
NAIST-IS-DD

Doctoral Dissertation

Primary Visual Cortex Inspired Feature

Extraction Hardware Model and Applications

Tran Thi Diem

November 18, 2021

Graduate School of Science and Technology

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Tran Thi Diem

Thesis Committee:

Professor Yasuhiko Nakashima (Supervisor)

Professor Yuichi Hayashi (Co-supervisor)

Associate Professor Renyuan Zhang (Co-supervisor)

Visitor Associate Professor Tran Thi Hong (Co-supervisor)

Primary Visual Cortex Inspired Feature

Extraction Hardware Model and Applications*

Tran Thi Diem

Abstract

Convolutional neural networks (CNNs) have dominated various applications,

from advanced manufacturing to autonomous cars. The layers of CNNs are placed

in a hierarchy to solve complications on image processing or speech recognition

applications. However, the main challenges in using CNNs are latency and mem-

ory access due to tens to hundreds of megabyte parameters and operations, which

require data movement between on-chip and off-chip to support the computation.

Besides, with edge applications such as smart sensors, wearable, and autonomous

devices, security and latency are essential considerations. There is a gap between

the designers who try comprehensive CNNs with better efficiency and the hard-

ware architects who simplify them. Many researchers have attempted to speed

up the CNN performance by using graphical processing units (GPU); yet, the

power consumption on GPU remains a critical issue. Moreover, the computation

is subject to rigorous area and power constraints in the inference stage due to

limited resources. For energy cost-efficiency, developing low-power hardware for

CNNs is a research trend. In the third generation, the Spiking Neural Networks

(SNNs) with biological plausibility and similarity to the functionality of the hu-

man brain are emerging. A more comprehensive study is expected to understand

the inherent behavior of SNNs, especially under adversarial attacks. My research

focuses on the following problems to address these challenges:

1. A primary visual cortex inspired feature extraction hardware model is

created. To combine the edge and SLIT functions, the model can reduce the

*Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science

and Technology, NAIST-IS-DD, November 18, 2021.

i

training time in deep neural networks. Training time is diminished by 40%, 40%,

and 32%, respectively, with MNIST, CIFAR, and SVHN databases on Lenet-5

and CNN models. It also decreases by about 10% on larger paradigms such as

VGG-16 and VGG-19 with the CIFAR database. Notably, the SLIT architecture

efficiently merges with most popular CNNs at a slightly sacrificing accuracy of a

factor of 0.27% on MNIST, ranging from 0.5% to 1.5% on CIFAR, approximately

2.2% on ImageNet, and remaining the same on SVHN databases.

2. An optimization hardware model for the inference phase is showed ex-

tremely efficiently when applying the SLIT function. Latency, power, and hard-

ware resources of the inference step are evaluated on the chip ZC7Z020-1CLG484C

FPGA with Lenet-5 and VGG schemes. On the Lenet-5 architecture, the results

are reduced by 39% of latency and 70% of hardware resources with a 0.456 W

power consumption compared to previous works. It is also decreased approxi-

mately 10% on hardware resources and latency with the VGG models. An ad-

vance in latency is also proved in this research, with an enhancement in the range

of 2.6% to 16% when being compared with the traditional approach.

3. An efficient success in adversarial attack applications when applying SLIT

function into deep spiking neural networks. In against adversarial attack for deep

spiking neural networks through white-box settings with different noise budgets

and variable spiking parameters, the proposal also improves the accuracy of the

results when increasing noise budget. With white-box adversarial attack ap-

plications on SNNs, the accuracy of the proposal is approximately 70% higher

robustness than the previous works.

Keywords:

primary visual cortex, image classification, convolutional neural network, FPGA,

feature extraction, spiking neural network, vitis AI, adversarial attack

ii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Research Contribution . 2

1.3 Dissertation Layout . 3

2 Background and Related Work 5

2.1 Machine Learning . 5

2.1.1 Supervised learning . 6

2.1.2 Unsupervised learning . 6

2.1.3 Reinforcement Learning 7

2.2 Artificial Neural Networks . 7

2.3 Preliminary Convolutional Neural Networks 8

2.4 Related Work . 10

2.4.1 Researches on primary visual cortex 10

2.4.2 A review feature extraction methods for image classification 12

2.4.3 Approaches to accelerate CNN inference on FPGAs 14

3 Feature Extraction Primary Visual Cortex Hardware Model 17

3.1 The Functions of the Primary Visual Cortex Hardware Model . . 17

3.1.1 Edge Detection . 17

3.1.2 SLIT Detection . 18

3.1.3 Left-Right Parallax Detection 19

3.1.4 XY Movement Direction Detection 20

3.1.5 Approach Detection . 22

3.2 Reconfigurable Deep Neural Network Using the SLIT Function . . 22

3.2.1 SLIT Layer Architecture 22

3.2.2 Next Layer Reconfiguration 24

3.2.3 Complete Proposed System 27

4 Performance of the SLIT Function on Software Platform 29

4.1 Detail Performance of the SLIT Function with Simple Architecture

on MNIST dataset . 29

iii

4.2 Performance of Reconfigurable Deep Neural Network 33

4.2.1 Software Configuration . 33

4.2.2 Software Results . 35

5 Performance of the SLIT Function on Hardware Platform 39

5.1 Hardware Setup . 39

5.2 Comparison Hardware Resources and Latency with Vivado HLS . 40

5.3 Comparison Hardware Resources and Power Consumption on IP

Core with Orther Researhes . 43

5.4 DPU architecture for SLIT+CNN on Vitis AI platform 45

6 Apply SLIT Function into Spiking Neural Networks on Adver-

sarial Attack Application 49

6.1 Overview Spiking Neural Network and Adversarial Attack 49

6.2 Apply SLIT Layer into Adversarial Attacks with Spike Compatible

Gradient . 51

6.3 Improve Accuracy with SLIT+SNN for Adversarial Attack Appli-

cation . 53

7 Conclusion 55

Acknowledgements 56

References 57

iv

List of Figures

1 Machine learning category . 5

2 General ANN architecture . 8

3 General CNN architecture . 9

4 V1 like or Hubel and Wiesel model. Source: Fig.1 of the reference
[44] . 11

5 Models of the visual system based feed-forward wiring diagram.

Source: Fig. 4 of reference [44] . 11

6 Neural-like model via performance on image classification task.

Source Fig. 2 of reference [45] . 12

7 Classwise and global classification accuracies using various feature

extraction techniques for Pavia University database. Source Table

4 and Table 5 of reference [46] . 13

8 Approaches to accelerate CNN inference on FPGAs 16

9 Edge detection . 17

10 SLIT detection . 19

11 Left/right parallax detection . 20

12 XY movement direction detection 21

13 Approach detection . 22

14 Proposed SLIT layer . 23

15 Proposed kernel for the second layer 25

16 Proposed max pooling kernel . 26

17 Proposed model of a neuron . 27

18 Proposed for Lenet-5 model . 27

19 Proposed VGG model . 28

20 Apply SLIT function on small CNN architecture using MNIST

database . 29

21 SLIT function using 3×3 window 31

22 SLIT function using 2×2 window 31

23 Comparison error rate between SLIT and CNN on MNIST database

32

24 Examples of MNIST, CIFAR, SVHN and ImageNet databases . . 34

v

25 Comparing accuracy between the original model and the proposed

model . 36

26 Comparing training time of one epoch between the original model

and the proposed model . 36

27 Comparison hardware resources and latency of our IP core proposal

with other works on Lenet-5 model at 100 MHz using Vivado HLS

tool . 43

28 System on chip implementation of the Lenet-5 model on zynq7020

FPGA . 44

29 Flow vitis AI platform[128] . 45

30 The proposal SLIT + CNN on the DPU architecture 46

31 Comparison accuracy and throughput between SLIT + CNN and

CNN on DPU platform . 48

32 Overview of Spiking Neural Network 49

33 Comparison decrease in accuracy on MNIST and CIFAR-10 be-

tween SLIT+SNN, SNN and CNN at V th=0.25, T=80 53

34 Comparison decrease in accuracy between SLIT+SNN and SNN

tested on MNIST with different V th and T parameters 53

List of Tables

1 Execution time and point convergence measurement using C pro-

gramming language . 30

2 Comparison parameters on Lenet-5 and VGG-16 model 37

3 Comparison operations on Lenet-5 and VGG-16 model 37

4 Comparing hardware resources and latency for the first layer . . . 40

5 Comparing hardware resources and latency for the second layer . 40

6 Comparing hardware resources and latency for the max pooling layer 41

7 Comparing hardware resources and latency for the fully connected

layer . 42

8 Comparing hardware resources and latency on Lenet-5 and VGG-

16 models . 42

vi

9 Comparing resource utilization and power consumption on chip

zynq7020 FPGA for Lenet-5 model 45

10 Comparison resource utilization on DPU platform 47

vii

1 Introduction

1.1 Overview

The human visual resolution is about 20K×20K neurons, and the primary visual

cortex (V1) comprises 140 million neurons [1]. V1 has special functions such

as detect object angles in a steady increase every 10◦, left and right parallax,

movement direction, and approach. The 1K×1K central area is more sensitive

than the periphery, and 25 neurons corresponding to a 5x5 pixel block in the

image are arranged in 18 separate directions for each left and right hemisphere

[2]. Following the general theory, this research assumes that there are the same

amount of neurons in 36 motion directions, and it is estimated that about half

((18 × 2 + 36) × 1K × 1K = 72 million) of the neurons will be placed in the

middle. The average ratio of the number of neurons to the number of pixels is

2.8:1 (36 neurons/25 pixels). There are 25 × (36 + 36) = 1800 neurons in the

center, and (140 million - 72 million)/(20K x 20K - 1K ×1K)× 25 = 4260 neurons

in the periphery. Therefore, it is reasonable to think that the detailed structure

above is based on the blueprint, not acquired by learning.

Many prototypes based on biological [3], statistics [4], or physical principles

[5] are presented as the primary visual cortex model. Due to the complexity of

fashioning the visual cortex, only specific functions of the visual system are usu-

ally considered. A feature extraction model is hypothesized to be made through

a sequence of feed-forward and feed-backward loops. This process is often repre-

sented as an imitation of the receptor fields of neurons in the layer. A regularly

feed-forward processing hierarchy of visual information is convolutional neural

networks [6]. The first layers extract features from inputs, and the last layers

perform classification.

The main challenges in using CNNs are latency and memory access [7, 8] due

to tens to hundreds of megabyte parameters and operations, which require data

movement between on-chip and off-chip to support the computation. Security

and latency are important considerations in edge applications such as smart sen-

sors, wearable, and autonomous devices [9, 10]. We have recently surveyed the

performance of state-of-the-art CNNs in terms of accuracy, size, and potentiality

1

of various hardware platforms. The results reveal a gap between the designers

who strike for comprehensive CNNs with better efficiency and the hardware ar-

chitects who try to simplify them [11, 12]. Many researchers have attempted to

speed up the CNN performance using graphical processing units (GPU) [13, 14].

Moreover, the computation is subject to rigorous area and power constraints in

the inference stage due to limited resources. Therefore, many data scientists are

focusing on increasing inference performance by designing various accelerators.

Field Programmable Gate Arrays (FPGAs) have become the best candidate

for trade-off cost, flexibility, and performance in deep learning processor designs

[15]. FPGAs are suitable for computationally intensive algorithms that result in

a faster speed and efficient energy. A few highlights of these approaches include

binary weight quantization, parameter reduction, memory bandwidth optimiza-

tion, and data-flow optimization [16, 17, 18, 19]. It is essential to create a highly

flexible architecture that can mold itself into the given CNNs and achieve a higher

resource utilization reduction. Moreover, due to the largest input size, the first

few layers that typically contribute to the most significant latency on CNN leave

plenty of room for improvement.

Because of their biological plausibility and comparison to the human brain

functionality, Spiking Neural Networks (SNNs) have appealed to many researchers

[20, 21, 22, 23, 24]. SNNs consume lower energy when executed on neuromorphic

hardware than other network topologies. The asynchronous interaction between

neurons and the event-based propagation of the information through layers can

achieve high energy efficiency. These features strengthen attention on neuromor-

phic structures, for example, IBM TrueNorth [25] and Intel Loihi [26]. Besides

investment in enhancing accuracy, a recent security perspective also considers

SNNs compared to conventional deep neural networks (DNNs).

1.2 Research Contribution

This dissertation aims to create the feature extraction hardware model inspired

primary visual cortex principle and apply it in the current deep neural network

model to improve performance. This thesis not only provides the algorithms

but also describes evaluation both on software and hardware architecture. In

summary, the main contributions of this dissertation are:

2

� The first proposal presents the primary cortex hardware structure, which

includes five functions: edge detection, SLIT detection, parallax detection,

moving XY detection, and approach detection. These algorithms are ef-

ficient for hardware resources when comparing with current algorithms in

state-of-the-art.

� The first layer, which contributes most of the training time and latency

on current CNNs, is replaced with the SLIT function. The new scheme

for the deep neural network has an efficient performance. With MNIST,

CIFAR, and SVHN databases on Lenet-5 and CNN models, training time

is diminished by 40%, 40%, and 32%, respectively. It also decreases by

approximately 10% on larger paradigms such as VGG-16 and VGG-19 with

the CIFAR database. Notably, the SLIT architecture efficiently merges with

most popular CNNs at a slightly sacrificing accuracy of a factor of 0.27%

on MNIST, ranging from 0.5% to 1.5% on CIFAR, approximately 2.2% on

ImageNet, and remaining the same on SVHN databases.

� The hardware circuit optimization for the inference step on the Lenet-5

scheme is proposed. The architecture reduces 39% of latency and 70% of

hardware resources with a 0.456 W power consumption compared to previ-

ous works. The proposal has the same accuracy with higher throughput on

most deep neural networks when implementing on the DPU platform.

� An efficient success in adversarial attack applications when applying SLIT

layer on spiking neural networks that investigate the effect of structural

parameters such as membrane threshold and time window. The input ex-

tracted from our model increases the security of SNN under adversarial

attack problems. In against adversarial attack for deep spiking neural net-

works through inherent structural parameter method, the proposal also

improves the accuracy of the results when increasing budget noise.

