 0.003 0.997
ID 3 Attack 1.0 0.0

Benign 0.001 0.999
ID 4 Attack 1.0 0.0

Benign 0.0 1.0
ID 5 Attack 0.914 0.096

Benign 0.0 1.0
ID 6 Attack 0.909 0.091

Benign 0.001 0.999
ID 7 Attack 1.0 0.0

Benign 0.0 1.0
ID 8 Attack 1.0 0.0

Benign 0.001 0.999
ID 9 Attack 1.0 0.0

Benign 0.005 0.995
ID 10 Attack 1.0 0.0

Benign 0.004 0.996

Table 6.8: TPR / TNR comparison of U-CAN and CANET for plateau attack detection

Method True Positive Rate / True Negative Rate
U-CAN 0.971 / 0.998
CANeT 0.885 / 0.993
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Figure 6.8: ROC of plateau attack detection for all arbitration IDs in PHY dataset

6.5 Conclusion
The number of ECUs that interact in CAN bus has surpassed 100 in modern
vehicles. Each of these ECUs adds special features to the vehicles while exposing
the vehicles to cyber threats. As a countermeasure for the security exposures, we
propose an in-vehicle network attack detection method using convolutional neural
networks called U-CAN. U-CAN can be applied to both raw and reverse-engineered
CAN frames. Training U-CAN for the raw data first involves calculating the
HAMDs of CAN frames. Making use of the HAMD of CAN frame counter-bits,
we have created a rule-based IDS system that follows the counter-bits. Any
deviation from the constant HAMD value of a counter-bit is flagged as an attack
in the rule-based system. We have also used the distribution to train U-CAN that
segments these deviations with 100% accuracy. Moreover, we trained U-CAN on
a reverse-engineered CAN packets that outperform a similar methodology in this
field with a TPR-to-TNR ratio of 0.971/0.998.

Most cars that use CAN have the counter-bits in their CAN frames, but not all

92



do. There can also be cases where the counter-bits will change at unknown times.
Our system will flag this unknown bit flip in the counter bits as an attack. As a
continuation for this work, one might improve the rule-based system by studying
the cause of these bit flips as well as testing U-CAN on more types of attacks
instead of only plateau attacks.
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7 Conclusion and future work

This is the thesis’ last chapter, which summarizes the entire work in parts. Later,
we discuss the research’s future path in terms of using deep learning for in-vehicle
networks.

7.1 Summary of contributions
The research’s main goal is developing a robust IDS that can detect attacks in
in-vehicle networks. Deep neural network architectures are trained using the CAN
bus data to detect attacks that are inflicted on the CAN bus. Even though such
systems can detect the majority of the attacks, they still have certain limitations.

As a first work, LSTM-IDS is proposed to detect in-vehicle network attacks.
Dumping CAN frames will show timestamp information, Arbitration ID, and
CAN data with other irrelevant information for this research. The timestamp
information is temporal information of the CAN frame. Researchers have used
this statistically studied this information to create an in-vehicle network IDS. The
issue with this type of IDS is that if statistical information does not deviate from
its normal range, attacks will not be detected. This is the time where LSTM-
IDS comes as a solution for detecting attacks beyond the statics-based methods.
LSTM-IDS uses the arbitration IDs of CAN frames to train a deep neural network.
The trained LSTM model is expected to learn the sequence of arbitration IDs
in the CAN bus. If the LSTM network has managed to learn the sequence of
arbitration IDs, assuming that there will be, it can be used to predict a sequence
of arbitration IDs in the CAN bus. Attacks in this method will be flagged if the
predicted arbitration ID and the true arbitration ID (Arbitration ID that has
actually appeared in the CAN bus) are not the same. Since the last layer of this
network architecture is Softmax activated, it will give the highest probability to
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the most probable class. If the most probable class is the wrong class, LSTM-IDS
will flag an attack in the CAN bus. Relying only on the Softmax output of the
network architecture might not be the smartest way for multi-class classification.
The actual ID might appear in the top few high probable classes. The devised
approach of anomaly signal takes this into consideration by using an aggregated
log loss. It indicates how good or bad the prediction results are by considering all
available classes. This improves a previous work by [15] that also uses arbitration
IDs to train a single transition matrix. The transition matrix will hold information
about the possible transitions between two different IDs. LSTM-IDS performs
better than the transition matrix-based method as it is impossible to grab millions
of arbitration ID sequences in a single transition matrix.

