
Doctoral Dissertation

Bayesian Inference Approach for Robust Deep

Neural Networks

KHONG THI THU THAO
Program of Information Science and Engineering

Graduate School of Science and Technology

Nara Institute of Science and Technology

Supervisor: Professor Yasuhiko Nakashima

Computing Architecture Lab. (Division of Information Science)

December 03, 2021

A Doctoral Dissertation

submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

KHONG THI THU THAO

Thesis Committee:

Supervisor Prof. Yasuhiko Nakashima

(Professor, Division of Information Science)

Co-supervisor Prof. Kazushi Ikeda

(Professor, Division of Information Science)

Assoc. Prof. Renyuan Zhang

(Associate Professor, Division of Information Science)

Vis. Assoc. Prof. Tran Thi Hong

(Visiting Associate Professor, Division of Information Science)

Bayesian Inference Approach for Robust Deep

Neural Networks*

KHONG THI THU THAO

Abstract

The rapid deployment of deep neural networks (DNNs) and deep learning al-

gorithms have been proving their enormous potentiality in a wide range of com-

puter vision and the field of recognition. Nonetheless, due to a vulnerability, deep

learning models’ ability to complicated situations requires a fundamental tool for

computer security. Recent studies have been shown a vulnerability of DNNs by

a small adversarial perturbation in images that humans cannot distinguish and

a well-trained neural network can misclassify. Therefore, there are many defense

methods to improve the robustness of DNNs against adversarial attacks, for ex-

ample, adversarial detection, statistical properties of network parameters, the

normalization of input data, adversarial training, etc. Among them, adversarial

training is an outstanding defense, but it is a challenge with respect to real data

and large DNNs.

In order to avoid adversarial training, we have proposed a defense algo-

rithm named Bayes without Bayesian Learning (BwoBL). Our algorithm builds

Bayesian Neural Networks (BNNs) based on pre-trained DNNs and focuses on

Bayesian inference without costing Bayesian learning. The stochastic compo-

nents of BNNs can prevent the forceful gradient-based attacks and generate the

ensemble model to enhance the DNN performance. As an application of transfer

learning, BwoBL can easily integrate into any pre-trained DNN, which is trained

on both natural and adversarial data. We have investigated the application of

BwoBL to a variety of DNN architectures, such as Convolutional Neural Net-

works (CNNs) and Self-Attention Networks (SANs). It is believed that, unless

*Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science

and Technology, December 03, 2021.

i

making DNN models larger, DNNs would be hard to strengthen the robustness

to adversarial images. Our algorithm then employs scaling networks of CNNs

and SANs, e.g., ResNet, EfficientNet, and SAN19 to construct BNNs against a

diversity of adversarial attacks.

We assess the robustness of our BNN models by the top-1 accuracy on small

datasets, i.e., CIFAR-10 and CIFAR-100, and the top-5 accuracy on real datasets

like ImageNet. Our experiments utilize the currently strong attacks such as Pro-

jected Gradient Descent (PGD) and Carlini & Wagner (C&W) to produce adver-

sarial examples. Experimental results have proved the efficiency of our BwoBL

algorithm for resisting adversarial perturbation and solving the challenges of ad-

versarial training and Bayesian learning.

Keywords:

Bayesian Neural Network (BNN), Deep Neural Network (DNN), Image Classifi-

cation, Adversarial Attacks, Adversarial Robustness

ii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Research Contribution . 4

1.3 Dissertation Layout . 5

2 Related Literature 6

2.1 Overview of Bayesian Neural Network 6

2.2 Adversarial attacks of deep neural networks 9

2.3 Defense methods against adversarial perturbation 12

3 Bayesian Neural Networks and Bayesian inference 14

3.1 Proposed BNNs . 14

3.2 Construction of BNN based on CNN 17

3.2.1 Bayesian ResNet . 18

3.2.2 Bayesian PreActResNet 22

3.2.3 Bayesian EfficientNet . 22

3.3 Construction of BNN based on SAN 26

3.4 Bayesian inference via BwoBL algorithm 29

3.4.1 Opportunities for Bayesian inference 29

3.4.2 Bayes without Bayesian Learning 32

4 Robustness of BNNs with BwoBL algorithm 35

4.1 Assessment on CIFAR-10/100 . 35

4.1.1 Setup of BNN models and adversarial attacks 35

4.1.2 Structural hyperparameter and ensemble 35

4.1.3 Tolerance for adversarial attacks 37

4.2 Evaluation on ImageNet . 40

4.2.1 Setup of BNN models . 40

4.2.2 Setup of adversarial attacks 43

4.2.3 Structural hyperparameter 43

4.2.4 Ensemble inference . 45

4.2.5 Performance on natural ImageNet 47

iii

4.2.6 Tolerance on PGD adversaries 47

4.2.7 Tolerance on C&W adversaries 52

4.2.8 Comprehensive assessment 55

5 Conclusion 57

Acknowledgements 58

References 59

iv

List of Figures

1 The feature extraction of a convolutional neural network in image

classification [1]. 2

2 An adversarial perturbation on an image of ImageNet dataset with

DNN. This perturbation causes the image to be misclassified by

DNN. Left: an input of the model is the original image with its

label ”giant panda”. Middle: an adversarial perturbation is con-

trolled by ε. Right: the perturbed image with the predicted output

”Scotch terrier”. 3

3 Comparison between a neural network and a Bayesian neural net-

work. Left: the weights of a neural network are single fixed values.

Right: the weights of a Bayesian neural network are Gaussian dis-

tributions [2]. 7

4 An illustration of adversarial attacks on ImageNet dataset and

ResNet-50 architecture. Left: Original images with their labels.

Middle: Perturbation enhanced 20 times by PGD attacks. Right:

Perturbed images are incorrectly predicted. 10

5 A comparison between a DNN and a BNN and an inner structure

of a neuron that show the replacement of fixed values with the

probabilities on the weights wij. Left : a DNN with specific values

of the weights. Middle: a BNN with the distribution function

of the weights. Right : an inner structure of a neuron with the

weights wij that are fixed values in a DNN replaced by probabilistic

distributions in a BNN. 15

6 An illustration of convolutional filters in CNN and BCNN. Left:

weights of CNN are single-point estimates. Right: weights of

BCNN are probabilistic distributions [3]. 17

7 Convolutional layers (3× 3) in a building block of ResNet model

are replaced with Bayes-conv layers (3× 3) in our BNN networks.

We keep the other layers of ResNet, such as batch normalization,

activation function (ReLU). Left: a building block of ResNet ar-

chitecture. Right: a building block of our Bayesian ResNet. 18

v

8 Convolutional layers in a “bottleneck” block of ResNet model are

replaced with Bayes-conv layers in our BNN networks with the

same dimension. Left: a “bottleneck” building block of ResNet-

50/101/152. Right: a “bottleneck” building block of our Bayesian

ResNets. 20

9 Bayesian ResNet-18 is built on the original ResNet-18. Bayes-

conv layers of Bayesian ResNet-18 (right) are the alternative of

convolutional layers in the original ResNet-18 (left). Other layers

(batch normalization and ReLU) of original model are kept and

hidden. 21

10 A “pre-activation” block (left) in PreActResNet architecture is al-

tered by a Bayesian “pre-activation” block (right) in our BNN

model. The replacement is only in convolutional layers with keep-

ing the size of filters. 23

11 Network scaling method [4]. (a) a baseline network; (b), (c), and

(d) are scaling on the width, depth, and resolution of a baseline

network; (e) a compound scaling method of EfficientNets. 24

12 Basic modules of EfficientNets. Bayesian EfficientNets are built

by the replacement of conv, depthwise conv, poinwise conv layers

with Bayes-conv layers. Other layers are originally kept. 25

13 Detailed architecture of EfficientNet-B0. 25

14 Linear transformation layers of the self-attention block (left) in

SAN models are replaced by Bayes-linear layers of our BNNs (right).

Other layers of SAN architecture are originally maintained. 27

15 Comparison between the majority voting output, the average out-

put, and the maximum output of the ensemble phase. 33

16 The influence of α on the robustness of proposed models, under

PGD attack of ε = 8/255 and it = 20 on CIFAR-10. 36

17 The robustness (top-1 accuracy) of proposed models is compared to

naturally pre-trained ResNet-18 (CNN no defense) and pre-trained

PreActResNet-18 on adversarial images (FAST) against PGD at-

tack of ε = 8/255 and it = {20, 50, 100} on CIFAR-10. 38

vi

18 The robustness of proposed models is compared to naturally pre-

trained ResNet-18 (CNN no defense) and pre-trained PreActResNet-

18 on adversarial images (FAST) against PGD attack of ε = 8/255

and it = {20, 50, 100} on CIFAR-100. Above: top-1 accuracy.

Below: top-5 accuracy. 39

19 The accuracy is a convex upward with the change of structural

hyperparameter α. The best α corresponds to the peak of the

convex upward. Our network: ResNet-50 + BwoBL. PGD attack:

l∞ norm, ε = 4/255, iteration = 10. Black and white markers

stand for step size 0.1 and step size 0.01 of α, respectively. 44

20 A number of forward passes in ensemble inference. The ensemble of

20 samples is chosen to attain a trade-off between the accuracy and

the computation cost for all our proposed models. Our network:

ResNet-50 + BwoBL. PGD attack: l∞ norm, ε = 4/255, iteration

= 10. 46

21 Summarized comparison between our proposal and other defense

methods of typical networks on natural images, PGD attack im-

ages: l∞ norm, ε = 4/255, iteration = 100, and C&W attack im-

ages. Sta. and Adv. training stand for Standard and Adversarial

training. 56

vii

List of Tables

1 Architecture of EfficientNet-B0 and the corresponding substitution

between EfficientNet and Bayesian EfficientNet. 24

2 SAN19 and Bayesian SAN19 for ImageNet. SA Block, C-d sa, C-d

linear stand for a self-attention block, a self-attention operation

with the output dimension C, a linear layer with the output di-

mension C. Linear layers and sa blocks of SANs are substituted by

Bayes-linear layers and Bayes-sa blocks. 28

3 Evaluation of top-1 accuracy to compare the robustness of adver-

sarial training by CNN (FAST), adversarial learning by BCNN

(Adv-BNN), and our proposal on CIFAR-10 with 10000 images of

the validation set, under l∞ PGD attack with pixel perturbation

(ε = 8/255) and 20 iterations. 30

4 A comparison of robust activation functions and our proposal on

CIFAR-10 under l2 C&W attack. We compare the results of SPLASH

activation function [5] and our BNN model on 1000 images chosen

from correctly classified images of ResNet-20. We also execute our

experiment five times to calculate mean ± standard deviation of

the number of success attacks as [5]. 31

5 Comparison of inference time between adversarial training and our

proposal. Latency is the average inference time for one image.

Each experiment is run on a single core of Intel®Core�i7-3970X

CPU and a GeForce RTX1080Ti GPU. 34

6 State-of-the-art DNN architectures are used in our experiments.

We apply BwoBL algorithm to pre-trained DNNs on natural and

adversarial ImageNet to construct our BNN models. 41

viii

7 Comparison of training time between adversarial training on CNN,

Bayesian learning on natural images, and Bayesian learning on ad-

versarial images. FAST adversarial training [98] has been imple-

mented in 15 epochs to achieve the most robustness. 10 samples

are used to execute the ensemble phase in BNNs. Each experi-

ment is run on a single core of Intel®Core�i9-10920X CPU and a

GeForce RTX3090 GPU. 42

8 Structural hyperparameter α that adjusts the variance of Gaussian

distribution on parameters of Bayes layers fixed for our proposed

BNNs. 45

9 Comparable top-5 accuracies (%) between pre-trained DNNs and

our proposed networks on natural ImageNet. 48

10 Robustness to PGD attacks: l∞ norm, pixel perturbation ε =

{2/255, 4/255}, iteration it = {10, 50, 100}, are evaluated by top-5

accuracies (%) and compared between naturally pre-trained DNNs

and our proposed networks. 49

11 Robustness to PGD attacks: l∞ norm, pixel perturbation ε =

{2/255, 4/255}, iteration it = {10, 50, 100}, are evaluated by top-

5 accuracies (%) and compared between adversarial pre-trained

DNNs and our proposed networks. 50

12 Robustness of our proposed networks and pre-trained DNNs to l2

norm C&W attack are assessed by top-5 accuracies (%). 54

ix

1 Introduction

This part represents the overview of deep learning security, adversarial attacks of

deep neural networks, and defense methods, which this dissertation has addressed.

Then, the research contribution has been shown. The rest of this part presents

the dissertation layout.

1.1 Overview

Owing to the wide applicability and super-human ability, machine learning sys-

tems have been employed in modern society as a general tool for computer appli-

cations. It is known that machine learning is an algorithm set to learn, executed

on computer systems, and solves a process of information mining, pattern dis-

covery, and inference from data [6]. When the algorithm learns, it alters itself

based on data; as humans learn to make better decisions based on experience

over time. If the brain controls all functions of a human, a neural network that

is modeled like a human brain implements all machine learning algorithms. A

neural network is designed to recognize the patterns of real-world data, such as

images, sounds, text, etc., throughout the learning process or training.

The application of machine learning to various complex tasks, e.g., image clas-

sification [7, 8, 9], object detection [10, 11, 12], and natural language processing

[13, 14] requires the use of multi-layer neural networks called Deep Neural Net-

works (DNNs), which are the stacking layers of statistical components to learn

representations of data. Representation learning methods are deep learning that

refers to a specific subset of machine learning [1, 15, 16]. Deep learning meth-

ods are obtained by composing computational modules of DNNs, in which each

transforms the representation at the low level that starts with raw data, into the

representation at the higher level. In image classification, for example, an image

is formed by an array of pixel values, and the stacking layers of DNNs compute

on these pixel values to capture and extract the features of the image, and the

final layer combines the extracted features to detect the object in the image,

as seen in Fig. 1. It is highlighted that the feature layers of DNNs are learned

from given data, called a training set, without a design of humans. Compared

to conventional machine learning models, DNNs could support humans to fea-

1

raw pixels could not possibly distinguish the latter two, while putting
the former two in the same category. This is why shallow classifiers
require a good feature extractor that solves the selectivity–invariance
dilemma — one that produces representations that are selective to
the aspects of the image that are important for discrimination, but
that are invariant to irrelevant aspects such as the pose of the animal.
To make classifiers more powerful, one can use generic non-linear
features, as with kernel methods20, but generic features such as those
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can
all be avoided if good features can be learned automatically using a
general-purpose learning procedure. This is the key advantage of
deep learning.

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which
compute non-linear input–output mappings. Each module in the
stack transforms its input to increase both the selectivity and the
invariance of the representation. With multiple non-linear layers, say
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details
— distinguishing Samoyeds from white wolves — and insensitive to
large irrelevant variations such as the background, pose, lighting and
surrounding objects.

Backpropagation to train multilayer architectures
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable
multilayer networks, but despite its simplicity, the solution was not
widely understood until the mid 1980s. As it turns out, multilayer
architectures can be trained by simple stochastic gradient descent.
As long as the modules are relatively smooth functions of their inputs
and of their internal weights, one can compute gradients using the
backpropagation procedure. The idea that this could be done, and
that it worked, was discovered independently by several different
groups during the 1970s and 1980s24–27.

The backpropagation procedure to compute the gradient of an
objective function with respect to the weights of a multilayer stack
of modules is nothing more than a practical application of the chain

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be
computed by working backwards from the gradient with respect to
the output of that module (or the input of the subsequent module)
(Fig. 1). The backpropagation equation can be applied repeatedly to
propagate gradients through all modules, starting from the output
at the top (where the network produces its prediction) all the way to
the bottom (where the external input is fed). Once these gradients
have been computed, it is straightforward to compute the gradients
with respect to the weights of each module.

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the
next, a set of units compute a weighted sum of their inputs from the
previous layer and pass the result through a non-linear function. At
present, the most popular non-linear function is the rectified linear
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0).
In past decades, neural nets used smoother non-linearities, such as
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster
in networks with many layers, allowing training of a deep supervised
network without unsupervised pre-training28. Units that are not in
the input or output layer are conventionally called hidden units. The
hidden layers can be seen as distorting the input in a non-linear way
so that categories become linearly separable by the last layer (Fig. 1).

In the late 1990s, neural nets and backpropagation were largely
forsaken by the machine-learning community and ignored by the
computer-vision and speech-recognition communities. It was widely
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly
thought that simple gradient descent would get trapped in poor local
minima — weight configurations for which no small change would
reduce the average error.

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always
reaches solutions of very similar quality. Recent theoretical and
empirical results strongly suggest that local minima are not a serious
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and
the surface curves up in most dimensions and curves down in the

Figure 2 | Inside a convolutional network.  The outputs (not the filters)
of each layer (horizontally) of a typical convolutional network architecture
applied to the image of a Samoyed dog (bottom left; and RGB (red, green,
blue) inputs, bottom right). Each rectangular image is a feature map

corresponding to the output for one of the learned features, detected at each
of the image positions. Information flows bottom up, with lower-level features
acting as oriented edge detectors, and a score is computed for each image class
in output. ReLU, rectified linear unit.