1.3 Dissertation Layout

The thesis is divided into six chapters which are organized as follows:

3

� Chapter 1 introduces the overview, contributions, and layout of this re-

search.

� Chapter 2 gives an overview of the deep neural network. Then, the prelim-

inary of convolution neural networks is summarized. Finally, the related

works are presented.

� Chapter 3 presents the details of each function in our primary visual cor-

tex hardware. In this context, the simple algorithm to integrate hardware

design is described. All of the algorithms include just simple circuits such

as AND, OR, COMPARISON, SHIFT. The optimized circuits, when im-

plementing on the hardware platform, are showed in this chapter. The first

three layers are currently optimized for the network like the Lenet-5 scheme,

and the first two layers are reconfigured on the systems like VGG-16

� Chapter 4 shows the details of the results on the software platform. In this

chapter, the experiments are conducted on Tensorflow and Keras to the

compare accuracy and the training time.

� Chapter 5 analyses the extracted hardware resources and latency with the

Vivado HLS. This chapter also manifests the IP core of Lenet-5, which

is embedded into the SoC. The DPU architecture based on the Vitis AI

platform that conducts the inference on the ZCU 102 board to compare

with state-of-the-art is also presented.

� Chapter 6 give a proposal on adversarial attack application for spiking neu-

ral network. How to improve the accuracy of SNN under the adversarial

attack phenomena is clearly presented in this chapter

� The last chapter of this thesis concludes and emphasizes the main contri-

butions to my work. Then, some ideas for future works are addressed.

4

2 Background and Related Work

This chapter introduces the basic concepts relating to the arguments discussed

in the thesis. First, the meaning of Artificial Intelligence (AI) and related topics

are presented to understand the evolution of neural networks (NNs). Next, I

summarize the content of CNNs. Finally, the related works that optimize the

architecture of deep neural networks on software and hardware are reviewed.

2.1 Machine Learning

Figure 1. Machine learning category

Artificial intelligence (AI) is the psychology of imagining intelligent machines to

accomplish specific goals and tasks as humans do is artificial intelligence (AI). It

is a vast topic, going from video games to autonomous driving and including every

5

application in which a machine can learn or predict something. AI indicates the

ability of a machine to learn information (training) and solve problems without

being explicitly programmed every time. We temporal categorize the AI into

these subgroups, as shown in Fig. 1.

2.1.1 Supervised learning

Supervised learning is a method for predicting a label of a previously unseen

instance from the previous information about input and the target output [27,

28, 29, 30]. It can be seen as a machine learning task of inferring a function from

training data to correctly map a class for invisible cases. Each training sample

(consisting of an input vector X and its corresponding target output vector Y)

may feed into the network several times so that the actual output can approach

the target output. An error value is calculated from each given sample as a

function of the difference between the target outputs vector, Y, and the actual

output vector, Z (for example, min square error or entropy error). In neural

networks, this error is utilized to update connection weights in the network. That

network can generate a result closer to or exactly the desired output next time if

a similar input pattern appears. The two most common approaches to minimize

this error in deep neural networks are the gradient descent rule and the learning

windows rule [31, 32]. First, to reduce error, a gradient descent-based learning

algorithm finds a local minimum of linear systems. The second type changes

the synaptic weights as a function of the relative timing of pre-and post-synaptic

action potentials.

2.1.2 Unsupervised learning

Unsupervised learning is a technique for searching data to find some natural struc-

tures in the input under an unknown probability distribution. The convergence

examination of unsupervised learning is much more difficult than other learning

as the input datasets are unlabelled. For traditional artificial neural networks, an

n-dimensional input is processed by the same number of computing units or by

minimizing a cost function for feature extraction, dimension reduction, cluster-

ing, etc. Self-organizing map (SOM), adaptive resonance theory (ART), indepen-

dent component analysis (ICA), Hebbian learning, principal component analysis

6

(PCA) [33, 34], and BCM rule are generally employed unsupervised learning al-

gorithms. In spiking neural networks, Hebbian learning, BCM rule, and STDP

rules are famously used as unsupervised learning methods in real-world applica-

tions. STDP learning is an asymmetric form of Hebbian learning in tightening

temporal correlations between weakening and strengthening connections. Since

unsupervised learning takes into account competition and sidelong interference,

the weights of the winner neurons are increased. In contrast, other neurons sus-

tain a small weight reduction. Furthermore, the STDP learning rule regards the

lateral inhibition between pairs of spikes: a pre-post pairing causes potentiation,

and a post-pre pairing causes depression. The most recent presynaptic and post-

synaptic spike pair is adapted to detect the correlations of the next attempting

fire.

2.1.3 Reinforcement Learning

Reinforcement learning is a control optimization technique that is used to rec-

ognize the best action in every state visited by the system [35, 36, 37, 38]. In

reinforcement learning, a general error signal back (“reward”) is determined in

every state that describes how well the system performs. The typical framing

of reinforcement learning is the following scenario. An agent takes action in an

environment. Based on the action, the agent changes state, and the learning

algorithm also receives a reward signal a short time later. The current state and

reward are both then fed back into the agent. The algorithm modifies its strategy

to achieve the highest reward.

2.2 Artificial Neural Networks

Humans aim to create machines that work like the brain, so it is reasonable to

talk about brain-inspired computation. The artificial structures that model the

real biological neural networks are called artificial neural networks (ANNs) [39] or

just neural networks (NNs). They are computational models composed of many

layers of artificial neurons, which is the main computational unit of the brain.

The structure of ANN is shown in Fig. 2. The neurons are connected in a NN, so

the output of one neuron, called the axon, represents one of the inputs of another

7

one, called dendrites. The outcome of a neuron corresponds to the weighted

sum of the inputs. A synapse is a connection between an axon and a dendrite.

This link between the output and input of two neurons is called presynaptic and

postsynaptic neurons, respectively. Scales the axon output signal by a quantity

called weight. A neural network learns information by updating the values of the

weights in response to input stimuli. This process is called learning or training.

Once the NN is trained using the training data, the values of the weights are

determined. Performances of the NN are evaluated on the test data. Hence

considering a complete dataset, we can recognize the training data used for the

training process and the test data used for the inference process.

Figure 2. General ANN architecture

2.3 Preliminary Convolutional Neural Networks

Through development over 20 years, the network initially inspired by neuroscience

has attracted spacious attention in image processing and computer science [40,

41, 42]. Today, some object recognition systems based on CNN can recognize

objects with super-human accuracy. As we can observe in Fig. 3, a convolution

neural network (CNN) is a subset of NN with more than three layers. In general,

the first layer is called the input layer, while the last one output layer. The

layers between these two ones are called hidden layers. The network is deeper,

increasing the number of hidden layers. CNN perceives an object using the feature

8

extraction step and the classification phase. The feature extraction step included

the convolutional and sub-sampling layers to find variances of an input image such

as lines and edges. Combining the fully connected (FC) layers, the classification

phase decides the most likely class object based on the extracted features. CNN

can achieve a highly accurate classification performance using the convolutional

(CONV), sub-sampling, and FC layers.

Figure 3. General CNN architecture

The CONV layer receives features as input and executes convolution operation

with a filter kernel window to generate one pixel in one output feature map. The

output channels are filtered through an activation function such as Relu, Sigmoid,

and Tanh. Total output feature maps form a set of the input channels for the

next CONV layer. Summary of the process which calculates one output channel

is formulated in Eq. 1.

Ok
j = f(Σi∈MI

k−1
i ∗W k

ij + bkj) (1)

where Ok
j is the current output of the jth channel at kth layer, Ik−1i is the previous

feature map of the ith channel in M channels, W is the ijth kernel filter, bkj is

corresponding the bias of the jth channel, and f is the activation function, the

symbol ”∗” is the element-wise multiplication operation.

The sub-sampling layer or the pooling layer is generally sandwiched between

the two CONV layers. The pooling layer reduces the size of feature maps from

the previous layer. Besides, this layer is employed to avoid the over-fitting prob-

lem and redundancy in the channels. There are two main pooling methods:

mean-pooling and max-pooling. The output of the max-pooling (MP) layer is

determined as shown in Eq. 2.

umi,j = max
0<=i,j∈P

un(i,P+i),(j,P+j) (2)

9

where um is the max output value in the kernel size P of the mth channel, the un

is input value in the kernel size P.

The FC layers that control object classification into various categories in CNNs

are conjoined after multiple convolutional and sub-sampling layers. The term

“fully connected” means that all neurons in the previous layer are connected to

all neurons in the next layer. For example, the last layer of the Lenet-5 has ten

possible outputs, and each output corresponds to a number from ”0” to ”9”. A

neuron output V out
k in the FC layer is obtained by using Eq. 3. It is a typical

matrix multiplication and addition with a bias.

V out
k = ΣN

i=0Wki × V in
i + biask (3)

where Wki is weights corresponding with N input neurons at kth position, V in
i is

the total neurons of the previous layer, and biask is the bias of kth output neuron.

2.4 Related Work

2.4.1 Researches on primary visual cortex

The purpose of the visual system is to predict neural responses to arbitrary stim-

uli, including those seen in nature. To achieve this goad, researchers create models

based on one or more linear receptive fields. Basic models of neurons at the earli-

est stages of visual processing (retina, LGN, and V1 simple cells) typically include

a single linear filter. On the other hand, models of neurons at later processing

stages (V1 complex cells and beyond) require multiple filters [43].

The primary visual cortex model following the feedforward pathways begins

with the description by Hubel and Wiesel (1962) [44]. Two functional classes

of cortical cells: simple cells and complex cells, are famously described in the

research of Hubel and Wiesel. The simple cells respond to oriented stimuli (e.g.,

bars, edges, gratings). The complex cells tuned to oriented stimuli tend to have

larger receptive fields and exhibit the location of the motive within their receptive

fields. A V1-like circuit that connects a complex cell to an array of simple cells

is shown in Fig. 4. A simple cell in Fig. 4(a) (lower green cell) was gained by

pooling over upper green cells aligned along a preferred axis of orientation. At

the next stage, a complex cell in Fig. 4(b) can be obtained by selectively pooling

over simple afferent cells with the same preferred orientation.

10

Figure 4. V1 like or Hubel and Wiesel model. Source: Fig.1 of the reference [44]

Figure 5. Models of the visual system based feed-forward wiring diagram. Source:

Fig. 4 of reference [44]

11

Figure 6. Neural-like model via performance on image classification task. Source

Fig. 2 of reference [45]

Up-to-date feedforward models that determine the part of the operation in

the visual cortex by introducing further, “deeper” processing stages, each with

numerous learned filters. These models extend the Hubel and Wiesel’s circuit

from V1 to higher areas of the ventral stream. A general wiring diagram of a

feedforward model of the visual system is shown in Fig. 5. Using the same classi-

fier training protocol as with the neural data and control models, the hierarchical

modular optimization (HMO) got better results on low variation tasks. However,

for more variation tasks, HMO is not equal to the human object recognition abil-

ity like in Fig. 6. So, there is a need for more study to visualize exactly what

happened in V1 and V4 regions [45].

2.4.2 A review feature extraction methods for image classification

Feature extraction creates new features by merging original bands. The new

features store most of the important information. The feature extraction meth-

ods can be subdivided into four classes: knowledge-based such as non-parametric

weighted feature extraction (2004), maximum noise fragment (1998), local binary

12

pattern (1990), statistical, for example, principal component analysis (2002), in-

dependent component analysis (2011), wavelet-based such as discrete wavelet

transform (2002), and deep learning-based: convolutional neural network (2012),

deep belief network (2016). Knowledge-based methods improve specific char-

acteristics of the relevant bands to separate the objects or surface features of

interest. The statistical feature extraction transforms the high-dimensional data

into some lower-dimensional feature space reducing redundancy and enhancing

class separability. The progress of these methods depends on their capacity to

feature transformation without sacrificing the loss of information. The wavelet-

based feature extraction relies on wavelet transform decomposing the signal into

constituent wavelets of different scales and positions.

Figure 7. Classwise and global classification accuracies using various feature

extraction techniques for Pavia University database. Source Table 4 and Table 5

of reference [46]

13

Comparison performance on image classification application based on Pavia

university dataset show on Fig. 7. The results show that feature extraction can

reduce dimensions without significantly compromising classification accuracy. Su-

pervised techniques provide better accuracy than their unsupervised counterparts.

In the vacancy of training data, unsupervised feature extraction can provide ac-

ceptable solutions. It is also observed from the results that spatial features pro-

duce complementary information that can help to improve classification accuracy.

Recently emerged deep learning techniques have shown promising performance.

Deep learning methods hierarchically learn features with the help of complex,

layered architecture [46].

2.4.3 Approaches to accelerate CNN inference on FPGAs

In response to the hurdles of CNNs, many researchers have tried to optimize

memory access or convolution operations. Recent works showed that sparsity op-

timization involving pruning and exploiting activation sparsity could reduce 89%

of memory access and 67% of computation operations [47]. Activation sparsity,

which can cut memory accesses and multiply-accumulate (MAC) operations by a

half [48] based on rectified linear unit non-linearity to produce many zero outputs.

The pruning and compression were also investigated with the Bayesian network.

These reductions have nevertheless required hardware that was customized with

the data movement and control. The reducing parameter approaches [49, 50] with

a factor of 50× were studied due to the expense of many MAC operations. The

low-rank approximation (LRA) that obtained a sparse convolution 2 - 4.5× faster

than the corresponding value at the absence of sparsity with a 1% accuracy loss

was reported by Denton et al. [51] . Due to a large number of hyper-parameters,

the LRA has remained to be a big problem in training.

Another approach is bit-width optimization, which aims to decrease parameter

bit-width from a floating point to a fixed point. This investigation reduced the

precision to get higher efficiency in exchange for memory access and computation

operations. Ternary weight network and BinaryConnect [52, 53] diminished the

bit-width of weights to 2-bits or 1-bit. Some studies quantized the activation

function of the neural network, which achieved a significant reduction in memory

or computation cost [8, 54]. These proposals, nevertheless, were a trade-off for

14

a considerable accuracy loss. Researchers have also discovered the computation

of CNNs in other domains to reduce complexity. Fast Fourier transform (FFT)

applied a single filter in the CONV layer is an example of this attempt. As a

result, the gain of compact network architecture is the loss of accuracy.

