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Multimodal Machine Chain*

Johanes Effendi The

Abstract

Researchers have been working in speech technology for many decades. State-

of-the-art automatic speech recognition (ASR) and text-to-speech synthesis (TTS)

systems are currently based on end-to-end deep learning frameworks. Tradition-

ally, they are usually trained by applying supervised learning techniques that rely

on the availability of parallel speech data and its corresponding transcriptions.

To improve the performance in the presence of unexpected acoustic variability,

we usually collect more data to train more detailed models. Unfortunately, such

a method can only be used to train the model for about 10-20 of the world’s most

common languages. For many others, the parallel data of speech and its tran-

scriptions are usually unavailable, which makes such models hard to implement.

On the other hand, human learning does not rely on parallel data. We can

learn from any experience, even if the examples are not provided at the same

time. These experiences are perceived in the form of senses, such as auditory

and visual, which shares complementary behaviour to ensure flexible learning

from any modality (i.e. speech, text, image) in the form of a feedback loop.

Inspired by this mechanism, we propose a multimodal machine chain (MMC) as

a general framework that accommodates learning in any kind of modality and data

availability (i.e. paired, unpaired, single-modality). In this framework, a cross-

modal model is able to learn from non-parallel data through feedback it receives

after mapping the input into other modalities. Consequently, more modalities,

in this case, means more feedback can be made, which therefore enable model

learning with fewer data. This makes our proposed learning strategy beneficial

for under-resource language, where such technologies matter the most.

*Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
and Technology, June 30, 2021.
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This thesis contribution is four-fold. First, we defined a general framework

that enables cross-modal model training in any modality and any data availabil-

ity. Second, we showed that our MMC framework can be used to enable semi-

supervised cross-modal collaboration that allows learning from a single-modality

data, which modality is unrelated. Third, we pushed the level of supervision

boundary into weakly-supervised learning, to enable a speech-to-text mapping

using a visually-connected non-parallel data. Finally, we showcase our proposed

MMC framework capability to learn a self-supervised discrete speech represen-

tation to enable image-to-speech generation without text. All these four contri-

butions in the form of MMC framework and its applications shows its capability

to enable speech processing model learning for low-resource language or even

unknown untranscribed language.

Keywords:

semi-supervised learning, weakly-supervised learning, self-supervised learning,

speech recognition, multimodal information processing, low-resource language
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Chapter 1

Introduction

Speech is commonly known as the most natural means of communication. Speech

communication consists of listening and speaking activities to perceive and convey

information. We perceive information by processing the speech signal with the

help of the ear as the organ that processes auditory senses and passes it to the

brain. On the other hand, we convey information by uttering the speech that

we are thinking with our vocal tract. Both of these activities are coordinated by

the brain that maintains the structure of the perceived and conveyed information

in the form of language. Although we mostly communicate by speech, visual

modality also has an important role to support communication. We see an object

with our eyes, and then our brain recognizes it. Then, we can describe it in the

language we know in the form of speech or textual information. In conclusion,

such triangle modalities of visual, auditory, and textual are the principal

medium of human communication.

1.1. Human Speech Communication

1.1.1 Human Speech Chain Perspective: Speech Produc-

tion and Perception

Denes et al. described the relationship between human listening and speaking

activities in the form of human speech chain [1]. Although listening and speaking

activities are done by a different organ, both these activities are closely related.
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Spoken messages are propagated from the speaker’s mind to the listener’s mind

(Figure 1.1). During the speech production process, the hearing process is not

only needed by the interlocutor but also by the speaker. Through simultaneous

speaking and listening, the speaker can monitor her speech quality with self-

supervision from her brain. The relationship between these two activities is so

close that children who lose their hearing often have difficulty in producing a

clear speech because they are unable to monitor their speech [8].

Figure 1.1: Human speech chain [1]

1.1.2 Multimodality and Flexibility in Human Speech Com-

munication

Visual modality as part of human communication

Although most communication is mainly conveyed through speech and text modal-

ity, visual modality is also often used alongside them. Figure 1.2 illustrates what

is happening when someone hears a speech of “a dog is running” while looking

at a running dog which represents the speech message. The visual modality seen
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Figure 1.2: Multimodal perception in human speech communication

by the eyes supply information about colour, texture, and other visual aspects

of the viewed object, which helps us perceive what we see [9] by enriching the

speech we listened to. There is evidence that the heard speech and the viewed

scene are perceived altogether in the form of cross-modal processing as an audio-

visual speech [10]. In addition, visual modality can also complement the missing

information when it is difficult to infer from auditory channels [11]. Given these

points, we can conclude that visual information is also a crucial part of speech

communication.

Learning flexibility

Figure 1.3: Illustration on human learning flexibility. (a) learning from vi-
sual+text, and (b) learning from speech+text.

Figure 1.3 illustrates human learning flexibility. Assumes that on the left
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side (a), a child reads a picture book with an image of a deer. Then, later in a

zoo, a guide explains verbally that the present animal is a deer. That child can

easily recall what he has learned from the picture book. Now the information of

how to pronounce “deer” (auditory) and how to write “deer” (textual) are both

linked by the visual modality (i.e. how a deer looks like). From this example,

we can conclude that in order to learn something from experience, a human does

not need both information provided at the same time. Even when one modality

is not present, we can still learn and improve any of our communication skills.

This flexibility is possible because of the multimodality in human communication,

where each modality shares complementary behaviour.

1.2. Technology for Speech Communication

For years, machine learning has been trying to mimic human speech communi-

cation by automating the task that human does. One of the most commonly

investigated is the cross-modal task, which is an attempt to automate the map-

ping of one modality to another. Consequently, a machine learning model that

attempts to map one modality to another is called a cross-modal model. In speech

processing, there are two main cross-modal tasks to mimic human communication

ability, which are speech recognition (to simulate listening) and speech synthesis

(to simulate speaking).

1.2.1 Speech Recognition

ASR = =(text)

Figure 1.4: ASR Model

Automatic speech recognition (ASR) is a speech technology that attempts to

transcribe a speech into a text transcription (Figure 1.4). This process automates

human perception of listening, where human recognizes speech that she is listening

to, and text transcription represents the content of the speech in the form of

phoneme or grapheme (i.e. character, word).
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There are several major approaches since the earlier times, which follows the

increase of computation power [12]. At the late 1960s, feature-extraction algo-

rithms that enables fast Fourier transform (FFT) [13] and dynamic time warping

(DTW) [14] were developed. Then, these features are proven to be useful since

the development of hidden Markov models (HMM) for speech processing [15, 16].

After that, the use of Gaussian mixture models (GMMs) to model the acous-

tic information of speech, while HMM is used for the phonetic sequence were

widely adopted by the speech community in the 1990s. This has been proven to

widen the application of the ASR task to recognize a larger vocabulary size, with

speaker-independent condition [17].

From the neural network side, there was also the first usage of convolutional

networks for speech in the form of a time-delay neural network (TDNN) [18]. The

use of a hybrid HMM/MLP architecture has also been used [19, 20], although

these attempts were limited by computational resources until several decades

later with the rise of GPU for a deep neural network. This contributed to the

rise of end-to-end deep neural network for ASR which replaces GMM for acoustic

modelling with recurrent neural network (RNN) [21], convolutional layers [22],

or self-attention encoder [23]. Recently, deep learning-based state-of-the-art ASR

frameworks have even been shown to reach human parity in performance [24, 25].

1.2.2 Speech Synthesis

TTS =  =(text)

Figure 1.5: TTS Model

A text-to-speech (TTS) is a speech technology that aims to synthesize speech

given text input (Figure 1.5). Jurafsky and Martin (2009) describes three early

paradigms for TTS: articulatory synthesis, concatenative synthesis, and formant

synthesis. Articulatory synthesis models the physics of the vocal tract as an open

tube, in order to synthesize speech [26, 27, 28]. Concatenative synthesis combines

several speech units in the form of diphones, to synthesize a speech utterance

considering the F0, stress, duration, and formant distance between neighbour-
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ing units [29, 30]. The last paradigm is formant synthesis, which attempts to

synthesize a spectrogram similar to the reference speech [31, 32].

The recent rising interest in the deep learning approach fosters the devel-

opment of several sequence-to-sequence models which falls under the formant

synthesizer paradigm. A model such as Tacotron [2] aims to synthesize a mel-

spectrogram given phoneme sequence as an input, with an attention mechanism

to bridge the encoder and decoder. FastSpeech [33, 34] and Parallel Tacotron

[35, 36] proposed a non-autoregressive approach, by replacing attention mecha-

nism with a duration prediction mechanism.

1.2.3 Current Limitations and Our Proposal

Problems:

Widely-used supervised learning requires large amount of parallel data.

The last two sections have described the speech researchers attempt to simulate

human speech communication skills of listening and speaking into a machine.

Based on the metrics that are used by them to evaluate their models, the current

state-of-the-art ASR systems have been known to successfully reach parity with

humans [24, 25]. Although it is reassuring, such models can only be used to

perfectly recognizing the speech of the top 10-20 of the world’s most common

languages. It is difficult to be applied for many other languages because the

required speech and the corresponding transcriptions are usually unavailable.

The problem lies in the learning paradigm used to train such state-of-the-art

models. They are usually trained by applying supervised learning techniques

that rely on the availability of speech data and corresponding transcriptions.

To improve the performance in the presence of unexpected acoustic variability,

they usually collect more data to train a more detailed model. Therefore, a

novel learning mechanism to reduce the need for parallel data to train a speech

processing model is needed, especially for an under-resourced language.

Moreover, there has been some attempt to incorporate more modalities in

a system, inspired by human communication multimodality. For example, there

has been some work in audio-visual ASR [37, 38], multimodal machine translation

[39, 40], and visual TTS [41, 42] to incorporate visual modalities in a natural lan-
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guage model. Several advantages have been reported such as reduced ambiguity,

improved performance, and a more natural result.

However, such research direction will introduce a new kind of limitation, which

is related to the curse of dimensionality [43]. Similar to the previous problem, such

models are trained in a supervised manner, which heavily relies on the parallel

dataset. Therefore, the more modality we add to the system, the more difficult

it is to get the parallel data of all those included modalities.

Existing approaches:

Solutions for specific modalities and specific data condition.

The most common way to solve the limited data problem is by using semi-

supervised learning. Label propagation is the first attempt at learning from

partially unlabeled data [44, 45]. First, a model is trained with the labelled

portion of the data. Then, the trained model generates a pseudo label for the

unlabeled portion of the data, so that it can be used to continue the training.

Similarly, a dual learning mechanism is inspired by this method that enables

learning from source-to-target by feedback links, which provide the possibility of

training models with unpaired datasets. He et al. [46] proposed dual learning in

neural machine translation (NMT). In their work, a source-to-target NMT model

(primal) receives feedback from the target-to-source NMT model (dual). This

collaboration between two agents of primal and dual enables learning from mono-

lingual and unpaired data. In addition, there are also some similar approaches in

image processing such as DiscoGAN [47], CycleGAN [48], and DualGAN [49]. Al-

though this method looks promising, both the primal and dual agents are within

the same modality, which diverges the task from the reality of human multimodal

communication.

For a cross-modal task, inspired by the closed-loop speech chain in human

communication (Section 1.1.1), a machine speech chain framework is proposed

to enable ASR and TTS model training from unpaired dataset [50, 51, 52, 53].

Machine speech chain integrates human speech perception and production be-

haviours that utilize the primal model (ASR) that transcribes a text, given the

speech versus the dual model (TTS) that synthesizes the speech given the text

(Figure 1.6).
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Figure 1.6: Machine speech chain (right) inspired by human speech chain (left)
as an attempt to enable semi-supervised learning from unpaired data.

The approach provides freedom from needing a large amount of speech-text

paired data and possibilities to improve ASR performance in semi-supervised

learning by allowing ASR and TTS to teach each other, given only text or only

speech data. The speech-only data is transcribed by a pretrained ASR model,

which text hypothesis then can be used by pretrained TTS model to generate

a speech hypothesis. Therefore, the TTS model can be updated by the speech

reconstruction model. In reverse, a speech hypothesis can be synthesized from

text-only input, which then transcribed by the ASR model. Using the recon-

struction loss of the original text and the text hypothesis, we can update the

ASR model.

Nevertheless, in the cases described before, all of the learning strategies are

designed specifically to handle a modality in their particular task. For exam-

ple, although the machine speech chain reduces the need for parallel data, the

unpaired dataset being used is still related to the input and output of the cross-

modal model itself. Furthermore, in the “Watch, Listen, Attend, and Spell”

audio-visual ASR framework, they arranged flexible learning due to an imbal-

anced number of speech and lip video data. However, such a method can only be

used in their specific multi-source architecture.

Although these approaches are indeed reducing the need for parallel data to

some extent, the idea cannot be used in general for other modalities and other

model architecture due to different characteristics. We propose that there should

be a general framework that defines learning strategies that can be applied for

any modalities and any kind of model architecture. Consequently, that general
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framework should be capable to enable learning for such data conditions with any

level of supervision.

Our Proposal:

General framework to enable learning with any data condition by cross-

modal collaboration.

We propose that the solution to these problems are actually can be learned from

how humans learn to communicate in their early days which does not always need

parallel data. Young children can communicate effectively with their parents in

their native language even before they learn to read or write [54]. This means that

if later those children can transcribe a speech, that does not mean they need a

special learning time where both the speech utterance and the text transcription

are given at the same time, as described in Section 1.1.2. From the example in

Figure 1.3 we can also see that the learning process is not always happening when

all of the materials are presented together, but also through a confirmation or

feedback in an interaction.