Red Green Blue

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)

Convolutions and ReLU

Max pooling

Max pooling

Convolutions and ReLU

Convolutions and ReLU

4 3 8 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEWINSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

Figure 1. The feature extraction of a convolutional neural network in image

classification [1].

ture techniques and yield better performance on a variety of visual benchmarks

[17, 18, 19, 20]. Nevertheless, statistical analysis is a core of deep learning or

machine learning models, which their outputs are often forms of probabilities

and confidence intervals. Because of statistical properties, DNNs always exist

a certain degree of risk that is a key aspect of deep learning security. DNNs

are often designed without security and are vulnerable to a motivated adversary

[6]. Therefore, an awareness of threat models must be maintained when building

deep learning systems for security-critical applications such as self-driving cars

and medical imaging.

DNNs have been shown to be vulnerable to adversarial perturbation [21, 22,

23, 24, 25, 26, 27, 28, 29] in the area of image recognition, which is crafted by

adding a little noise to original images. This perturbation is imperceptible to

human eyes but causes the misclassification of networks, as shown in Fig. 2.

The lack of robustness for DNNs with respect to adversarial examples exposes

security threats on the real systems of safety-critical applications that require

high confidence. It is noted that adversaries can take the benefits of DNNs to

avoid detection and defense. Defenders can learn from the attack methods and

adjust themselves against attacks, and attackers can also explore the properties of

defense approaches to craft a complete perturbation. Several attack methods have

recently been developed to generate adversarial images, such as Fast Gradient

2

original image,

classification: “giant_panda”

adversarial

perturbation

perturbed image,
classification: “Scotch_terrier”

＋ ϵ × 　　　　　　　＝

Figure 2. An adversarial perturbation on an image of ImageNet dataset with

DNN. This perturbation causes the image to be misclassified by DNN. Left: an

input of the model is the original image with its label ”giant panda”. Middle: an

adversarial perturbation is controlled by ε. Right: the perturbed image with the

predicted output ”Scotch terrier”.

Sign Method (FGSM) [21], Projected Gradient Descent (PGD) [30], C&W attack

[31], etc., which easily fool a neural network even when its accuracy is high. These

algorithms are designed based on a gradient of the loss function to minimize the

perturbation. They thus make adversarial images hard to distinguish from natural

images. There are two types of assumptions of the attacker’s understanding that

are white-box and black-box [32]. In white-box attacks, attackers can access

the whole inputs, outputs, architecture, and parameters of a model. Otherwise,

attackers only access inputs and outputs and know nothing about the architecture

and parameters of a model in black-box attacks [33]. Furthermore, if based on a

goal of misclassification, we have two other kinds of attacks, including targeted

and non-targeted attacks. Non-targeted attacks mean the adversary wants the

classifier to predict any incorrect label without caring what the new classification

is. In contrast, the adversary aims to change the output prediction to a specific

target class in targeted attacks [34]. The fact that defending a DNN from white-

box and non-targeted attacks is more challenging than the defense from black-box

and targeted counterparts, but white-box attacks are less to happen in practical

systems [35].

The existence of adversarial instances to the image classification task exposes

a weakness of DNNs, then how DNNs can learn the robust representation against

3

adversarial attacks is a big question to the research community of deep learn-

ing security. Studying the robustness of DNNs not only gains the security of

deep learning models but also helps us explore their missing aspects. Recently,

many effective defenses have been proposed, for instance, defensive distillation

[36], data augmentation [37], feature denoising networks [38], adversarial detec-

tion [39, 40, 41], robust activation functions [5, 42, 43, 44, 45], and adversarial

training [21, 30, 31, 46, 47]. Among them, adversarial training has been the most

outstanding defense of convolutional neural networks (CNNs), in which CNNs

learn the features of adversarial examples in the training procedure. Moreover,

[48] proved that the ensemble approach of several trained networks can enhance

the robustness, but also increase the model size. From this perception, the ran-

dom self-ensemble method [49] has been proposed by adding a random noise layer

before each convolutional layer to CNNs in both the training and inference phase.

Although this algorithm is equivalent to the ensemble of an infinite number of

random networks, it is not an optimal way to generate randomness. Hence, the

framework of Bayesian Neural Network (BNN) has been learned to improve the

robustness of neural networks [50]. With stochastic properties of BNN, it has

implied a robust DNN in uncertainty estimation [51, 52, 53, 54, 55, 56, 57, 58].

Liu et al. [50] introduced a combination of adversarial training and Bayesian

network to demonstrate that the uncertainty on the weights can be a protection

for DNNs. However, they have just executed the experiments on small datasets

such as MNIST [59], CIFAR-10 [60]. This method will become more ambitious

on large-scale datasets like ImageNet [61, 62].

From the advantages of BNN in the resistance to adversarial attacks, we

have proposed a new defense algorithm, named Bayes without Bayesian Learning

(BwoBL), which focuses on Bayesian inference. Our method not only achieves

robustness against adversarial perturbation of image but also does not consume

the additional training cost.

1.2 Research Contribution

Our research contributions can be summarized as follows:

� We assume that the weights of convolutional layers in DNN models are prob-

abilistic distributions to build BNN models. The uncertainty on weights of

4

BNNs can resist gradient-based attacks and generate the ensemble model

to boost the robustness.

� We build BNN models with the parameters that are learned parameters of

prominent DNN architectures adjusted by a structural hyperparameter and

probabilistic variable.

� We introduce the Bayes without Bayesian Learning algorithm to execute

Bayesian inference. BwoBL is shown as a capable defense against various

attacks that can be applied for a wide range of DNN architectures, such

as CNNs, Self-Attention Networks (SANs), and solve the overhead of the

training problem.

� The robustness of our proposal is assessed on CIFAR-10, CIFAR-100, and

ImageNet datasets to resist strong attacks, i.e., l∞ norm PGD and l2 norm

C&W perturbations.

� Our BwoBL algorithm can be easy to integrate into any pre-trained DNN,

which is trained on natural and adversarial images to improve the robustness

of these pre-trained models without additional training.

These contributions have been published in [63, 64].

1.3 Dissertation Layout

The remainder of this dissertation is structured as follows. Section 2 introduces

related work in Bayesian Neural Networks, adversarial attacks, and defense meth-

ods. Section 3 describes proposed BNN models, which are based on pre-trained

DNNs, and the Bayes without Bayesian Learning algorithm, which focus on

Bayesian inference. Section 4 evaluates the robustness of the Bayesian infer-

ence approach on deep neural networks and various datasets to resist adversarial

attacks. The conclusion is indicated in Section 5.

5

2 Related Literature

This part introduces the overview of Bayesian Neural Network and its advantages

and limitations. Next, adversarial attacks of deep neural networks have been

shown. The rest of this part indicates the main lines of defense methods resisting

adversarial perturbations.

2.1 Overview of Bayesian Neural Network

Bayesian methods for neural networks have been developed over decades in many

different fields. The regularization technique of conventional neural networks can

be seen as a Bayesian treatment. The values of regularization coefficients are cho-

sen when using the training data, Bayesian approaches thus avoid the over-fitting

problem, which often occurs in the traditional training. For the classification

area, DNNs tend to make overconfident decisions, which causes a risk in the pre-

diction of DNNs. For example, DNN-based solutions for diagnostic applications

in medicine have widely been developed without any risk management [65, 66].

Meanwhile, reliable information on automated decisions is a key requirement for

DNNs. Hence, the integration of Bayesian ideas and DNNs is a principle for

estimating the uncertainty of models. Bayesian Neural Network is a robust form

of DNNs with a valuable property of uncertainty estimation [67, 68].

BNNs are a unique combination of probabilistic models and neural networks.

Thus BNNs can yield stochastic guarantees on their prediction and generate the

distribution on their parameters that are learned from the observations [69, 70].

All parameters of BNNs are probabilistic distributions that are single fixed values

in DNNs, as shown in Fig. 3. With the application of Bayesian methods for neural

networks, we need to find a distribution function p(w|D) of weights w while we

have observed a dataset D [3, 69, 71]. Bayesian learning for neural networks

calculates the posterior distribution of weights, which can be achieved by using

Bayes’ theorem.

p(w|D) =
p(D|w)p(w)

p(D)
(1)

The denominator p(D) is evidence and given by

6

x1

x2

…

xd

h1,1

…

h1,n

h2,1

…

h2,m

y1

y2

…

yc

0.9

-0.2

-1.3

-0.4

-1.2

0.5

0.6

0.2

1.0

0.4

Input
Layer

First
Hidden
Layer

Second
Hidden
Layer

Output
Layer

x1

x2

…

xd

h1,1

…

h1,n

h2,1

…

h2,m

y1

y2

…

yc

μ/σ

μ/σ

μ/σ

μ/σ

μ/σ

μ/σ

μ/σ

μ/σ

μ/σ

μ/σ

Input
Layer

First
Hidden
Layer

Second
Hidden
Layer

Output
Layer

Figure 3. Comparison between a neural network and a Bayesian neural network.

Left: the weights of a neural network are single fixed values. Right: the weights

of a Bayesian neural network are Gaussian distributions [2].

p(D) =

∫
p(D|w)p(w)dw (2)

The integration of a prior distribution p(w) and a likelihood p(D|w) is exactly

intractable. Besides, a large number of parameters makes Bayesian learning hard,

the approximation to the posterior distribution is thus used. Various approxima-

tion methods for the true posterior distribution have been studied extensively

from the ’90s. The maximum a posterior scheme and second-order derivatives in

the prior distribution to the smoothness of approximating posterior distribution

were suggested in [72]. [73] proposed the first variational approximation to the

description of weights, which was as a regularization in neural networks. Laplace

approximation [74] and the hybrid Monte Carlo method [75] were investigated

for training neural networks based on the perturbations of the weights. However,

they have been difficult to apply to large size networks in modern applications.

Based on the variational inference for neural networks [76], [69] expanded this ap-

proximation to show how the gradients can be unbiased and simpler to compute.

Many authors have been studied and proposed various schemes to approximate

7

the intractable posterior probability, for example, dropout [77, 151], Gaussian

dropout [78, 79], multiplicative normalization for variational approximation [80],

and stochastic gradient MCMC [81]. Currently, Bayes by Backprop [69] is a

variational inference method that has successfully been used to train neural net-

works. In this approach, the posterior distribution is approximated by finding the

optimal approximating distribution q(w|D) that minimizes the Kullback-Leibler

(KL) divergence [82] with the true posterior p(w|D). Variational learning is to

find the optimal parameters θopt of a distribution on the weights.

θopt = argmin
θ

KL [qθ(w|D) ‖ p(w|D)] (3)

where

KL [qθ(w|D) ‖ p(w|D)] =

∫
qθ(w|D) log

qθ(w|D)

p(w)p(D|w)
(4)

The KL divergence is also intractable to compute exactly, [69] hence approx-

imate the tractable cost function as Eq. (5), which is optimized during training.

This approximation is by using Monte Carlo sampling [83, 84] to sample the

weights w from the variational distribution qθ(w|D).

F (D, θ) =
n∑
i=1

log qθ(w
(i)|D)− log p(w(i))− log p(D|w(i)) (5)

in which w(i) is the ith Monte Carlo sample drawn from qθ(w|D) and n is the

number of samples.

Gaussian variational posterior N (µ, σ2) is also supposed on the parameters of

BNN in [69], where the weights w can be sampled by a unit Gauss ξ ∼ N (0, I),

shifted by a mean µ and scaled by a standard deviation σ as follows:

w = µ+ σ � ξ (6)

where � denotes a point-wise multiplication. From this approximation, we can

see that the variational parameter θ = (µ, σ) is learned during the training phase.

It means both the mean and the standard deviation are calculated the gradients

by backpropagation, which makes the learning of BNNs bulky. Moreover, we face

the generation of representative samples of the weights that is generally not easy

in the learning process.

8

2.2 Adversarial attacks of deep neural networks

Adversarial examples have firstly been indicated by Szegedy et al. [23] in the

image classification domain. They proved that a prediction of a state-of-the-art

deep neural network could be changed by an imperceptible perturbation to a test

image, as seen in Fig. 4. This adversary is found by optimizing the input data to

maximize the error function.

We assume that x is an original input with a correct label y. Attack methods

are able to seek an adversarial input x′ that is classified by a label y′ 6= y. x and

x′ are close according to lp distance metric ‖ · ‖p noted as:

‖ x− x′ ‖p=

(
n∑
i=1

| xi − x′i |p
) 1

p

(7)

With this attribute, x′ is called a non-targeted adversarial example. Instead of

classifying x to the prediction y′ 6= y, we search x′ to classify it as a given tar-

get class t so that y′ = t in targeted adversarial attacks [31]. For attackers,

non-targeted attacks are less strong than targeted counterparts. For defenders,

by contrast, resistance to non-targeted adversaries is more challenging. Further-

more, Biggio et al. [85] introduced two attack scenarios, i.e., perfect knowledge,

and limited knowledge. In a perfect-knowledge setting, the adversary knows the

feature space, the output of the classifier, and the trained model, which is also

called white-box adversaries. In limited-knowledge adversaries or black-box ad-

versaries, the adversary only knows the input and the output of models. In

this dissertation, we focus on the white-box and non-targeted attack setting to

baseline models.

Although DNNs have obtained admirable performances in image classification,

adversarial attacks can still easily fool the network, even when its accuracy is high.

In recent years, several attack approaches have been studied [21, 24, 30, 31, 86,

87, 88, 89] that craft adversarial examples by using a gradient of the objective

function in regard to the input data and adjusting to maximize the loss. FGSM

[21] is a single-step attack algorithm, which perturbs the original input by the

direction of the gradient of the loss function J(θ, x, y), in which θ is the parameters

of a model. A perturbation ε is added to each pixel to control the l∞ distance

9

Figure 4. An illustration of adversarial attacks on ImageNet dataset and ResNet-

50 architecture. Left: Original images with their labels. Middle: Perturbation

enhanced 20 times by PGD attacks. Right: Perturbed images are incorrectly

predicted.

metric between the original image x and the perturbed image x′ so that

‖ x− x′ ‖∞≤ ε (8)

10

It is noted that FGSM is designed to be fast rather than optimal. It means

this algorithm does not produce minimal adversarial examples. Instead, Kurakin

et al. [24] proposed the Iterative Gradient Sign to take a multi-step perturbation

based on FGSM. Currently, a PGD attack of Madry et al. [30] is the best multi-

step variant of FGSM. The PGD algorithm implements a strong iterative attack

to generate adversarial instances, which follows the update as:

xt+1 =
∏
ε

(
xt + β sign (5xJ(θ, x, y))

)
(9)

in which β is an attack step size, and
∏

ε is a projection to l∞ norm adversary.

Other approaches like FGSM have also been demonstrated in [90]. Nonetheless,

PGD is still a standard method for large-scale constrained optimization. Madry

et al. [30] proved that a network was trained to be robust against PGD attacks,

it would become robust to a wide range of first-order adversaries.

In addition, Carlini and Wagner introduced C&W approach [31] that con-

structs adversarial examples x′ = 1
2

(tanh(w) + 1) by searching for w in l2 distance

to solve the optimization problem:

min

∥∥∥∥1

2
(tanh(w) + 1)− x

∥∥∥∥2
2

+ c · f
(

1

2
(tanh(w) + 1)

)
(10)

where c is a constant that is chosen by the modified binary search and f(·) is an

objective function defined as:

f(x′) = max (max (Z(x′)i : i 6= t)− Z(x′)t,−κ) (11)

The parameter κ helps us find an adversarial example with high confidence. Z(·)
is the output of the network. To select an optimal c, we must perform several

iterations of binary search. With each chosen value of c, we also run a number

of iterations of gradient descent to seek an optimal adversarial instance. Owing

to these iterations, the converge of C&W attacks is slower than that of PGD.

Therefore, in the experiments, we execute PGD as the main attack and C&W is

the additional evaluation to verify our algorithm.

11

2.3 Defense methods against adversarial perturbation

As long as DNNs can be vulnerable to adversarial attacks, a large number of

defense algorithms have been proposed in recent times [30, 31, 46, 91, 92, 93,

94, 95, 96, 97, 98, 99, 100]. Several authors showed the properties of activation

functions could affect the robustness of DNNs and designed robust activation

functions as defense methods. However, most of them are optimized by adver-

sarial training. It is known that adversarial training is currently the most robust

algorithm that trains DNNs on perturbed examples. Madry et al. [30] proposed

adversarial training to improve the robustness of DNNs resisting PGD attacks

on MNIST and CIFAR-10. They focus on the natural saddle point (min-max)

formulation that is optimized by adversarial training as follows:

min
θ

E(x,y)∼D

[
max
ε∈S

J(θ, x+ ε, y)

]
(12)

where D is an underlying data distribution over the pairs of x examples and y

corresponding labels, J(·) is a suitable loss function, θ is network parameters, and

the per-pixel perturbation ε is allowed in the perturbed range S.