When accelerating a CNN to an FPGA device, the challenge is to find an

efficient mapping model [55]. Current FPGA-based accelerators for CNNs rely

on three main optimizations to efficiently infer CNNs. Algorithmic Optimizations

for FPGA-Based CNN Acceleration accelerate the execution of convolutional and

fully connected layers [56, 57, 58, 59, 60, 61, 62]. Computational transforms are

employed on the feature maps and kernels to accelerate the execution of conv and

FC layers. This method focuses on vectorizing the implementations and reducing

the number of arithmetic operations occurring during inference. Various software

libraries, such as OpenBlas CPUs and cuBLAS for GPUs, are a platform to

deploy these computational transforms. Besides this, multiple implementations

make use of such transforms to map CNNs on FPGAs.

The FPGA datapath optimizations for FPGA accelerators aim to solve the

resource limitation of FPGA devices. [57, 63, 64, 65, 66, 67, 17, 68, 69, 70,

71]. Early FPGA-based accelerators for CNNs implemented systolic arrays to

accelerate the 2D filtering in convolutions layers [72, 73, 74, 75, 76]. Finding the

optimal PE configuration can be seen as a loop optimization problem [77, 78, 79,

18]. It is impossible to fully exploit all the parallelism patterns, especially with the

sheer volume of operations involved in deep topologies. Applying dataflow process

networks (DPNs), static data-flow (SDF) to accelerate CNN implementations on

FPGAs is investigated in [80, 81, 82].

Approximate computing of CNN models the computational transforms, prun-

ing, and quantization technologies are other approaches for accelerating FPGA

CNNs [16, 83, 84, 85, 86, 16, 87, 88, 89, 54, 52, 90, 91, 92, 93, 94, 95, 96]. Several

studies in [97, 98, 99] demonstrate that inference of CNNs can be achieved with

reduced precision of operands. Also, works in [100, 101, 102] demonstrate fixed-

point arithmetic applicability to train CNNs. As highlighted in [103], CNNs as

over-parametrized networks and many weights can be removed or pruned with-

out critically affecting the classification accuracy. In its simplest form, pruning is

performed according to the magnitude, such as the lowest values of the weights

15

are truncated to zero [104]. The summary of optimization for FPGA accelerators

is showed in Fig. 8.

Figure 8. Approaches to accelerate CNN inference on FPGAs

For hardware generation, the using tools supporting circuit implementation on

FPGA are investigated. These tools support estimating the new idea algorithm on

hardware without deep expertise on FPGA/ASIC. The high-level synthesis (HLS)

tools [105, 106, 107, 108] that emerge and use frequently on research is Vivado

of Xilinx and OpenCl of Intel [109, 110]. Domain-specific languages (DSLs) [111,

112] are another approach.

16

3 Feature Extraction Primary Visual Cortex Hard-

ware Model

The proposed prototype is a partial implementation of the standard model, which

focuses on information-processing mechanisms in V1 [1, 113]. Generally, realizing

the large-scale computations needed for the simulation is the biggest challenge

in making a biologically accurate model. The complex calculations are simplified

with uncomplicated hardware circuits. The results indicate that the proposal is

able to keep the information necessary for the feature description

3.1 The Functions of the Primary Visual Cortex Hard-

ware Model

3.1.1 Edge Detection

Figure 9. Edge detection

Edge detection plays a vital role in feature extraction. My proposal was for-

mulated in Fig. 9 to achieve high efficient energy architecture. I recommended

an edge detection algorithm that is performed by comparing the sum of abso-

lute differences (SAD) of values applying Eq. 4 in four distinct directions with a

threshold (TH) in a 3x3 area like in Eq. 5.

SAD =

0 if Pi = P8−i

1 if Pi 6= P8−i
(4)

17

where Pi is the value of a pixel in 3x3 window with i = (0, 1...8).

edge =

0 if Σ3
i=0SAD(Pi, P8−i) < TH

1 otherwise
(5)

Pi =

0 if RGB8bit < TH1

1 otherwise
(6)

For simplification toward hardware, the RGB 8-bit was diminished to 1-bit by

considering with the other threshold (TH1) in Eq. 6. There was no edge if the sum

of SAD was less than TH1; otherwise, the output was an edge. The four directions

we suggested were 0◦, 45◦, 90◦, and 135◦. The hardware includes AND gate, OR

gate, Comparison, and Shift circuits, which help enhance the effectiveness of the

edge problem over other studies. This design can realize a parallel circuit with

high speed and low resources on a field-programmable gate array (FPGA).

3.1.2 SLIT Detection

According to the principle of V1, most of the significant information is discovered

in the central radius than at the periphery when observing an object. To replace

the first layers, which was inspired by the primary visual cortex in the CNN model,

a shift circuit in a range of 0◦ to 157.5◦ with a gradual increase every 22.5◦ for

4x4 window shown in Fig. 10 is proposed. The SLIT detection is executed at the

base of the edge detection results.

cht = AND(Σ3
i=0Σ

3
j=0θi,j) (7)

θ =
4y
4x

(8)

where θ is a gradually increase every 22.5◦, θi,j is the E patterns shown in Fig. 9

at examining slope θ in 4x4 window. cht is the result of channel or S letters with

t = (0, 1,...7)

18

Figure 10. SLIT detection

The result of SLIT detection or ch0 to ch7 in Eq. 7 was an AND gate of

4 input values at the examining slope in Eq. 8. Each element was 1 bit. The

number of elements in each channel was equivalent to that in the input image.

3.1.3 Left-Right Parallax Detection

Left-right parallax detection is the equivalent function as a stereo matching. Gen-

erally, stereo matching requires about 16x16 SAD operations in Eq. 9, which is

not suitable for hardware [114].

SAD16 = Σ3
i=0Σ

3
j=0|Ci,j − ri,j| (9)

where ri,j are the values of reference 4x4 window and Ci,j are the values of the

candidate 4x4 block.

In Fig. 11, we used the information of the SLIT function above to build the

new idea for the parallax algorithm. In the range of 1/16 the width of the vision,

a 3x3 window was used to analyze the level overlap of the SLIT information in the

left image and right image. The ratio of overlap was the sum of the values of 1 of

19

AND operation from ch0 to ch7. At the same time, the SAD of the original left

and right 3x3 images was obtained. Finally, the right and left parallax detections

were for maximizing the SLIT coincidence and minimizing the SAD.

Figure 11. Left/right parallax detection

3.1.4 XY Movement Direction Detection

The Gunnar Farnebäck’s optical flow algorithm was applied to determine moving

object detection [115]. The horizontal and vertical components were obtained by

utilizing Eq. 10 and Eq. 11.

H(x, y) = h1(x, y) + h2(x, y) (10)

V (x, y) = v1(x, y) + v2(x, y) (11)

M(x, y) =
√
H2(x, y) + V 2(x, y) (12)

N(x, y) =
M(x, y)−Mmin

Mmax −Mmin
× Imax (13)

B(x, y) =

1 if N(x, y) ≥ λ

0 otherwise
(14)

20

where H and V are the horizontal and vertical images. (x,y) is the pixel

coordinate, h and v are the horizontal and vertical optical flow components.

The magnitude M(x,y) of the horizontal and vertical optical flows, was cal-

culated, using Eq. 12. The normalizing value N(x,y) of a pixel position (x,y)

was processed by using Eq. 13. The output B(x,y) was the comparison to one

threshold from Eq. 14.

Figure 12. XY movement direction detection

According to the analyzed scheme, multiply, and square root operations are

not proper for optimal parallel hardware performance. Antithetical to the above

interpretation, in the design, the results of the SLIT function have been applied to

determine motion. Unlike the feature detection based on spatial differentiation,

the moving direction detection requires time differentiation. M characters or the

results of the XY motion detection presented in Fig. 12 is a combination of SLIT

detection and the concurrent comparison in which the left and right directions

occur at the same moment. AND, Shift, OR, and Comparison functions are

simpler than the above operations. The idea can be straightforward to build a

high-speed circuit in FPGA. There were 16 output channels, and these channels

21

could discover the change in the vertical and horizontal directions when the left

and right SLITs moved similarly.

3.1.5 Approach Detection

When the left and right SLITs are moved in the same way, the XY moving

direction is detected. In contrast, the difference in movement between the left

and right SLITs means the approach or separation detection. Six separate output

channels in Fig. 13 are the combination of the left and right SLIT information in

Fig. 10. It incorporates approach/separation for the right, center, and left eye.

Figure 13. Approach detection

3.2 Reconfigurable Deep Neural Network Using the SLIT

Function

3.2.1 SLIT Layer Architecture

In many CNNs such as VGG [116], AlexNet [117], ResNet [118]..., the CONV

layer is always the first layer. This layer typically performs a whole number

of sliding convolution operations due to the largest input size. The first layer

requires much computation time when being compared with other layers. In

the CONV layer, with a number of input channels (ICs) and the K×K filters,

22

there compute six consecutive loops for producing output channels (OCs) in the

traditional approach.

Figure 14. Proposed SLIT layer

In contrast, the proposed SLIT layer presented contains only four continu-

ous loops. Fig. 14(a) explains how to calculate the first CONV layer with the

traditional approach. The first CONV layer with a M×M input image is convo-

luted with ICs×K×K×OCs kernel filters to yield N×N×OCs output channels.

Subsequently, the Relu activation function is employed to normalize the output

values into a range between 0 and 1. In Fig. 14(b), to obtain N×N×OCs output

feature maps like the first CONV layer, we leverage the SLIT layer, as explained

beforehand in the motivation section. Due to the binary output, the activation

function is discarded after the SLIT layer.

In comparison with the first CONV layer on the original CNNs, the MAC

23

operation and activation function are eliminated in the proposal. Each input is

reused across all filters of different output channels within the same layer in the

CONV layer. Therefore, storing memory and power consumption have become

enormous. On the other hand, since there are no parameters required for the

SLIT layer during the training phase and inference step, memory access and la-

tency are significantly reduced in the proposal. The normalization step for inputs,

which are divided by 255, is also ignored in our idea. The Shift, AND, and com-

parator operations are used to extract feature maps. Consequently, this approach

decreases many resources, latency, and energy. Total parameters (params) are

presented in Eq. 15, and MAC operations (MACs) are shown in Eq. 16 are

ricocheted in the way that reconstructs with the SLIT layer.

params = C in×K ×K × C out (15)

where C in is the number of input channel, K is the size of kernel filter and C out

is the number of output channel.

MACs = C in×K ×K ×N in×N in× C out (16)

where C in is the number of the input channel, K is the size of kernel filter, N in

is the dimension of output channel, and C out is the number of output channel.

3.2.2 Next Layer Reconfiguration

Due to the binary output of the SLIT layer, we propose a new scheme to recon-

figure the second CONV, max-pooling (MP), and fully connected (FC) layers.

We name SCONV, SMP, and SFC layers for the proposed second CONV, MP,

and FC layers. MAC operations also occupy most computation time in the sec-

ond CONV layer, directly following the first CONV layer on CNN. Many works

have been investigated to optimize MAC operations, such as using XOR functions

[87, 89, 93] . In contrast, we suggest the architecture that employs multiplexer

(MUX) operation to determine output feature maps for the second CONV layer.

Fig. 15(a) illustrates the process with a 3×3 kernel filter. To receive the sec-

ond CONV output channel, there require nine multiplication operations. On the

other hand, the proposal only uses 9 MUX operations to generate a feature map

for the second CONV layer showed in Fig. 15(b).

24

Figure 15. Proposed kernel for the second layer

The proposal excretes all or a part of multiplication operations in the second

CONV layer. First, the complete replacement will affect the situation if the SLIT

layer only generates eight binary output feature maps in which the input image

has one channel like the MINST database. Second, a part of the replacement will

take place when the input image has three channels, such as CIFAR, SVHN, or

ImageNet database. The SLIT layer yields 11 channels by concatenating eight

binary output feature maps of SLIT function with three original channels nor-

malized in range 0 and 1. In this case, output channels of the second CONV layer

25

are determined by concatenating eight binary output channels of the SLIT layer

with three feature maps of the normalized input image.

Figure 16. Proposed max pooling kernel

The max-pooling (MP) layer mentioned in Fig. 16 is optimized by utilizing

an OR gate to determine the maximum value. Fig. 16(a) reveals that at least

three comparator operations are required to detect the maximum value in the

2×2 window at a stride of 2 with the conventional approach. In contrast, the

proposed circuit showed in Fig. 16(b) only uses the OR gate to estimate the

maximum value for the MP layer. Assuming that there have eight 14×14 output

channels from the previous layer, a total of 14×14×3×8 = 4704 comparator

operations are expected by applying Eq. 17. On the other hand, the proposal

demands 14×14×8 = 1568 OR gates with four inputs.

Comp = N ×N × (K ×K − 1)× Cout (17)

where Comp is total comparator operations required to determine the maximum

value, N is the size of the previous channel, K is the kernel size, and Cout is the

number of output channels.

The FC proposed layer is affected by a model that consolidates the previ-

ous CONV layer and an MP layer. The basic information processing unit of

one neural in the artificial network is demonstrated in Fig. 17(a). The inputs

are multiplied with corresponding weights, and then outcomes are added with a

bias. Fig. 17(b) shows the matrix multiplication replaced by the MUX opera-

tions, where the weight values are one. Eq. 18 defines the entire multiplication

operations, which occupy most time consumption in the FC, are reduced by the

multiplexer operations. Assume that there have 1024 input neurons and 1024

26

output neurons; by using Eq. 18, the entire 1024×1024 = 1M multiplication

operations are pruned.

Figure 17. Proposed model of a neuron

Muls = Num in×Num out (18)

where Muls is total multiplication operation to calculate one output. Num in is

the entire input neurons and Num out is the whole output neurons.