Therefore, a system that attempts to simulate human communication must

be able to learn from any modalities, even when they are not parallel (at the

same time). In addition, the system should also be able to learn not only from

a supervised approach but also from some confirmation or feedback. Looking at

the dual learning or the machine speech chain mechanism, the feedback comes

from the closed-loop mechanism. While doing a set of cross-modal operations in

a loop, the speech chain can generate a reconstruction loss, which can be counted

as a feedback mechanism that helps the cross-modal model in the loop to learn.

This thesis focuses on generalizing this idea into any modality, so that the

more modality we have, the more feedback we can generate through cross-modal

mapping in between them. Therefore, each of the cross-modal models in the

framework can collaborate in the form of a closed-loop chain. Consequently, we

also need to ensure that the feedback can be yielded and be used for any kind

of cross-modal model architecture. This idea addresses the low-resource data

limitation by also replacing the multimodality limitation as an opportunity. In

this thesis, we propose a multimodal machine chain that is inspired by this idea

using three kinds of modalities: speech, text, and images; while also generating
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feedback in the form of reconstruction loss, given various data availability (i.e.

paired, unpaired, single modality).

1.3. Thesis Scope

1.3.1 Thesis Contribution

Figure 1.7: This thesis contribution overview, x-axis: data conditions, y-axis:
supervision levels.

In this thesis, we propose a generalization of the chain mechanism, to enable

cross-modal model learning from any kind of data availability. Figure 1.7 shows

the realm of the problem in enabling speech processing model training in any

data condition (x-axis), with the supervision levels as the implication (y-axis).

First, we formally define the general framework for multimodal machine chain

(MMC). We designed the MMC framework to enable model training from any

modality and any data availability. As a consequence, the MMC framework

consists of learning strategies in various levels of supervision.

Second, we show the MMC framework generalization effectiveness with an

experiment to improve a cross-modal model by leveraging data from unrelated

modality. This approach enables semi-supervised learning from the combination

10



of paired data, unpaired data, and unrelated single modality data. We named

this approach as MMC-SemiSup.

Third, to show the robustness of the MMC framework in terms of data avail-

ability, we attempt to realize speech-to-text mapping using a visually-connected

non-parallel data. Therefore, we showcase that the MMC framework can also

enable learning even when the data is fully unpaired. We label this approach as

MMC-WeakSup.

Finally, we tackle one more cross-modal learning problem in terms of represen-

tation. Our proposed MMC framework not only enables training from different

modalities but also able to create a better representation when the optimal one

is not available. We call this as MMC-SelfSup for this self-supervised approach

to create a discrete speech representation. We investigate it in the Image2Speech

task, where we attempt to learn a speech representation that enables end-to-end

image-to-speech generation without using any text.

In this thesis, we limit our modality scope to textual, visual, and auditory. We

use speech data to represent auditory modality, image data for visual modality,

and the transcription or caption of these data as a textual modality.

1.3.2 Thesis Outline

The structure of the remaining chapters of this thesis is as follows. Chapter 2 is

an introduction to the language technologies in various modalities. We describe

what kind of neural network-based cross-modal model that we use to showcase

our proposed MMC framework in the subsequent chapters. Chapter 3 describes

several levels of supervision in machine learning and the formal definition of the

MMC framework to tackle each of those levels of supervision.

Then, Chapter 4 describes our attempt to use our MMC framework for cross-

modal collaboration through listening, speaking, and visualizing. We describe

our attempt to enable semi-supervised learning of speech processing model with

either paired, unpaired, and unrelated modality data.

Chapter 5 covers our attempt to use the MMC framework to enable speech-

to-text mapping, even when the data is just weakly-connected. This shows the

robustness of our framework to realize weakly-supervised learning, even when the

data condition is more extreme than before.
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Chapter 6 tackles the representation problem in realizing a text-free image-to-

speech generation, which is beneficial for untranscribed unknown language. We

use our MMC framework here to learn an optimal representation for speech, to

enable end-to-end learning directly from image modality to speech modality.

Finally, we conclude our thesis in Chapter 7. In addition, we also discuss

further possible future research in the topic related to this thesis.
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Chapter 2

Language Technologies in Various

Modalities

This chapter describes the current state-of-the-art cross-modal model commonly

uses in the modalities covered in this thesis.

2.1. Neural Speech-Text Processing Models

2.1.1 Automatic Speech Recognition (ASR)

Commonly known sequence-to-sequence ASR model resembling the Listen, At-

tend, and Spell (LAS) framework, uses location-aware attention [21]. As illus-

trated in Figure 2.1, this model encodes a speech feature (i.e. Mel-frequency cep-

strum (MFCC), mel-spectrogram) x = [x0, . . . , xn] with bidirectional long-short

term memory (LSTM) layers into a speech embedded representation eASR =

[eASR
0 , . . . , eASR

s ] which is a high-level feature representation used for decoder.

The encoder architecture is usually pyramidal in its depth to reduce the length

of the input.

Then, the decoder receives input character yi for timestep i, which is converted

into decoder hidden state dASR
i . Then, to condition the generation process against

the encoder state, an attention mechanism is generating a context vector ct by

creating a weighted sum of the encoder states eASR
s , given the current decoder
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Speech encoder: Pyramidal Bi-LSTM

...

Text decoder

...

...

...

...

...

...

Figure 2.1: ASR model with pyramidal Bi-LSTM

hidden state dASR
i as follows:

ct =
S∑

s=1

at(s) ∗ eASR
s (2.1)

at = Align(eASR
s , dASR

i )

=
exp(Score(eASR

s , dASR
i ))∑S

s=1 exp(Score(eASR
s , dASR

i ))
, (2.2)

while variations [55] for score function includes:

Score(eASR
s , dASR

i ) =


⟨eASR

s , dASR
i ⟩, dot product

eASR⊺
s Wsd

ASR
i , bilinear

V ⊺
s tanh(Ws[e

ASR
s , dASR

i ]), MLP

(2.3)

Then, the hypothesis probability can be produced by an output layer pt =

out([ct, d
ASR
t ]). The loss can be calculated as a softmax cross-entropy loss between

the hypothesis probability pi+1 and the one-hot vector of the next character yi+1.
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The loss function for ASR model can be formulated as:

LASR = −1

t

t∑
i=1

C∑
c=1

1(yi+1 = c) ∗ log pyi+1
[c]. (2.4)

... ...

Figure 2.2: Teacher forcing in autoregressive model. Regardless of the predicted
token ŷi+1, the original yi+1 is being used as the input for the next timestep.

... ...

Figure 2.3: Prediction step without teacher forcing in autoregressive model. The
predicted token ŷi+1 is being used as the input for the next timestep (red line).

Teacher-forcing is used during training, which means that for the next timestep

i + 1, yi+1 is being used as the input for the decoder (Figure 2.2). During in-

ference, the one-hot label of a class with the highest probability in timestep i is

being used as the input for the next timestep (Figure 2.3).

2.1.2 Text-to-speech Synthesis (TTS)

A sequence-to-sequence TTS receives a text utterance y = [y0, .., ys] and learn to

generate a speech feature x = [x0, .., xt] by optimizing its parameters. The most

common model is the Tacotron TTS [2]. Input sequence consisting of characters
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Figure 2.4: TTS model resembling the Tacotron[2] architecture. In a multispeaker
setting, the decoder is conditioned by k, which is the speaker embedding input.

or phonemes are commonly used for TTS input. First, the inputs are projected

into vectors by embedding layer. Then, it is projected to the CBHG block (1D

Convolution Bank + Highway + bidirectional GRU) with eight filter banks (filter

size from 1 to 8) which produces encoder state eTTS = [eTTS
0 , eTTS

1 , . . . , eTTS
s ].

CBHG (See Figure 2.5) is a module that is commonly used in a text-to-speech

model such as Tacotron. It starts with a 1D convolution bank with the stacking

of several filters. The width of the filters is within the range of 1 to K, so that

there are various ranges when encoding the inputs. After stacking the filter result

together and max pooling, it is inputted into a 1D convolution to preserve the time

dimension. Then, the residual connection is added with the latter representation

to make a residual connection. Then, the hidden representation is inputted into

a highway layer so that the output can be encoded further by the bidirectional

LSTM or GRU to get a high-level representation of the sequence.
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Conv1D layers

Highway layers

Conv1D bank + stacking

Max-pool along time (stride=1)

Conv1D projections

Residual connection

Bidirectional GRU/LSTM

Figure 2.5: Illustration of a CBHG layer. A stacking of several 1D convolution
enable narrow and wide context range.

In addition, for a multispeaker model, a speaker embedding is also used to

condition the generated speech. The speaker embedding k is inputted to the

speaker embedding layer as-is or a speaker id can be inputted. In a condition

where no speaker information is available to generate the speech, the speaker

embedding k can be randomly sampled from a known distribution.

The decoder part is separated into two steps. The first step is to generate

mel-spectrogram frames [x̂mel
0 , x̂mel

1 , . . . , x̂mel
t ] and an end-of-speech prediction bs ∈

[0, 1]. If the current frame i is the end of speech, then the value of bs is 0, else 1.

The generation is conditioned to the encoder states using attention mechanism,

similar to ASR (Section 2.1.1). Finally, a CBHG mel-to-linear is used to project
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the generated mel-spectrogram into a 1025 dimensional linear spectrogram.

For training the first step, an L22 loss is used to compare the generated mel-

spectrogram with the target mel-spectrogram such as:

Lmel =
1

t

t∑
i=0

∥xmel
i − x̂mel

i ∥22. (2.5)

This loss function is also used in the next step for projecting mel-spectrogram to

the linear spectrogram, so that:

Llin =
1

t

t∑
i=0

∥xlin
i − x̂lin

i ∥22. (2.6)

In addition to that, a binary prediction loss is used for the end-of-speech predic-

tion as

LEOS = bs log(b̂s) + (1 − bs) log(1 − b̂s). (2.7)

Finally, all the losses are summed to train the TTS model, so that:

LTTS = Lmel + Llin + LEOS (2.8)

During the inference, the phase spectrogram can iteratively be estimated using

Griffin-Lim [56] algorithm from the linear spectrogram, and then reconstructed

with the inverse short-time Fourier transform (STFT) to produce the speech

signal. Inversion to waveform can also be done with other parametric vocoders

such as WaveNet [57] or Universal Vocoder [58].

2.1.3 Quantization of Speech Features (VQ)

An autoencoder [59] ensures that the system reconstructs output that is most

similar to the input data it is given. The architecture of an autoencoder usually

consists of an encoder that encodes the input into a compressed representation

and a decoder that reconstructs the representation. To ensure the statistical

properties of the representation’s latent space, a variational autoencoder (VAE)

[60] was proposed along with training regularization.
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Figure 2.7: Detailed structure of our VQ-VAE model, all layer parameters are similar to Tjandra et al. (2020) [3]
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A vector-quantized variational autoencoder (VQ-VAE) [57] is a variant of

variational autoencoder (VAE) architecture that generates a discrete latent rep-

resentation instead of a continuous representation in VAE. In the quantization

process, VQ-VAE conditions the latent representation to become the element of

the closest code. In this way, we can view the VQ-VAE codebook as a collection

of clusters (codes), where continuous representation derives from the mean vec-

tor of each cluster (code vectors). The purely discrete representation can also be

obtained by simply using the label of the cluster that an encoded representation

belongs to.

As shown in Figure 2.6, a VQ-VAE model encodes input x, which is a speech

feature such as Mel-frequency cepstral coefficients (MFCC) or Mel-spectrogram.

The stack of encoder layers produces an intermediate continuous representation

z ∈ RDc . Then, it is compared with all possible code vectors in the codebook

to find the code with the closest distance between z and one of the possible

code vectors in codebook [c1, c2, . . . , cK ]. A speaker id s, represented by speaker

embedding V = [v1, v2, . . . , vL] ∈ RL×D, is used as an additional condition for the

decoder so that the speech reconstruction process (x|z, s) is conditioned on the

codebook vector representation c and speaker information s.

Here, the training objective is defined as follows:

LV Q = − log pϕ(x|z, s) + ∥sg(z) − C∥22 + γ∥z − sg(C)∥22, (2.9)

where function sg(·) stops the gradient, defined as:

x = sg(x);
∂ sg(x)

∂ x
= 0. (2.10)

There are three terms for a loss LV Q. The first term is a reconstruction loss

as a negative log-likelihood. This loss ensures that both encoder and decoder can

produce a good speech feature reconstruction x̂, as close as the speech feature

input x, given latent representation z and speaker information k. The second

term ∥sg(ẑ) − C∥22 is used to update the codebook C so that it is closer to the

encoded representation z. In this term, the codebook is updated while the encoder

remains the same. Finally, the third term ∥z − sg(C)∥22 updates the encoder so

that it produces a representation close to the codebook C. In this term, the
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codebook remains the same while the encoder is updated. The resulting loss by

this term is scaled by a γ coefficient.

The codebook creation process in this study’s VQ-VAE model is frame-based.

Through several strided convolutions in the encoder part, one code can represent

several speech feature frames. For example, if the encoder has three convolution

blocks with [2, 2, 3] stride each, then each code in the codebook represents 2×2×
3 = 12 frames. A wider stride means more information is compressed into each

code, which makes the representation more robust but harder to reconstruct.

Figure 2.7 shows the detailed schema of our VQ-VAE structure. The encoder-

decoder part of our VQ-VAE is similar to that of Tjandra et al.’s Transformer

VQ-VAE [3] for unsupervised unit discovery. First, the speech feature input is

passed through a residual connection of several convolutional blocks (ConvBlock).