The formula in Eq. (12) shows two computation steps of adversarial training:

(1) an inner maximization, which takes adversarial instances, and (2) an outer

minimization, which finds model parameters. The robustness of adversarial train-

ing depends on the strength of the adversaries that are generated by the inner

maximization. There are two problems in the generation of adversarial examples

for training, which are derived from Eq. (12).

� Firstly, if ε is fixed during training, the robustness of the network only

resists an adversarial attack of that ε value.

� Secondly, many iterations of the gradient computation are required so that

PGD algorithm converge to optimal adversaries, which consumes the high

cost of the computation time.

Due to the high cost of generating adversarial instances, many FGSM-based

adversarial training methods are designed to accelerate the computation against

PGD attacks. Nevertheless, the fast training on FGSM adversaries is only robust

against non-iterative attacks but is difficult to resist iterative counterparts like

12

PGD adversaries. Besides, Wong et al. [98] have shown the lack of a diversity of

adversarial examples generated by FGSM attack causes catastrophic overfitting

in the training phase. Additionally, to achieve the outer minimization in Eq. (12),

the training process must be performed in many epochs. The iteration of the inner

maximization and the outer minimization make adversarial training unrealistic

on large-scale datasets like ImageNet.

The idea of adding stochastic components to DNNs and training these mod-

els on perturbed data has been perceived as a good defense to prevent strong

gradient-based attacks. Liu et al. [50] indicated the dominance of BNNs in im-

proving the robustness of DNNs to adversarial attacks on CIFAR-10 and ImageNet-

143. However, adversarial Bayesian training will be harder on ImageNet because

Bayesian learning has some disadvantages as below,

� The weights of BNNs are described by probabilistic distributions, e.g.,

Gaussian function. The number of parameters is thus double. If a net-

work architecture is sizable, it shall have a huge number of parameters.

� Since the functional form of BNNs does not enable it to exact the integral,

we often take a variational approximation to the posterior distribution on

the weights. This makes the optimization problem much larger scale.

� The uncertainty of the weights leads to a coherent variability of the train-

ing data during training. BNN learning hence trains an ensemble of the

networks instead of a single network, which is called Ensemble Learning.

This is not tractable for BNNs of any practical size.

The current trend of defense approaches must be both the robustness im-

provement and the overhead limitation of the training problem. Based on the ad-

vantages of BNNs towards resisting perturbations, we mainly focus on Bayesian

inference with the proposed BwoBL algorithm to withstand strong adversarial

attacks and avoid the additional adversarial training.

13

3 Bayesian Neural Networks and Bayesian in-

ference

Deep convolutional neural networks have currently been the state-of-the-art mod-

els for image classification [101, 102, 103, 104, 105, 106, 107, 108, 109, 110]. Ad-

ditionally, recent work has shown self-attention as a capable alternative for image

recognition models [111, 112, 113, 114, 115, 116, 117, 118, 119, 120]. Based on

these pre-trained CNNs and SANs, we build our BNNs that replace convolutional

layers in CNNs and linear transformation layers in SANs with Bayes layers. In

Bayes layers, instead of single-point values, the parameters are the probabilistic

distribution. Other layers in CNN and SAN architectures are originally kept.

3.1 Proposed BNNs

There are many definitions of Bayesian methods for neural networks. For ex-

ample, the regularization technique of conventional neural networks or adding

dropout layers to neural networks can be seen as a Bayesian treatment [77, 151].

Neural networks with the probabilistic distribution over the weights have been

studied as Bayesian neural networks [52, 57], which are described in Fig. 5. When

we generate the uncertainty on the model parameters, our model is a Bayesian

neural network. Several distribution functions, which are used to describe the pa-

rameters of a Bayesian neural network, are Gauss, Bernoulli, etc. The Gaussian

distribution is widely utilized in Bayesian neural networks due to its more accu-

rate prediction, although the number of parameters and the calculation increase.

We have calculated the posterior distribution of weights according to Bayes’

theorem in the Bayesian learning process, as introduced in Section 2.1. However,

Bayesian probability theory often comes with an intractable computation because

the number of parameters is very large and the function form does not allow it to

exact integration. Then, various approximations have been employed, in which

variational inference is a new approximation for Bayesian neural networks. In

this Bayesian learning, the variational posterior of weight is supposed to be a

Gaussian distribution, then, the variational posterior parameters are µ and σ. To

approximately calculate, Monte Carlo sampling is utilized to draw the sample of

14

x1

h1

h2

h3

y1

1.1

0.2

0.7

0.4

0.1

0.7x2

0.5

1.4

0.1

x1

h1

h2

h3

y1

x2

WijWij

𝒇: activation function

Wij
xi

Xi-1

Xi+1

∑ 𝒇
zj

b

∑: sum of weighted inputs

(xiwij) + bias (b)

Figure 5. A comparison between a DNN and a BNN and an inner structure of

a neuron that show the replacement of fixed values with the probabilities on the

weights wij. Left : a DNN with specific values of the weights. Middle: a BNN with

the distribution function of the weights. Right : an inner structure of a neuron

with the weights wij that are fixed values in a DNN replaced by probabilistic

distributions in a BNN.

weights from the Gaussian variational posterior, as shown in Eq. (6). Therefore,

we have just initialized the samples of weights according to Eq. (6) to build our

Bayesian model.

The Bayes layer is the main component in our BNN models, which is described

by the probabilistic distribution on parameters. In pre-trained CNNs, we substi-

tute Bayes-conv layers for convolutional layers with the same size of filters. Linear

transformation layers are replaced by Bayes-linear layers in pre-trained SANs. As

an application of Gaussian variational posterior [69] and Gaussian dropout [78],

we approximate the variational posterior of our BNNs with a Gaussian distribu-

tion N (µ, σ2). Based on the relationship of parameters between DNNs and BNNs

(as seen in Fig. 5), we employ pre-trained DNNs to construct our BNNs in which

the mean µ of weights is assigned by single-point weights of DNNs. We focus on

controlling the variance σ2 to create uncertainty on the weights.

We assume the posterior approximation on the weights to be fully factorized

Gaussian distribution q(w) = N (θ, ρθ2) that has been discussed by Kingma et

al. [79]. This variational posterior is accurately an approximation to implement

a reparameterization in Bayes layers, which plays an essential role in the con-

struction of our BNNs. The variance of w is tied by its magnitude. A larger

15

weight is then valuable when it is robust to noise. From this perspective, we have

a formula of the weight sample in Bayes-conv and Bayes-linear layers instead of

Eq. (6) as follows

w = θ + αθ � ξ (13)

where ξ is a Gaussian unit N (0, I). We treat θ as single fixed values of pre-trained

DNN parameters while α =
√
ρ is empirically determined by the robustness of

the BNN model against the adversarial attack. Our aim is the use of pre-trained

DNNs to construct our BNNs and avoid Bayesian learning, which is a term of

transfer learning. From Fig. 5(right), we have the relationship between input xi,

output zj and parameters as follows:

� In DNNs: zj = f
(∑m−1

0 θijxi + b
)

� In BNNs: zj = f
(∑m−1

0 wijxi + b
)

where b ∈ R is bias, θij is single-point values of the weights, the output zj is also

single fixed values in DNNs. Contrarily, in BNNs, the weights wij is the random

samples of Gaussian distribution, the output zj is then an uncertainty followed

wij. Therefore, the output of BNN is stochastic values, which is generated by the

uncertainty on weights wij and make the ensemble inference procedure of BNN.

It is known that DNNs work well on the training and test data, which are in

the same feature space and distribution. When these features and distributions

change, DNNs must be rebuilt from the new training data. It is too expensive

for the reconstruction of DNNs in many real-world applications. Accordingly,

transfer learning has been verified to make use of the well-learned knowledge

from source datasets [121, 122, 123, 124, 125]. The requirement for transfer

learning may arise when the datasets are getting bigger and bigger. In image

recognition, transfer learning has been widely used in real datasets to boost the

performance of DNNs [126, 127, 128, 129, 130]. For this scenario, fine-tuning the

pre-trained networks on large-scale datasets, such as ImageNet, is taken up. If

original ImageNet is the source domain, adversarial ImageNet can be seen as the

target domain. Hence, we can apply transfer learning to reuse learned parameters

of DNNs from the source domain to the target domain and reduce the limitations

of training.

16

Figure 6. An illustration of convolutional filters in CNN and BCNN. Left: weights

of CNN are single-point estimates. Right: weights of BCNN are probabilistic

distributions [3].

From Bayesian methods for neural networks, we build Bayes-conv and Bayes-

linear layers followed by Eq. (13), in which θ is learned parameters of pre-trained

DNNs. We mainly concentrate on adjusting α that tunes the standard devi-

ation σ to create uncertainty on the parameters of BNNs. After constructing

BNNs, we conduct Bayesian inference via BwoBL algorithm towards robustness

to adversarial examples.

3.2 Construction of BNN based on CNN

Building Bayesian convolutional neural networks (BCNNs) with the probabilistic

distribution on weights of convolutional layers has been conducted by Shridhar

et al. [3], as shown in Fig. 6.

Whereas the frequentist inference of CNNs that has only one convolutional

operation on the filters with the single-point estimate, BCNNs are applied two

convolutional operations to weights determined by a Gaussian distribution, i.e.,

the mean µ and the variance σ2. Therefore, the first convolution is the mean µ

of the variational distribution, which is treated as a single fixed estimate in the

frequentist inference. The second is the standard deviation σ, which controls the

weight uncertainty. Because the mean is fixed values of pre-trained CNNs, the

second convolution plays an important role in the performance of BCNNs.

17

𝑥𝑙+1

ReLU

Bayes-conv (𝑤)

BatchNorm

ReLU

Bayes-conv (𝑤)

BatchNorm

𝑥𝑙
identity

𝑥𝑙

ℱ(𝑥𝑙)

ℱ 𝑥𝑙 + 𝑥𝑙

𝑥𝑙+1

ReLU

3 × 3 conv (𝜃)

BatchNorm

ReLU

3 × 3 conv (𝜃)

BatchNorm

𝑥𝑙
identity

𝑥𝑙

ℱ(𝑥𝑙)

ℱ 𝑥𝑙 + 𝑥𝑙

Figure 7. Convolutional layers (3× 3) in a building block of ResNet model are

replaced with Bayes-conv layers (3× 3) in our BNN networks. We keep the other

layers of ResNet, such as batch normalization, activation function (ReLU). Left:

a building block of ResNet architecture. Right: a building block of our Bayesian

ResNet.

We realize that the weight transformation of convolutional layers is good

enough for generating Bayesian models but it does not enlarge the model param-

eters. All convolutional layers of pre-trained CNNs are replaced by Bayes-conv

layers in our BNNs with the sample of parameters in Eq. (13). In our experi-

ments, we utilize the outstanding DNNs that achieve the advanced performance

on ImageNet currently, i.e, ResNet [131], PreActResNet [132], and EfficientNet

[4] to construct the robust BNNs.

3.2.1 Bayesian ResNet

Residual Network (ResNet) won 1st place in the ILSVRC 2015 classification com-

petition on ImageNet. He et al. [131] addressed a deep residual learning frame-

work to few stacked layers and made a building block defined as

y = F (x, {Wi}) + x (14)

18

where x and y present the input and output of stacked layers. F (x, {Wi}) is

the residual mapping. A building block of two convolutional layers is illustrated

in Fig. 7 (left), which is the basic blocks in ResNet-18 (18 layers), ResNet-20

(20 layers), and ResNet-34 (34 layers). F(x) = W2σ(W1x) in which σ is a non-

linearity ReLU [133]. y = F(x)+x is operated by a shortcut connection, which is

added to each pair of 3× 3 filters, and element-wise addition. The second ReLU

σ(y) is adopted after this addition.

He et al. [131] also described deeper bottleneck architectures by stacking bot-

tleneck building blocks, as shown in Fig. 8 (left). Identity shortcuts that are

designed for bottleneck blocks bring more efficient models, for example, ResNet-

50 (50 layers), ResNet-101 (101 layers), ResNet-152 (152 layers). Additionally,

Xie et al. [134] proposed ResNeXt models, which tend to the width of ResNets.

For example, we use ResNeXt-101-32×8d that is 2× deeper and 4× wider than

ResNet-50. These are state-of-the-art models with very competitive accuracy on

ImageNet recently.

Based on ResNet architectures, we construct our BNN by replacing all convo-

lutional layers with Bayes-conv layers, which is demonstrated in Figures 7 (right),

8 (right), and 9 (right). In Figures 7 and 8, we visually illustrate the construction

of Bayesian non-bottleneck and bottleneck blocks. After forming each building

block, we assemble the whole model. For instance, our Bayesian ResNet-18 is

made from the original ResNet-18, which is shown in Fig. 9.

19

𝑥𝑙+1

1 × 1 conv (𝜃)

𝑥𝑙
identity

𝑥𝑙

ℱ(𝑥𝑙)

ℱ 𝑥𝑙 + 𝑥𝑙

BatchNorm

ReLU

3 × 3 conv (𝜃)

BatchNorm

ReLU

1 × 1 conv (𝜃)

BatchNorm

ReLU

𝑥𝑙+1

Bayes-conv (𝑤)

𝑥𝑙
identity

𝑥𝑙

ℱ(𝑥𝑙)

ℱ 𝑥𝑙 + 𝑥𝑙

BatchNorm

ReLU

Bayes-conv (𝑤)

BatchNorm

ReLU

Bayes-conv (𝑤)

BatchNorm

ReLU

Figure 8. Convolutional layers in a “bottleneck” block of ResNet model are

replaced with Bayes-conv layers in our BNN networks with the same dimension.

Left: a “bottleneck” building block of ResNet-50/101/152. Right: a “bottleneck”

building block of our Bayesian ResNets.

20

Image

3 × 3 conv, 64,/2

Pool, /2

Avg pool

FC 1000

3 × 3 conv, 64

3 × 3 conv, 64

3 × 3 conv, 64

3 × 3 conv, 64

3 × 3 conv, 128,/2

3 × 3 conv, 128

3 × 3 conv, 128

3 × 3 conv, 128

3 × 3 conv, 256,/2

3 × 3 conv, 256

3 × 3 conv, 256

3 × 3 conv, 256

3 × 3 conv, 512,/2

3 × 3 conv, 512

3 × 3 conv, 512

3 × 3 conv, 512

Image

Bayes-conv, 64,/2

Pool, /2

Avg pool

FC 1000

Bayes-conv, 64

Bayes-conv, 64

Bayes-conv, 64

Bayes-conv, 64

Bayes-conv, 128,/2

Bayes-conv, 128

Bayes-conv, 128

Bayes-conv, 128

Bayes-conv, 256,/2

Bayes-conv, 256

Bayes-conv, 256

Bayes-conv, 256

Bayes-conv, 512,/2

Bayes-conv, 512

Bayes-conv, 512

Bayes-conv, 512

Figure 9. Bayesian ResNet-18 is built on the original ResNet-18. Bayes-conv

layers of Bayesian ResNet-18 (right) are the alternative of convolutional layers in

the original ResNet-18 (left). Other layers (batch normalization and ReLU) of

original model are kept and hidden. 21

3.2.2 Bayesian PreActResNet

In PreActResNet architectures, He et al. [132] deeply analyzed the role of iden-

tity mapping in deep residual learning of ResNet towards the view of activation

functions, including ReLU and Batch Normalization (BN) [135]. They indicated

that re-arranging the activation functions (ReLU and BN) could get competitive

results on CIFAR-10/100.

In ResNet, BN is arranged after each weight layer, and ReLU is used after BN,

excepting that the last ReLU in a building block is after element-wise addition.

It is thus called “post-activation”, as seen in Figures 7 and 8. Particularly, let xl

and xl+1 be the input and output of the l-th unit, Eq. (14) is rewritten as

yl = F (xl,Wl) + xl

xl+1 = f (yl)

where f is a ReLU function. Accordingly, the activation affects the entire shortcut

connection, especially in backward propagation. So as to reduce this influence

of the activation function, a “pre-activation” design has been proposed in [132]

with the following formula:

xl+1 = F (f (xl) ,Wl) + xl (15)

Therefore, both BN and ReLU are used as pre-activation in PreActResNet

models, which is illustrated in Fig. 10 (left). This design is slightly better than

ResNet on CIFAR-10/100 as pointed out in [132]. We also apply Bayes-conv

layers to pre-trained PreActResNet to produce Bayesian PreActResNet (Fig. 10

(right)) that is against the adversarial attack on CIFAR-10 in our experiments.

3.2.3 Bayesian EfficientNet

EfficientNet is a family of deep convolutional neural networks with a scaling

method on all dimensions of depth/width/resolution [4]. These networks are

based on scaling up MobileNets [110, 136] and ResNets [131].