3.2.3 Complete Proposed System

Figure 18. Proposed for Lenet-5 model

27

This section demonstrates how to reconstruct the first two layer or the first three

layers of the proposal in practical applications. The Lenet-5 that combines one

CONV + MP + another CONV layer in the model is chosen to manifest how to

reconfigure with SLIT + SMP + SCONV layers. In Fig. 18, the CONV + MP +

CONV layers are replaced with SLIT + SMP + SCONV layers. The remaining

layers stay the same as the original model. The first two CONV layers occur in

some famous models such as VGG-16, VGG-19 is reconfigured in Fig. 19. These

models include two CONV layers before the MP layer. In this fashion, the first

two CONV layers are changed by SLIT and SCONV layers.

Figure 19. Proposed VGG model

28

4 Performance of the SLIT Function on Soft-

ware Platform

4.1 Detail Performance of the SLIT Function with Simple

Architecture on MNIST dataset

The network includes a 28x28 pixel input, one 5x5x8 kernel for the convolutional

layer with the Relu activation function, one 8x12x12 pooling layer, and one fully

connected layer. Fig. 20(a) illustrates a standard CNN network. The proposed

scheme is manifested in Fig. 20(b). The SLIT function is divided in the range

from 0◦ to 157.5◦ yielded 8x24x24 channels that are equivalent to the output of

the convolutional layer. Due to the binary outputs of the SLIT function, the

Relu activation function is eliminated in the suggested model. The purpose of

the pooling layer in the CNN network reduces the feature size to minimize the

multiplier-accumulator operations (MACs) in the next convolutional layer. In

the proposed architecture, to get the inputs of the next layer, the pooling layer

and optimize MACs are excluded by adding weight values that correspond with

the previous inputs that are 1.

Figure 20. Apply SLIT function on small CNN architecture using MNIST

database

This design is verified with the MNIST database [119] with 60,000 images

for learning and 10,000 images for evaluation. The batch size consists of 100

images, and the number of epochs is 20. C programming language and the matrix

calculation library Atlas are utilized to evaluate this method. Intel(R) Xeon(R)

29

Gold 6144 CPU @ 3.50GHz is used to measure the execution time. As represented

in Table 1, this model evaluated by software using C programming language

shows that the SLIT function only takes 15.3 seconds to extract features of the

input images.

Table 1. Execution time and point convergence measurement using C program-

ming language

Metrics Traditional CNN Proposal

The first layer 190 sec (Conv) 15.3 sec (SLIT)

Forward 231.8 sec 121 sec

Conv.backward 446.9 sec 0 sec

Backward 511.5 sec 102 sec

Training time 743.5 sec 239 sec

Inference time 38.7 sec 22.8 sec

Point convergence 13th 5th

Conv: Convolutional layer, SLIT: SLIT function

sec: Seconds, th: nth within 20 epochs.

In comparison, it requires 190 seconds for the convolutional layer. Notably,

execution time is approximately 446.9 seconds for the convolutional layer in back-

propagation, which needs no time in the proposal. The total forward time is

smaller by a factor of 1.91 when being compared to the conventional CNN. Fur-

thermore, it also reduces the feed-backward time from 511.5 seconds to 102 sec-

onds. The learning time is decreased by 3.1 times from our model equaled to

CNN. In brief, total time consumption on CNN is extensive because it takes

much time for feed-backward. The identification consumes 22.8 seconds, which is

smaller than 38.7 seconds of the CNN model. The proposed scheme convergence

is achieved after only five epochs, while the CNN model requires 13 epochs during

20 iterations. Analyzing the execution time analysis of the two models shows that

the SLIT function efficiently replaces the convolutional operand. The suggested

architecture has significantly reduced the time demand for the training phase and

inference step in the deep neural network.

The fundamental idea in the proposed method is the SLIT function with input

30

as the result of the edge function. We propose three different designs for the SLIT

function. The result of the 4x4 window gains the highest performance of all three

models. The V1 region of the brain extracts the feature properties of objects

from the eye, and it corresponds with the first layers of CNN, mimicking V1

[2, 113]. The 4x4 window in Fig. 10 rotates in a resolution from 0◦ to 157.5◦,

which perfectly coincides with the eye vision. It is considered that they are eight

different combinations in this range.

Figure 21. SLIT function using 3×3 window

Figure 22. SLIT function using 2×2 window

31

For the 3x3 window in Fig. 21, the resolution is still within the eye vision, but

there are many overlapping slopes at 22.5◦, 67.5◦, 112.5◦, and 157.5◦. Therefore,

its result is nearly the same as the 4x4 kernel. The 2x2 window in Fig. 22 scans

with an angle from 0◦ to 315◦ with a gradual increase every 45◦, but with only

four cases of necessary information contribute to the network, and the remaining

cases pass the eye’s perspective. It is assumed that we choose the 5x5 window and

reduce the step in the range of 0◦ to 157.5◦ to extract more features, the overfitting

problem and hardware resources are a trade-off. For balancing resources and

precision, the 4x4 window is the best candidate.

Figure 23. Comparison error rate between SLIT and CNN on MNIST database

Fig. 23 summarizes the comparison of three suggested concepts for SLIT func-

tion with conventional CNN. Comparison of three proposals, the window 4×4 gets

better results than others. In short, the accuracy of our model with the proposed

4×4 window is slightly decreased from 97.89% to 97.34% when comparing with

that of the CNN model.

32

4.2 Performance of Reconfigurable Deep Neural Network

4.2.1 Software Configuration

In this section, the utilization of the SLIT layer in various models is investigated.

I conduct extensive experiments on the standard Lenet-5, VGG-16, and VGG-

19 prototypes with the MNIST [119], SVHN [120], CIFAR-10, CIFAR-100 [121],

and ImageNet [122] datasets. Tensorflow, Keras [123], and Pytorch [124] plat-

forms are used to build the models. Training time and accuracy of the MNIST,

CIFAR, and SVHN databases are analyzed by using the Intel(R) Core(TM) i7-

3970X CPU @ 3.50GHz. The GeForce GTX 1080 is used for training the Ima-

geNet dataset. To determine hyper-parameter values in the proposed model, first,

training the examining database on the traditional model to estimate the hyper-

parameters at an acceptable accuracy like benchmarks. Then, during the training

phase of the proposed model, I increase or decrease appropriately the value of

the reference hyper-parameters extracted from the conventional model. Finally,

the hyper-parameters of the proposal are determined when the over-fitting and

under-fitting phenomena disappear, and the model converges with the highest

accuracy. In comparison with the traditional model at the same database, the

hyper-parameters are nearly identical between the two models. Therefore, I have

used the same values when training conventional and proposed models. I evaluate

latency, hardware resources, and power consumption of the inference phase on

the chip ZC7Z020-1CLG484C FPGA.

Handwritten digits (MNIST): The MNIST database [119] consists of

28×28 gray images of the handwritten digits “0” through “9”. A total of 60000

images are provided for training, and 10000 images leave for testing. In the re-

ported experiment, training images are sliced further into a training set (50000

images) and a validation set (10000 images), equal to the distribution of digit

classes. Fig. 24(a) shows samples of the MNIST dataset. The Lenet-5 paradigm

is considered for performance analyses. From the original Lenet-5 model which

combines CONV(6) + MP(2) + CONV(16) + MP(2) + FC(120) + FC(84) +

FC(10), the design that mixes of SLIT(8) + SMP(2) + SCONV(16) + MP(2) +

FC(120) + FC(84) + FC(10) is proposed. The simulation is carried out using a

batch size of 100 images, 20 epochs, and the stochastic gradient descent (SGD)

33

optimization function with a learning rate of 0.1.

Figure 24. Examples of MNIST, CIFAR, SVHN and ImageNet databases

SVHN dataset: the SVHN dataset [120] has three channels in an image

is also examined in this proposal. SVHN is collected from house numbers in

Google Street View images. It includes 73257 images for training and 26032

images for testing. Examples of the SVHN dataset are displayed in Fig. 24(b).

I investigate the SVHN dataset with the model that combines 2CONV(32) +

MP(2) + 2CONV(64) + MP(2) + FC(512) + FC(10). In this manner, two

CONV(32) layers are replaced with SLIT(11) and SCONV(32) layers. The model

is trained with a batch size of 128 images, 20 epochs, and the SGD optimization

function with a learning rate of 0.01.

CIFAR database: The proposal is interpreted in detail on the CIFAR-10

and CIFAR-100 datasets [121]. These datasets are composed of 60000 samples

from ten categories for CIFAR-10 and 100 categories for CIFAR-100. Fig. 24(c)

shows examples of the CIFAR-10 dataset. This experiment utilizes 45000 images

for training, 5000 images for validation, and the last 10000 images for testing, and

augment the database by exerting flip and shift operators. The Lenet-5, VGG-16,

34

and VGG-19 models are employed for measuring performance. These models are

assessed with a batch size of 128 samples, 200 epochs, and the SGD optimization

function with learning rate change from 0.1 in a range of 0 to 100 epochs, 0.01

in a range of 100 to 150 epochs, and 0.001 for larger than 150 epochs. Since

the CIFAR dataset has three input channels, I have concatenated eight output

feature maps of the SLIT function with three input channels normalized in a range

of 0 and 1 to create the SLIT layer. For the Lenet-5 design, we validate with

SLIT(11) + SMP(2) + SCONV(16) + MP(2) + FC(120) + FC(84) + FC(10) as

the equivalence of the conventional Lenet-5 scheme which stacks up of CONV(6)

+ MP(2) + CONV(16) + MP(2) + FC(120) + FC(84) + FC(10). In the VGG-16

and VGG-19 forms, two first CONV layers with 64 output channels are switched

by SLIT(11) + SCONV(64) layers.

ImageNet database: The ILSVRC2012 ImageNet dataset [122] has also

been chosen as a target to assess our topology in a complicated case. ImageNet

includes approximately 1.2M training images with 1K classes and 50K validation

images. This dataset covers natural images with reasonably high resolution com-

pared to the CIFAR, MNIST, and SVHN datasets, which have relatively small

images. The examples of the ImageNet database are shown in Fig. 24(d). The

image classification performance has been conducted to report Top-1 and Top-5

accuracy. The VGG-16 architecture is adopted as the base proposal. Two first

CONV layers of the VGG-16 model is reconstructed with SLIT(11) and SCONV

layers. The design is simulated with a batch size of 16 samples, 100 epochs, and

the SGD optimization function at a learning rate of 0.001.

4.2.2 Software Results

Figure. 25 shows the accuracy of the MNIST, CIFAR-10, CIFAR-100, SVHN, and

ImageNet datasets. A small decrease in accuracy of 0.27% from 99.07% to 98.8%

with the MNIST database has been observed when being compared between the

Lenet-5 proposal and the conventional Lenet-5 paradigm. Moreover, it slightly

decreases from 0.5% to 1.5% with CIFAR-10 and CIFAR-100 datasets and around

2.2% on the ImageNet. It also remarks efficiently on the small CNN model that is

experimented on the SVHN dataset. With complicated models such as VGG-16

and VGG-19, the loss of accuracy ranges from 0.5% to 2.2%.

35

M
N

IS
T

L
en

et
-5

C
IF

A
R

-1
0

L
en

et
-5

C
IF

A
R

-1
0

V
G

G
-1

6

C
IF

A
R

-1
0

V
G

G
-1

9

C
IF

A
R

-1
00

L
en

et
-5

C
IF

A
R

-1
00

V
G

G
-1

6

C
IF

A
R

-1
00

V
G

G
-1

9

S
V

H
N

C
N

N

Im
ag

eN
et

V
G

G
-1

6
T

O
P

-1

Im
ag

eN
et

V
G

G
-1

6
T

O
P

-5

30
40
50
60
70
80
90

100 9
9
.0
7

7
3
.9

9
3
.3

9
3
.0
2

4
0
.1

6
6
.5

6
6
.9
8

9
3
.5
8

7
2
.5

9
0
.89
8
.8
6

7
2
.7
6

9
2
.2
9

9
1
.9
4

4
0
.5

6
6
.6

6
5
.3
7

9
3
.1
4

6
9
.4

8
8
.3

A
cc

u
ra

cy
(%

)
Original
Proposal

Figure 25. Comparing accuracy between the original model and the proposed

model

M
N

IS
T

L
en

et
-5

C
IF

A
R

L
en

et
-5

C
IF

A
R

V
G

G
-1

6

C
IF

A
R

V
G

G
-1

9

S
V

H
N

C
N

N

200
400
600
800

1,000
1,200

5 1
0

8
1
5

1
,0
4
1

8
5

3 6

7
3
2

9
5
3

5
7

S
ec

on
d

Original
Proposal

Figure 26. Comparing training time of one epoch between the original model and

the proposed model

36

A training time reduction shown in Fig. 26 compensates for the loss of accu-

racy when the proposal is applied. A decrease training time in a range of 10%

to 40% has been verified from small scheme to complex topology models. Total

training time is diminished by 40%, 40%, and 32%, corresponding with MNIST,

CIFAR, and SVHN databases on Lenet-5 and CNN models. It also decreases

by approximately 10% on larger paradigms such as VGG-16 and VGG-19 with

the CIFAR database. Because the model verified with the VGG-16 on ImageNet

takes a long time for training one epoch, this case is not revealed in Fig. 26.

Table 2. Comparison parameters on Lenet-5 and VGG-16 model

Layer Kernal Original Optimized [50] Proposal

Lenet-5 model

CONV1 1×5×5×6 150 336 0

CONV2 6×5×5×16 2400 2752 2400

VGG-16 model

CONV1 3×3×3×64 1728 41K 0

CONV2 64×3×3×64 2400 49K 2400

Table 3. Comparison operations on Lenet-5 and VGG-16 model

Layer Dimension Original Optimized [50] Proposal

Lenet-5 model

CONV1 1×28×28 117.6K (a) 225K (a) 0

MP 6×24×24 27.6K (b) 27.6K (b) 9216 (c)

CONV2 6×12×12 345.6K (a) 419.5K (a) 345.6K (d)

VGG-16 model

CONV1 3×32×32 1.77M (a) 37.6G (a) 0

CONV2 64×32×32 37.7M (a) 50.3G (a) 37.7M (d)

a: MAC, b: Comparator, c: OR, d: Multiplexer

Ordinarily, the first and second CONV layers contribute 92.4% of MAC oper-

ations, while the FC layers offer 7.6% of MAC operations on the Lenet-5 model.