Then, the output is passed through multiple layers of multi-head attention (Trans-

formerEncoderLayer). The discrete representation (Z) can be inverted back to a

speech feature through a series of interpolation and convolution operations (In-

verseConvBlock) and multi-head attention layers.

2.2. Neural Image-Text Processing Models

2.2.1 Image Captioning (IC)

An attention-based image captioning model encodes image z into high-level fea-

tures [eIC0 , . . . , eICs ] (Figure 2.9). These features are then used as the context

for an attentional text decoder to generate hypothesis captions. To get these

two-dimensional high-level features, a partial image classification model is usu-

ally used by taking the two-dimensional hidden representation after a series of

convolution layer (See Figure 2.8).

Then, these features are attended by a multilayer perceptron attention module

which produces alignment probability at = Align(eICs , dICt ) given encoded repre-

sentation eICs and decoder hidden state dICt (Similar to equation 2.1). Then the

alignment probability is used to weight the encoded representation producing con-

text vector ct. By the hypothesis probability of each timestep pt = out([ct, d
IC
t ]),

the decoder then decodes a sequence of caption hypotheses using teacher-forcing
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box means hidden representation and straight-line box represents neural network
layer.

against the original text sequence. ResNet [4] is commonly used as image en-

coder, and LSTM decoder is commonly used as text decoder, resembling similar
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Figure 2.9: IC model with attention mechanism.

architecture with Xu et al. (2015) who proposed the “Show, Attend, and Tell”

model [61]. The loss function for IC model for every token at time t = i can be

formulated as:

LIC = −1

t

t∑
i=1

C∑
c=1

1(yi+1 = c) ∗ log pyi+1
[c], (2.11)

which is the cross-entropy loss between the label of the next timestep yi+1 and

the probability of the predicted token py+1.

On the other hand, similar to the LSTM-based image captioning model,

ResNet [4] can also be used as an image encoder in this type of image captioning

model. However, the differences lie in the decoder part. Transformer-based text

decoder to generate text captions can be used with the encoded image represen-

tation as to the generation condition.

The text decoder is trained using teacher forcing on the sequence of text cap-

tion. Commonly known architecture using multi-head attention for the decoder

part is the Vaswani et al.’s Transformer model [62], as illustrated in Figure 2.10.

It is composed of multiple layers, with three sub-layers for each layer. The first

sub-layer is the masked multi-head attention of the target-to-target attention.
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Figure 2.10: Transformer-based image captioning model.

Then, the second layer is the source-to-target multi-head attention. These multi-

head attentions resemble a vector query and a set of key-value vector pairs to

the output. Finally, the third sub-layer is the position-wise fully connected feed-

forward network. After the repetition of these layers, the network is closed with

a linear layer having the same size as the vocabulary so that the probability of

the next token can be decided.
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2.2.2 Image Retrieval (IR)

An image retrieval model encodes image z and text caption y into embedding

vectors vz and vy (Figure 2.11). The image encoder is usually constructed by

a series of pre-trained convolutional neural networks, followed by pooling and

linear transformation at the end to produce image embedding vz. The vector

representation can be taken after the pooling operation in ResNet-50 [4] (See

Figure 2.8). The recurrent neural network is used to encode the text sequence

into an embedding vy. To combine both the image and text embeddings into a

unique multimodal embedding space, a ranking loss is used with distance d that

defines the distancing between positive (vy, vz) and negative samples (v̂y, v̂z).

Pairwise rank loss as one of the common loss for image retrieval LIR is defined

as follows:

LIR =
∑
|vy |

∑
|v̂z |

max{0,M + d(vy, vz)− d(vy, v̂z)}+

∑
|vz |

∑
|v̂y |

max{0,M + d(vz, vy)− d(vz, v̂y)}
(2.12)
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2.2.3 Image Generation (IG)
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Image
caption
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Image
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Figure 2.12: AttnGAN model with DAMSM loss.

Generative adversarial network (GAN) model architecture is commonly used

to generate an image, given a text caption. GAN is a combination of two net-

works:

� A generator G produces data given a noise sampled from a standard nor-

mal distribution. In this image generation task, the generator receives the

text caption as an additional condition to generate the image.

� A discriminator D evaluates the generated data by its adversary task. In

this task, the discriminator is trying to evaluates if the generated image is

conditioned on the text caption or not.

In AttnGAN [63], as illustrated in Figure 2.12, a bidirectional LSTM text encoder

encodes the given image caption. Then its sentence vector is used as a condition

to generate the image in the first stage using the G0 generator model given the

sentence vector and vector r that is sampled from a standard normal distribution.

Then the generated image is evaluated using discriminator D0. This process

is repeated so that [G1, . . . , Gn] generates images and [D1, . . . , Dn] iteratively

evaluates them until step n when the target image size has been reached.

The generation and discrimination process is repeated several times in a

multistage manner alongside a deep attentional multimodal similarity model
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(DAMSM). DAMSM is used to encapsulate that objective in the form of a loss

function. Each feature map of the image is assumed to represent the region of

the image, where they are treated as equivalent entities with word embeddings

from the text caption. Then, the attention mechanism is applied on both the

image vector and text vector, in addition to the image feature map with word

embeddings. Therefore, the text encoder and image encoder can generate similar

embedding, not only in the sentence level but also in the word level.

First, we compute the posterior probability of sentence Di being matching

with image Qi as follows:

P (Di|Qi) =
exp(R(Qi, Di))∑M
j=1 exp(R(Qi, Dj))

, (2.13)

where in a batch of training, image Qi matches with sentence Di, but the loss is

also considering the contrastive condition where the other M − 1 sentences are a

mismatch. Then, the loss function in the word level can be defined as follows:

Lw
1 =

M∑
i=1

logP (Di|Qi). (2.14)

together with the symmetrical definition:

Lw
1 =

M∑
i=1

logP (Qi|Di). (2.15)

After that, we also define the loss function for the sentence level by redefining

Equation 2.13 by replacing R with conside similarity to get Ls
1 and Ls

2. Therefore,

the final DAMSM loss is defined as:

LDAMSM = Lw
1 + Lw

2 + Ls
1 + Ls

2 (2.16)

The generator loss is defined as:

L = LG + LDAMSM , LG =
∑

i = 0m− 1LGi
, (2.17)
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with m as the number of stages, and LGi
is defined as:

LGi
= −1

2
Ex̂i∼pGi

[log(Di(x̂i))] −
1

2
Ex̂i∼pGi

[log(Di(x̂i, ē))], (2.18)

where the first part is the unconditional loss to determine if the image is real

or fake. The second part is the conditional loss to determine if the image is

conditioned to the sentence vector ē or not.

On the other hand, the loss function for the discriminator is as follows:

LDi
= −1

2
Exi∼pdatai

[log(Di(xi))] − 1
2
Ex̂i∼pGi

[log(1 −Di(x̂i))]

−1
2
Exi∼pdatai

[log(Di(xi, ē))] − 1
2
Ex̂i∼pGi

[log(1 −Di(x̂i, ē))].
(2.19)

Which is also the combination of unconditional and conditional loss. Each dis-

criminator Di is trained to classify the input into the class of real or fake by

minimizing the loss LDi
. Here, xi is taken from the image distribution from the

data, where x̂i is taking from the generator hypothesis. This multistage gener-

ating and discriminating strategy can successfully synthesize image in detailed

clarity that is accurate to the given caption.
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Chapter 3

Multimodal Machine Chain

(MMC) Framework

This chapter will elaborate on the general definition for the multimodal machine

chain framework to address the limited data problem by leveraging feedback from

cross-modal mapping (Section 1.2.3). This framework involves various training

strategies in different levels of supervision, depending on data availability. There-

fore, the multimodal chain framework can maximize the potential of various data

conditions.

3.1. Overview of Machine Learning Model Train-

ing and Levels of Supervision

A machine learning model has a set of parameters to model the distribution of the

data being learned. “Learning” here is achieved by a set of parametric functions

that fits the data into the model parameters. A learning process can be regarded

as successful if the model can accurately model generalize the training data so

that it can predict the label accurately. We define supervision as to how much the

training is being guided by the label found inside the data. A model trained with

a fully supervised training method requires all the training data to be labelled,

while the absence of a label in the data requires the training to be unsupervised.

In this section, we will discuss the difference between levels of supervision in

30



training a machine learning model.

3.1.1 Supervised Learning

Fully Paired Data

Figure 3.1: Illustration of a model MX→Y trained with fully-paired data in a
supervised manner

In supervised learning, all training data are properly labelled. These labels

guide the training process so that the model can change its parameter to try

to match the information provided by the feedback [64]. Several tasks that use

supervised learning are classification and regression.

Given the definition, supervised model training has less complexity because

the labels or number of classes is already known. However, this learning paradigm

needs a substantial amount of labelled data, which needs to be collected, some-

times manually. Figure 3.1 illustrates a model training with fully paired data.

3.1.2 Semi-supervised Learning

Semi-supervised learning enables model training from a small amount of labelled

data and a large amount of unlabeled data. While the labelled data is being

used for training using supervised learning, the unlabeled data is then used to

continue the model training. The unlabeled data are usually labelled using the

initially trained model, in which this process is called pseudo-labelling. Figure 3.2

illustrates a model training with paired data and unpaired (unlabeled) data.

This learning method enables us to improve a model even when no more

paired data are available. Therefore, it is useful for some situations where getting
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Paired data

Unpaired data:

Figure 3.2: Illustration of a model MX→Y trained with paired data and unpaired
data in a semi-supervised manner

a paired data is difficult or costly. However, this method still needs some amount

of paired data. In addition, the training steps needs to be differentiated for both

labelled and unlabeled data, which increases complexity.

3.1.3 Weakly-supervised Learning

Weakly-linked unpaired data:

Figure 3.3: Illustration of a model MX→Y trained with weakly-linked unpaired
data in a weakly-supervised manner

This learning strategy significantly reduces the need for paired data, by al-

lowing training with weak supervision. Although in some cases the definition of

weakly-supervised learning overlaps with semi-supervised learning, this level of

supervision enables learning beyond just using a small amount of paired data.

In addition to that, some weak signals or coarse-grained label information can
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also be used for learning. Figure 3.3 shows an example of model MX→Y that is

trained with weakly-linked unpaired data. According to Zhou (2017) [65], there

are three kinds of weak supervisions covered within this kind of learning:

� Incomplete supervision: In this kind of supervision, a small amount of

labelled data given is not enough for training the model satisfiably. To

further continue the model training, there are two major techniques that

can be used: active learning and semi-supervised learning. Semi-supervised

learning attempts to use unlabeled data to further improve the model per-

formance altogether with labelled data. This definition has been mentioned

in the previous subsection, however, the point here is that semi-supervised

learning assumes there is no human intervention contrary to active learning.

Active learning assumes there are human experts that can give ground-truth

labels as an oracle.

� Inexact supervision: This weak supervision defines a situation where

the supervision given is not as desired, such as only coarse-grained label

information is given.

� Inaccurate supervision: This situation is where the supervision given is

not always ground-truth. One of the examples of inaccurate supervision is

crowdsourcing, where later ground-truth labels are tried to be inferred from

the crowd.

Although these three typical weak supervision types are mentioned separately,

in practice they may occur simultaneously.

3.1.4 Self-supervised Learning

Self-supervised learning is defined as a process of model learning where the super-

vision is automatically generated or inferred from the data characteristics itself.

This learning style is commonly found in representation learning. For example,

in natural language processing, a language model can be trained to predict a

missing word from a sentence. In speech processing, a speech representation can

be learned by using an autoencoder or denoising autoencoder to reconstruct the
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Single-modality data:

Figure 3.4: Illustration of a model MX→Y trained with single modality data in a
self-supervised manner

speech input. Both examples show that in most cases in self-supervised learning,

although the label is found in the data itself, the end product is not the label but

the intermediary representation. In the language model example, the end product

is how the model assigns a probability to the missing words candidate. On the

other hand, the intermediary representation of a speech autoencoder can be used

as a better representation for the reconstructed speech. Figure 3.4 illustrates a

model that is trained with single-modality data to learn a representation output

y.

3.2. General Model Framework

3.2.1 Introduction to Multimodal Machine Chain

In a cross-modal X → Y mapping task, let the source modality defined as X,

target modality as Y , and unrelated modality as Z. Suppose there are three

kinds of data based on its availability:

� Pxyz is paired {X, Y, Z} trimodal data,

� Ux,y,z is unpaired data, where there is no mapping between each row of x

and each row of y or z,

� and Sz is single modality data, whose modality Z has no relation with the

task modality (i.e. X and Y ).
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In this section, we describe how to train this cross-modal model MX→Y based on

the data availability. We listed several training strategy, corresponding to each

level of supervision related to Section 3.1. Given the data availability, it is also

possible to apply several strategies as several steps interchangeably in any order.

For example, the training can start from the one with the least supervision to the

one with the most supervision, and also its reverses.

Reconstruction Loss: 

Figure 3.5: Illustration of chain path CY XY = {Y → X,X → Y } with |D| = 2,
where MX→Y is backpropagated by the reconstruction loss LMX→Y

Reconstruction Loss: 

Figure 3.6: Illustration of chain path CY XY into CZY XY = {Z → Y, Y → X,X →
Y } with |D| = 3 for enabling the semi-supervised chain training from single
modality data zi ∈ Sz.