Tan et al. [4] proposed an effective compound coefficient, which balanced the

depth, width, and resolution of networks to improve the performance of DNNs,

as seen in Fig. 11. They indicated that deeper networks could capture more com-

plicated features [108, 109, 131]. Wider networks can capture more fine-grained

22

𝑥𝑙
identity

𝑥𝑙+1

3 × 3 conv (𝜃)

BatchNorm

ReLU

3 × 3 conv (𝜃)

BatchNorm

ReLU

𝑥𝑙

𝑥𝑙
identity

𝑥𝑙+1

Bayes-conv (𝑤)

BatchNorm

ReLU

Bayes-conv (𝑤)

BatchNorm

ReLU

𝑥𝑙

Figure 10. A “pre-activation” block (left) in PreActResNet architecture is altered

by a Bayesian “pre-activation” block (right) in our BNN model. The replacement

is only in convolutional layers with keeping the size of filters.

features and are easily trained [136, 137, 138]. DNNs with higher resolution of

input images can capture more fine-grained features to achieve better accuracy,

for instance, Inception with 299×299 resolution [109], NASNet with 331×331

resolution [139], Gpipe with 480×480 resolution [140] for ImageNet, 600×600

resolution for object detection [141, 142].

The baseline network of [4] is EfficientNet-B0, which is inspired by MnasNet

[137]. Table 1 presents the architecture of EfficientNet-B0, with its building block

is that mobile inverted bottleneck “MBConv”. Each MBConv block is constituted

from sub-blocks. Each sub-block is a combination of modules (in Fig. 12). The

detailed architecture of EfficientNet-B0 is explained in Fig. 13. Scaling up the

baseline network with different compound coefficients to have EfficientNet-B1 to

B7 that comprise the modules in Fig. 12.

Our Bayesian EfficientNets are formed by the replacement of convolutional,

depthwise convolutional, and pointwise convolutional layers in basic modules of

EfficientNets with our Bayes-conv layers. EfficientNets are a large structure with

hundreds of layers, it thus is not easy to train. The use of pre-trained EfficientNets

to build Bayesian EfficientNets promises better performance in realistic datasets.

23

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

#channels

layer_i

resolution HxW

wider

deeper

higher
resolution

higher
resolution

deeper

wider

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network
width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

and resolution with a set of fixed scaling coefficients. For
example, if we want to use 2N times more computational
resources, then we can simply increase the network depth by
αN , width by βN , and image size by γN , where α, β, γ are
constant coefficients determined by a small grid search on
the original small model. Figure 2 illustrates the difference
between our scaling method and conventional methods.

Intuitively, the compound scaling method makes sense be-
cause if the input image is bigger, then the network needs
more layers to increase the receptive field and more channels
to capture more fine-grained patterns on the bigger image. In
fact, previous theoretical (Raghu et al., 2017; Lu et al., 2018)
and empirical results (Zagoruyko & Komodakis, 2016) both
show that there exists certain relationship between network
width and depth, but to our best knowledge, we are the
first to empirically quantify the relationship among all three
dimensions of network width, depth, and resolution.

We demonstrate that our scaling method work well on exist-
ing MobileNets (Howard et al., 2017; Sandler et al., 2018)
and ResNet (He et al., 2016). Notably, the effectiveness of
model scaling heavily depends on the baseline network; to
go even further, we use neural architecture search (Zoph
& Le, 2017; Tan et al., 2019) to develop a new baseline
network, and scale it up to obtain a family of models, called
EfficientNets. Figure 1 summarizes the ImageNet perfor-
mance, where our EfficientNets significantly outperform
other ConvNets. In particular, our EfficientNet-B7 surpasses
the best existing GPipe accuracy (Huang et al., 2018), but
using 8.4x fewer parameters and running 6.1x faster on in-
ference. Compared to the widely used ResNet-50 (He et al.,
2016), our EfficientNet-B4 improves the top-1 accuracy
from 76.3% to 83.0% (+6.7%) with similar FLOPS. Besides
ImageNet, EfficientNets also transfer well and achieve state-

of-the-art accuracy on 5 out of 8 widely used datasets, while
reducing parameters by up to 21x than existing ConvNets.

2. Related Work
ConvNet Accuracy: Since AlexNet (Krizhevsky et al.,
2012) won the 2012 ImageNet competition, ConvNets have
become increasingly more accurate by going bigger: while
the 2014 ImageNet winner GoogleNet (Szegedy et al., 2015)
achieves 74.8% top-1 accuracy with about 6.8M parameters,
the 2017 ImageNet winner SENet (Hu et al., 2018) achieves
82.7% top-1 accuracy with 145M parameters. Recently,
GPipe (Huang et al., 2018) further pushes the state-of-the-art
ImageNet top-1 validation accuracy to 84.3% using 557M
parameters: it is so big that it can only be trained with a
specialized pipeline parallelism library by partitioning the
network and spreading each part to a different accelera-
tor. While these models are mainly designed for ImageNet,
recent studies have shown better ImageNet models also per-
form better across a variety of transfer learning datasets
(Kornblith et al., 2019), and other computer vision tasks
such as object detection (He et al., 2016; Tan et al., 2019).
Although higher accuracy is critical for many applications,
we have already hit the hardware memory limit, and thus
further accuracy gain needs better efficiency.

ConvNet Efficiency: Deep ConvNets are often over-
parameterized. Model compression (Han et al., 2016; He
et al., 2018; Yang et al., 2018) is a common way to re-
duce model size by trading accuracy for efficiency. As mo-
bile phones become ubiquitous, it is also common to hand-
craft efficient mobile-size ConvNets, such as SqueezeNets
(Iandola et al., 2016; Gholami et al., 2018), MobileNets
(Howard et al., 2017; Sandler et al., 2018), and ShuffleNets

Figure 11. Network scaling method [4]. (a) a baseline network; (b), (c), and

(d) are scaling on the width, depth, and resolution of a baseline network; (e) a

compound scaling method of EfficientNets.

Table 1. Architecture of EfficientNet-B0 and the corresponding substitution be-

tween EfficientNet and Bayesian EfficientNet.

Stage i Operator Fi Resolution Hi ×Wi Channel Ci Layers Li

1 Conv 3×3 224× 224 32 1

2 MBConv1, k3×3 112× 112 16 1

3 MBConv6, k3×3 112× 112 24 2

4 MBConv6, k5×5 56× 56 40 2

5 MBConv6, k3×3 28× 28 80 3

6 MBConv6, k5×5 14× 14 112 3

7 MBConv6, k5×5 14× 14 192 4

8 MBConv6, k3×3 7× 7 320 1

9 Conv 1×1 & Pooling & FC 7× 7 1280 1

EfficientNet Bayesian EfficientNet

Conv 3×3 Bayes-conv 3×3

MBConv1, k3×3 Bayes-MBConv1, k3×3

MBConv6, k3×3 Bayes-MBConv6, k3×3

MBConv6, k5×5 Bayes-MBConv6, k5×5

24

Input Rescaling Normalization Zero padding Conv
Batch

Normalization
Activation

Stem module

Depthwise
Conv

Batch
Normalization

Activation

Module 1

Average
Pooling

Conv Activation Conv

Module 3

Depthwise
Conv

Batch
Normalization

Activation Zero padding
Depthwise

Conv
Batch

Normalization
Activation

Module 2

Multiply
Pointwise

Conv
Batch

Normalization

Module 4

Multiply
Pointwise

Conv
Batch

Normalization
Dropout

Module 5

Conv
Batch

Normalization
Activation

Final module

Figure 12. Basic modules of EfficientNets. Bayesian EfficientNets are built by

the replacement of conv, depthwise conv, poinwise conv layers with Bayes-conv

layers. Other layers are originally kept.

Module 1

Module 3

Module 4
Sub-

block 1

Module 2

Module 3

Module 4
Sub-

block 2

Module 2

Module 3

Module 5
Sub-

block 3

Stem
module

Sub-
block 1

Sub-
block 2

Final
module

Sub-
block 2

Add

Sub-
block 2

Sub-
block 3

Add

Sub-
block 2

Sub-
block 3

Add

Sub-
block 2

Sub-
block 3

Add

Sub-
block 2

Add

Sub-
block 2

Sub-
block 3

Add

Sub-
block 2

Add

Sub-
block 2

Sub-
block 3

Add

× 2

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Figure 13. Detailed architecture of EfficientNet-B0.

25

3.3 Construction of BNN based on SAN

Recent work has shown effective architectures [111, 113, 115, 119, 120] that em-

ploy a self-attention mechanism as an alternative for convolutional networks in

image classification.

Zhao et al. [115] explored two types of self-attention networks. One is pair-

wise, the other is patchwise. In particular, the pairwise self-attention derives the

standard dot-product attention, as follows:

yi =
∑
j∈R(i)

α (xi, xj)� β (xj) (16)

where i is the location of vector xi in the feature map. The footprint R(i) is a

set of indices to specify the feature vector, which is aggregated to the new feature

yi. The function α computes the weights α (xi, xj) that are combined with the

transformed features β (xj) and are decomposed as below:

α (xi, xj) = γ (δ (xi, xj)) (17)

The relation function δ makes a single vector of the features xi, xj. The function

γ maps this vector to a vector that is connected to β (xj). The function δ is

explored by the following forms, in which ϕ and ψ are trainable transformations,

e.g., linear mappings.

� Summation: δ (xi, xj) = ϕ(xi) + ψ(xj)

� Subtraction: δ (xi, xj) = ϕ(xi)− ψ(xj)

� Concatenation: δ (xi, xj) = [ϕ(xi), ψ(xj)]

� Hadamard product: δ (xi, xj) = ϕ(xi)� ψ(xj)

� Dot product: δ (xi, xj) = ϕ(xi)
ᵀψ(xj)

The patchwise self-attention is a class of operators, which can identify specific

locations within their footprint. The patchwise has the following form:

yi =
∑
j∈R(i)

α
(
xR(i)

)
j
� β (xj) (18)

26

𝜑,𝜓: linear 𝜃 , 𝐶/𝑟1

relation 𝛿, map 𝛾 𝛽: linear 𝜃 , 𝐶/𝑟2

aggregation

BatchNorm

ReLU

linear 𝜃 , 𝐶

BatchNorm

ReLU

𝑥, 𝐶

ℱ 𝑥 + 𝑥

𝑥
identity

Bayes-linear 𝑤 , 𝐶/𝑟1

relation 𝛿, map 𝛾 Bayes-linear 𝑤 , 𝐶/𝑟2

aggregation

BatchNorm

ReLU

Bayes-linear 𝑤 , 𝐶

BatchNorm

ReLU

𝑥, 𝐶

ℱ 𝑥 + 𝑥

𝑥
identity

Figure 14. Linear transformation layers of the self-attention block (left) in SAN

models are replaced by Bayes-linear layers of our BNNs (right). Other layers of

SAN architecture are originally maintained.

where xR(i) is a patch of feature vectors in the footprint R(i). α
(
xR(i)

)
j

is a

vector at location j in the tensor α
(
xR(i)

)
, which is spatially corresponding to

the vector xj. The weight computation α
(
xR(i)

)
can be decomposed as follows:

α (xi, xj) = γ
(
δ
(
xR(i)

))
(19)

The function γ maps a vector that is yielded by δ
(
xR(i)

)
to a tensor. This tensor

consists of weight vectors for all locations j. The function δ combines the vectors

xj from the patch xR(i), and can be explored as below:

� Star-product: δ
(
xR(i)

)
= [ϕ(xi)

ᵀψ(xj)]∀j∈R(i)

� Clique-product: δ
(
xR(i)

)
= [ϕ(xj)

ᵀψ(xk)]∀j,k∈R(i)

� Concatenation: δ
(
xR(i)

)
=
[
ϕ(xi), [ψ(xj)]∀j∈R(i)

]
The self-attention operations can be visually represented in Fig. 14 (left),

which is based on the residual blocks of ResNet architecture. Zhao et al. [115]

27

designed SAN19 architecture (19 self-attention blocks), which corresponded to

ResNet-50. We build the Bayesian SAN model by simply replacing linear trans-

formation layers of SAN19 with our Bayes-linear layers. The parameters of Bayes-

linear layers are sampled as Eq.(13) with utilizing learned parameters of pre-

trained SAN19. The Bayesian self-attention block is shown in Fig. 14 (right).

The combination of Bayesian self-attention blocks generates Bayesian SAN19, as

indicated in Table 2.

Table 2. SAN19 and Bayesian SAN19 for ImageNet. SA Block, C-d sa, C-d

linear stand for a self-attention block, a self-attention operation with the output

dimension C, a linear layer with the output dimension C. Linear layers and sa

blocks of SANs are substituted by Bayes-linear layers and Bayes-sa blocks.

Layer name Output size SAN19 Bayesian SAN19

Input 224×224×3 64-d linear 64-d Bayes-linear

Transition 112×112×64
2×2, stride 2 max pool 2×2, stride 2 max pool

→ 64-d linear → 64-d Bayes-linear

SA Block 112×112×64

[
3× 3, 16-d sa

64-d linear

]
× 3

[
3× 3, 16-d Bayes-sa

64-d Bayes-linear

]
× 3

Transition 56×56×256
2×2, stride 2 max pool 2×2, stride 2 max pool

→ 256-d linear → 256-d Bayes-linear

SA Block 56×56×256

[
7× 7, 64-d sa

256-d linear

]
× 3

[
7× 7, 64-d Bayes-sa

256-d Bayes-linear

]
× 3

Transition 28×28×512
2×2, stride 2 max pool 2×2, stride 2 max pool

→ 512-d linear → 512-d Bayes-linear

SA Block 28×28×512

[
7× 7, 128-d sa

512-d linear

]
× 4

[
7× 7, 128-d Bayes-sa

512-d Bayes-linear

]
× 4

Transition 14×14×1024
2×2, stride 2 max pool 2×2, stride 2 max pool

→ 1024-d linear → 1024-d Bayes-linear

SA Block 14×14×1024

[
7× 7, 256-d sa

1024-d linear

]
× 6

[
7× 7, 256-d Bayes-sa

1024-d Bayes-linear

]
× 6

Transition 7×7×2048
2×2, stride 2 max pool 2×2, stride 2 max pool

→ 2048-d linear → 2048-d Bayes-linear

SA Block 7×7×2048

[
7× 7, 512-d sa

2048-d linear

]
× 3

[
7× 7, 512-d Bayes-sa

2048-d Bayes-linear

]
× 3

Classification 1×1×1000 average pool → 1000-d fc → softmax

28

3.4 Bayesian inference via BwoBL algorithm

3.4.1 Opportunities for Bayesian inference

In recent years, much research has proved that the ensemble model outperforms

the single model, especially in adversarial attacks [49, 50, 99]. It is shown that

ensemble inference is a crux of BNNs [55]. The uncertainty of the weights makes

BNNs equivalent to the ensemble of random models but do not increase the

number of models.

Liu et al. [50] performed an adversarial Bayesian training, which achieves the

good performance of BNNs under strong PGD attacks on CIFAR-10. Nonetheless,

the challenges of adversarial Bayesian learning make the training of BNNs difficult

in real-world applications. To address this issue, we build a BNN model based

on a pre-trained DNN, which has already been the state-of-the-art performance

in image classification. We apply transfer learning from DNNs to BNNs. The

learned parameters of original DNNs are employed to execute Bayesian inference

efficiently, but our method does not add any training phase.

We represent a preliminary evaluation to compare the robustness of defen-

sive methods on CIFAR-10 under l∞ PGD and l2 C&W attacks in Tables 3 and

4. CIFAR-10 is a small dataset that is easy to implement in most defensive ap-

proaches. Table 3 verifies the construction of our BNN from pre-trained CNN and

executing Bayesian inference can boost the robustness of the pre-trained model

against adversarial attacks without the iterative adversarial training. Besides,

our BNN is more robust than BNN trained on adversarial images (Adv-BNN).

Table 4 demonstrates the robustness of our algorithm to adversarial attacks com-

pared with robust activation functions when both methods do not perform ad-

versarial training. [5] trained ResNet-20 with various activation functions on

natural CIFAR-10 and proved the robustness of their SPLASH activation func-

tion. We primarily alter convolutional layers of pre-trained ResNet-20 without

changing the activation function and sharply improve the robustness to adver-

sarial attacks. With these preliminary comparisons, the potential of our idea is

revealed on the small dataset. The detailed evaluation of a realistic dataset will

be implemented in our experiments.

With the rapid deployment of deep learning, pre-trained DNNs are universally

29

Table 3. Evaluation of top-1 accuracy to compare the robustness of adversarial

training by CNN (FAST), adversarial learning by BCNN (Adv-BNN), and our

proposal on CIFAR-10 with 10000 images of the validation set, under l∞ PGD

attack with pixel perturbation (ε = 8/255) and 20 iterations.

Method Network Top-1 Accuracy (%)

FAST [98] PreActResNet-18 (CNN) 46.77

Adv-BNN [50] VGG-16 (BCNN) 47.58

Our proposal pre-trained PreActResNet-18 50.02

+ proposal (BCNN)

utilized and importantly contribute to the research community. We take advan-

tage of pre-trained models to reinforce their resistance to adversarial attacks and

avoid the overhead of the training phase. It should be emphasized that leveraging

learned parameters of existing models is key in our algorithm.

Owing to no Bayesian learning in our algorithm, we can degrade the com-

plexity of the training phase. Bayesian learning is explained by the Bayes by

Backprop algorithm [69] as follows:

1. The variational posterior is supposed to be a diagonal Gaussian distri-

bution. The weights of Bayesian model can be sampled by a unit Gaussian

distribution ξ ∼ N (0, I).