37

Parameter and operation reduction highlight the contribution of the proposed

model for the training phase on CNNs. Results indicate a considerable efficiency

obtained on the proposed Lenet-5 model. Table 2 and Table 3 show that a total

of 1×5×5×6 = 150 parameters and 463K MAC operations are pruned in the

proposal when evaluated with the MNIST database. Remarkably, with the CI-

FAR dataset that has three channels, 3×5×5×8 = 450 parameters and a total of

3×5×5×32×32×6 + 6×5×5×16×16×16 = 1.07G MAC operations are excluded.

The proposal decreases approximately by 90% MAC operations and leads to train-

ing time reduction during the training phase on the Lenet-5 model. An entirety

of 1728 parameters and 1.77M MAC operations are also eliminated in the first

layer on the VGG-16 model. In short, to compare with the original approach

and reference, my model illustrates better MAC operation optimization on the

Lenet-5 and VGG-16 models.

38

5 Performance of the SLIT Function on Hard-

ware Platform

5.1 Hardware Setup

Among the various available tools for implementing hardware designs of CNNs on

different FPGAs, Xilinx Vivado ® High-Level-Synthesis (Vivado HLS) is com-

monly used in literature for the sake of productivity at the cost of hardware effi-

ciency and performance [50, 105, 106, 107, 108]. Hence, I leverage the Vivado HLS

and Vivado IDE (v2018.3) tools to realize hardware circuits. The FPGA synthe-

sis is executed with chip ZC7Z020-1CLG484C for the property with benchmarks

in comparison. I use Vivado HLS to compare hardware resources and latency

of the IP core between the original approach and the proposal with a 32-bits

floating-point and 16-bits fixed point at a frequency of 100 Mhz. My IP core is

conducted into an embedded system to verify area and power on real FPGA at

115MHZ of the frequency with 24-bits fixed point.

First, the SLIT layer is evaluated in two cases with eight binary output feature

maps and eleven output channels that concatenate eight binary channels with

three input channels. Second, I stack another CONV layer after the first CONV

layer to assess how to compose the SCONV in the proposed topology. There

have two CONV layers in the primary, but the proposal is concatenated SLIT

and SCONV layers. Third, the MP proposal on CNNs is analyzed by appending

one MP after the first CONV layer. I explain two cases: the first case is the

structure having CONV, MP layers and the second is CONV, MP, CONV layers

in the model. I handle the SLIT, SMP layers, and the SLIT, SMP, SCONV

layers to compare with the data obtained from the conventional scheme. Next,

the FC proposal is studied by linking the SLIT, SMP, and SFC layers. Finally, I

investigate the architecture of the Lenet-5 and VGG-16 models as the analyzed

standard of the proposed networks on hardware to compare with state-of-the-

art. How to replace the first three layers is showed in the Lenet-5, and VGG-16

represents how to reconstruct the first two layers on the deep neural networks.

39

5.2 Comparison Hardware Resources and Latency with

Vivado HLS

Table 4. Comparing hardware resources and latency for the first layer

Metrics CONV(8) SLIT(8) CONV(11) SLIT(11)

Floating-point 32-bits 32-bits 32-bits 32-bits

LUT 724 241 815 549

FF 960 233 1073 657

DSP48E 8 0 8 3

BRAM 2 1 8 1

Latency (ms) 13.47 0.427 40.17 1.04

Table 4 exposes the reduction of hardware resources and performance for the first

layer. The SLIT layer employs fewer LUTs, FFs, BRAM and DSP48E blocks than

the CONV layer. Especially, the DSP48E blocks are humbled eight times in the

case of SLIT(8). Latency achieves a 13.47/0.427 = 31.5× reduction compared

with the CONV(8) layer and a factor of 38× decrease with the CONV(11) layer.

Table 5. Comparing hardware resources and latency for the second layer

Metrics CONV(8)+ SLIT(8)+ CONV(11)+ SLIT(11)+

CONV(16) SCONV(16) +CONV(16) SCONV(16)

Floating-point 32-bits 32-bits 32-bits 32-bits

LUT 1303 736 1425 1223

FF 1649 769 1811 1399

DSP48E 13 2 13 8

BRAM 18 2 40 10

Latency (ms) 160.7 96.5 266.3 210.9

Table 5 reveals the hardware resources and latency for the second layer.

By replacing all MAC operations with the MUX function in case SLIT(8) +

40

SCONV(16), hardware utilization is notably reduced. For example, 2 DSP48E

blocks are proportional to 13 DSP48E blocks in the standard design. BRAM

blocks are lessened 18/2 = 9× between two models. Latency is also decreased

remarkably in our proposal when being compared with the traditional topology.

Table 6. Comparing hardware resources and latency for the max pooling layer

Metrics CONV(8) SLIT(8) CONV(11) SLIT(11)

+MP(2) +SMP(2) +MP(2) +SMP(2)

+CONV(16) +SCONV(16)

Floating-point 32-bits 32-bits 32-bits 32-bits

LUT 1028 341 1686 1497

FF 1255 334 2071 1673

DSP48E 8 0 13 8

BRAM 18 2 48 13

Latency (ms) 13.6 0.46 96.9 53.6

Table 6 reveals the max-pooling layer performance. By replacing three com-

parator operations with an OR gate, latency or speed is reduced from 13.6 ms to

0.46 ms. Hardware resources that estimate the IP core area extremely decrease

on DSP48E and BRAM blocks. A factor of approximately 92% hardware resource

reduction is observed when our SMP layer is compared to the second traditional

MP layer. In a more complicated case like SLIT(11) + SMP(2) + SCONV(16),

the proposed reconfiguration not only reduces significant hardware resources but

also demand 53.6 ms, a reduction from 96.9 ms as in the case of CONV(11) +

MP(2) + CONV(16).

The FC proposal is analyzed by combining SLIT, SMP, and SFC layers. By

replacing the multiplication matrix with MUX functions, Table 7 proves that my

suggestion also works better than the traditional process in terms of hardware

resource utilization and execution time requirements. In short, four loops in the

SLIT layer, OR gate in the SMP layer, and MUX operation in the SCONV layer

result in enormous hardware resources and latency reduction.

41

Table 7. Comparing hardware resources and latency for the fully connected layer

Metrics CONV(8) SLIT(8) CONV(11) SLIT(11)

+MP(2)) +SMP(2) +MP(2) +SMP(2)

+FC(512) +FC(512) +FC(1024) +FC(1024)

Floating-point 32-bits 32-bits 32-bits 32-bits

LUT 1531 741 1549 1359

FF 1924 829 2006 1578

DSP48E 13 2 13 8

BRAM 22 3 48 13

Latency (ms) 105.5 60.5 454.3 379.9

Table 8. Comparing hardware resources and latency on Lenet-5 and VGG-16

models

Metrics Proposal Lenet-5 Proposal VGG-16

Traditional Proposal Traditional Proposal

Floating-point 32-bits 32-bits 32-bits 32-bits

LUT 4568 3854 43442 43140

FF 4371 3405 11276 10852

DSP48E 24 16 62 57

BRAM 17 8 480 354

Latency (ms) 34.3 20.78 49820 44503

Compared with the traditional CNNs on Lenet-5 and VGG models, our scheme

replaces the first three layers on the conventional Lenet-5 model and the first two

layers on VGG. By synthesizing with the Vivado HLS tool, Table 8 shows the

proposal has consumed less than 52.9% BRAM and 33.3% DSP48E blocks com-

pared with the traditional Lenet-5 model. Moreover, my scheme achieves about

1- 20.78/34.3 = 0.394 or 39% latency reduction without using the optimized

methods such as #parama HLS PIPElINE or #parama HLS UNROLL. I have

also investigated hardware resources and latency for the VGG-16 scheme. The

hardware resources also degrade 26% in BRAM blocks and 8% in DSP28E blocks

42

for the complete proposed VGG-16 design. The latency reduces about 10% as

comparing the conventional approach.

5.3 Comparison Hardware Resources and Power Consump-

tion on IP Core with Orther Researhes

Proposal[125] [105]
0

0.5

1

1.5

2
·104

7373

16086
14832

LUT

Proposal[125] [105]
0
1
2
3
4
5
6

·104

2542
6006

54075

FF

Proposal[125] [105]
0
5

10
15
20
25
30
35

0.55 0.93

26.37

Latency
(m

s)

Proposal[125] [105]
0

5

10

15

20

25

8

12

20

DSP48E

Proposal[125] [105]
0
5

10
15
20
25
30

5 6

27

BRAM

Proposal[125] [105]
95

96

97

98

99
97.82

96.33

98.62

Accuracy

(%
)

Figure 27. Comparison hardware resources and latency of our IP core proposal

with other works on Lenet-5 model at 100 MHz using Vivado HLS tool

For the IP core comparison between the proposal and existing state-of-the-art us-

ing the MNIST database, the network combining CONV(8) + MP(2) + CONV(8)

+ MP(2) + FC(10) is proved. The proposed model consists of SLIT(8) + SMP(2)

+ SCONV(8) + MP(2) + FC(10). In addition to constructing the first three lay-

ers, I also use #parama HLS PIPELINE and #parama HLS UNROLL technolo-

gies to improve the hardware design performance. I utilize a 16-bits fixed point

while still maintaining accuracy. Fig. 23 reveals that the proposal demands a

smaller number of hardware resources than previous works at higher accuracy.

Especially, the latency achieves a 40.8% reduction over the work, and a factor

43

of 26.3/0.55 = 47× decrease compared with the result reported in the previous

study. Besides, the hardware resource is lower with 1 BRAM block, 4 DSP48E

blocks, 6006/2542 = 2.3× FFs, and 16086/7373 = 2.18× LUTs as compared

with the highest current performance. Moreover, the proposal maintains 97.82%

accuracy higher than 96.33% in reference.

Figure 28. System on chip implementation of the Lenet-5 model on zynq7020

FPGA

As shown in Fig. 28, the CNN accelerator design includes ARM, AXI, BRAM,

and my IP core. The IP core is called in an ARM CPU-based embedded system to

analyze the effectiveness of the proposed optimization technique. Table 9 exposes

the comparison between my model and the previous works in hardware resources

used to estimate area and power consumption. Due to the binary calculation on

SLIT, SMP, and SCONV layers, the DSP48E blocks are extremely reduced in

the proposal. To fairly assess, I convert 16 DSP48E blocks into 1003 LUTs, and

537 FFs in the way reference [108] measurement and estimate equivalently one

BRAM into 256 LUTs as references [126, 127]. As a result, my topology utilizes

the same LUTs with a 72.5% reduction in FFs compared with the other works.

Moreover, the proposal also employs a 0.456 W power consumption lower than

works [106, 107, 108].

44

Table 9. Comparing resource utilization and power consumption on chip

zynq7020 FPGA for Lenet-5 model

Parameter [106] [107] [108] Proposal

24-bits 32-bits 8-bits 24-bits

fixed point floating-point fixed point fixed point

Frequency 166 MHZ 100 MHZ 100 MHZ 115 MHZ

LUT 38836 14659 39898 6853

FF 23408 14172 25161 6378

DSP48E 95 125 0 16

BRAM 92 119.5 24 127

Power (W) 3.32 1.8 1.758 0.456

5.4 DPU architecture for SLIT+CNN on Vitis AI plat-

form

Figure 29. Flow vitis AI platform[128]

Vitis AI supporting AI inference acceleration is an integral part of Vitis from the

Xilinx platform [128]. The Vitis AI produces high-throughput CNN inference

45

engines for FPGAs and ASICs. It offers a complete series of tools and APIs

for pruning, quantizing, optimizing, and compiling pre-trained models to reach

the highest AI inference performance on Xilinx platforms. This program is a

foundation for the gap between deep learning frames such as Tensorflow, Keras,

Caffe, and hardware circuits. Vitis AI permits software developers to exploit

FPGA or ASIC acceleration benefits without demanding HDL progress and low-

level circuit expertise. The overall flow chat of Vitis AI is summarized in Fig. 29.

Figure 30. The proposal SLIT + CNN on the DPU architecture

In this research, the SLIT layer is mixed with conventional CNNs on the DPU

structure to reduce the latency of the inference step on the Xilinx ZCU 102 FPGA

board. The Xilinx® Deep Learning Processing Unit (DPU) [129] is an optimized

programmable tool for deep neural networks. It comprises an instruction fetch

unit, a high-performance scheduler module, a global memory pool module, and a

hybrid computing array. A specific instruction set conceding for the satisfactory

implementation of CNNs is integrated into the DPU. Fig. 30 shows the proposal of

the SLIT layer on DPU architecture in the deep neural network topology. The first

layer of CNNs replaced by the SLIT layer. After training the hybrid network, the

parameters are quantized and optimized to measure the accuracy and latency of

46

the inference stage on the ZC7Z020-1CLG484C FPGA. The MNIST and CIFAR-

10 datasets are employed to validate the execution. Due to hardware resource

limitations, I only assess the schemes, for example, Lenet-5, VGG-11, and VGG-

13.

Table 10. Comparison resource utilization on DPU platform

Parameter Size (MB)

SLIT + CNN CNN [129]

MNIST Lenet5 0.04 0.04

MNIST 6Conv2fc 0.86 0.86

CIFAR10 Lenet5 0.06 0.06

CIFAR10 6Conv2fc 1.09 1.09

CIFAR10 VGG11 9.74 9.8

CIFAR10 VGG13 9.94 9.97

MAC (MOPs)

SLIT + CNN CNN [129]

MNIST Lenet5 0.56 0.72

MNIST 6Conv2fc 41.89 43.61

CIFAR10 Lenet5 1 2.29

CIFAR10 6Conv2fc 43.89 58.14

CIFAR10 VGG11 1330.56 1451.45

CIFAR10 VGG13 1744.3 1810.36

I/O Memory space

SLIT + CNN CNN [129]

MNIST Lenet5 0.008 (KB) 2.02 (KB)

MNIST 6Conv2fc 0.03 (MB) 0.05 (MB)

CIFAR10 Lenet5 0.01(KB) 5.23(KB)

CIFAR10 6Conv2fc 0.04 (MB) 0.07 (MB)

CIFAR10 VGG11 0.19 (MB) 0.2 (MB)

CIFAR10 VGG13 0.3 (MB) 0.31 (MB)

The board FPGA Zybo Zynq-7000 (XC7Z010) containing 240KB block RAM,

28K logic cells, and 80 DSP slices is handled to measure the performance. The

47

target FPGA board includes the DPU B4096 built at a frequency of 325 MHz.