3.2.2 MMC with Fully Paired Data (Supervised Learning)

Given enough data pairs of {(xP
0 , y

P
0 ), (xP

1 , y
P
1 ), . . . , (xP

n , y
P
n )} ∈ Pxy, cross-modal

model MX→Y can be trained in a supervised manner by minimizing the loss

between predicted ŷPi = MX→Y (xP
i ) and ground truth yPi ∈ Pxy so that:

ℓMX→Y
= LMX→Y

(yPi , ŷ
P
i ; θMX→Y

), (3.1)

θMX→Y
= Optim(θMX→Y

,∇θMX→Y
ℓ). (3.2)
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3.2.3 MMC with Partial Paired Data and Large Amount

of Unpaired Data (Semi-supervised Learning)

Since in some cases, there are insufficient data pair in Pxy so that {(xP
0 , y

P
0 ), (xP

1 , y
P
1 ),

. . . , (xP
n , y

P
n )} ∈ Pxy, n < m, cross-modal model MX→Y cannot be optimally

trained to get satisfiable quality. Given unpaired data {xU
0 , x

U
1 , . . . , x

U
m} ∈ Ux

and {yU0 , yU1 , . . . , yUm} ∈ Uy, cross-modal model MX→Y training can continue to

use the chain mechanism by leveraging its inverse model MY→X .

In this condition, a chain path CY XY (See Figure 3.5) can be made to continue

training model MX→Y :

CY XY = {Y → X,X → Y }, (3.3)

by generating hypothesis x̂U
i from inverse model MY→X :

x̂U
i = MY→X(yUi ), (3.4)

so that the hypothesis of ŷUi can be generated:

ŷUi = MX→Y (x̂U
i ), (3.5)

which enables the calculation of reconstruction loss ℓMX→Y
:

ℓMX→Y
= LMX→Y

(yUi , ŷ
U
i ; θMX→Y

). (3.6)

In an end-to-end condition, MX→Y can be backpropagated:

θMX→Y
= Optim(θMX→Y ,MY →X

,∇θMX→Y ,MY →X
ℓ), (3.7)

while in a non end-to-end condition, Eq. 3.2 is sufficient.

Given the mechanism, the improvement of MX→Y is dependent on the quality

of x̂U
i which functions as a bridge between Y → X and X → Y . Therefore,

reciprocally training inverse model MX→Y with inverse chain operation CXYX is

also encouraged.
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3.2.4 MMC with Partial Paired Data, Few Amount of Un-

paired Data, and Unrelated Single Modality Data

(Semi-supervised Learning)

When all paired Pxy data and unpaired Uxy data have been used, model MX→Y

can still be improved by generalizing the chain mechanism explained in Sec-

tion 3.2.3. This generalization enables the use of unrelated modality Z to improve

model MX→Y which was previously only trained within {X, Y } modalities.

First, let us assume now that we have three kind of modalities D = X, Y, Z,

and paired data {(xP
0 , y

P
0 , z

P
0 ), (xP

1 , y
P
1 , z

P
1 ), . . . , (xP

n , y
P
n , z

P
n )} ∈ Pxyz, n < m, which

are inadequate to satisfiably train MX→Y as in Section 3.2.2. Similar to Sec-

tion 3.2.3, single-modality data {xS
0 , x

S
1 , . . . , x

S
m} ∈ Sx, {yS0 , yS1 , . . . , ySm} ∈ Sy,

and {zS0 , zS1 , . . . , zSm} ∈ Sz are available. In this condition, a chain path CZY XY

that leverages SZ single-modality data can be constructed as follows:

CZY XY = {Z → Y, Y → X,X → Y }, (3.8)

by generating hypothesis ŷSi with model MZ→Y :

ŷSi = MZ→Y (zSi ), (3.9)

x̂S
i = MY→X(ŷSi ), (3.10)

ˆ̂ySi = MX→Y (x̂S
i ), (3.11)

which enables the calculation of reconstruction loss ℓMX→Y
:

ℓMX→Y
= LMX→Y

(ŷSi ,
ˆ̂ySi ; θMX→Y

). (3.12)

In an end-to-end condition, MX→Y can be backpropagated:

θMX→Y
= Optim(θMX→Y ,MY →X ,MZ→Y

,∇θMX→Y ,MY →X,MZ→Y
ℓ), (3.13)

while in a non end-to-end condition, Eq. 3.2 is sufficient. Figure 3.6 illustrates

this chain path.

As we can see from the process flow, Eq. 3.10-3.13 are similar with Eq. 3.4-
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3.7 because the chain path CY XY are inside the path of CZY XY . Therefore, an

extension from the chain with |D| = 2 to |D| = 3 can be developed, which further

shows the generalization of the chain framework.

3.2.5 MMC with Fully Unpaired Data (Weakly-supervised

Learning)

In a case where there are no paired data Pxy available, a cross-modal model MX→Y

can still be trained with unpaired data Ux,y if there is some weak supervision

available to connect X to Y . The weak supervision here are implemented as

a pivot that provides bridging information BX→Y . MX→Y training will be as

follows:

ŷUi , ŷ
alg
i = MX→Y (xU

i , BX→Y ), (3.14)

where model MX→Y generates both the ŷUi hypothesis and ŷalgi alignment hypoth-

esis. Both hypotheses can be used to calculate the supervised loss:

ℓsupMX→Y
= LMX→Y

(yPi , ŷ
P
i ; θMX→Y

), (3.15)

in addition to the alignment loss:

ℓalgMX→Y
= LMX→Y

(yalgi , ŷalgi ; θMX→Y
). (3.16)

Then, by summing both of the loss ℓMX→Y
= ℓsupMX→Y

+ ℓalgMX→Y
, model MX→Y

can be backpropagated as follows:

θMX→Y
= Optim(θMX→Y

,∇θMX→Y
ℓ). (3.17)

3.2.6 MMCwith Only Single Modality Data (Self-supervised

Learning)

On the other hand, there might exist a data where a usable representation is

not available. In the previous example, the modality X does not have a proper

representation to allow mapping to be done effectively. In this case, a new rep-

resentation of XD can be learned using a self-supervised learning strategy with
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Reconstruction Loss: 
Representation Loss: 

Figure 3.7: Illustration of chain path CXXDX = {X → XD, XD → X} with
|D| =2 to learn new representation x̂D

i ∈ XD using reconstruction loss LM
XD→X

and representation loss LM
X→XD

using a single modality data {xS
0 , x

S
1 , . . . , x

S
m} ∈ Sx. Let {x̂D

0 , x̂
D
1 , . . . , x̂

D
m} ∈ Dx

be defined as the new representation of X. A chain path CXXDX (See Figure 3.7)

can be made:

CXXDX = {X → XD, XD → X}, (3.18)

by generating hypothesis x̂D
i from model MX→XD :

x̂D
i = MX→XD(xS

i ), (3.19)

so that the hypothesis of ŷUi can be generated:

x̂S
i = MXD→X(x̂D

i ), (3.20)

which enables the calculation of reconstruction loss ℓMX→X
:

ℓMX→X
= LM

X→XDM
XD→X

(xS
i , x̂

S
i ; θM

X→XD ,M
XD→X

), (3.21)

in addition to the representation loss:

ℓM
X→XD

= LM
X→XD

(xS
i , x̂

D
i ; θM

X→XD
). (3.22)

This training strategy only needs single-modality data such as Sx, which can

be classified as self-supervised training.
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Chapter 4

MMC Framework for

Cross-modal Collaboration

through Listening, Speaking, and

Visualizing

This chapter describes the use of the MMC framework for a semi-supervised

cross-modal collaboration (MMC-SemiSup) in between several cross-modal mod-

els. First, each of the cross-modal models is independently trained using super-

vised learning as described in Section 3.2.2 using a small amount of paired data.

Second, we take the advantage of the available unpaired data to train the chain

with the framework learning strategy as mentioned in Section 3.2.3. Finally, we

show our general framework capability to enable semi-supervised training using

single-modality data from unrelated modality (Section 3.2.4).

4.1. Introduction

The machine speech chain [50] was successfully enabling ASR and TTS model

training from an unpaired dataset. However, unlike human communication which

is multimodal, it is still unclear how to incorporate other modalities such as visual

modalities in the chain. In addition, the modalities of the unpaired data being
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used are the same modalities of the input and output (i.e. speech and text).

Therefore, the chain mechanism itself is still limited to the task, as described in

Section 1.2.3.

In this chapter, we developed the generalization of this speech chain mecha-

nism into a semi-supervised chain that can generate feedback from any modalities.

Every time an input is converted to another modality and converted back again, it

generates feedback in the form of reconstruction loss. This feedback mechanism is

inspired by human communication that does not need parallel data, as described

in Section 1.2.3. Therefore, a cross-modal model training can be continued with

single-modality data from a modality that is even unrelated to the cross-modal

task itself (i.e. image data to train ASR model). We use the definition of mul-

timodal machine chain framework in Chapter 3, with ASR, TTS, IC, IR and IG

model described in Chapter 2.
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Figure 4.1: Generalizing the chain mechanism: from speech chain to multimodal chain for semi-supervised cross-
modal collaboration (MMC-SemiSup)
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4.2. Previous Work

Many studies have integrated audio and visual information to improve speech

recognition performance, including deep learning approaches. The first end-

to-end approach for audiovisual speech recognition was proposed by Petridis et

al. [37]. A popular extension of the LAS framework [21] (Section 2.1.1), called

“Watch, Listen, Attend, and Spell (WLAS),” was proposed by Chung et al. [66].

This framework introduced a dual-attention mechanism to enable the processing

of speech and/or images together depending on the data availability. Afouras et

al. [38] also proposed a deep audio-visual speech recognition system to recognize

phrases and sentences from a talking face. However, most of these approaches are

used in conditions where the video or face data are highly parallel to the speech

or audio data, a context that creates a monotonic alignment between the visual

and speech modalities.

Sun et al. [67] proposed a “Look, Listen, and Decode” model that uses photos

to improve the ASR process in the Flickr8k dataset. This task is more challenging

than lip-reading tasks because the audiovisual model needs to decide which part

of the image is useful for the transcription task. However, by adding more modal-

ities, such as images, collecting a dataset for this supervised task is complicated

because a parallel triplet is needed: speech, text, and image.

Although adding more modality creates a more robust and flexible system,

all these approaches need parallel data for supervised training. Herein lurks the

difficulty; if a model is translating from one modality to another, it needs a

paired tuplet of data so that it can be trained in a supervised manner. If we

add another modality to the process, then we need a triplet of data, and so on.

This phenomenon, which also briefly mentioned in Section 1.2.3 as the curse of

dimensionality, contributes to the difficulty of building a multimodal system.

To alleviate this limited parallel data problem by enabling training from sin-

gleton data, some methods have been proposed under the name of dual learning

or cycle consistency, as mentioned in Section 1.2.3. The speech chain framework

[50, 51, 52, 53] might be the first framework constructed on different modality

domains (speech versus text). Then, Karita et al. (2019), proposed a semi-

supervised ASR and TTS, that are using autoencoders to enable joint repre-

sentation [68]. In the image-to-text domain, Turbo Learning combined image
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captioning and generation in a joint training framework [69]. In this chapter, we

propose the use of the MMC framework to accommodate the triangle modality

and the loop feedback mechanism.

4.3. Semi-supervised Multimodal Chain Frame-

work Cross-modal Collaboration (MMC-SemiSup)

4.3.1 Previous Work: Machine Speech Chain

This section describes the machine speech chain [50, 51, 52, 53] as a chain im-

plementation with two modalities (|D| = 2). In this framework, ASR and TTS

models are trained in a closed-loop mechanism that allows semi-supervised train-

ing using both paired and unpaired speech and text data. We use the definition

in Section 3.2 to describe the basic machine speech chain:

� X source modality is speech, Y target modality is text,

� MX→Y model is ASR, MY→X inverse model is TTS,

� both ASR and TTS models are trained with a small amount of Pxy paired

speech-text data,

� CY XY is an unsupervised step to improve the ASR model using Uy unpaired

text data,

� CXYX is an unsupervised step to improve the TTS model using Ux unpaired

speech data.

4.3.2 Proposed: Dual-loop MMC-SemiSup

The generalization of a semi-supervised chain mechanism when |D| = 3 is realized

with three kinds of modalities, X, Y, Z for speech, texts, and images. To connect

each of these modalities in this MMC-SemiSup, we define five kinds of models

and our proposed chain path to improve them in a semi-supervised manner with

single-modality data:

44



ASR

TTS IC

IR/IG = (text)

 = (text)

 = 

 = 

 =

 =

Figure 4.2: Dual-loop multimodal chain for cross-modal collaboration with image
retrieval (IR) or image generation (IG) (MMC-SemiSup1-IR/IG)

� MX→Y is an automatic speech recognition (ASR) model that transcribes

speech (X) into text (Y ).

� MY→X is a text-to-speech synthesis (TTS) model that synthesizes speech

(X) from text (Y ),

� MZ→Y is an image captioning (IC) that generates text captions (Y ) from

input images (Z),

� and MY→Z can be implemented as an image retrieval (IR) model that re-

trieves image (Z) given a text caption (Y ) query or an image generation

(IG) model that generates an image (Z) given a text caption (Y ) input.

This chain implementation generalizes the chain mechanism when |D| = 3

by combining two chain implementations when |D| = 2. As illustrated in Fig-

ure 4.2(a), two loops are concatenated with text modality. The left-side loop

is Tjandra et al.’s speech chain [2]-[5], which is connected with our proposed

visual chain (IC and IR/IG) by text modality. This multimodal chain for cross-

modal collaboration is called MMC-SemiSup1-IR, when the visual chain is

using an IR model, and MMC-SemiSup1-IG, when the visual chain is using

an IG model.