2. The posterior sample of weights: w = µ+ σ � ξ.
3. The ensemble of several forward passes to achieve the output and calculate

the loss f(w, (µ, σ)).

4. Calculate the gradient to the mean: 4µ.

5. Calculate the gradient to the standard deviation: 4σ.

6. Update the variational parameters:

µ← µ− α4µ

σ ← σ − α4σ

With Bayesian inference, we just perform steps 1, 2, and 3. Steps 1 and 2 are

to build the uncertainty on the model parameters. In step 3, we execute several

forward passes and achieve the ensemble output. Based on pre-trained models,

we copy their learned parameters (θ) and assign them to the mean of weights in

30

Table 4. A comparison of robust activation functions and our proposal on CIFAR-

10 under l2 C&W attack. We compare the results of SPLASH activation function

[5] and our BNN model on 1000 images chosen from correctly classified images

of ResNet-20. We also execute our experiment five times to calculate mean ±
standard deviation of the number of success attacks as [5].

Network Activation # of success attacks

ResNet-20 [5]

ReLU 903 ± 11.8

Swish 911 ± 15.1

APL 894 ± 11.5

Tent 881 ± 11.1

SPLASH 870 ± 12.3

Our proposed ResNet-20 ReLU 665 ± 7.9

Bayesian neural networks. We seek the α hyperparameter to control the weights

towards adversarial robustness. Two important concepts, i.e, randomness and

ensemble, are combined in our approach to prevent strong gradient-based attacks.

Multiple inferences with randomness and ensemble are the reason for the high

robustness.

31

3.4.2 Bayes without Bayesian Learning

In this section, we introduce Bayes without Bayesian Learning algorithm applied

for the BNN inference to improve the robustness of pre-trained DNNs.

Let x be an original image and y be a corresponding label in a dataset D.

We use l∞ norm PGD attack and l2 norm C&W attack to generate an adversar-

ial image x̂ and employ pre-trained DNN models with learned parameters θ to

construct BNNs. The inference process of BNN via BwoBL method is listed in

Algorithm 1.

From Eq. (13), we can see that a large α leads to a big variance of w that

causes the uncertainty on model parameters. This uncertainty is beneficial in

the resistance to gradient-based perturbation. In our experiment, α depends

on pre-trained DNN architectures, it is thus called structural hyperparameter.

This hyperparameter is chosen and fixed for each pre-trained DNN before the

execution of the inference phase. Based on the testing accuracy of our BNN

model under adversarial attacks, we select fixed values of α that are explained in

each experiment.

Algorithm 1. The inference phase of BNNs with BwoBL algorithm

Input: dataset D and learned parameters of pre-trained DNNs θ

Initialize: ξ ∼ N (0, I) and α

Weights of Bayes layers: w = θ + αθ � ξ
for (x, y) in D do

x̂ = attack function (θ, x, y)

for i = 1, 2, ... do # n ensemble

ŷi ← fξ(w, x̂) # several forward passes

end for

ŷ = majority voting(ŷi) # the most frequent output

end for

In general, the solution to the parameters of the BNN model cannot be

revealed by a closed-form expression because of the probabilistic variable ξ ∼
N (0, I). Consequently, Monte Carlo sampling is utilized to take one sample for

each probabilistic variable by random number generation. If a pre-trained DNN is

32

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 10 20 50

A
cc

u
ra

cy

Number of samples

Majority voting Max_output Average_output

Figure 15. Comparison between the majority voting output, the average output,

and the maximum output of the ensemble phase.

f(w, x) with a parameter w and an input x, our BNN can be denoted as fξ(w, x)

that is an infinite number of stochastic models. Therefore, we can execute the

probabilistic model multiple times, which is the ensemble inference procedure, to

improve the accuracy of our models.

The ensemble is a beneficial property of BNN that can raise the performance of

the model. Due to the model uncertainty, we execute several forward propagations

in the testing phase and achieve a set of different outputs. Then, how to take an

output of the ensemble model? In order to answer this inquiry, we conduct three

ways: (1) the output with the most frequency called the majority voting, (2) the

average output, and (3) the maximum output. As an example, we implement

ResNet-50 with α = 0.3 on ImageNet under l∞ norm PGD attack at ε = 2/255.

Fig. 15 confirms that majority voting is the best stable and efficient output.

Hence, we use the majority voting output to evaluate the experiments. Moreover,

we can see that a large number of samples plays an important role in ensemble

inference. It brings better accuracy but costs a considerable amount of inference

time. We make a comparison of inference time between adversarial training and

our method in Table 5. Our proposal does not consume the training time as

33

Table 5. Comparison of inference time between adversarial training and our

proposal. Latency is the average inference time for one image. Each experiment

is run on a single core of Intel®Core�i7-3970X CPU and a GeForce RTX1080Ti

GPU.

Method Latency (s) # forward passes

Fast adversarial training
0.0293 1

(ResNet-50)

Our proposal
0.7524 20

(Bayesian ResNet-50)

adversarial training but needs a large inference time for the ensemble phase.

Accordingly, selecting a number of samples must guarantee high accuracy and

reasonable inference time.

34

4 Robustness of BNNs with BwoBL algorithm

4.1 Assessment on CIFAR-10/100

4.1.1 Setup of BNN models and adversarial attacks

We carry out Bayes without Bayesian Learning algorithm on two small datasets

that are CIFAR-10, CIFAR-100. We utilize pre-trained ResNet-18 on natural im-

ages [143, 144] to build our Bayesian ResNet-18 (ResNet-18 + proposed BwoBL),

as introduced in Section 3.2.1. Additionally, we integrate our algorithm into pre-

trained models on adversarial images, which have been obtained by Wong et al.

[98], and call it FAST shortly. PreActResNet-18 [98] for CIFAR-10 and CIFAR-

100 are used in FAST training method. We call them PreActResNet-18 FAST in

our experiments and produce Bayesian PreActResNet-18 (PreActResNet-18 FAST

+ proposed BwoBL), as shown in Section 3.2.2. All experiments are run on a PC

with two GeForce GTX1080Ti.

It is known that Bayesian learning becomes hard for large DNN architectures

and high-dimensional data. However, Bayesian Neural Network is able to be

an efficient defense against adversarial attacks. Therefore, we proposed BwoBL

algorithm to apply the Bayesian approach to DNNs and use learned weights of

CNNs instead of Bayesian learning towards resisting PGD attacks.

PGD attacks are referred to be the strong iterative attack, which is a univer-

sal adversary among all first-order adversaries. From Eq. (9) we set PGD attack

under the pixel perturbation ε = 8/255 and the iteration it = {20, 50, 100} for

CIFAR-10 and CIFAR-100. The clip function in Eq. (9) enables PGD to iter-

ate more steps. Hence, this attack is really complicated to defensive methods,

especially adversarial training.

4.1.2 Structural hyperparameter and ensemble

Structural hyperparameter: From Eq. (13), we test the performance of our

algorithm under different values of the structural hyperparameter α to adjust the

standard deviation σ of Gaussian distribution on weights of convolutional layers

in pre-trained ResNet-18 and PreActResNet-18.

35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

u
ra

cy

Alpha

PreactResnet18_FAST + proposed BwoBL

Resnet18 + proposed BwoBL

Figure 16. The influence of α on the robustness of proposed models, under PGD

attack of ε = 8/255 and it = 20 on CIFAR-10.

In this experiment, we treat θ of Eq. (13) as learned weights of models and

check the effect of the structural hyperparameter on the robustness of the model

by changing different α levels. For example, we select

α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (20)

for ResNet-18 and PreActResNet-18 FAST on CIFAR-10. The result is demon-

strated in Fig. 16.

We can see that the best robustness of ResNet-18 and PreActResNet-18 FAST

against PGD attack of ε = 8/255 and it = 20 on CIFAR-10 are at α = 0.7 and

α = 0.4, respectively. These values of the structural hyperparameter are also good

for ResNet-18 and PreActResNet-18 FAST on CIFAR-100. We hence fix them

for ResNet18 and PreActResNet-18 FAST on both CIFAR-10 and CIFAR-100.

Ensemble: As mentioned in Section 3.4, the ensemble phase is a crux of

BNNs, which is executed by several forward propagations and the output of the

ensemble inference is majority voting in our experiments.

36

Many studies have proved the uncertainty on weights of BNNs provides the

ensemble model that obtains better performance than the single model. Nonethe-

less, the difficulty of the ensemble inference is how many samples are enough for

execution. For both CIFAR-10 and CIFAR-100, we choose the ensemble of 10

samples that is good enough for the robust assessment of our BNNs against the

PGD attack of ε = 8/255 and it = {20, 50, 100}.

4.1.3 Tolerance for adversarial attacks

As mentioned above, the pre-trained ResNet-18 and PreActResNet-18 FAST have

been used for applying BwoBL algorithm to build Bayesian ResNet-18 with α =

0.7 and Bayesian PreActResNet-18 with α = 0.4. This application is against l∞

norm PGD attack of pixel perturbation ε = 8/255 and iteration it = {20, 50, 100}
on both CIFAR-10 and CIFAR-100 when the values of pixels are in [0, 255].

It is noted that FAST adversarial training [98] is the fastest training method

currently that maintains the robust accuracy of CNN model resisting PGD at-

tacks. In this way, Wong et al. [98] referred to FGSM training, which was efficient

towards PGD adversaries but had a lower cost. Therefore, we use the results of

FAST adversarial training to compare with our BwoBL algorithm. The com-

parison between conventional CNN, FAST, and our proposal on CIFAR-10 and

CIFAR-100 under PGD attacks of ε = 8/255 and it = {20, 50, 100} steps can be

found in Figures 17 and 18.

Our algorithm has considerably improved the testing accuracy of ResNet-18

that are trained on natural images, called CNN no defense. Below strong l∞ norm

PGD attacks, CNN no defense cannot almost distinguish adversarial examples,

but our BwoBL can get 25% accuracy on CIFAR-10 without any additional train-

ing, as shown in Fig. 17. When we combine BwoBL approach with the pre-trained

PreActResNet-18 on perturbed images, the robustness of PreActResNet-18 FAST

+ BwoBL model is 50%, which is the best among defenses on CIFAR-10 currently.

CIFAR-100 is known to be a more complex dataset with 100 classes. Thus, our

algorithm only has the 10% prediction in the top-1 accuracy when it is applied

to the pre-trained ResNet-18 on natural examples. 26% accuracy can achieve

with the combination of PreActResNet-18 FAST and BwoBL, as seen in Fig. 18

(above). Because of a dataset with more classes, we evaluated the robustness

37

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

natural it=20 it=50 it=100

images e=8/255

To
p

-1
 A

cc
u

ra
cy

CNN_no defense proposed BwoBL FAST FAST + proposed BwoBL

Figure 17. The robustness (top-1 accuracy) of proposed models is com-

pared to naturally pre-trained ResNet-18 (CNN no defense) and pre-trained

PreActResNet-18 on adversarial images (FAST) against PGD attack of ε = 8/255

and it = {20, 50, 100} on CIFAR-10.

of models in the top-5 accuracy. From Fig. 18 (below), we see that BwoBL

algorithm can have the top-5 accuracy that improves FAST adversarial training.

For example, with PGD attack of ε = 8/255 and it = 20, 12% is the top-5

prediction of naturally pre-trained ResNet-18 but the top-5 accuracy of (pre-

trained ResNet-18 + proposed BwoBL) is 50% while 57% is the accuracy of (pre-

trained PreActResNet-18 FAST + proposed BwoBL). As a result, our BwoBL

algorithm can considerably boost the robustness of pre-trained networks but we

do not need to re-train these models when attack parameters change.

38

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

natural it=20 it=50 it=100

images e = 8/255

To
p

-1
 A

cc
u

ra
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

natural it=20 it=50 it=100

images e = 8/255

To
p

-5
 A

cc
u

ra
cy

CNN_no defense proposed BwoBL

FAST FAST + proposed BwoBL

Figure 18. The robustness of proposed models is compared to naturally pre-

trained ResNet-18 (CNN no defense) and pre-trained PreActResNet-18 on ad-

versarial images (FAST) against PGD attack of ε = 8/255 and it = {20, 50, 100}
on CIFAR-100. Above: top-1 accuracy. Below: top-5 accuracy.

39

4.2 Evaluation on ImageNet

4.2.1 Setup of BNN models

We build up BNN models from the typical DNN architectures currently, which

achieve state-of-the-art accuracy on ImageNet. This is the realistic dataset for

the task of classifying 1000 classes with large-scale images. The fact that adver-

sarial training on ImageNet considerably consumes the computation time and the

training cost. Accordingly, there are only a few findings of adversarial training

on ImageNet successfully.

Baseline CNN models used in our experiments are ResNet-50, ResNet-101,

ResNet-152, ResNeXt-101-32×8d, EfficientNet-B0∼B7, in which ResNet-50 is

the backbone network. ResNet-101 and ResNet-152 are respectively 2× and 3×
deeper than ResNet-50, and ResNeXt-101-32×8d is 2× deeper and 4× wider

than ResNet-50. These models show that deeper and wider networks can further

improve the performance in image recognition. Moreover, Tan et al. [4] argued

that scaling up CNNs by their depth or width has not yet achieved the best

accuracy and efficiency. They investigated a compound scaling method, which

balanced three dimensions of networks, i.e., depth/width/resolution in Efficient-

Nets. These are newly outstanding networks trained on ImageNet. We use all

pre-trained EfficientNets on ImageNet [143, 145] to apply our BwoBL algorithm.

Our BNNs are built on pre-trained CNNs as mentioned in Section 3.2.

Our algorithm is integrated into not only CNNs but also other powerful DNNs,

such as SANs. Recent work has shown effective architectures that employ a

self-attention mechanism as an alternative for convolutional networks in image

classification. Zhao et al. [115] explored two types of SAN, including pairwise

and patchwise self-attention. We replace all linear transformation layers in SANs

with our Bayes-linear layers and choose pre-trained SAN19-pairwise and SAN19-

patchwise, which are built on ResNet-50 architecture to apply our proposal, as

illustrated in Section 3.3.

So as to validate our hypothesis, we compare the performance of BwoBL with

adversarial training. Although we have mentioned robust activation functions in

our preliminary evaluation (Section 3.4.1), most of them are executed on small

datasets and optimized through adversarial training to enhance their robustness

40

Table 6. State-of-the-art DNN architectures are used in our experiments. We ap-

ply BwoBL algorithm to pre-trained DNNs on natural and adversarial ImageNet

to construct our BNN models.

Training data Pre-trained networks

Original

ImageNet

ResNet-50

ResNet-101

ResNet-152

ResNeXt-101-32×8d

EfficientNet-Bx

SAN19-pairwise

SAN19-patchwise

Adversarial

ImageNet

ResNet-50-FAST

EfficientNet-ADV-Bx

further to strong attacks. Thus, adversarial training is still an outstanding de-

fense. In particular, FAST [98] is the fastest method and maintains the robustness

as previous adversarial training, which implements FGSM training against PGD

attack on ImageNet with ResNet-50. We hence select this adversarial learning

to combine our BwoBL and call them ResNet-50-FAST. Furthermore, Xie et al.

[146] have executed adversarial training on ImageNet with EfficientNets, but their

target is the enhancement of image recognition models. They treat perturbed

examples as additional instances and propose an improved adversarial training

scheme - AdvProp, which is trained on both natural and adversarial images.

These networks are referred to as EfficientNet-ADV-Bx in our experiments.

All DNN architectures that we perform are summarized in Table 6. Our

experiments are run on four GeForce GTX1080Ti and two GeForce RTX3090.

We have already compared our proposal to adversarial Bayesian training un-

der strong PGD attacks on CIFAR-10 in Table 3. So far, we have not found yet

the studies of Bayesian learning on natural or adversarial ImageNet with large

models to compare in our experiments. To clarify this problem, we have con-

structed our Bayesian ResNet-50 and tried to train it on natural and adversarial

41

Table 7. Comparison of training time between adversarial training on CNN,

Bayesian learning on natural images, and Bayesian learning on adversarial images.

FAST adversarial training [98] has been implemented in 15 epochs to achieve the

most robustness. 10 samples are used to execute the ensemble phase in BNNs.

Each experiment is run on a single core of Intel®Core�i9-10920X CPU and a

GeForce RTX3090 GPU.

Training method
Training time for Total training

epochs) 1 epoch (hours) time (hours)

FAST adversarial training
15 2.8 42

(ResNet-50)

Bayesian training
15

50

750

on natural images
(expected)

(expected

(Bayesian ResNet-50) time)

Bayesian training
15

67

1005

on adversarial images
(expected)

(expected

(Bayesian ResNet-50) time)

ImageNet. The comparison of training time in Table 7 might be the reason why

has no findings of Bayesian learning on ImageNet. From Table 7, it is emphasized

that Bayesian learning expends a long training time, which is infeasible when im-

plemented on ImageNet. Compared to traditional learning, it requires more time

to converge and does not improve on existing techniques.