The parameter size is utilized to save weight and bias in MB, KB, or bytes for

the DPU kernel. The computation workload in the unit of MOPs for the DPU

kernel is called workload MACs (MACs). The required DPU memory space in

MB, KB, or bytes for the intermediate feature map is named I/O memory space.

Table 10 compares the resource utilization outcomes from the FPGA accel-

erator on the DPU platform. Due to optimizing the first layer in traditional

CNN architecture, the parameter size, workload MACs, and I/0 memory space

are reduced from 1% to 10% on the new topology. The accuracy depicted in

Fig. 31(a) has remained the same as the conventional CNN when comparing the

previous work [128]. Furthermore, an enhancement throughput from 2.6% to 16%

is demonstrated in Fig. 31(b) when comparing with the outcomes reported in the

reference [128].

Figure 31. Comparison accuracy and throughput between SLIT + CNN and

CNN on DPU platform

48

6 Apply SLIT Function into Spiking Neural Net-

works on Adversarial Attack Application

6.1 Overview Spiking Neural Network and Adversarial

Attack

Figure 32. Overview of Spiking Neural Network

An illustration of the SNN diagram is portrayed in Fig. 32. The input data has

to be suitably coded using encoding techniques such as rate coding, temporal

coding. Coding schemes can be based on the number of spikes, the delay between

consecutive spikes, or the latency between starting the stimulus to the first spike.

Rate encoding is chosen as the most common mechanism. In rate coding, the

activation intensity corresponds to the mean firing rate over a determined time

window. A time window represents the measurement period in which the SNN

takes the same input. An incoming spike is multiplied by its associated synaptic

weight and integrated into the membrane potential V, following Eq. 19, when it

arrives at the input of the neuron.

V =
N∑
i=1

wi · si (19)

49

The leaky integrate and fire (LIF) model [130, 131] is the most universally utilized

SNN model. The presence of each LIF neuron can be concisely expressed as Eq. 20
αdv(t)

dt
= −v(t) +

∑
j wjojto(t) = 1 & v(t) = v0, if v(t) ≥ vth

o(t) = 0, if v(t) < vth

(20)

where t means the time step, α is a time constant, and v and o express the

membrane potential and produce output spike, respectively. oj is the output

spike of the jth pre-neuron. wj is the synaptic weight between the jth pre-neuron

and the current neuron. vth is the considered firing threshold, and v0 is the reset

potential applied after firing a spike. Note that a spike should be fashioned as the

Dirac delta function in the continuous-time domain; otherwise, it cannot increase

the potential.

The adversarial attacks have been inspected on SNNs. The sensitivity of SNN

w.r.t. different encoding types when subjected to white-box adversarial attacks

was researched by Bagheri et al. [132]. Applying black-box adversarial attacks

to DNNs and SNNs, the comparison showed that the SNNs studied by Marchisio

et al. [133] were more robust. Sharmin et al. [134] also suggested a methodology

to make the adversarial attack on (non-spiking) DNNs by applying the DNN-to-

SNN conversion. The adversarial accuracy of SNNs trained by mixing inference

latency and leak factors in leaky integrate-and-fire (LIF) spiking neurons was

too analyzed. But, this study did not examine the influence of the membrane

voltage threshold along with the time window. Recently, Massa et al. [135] tuned

the threshold voltage and the time window to minimize the accuracy loss in the

DNN-to-SNN conversion. However, this work did not consider the robustness

of adversarial attacks. DIET-SNN [136] was introduced to tailor the membrane

threshold and membrane leak to optimize the accuracy and the latency. Liang

et al. [137] proposed a gradient-based adversarial attack methodology for SNNs

and pointed the impact of the adversarial attack success rate on the loss function

and threshold voltage types. The effect of structural parameters, i.e., membrane

threshold and time window, was analyzed in work [138].

50

6.2 Apply SLIT Layer into Adversarial Attacks with Spike

Compatible Gradient

Algorithm 1 Algorithm adversarial attack based on inherent structural param-

eters
Data: Combining SLIT layer and orginal data

Membrane voltage thresholds: V th = Vi/i ∈ [1, n]

Spiking time window: T = Tj/j ∈ [1,m]

Noise budget: ε = εk/k ∈ [1, p]

SLIT+SNN Architecture: Sij = SLIT + SNN(Vi, Tj)

Label test set: L = (Xt, Lt)

Accuracy threshold: Ath

1: for i← 1 to n do

2: for j ← 1 to m do

3: Train Sij = SLIT + SNN(Vi, Tj)

4: if Accuracy (Si,j) ≥ Ath then

5: // Sij learns

6: for k ← 1 to p do

7: Adv = 0

8: for Xt ← 1 to L do do

9: // Adversarial attack

10: X∗t = PGD(Sij, εk, Xt)

11: if Sij(X
∗
t) 6= Lt then

12: Adv++

13: else

14: NOP

15: end if

16: end for

17: εk = 1− Adv/L
18: end for

19: else

20: NOP

21: end if

22: end for

23: end for 51

The suggested idea in the reference [138] is used to verify the performance of

the SLIT layer on the adversarial attack application. The robustness exploration

details in Algorithm 1. The input data is a concatenation of the SLIT layer

with original data. The n threshold voltages and m time windows are browsed

in Line 1 and 2. When the training stage is launched in Line 3, I treat the SLIT

+ SNN training analysis for the given combination of spiking threshold voltage

V th and time window boundary T. Being shown in Line 4, the learnability

is quantitatively tested by fixing a minimum baseline accuracy level below to

consider the SLIT+SNN learning vulnerable diagram. The security study begins

from Line 6; it generates adversarial examples with different noise budgets (ε) to

fool the SNN.

The noise budget models the aggressiveness allowed within the attack gener-

ation; the higher the noise budget, the more aggressive the attack is considered.

The counter of successful attack generation states is initialized at Line 7. Then,

at Line 8, the dataset L is browsed to generate the adversarial attacks. The

PGD method at Line 10 is employed to assess the performance. Afterward, the

algorithm verifies if the generated example can fool the SNN from Lines (11 -

17). Accordingly, increment the adversarial success counter if the attack forces

the output to a wrong label. The robustness is then evaluated for every ε value

as the attack rate where the adversary failed to generate an adversarial example

that fools the victim SNN at Line 17. Therefore, by following the accuracy slope,

we can compare the robustness of each topology to adversarial attacks.

The proposed investigations are conducted using the Norse library based on

the PyTorch platform with primitives bio-inspired neural components. This li-

brary supports training and running SNNs in the spiking domain. The adversarial

attacks are performed by employing the Foolbox v3.1.1 [139]. The SNN architec-

ture is adapted from the Lenet-5 architecture to the spiking domain and trained

on the MNIST and CIFAR-10 databases. The LIF neuron is used and run the

experiments on the Nvidia GeForce GTX 1080. Preprocessing input data before

implementing the adversarial attack application is proposed in this research. The

input MNIST dataset is modified by concatenating eight channels of the SLIT

layer with one original feature. For a complicated case dataset like CIFAR, eight

channels of the SLIT layer are combined with three initial channels to produce

52

the input data. The detailed hyper-parameters are initialed as the work [138].

6.3 Improve Accuracy with SLIT+SNN for Adversarial

Attack Application

Figure 33. Comparison decrease in accuracy on MNIST and CIFAR-10 between

SLIT+SNN, SNN and CNN at V th=0.25, T=80

Figure 34. Comparison decrease in accuracy between SLIT+SNN and SNN tested

on MNIST with different V th and T parameters

53

Figure. 33 have illustrated the accuracy variation w.r.t the noise budget ε with

the white-box PGD attack on MNIST and CIFAR-10 datasets. In Fig. 33(a),

the result reports on the MNIST database that the combination SLIT+SNN

keeps the same accuracy as SNN and higher than CNN at a low noise margin ε

from 0 to 1.0. In the region of ε > 1, the slope of SLIT+SNN has just slightly

decreased; however, the slope of SNN decreases so fast, and the accuracy of

CNN is nearly zero. With complicated datasets like CIFAR-10, Fig. 33(b) also

reveal that SLIT+SNN looks better than SNN and CNN at every point of ε > 1.

Fig. 34 is a comparison of SLIT+SNN and SNN. This figure exhibits the impact

of the concatenation of SLIT+SNN in the inherent structural parameters on SNN

security. For example, combinations of (V th, T) = (1.0, 32), (2.25, 56), (1.0,

48) have higher accuracy of 10%, 70%, 20% respectively than what is compared

with SNN. With the case (V th, T) = (0.5, 72), there is a decreased accuracy of

around 20% in the SLIT+SNN at the region of ε from 0 to 1.2, but an increased

accuracy on the proposal is nearly 28% at ε > 1.2 when compared with SNN.

54

7 Conclusion

In this research, the SLIT layer that imitated the primary visual cortex princi-

ple and replaced the first layer of conventional CNN has proved efficiency. The

backpropagation step of the proposed scheme requires no execution time, while

it takes approximately 446.9 seconds in the traditional CNN model on the small

network that includes one CONV and one FC layer. Training time is decreased by

40%, 40%, and 32%, respectively, with MNIST, CIFAR, and SVHN databases on

Lenet-5 and CNN topologies. It also reduces by about 10% on larger paradigms

such as VGG-16 and VGG-19 with the CIFAR database. Accuracy of the proposal

has just slightly degraded, for example, a factor of 0.27% on Lenet-5 with MNIST

dataset, approximately 1.5% on VGG-16 and VGG-19 with CIFAR dataset, 2.2%

on VGG-16 with ImageNet database, and remained the same with the SVHN

database. The innovative reconfigurations for the Lenet-5 scheme have achieved

a 70% discount in hardware resources and an improvement of 39% latency at a

power consumption of 0.456 W for the inference phase on FPGA. The entire con-

volution operations in the first two convolutional layers of the traditional CNN

models are removed efficiently. This architecture is relevant for real-time applica-

tions, especially due to a significant reduction in latency. A latency enhancement

in the range of 2.6% to 16% has been confirmed on the DPU platform. The SLIT

layer is also discovered actively in adversarial attack applications on the third

generation network that is plausible for human brain functionality. The accuracy

boosts nearly 70% on scheme SLIT+SNN.

Future Work The proposed method is elastic to concatenate with various

conventional models at high efficient energy and minimum hardware resources on

FPGA. Hence, it gives a new inspiration toward combining our proposal with

BinaryConnect or SqueezeNet method to obtain higher hardware design opti-

mization. In the future, I plan to study a more extensive and scalable CNN

accelerator that will integrate our scheme with other optimization approaches. I

further aim to develop the SLIT layer on a neuromorphic hardware platform. I ex-

pect this proposal will resolve the obstacle when utilizing the traditional datasets

in a new network topology. I also plan to explore the performance of different

functions from the proposed model.

55

Acknowledgements

Now, at the end of my doctor course program, I feel the duty to spend a few

words to show my appreciation to all the good and caring people who have been

and still are friendly to me. First and foremost, I would like to express my honest

thankfulness to Professor Yasuhiko Nakashima for his ongoing and enthusiastic

supervision during the three years of my doctoral course. His kind advice and

guidance helped me realize my weaknesses and improve myself to become a better

student and researcher. I have been and will continually be looking up to him

as a great professor. I would like to thank Professor Yuichi Hayashi, Associate

Professor Renyuan Zhang, Visitor Assistant Professor Tran Thi Hong, for their

helpful instructions and valuable comments on my research.

Furthermore, I want to acknowledge all the Computing Architecture Lab stu-

dents for their help and memorable time. Thanks to the Vietnamese friends at

NAIST for all the spiritual support and pleasant time together. Besides, I want

to express my thanks to all staff members in the Division of Information Science

in NAIST. Especially members of the International Student Affairs Section, for

all their enthusiastic supports to me. Last but not least, my sincere gratitude

to my family, especially my husband and my son, for their encouragement and

immense support during my doctor course.

56

References

[1] G Leuba and R Kraftsik. Changes in volume, surface estimate, three-

dimensional shape and total number of neurons of the human primary vi-

sual cortex from midgestation until old age. Anatomy and Embryology,

190(4):351–366, 1994.

[2] E. Zavitz, M. G.P. Rosa, and N. S.C. Price. Primate visual cortex. The Cu-

rated Reference Collection in Neuroscience and Biobehavioral Psychology,

(December 2015):753–773, 2016.

[3] Jesus L. Lobo, Javier Del Ser, Albert Bifet, and Nikola Kasabov. Spiking

neural networks and online learning: An overview and perspectives. Neural

Networks, 121:88–100, 2020.

[4] Dileep George and Jeff Hawkins. A hierarchical bayesian model of invariant

pattern recognition in the visual cortex. Proceedings of the International

Joint Conference on Neural Networks, 3:1812–1817, 2005.

[5] Mitsuo Kawato. Internal models for motor control and trajectory planning.

Current Opinion in Neurobiology, 9(6):718–727, 1999.

[6] Hinton, G. E., Osindero, S., and Teh, Y. W. A fast learning algorithm for

deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[7] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning

with low precision by half-wave gaussian quantization. arXiv, pages 5918–

5926, 2017.

[8] Jinil Chung, Woong Choi, Jongsun Park, and Swaroop Ghosh. Domain wall

memory-based design of deep neural network convolutional layers. IEEE

Access, 8:19783–19798, 2020.

[9] Kai HUANG, Ximeng LIU, Shaojing FU, Deke GUO, and Ming XU. A

lightweight privacy-preserving cnn feature extraction framework for mo-

bile sensing. IEEE Transactions on Dependable and Secure Computing,

18(3):1441, 2020.

57

[10] Aidin Ferdowsi, Ursula Challita, and Walid Saad. Deep learning for reliable

mobile edge analytics in intelligent transportation systems: An overview.