The training steps for MMC-SemiSup1-IR and MMC-SemiSup1-IG are as

follows:
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� Step 1: supervised training with paired data

Each model is trained with a small amount of paired image-speech-text Pxyz

data in a supervised manner. (Section 3.2.2)

� Step 2: semi-supervised training using unpaired data

The training can be continued in a semi-supervised manner using unpaired

ASR

TTS

=(text)

=

(a)

ASR

TTS

=

=(text)

 =(text)

(b)

=

Figure 4.3: Unrolled process for speech chain, when the input is (a) speech or (b)
text.

image-speech-text data Ux,y,z, as described in Section 3.2.3. In the speech

chain (Figure 4.3), CY XY is the unsupervised step to train the MX→Y ASR

model using the reconstruction loss from the Ux data, and CXYX is the

unsupervised step to train the MY→X TTS model using the reconstruction

loss from the UY data. In the visual chain (Figure 4.4), CZY Z and CY ZY are

the unsupervised steps to improve the MY→Z IR/IG model and MZ→Y IC

models.

� Step 3: semi-supervised training using single modality data

Using the learning mechanism described in Section 3.2.4, given speech only

data Sx, two chain paths can be made: CXYX and CXY ZY . The first chain

path (CXYX) can be used to train the TTS model using reconstruction loss

LMY →X
. In chain path CXY ZY , the ŷ transcription hypothesis is generated

by the MX→Y ASR model. Then this caption hypothesis is used by the
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Figure 4.4: Unrolled process for visual chain, when the input is (a) text or (b)
image.

MY→Z IR/IG model to produce image hypothesis ẑ, which can be used to

generate a caption hypothesis ˆ̂y by MZ→Y IC model. LMZ→Y
reconstruction

loss can be calculated by comparing ŷ and ˆ̂y, which then can be used to

backpropagate the MZ→Y IC model.

On the other hand, given image only data Sz, we can make two kinds of

chain paths: CZY Z and CZY XY (Figure 4.5). Path CZY Z trains the IR/IG

model through the image’s reconstruction loss. We emphasize path CZY XY

that trains the MX→Y ASR model, which generates transcription hypothesis
ˆ̂y that is transcribed from the x̂ speech hypothesis generated by the MY→X

TTS model. Then reconstruction loss LMX→Y
can be calculated by compar-

ing the transcription hypothesis ˆ̂y with caption hypothesis ŷ generated from

the MZ→Y IC model from image input z. The main interest is determining

whether the ASR model can be improved even with the image-only dataset,

which has unrelated modality (text-speech) with ASR.
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Figure 4.5: Unrolled process for cross-modal collaboration between speech and
visual chain (MMC-SemiSup1), when the input is (a) image or (b) speech.

   = (text)=
= ImgSp2Txt

TTS

IG    = (text)
=
=

Figure 4.6: Single-loop MMC-SemiSup for cross-modal collaboration (MMC-
SemiSup2)

4.3.3 Single-loop MMC-SemiSup

Next, we propose a single-loop multimodal chain for cross-modal collaboration

(MMC-SemiSup2) to show the implementation of our proposed chain framework
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in a multi-source multimodal model environment. In this kind of MMC-SemiSup,

ASR and IC model is combined to promote sharing between these two models.

Therefore, the loop mechanism resembles a chain implementation when |D| = 2

(Section 3.2.3), although it can still process data with three kinds of modalities

(|D| = 3):

� M{X,Z}→Y is implemented as the ImgSp2Txt model that transcribes speech

or caption images when given speech (X), images (Z), or both (XZ),

� MY→X is a TTS model that synthesizes speech (X) from text (Y ),

� and MY→Z is an IG model that generates an image (Z) given a text caption

(Y ) input.

As illustrated in Figure 4.6, there is only one loop as the result of introducing

ImgSp2Txt. This ImgSp2Txt model can be trained with image-speech, image

only, or speech only input.

� Step 1: cross-modal model supervised training

When paired image-speech-text data Pxyz are available, ImgSp2Txt can be

trained in supervised manner.

� Steps 2 & 3: semi-supervised training using unpaired and single

modality data

The MMC-SemiSup2 has a different semi-supervised step because it oper-

ates in a single-loop mechanism. To adapt it into the chain path notation,

let us assume G = {X,Z,XZ}. Then the IG or TTS model is MY→G, de-

pending on the desired output. Therefore, two chain paths can be defined:

CGY G and CY GY , resembling chain paths when |D| = 2.

The first path CGY G is used when MMC-SemiSup2 is given either unpaired

image-speech-text dataset Ux,y,z, speech-only dataset Sx, or image-only

dataset Sz (Figure 4.7). The ImgSp2Txt model generates text hypothe-

sis ŷ so that either IG or TTS can generate an image or speech depending

on the input. If the input is an image, the IG can be backpropagated by
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Figure 4.7: Unrolled process for single-loop MMC-SemiSup, when the input is
(a) speech/image or (b) text.

the reconstruction loss from the image hypothesis generated by IG. When

the input is speech-only, the ImgSp2Txt model generates text hypothesis

ŷ, which is used by TTS to generate speech x̂. By comparing the generated

and original speech in the TTS reconstruction loss, we can backpropagate

the TTS model. Then for the second chain path CY GY , both TTS and

IG produce speech and image from the text input. These speech and im-

ages then can be used to backpropagate the MG→Y ImgSp2Txt model using

the reconstruction loss LMG→Y
by comparing the original text y and text

hypothesis ŷ.

4.3.4 MMC-SemiSup Components

� ASR

We use the ASR model described in Section 2.1.1. The input is 80 di-

mensional mel-spectrogram, while the output is text transcription with

character level granularity. The attention mechanism is using multilayer

perceptron (MLP) attention.

� TTS

The TTS model is described in Section 2.1.2. Instead of the phoneme, we
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use the character as input to math the output feature of ASR, similar to

Tjandra et al. [50]. The output of the sequence-to-sequence model is an 80

dimensional mel-spectrogram and a stop token.

� IC

IC model for this chapter is build resembling the LSTM-based Show, At-

tend, and Tell model, as described in Section 2.2.1.

� IR

We train a shared embedding between image and text for image retrieval,

as described in Section 2.2.2.

� IG

We use AttnGAN model described in Section 2.2.3 for image generation

model.

� Two-fold image-speech to text

MMC-SemiSup2 is designed to show the effectiveness of the cross-modal

collaboration mechanism in a multi-source multimodal model environment.

We combine ASR and IC model to create a model that receives image and

speech information and generates the text transcription/caption, as the

example of a multi-source multimodal model which we call ImgSp2Txt.

An image contains the information being spoken in its speech captions. We

designed a single model that does both tasks to exploit this relation in the

ASR and IC tasks. In addition, the model should be able to separately

process speech and images if one of them is not available. When the input

is only speech, this model will produce the transcription of the speech. An

image caption is generated when only an image is provided. Finally, the

model produces a speech transcription with the help of the input image

when both image and speech are provided.

We designed output layer probability sharing between ASR and IC in a

sequence-to-sequence ImgSp2Txt with a dual-decoder model (Figure 4.8).

In this model, the image is encoded by a residual network that produces

high-level feature representation ez = [ez0, .., e
z
n] of the image. Bidirec-

tional LSTM encodes the speech features into embedded representation
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Image encoder: ResNet

z
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Figure 4.8: Dual text decoder with audio and visual decoding combination

ex = [ex0 , .., e
x
m]. Then the dual text decoder attends both ex and ez. In

training, softmax cross entropy loss LImgSp2Txt is calculated by previously

averaging both the pyt and pzt output layer probability for the image and

speech input. If only one is available, the output layer probability of the

respective modality is used.

4.4. Experiment Settings

4.4.1 Dataset

1. Flickr 30k

Flickr30k [70] is an image-captioning dataset which images from Flickr con-

sist of everyday activities, scenes, and events. There are about 150k crowd-

sourced captions with 30k images in this dataset, which makes every image

has 5 captions. Since this dataset only has text as a caption, we generated

speech captions based on them using the Google TTS. The Google TTS is

just used to generate the dataset, and not for training.

2. Flickr 8k
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Similar to Flickr30k, Flickr8k [71] contains 8k images from Flickr. Each

image has five captions annotated using the crowd-sourcing method. In

addition, to enable the use of this corpus in the speech processing field, it

was extended with natural speech recording using the Amazon Mechanical

Turk crowdsourcing platform. This dataset has 183 unique speakers.

4.4.2 Dataset Composition

Table 4.1: Modality type with three conditions: (1) available paired data denoted
as ⃝, (2) available but unpaired data denoted as ▲, and unavailable data denoted
as ×.

Modality sp txt img
Description

type x y z

Pxyz ⃝ ⃝ ⃝ Multimodal paired
Ux,y,z ▲ ▲ ▲ Multimodal unpaired
Sx ▲ × × Single modality data (Speech only)
Sz × × ▲ Single modality data (Image only)

The default dataset split is used for Flickr30k (29k train, 1k dev, and 1k

test) and Flickr8k (6k train, 1k dev, and 1k test). A scenario is designed to

showcase the multimodal machine chain ability to improve model quality in a

semi-supervised manner using a single modality dataset. For Flickr8k, all the

five captions from an image are used, while in Flickr30k, the same settings as the

previously published work [72] are used to balance the image production side.

Table 4.1 lists each possible data modality type that we used in this study.

Each modality type corresponds to a different training step depending on the

scenario to be examined. The first type is all-paired modality type Pxyz, which

contains triplets of speech, text, and image. This type of data typically has the

lowest number of data compared with other types in the dataset, because in this

study we want to minimize the need for paired data as much as possible. Modality

type Ux,y,z means that all three modalities (speech, image and text) are available,

but they are unpaired. Finally, modality type Sx and Sy are single-modality data

that contain only speech and image modality respectively.

We partition the data into several subsets based on the modality type. De-

pending on the task, the number of data in each subset is different, as shown in
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Table 4.2. Before partitioning the data, we randomly shuffle the order of the keys

in the dataset initially. For measuring the topline performance such as in Sec-

tion 4.5.1, we assume that all data are paired. In this way, we can compare each

of our model performance in supervised mode with other previously published

studies.

To prove our hypothesis that improving ASR with image data is possible with

a cross-modal collaboration, we composed the following data partition on Flickr8k

and Flickr30k. Paired data Pxyz has the smallest amount of data, followed by

unpaired data Ux,y,z and Sx, Sz, which comprises the largest portion. First, we

trained the ASR, TTS, IC, IR, and IG models with this data partition, following

steps from Section 3.2.2, Section 3.2.3, and Section 3.2.4. With these trained

models, we can compare which image production method is better for the MMC-

SemiSup: IR or IG. As listed in Table 4.2, the Flickr30k dataset contains 2000

Pxyz data, 7000 Ux,y,z data, and 10000 Sx, Sz data.

We used Flickr8k with 800 Pxyz data, 1500 Ux,y,z data, and 1850 Sx, Sz data

to show that our proposed MMC-SemiSup can also work in a multi-speaker nat-

ural speech dataset. We tested MMC-SemiSup2 with the same data partition

to compare it with a label propagation method (Section 4.4.5). We also tested

what happens when all the remaining data (other than the paired Pxyz data) are

unpaired or single modality.

We designed the data partition to verify the effect of the amount of single

modality data on the final performance. Using a model supervisedly trained with

800 Pxyz data, we continued the training in a semi-supervised manner based on

Step 3 (Section 3.2.4). The remaining data (other than the paired data) were

regarded as a single modality, which we divided into 2600 Sx speech-only data

and 2600 Sz image-only data. We ran the experiment with a variable amount of

single modality data to identify the correlation between the data amount and the

final speech processing model performance.

Finally, to see the initial data amount effect of the final speech processing

model’s improvement, we variably changed the amount of paired Pxyz data. After

that, we continued the training using a fixed amount of 1850 Sx and 1850 Sz

single modality data. The interesting point here is how much the initial model

performance improved.
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The image-only dataset cannot be used in all scenarios without our proposed

cross-modal collaboration training strategy, which implies that no further im-

provement to the existing speech chain can be done. Therefore, our main interest

here is to determine whether ASR improvement remains possible even when only

image data are available.
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Table 4.2: Data partitioning for each subset (in #Image (hours)). n = {0, 1, 2, 3, 4, 5}, m = {0, 1, 2, 3, 4, 5, 6, 7}

Task Note Section
Paired Unpaired Single-modality

Total
#Pxyz

(hours)
#Ux,y,z

(hours)
#Sx

(hours)
#Sz

(hours)
(hours)

Dataset: Flickr30k

Topline For comparison with existing published systems 4.5.1
29000
(51.96)

0 0 0
29000
(51.96)

IR vs IG
For comparison between MMC-SemiSup1-IR and

MMC-SemiSup1-IG
4.5.2

2000
(3.54)

7000
(12.55)

10000
(19.97)

10000
(17.89)

29000
(51.96)

Dataset: Flickr8k

Topline For comparison with existing published systems 4.5.1
6000

(34.31)
0 0 0

6000
(34.31)

(Label Prop. I) &
(MMC-SemiSup1 vs
MMC-SemiSup2)

For comparison between label propagation and
our proposed MMC-SemiSup

4.5.3&4.5.4
800

(4.57)
1500
(8.57)

1850
(10.70)

1850
(10.56)

6000
(10.56)

Label Prop. II
For comparison with label propagation using

more paired data
4.5.3

1400
(8.00)

900
(3.43)

1850
(10.70)

1850
(10.56)

6000
(34.31)

No single modality
For checking performances when all remaining

data other than paired are unpaired
4.5.4

800
(4.57)

5200
(29.74)

0 0
6000

(34.31)

Var. single modality
For investigation of effect of increasing single-

modality data amount
4.5.5

800
(4.57)

0
520n

(5.95n)
520n

(5.95n)
800-6000

(4.57-34.31)

Var. paired
For investigating the effect of increasing initial

paired data amount
4.5.6

200+300m
(1.14+1.86m)

0
1850

(10.70)
1850

(10.56)
3900-6000

(13.14-34.31)
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4.4.3 Model Details

We implemented all the models described in Section 4.3.4.