42

4.2.2 Setup of adversarial attacks

We set two forceful kinds of adversarial attacks that are PGD and C&W algorithm

to verify the robustness of our method.

From Eq. (9), we generate l∞ norm PGD attacks with the pixel-perturbed

size ε = {2/255, 4/255}, the step size β = 1/255, and the attack iterations it =

{10, 50, 100}. It is known that increasing the number of attack iterations makes

adversarial examples harder and is an obstruction of adversarial training.

With C&W attack, we compare the resistance of the models under the at-

tack that is measured by l2 norm of perturbed images, binary search steps = 4,

max iterations = 1000, initial constant = 0.1, and confidence = 10. This estab-

lishment creates strong adversaries, which are enough to fool baseline networks.

Notice that both PGD and C&W are white-box and non-targeted attacks.

However, the white-box manner is set for pre-trained networks in Table 6. Mean-

while, our BNNs are built on these pre-trained models and utilize their learned

parameters. It is then considered indirectly white-box settings.

4.2.3 Structural hyperparameter

The crux of our BwoBL algorithm is structural hyperparameter α in Eq. (13),

which adjusts the variance of Gaussian distribution on the parameters of Bayes

layers. For each pre-trained DNN in Table 6, we seek the best α so that the

model achieves the highest accuracy under strong l∞ norm PGD attack of pixel

perturbation ε = 4/255, iteration it = 10.

We test the performance of our proposed networks in Table 6 with a wide

range of α values, for example

α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (21)

From Fig. 19, we realize the accuracy is a practically convex upward with the

change of α. The search space of α guarantees the optimal algorithm, and the

best α corresponds to the peak of this convex upward.

Fig. 19 shows that the step size 0.1 of α makes a too big difference in the

accuracy of the model, which is difficult to identify the peak exactly. We discover

the step size 0.01 is good enough to find the peak of convex upwards. Especially,

43

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

To
p

-5
 A

cc
u

ra
cy

 [
%

]

Alpha

Figure 19. The accuracy is a convex upward with the change of structural hy-

perparameter α. The best α corresponds to the peak of the convex upward.

Our network: ResNet-50 + BwoBL. PGD attack: l∞ norm, ε = 4/255, iteration

= 10. Black and white markers stand for step size 0.1 and step size 0.01 of α,

respectively.

our Bayesian ResNet-50 with α = 0.2 and 0.3 get an approximate accuracy, but

with

α = {0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29} (22)

our proposed model continues increasing the accuracy, and we achieve its peak

at α = 0.24.

We hereby observe the effect of this factor in our proposed BNNs and treat it

as a constant for each model, which is summed up in Table 8. In the proposed

approach, we do not execute the additional training phase but we need to seek

the α hyperparameter, which controls the weights of a Bayesian neural network

towards the adversarial robustness. This search process expends an amount of

time for the loops. For example, to achieve a convex upward of the accuracy in

Fig. 19, we must perform the search loop for our Bayesian ResNet-50 in 11 hours

to determine the best α. Nonetheless, compared to the cost of adversarial training

in Table 7, this seeking is insignificant and easy to apply for various models.

44

Table 8. Structural hyperparameter α that adjusts the variance of Gaussian dis-

tribution on parameters of Bayes layers fixed for our proposed BNNs.

Architectures α Architectures α

ResNet-50 0.24 SAN19-pairwise 0.10

ResNet-101 0.25 SAN19-patchwise 0.15

ResNet-152 0.26 ResNet-50-FAST 0.10

ResNeXt-101-32×8d 0.23

EfficientNet-B0 0.10 EfficientNet-ADV-B0 0.05

EfficientNet-B1 0.12 EfficientNet-ADV-B1 0.07

EfficientNet-B2 0.12 EfficientNet-ADV-B2 0.08

EfficientNet-B3 0.14 EfficientNet-ADV-B3 0.11

EfficientNet-B4 0.18 EfficientNet-ADV-B4 0.15

EfficientNet-B5 0.22 EfficientNet-ADV-B5 0.17

EfficientNet-B6 0.23 EfficientNet-ADV-B6 0.20

EfficientNet-B7 0.24 EfficientNet-ADV-B7 0.21

4.2.4 Ensemble inference

The ensemble is a beneficial property of Bayesian inference by executing the

stochastic model many times. As mentioned in Algorithm 1, we carry out several

forward passes and take the ensemble of different output samples. We assess the

majority voting output for our ensemble inference.

Consequently, how many samples do we need to implement in the ensemble

phase? In real-world applications, ensemble inference is a big challenge because

of the longer execution time. A large quantity of samples brings a better perfor-

mance of the networks but considerably consumes the inference time, especially

on big datasets and deeper neural networks. Selecting a number of forward passes

must be suitable to achieve high accuracy and reasonable inference time. Based

on the achievement in Fig. 20, we are aware that the accuracy differential between

the ensemble of 20, 30, 40, and 50 samples is not too great. We thus choose 20

that is tolerable for all our proposed models on ImageNet to obtain a trade-off

between the accuracy and the computation cost.

45

0

5

10

15

20

25

30

35

40

45

50

1 10 20 30 40 50

To
p

-5
 A

cc
u

ra
cy

 [
%

]

Samples of ensemble

Figure 20. A number of forward passes in ensemble inference. The ensemble of 20

samples is chosen to attain a trade-off between the accuracy and the computation

cost for all our proposed models. Our network: ResNet-50 + BwoBL. PGD

attack: l∞ norm, ε = 4/255, iteration = 10.

It is apparent that the inference time of BNN is more massive than that of

CNN due to the ensemble phase. This repeated inference leads to much longer

computation time, which makes BNN difficult for applying to real-world systems

[147, 148, 149, 150]. However, Wan et al. [147] succeeded in the design of an

FPGA-based hardware accelerator for BNNs, which executed the repeated in-

ference of BNNs but still got 2.1 ∼ 8.2× speedup over the CNN accelerator.

This proved that the ensemble inference of BNN could completely be spread to

real-world applications to improve the performance of DNNs.

46

4.2.5 Performance on natural ImageNet

We assess the performance of all pre-trained DNNs and our proposed models on

natural ImageNet with 50000 images in the validation set. On large-scale Ima-

geNet with 1000 classes, the top-5 evaluation might achieve the better prediction

that we observe in our experiments. Our method mainly focuses on improving

the robustness of classifiers via the uncertainty generation on the weights, which

makes our BNNs robust to the adversaries rather than natural images. Therefore,

applying the BwoBL algorithm to pre-trained DNNs affects the testing accuracy

on natural examples, which is a 6.90% drop on average, as seen in Table 9. Many

studies of adversarial training indicated that the trade-off between adversarial ro-

bustness and standard accuracy was inevitable. The fact that gaining robustness

of the model would be losing accuracy on natural examples. We hence apply the

BwoBL algorithm to deeper and wider networks to yield comparable accuracies

on natural images. Table 9 shows that scaling up networks enhances not only the

accuracy of the original DNNs but also that of our proposed networks. In par-

ticular, the application of our proposal to scaling networks significantly boosts

the accuracy and 95.51%, which is only a 1.72% drop, top-5 prediction of our

proposed EfficientNet-ADV-B7 is the advanced accuracy on natural ImageNet

among defense methods currently.

4.2.6 Tolerance on PGD adversaries

We create PGD attacks on the first 10000 images in the validation set of ImageNet

and evaluate the tolerance of our BwoBL algorithm on these perturbed images.

We examine the robustness of our proposed models under l∞ norm PGD at-

tack of pixel perturbation ε = {2/255, 4/255} and iterations it = {10, 50, 100},
as shown in Tables 10 and 11. The combination of our BwoBL and pre-trained

DNNs on natural images significantly enhances the robustness, which is 44.83%

and 60.16% increases on average in ResNets and SANs, respectively. However, it

is just a slight improvement when applying BwoBL to pre-trained DNNs on ad-

versarial images, i.e., ResNet-50-FAST, which rises by 3% with pixel perturbation

ε = 4/255.

47

Table 9. Comparable top-5 accuracies (%) between pre-trained DNNs and our

proposed networks on natural ImageNet.

Pre-trained networks Our proposal

ResNet-50 92.93 81.75

ResNet-101 93.55 82.75

ResNet-152 94.05 83.42

ResNeXt-101-32×8d 94.53 87.31

EfficientNet-B0 91.04 75.25

EfficientNet-B1 91.71 75.53

EfficientNet-B2 94.39 83.06

EfficientNet-B3 95.31 85.42

EfficientNet-B4 96.12 89.17

EfficientNet-B5 96.62 89.40

EfficientNet-B6 96.90 90.59

EfficientNet-B7 96.94 91.17

SAN19-pairwise 93.36 84.64

SAN19-patchwise 93.90 89.12

ResNet-50-FAST-2px 81.69 81.16

ResNet-50-FAST-4px 77.13 76.55

EfficientNet-ADV-B0 89.19 79.17

EfficientNet-ADV-B1 93.22 87.17

EfficientNet-ADV-B2 94.46 90.74

EfficientNet-ADV-B3 95.10 91.95

EfficientNet-ADV-B4 95.90 93.06

EfficientNet-ADV-B5 96.81 94.51

EfficientNet-ADV-B6 97.16 95.34

EfficientNet-ADV-B7 97.23 95.51

48

T
ab

le
10

.
R

ob
u
st

n
es

s
to

P
G

D
at

ta
ck

s:
l ∞

n
or

m
,
p
ix

el
p

er
tu

rb
at

io
n
ε

=
{2
/2

55
,4
/2

55
},

it
er

at
io

n
it

=
{1

0,
50
,1

00
},

ar
e

ev
al

u
at

ed
b
y

to
p
-5

ac
cu

ra
ci

es
(%

)
an

d
co

m
p
ar

ed
b

et
w

ee
n

n
at

u
ra

ll
y

p
re

-t
ra

in
ed

D
N

N
s

an
d

ou
r

p
ro

p
os

ed
n
et

-

w
or

k
s.

P
re

-t
ra

in
e
d

n
e
tw

o
rk

s
O

u
r

p
ro

p
o
sa

l

it
=

10
it

=
50

it
=

10
0

it
=

10
it

=
50

it
=

10
0

ε
=

2/
25

5
ε

=
4/

25
5

ε
=

4/
25

5
ε

=
4/

25
5

ε
=

2/
25

5
ε

=
4/

25
5

ε
=

4/
25

5
ε

=
4/

25
5

R
es

N
et

-5
0

10
.4

4
5.

06
2.

73
2.

15
59

.6
1

42
.8

7
44

.7
2

45
.3

2

R
es

N
et

-1
01

12
.1

5
5.

90
3.

78
3.

21
64

.6
9

50
.6

4
52

.4
9

52
.8

2

R
es

N
et

-1
52

13
.5

0
6.

39
3.

89
3.

51
66

.8
9

53
.5

5
54

.5
1

56
.6

0

R
es

N
eX

t-
10

1-
32
×

8d
22

.6
2

15
.0

9
12

.0
7

10
.8

5
75

.4
3

64
.7

0
66

.4
5

67
.2

2

E
ffi

ci
en

tN
et

-B
0

3.
56

0.
52

0.
09

0.
08

45
.8

7
25

.4
1

29
.5

2
31

.8
5

E
ffi

ci
en

tN
et

-B
1

2.
02

0.
22

0.
07

0.
05

42
.1

7
24

.9
8

28
.3

6
31

.4
9

E
ffi

ci
en

tN
et

-B
2

3.
19

0.
56

0.
18

0.
18

61
.3

9
43

.5
8

48
.6

5
52

.1
2

E
ffi

ci
en

tN
et

-B
3

2.
83

0.
72

0.
37

0.
35

67
.6

4
51

.0
8

57
.4

8
60

.2
1

E
ffi

ci
en

tN
et

-B
4

2.
56

0.
70

0.
45

0.
43

76
.5

5
63

.7
3

69
.7

1
72

.2
0

E
ffi

ci
en

tN
et

-B
5

3.
11

0.
78

0.
23

0.
12

78
.6

5
68

.8
2

74
.3

7
76

.0
6

E
ffi

ci
en

tN
et

-B
6

1.
97

0.
47

0.
13

0.
08

78
.8

9
68

.3
6

74
.6

8
76

.6
5

E
ffi

ci
en

tN
et

-B
7

1.
62

0.
27

0.
06

0.
02

8
1
.2

0
7
0
.8

8
7
7
.8

4
8
1
.4

1

S
A

N
19

-p
ai

rw
is

e
6.

82
2.

12
0.

46
0.

22
70

.7
6

59
.1

6
62

.5
9

63
.1

6

S
A

N
19

-p
at

ch
w

is
e

1.
03

0.
28

0.
16

0.
14

76
.1

0
63

.5
5

66
.9

4
68

.7
3

49

T
ab

le
11

.
R

ob
u
st

n
es

s
to

P
G

D
at

ta
ck

s:
l ∞

n
or

m
,
p
ix

el
p

er
tu

rb
at

io
n
ε

=
{2
/2

55
,4
/2

55
},

it
er

at
io

n
it

=
{1

0,
50
,1

00
},

ar
e

ev
al

u
at

ed
b
y

to
p
-5

ac
cu

ra
ci

es
(%

)
an

d
co

m
p
ar

ed
b

et
w

ee
n

ad
ve

rs
ar

ia
l

p
re

-t
ra

in
ed

D
N

N
s

an
d

ou
r

p
ro

p
os

ed

n
et

w
or

k
s.

P
re

-t
ra

in
e
d

n
e
tw

o
rk

s
O

u
r

p
ro

p
o
sa

l

it
=

10
it

=
50

it
=

10
0

it
=

10
it

=
50

it
=

10
0

ε
=

2/
25

5
ε

=
4/

25
5

ε
=

4/
25

5
ε

=
4/

25
5

ε
=

2/
25

5
ε

=
4/

25
5

ε
=

4/
25

5
ε

=
4/

25
5

R
es

N
et

-5
0-

F
A

S
T

-2
p
x

70
.1

6
56

.6
1

56
.4

9
56

.4
0

71
.8

8
59

.5
2

59
.8

2
59

.8
4

R
es

N
et

-5
0-

F
A

S
T

-4
p
x

66
.9

5
57

.8
3

57
.4

1
56

.3
1

68
.6

7
60

.2
6

59
.5

0
58

.5
9

E
ffi

ci
en

tN
et

-A
D

V
-B

0
42

.4
2

12
.7

2
8.

31
8.

26
62

.5
3

45
.6

2
48

.7
6

48
.7

8

E
ffi

ci
en

tN
et

-A
D

V
-B

1
53

.9
0

18
.1

1
10

.2
9

10
.3

9
76

.5
5

63
.5

8
64

.8
1

65
.2

4

E
ffi

ci
en

tN
et

-A
D

V
-B

2
55

.5
2

18
.9

0
10

.3
4

9.
25

82
.6

4
73

.4
2

75
.7

0
75

.8
2

E
ffi

ci
en

tN
et

-A
D

V
-B

3
65

.5
2

30
.3

6
19

.5
5

17
.9

4
86

.6
9

80
.5

0
81

.9
1

81
.9

1

E
ffi

ci
en

tN
et

-A
D

V
-B

4
64

.5
7

30
.5

3
16

.6
1

15
.3

2
88

.5
2

85
.1

6
85

.8
0

86
.2

2

E
ffi

ci
en

tN
et

-A
D

V
-B

5
66

.5
0

32
.9

7
15

.4
9

13
.4

1
91

.8
6

89
.2

9
89

.9
0

90
.2

3

E
ffi

ci
en

tN
et

-A
D

V
-B

6
64

.9
0

31
.5

1
12

.3
3

10
.8

9
93

.5
5

90
.9

2
91

.4
0

91
.5

7

E
ffi

ci
en

tN
et

-A
D

V
-B

7
62

.0
7

30
.3

0
9.

17
7.

82
9
3
.7

2
9
1
.4

8
9
2
.0

5
9
2
.1

4

50

SAN19 is built on ResNet-50 architecture, but its parameters and FLOPs

are smaller and its accuracy is higher than ResNet-50 on natural images. The

application of the BwoBL algorithm to SAN19 sharply raises the robustness of

naturally pre-trained SAN19-pairwise and SAN19-patchwise (Table 10). In which

the top-5 accuracies of our SAN19-patchwise are 76.10% and 63.55% on 2-pixel

and 4-pixel perturbed images, respectively, which outperform ResNet-50. This

proves that the BwoBL approach may be integrated into any DNN architecture

to construct a robust network against adversaries.

Table 10 also demonstrates that scaling up ResNet by the depth and the width

can considerably boost the resistance of our algorithm to adversarial attacks.

For instance, under the ε = 4/255 and it = 10 PGD attack, our ResNeXt-101-

32×8d, which is built on naturally pre-trained ResNeXt-101-32×8d, improves

the robustness by 21.83% for our ResNet-50, 4.44% for our ResNet-50-FAST-

4px, and 5.18% for our ResNet-50-FAST-2px. Furthermore, adversarial training

must be iterated to achieve the highest accuracy when attack parameters change,

such as ResNet-50-FAST-2px and ResNet-50-FAST-4px are ResNet-50 trained on

2-pixel and 4-pixel perturbed images (Table 11). In contrast, our algorithm is

conveniently applied to those models to resist forceful PGD attacks without an

additional training phase.