IEEE Vehicular Technology Magazine, 14(1):62–70, 2019.

[11] Fasih Ud Din Farrukh, Tuo Xie, Chun Zhang, and Zhihua Wang. Optimiza-

tion for efficient hardware implementation of CNN on FPGA. Proceedings

of 2018 IEEE International Conference on Integrated Circuits, Technologies

and Applications, ICTA 2018, pages 88–89, 2018.

[12] Sicheng Li, Wei Wen, Yu Wang, Song Han, Yiran Chen, and Hai He-

len Li. An FPGA design framework for CNN sparsification and acceler-

ation. Proceedings - IEEE 25th Annual International Symposium on Field-

Programmable Custom Computing Machines, FCCM 2017, page 28, 2017.

[13] Hidetoshi Ando, Yuki Niitsu, Masaki Hirasawa, Hiroaki Teduka, and Masao

Yajima. Improvements of classification accuracy of film defects by using

GPU-accelerated image processing and machine learning frameworks. Pro-

ceedings - NICOGRAPH International 2016, NicoInt 2016, pages 83–87,

2016.

[14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Con-

volutional architecture for fast feature embedding. pages 675–678, 2014.

[15] A survey of FPGA-based accelerators for convolutional neural networks,

volume 32. Springer London, 2020.

[16] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou,

Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong

Yang. Going deeper with embedded FPGA platform for convolutional neu-

ral network. FPGA 2016 - Proceedings of the 2016 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays, pages 26–35, 2016.

[17] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason

Cong. Optimizing FPGA-based accelerator design for deep convolutional

neural networks. FPGA 2015 - 2015 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays, pages 161–170, 2015.

58

[18] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae Sun Seo. Optimizing loop

operation and dataflow in FPGA acceleration of deep convolutional neural

networks. FPGA 2017 - Proceedings of the 2017 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays, pages 45–54, 2017.

[19] Jun Iwamoto, Yuma Kikutani, Renyuan Zhang, and Yasuhiko Nakashima.

Daisy chained systolic array and reconfigurable memory space for narrow

memory bandwidth. IEICE Transactions on Information and Systems,

E103D(3):578–589, 2020.

[20] Samanwoy Ghosh-Dastidar and Hojjat Adeli. Third generation neural net-

works: Spiking neural networks. Advances in Intelligent and Soft Comput-

ing, 61 AISC:167–178, 2009.

[21] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spik-

ing neural networks using backpropagation. Frontiers in Neuroscience,

10(NOV):508, 2016.

[22] Mazdak Fatahi, Mahmood Ahmadi, Mahyar Shahsavari, Arash Ahmadi,

and Philippe Devienne. evt mnist: A spike based version of traditional

mnist. arXiv preprint arXiv:1604.06751, pages 1–5, 2016.

[23] Pierre Falez. Improving spiking neural networks trained with spike tim-

ing dependent plasticity for image recognition. Theses, Université de Lille,

October 2019.

[24] Maxence Bouvier, Alexandre Valentian, Thomas Mesquida, Francois Rum-

mens, Marina Reyboz, Elisa Vianello, and Edith Beigne. Spiking neural

networks hardware implementations and challenges: A survey. ACM Jour-

nal on Emerging Technologies in Computing Systems, 15(2):1–35, 2019.

[25] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy,

Jun Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo,

Yutaka Nakamura, et al. A million spiking-neuron integrated circuit with a

scalable communication network and interface. Science, 345(6197):668–673,

2014.

59

[26] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,

Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil

Imam, Shweta Jain, et al. Loihi: a neuromorphic manycore processor with

on-chip learning. Ieee Micro, 38(1):82–99, 2018.

[27] Stephenie C Lemon, Jason Roy, Melissa A Clark, Peter D Friedmann, and

William Rakowski. Classification and regression tree analysis in public

health: Methodological review and comparison with logistic regression. An-

nals of behavioral medicine, 26(3):172–181, 2003.

[28] Odd O Aalen. A linear regression model for the analysis of life times.

Statistics in medicine, 8(8):907–925, 1989.

[29] Wenlong Fu, Kaixuan Shao, Jiawen Tan, and Kai Wang. Fault diagnosis

for rolling bearings based on composite multiscale fine-sorted dispersion

entropy and svm with hybrid mutation sca-hho algorithm optimization.

IEEE Access, 8:13086–13104, 2020.

[30] Eva Ostertagová. Modelling using polynomial regression. Procedia Engi-

neering, 48:500–506, 2012.

[31] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu.

A survey of deep learning techniques for autonomous driving. Journal of

Field Robotics, 37(3):362–386, 2020.

[32] Shruti R Kulkarni and Bipin Rajendran. Spiking neural networks for hand-

written digit recognition supervised learning and network optimization.

Neural Networks, 103:118–127, 2018.

[33] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko,

Ruth Silverman, and Angela Y Wu. An efficient k-means clustering algo-

rithm: analysis and implementation. IEEE transactions on pattern analysis

and machine intelligence, 24(7):881–892, 2002.

[34] Diem Tran, Thi To, Thuan Huynh, and Phuong Nguyen. Designing a har-

ware accelerator for face recognition using vector quantization and principal

60

component analysis as a component of sopc. In 2010 Fifth IEEE Interna-

tional Symposium on Electronic Design, Test & Applications, pages 82–86.

IEEE, 2010.

[35] Guillaume Lample and Devendra Singh Chaplot. Playing fps games with

deep reinforcement learning. In Thirty-First AAAI Conference on Artificial

Intelligence, pages 1–7, 2017.

[36] Yongliang Yang, Kyriakos G Vamvoudakis, and Hamidreza Modares. Safe

reinforcement learning for dynamical games. International Journal of Ro-

bust and Nonlinear Control, 30(9):3706–3726, 2020.

[37] Frank L Lewis and Draguna Vrabie. Reinforcement learning and adaptive

dynamic programming for feedback control. IEEE circuits and systems

magazine, 9(3):32–50, 2009.

[38] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Reinforce-

ment learning in continuous action spaces through sequential monte carlo

methods. Advances in neural information processing systems, 20:833–840,

2007.

[39] Jure Zupan. Introduction to artificial neural network (ann) methods: what

they are and how to use them. Acta Chimica Slovenica, 41:327–327, 1994.

[40] George N Reeke Jr and Olaf Sporns. Behaviorally based modeling and

computational approaches to neuroscience. Annual Review of Neuroscience,

16(1):597–623, 1993.

[41] Conrad D James, James B Aimone, Nadine E Miner, Craig M Vineyard,

Fredrick H Rothganger, Kristofor D Carlson, Samuel A Mulder, Timothy J

Draelos, Aleksandra Faust, Matthew J Marinella, et al. A historical survey

of algorithms and hardware architectures for neural-inspired and neuromor-

phic computing applications. Biologically Inspired Cognitive Architectures,

19:49–64, 2017.

[42] David Daniel Cox and Thomas Dean. Neural networks and neuroscience-

inspired computer vision. Current Biology, 24(18):R921–R929, 2014.

61

[43] Matteo Carandini, Jonathan B Demb, Valerio Mante, David J Tolhurst,

Yang Dan, Bruno A Olshausen, Jack L Gallant, and Nicole C Rust. Do

we know what the early visual system does? Journal of Neuroscience,

25(46):10577–10597, 2005.

[44] Thomas Serre. Hierarchical models of the visual system. Encyclopedia of

computational neuroscience, 6:1–12, 2014.

[45] Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren

Seibert, and James J DiCarlo. Performance-optimized hierarchical models

predict neural responses in higher visual cortex. Proceedings of the national

academy of sciences, 111(23):8619–8624, 2014.

[46] MP Uddin, MA Mamun, and MA Hossain. Feature extraction for hy-

perspectral image classification. In 2017 IEEE Region 10 Humanitarian

Technology Conference (R10-HTC), pages 379–382. IEEE, 2017.

[47] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient

convolutional neural networks using energy-aware pruning. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 5687–5695, 2017.

[48] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:

an energy-efficient reconfigurable accelerator for deep convolutional neural

networks. IEEE journal of solid-state circuits, 52(1):127–138, 2016.

[49] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,

William J. Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy

with 50x fewer parameters and ¡0.5MB model size. pages 1–13, 2016.

[50] Muluken Hailesellasie, Syed Rafay Hasan, Faiq Khalid, Falah Aw Wad, and

Muhammad Shafique. Fpga-based convolutional neural network architec-

ture with reduced parameter requirements. In 2018 IEEE International

Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2018.

[51] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob

Fergus. Exploiting linear structure within convolutional networks for ef-

62

ficient evaluation. Advances in Neural Information Processing Systems,

2(January):1269–1277, 2014.

[52] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott,

Philip Leong, Magnus Jahre, and Kees Vissers. FINN: A framework for

fast, scalable binarized neural network inference. FPGA 2017 - Proceedings

of the 2017 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, pages 65–74, 2017.

[53] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng Hau Lin,

Mani Srivastava, Rajesh Gupta, and Zhiru Zhang. Accelerating binarized

convolutional neural networks with software-programmable FPGAs. FPGA

2017 - Proceedings of the 2017 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pages 15–24, 2017.

[54] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.

Xnor-net: imagenet classification using binary convolutional neural net-

works. pages 525–542, 2016.

[55] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, and François Berry.

Accelerating CNN inference on FPGAs: A survey. arXiv, (January), 2018.

[56] Jason Cong and Bingjun Xiao. Minimizing computation in convolutional

neural networks. In International conference on artificial neural networks,

pages 281–290. Springer, 2014.

[57] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei

Ma, Sarma Vrudhula, Jae Sun Seo, and Yu Cao. Throughput-optimized

openCL-based FPGA accelerator for large-scale convolutional neural net-

works. FPGA 2016 - Proceedings of the 2016 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, pages 16–25, 2016.

[58] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance con-

volutional neural networks for document processing. pages 1–6, 2006.

[59] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, and

Gordon R. Chiu. An OpenCLTM deep learning accelerator on Arria 10.

arXiv, pages 55–64, 2017.

63

[60] Roberto Di Cecco, Griffin Lacey, Jasmina Vasiljevic, Paul Chow, Graham

Taylor, and Shawki Areibi. Caffeinated FPGAs: FPGA framework for con-

volutional neural networks. Proceedings of the 2016 International Confer-

ence on Field-Programmable Technology, FPT 2016, pages 265–268, 2017.

[61] Chi Zhang and Viktor Prasanna. Frequency domain acceleration of con-

volutional neural networks on CPU-FPGA shared memory system. FPGA

2017 - Proceedings of the 2017 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pages 35–44, 2017.

[62] Jong Hwan Ko, Burhan Mudassar, Taesik Na, and Saibal Mukhopadhyay.

Design of an energy-efficient accelerator for training of convolutional neu-

ral networks using frequency-domain computation. Proceedings - Design

Automation Conference, Part 12828, 2017.

[63] Stylianos I. Venieris and Christos Savvas Bouganis. FpgaConvNet: A

framework for mapping convolutional neural networks on FPGAs. Proceed-

ings - 24th IEEE International Symposium on Field-Programmable Custom

Computing Machines, FCCM 2016, pages 40–47, 2016.

[64] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,

Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.

From high-level deep neural models to fpgas. In 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),

pages 1–12. IEEE, 2016.

[65] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang.

A high performance fpga-based accelerator for large-scale convolutional

neural networks. In 2016 26th International Conference on Field Pro-

grammable Logic and Applications (FPL), pages 1–9. IEEE, 2016.

[66] Giuseppe Natale, Marco Bacis, and Marco Domenico Santambrogio. On

how to design dataflow FPGA-based accelerators for convolutional neural

networks. Proceedings of IEEE Computer Society Annual Symposium on

VLSI, ISVLSI, 2017-July:639–644, 2017.

64

[67] K. Abdelouahab, M. Pelcat, J. Serot, C. Bourrasset, and F. Berry. Tactics to

directly map CNN graphs on embedded FPGAs. IEEE Embedded Systems

Letters, 9(4):113–116, 2017.

[68] Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, and Soheil Ghi-

asi. Design space exploration of FPGA-based deep convolutional neural

networks. Proceedings of the Asia and South Pacific Design Automation

Conference, ASP-DAC, 25-28-Janu:575–580, 2016.

[69] Paolo Meloni, Gianfranco Deriu, Francesco Conti, Igor Loi, Luigi Raffo,

and Luca Benini. Curbing the roofline: A scalable and flexible architecture

for CNNs on FPGA. 2016 ACM International Conference on Computing

Frontiers - Proceedings, pages 376–383, 2016.

[70] Mohammad Motamedi, Philipp Gysel, and Soheil Ghiasi. PLACID: A plat-

form for FPGA-based accelerator creation for DCNNs. ACM Transactions

on Multimedia Computing, Communications and Applications, 13(4):1–21,

2017.

[71] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang,

Han Hu, Yun Liang, and Jason Cong. Automated systolic array architecture

synthesis for high throughput CNN inference on FPGAs. Proceedings -

Design Automation Conference, Part 12828:1–6, 2017.

[72] Murugan Sankaradas, Venkata Jakkula, Srihari Cadambi, Srimat Chakrad-

har, Igor Durdanovic, Eric Cosatto, and Hans Peter Graf. A massively

parallel coprocessor for convolutional neural networks. In 2009 20th IEEE

International Conference on Application-specific Systems, Architectures and

Processors, pages 53–60. IEEE, 2009.

[73] Clément Farabet, Cyril Poulet, Jefferson Y Han, and Yann LeCun. Cnp:

An fpga-based processor for convolutional networks. In 2009 International

Conference on Field Programmable Logic and Applications, pages 32–37.

IEEE, 2009.

[74] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari

Cadambi. A dynamically configurable coprocessor for convolutional neural

65

networks. In Proceedings of the 37th annual international symposium on

Computer architecture, pages 247–257, 2010.

[75] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio

Culurciello, and Yann LeCun. Neuflow: A runtime reconfigurable dataflow

processor for vision. In CVPR 2011 workshops, pages 109–116. IEEE, 2011.

[76] Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and Euge-

nio Culurciello. A 240 g-ops/s mobile coprocessor for deep neural networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 682–687, 2014.