Speech Processing Models

We used an 80-dimensional mel-spectrogram for the speech features in the ASR,

TTS, and ImgSp2Txt models. We used character-level granularity for ASR, TTS,

and ImgSp2Txt tasks. The ASR model is a standard Listen, Attend, and Spell

model with multi-layer perceptron (linear) location-aware attention [21]. The

encoder part consists of bidirectional LSTM with the depth of 3 and the size of

256 for one direction. The forward and backward LSTM is concatenated to get

the final encoder hidden representation. We use pyramidal mechanism in between

layers, to reduce the length of the encoded speech feature. With the depth of

three, one encoder hidden representation represents 23 number of frames. The

decoder is an LSTM decoder with 512 size and depth 1. Both encoder and

decoder has a dropout probability of 0.25. We use label smoothing with a value

of 0.05 for the output layer. We trained the ASR model using Adam [73] with

1e-3 learning rate. The ImgSp2Txt model uses the same parameter as ASR, with

a combination with IC in the output layer. Both ASR and IC has the same

probability (50:50).

Moreover, we used the TTS model described in Section 2.1.2, which is similar

to the Tacotron [2]. We use our own Tacotron implementation and trained it

from the initial state (i.e. not pretrained). We added a speaker embedding with

a dimension of 64 as the condition for the decoder and the start-stop prediction.

The encoder is a CBHG encoder with the prenet size of 256 and dropout proba-

bility of 0.5. Then, we use historical attention [74], similar with the one used in

[51]. To handle unseen speakers when processing a non-paired data, we performed

one-shot speaker adaptation from the pool of paired speech data. The decoder

uses LSTM layer with depth one and hidden size of 512. The stop prediction

module use a hidden size of 256 and the output layer of one. Finally, to generate

a waveform, we use the inverter part of the Tacotron with the projection size of

256 to generate a linear-spectrogram from the generated mel-spectrogram. After

that, we use Griffin-Lim algorithm to finish the waveform generation process, as

described in Section 2.1.2. We trained the TTS model using Adam [73] with
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2.5e-4 learning rate.

Image Processing Models

We implemented the IC model described in Section 2.2.1, which resembles the

Show, Attend, and Tell model [61]. We used a pretrained Resnet-50 [4] on Im-

ageNet task [75] as the image encoder, by removing the last two layers to get a

high-level feature with the size of 512. Then, using multilayer perceptron atten-

tion with the hidden size of 512, we decoded the caption using LSTM decoder

with the depth of one, hidden size of 512, and dropout probability of 0.5. We

trained the IC model with Adam [73] optimizer, with the learning rate of 1e-4.

The IR model uses a shared embedding between image and text, with a di-

mension of 300. The text embedding is generated using an LSTM encoder, with a

depth of one and hidden size of 512. Then, we use an image encoder with similar

specification of IC, to get the image embedding. We removed the last layer of

ResNet [4], to get a single image vector with the size of 2048. Both image and

text vector are then projected in to a 300 dimension using a linear layer. We

train IR model with stochastic gradient descent with a 0.1 learning rate.

The IG model resembles AttnGAN [63], as described in Section 2.2.3. We use

the same parameters as in their paper. We reduces the number of step into two

steps from three steps, which consequently reduces the image size into 128x128

so that it can reduces memory consumption. The DAMSM mechanism is only

trained on the paired dataset, with a class size of 50. We trained the IG model

using Adam optimizer with the learning rate of 2e-4 for both the generator and

the discriminator.

Chain Mechanism

Although technically training each element in the chain path is possible with an

end-to-end style [52], we discovered that the gradient for the early components

of the chain became too small for a long chain path. Therefore, in this study, we

just backpropagated the last model of the chain path. When the training failed

to reduce the development loss after a warmup of five, we halved the learning

rate. The training stops when the development loss does not decreased anymore,

with the average of 50 epochs.

58



4.4.4 Evaluation Metrics

We evaluated each model with the test set of the dataset with which it was

trained. We measured the ASR performance with the character error rate or

the word error rate (CER/WER) and a bilingual evaluation understudy (BLEU)

[76] for the IC to compare the n-gram between the hypothesis and the reference

captions. We used 1-gram and 4-grams for BLEU, denoted as B1 and B4. In

addition, to measure the TTS performance, we used L2-norm2 metrics (denoted

as L2) to measure the error between the reference and generated mel-spectrogram

sequences. Finally, IG was measured by inception score (IS) [77] to determine

how realistic the IG output was.

4.4.5 Label Propagation

Label propagation [44] is a common semi-supervised training strategy that gen-

erates pseudo labels from partially unlabeled data. In its deep neural network

implementation, this kind of approach is also known as pseudo labels [45]. We

adapted this algorithm to follow our use cases. First, a model is trained with the

labeled portion of the data. Then the trained model generates a pseudo label

for the unlabeled data. To use this as a baseline in our task, we modified the

algorithm to use it for the cross-modal tasks.

Assume that an ASR model is trained using the speech and text parts of the

Px data subset. Then the text part of the Ux,y,z subset is generated using the

trained model. These text hypotheses are used to retrain the model. This process

is repeated for the data in the Ux type subset. The same process can be used

for the IC model with the Sz type subset. However, for IG and TTS, the last

step using the Sx and Sz type subsets cannot be used because the data modality

is on the target side. To solve this problem, we generate source-side data using

the corresponding model. For example, to use the speech only Sx type subset for

TTS, we generate a text hypothesis using the ASR model on that same step.
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4.5. Experiment Result and Analysis

4.5.1 Topline Scenario

In this section, we simulated a condition where much paired data are available

(Table 4.2: Topline). Our experiment measured our model performance and com-

pared it to previously published studies. In addition, we also listed the method

for each model reported. When no previously published result was available for

the Flickr8k or Flickr30k datasets, we trained our model with the same dataset

that was used in the reported result. Therefore, since each model result reported

in each section (i.e., ASR, TTS) was trained with the same dataset, they are com-

parable. The purpose of this comparison is to confirm whether the model used

in our framework performs as well as the on reported on the previously publised

studies.

We listed all the scores of our topline model in Table 4.3. In the WSJ corpus

[78], our ASR model performed as well as Kim et al.’s result using JointCTC+Attention

[74]. In addition, we also found that our ASR model can perform as good as Bah-

danau et al.’s ASR model, which has a similar architecture of encoder-decoder

with attention. Then, ASR and TTS work as well as the previously published

results of Tjandra et al. [80, 52]. Our IC model performed as good as Xu et al.

[61] in BLEU4. We also observed similar performance in our IR model in the

Flickr30k dataset, the IG model in the CUB dataset, and the ImgSp2Txt model

in Flickr8k. For image processing related model, we use image augmentation

strategies which increases the model performance.

4.5.2 Proposed: From IR to IG

First, we need to decide whether the IR or the IG model is better for the MMC-

SemiSup. The benefit of using IR is that the retrieved image is of good quality

because no synthesis is needed. However, because the image is retrieved, it is

difficult to return unseen images, especially when the dataset is not parallel. On

the other hand, generating images using the IG model produced better unseen

images because they are synthesized. Even so, the image quality is not ideal,

especially for the open-domain dataset in this study.

60



Table 4.3: Comparison of our model performances with existing published results:
↓ means lower is better; ↑ means higher is better.

Data Model Method Result

ASR - CER (%) ↓
WSJ [78] Kim et al. [74] Content-based Att 11.08

Kim et al. [74] JointCTC + Att 7.36
Bahdanau et al. [79] EncDec + Att 6.4
Tjandra et al. [80, 52] EncDec + Att 6.43
Ours (Sec. 2.1.1) EncDec + Att 6.60

TTS - L2 ↓
WSJ Tjandra et al. [80] Tacotron 0.64

Ours (Sec. 2.1.2) Tacotron 0.68

IC - B1/B4 ↑
Flickr8k Xu et al. [61] SAT 66.90 / 19.90

Ours (Sec. 2.2.1) SAT + augment 65.93 / 22.56

IR - R@10 ↑
Flickr30k Vilalta et al. [81] emb-based IR 59.8

Ours (Sec. 2.2.2) emb-based IR + augment 62.42

IG - Inception ↑
CUB Xu et al. [63] AttnGAN 4.36

Ours (Sec. 2.2.3) AttnGAN + augment 5.67

ImgSp2Txt - CER / WER (%) ↓
Flickr8k Sun et al. [67] Image-LM - / 13.81

Ours (Sec. 4.3.4) Img+Sp Ensemble 5.16 / 7.13

Table 4.4: Comparison of performance of proposed MMC-SemiSup1-IR with
MMC-SemiSup1-IG on Flickr30k

Training Data Type #Image
ASR IC TTS IR IG
CER↓ B1/B4↑ L22↓ R@10↑ IS↑

MMC- Pxyz Multimodal 2000 21.46 45.97/10.55 0.72 14.30 -
SemiSup1-IR +Ux,y,z Multimodal 7000 4.02 48.00/10.08 0.49 16.08 -

+Sx,z Sp/Img only 10000 3.51 47.60/9.82 0.44 15.50 -
MMC- Pxyz Multimodal 2000 21.46 45.97/10.55 0.72 - 4.06

SemiSup1-IG +Ux,y,z Multimodal 7000 4.02 46.55/10.92 0.49 - 5.59
+Sx,z Sp/Img only 10000 2.77 47.33/11.38 0.43 - 7.21

Topline Pxyz Multimodal 29000 0.68 51.34/13.64 0.40 40.22 7.57

For this, we used MMC-SemiSup1 and replaced the image production model

using IR or IG. We labelled each of them as MMC-SemiSup1-IR and MMC-

SemiSup1-IG. We partitioned the data for Steps 1, 2, and 3 following the steps in
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Section 4.3. For the size of each subset, refer to Table 4.2:“IR vs IG” . We trained

all initial model in a supervised manner with paired Pxyz type data subset and

semi-supervisedly trained the model inside the speech and visual chains using

Ux,y,z type subset. As shown in Table 4.4, although both the ASR and TTS

models are unaffected because there is no influence from the image production

model yet, the IC performance between IR and IG in the visual chain can already

be compared. The MMC-SemiSup1-IR improvement in Step 2 is more focused

on B1 than B4, compared with MMC-SemiSup1-IG, which consistently improves

both. For the image production models, both IR and IG show improvement in

their own evaluation metrics.

Next, we connected the speech and visual chains using text modality in Step

3. All the speech processing models in MMC-SemiSup1-IG outperformed MMC-

SemiSup1-IR, showing that a visual chain using IG can generate a better text

hypothesis to be fed into a speech chain than with IR. This result can be quantita-

tively compared in the IC score, where MMC-SemiSup1-IR shows a performance

decrease, although in MMC-SemiSup1-IG both the B1 and B4 scores increased.

We also observed a decrease in the IR model performance. In this step, the IR

model receives text hypotheses generated by the ASR model from the Sx speech-

only data subset. Unfortunately, when the IR model needs to retrieve images

for these text hypotheses, it can only get images from the Uz and Sz type data

subsets. These data don’t have exact matches for such transcribed Sx type data

(Sx and Sz are not parallel), which lead us to infer that the MMC-SemiSup1-IR is

struggling to retrieve unseen images. Although it is possible to use Hybrid IR+IG

(i.e., IR for Step 2 and IG for Step 3), we decided that this step is inefficient be-

cause we need to train both the IR and IG models. Due to these considerations,

we decided to use the IG model for our next experiments.