Additionally, increasing the iteration generates stronger PGD attacks but it

also raises the training cost. Thus, adversarial training usually uses single-step

PGD as FGSM to lower the training cost. Nonetheless, the robustness of the

models trained on FGSM examples that is ResNet-50-FAST-2px and ResNet-

50-FAST-4px will decline when the number of PGD iterations rises, as seen in

Table 11. Contrarily, our proposed models are more robust with powerful attacks.

EfficientNet is a strong family of DNNs for image classification, which deter-

mines the optimal factor for scaling networks. We observe the benefit of Efficient-

Net in our proposed algorithm with two pre-trained EfficientNet schemes. Our

EfficientNet is the connection between the BwoBL method and pre-trained Effi-

cientNet on natural images. The proposed EfficientNet-ADV is applying BwoBL

to pre-trained EfficientNet on both natural and PGD adversarial images.

We evaluate the robustness of our BwoBL method on EfficientNets under l∞

PGD perturbation of pixels ε = {2/255, 4/255} with iterations it = {10, 50, 100}.

51

As shown in Table 10, pre-trained EfficientNets on natural images are almost

fooled by the attacks but our proposed EfficientNets remarkably boost the accu-

racy without the extra training. For example, the top-5 accuracy of EfficientNet-

B7 rises from 0.02% to 81.41% below PGD attack of ε = 4/255, it = 100. Fur-

thermore, Table 11 prove that EfficientNet-ADV has just resisted weak attacks

like ε = 2/255, it = 10 and becomes unsteady with respect to intense attacks.

Meanwhile, our EfficientNet-ADV is always robust against any attacks. Par-

ticularly, the proposed EfficientNet-ADV-B7 achieves the cutting-edge accuracy

under both ε = 2/255, it = 10 and 4/255, it = 100 perturbation, which is 93.72%

and 92.14%, while the accuracies of pre-trained EfficientNet-ADV-B7 are only

62.07% and 7.82%, respectively. In our understanding, 92.14% top-5 accuracy of

our EfficientNet-ADV-B7 is currently the best robustness of DNN under strong

PGD attack of ε = 4/255, it = 100 among defense methods.

From Tables 10 and 11, it is emphasized that our proposal is stably robust

on any networks against any attacks, although pre-trained models are trained on

natural or adversarial images.

4.2.7 Tolerance on C&W adversaries

C&W attack is evaluated as an additional adversary to verify the robustness of

our BwoBL algorithm. The convergence of C&W is slower than that of PGD. It

hence expends considerable time to generate a C&W attack. In the original paper

of the C&W attack [31], Carlini et al. only assessed the first 1000 images in the

test set of CIFAR-10 and MNIST. For that reason, we figure out the performance

of all networks on the first 1000 images in the validation set of ImageNet.

Even though we determine structural hyperparameter α of the weights to build

our BNNs based on PGD attack, our proposed models are still robust under strong

C&W attack, as shown in Table 12. We realize ResNet architectures are powerful

with regard to C&W attacks, and our algorithm strengthens their performance

more, i.e., a 28.6% rise on average. Other models, such as EfficientNets and SANs,

are easily attacked, but if they are combined with our BwoBL, their robustness is

substantially reinforced. From the recognition of baseline pre-trained networks is

less than 10%, our proposed EfficientNets and SANs are able to reach 88.5% and

84.4% maximum top-5 accuracy under strong C&W attack without any additional

52

training phase.

It is pointed out that adversarial training with a PGD attack cannot re-

sist C&W attacks. In Table 12, ResNet-50-FAST-2px and ResNet-50-FAST-4px,

which are trained with PGD adversarial images only achieve 12.2% and 9.3% on

C&W attack images. Moreover, when applying our algorithm to both of them,

their top-5 accuracies increase by 4.4% and 6.0%, respectively. It means the ap-

plication of our BwoBL to naturally pre-trained networks is more robust than the

application to pre-trained models on adversarial examples. However, pre-trained

DNNs on the mixed dataset, including natural and PGD adversarial images, as

EfficientNet-ADV might become the best defense against any attacks when they

are combined with our BwoBL algorithm. As seen in Table 12, EfficientNet-ADV

models are almost fooled by the C&W attack but our EfficientNet-ADV networks

considerably enhance the robustness. 94.2% of the proposed EfficientNet-ADV-

B7 is the cutting-edge accuracy currently under strong C&W attack.

Tables 10, 11, and 12 verify the best robustness of our proposed BNNs resisting

both PGD and C&W attacks, though we apply the BwoBL algorithm to naturally

pre-trained DNNs or adversarial pre-trained models.

53

Table 12. Robustness of our proposed networks and pre-trained DNNs to l2 norm

C&W attack are assessed by top-5 accuracies (%).

Pre-trained networks Our proposal

ResNet-50 42.5 76.9

ResNet-101 47.1 77.1

ResNet-152 46.0 79.0

ResNeXt-101-32×8d 67.4 84.3

EfficientNet-B0 3.0 60.7

EfficientNet-B1 1.3 56.9

EfficientNet-B2 1.7 73.3

EfficientNet-B3 2.2 81.8

EfficientNet-B4 2.2 83.6

EfficientNet-B5 1.2 85.8

EfficientNet-B6 0.7 85.9

EfficientNet-B7 0.3 88.5

SAN19-pairwise 3.1 78.6

SAN19-patchwise 6.5 84.4

ResNet-50-FAST-2px 12.2 16.6

ResNet-50-FAST-4px 9.3 15.3

EfficientNet-ADV-B0 4.0 53.4

EfficientNet-ADV-B1 4.3 71.1

EfficientNet-ADV-B2 5.3 76.3

EfficientNet-ADV-B3 7.6 82.5

EfficientNet-ADV-B4 7.6 88.8

EfficientNet-ADV-B5 3.9 90.3

EfficientNet-ADV-B6 4.0 91.8

EfficientNet-ADV-B7 1.9 94.2

54

4.2.8 Comprehensive assessment

To sum up, our BwoBL approach can construct BNNs based on learned parame-

ters of DNNs and sharply improves the defense of pre-trained DNNs against any

adversarial attacks but does not need iteratively adversarial training. Fig. 21

summarizes a comparison between the robustness of our proposal, standard and

adversarial training. Standard training often gets a good accuracy on natural

images and becomes a valuable defense when it is combined with our proposal.

In addition, PGD adversarial training is just good for PGD attacks but not

against C&W attacks, which reduces the accuracy of standard training, as shown

in ResNet-50 of Fig. 21. Otherwise, adversarial training in EfficientNets is not

only gaining accuracy but also gaining robustness with applying our proposed

algorithm. Fig. 21 indicates that our BwoBL method importantly contributes

to improving the robustness of pre-trained models with major natural data and

cheaper adversaries resisting a diversity of adversarial attacks.

In reality, security-critical applications need a robust technique as Bayes with-

out Bayesian Learning that does not cost additional training computation and

is independent of attack algorithms but is expected to resist any attack in the

future. With these observations, we prove that Bayes without Bayesian Learning

algorithm significantly boosts the robustness of pre-trained models against ad-

versarial attacks on real datasets and deep neural networks that are challenging

to the training problem.

55

0

10

20

30

40

50

60

70

80

90

100

R
e

sN
e

t-
5

0

E
ffi

ci
e

n
tN

e
t-

B
0

E
ffi

ci
e

n
tN

e
t-

B
7

R
e

sN
e

t-
5

0

E
ffi

ci
e

n
tN

e
t-

B
0

E
ffi

ci
e

n
tN

e
t-

B
7

R
e

sN
e

t-
5

0

E
ffi

ci
e

n
tN

e
t-

B
0

E
ffi

ci
e

n
tN

e
t-

B
7

Natural PGD a"ack C&W a"ack

To
p

-5
 A

cc
u

ra
cy

 [
%

]

Sta. training Adv. training

Sta. training + Proposal Adv. training + Proposal

Figure 21. Summarized comparison between our proposal and other defense

methods of typical networks on natural images, PGD attack images: l∞ norm,

ε = 4/255, iteration = 100, and C&W attack images.

Sta. and Adv. training stand for Standard and Adversarial training.

56

5 Conclusion

In this dissertation, we build various BNNs and explore a robust Bayesian infer-

ence against adversarial attacks, which has been based on Bayes without Bayesian

Learning algorithm. We mentioned that most of the previous defenses performed

adversarial training as an outstanding method. As we presented, the cost of

training and generating adversarial examples are substantial in adversarial learn-

ing. Additionally, catastrophic overfitting is a difficulty in this training process.

These reasons make adversarial training more complicated on large-scale data

under strong attacks. So as to avoid the iterative training towards a variety

of perturbations, we focus on Bayesian inference from pre-trained DNNs. Our

method builds BNNs on the state-of-the-art pre-trained DNNs via replacing con-

volutional layers of pre-trained CNNs and linear transformation layers of pre-

trained SANs with our Bayes layers that is an application of transfer learning.

By treating the mean of BNN weights as single-point values of the weights of

pre-trained DNNs, we concentrate on controlling the variance of the probabilistic

distribution of BNN parameters, which is assumed a structural hyperparameter.

Each pre-trained DNN is fixed by a structural hyperparameter to produce the

weight uncertainty resisting gradient-based attacks. Furthermore, the ensemble

model that is generated by the random sampling of probabilistic weights enhances

the performance of our BNNs. We hereby declare Bayesian inference as an ef-

fective resistance to a variety of adversaries without costing adversarial Bayesian

learning. Our Bayesian inference method reveals its potential towards adversarial

robustness on both small and large data, such as CIFAR-10/100 and ImageNet.

Especially, under l∞ norm PGD attack of pixel perturbation ε = 4/255 with 100

iterations and strong l2 norm C&W attack on the real dataset like ImageNet, the

top-5 accuracies of our proposed models increase by 58.18% and 62.26% on aver-

age, respectively, which are combined with naturally pre-trained networks. The

most powerful model, i.e., our EfficientNet-ADV-B7, achieves 92.14% and 94.20%

accuracy under these intense PGD and C&W attacks, which are the best robust-

ness among defense methods recently. In the future, we hope that this inference

approach can be widely applied in multiple DNN architectures and become a

robust technique of deep learning security towards a diversity of adversaries.

57

Acknowledgements

First of all, I would like to sincerely thank my Ph.D. supervisor, Prof. Yasuhiko

Nakashima, for his enthusiastic guidance and continuous support over the last

three years. Under the supervision of Prof. Nakashima, I began the interests in

deep learning security, the limitations of deep neural networks, which inspired

me to explore a new research direction - Bayesian Neural Networks resisting

adversarial attacks. This research is throughout my Ph.D. course, in which I have

published some studied work. Besides, I would also like to thank Prof. Kazushi

Ikeda, Assoc. Prof. Renyuan Zhang, and Visiting Assoc. Prof. Tran Thi Hong

for serving on my thesis committee and giving valuable suggestions. Likewise,

I deeply appreciate the mentoring of Assoc. Prof. Takashi Nakada, who directly

guide me when I am a newbie researcher in the field of deep learning. He has

taught me how to think critically and explore many aspects of the research, and

kept supporting me even after he left our institute.

Next, I would like to thank Computing Architecture Laboratory, Division

of Information Science, Nara Institute of Science and Technology (NAIST) for

supporting my academic career. I feel so lucky to get a chance to work with a lot

of wonderful colleagues at Computing Architecture Laboratory in the last three

years. Additionally, I feel happy when spending my life with a small Vietnamese

community at NAIST during that time. I would like to thank all people who

aid me to overcome the difficult and boring life during the Covid-19 pandemic in

Japan.

Last but not least, I would like to express my gratitude to my family members.

I am grateful to my parents and mother-in-law for unconditionally supporting me

so that I can pursue my academic dream. I am thankful to my husband and son

for always standing by my side at all times even though the geographical distance

is our obstruction.

58

References

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[2] [Online]. Bayes by backprop from scratch. Available:

https://gluon.mxnet.io/chapter18-variational-methods-and-

uncertainty/bayes-by-backprop.html.

[3] Kumar Shridhar, Felix Laumann, and Marcus Liwicki. A comprehensive

guide to bayesian convolutional neural network with variational inference.

arXiv preprint arXiv:1901.02731, 2019.

[4] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for

convolutional neural networks. In International Conference on Machine

Learning, pages 6105–6114. PMLR, 2019.

[5] Mohammadamin Tavakoli, Forest Agostinelli, and Pierre Baldi. Splash:

Learnable activation functions for improving accuracy and adversarial ro-

bustness. Neural Networks, 140:1–12, 2021.

[6] Clarence Chio and David Freeman. Machine learning and security: Pro-

tecting systems with data and algorithms. ” O’Reilly Media, Inc.”, 2018.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-

fication with deep convolutional neural networks. Communications of the

ACM, 60(6):84–90, 2017.

[8] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun.

Learning hierarchical features for scene labeling. IEEE transactions on

pattern analysis and machine intelligence, 35(8):1915–1929, 2012.

[9] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. Going deeper with convolutions. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1–9, 2015.

59

[10] Constantine P Papageorgiou, Michael Oren, and Tomaso Poggio. A gen-

eral framework for object detection. In Sixth International Conference on

Computer Vision (IEEE Cat. No. 98CH36271), pages 555–562. IEEE, 1998.

[11] Constantine Papageorgiou and Tomaso Poggio. A trainable system for

object detection. International journal of computer vision, 38(1):15–33,

2000.

[12] Paul Viola, Michael Jones, et al. Robust real-time object detection. Inter-

national journal of computer vision, 4(34-47):4, 2001.

[13] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from

scratch. Journal of machine learning research, 12(ARTICLE):2493–2537,

2011.

[14] Gobinda G Chowdhury. Natural language processing. Annual review of

information science and technology, 37(1):51–89, 2003.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

[16] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa

Sengupta, and Anil A Bharath. Generative adversarial networks: An

overview. IEEE Signal Processing Magazine, 35(1):53–65, 2018.

[17] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-

works for large-scale image recognition. ICLR-2015, arXiv preprint

arXiv:1409.1556, 2014.

[18] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 3431–3440, 2015.

[19] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-

ture hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pages 580–587, 2014.

60

[20] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,

and Alan L Yuille. Deeplab: Semantic image segmentation with deep con-

volutional nets, atrous convolution, and fully connected crfs. IEEE trans-

actions on pattern analysis and machine intelligence, 40(4):834–848, 2017.

[21] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. 3rd International Conference on Learning

Representations - ICLR 2015, arXiv preprint arXiv:1412.6572, 2014.

[22] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin

Hu, and Jianguo Li. Boosting adversarial attacks with momentum. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

pages 9185–9193, 2018.

[23] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-

works. 2nd International Conference on Learning Representations - ICLR

2014, arXiv preprint arXiv:1312.6199, 2013.

[24] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Adversarial examples

in the physical world, 2016.

[25] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are

easily fooled: High confidence predictions for unrecognizable images. In

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pages 427–436, 2015.

[26] Ali Rahmati, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Huaiyu

Dai. Geoda: a geometric framework for black-box adversarial attacks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8446–8455, 2020.

[27] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,

Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust

physical-world attacks on deep learning visual classification. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages

1625–1634, 2018.

61

[28] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal

Frossard. Universal adversarial perturbations. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1765–1773,

2017.

[29] Hyun Kwon, Yongchul Kim, Ki-Woong Park, Hyunsoo Yoon, and Daeseon

Choi. Advanced ensemble adversarial example on unknown deep neural

network classifiers. IEICE TRANSACTIONS on Information and Systems,

101(10):2485–2500, 2018.

[30] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris

Tsipras, and Adrian Vladu. Towards deep learning models resistant to

adversarial attacks. 6th International Conference on Learning Representa-

tions - ICLR 2018, arXiv preprint arXiv:1706.06083, 2017.

[31] Nicholas Carlini and David Wagner. Towards evaluating the robustness

of neural networks. In 2017 ieee symposium on security and privacy (sp),

pages 39–57. IEEE, 2017.

[32] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay

Celik, and Ananthram Swami. Practical black-box attacks against machine

learning. In Proceedings of the 2017 ACM on Asia conference on computer

and communications security, pages 506–519, 2017.

[33] [Online]. Adversarial example generation. Available:

https://pytorch.org/tutorials/beginner/fgsm tutorial.html.

[34] Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou

Liao, Ming Liang, Tianyu Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, et al.

Adversarial attacks and defences competition. In The NIPS’17 Competi-

tion: Building Intelligent Systems, pages 195–231. Springer, 2018.

[35] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and

Jun Zhu. Defense against adversarial attacks using high-level representa-

tion guided denoiser. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1778–1787, 2018.

62

[36] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram

Swami. Distillation as a defense to adversarial perturbations against deep

neural networks. In 2016 IEEE symposium on security and privacy (SP),

pages 582–597. IEEE, 2016.