[77] Atul Rahman, Jongeun Lee, and Kiyoung Choi. Efficient fpga acceleration

of convolutional neural networks using logical-3d compute array. In 2016

Design, Automation & Test in Europe Conference & Exhibition (DATE),

pages 1393–1398. IEEE, 2016.

[78] Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma Vrudhula. Scal-

able and modularized rtl compilation of convolutional neural networks onto

fpga. In 2016 26th International Conference on Field Programmable Logic

and Applications (FPL), pages 1–8. IEEE, 2016.

[79] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-layer

cnn accelerators. In 2016 49th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[80] Jack B Dennis and David P Misunas. A preliminary architecture for a

basic data-flow processor. In Proceedings of the 2nd annual symposium on

Computer architecture, pages 126–132, 1974.

[81] Lin Li, Tiziana Fanni, Timo Viitanen, Renjie Xie, Francesca Palumbo, Luigi

Raffo, Heikki Huttunen, Jarmo Takala, and Shuvra S Bhattacharyya. Low

power design methodology for signal processing systems using lightweight

dataflow techniques. In 2016 Conference on Design and Architectures for

Signal and Image Processing (DASIP), pages 82–89. IEEE, 2016.

66

[82] Chung-Ching Shen, William Plishker, Hsiang-Huang Wu, and Shuvra S

Bhattacharyya. A lightweight dataflow approach for design and implemen-

tation of sdr systems. In Proceedings of the Wireless Innovation Conference

and Product Exposition, pages 640–645. Citeseer, 2010.

[83] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz.

Pruning convolutional neural networks for resource efficient inference. 5th

International Conference on Learning Representations, ICLR 2017 - Con-

ference Track Proceedings, (2015):1–17, 2017.

[84] Tomoya Fujii, Simpei Sato, Hiroki Nakahara, and Masato Motomura. An

FPGA realization of a deep convolutional neural network using a threshold

neuron pruning. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), 10216 LNCS:268–280, 2017.

[85] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish

Narayanan. Deep learning with limited numerical precision. 32nd Interna-

tional Conference on Machine Learning, ICML 2015, 3:1737–1746, 2015.

[86] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng

Zou. DoReFa-Net: Training low bitwidth convolutional neural networks

with low bitwidth gradients. 1(1):1–13, 2016.

[87] Matthieu Courbariaux, Jean Pierre David, and Yoshua Bengio. Training

deep neural networks with low precision multiplications. 3rd International

Conference on Learning Representations, ICLR 2015 - Workshop Track

Proceedings, (Section 5):1–10, 2015.

[88] Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. Hardware-

oriented approximation of convolutional neural networks. arXiv preprint

arXiv:1604.03168, pages 1–8, 2016.

[89] Matthieu Courbariaux, Yoshua Bengio, and Jean Pierre David. Bina-

ryconnect: Training deep neural networks with binary weights during

propagations. Advances in Neural Information Processing Systems, 2015-

Janua:3123–3131, 2015.

67

[90] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. YodaNN: An

ultra-low power convolutional neural network accelerator based on binary

weights. Proceedings of IEEE Computer Society Annual Symposium on

VLSI, ISVLSI, 2016-Septe:236–241, 2016.

[91] Rui Zhao, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Saliency de-

tection by multi-context deep learning. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 07-12-

June:1265–1274, 2015.

[92] Hyeonuk Sim and Jongeun Lee. A new stochastic computing multiplier with

application to deep convolutional neural networks. Proceedings - Design

Automation Conference, Part 12828:1–6, 2017.

[93] Vincent T Lee, Armin Alaghi, John P Hayes, Visvesh Sathe, and Luis Ceze.

Energy-efficient hybrid stochastic-binary neural networks for near-sensor

computing. pages 13–18, 2017.

[94] Sebastian Vogel, Christoph Schorn, Andre Guntoro, and Gerd Ascheid.

Efficient stochastic inference of bitwise deep neural networks. (Nips):1–6,

2016.

[95] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun Lee,

and Kiyoung Choi. Dynamic energy-accuracy trade-off using stochastic

computing in deep neural networks. Proceedings - Design Automation Con-

ference, 05-09-June(1):1–6, 2016.

[96] Ao Ren, Zhe Li, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Ji Li, Xuehai Qian,

and Bo Yuan. Sc-dcnn: Highly-scalable deep convolutional neural network

using stochastic computing. ACM SIGPLAN Notices, 52(4):405–418, 2017.

[97] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Fixed point optimiza-

tion of deep convolutional neural networks for object recognition. In 2015

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 1131–1135. IEEE, 2015.

68

[98] Arash Ardakani, François Leduc-Primeau, Naoya Onizawa, Takahiro

Hanyu, Senior Member, Warren J Gross, and Senior Member. VLSI imple-

mentation of deep neural network. IEEE Transaction on very large scale

integration systems, 25(10):2688–2699, 2017.

[99] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quan-

tization of deep convolutional networks. In International conference on

machine learning, pages 2849–2858. PMLR, 2016.

[100] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and

Yoshua Bengio. Quantized neural networks: Training neural networks with

low precision weights and activations. The Journal of Machine Learning

Research, 18(1):6869–6898, 2017.

[101] Shu-Chang Zhou, Yu-Zhi Wang, He Wen, Qin-Yao He, and Yu-Heng Zou.

Balanced quantization: An effective and efficient approach to quantized

neural networks. Journal of Computer Science and Technology, 32(4):667–

682, 2017.

[102] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng.

Quantized convolutional neural networks for mobile devices. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 4820–4828, 2016.

[103] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna

Pensky. Sparse convolutional neural networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 806–814, 2015.

[104] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both

weights and connections for efficient neural networks. arXiv preprint

arXiv:1506.02626, pages 1–9, 2015.

[105] Sina Ghaffari and Saeed Sharifian. Fpga-based convolutional neural net-

work accelerator design using high level synthesize. In 2016 2nd Interna-

tional Conference of Signal Processing and Intelligent Systems (ICSPIS),

pages 1–6. IEEE, 2016.

69

[106] Gan Feng, Zuyi Hu, Song Chen, and Feng Wu. Energy-efficient and high-

throughput fpga-based accelerator for convolutional neural networks. In

2016 13th IEEE International Conference on Solid-State and Integrated

Circuit Technology (ICSICT), pages 624–626. IEEE, 2016.

[107] Dai Rongshi and Tang Yongming. Accelerator implementation of lenet-5

convolution neural network based on fpga with hls. In 2019 3rd Inter-

national Conference on Circuits, System and Simulation (ICCSS), pages

64–67. IEEE, 2019.

[108] Mengxing Zhao, Xiang Li, Shunyi Zhu, and Li Zhou. A method for accel-

erating convolutional neural networks based on fpga. In 2019 4th Interna-

tional Conference on Communication and Information Systems (ICCIS),

pages 241–246. IEEE, 2019.

[109] Jialiang Zhang and Jing Li. Improving the performance of opencl-based

fpga accelerator for convolutional neural network. In Proceedings of the

2017 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, pages 25–34, 2017.

[110] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A comprehensive per-

formance comparison of cuda and opencl. In 2011 International Conference

on Parallel Processing, pages 216–225. IEEE, 2011.

[111] François Serre and Markus Püschel. A dsl-based fft hardware generator in

scala. In 2018 28th International Conference on Field Programmable Logic

and Applications (FPL), pages 315–3157. IEEE, 2018.

[112] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson,

Jonathan Ragan-Kelley, and Mark Horowitz. Programming heterogeneous

systems from an image processing dsl. ACM Transactions on Architecture

and Code Optimization (TACO), 14(3):1–25, 2017.

[113] Hui Wei and Hu Li. Shape description and recognition method inspired by

the primary visual cortex. Cognitive Computation, 6(2):164–174, 2014.

70

[114] Raad H.Thaher and Zaid K. Hussein. Stereo vision distance estimation em-

ploying SAD with canny edge detector. International Journal of Computer

Applications, 107(3):38–43, 2014.

[115] Paulo A. S. Mendes and A. Paulo Coimbra. Movement detection and mov-

ing object distinction based on optical flow for a surveillance system. Trans-

actions on Engineering Technologies, 0958:143–158, 2021.

[116] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. 3rd International Conference on Learning

Representations, ICLR 2015 - Conference Track Proceedings, pages 1–14,

2015.

[117] By Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet

classification with deep convolutional neural networks. Communications of

the ACM, 60(6):84–90, 2012.

[118] Guangyong Zeng, Yi He, Zongxue Yu, Xi Yang, Ranran Yang, and Lei

Zhang. Going deeper with convolutions. Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 91(8):2322–

2330, 2016.

[119] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[120] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and

Andrew Y Ng. Reading digits in natural images with unsupervised fea-

ture learning. NIPS Workshop on Deep Learning and Unsupervised Feature

Learning, pages 1–9, 2011.

[121] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. Technical report, University of Toronto, pages 32–33,

2009.

[122] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

71

stein, Alexander C. Berg, and Li Fei-Fei. ImageNet large scale visual recog-

nition challenge. International Journal of Computer Vision, 115(3):211–

252, 2015.

[123] Jojo Moolayil, Jojo Moolayil, and Suresh John. Learn keras for deep neural

networks. Springer, 2019.

[124] Vishnu Subramanian. Deep Learning with PyTorch: A practical approach

to building neural network models using PyTorch. Packt Publishing Ltd,

2018.

[125] Tsung Han Tsai, Yuan Chen Ho, and Ming Hwa Sheu. Implementation of

FPGA-based accelerator for deep neural networks. Proceedings - 2019 22nd

International Symposium on Design and Diagnostics of Electronic Circuits

and Systems, DDECS 2019, 7:73–76, 2019.

[126] Giacinto Paolo Saggese, Antonino Mazzeo, Nicola Mazzocca, and Anto-

nio GM Strollo. An fpga-based performance analysis of the unrolling, tiling,

and pipelining of the aes algorithm. In International Conference on Field

Programmable Logic and Applications, pages 292–302. Springer, 2003.

[127] Lin Li, Shaoyu Lin, Shuli Shen, Kongcheng Wu, Xiaochao Li, and Yihui

Chen. High-throughput and area-efficient fully-pipelined hashing cores us-

ing bram in fpga. Microprocessors and Microsystems, 67:82–92, 2019.

[128] Xilinx. Vitis AI user guide. 1414:1–157, 2019.

[129] Zynq Dpu. Zynq DPU v3.2. 338:1–57, 2020.

[130] Sangya Dutta, Vinay Kumar, Aditya Shukla, Nihar R Mohapatra, and

Udayan Ganguly. Leaky integrate and fire neuron by charge-discharge dy-

namics in floating-body mosfet. Scientific reports, 7(1):1–7, 2017.

[131] Dibyendu Chatterjee and Anil Kottantharayil. A cmos compatible bulk

finfet-based ultra low energy leaky integrate and fire neuron for spiking

neural networks. IEEE Electron Device Letters, 40(8):1301–1304, 2019.

72

[132] Alireza Bagheri, Osvaldo Simeone, and Bipin Rajendran. Training prob-

abilistic spiking neural networks with first-to-spike decoding. In 2018

IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pages 2986–2990. IEEE, 2018.

[133] Alberto Marchisio, Giorgio Nanfa, Faiq Khalid, Muhammad Abdullah

Hanif, Maurizio Martina, and Muhammad Shafique. Is spiking secure? a

comparative study on the security vulnerabilities of spiking and deep neu-

ral networks. In 2020 International Joint Conference on Neural Networks

(IJCNN), pages 1–8. IEEE, 2020.

[134] Saima Sharmin, Priyadarshini Panda, Syed Shakib Sarwar, Chankyu Lee,

Wachirawit Ponghiran, and Kaushik Roy. A comprehensive analysis on

adversarial robustness of spiking neural networks. In 2019 International

Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019.

[135] Riccardo Massa, Alberto Marchisio, Maurizio Martina, and Muhammad

Shafique. An efficient spiking neural network for recognizing gestures with

a dvs camera on the loihi neuromorphic processor. In 2020 International

Joint Conference on Neural Networks, IJCNN 2020, page 9207109. Institute

of Electrical and Electronics Engineers Inc., 2020.

[136] Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage

and threshold optimization in deep spiking neural networks. arXiv preprint

arXiv:2008.03658, pages 1–11, 2020.

[137] Ling Liang, Xing Hu, Lei Deng, Yujie Wu, Guoqi Li, Yufei Ding, Peng

Li, and Yuan Xie. Exploring adversarial attack in spiking neural networks

with spike-compatible gradient. arXiv preprint arXiv:2001.01587, pages

1–18, 2020.

[138] Rida El-Allami, Alberto Marchisio, Muhammad Shafique, and Ihsen

Alouani. Securing deep spiking neural networks against adversarial attacks

through inherent structural parameters. arXiv preprint arXiv:2012.05321,

pages 1–6, 2020.

73

[139] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox v0. 8.0: A

python toolbox to benchmark the robustness of machine learning models.

corr abs/1707.04131 (2017). arXiv preprint arXiv:1707.04131, pages 1–6,

2017.

74

List of Publication

1. TRAN, Thi Diem; KIMURA, Mutsumi; NAKASHIMA, Yasuhiko. Pri-

mary Visual Cortex Inspired Feature Extraction Hardware Model. In: 2020

4th International Conference on Recent Advances in Signal Processing,

Telecommunications & Computing (SigTelCom). IEEE, p. 20-24, 2020.

[Correspond to Chapter 3 and 4]

2. TRAN, Thi Diem; NAKASHIMA, Yasuhiko. SLIT: An Energy-Efficient

Reconfigurable Hardware Architecture for Deep Convolutional Neural Net-

works. IEICE Transactions on Electronics, p. 319-329, 2020. [Correspond

to Chapter 3, 4 and 5]

3. TRAN, Thi Diem; NAKASHIMA, Yasuhiko. Exploring Versatility of Pri-

mary Visual Cortex Inspired Feature Extraction Hardware Model through

Various Network Architectures. In: 2021 4th International Conference on

Computing, Electronics & Communications Engineering (iCCECE2021).

IEEE, p. 53-58, 2021. [Correspond to Chapter 5 and 6]

75