Rec-CNN, like the LSTM-IDS, trains a neural network using the arbitration
IDs of CAN frames. One of the reasons we utilized LSTM in the earlier work is
because it is effective at learning and remembering extended sequences of inputs.
However, relying just on the sequence of arbitration ID predictions for intrusion
detection will result in lower attack detection. Rec-CNN is a CNN-based IDS for
in-vehicle networks that have improved performance over LSTM-IDS. Rec-CNN
changes the attack detection problem in the CAN bus to image classification
problem. It takes the sequence of arbitration IDs that are preprocessed to an
image through recurrence plots. The preprocessing first encodes the arbitration
IDs to a numerical value and later is used in the recurrence plot algorithm to create
a square image. The images are then used to train a Rec-CNN that has six layers
in an arrangement of convolutional, pooling, convolutional, pooling, Dropout, and
Dense layers. Each of these layers has hyperparameters that need to be set. These
hyperparameters are set to an optimal value through a hyperparameter search
algorithm called Hyperband [79]. The final trained Rec-CNN takes an input of 128
sequence of arbitration IDs, that are converted to an image in the preprocessing
stage, and classifies it to an attack or non-attack image. In this approach, Rec-
CNN has improved performance in comparison to the state-of-the-art research
called Inception-ResNet-based [17].

The main drawback with the previous two methods is that in-vehicle network
attacks are detected if only the attacks affect the sequence of arbitration ID. If
the sequence of the arbitration IDs is not affected, the previous two methods will
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fail to detect such attack. The solution for this issue would be to create an LSTM
model that predicts the CAN data instead of the arbitration IDs. CAN data is
multi-dimensional data and our model needs to handle this property. MLIDS is
capable of handling the high-dimensional CAN data without the need for reverse
engineering. MLIDS builds one LSTM network architecture for each corresponding
arbitration ID. The LSTM network architecture contains an embedding layer,
LSTM layer, concatenating layer, and dense layer. For an 8-byte CAN data, the
embedding layer takes an input with the shape of [64, 1]. The output from this
layer is then fed to the LSTM layer. The results from all the bits of the CAN
data are then concatenated and used as an input to the last layer. The last layer
then provides the predicted CAN frame for this arbitration ID. This is done for
all CAN frames grouped by the arbitration IDs. An anomaly signal is calculated
during testing by aggregating the loss of all the predictions. With a predefined
threshold, if the loss of the window is above it, it will be flagged as an attack. In
this way, MLIDS is tested on insertion, drop, and fuzzy attacks.

Training LSTM for high-dimensional CAN bus data can be problematic due
to the high number of hyperparameters that need to be tuned. U-CAN comes in
handy in managing the high-dimensional CAN bus data. U-CAN is an extension
of the image segmentation model with encoder, decoder, and segment classifier
modules. The encodes module takes a single arbitration ID’s raw CAN data or
reverse engineered CAN signals and encodes it through 12 blocks of convolutional
layer, batch normalization layer, and a max-pooling layer. The decoder then gets
the output from the encoder and computes it through 12 blocks of up-sampling
layer, convolutional layer, batch normalization layer, and concatenation layer. On
top of the outputs from the encoders, residual connections collected from the
encoder are concatenated to each block in the decoder. The resulting values finally
pass through a segment classifier module that classifies each signal of the CAN
bus to attack or non-attack signal. In such a way, U-CAN has been tested in two
datasets.
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7.2 Future work
This dissertation primarily focuses on CAN bus intrusion detection systems. The
majority of the approaches discussed concentrate on CAN data analysis to learn
an attack-free CAN communication pattern. As a result, any deviation from this
established pattern is signaled as an attack. However, there are still some open
issues that this research can be extended in the future. We outline potential future
study trajectories in this section that may be developed upon the foundation of
this dissertation.