[37] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. Efficient

defenses against adversarial attacks. In Proceedings of the 10th ACM Work-

shop on Artificial Intelligence and Security, pages 39–49, 2017.

[38] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaim-

ing He. Feature denoising for improving adversarial robustness. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 501–509, 2019.

[39] Nicholas Carlini and David Wagner. Adversarial examples are not easily

detected: Bypassing ten detection methods. In Proceedings of the 10th

ACM workshop on artificial intelligence and security, pages 3–14, 2017.

[40] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B

Gardner. Detecting adversarial samples from artifacts. arXiv preprint

arXiv:1703.00410, 2017.

[41] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting

adversarial examples in deep neural networks. Network and Distributed

Systems Security Symposium 2018, arXiv preprint arXiv:1704.01155, 2017.

[42] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy

Bernstein, Jean Kossaifi, Aran Khanna, and Anima Anandkumar. Stochas-

tic activation pruning for robust adversarial defense. ICLR 2018, arXiv

preprint arXiv:1803.01442, 2018.

[43] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca

Daniel. Efficient neural network robustness certification with general activa-

tion functions. 32nd Conference on Neural Information Processing Systems

(NIPS 2018), 2018.

63

[44] Andras Rozsa and Terrance E Boult. Improved adversarial robust-

ness by reducing open space risk via tent activations. arXiv preprint

arXiv:1908.02435, 2019.

[45] Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L Bertozzi, and

Stanley J Osher. Adversarial defense via the data-dependent activation,

total variation minimization, and adversarial training. Inverse Problems &

Imaging, 2020.

[46] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson,

Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adver-

sarial training for free! 33rd Conference on Neural Information Processing

Systems (NeurIPS 2019), 2019.

[47] Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson, Larry S Davis, and

Tom Goldstein. Universal adversarial training. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34, pages 5636–5643, 2020.

[48] Thilo Strauss, Markus Hanselmann, Andrej Junginger, and Holger Ulmer.

Ensemble methods as a defense to adversarial perturbations against deep

neural networks. arXiv preprint arXiv:1709.03423, 2017.

[49] Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. Towards

robust neural networks via random self-ensemble. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 369–385, 2018.

[50] Xuanqing Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. Adv-bnn: Im-

proved adversarial defense through robust bayesian neural network. ICLR

2019, arXiv preprint arXiv:1810.01279, 2018.

[51] Christopher M Bishop. Bayesian methods for neural networks. 1995.

[52] David JC MacKay. Bayesian methods for backpropagation networks. In

Models of neural networks III, pages 211–254. Springer, 1996.

[53] Radford M Neal. Bayesian learning for neural networks, volume 118.

Springer Science & Business Media, 2012.

64

[54] José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backprop-

agation for scalable learning of bayesian neural networks. In International

conference on machine learning, pages 1861–1869. PMLR, 2015.

[55] David Barber and Christopher M Bishop. Ensemble learning in bayesian

neural networks. Nato ASI Series F Computer and Systems Sciences,

168:215–238, 1998.

[56] Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter.

Bayesian optimization with robust bayesian neural networks. Advances in

neural information processing systems, 29:4134–4142, 2016.

[57] William D Penny and Stephen J Roberts. Bayesian neural networks for

classification: how useful is the evidence framework? Neural networks,

12(6):877–892, 1999.

[58] Shengyang Sun, Changyou Chen, and Lawrence Carin. Learning structured

weight uncertainty in bayesian neural networks. In Artificial Intelligence

and Statistics, pages 1283–1292. PMLR, 2017.

[59] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[60] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. 2009.

[61] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, et al. Imagenet large scale visual recognition challenge. International

journal of computer vision, 115(3):211–252, 2015.

[62] [Online]. Imagenet database. Available: https://image-net.org/index.php.

[63] Thi Thu Thao Khong, Takashi Nakada, and Yasuhiko Nakashima. Bayes

without bayesian learning for resisting adversarial attacks. In 2020

Eighth International Symposium on Computing and Networking (CAN-

DAR), pages 221–227. IEEE, 2020.

65

[64] Thi Thu Thao Khong, Takashi Nakada, and Yasuhiko Nakashima. Flexi-

ble bayesian inference by weight transfer for robust deep neural networks.

IEICE Transactions on Information and Systems, E104-D(11):1981–1991,

2021.

[65] Roland Orre, Anders Lansner, Andrew Bate, and Marie Lindquist. Bayesian

neural networks with confidence estimations applied to data mining. Com-

putational Statistics & Data Analysis, 34(4):473–493, 2000.

[66] Yongchan Kwon, Joong-Ho Won, Beom Joon Kim, and Myunghee Cho

Paik. Uncertainty quantification using bayesian neural networks in clas-

sification: Application to biomedical image segmentation. Computational

Statistics & Data Analysis, 142:106816, 2020.

[67] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian

deep learning for computer vision? arXiv preprint arXiv:1703.04977, 2017.

[68] Kumar Shridhar, Felix Laumann, and Marcus Liwicki. Uncertainty estima-

tions by softplus normalization in bayesian convolutional neural networks

with variational inference. arXiv preprint arXiv:1806.05978, 2018.

[69] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wier-

stra. Weight uncertainty in neural network. In International Conference

on Machine Learning, pages 1613–1622. PMLR, 2015.

[70] Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural

networks: Approximately bayesian ensembling. In International conference

on artificial intelligence and statistics, pages 234–244. PMLR, 2020.

[71] Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural net-

works with bernoulli approximate variational inference. arXiv preprint

arXiv:1506.02158, 2015.

[72] David JC MacKay. A practical bayesian framework for backpropagation

networks. Neural computation, 4(3):448–472, 1992.

[73] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks

simple by minimizing the description length of the weights. In Proceedings

66

of the sixth annual conference on Computational learning theory, pages 5–

13, 1993.

[74] David JC MacKay. Probable networks and plausible predictions-a review

of practical bayesian methods for supervised neural networks. Network:

computation in neural systems, 6(3):469, 1995.

[75] Radford M Neal. Bayesian training of backpropagation networks by the

hybrid monte carlo method. Technical report, Citeseer, 1992.

[76] Alex Graves. Practical variational inference for neural networks. Advances

in neural information processing systems, 24, 2011.

[77] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning research, 15(1):1929–

1958, 2014.

[78] Sida Wang and Christopher Manning. Fast dropout training. In interna-

tional conference on machine learning, pages 118–126. PMLR, 2013.

[79] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout

and the local reparameterization trick. Advances in neural information

processing systems, 28:2575–2583, 2015.

[80] Christos Louizos and Max Welling. Multiplicative normalizing flows for

variational bayesian neural networks. In International Conference on Ma-

chine Learning, pages 2218–2227. PMLR, 2017.

[81] Chunyuan Li, Andrew Stevens, Changyou Chen, Yunchen Pu, Zhe Gan,

and Lawrence Carin. Learning weight uncertainty with stochastic gradient

mcmc for shape classification. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 5666–5675, 2016.

[82] Solomon Kullback and Richard A Leibler. On information and sufficiency.

The annals of mathematical statistics, 22(1):79–86, 1951.

67

[83] Christian Robert and George Casella. Monte Carlo statistical methods.

Springer Science & Business Media, 2013.

[84] W Keith Hastings. Monte carlo sampling methods using markov chains and

their applications. 1970.

[85] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim

Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks

against machine learning at test time. In Joint European conference on

machine learning and knowledge discovery in databases, pages 387–402.

Springer, 2013.

[86] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson,

Z Berkay Celik, and Ananthram Swami. The limitations of deep learn-

ing in adversarial settings. In 2016 IEEE European symposium on security

and privacy (EuroS&P), pages 372–387. IEEE, 2016.

[87] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.

Deepfool: a simple and accurate method to fool deep neural networks. In

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pages 2574–2582, 2016.

[88] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based

adversarial attacks: Reliable attacks against black-box machine learning

models. ICLR 2018, arXiv preprint arXiv:1712.04248, 2017.

[89] Francesco Croce and Matthias Hein. Sparse and imperceivable adversar-

ial attacks. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 4724–4732, 2019.

[90] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick

McDaniel. The space of transferable adversarial examples. arXiv preprint

arXiv:1704.03453, 2017.

[91] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine

learning at scale. ICLR-2017, arXiv preprint arXiv:1611.01236, 2017.

68

[92] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learn-

ing with a strong adversary. arXiv preprint arXiv:1511.03034, 2015.

[93] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the

robustness of a classifier against adversarial manipulation. In Advances

in Neural Information Processing Systems, Annual Conference on Neural

Information Processing Systems, pages 2263–2273, 2017.

[94] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients

give a false sense of security: Circumventing defenses to adversarial ex-

amples. In International conference on machine learning, pages 274–283.

PMLR, 2018.

[95] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, and Deepak Verma. Adver-

sarial classification. In Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 99–108, 2004.

[96] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of classifiers’

robustness to adversarial perturbations. Machine Learning, 107(3):481–508,

2018.

[97] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding ad-

versarial training: Increasing local stability of supervised models through

robust optimization. Neurocomputing, 307:195–204, 2018.

[98] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revis-

iting adversarial training. ICLR 2020, 2020.

[99] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan

Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and

defenses. ICLR 2018, arXiv preprint arXiv:1705.07204, 2017.

[100] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo

Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.

Domain-adversarial training of neural networks. The journal of machine

learning research, 17(1):2096–2030, 2016.

69

[101] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep

into rectifiers: Surpassing human-level performance on imagenet classifi-

cation. In Proceedings of the IEEE international conference on computer

vision, pages 1026–1034, 2015.

[102] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,

Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-

agation applied to handwritten zip code recognition. Neural computation,

1(4):541–551, 1989.

[103] Krizhevsky Alex, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-

fication with deep convolutional networks. In volume-1; pages-1097–1105;

NIPS’12 Proceedings of the 25th International Conference on Neural Infor-

mation Processing Systems.

[104] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fer-

gus, and Yann LeCun. Overfeat: Integrated recognition, localization

and detection using convolutional networks. ICLR 2014, arXiv preprint

arXiv:1312.6229, 2013.

[105] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-

tional networks. In European conference on computer vision, pages 818–833.

Springer, 2014.

[106] Alex Krizhevsky. One weird trick for parallelizing convolutional neural

networks. arXiv preprint arXiv:1404.5997, 2014.

[107] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,

William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accu-

racy with 50x fewer parameters and¡ 0.5 mb model size. arXiv preprint

arXiv:1602.07360, 2016.

[108] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-

berger. Densely connected convolutional networks. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 4700–

4708, 2017.

70

[109] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-

niew Wojna. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pages 2818–2826, 2016.

[110] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and

Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.

In Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pages 4510–4520, 2018.

[111] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. In Advances in neural information processing systems, pages 5998–

6008, 2017.

[112] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local relation net-

works for image recognition. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 3464–3473, 2019.

[113] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm

Levskaya, and Jonathon Shlens. Stand-alone self-attention in vision models.

arXiv preprint arXiv:1906.05909, 2019.

[114] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V

Le. Attention augmented convolutional networks. In Proceedings of the

IEEE/CVF international conference on computer vision, pages 3286–3295,

2019.

[115] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention

for image recognition. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 10076–10085, 2020.

[116] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the rela-

tionship between self-attention and convolutional layers. ICLR 2020, arXiv

preprint arXiv:1911.03584, 2019.

71

[117] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter

Abbeel, and Ashish Vaswani. Bottleneck transformers for visual recog-

nition. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 16519–16529, 2021.

[118] Souvik Kundu and Sairam Sundaresan. Attentionlite: Towards efficient

self-attention models for vision. In ICASSP 2021-2021 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

2225–2229. IEEE, 2021.

[119] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang

Zhang, Xiaogang Wang, and Xiaoou Tang. Residual attention network for

image classification. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3156–3164, 2017.

[120] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-

attention generative adversarial networks. In International conference on

machine learning, pages 7354–7363. PMLR, 2019.

[121] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE

Transactions on knowledge and data engineering, 22(10):1345–1359, 2009.

[122] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of

transfer learning. Journal of Big data, 3(1):1–40, 2016.

[123] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and

Chunfang Liu. A survey on deep transfer learning. In International confer-

ence on artificial neural networks, pages 270–279. Springer, 2018.

[124] Jie Lu, Vahid Behbood, Peng Hao, Hua Zuo, Shan Xue, and Guangquan

Zhang. Transfer learning using computational intelligence: A survey.

Knowledge-Based Systems, 80:14–23, 2015.

[125] Ling Shao, Fan Zhu, and Xuelong Li. Transfer learning for visual cate-

gorization: A survey. IEEE transactions on neural networks and learning

systems, 26(5):1019–1034, 2014.

72

[126] Zhengming Ding and Yun Fu. Robust transfer metric learning for im-

age classification. IEEE Transactions on Image Processing, 26(2):660–670,

2016.

[127] Mahbub Hussain, Jordan J Bird, and Diego R Faria. A study on cnn

transfer learning for image classification. In UK Workshop on computational

Intelligence, pages 191–202. Springer, 2018.

[128] Manali Shaha and Meenakshi Pawar. Transfer learning for image classifi-

cation. In 2018 Second International Conference on Electronics, Commu-

nication and Aerospace Technology (ICECA), pages 656–660. IEEE, 2018.

[129] Dongmei Han, Qigang Liu, and Weiguo Fan. A new image classification

method using cnn transfer learning and web data augmentation. Expert

Systems with Applications, 95:43–56, 2018.

[130] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large

scale fine-grained categorization and domain-specific transfer learning. In

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pages 4109–4118, 2018.

[131] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[132] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity map-

pings in deep residual networks. In European conference on computer vision,

pages 630–645. Springer, 2016.

[133] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Icml, 2010.

[134] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.

Aggregated residual transformations for deep neural networks. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition,

pages 1492–1500, 2017.

73

[135] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In International

conference on machine learning, pages 448–456. PMLR, 2015.

[136] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[137] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler,

Andrew Howard, and Quoc V Le. Mnasnet: Platform-aware neural archi-

tecture search for mobile. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 2820–2828, 2019.

[138] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv

preprint arXiv:1605.07146, 2016.

[139] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning

transferable architectures for scalable image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages

8697–8710, 2018.

[140] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen,

Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al.

Gpipe: Efficient training of giant neural networks using pipeline parallelism.

Advances in neural information processing systems, 32:103–112, 2019.

[141] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask

r-cnn. In Proceedings of the IEEE international conference on computer

vision, pages 2961–2969, 2017.

[142] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariha-

ran, and Serge Belongie. Feature pyramid networks for object detection. In

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pages 2117–2125, 2017.

[143] [Online]. Torchvision.models. Available:

https://pytorch.org/vision/stable/models.html.

74

[144] [Online]. Cifar10 classification using pytorch. Available:

https://github.com/huyvnphan/PyTorch CIFAR10.

[145] [Online]. Efficientnet pytorch. Available:

https://github.com/lukemelas/EfficientNet-PyTorch.

[146] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and

Quoc V Le. Adversarial examples improve image recognition. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 819–828, 2020.

[147] Qiyu Wan and Xin Fu. Fast-bcnn: Massive neuron skipping in bayesian

convolutional neural networks. In 2020 53rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), pages 229–240. IEEE,

2020.

[148] Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding, Luhao Wang, Xuehai Qian,

Massoud Pedram, and Yanzhi Wang. Vibnn: Hardware acceleration of

bayesian neural networks. ACM SIGPLAN Notices, 53(2):476–488, 2018.

[149] Ruizhe Cai, Ao Ren, Luhao Wangy, Massoud Pedramy, and Yanzhi Wang.

Hardware acceleration of bayesian neural networks using ram based linear

feedback gaussian random number generators. In 2017 IEEE International

Conference on Computer Design (ICCD), pages 289–296. IEEE, 2017.

[150] Yuki Hirayama, Tetsuya Asai, Masato Motomura, and Shinya Takamaeda-

Yamazaki. A resource-efficient weight sampling method for bayesian neural

network accelerators. In 2019 Seventh International Symposium on Com-

puting and Networking (CANDAR), pages 137–142. IEEE, 2019.

[151] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approxima-

tion: Representing model uncertainty in deep learning. In international

conference on machine learning, pages 1050–1059. PMLR, 2016.

75

List of publications

Peer review journal paper

1. Thi Thu Thao KHONG, Takashi NAKADA, and Yasuhiko NAKASHIMA,

“Flexible Bayesian Inference by Weight Transfer for Robust Deep Neu-

ral Networks”, IEICE Transactions on Information and Systems, Paper,

Vol.E104-D, No.11, pp.1981–1991, 2021. (Sections 3 and 4.2.)

Peer review conference paper

1. Thi Thu Thao KHONG, Takashi NAKADA, and Yasuhiko NAKASHIMA,

“Bayes without Bayesian Learning for Resisting Adversarial Attacks”, 2020

Eighth International Symposium on Computing Networking (CANDAR),

Outstanding paper award, pp.221–227, 2020. (Sections 3.1, 3.2.1, 3.2.2,

3.4.2, and 4.1.)

76