4.5.3 Baseline: Label Propagation

In this section, we did label propagation to learn how much improvement we can

get with identical data composition. We call this experiment Label Propagation

I, whose results are shown in Table 4.5. By using the same amount of initial

data, the ASR, IC, and ImgSp2txt models cannot be improved, although some

improvement was reported in the TTS and IG task.
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To investigate whether more data can raise the improvement, we added more

paired data to the initial step by taking 600 images from the unpaired multi-

modal data in Step 2 and called this experiment Label Propagation II. By using

this new composition, the ASR performance can be maintained, and we found

improvement in the other models. Compared with our proposed MMC-SemiSup,

even with less paired data, such as in Label Propagation I, all of the models can

still be improved. This result shows that our proposed MMC-SemiSup is more

effective than the label propagation method.
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Table 4.5: Comparison of proposed MMC-SemiSup1 and MMC-SemiSup2 performances with label propagation
method in Flickr8k dataset

Training Data Type #Image
MMC-SemiSup1-IG MMC-SemiSup2

ASR IC TTS IG ImgSp2Txt TTS IG
CER↓ B4↑ L22↓ IS↑ CER↓ B4↑ L22↓ IS↑

Label Propagation I Pxyz Multimodal 800 36.35 12.75 0.77 5.90 26.67 32.23 0.77 5.90
(Semi-Supervised) +Ux,y,z Multimodal 1500 39.57 12.53 0.77 7.04 27.45 33.59 0.77 7.04

+Sx Sp only 1850 46.04 - 0.63 - 28.87 35.75 0.63 -
+Sz Img only 1850 - 11.41 - 7.20 30.31 35.38 - 7.20

Label Propagation II Pxyz Multimodal 800+α 15.52 15.10 0.64 7.25 13.54 57.63 0.64 7.25
Plus α = 600 +Ux,y,z Multimodal 1500-α 15.36 15.63 0.62 7.82 13.22 58.66 0.62 7.82

(Semi-Supervised) +Sx Sp only 1850 15.28 - 0.55 - 14.36 59.36 0.55 -
+ Sz Img only 1850 - 15.86 - 8.86 15.24 58.69 - 8.86

Proposed Pxyz Multimodal 800 36.35 12.75 0.77 5.90 26.67 32.23 0.77 5.90
Cross-modal Collaboration +Ux,y,z Multimodal 1500 15.10 13.22 0.59 8.29 14.88 55.15 0.65 10.12

(Semi-Supervised) +Sz Img only 1850 12.70 14.11 0.60 9.58 13.74 58.65 0.64 10.00
img → sp +Sx Sp only 1850 12.39 13.88 0.56 9.03 12.84 59.61 0.62 10.40
Proposed Pxyz Multimodal 800 36.35 12.75 0.77 5.90 26.67 32.23 0.77 5.90

Cross-modal Collaboration +Ux,y,z Multimodal 1500 15.10 13.22 0.59 8.29 14.88 55.15 0.65 10.12
(Semi-Supervised) +Sx Sp only 1850 12.37 13.28 0.56 9.12 13.81 58.03 0.62 10.65

sp → img +Sz Img only 1850 12.06 13.29 0.56 9.11 12.32 59.66 0.61 9.95
Proposed Pxyz Multimodal 800 36.35 12.75 0.77 5.90 26.67 32.23 0.77 5.90

Separated (Semi-supervised) +Ux,y,z Multimodal 5200 10.48 14.23 0.53 6.29 13.88 58.60 0.63 9.45
Topline (Supervised) Pxyz Multimodal 6000 5.76 19.91 0.50 9.66 5.16 79.88 0.50 9.66
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4.5.4 Proposed: Comparing MMC-SemiSup1-IG andMMC-

SemiSup2

After choosing between IR and IG and comparing with the label propagation base-

line, in this section we evaluate the performance of a dual-loop (MMC-SemiSup1-

IG) vs. a single-loop (MMC-SemiSup2) multimodal chain for cross-modal collab-

oration. For the data partitioning in this experiment, we refer to the subset

partitioning based in Table 4.2: MMC-SemiSup1 vs MMC-SemiSup2. Initially,

we separately trained all the models using Pxyz data in a supervised manner. As

shown in Table 4.5, both MMC-SemiSup1-IG and MMC-SemiSup2 have identical

TTS and IG scores because they are using the same initial model. ImgSp2Txt has

a better CER score than ASR for this initial step because ImgSp2Txt combines

image and speech information using a multi-source model.

We continued the training of these initial models using the Ux,y,z data sub-

set, and both MMC-SemiSup1-IG and MMC-SemiSup2 showed improvement for

all models. We separated the use of data based on the modality of Step 3 to

understand how specific modality contributes to the improvement of each chain

component. First, we started training with image-only data Sz and continued

with speech-only data Sx (img → sp). For comparison, we also trained with

speech-only data Sx first and continued with image-only data Sz (sp → img). As

shown in Table 4.5, in terms of ASR performance, the sp → img combination is

more effective. By training with image-only data, we observed improvement not

only in the image-processing related task but also in the speech processing model.

This shows that the cross-modal augmentation inside the chain is effective, either

in a dual-loop MMC-SemiSup1 or in a single-loop MMC-SemiSup2.

Next, we measured the actual effectiveness of the cross-modal augmentation

inside the chain by separately training each speech and visual chain. We as-

sume that except for the 800 paired data Pxyz, all the other 5200 data (Ux,y,z)

are unpaired. Therefore, each chain gets a hypothesis from its related modali-

ties, unlike our proposed MMC-SemiSup. For MMC-SemiSup1-IG, this approach

yield 10.48% CER which is 1.58 points better than the best approach of 12.06%

when some data have only a single modality (See Table 4.5: Separated(Semi-

supervised)). In a single-loop MMC-SemiSup2, however, our proposed method

remains superior. With our proposed cross-modal collaboration, we can improve

65



the ASR performance with unrelated modality data (image) to a decent level

through cross-modal augmentation, even when the speech and image datasets

are disjointed.

We also listed the result when we assumed that all the data are paired. This

result shows the distance between our proposed semi-supervised approach and

the supervised approach. Finally, we compared our best semi-supervised ASR

performance (12.06% CER/17.84% WER), which is comparable to Sun et al.’s

supervised ASR, which has a 13.81% WER on the same Flickr8k dataset [67].

Although our proposed approach is semi-supervised, we can still achieve a com-

parable error rate to a fully-supervised ASR system.

4.5.5 Single modality data amount effect to the final speech

processing model performance

Our proposed multimodal chain for cross-modal collaboration emphasizes its abil-

ity to produce additional improvement in speech processing models even when

no more speech or text data are available. Therefore, we investigated whether

speech processing models improve consistently as the amount of single modality

data increases. For this additional experiment, we refer to the data partitioning

shown in Table 4.2: Var. Single Modality.

Figure 4.9 compares the ASR improvement using MMC-SemiSups with the

initial model performance in terms of CER. The horizontal axis shows the number

of single modality data types (Sx,z) added in 520-image increments. These in-

crements generated five trained models, whose performances relatively decrease,

given more data to the MMC-SemiSup. The best CER score (23.07%) was reached

using all of the single modality data of 2600 images.

In addition, Figure 4.10 compares the TTS improvement using multimodal

chains with the label propagation method and the initial model performance in

terms of L22 loss. Compared with ASR, the TTS performance is consistently

better, given more single modality data. The best TTS performance was reached

with the most single modality data of 2600 images, which yields 0.20 L22 loss

improvement compared with the initial baseline. These results suggest that the

improvement from the cross-modal collaboration is positively related to how many
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Figure 4.9: Single modality data amount effect to final ASR performance com-
pared with initial model baseline in Flickr8k natural speech dataset. Vertical
axis: character error rate (CER). Horizontal axis: number of single modality
data added.

more data are used in the semi-supervised step by leveraging the cross-modal

augmentation.

4.5.6 Initial data amount effect to final speech processing

model performance

In this section, we experimentally changed the amount of initial data used to

supervisedly train the initial model with the data partitioning shown in Table 4.2:

Var. Paired. We used data subset Pxyz variably to test the training with various

initial data amounts. We continued the training with single modality data Sx,z.

To measure the effectiveness of the cross-modal collaboration to improve the

performance in semi-supervised steps, we measured the score differences between

the initial model and the model after the semi-supervised step.
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Figure 4.10: Single modality data amount effect to final TTS performance com-
pared with initial model baseline in Flickr8k natural speech dataset. Vertical
axis: L22 Loss. Horizontal axis: number of single modality data added.

Table 4.6: ASR performance improvement given various initial data amount in
Flickr8k natural speech dataset.

Pxyz +Sxz Pxyz CER +Sx,z CER △CER ↑
200+m300 images sp/img only initial model MMC-SemiSup MMC-SemiSup

6000 (all training subsets) 0 5.76 n/a n/a
2300 (m=7) 1850 9.97 10.05 -0.08
2000 (m=6) 1850 11.54 11.54 0.00
1700 (m=5) 1850 13.42 13.02 0.40
1400 (m=4) 1850 15.52 14.62 0.90
1100 (m=3) 1850 19.13 18.00 1.13
800 (m=2) 1850 36.35 25.35 11.00
500 (m=1) 1850 77.65 48.41 29.24
200 (m=0) 1850 77.45 72.93 4.52

The ASR performance improvement can be seen in Table 6. Using all the

training sets as initial data (6000 images), we got a 5.76% CER for the ASR

performance. We reduced the amount of initial data and reserved the remaining

data for the semi-supervised step. In this scenario, a larger amount of initial data
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Table 4.7: TTS performance improvement given various initial data amount in
Flickr8k natural speech dataset.

Pxyz +Sxz Pxyz L22 +Sx,z L22 △L22 ↑
200+m300 images sp/img only initial model MMC-SemiSup MMC-SemiSup

6000 (all training subsets) 0 0.50 n/a n/a
2300 (m=7) 1850 0.57 0.55 0.02
2000 (m=6) 1850 0.70 0.57 0.12
1700 (m=5) 1850 0.61 0.55 0.05
1400 (m=4) 1850 0.64 0.56 0.08
1100 (m=3) 1850 0.66 0.59 0.07
800 (m=2) 1850 0.77 0.61 0.16
500 (m=1) 1850 0.78 0.71 0.06
200 (m=0) 1850 0.86 0.87 -0.01

denotes a better performance in the initial model. We used the same number of

speech and image-only data for all the possible initial data. When the number

of initial data was reduced to 1700 images, our proposed cross-modal collabora-

tion started to show its effectiveness in improving the ASR model performance,

manifested by positive △CER scores. The highest performance increases were

achieved with the initial data pair of 500 images.

However, that is not the case with the TTS model performance improvement

(Table 7). The △L22 score remained positive when the initial data sizes exceed

500, suggesting that our proposed cross-modal collaboration improved the TTS

performance even when the initial TTS model was already relatively good. The

experiment with an initial data amount of 200 images showed no improvement

in terms of △L22. Since the performance of the initial ASR and TTS models is

too low, they cannot effectively assist each other inside the chain. With these

results, we can conclude that the minimum paired data needed for convergence

in Flickr8k is about 4000 utterances (about 4.57 hours). This is because such an

amount of data will enable ASR training with the accuracy of about 40% CER

in the Flickr8k multispeaker natural speech dataset (Table 4.6). In addition, we

can also refer to Tjandra et al.’s machine speech chain [54], in Table 1, where

they reported that some improvement is still possible even with 2 hours of single-

speaker data (LJSpeech). This is because it enables a baseline with a 31.7%

initial ASR model performance using only 10% of the total data (about 1200

utterances). Therefore, we may conclude that the baseline model performance
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shall achieve about a 40% error rate or less.

We also investigated the feasibility of using the existing pretrained model with

the ASR and TTS model previously trained in the WSJ-SI284 dataset [25]. We

continued the training of this pretrained model in a semi-supervised manner with

the Sx,z dataset in the same manner with the experiment in this section. We then

tested it with the Flickr8k test set and found an 0.5% CER improvement from the

90.72% CER scores for the initial model. We conclude that although improvement

exists, the domain similarity between the initial and single-modality datasets

must be considered. The WSJ dataset consists of news domain utterances, and

Flickr8k is an image caption dataset that contains declarative caption sentences

that describe what is happening in the images. Therefore, these two datasets

have very few contents overlaps.

From these experiments, we conclude that the accuracy of the initial model,

which was trained in the first step, affects the final semi-supervised chain per-

formance. We also found that our proposed cross-modal collaboration is more

effective in a low-data condition when the initial model can still provide a mean-

ingful hypothesis to assist each other in the semi-supervised chain training pro-

cess. Finally, focusing on ASR performance, we found that the initial paired data

amount of 500 images gave the most improvement, and the one with 800 images

gave a relatively better final CER.

4.6. Summary

In this chapter, we developed a cross-modal model collaboration in the form of

a closely-knitted chain that enables the use of unrelated modality data through

weak supervision. We proved our argument in Section 1.2.3 that with our pro-

posed framework, adding modality will enable more feedback for training, instead

of increasing training difficulties due to limited parallel data problem. We inves-

tigated the use of an adversarial image generation model to enable the generation

of unseen images during the chain process. To enable multispeaker speech pro-

cessing, we also implemented one-shot speaker adaptation. Then, we trained and

tested our MMC-SemiSup in a multispeaker natural speech dataset. Our chain

mechanism can be implemented on an audiovisual model through a single-loop
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MMC-SemiSup, without any significant performance decrease.

Our proposed approach outperforms the label propagation method. Speech

processing components can be improved even when using the image-only dataset,

which is enabled by our proposed cross-modal collaboration mechanism. We also

ran an experiment that determined the effectiveness of our proposed approach

in accordance with the amount of data in the initial and semi-supervised steps.

We found that our proposed cross-modal collaboration is more effective in a low-

resource scenario, when the initial paired data are insufficient to satisfiably train

the cross-modal model
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Chapter 5

MMC Framework for

Speech-to-text Mapping using

Visually-connected Non-parallel

data

TextCode2Text

visually-connected non-parallel dataset

VQ-VAE Code
discrete
speech

representation

untranscribed
unknown
speech

semantically equivalent
text

Code2Text
alignment

unsupervised
aligner

Common parallel dataset:

Visually-connected non-parallel dataset:

Figure 5.1: Multimodal machine chain framework for weakly-supervised speech-
to-text mapping (MMC-WeakSup)

The previous chapter has described our attempt in generalizing the machine
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speech chain into any kind of modalities and any kind of data availability, in the

form of MMC-SemiSup. However, such a chain mechanism still needs paired data

to initialize the cross-modal model. In this chapter, we attempt to use the MMC

framework for speech-to-text mapping using visually-connected non-parallel data

using part of the general framework mentioned in Section 3.2.5. We call this

“mapping” since the system attempts to learn the semantic association between

speech and text instead of recognizing the speech with the exact word-by-word

transcription. Unlike MMC-SemiSup, this MMC application does not need paired

data. Referring to the levels of supervision described in Section 3.1, our proposed

approach in this chapter can be categorized as a weakly-supervised learning with

inexact supervision. We call this application of MMC as MMC-WeakSup,

where our proposed model learns to map speech-to-text by exploiting the partial

overlap between the two, based on the fact that both of the speech and text are

both visually-connected.