7.2.1 Inherent machine learning issues
Applying machine learning to solve real-world problems can fail catastrophically
in deployment when the distribution of data suddenly shifts. This is usually
caused when machine learning practitioners fail to investigate the data used
for training. Two types of distribution shifts can occur while training machine
learning algorithms for an IDS in in-vehicle networks: covariance shift, and label
shift [94]. Covariance shift occurs when the distribution of inputs changes over
time without a change in the label function. This for instance can happen in
testing a cat and dog classifier that is trained on actual photos of cats and dogs
but tested on cartoons of cats and dogs. Similar to this, in in-vehicle networks, an
IDS model might have been trained on an old ECU, but through time the ECU
might be updated through the Update over the air (OTA) [95]. The label shift
opposite to the covariance shift occurs when there is a shift in the label while the
input distribution is the same. In the LSTM-IDS, a sequence of arbitration IDs
is learned through the LSTM. But these same UOA can cause a change in the
sequence of arbitration IDs resulting in a label shift. These updates can cause how
frames used to appear in the CAN bus to create a distribution shift. Therefore,
one needs to retrain IDS models each time an update is made in ECUs. In the
future, we will work on finding ways to update the models in a distributed fashion
capable of connecting to the in-vehicle network IDS systems.

Performance of deep learning is significantly influenced by the training data.
Deep learning won’t be able to generalize as well if there aren’t enough instances,
which will result in incorrect inferences. The dataset we used in the experiment
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was acquired under normal conditions, with no noises or event-triggered situations
taken into account. Consider the ABS control system of the car, which only kicks
in during emergencies. Due to the absence of information about these occurrences
in the dataset used, it is difficult for the trained model to classify it as a non-attack.
To train the models for these circumstances, we lack the essential data. Since
anything that deviates from the training data would cause deep learning models
to fail, the IDSs might classify these situations as an attack. Hence, in the future
a deep analysis of these scenarios would be considered.

7.2.2 Low computational capability of the CAN bus
Apart from the inherent machine learning problems, there can also be computa-
tional resource constraints in designing sophisticated machine learning algorithms
in in-vehicle network IDS systems. CAN bus has a low data bitrate and one needs
to implement the IDS system outside of the network. Our work listens in to the
CAN bus and does the inferences in Jetson TX2 [85]. This can also be a limitation
to the research as it will incur additional costs. In the future, we will study how
the machine learning models can be resource-efficient.

7.2.3 Extension of this work to other CAN-based systems
The CAN bus security on vehicles is the major focus of the dissertation. To train
the methods, our work just pulls training data from a vehicle. However, CAN
is utilized in a variety of systems, including those in robotics [96], aircraft [97],
and industrial automation [98]. Any system that makes use of the CAN bus can
expand upon our work. However, utilizing it the same way as it is in vehicles
could not work. One must comprehend the precise usage of CAN in other systems
in order to apply the approaches given in this work to other CAN applications.
It’s possible that the network structure of the CAN in in-vehicles differs from that
of other systems. If we take LSTM-IDS and Rec CNN as an example, they both
examine the patterns of arbitration IDS in CAN frames. We are anticipated to
comprehend how arbitration IDS of CAN frames are handled in the other CAN
systems if these two works are to be utilised.

Millions of training data must be gathered in order to properly train deep
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learning neural networks. If deep learning is to be applied in these systems, it is
important to thoroughly research the CAN frame collection process. As already
indicated, the vehicles’ OBD II ports are used to gather the data. But would the
other systems have similar entry points. The learning of the CAN data patterns is
another aspect of our work. However, it’s possible that the CAN data component
of the CAN frames will differ from the in-vehicle networks, necessitating greater
preprocessing. In order to expand this work to additional CAN systems, we must
completely comprehend how ECUs are connected to the CAN bus and how the
arbitration IDs of CAN frames are handled in the networks.

7.2.4 Post attack detection stage
The attack detection step is the sole topic covered in the dissertation since we
felt it to be the most important one. The post-detection phases are still up for
debate. How should the defense system respond to intrusions? Should we alert
the driver about attacks and allow them take any necessary action? or let the
system proactively take action to avert the disasters that might be caused by
attacks?

The status of the in-vehicle networks may be shown to the driver using just a
display or an alarm system, making notification of the driver relatively simpler.
However, this option would be unavailable given the impending arrival of fully
autonomous vehicles. Few post-detection techniques are discussed in [58]. One
approach is to use secure patches to reset a corrupted ECU to its uninfected state,
but this requires us to identify the affected ECU first. This would be effective if
the approaches presented here could recognize the hacked ECUs. This problem
will still need to be addressed in further work.
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