MMC-WeakSup is implemented as a novel cyclic partially-aligned Transformer

with two-fold mechanisms (See Figure 5.1). First, we train a Transformer-based

vector-quantized variational autoencoder (VQ-VAE) to produce a discrete speech

representation in a self-supervised manner. Then, we use a Transformer-based

sequence-to-sequence model inside a chain mechanism to map from unknown

untranscribed speech utterances into a semantically equivalent text. Because this

is not strictly recognizing speech, we focus on evaluating the semantic equivalence

of the generated text hypothesis. Our evaluation shows that our proposed method

is also effective for a multispeaker natural speech dataset and can also be applied

for a cross-lingual application.
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5.1. Introduction

In human communication, it often does not matter whether we can figure out

word-by-word what the speaker is saying as long as we understand the semantic

message the speaker wants to convey. Therefore, we argue that it may be possible

to address the construction of spoken language processing without having speech

utterances and the exact corresponding transcriptions, which are generally un-

available. In fact, there are many available collections of texts and pictures from

online books, and there are many available speeches recorded with images/videos

in social media (i.e., YouTube). If we could link to those images, we might be

able to create visually connected non-parallel speech-text data.

This study addresses weakly-supervised speech-to-text mapping problem given

only a collection of visually connected non-parallel speech-text data. This may

be considered one of the new ways of building speech-to-text transformation sys-

tems within a language but without using ASR. The system learns the semantic

association between speech and text instead of recognizing the content of speech

utterances with an exact word-by-word transcription. It can also be considered as

a paraphrasing or translation task from unknown untranscribed speech utterances

into semantically equivalent texts. Since this system does not strictly recognize

speech, we focus on evaluating the semantic equivalence of the generated text

hypothesis.

5.2. Related Work

As mentioned in Section 1.2.3, research on constructing technologies with less

or without parallel data has been gained attention. To date, various approaches

have been proposed for developing voice conversion systems with non-parallel data

[82, 83, 84, 85]. One approach applies unsupervised neural machine translation

to develop a text-to-text translation system without using any paired data [86,

87, 88, 89]. However, those works focus on mapping within a single modality

framework (i.e., speech-to-speech or text-to-text). On the other hand, mapping

between different modalities is more challenging due to the differences in the data

characteristics.
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In a speech-to-text mapping task, speech features are continuous vector se-

quences while the corresponding text is formed in discrete sequences. Unfortu-

nately, scant research has considered multi-modality mapping tasks with non-

parallel data. Within the limited research on speech-to-text mapping tasks with

non-parallel data, Sarl et al. (2020) recently proposed a spoken language un-

derstanding system trained on non-parallel speech and text data [90]. However,

the model is more focused on dialog-act recognition rather than generating a

descriptive sentence.

In this chapter, we focus on generating a descriptive sentence of the message

being spoken. Specifically, the system attempts to learn how to generate seman-

tically related text messages from speech utterances. We introduce the possibil-

ity of conducting weakly-supervised learning based on non-parallel data using a

partially-aligned Transformer. We also introduce discrete speech representations

using a vector-quantized variational autoencoder (VQ-VAE) to reduce the com-

plexity of speech-text mapping, which also solves the low-resource problem and

opens up possibilities for our proposed method to be used in an untranscribed

unknown language.

5.3. Proposed Weakly-supervised Speech-to-text

Mapping

Our proposed framework transforms a speech X into a sentence Y , by leveraging

the non-parallel speech and text data (Figure 5.1). We use part of the MMC

general framework as described in Section 3.2.5. First, to simplify the speech

variability and its length discrepancies in text, we train a Transformer-based

VQ-VAE to learn a discrete speech representation in a self-supervised manner.

Then, we perform unsupervised alignments between the resulting discrete speech

representation and the discrete target text sequences. Since the speech source

and target text are generally based on the same images, we assume that some

parts of speech and text content are semantically associated or aligned, which

are then used by a partially-aligned Transformer model for speech-text mapping.

Finally, we use the cycle mechanism as an augmentation to further improve the

partially-aligned Transformer model.
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5.3.1 Model Components

� Transformer-based Vector-quantized Variational Autoencoder

We use the VQ-VAE model with speaker embedding described in Sec-

tion 2.1.3 to learn speech discrete representation in a self-supervised man-

ner.

� Partially-aligned Code2Text Transformer Model

A partially-aligned Code2Text model uses the alignment of discrete speech

representation C = {c0, c1, . . . , cn} with the discrete target text sequences

Y = {y0, y1, . . . , ym}. Inspired by the partially-aligned training strategy

[91] for sequence-to-sequence neural machine translation (NMT), we mod-

ified a vanilla Transformer-based NMT model [62] into a partially-aligned

Code2Text Transformer model by leveraging the alignment information be-

tween the input and output (see Figure 5.2). Let us assume that Pc and

Py form the list of aligned words from the C and Y sequences. First, we

penalized the source-to-target attention score in the decoder, so if yj /∈ Py,

the attention context vector for that word is zero (Ct = 0). Then, we also

add an additional attention loss to emphasize the alignment between the

partially-aligned part in a supervised manner. We create a hard-attention

matrix H, where:

Hi,j =

1 if ci ∈ Pc and yj ∈ Py

0 otherwise
(5.1)

so that the original attention matrix A can be supervised with attention

loss Latt as follows:

Latt =
n∑

i=0

m∑
j=0

∥Ai,j, Hi,j∥22. (5.2)

Finally, we weighted the softmax cross-entropy loss Lce with Latt as follows:

L = Lce + αLatt. (5.3)

� Cycle Mechanism

We implemented a Code2Text and Text2Code chain to further improve the
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Figure 5.2: A Transformer-based Code2Text for partially-aligned input-output

performance of our proposed method (Figure 5.3). We used the chain train-

ing mechanism for unpaired data described in Section 3.2.3, but without

using any paired data. Given a text-only dataset Dy, a text y is translated

using the Text2Code model, generating a ĉ code hypothesis. This code

hypothesis is then translated back into ŷ by the Code2Text model. Then,

we can backpropagate the Code2Text model using the reconstruction loss

between y and ŷ.
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5.4. Experiment Settings

5.4.1 Visually-connected non-parallel speech-text data

Common parallel dataset:

Visually-connected non-parallel dataset:

Figure 5.4: Visually connected non-parallel speech (x) - text (y) data

We used Flickr8k [71], which contains 8k images of everyday activities and

events. For the synthetic speech caption, we generated single-speaker speech

using GoogleTTS from the text caption. Then, for the natural speech caption,

we used Flickr Audio [92], which was recorded using the crowdsourcing method

with 183 unique speakers. We use the development and test sets which consist of

1k images each.

We formulated the training set differently from the original Flickr8k dataset

by splitting the data as a visually grounded paraphrase (VGP) [93] to ensure a

“semantic equivalence”. In this task, we need to show how our proposed method

can learn from non-parallel speech-text data but with semantically similar mean-

ing. While each image in this dataset has five speech and text captions, we

choose two captions as speech only data and another two captions as text-only

data (Figure 5.4). Therefore, both the speech and text have the same image,

which guarantees semantic equivalence between the pseudopair. This partition
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yields 12k speech utterances, and 12k of text caption, with both sets are disjointed

((xi, yj), i ̸= j).

To show that our proposed approach can also be applied for a cross-lingual

application, we also ran a cross-lingual experiment using English speech from

SpeechCOCO multispeaker dataset [6] to the Japanese text from the STAIR

Caption dataset [7], where this non-parallel speech-text mentions the same image

from the MSCOCO dataset [94]. We take the matching amount of data and

process it similarly to how the Flickr8k dataset is handled. We assume that the

English data is the speech from an unknown and untranscribed language, where

a visually connected non-parallel Japanese text exists.

5.4.2 Model Parameters

We extracted the Mel-spectrogram (80 dimensions, 25-ms window size, 10-ms

time steps) using the Librosa package [95]. This speech feature is used as the

input and output of the VQ-VAE model that has a 256 codebook size and 32

code dimensions. For adapting with the natural speech dataset, we froze the

codebook part of the VQ-VAE model so that each code still represented the same

speech segment. We trained the VQ-VAE model with the bucket size of 20000

frames, with 150 epochs in average. We choose the model in the epoch with the

lowest development loss to generate the discrete speech representation.

We used a Transformer-based text encoder and decoder with a depth of 6 and

a size of 512 hidden units. For the output layer, we used label smoothing with a

factor of 0.005 and beam decoding with a size of 3. The vocabulary consists of

words in the text-only training data that appear at a frequency of more than one

time. We used Fast Align [96] as the unsupervised aligner. The Code2Text and

Text2Code model consist of 6 transformer layer each for encoder and decoder,

using multihead attention with the size of 512 and a feed forward layer with the

size of 2048. We used dropout mechanism with the probability of 0.2 for embed-

ding layer, and 0.3 for the transformer layer. Both the Code2Text and Text2Code

model are trained with the batchsize of 50. Inside the chain mechanism, we only

updated the last element of the chain due to memory limitation. We trained all

models with the Adam optimizer [73] using a learning rate of 1e-4. We halved

the learning rate when the development loss does not decrease after a warmup of
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five.

5.4.3 Evaluation Method

We evaluate our proposed model performance by running an inference step using

the dev and test set of the dataset the model is trained with. We use common

metrics in the image captioning task: bilingual evaluation understudy (BLEU)

with 4-gram [76] and CIDEr [97]. A BLEU score measures the n-gram similar-

ity between the hypothesis and references, while CIDEr measures consensus by

evaluating beyond the n-gram exact similarity. We used both metrics in a multi-

reference condition. In addition, to evaluate the semantic aspect, we developed a

cosine-similarity based metric (Sim%) for multi-reference evaluation by calculat-

ing the highest cosine similarity between the hypothesis sentence embedding and

the reference sentence embeddings. We generated the sentence embedding using

the Sentence Transformers toolkit [98] with the pretrained models of RoBERTa

[99] for English and Universal Sentence Encoder [100] for Japanese.

We calculated the corpus vocabulary statistics such as the number of unique

words and the vocabulary utilization ratio to measure how rich the hypotheses

are. We reported the Pearson’s correlation coefficient (r) score between the word

frequencies of the hypothesis and the training set to show how good a model

could learn to mimic the training set’s word distribution.

5.5. Experiment Result and Analysis

5.5.1 Result on Single-speaker Synthesized Speech Non-

parallel Dataset

In Table 5.1, we provide the baseline score of a random selection to show that

our trained model produces a coherent hypothesis. We also reported the score

of the ASR model trained directly on the non-parallel speech-text data. Then,

we trained the VQ-VAE model using the speech data, and generated the code se-

quence as a discrete speech representation. The code sequence can then be used to

train a Code2Text model against the partially-aligned text caption. Our proposed

Code2Text model delivers a better score than the ASR baseline, which shows that

80



Table 5.1: Experiment result in the Flickr8k synthesized speech non-parallel
dataset

Model
Dev Test

Sim% BLEU CIDEr Sim% BLEU CIDEr
(Baseline)

Random selection 16.73 2.28 3.42 16.25 2.22 3.58
ASR [21] 16.86 5.64 7.63 16.94 4.69 7.08

(Proposed)
Code2Text 35.58 15.30 31.48 35.79 15.04 31.66
+Partial Code2Text 40.58 16.95 36.11 40.94 16.80 36.86
+Cycle Augmentation 40.03 16.74 36.44 40.47 17.25 37.52

our discretization method using VQ-VAE provides more efficient learning due to

reduced variability compared with mel-spectrogram.

Then, because the input and output are discrete, we can approximate the

alignment between the generated code sequence and the partially-aligned text

using an unsupervised aligner. We next use the alignment information to influence

the source-to-target multi-head attention by producing an additional Latt. We

found that by multiplying Latt with α = 0.9, we could obtain about 5.15% cosine

similarity and 5.2 CIDEr points improvement on the test set, compared with a no-

alignment model (Code2Text). We also trained the partially-aligned Text2Code

with the same steps. After that, we use it in a cycle mechanism to achieve cross-

modal augmentation which yielded a 0.66 CIDEr improvement. We also trained

an ASR model with parallel data for a topline comparison, which yield 89.81%

cosine similarity, 81.43 BLEU, and 206.59 CIDEr scores on the test set.

5.5.2 Adaptation Result on Multispeaker Natural Speech

Non-parallel Dataset

Furthermore, we adapted our trained model to also support a multispeaker natu-

ral speech dataset using the Flickr8k multispeaker natural speech dataset, which

we also use for testing. As shown in Table 5.2, our adaptation improves CIDEr by

20 points compared to the baseline ASR and 17 points compared to simply using

the best model in Table 5.1 (no adaptation). We also trained a topline model

with the parallel dataset, which yields 82.75% cosine similarity, 70.24 BLEU, and

176.42 CIDEr scores. Next, we took the best score of the test set from Table 5.2
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Table 5.2: Adapting best Speech2Text model trained on Table 6.2 to the Flickr8k
multispeaker natural speech non-parallel dataset

Model
Dev Test

Sim% BLEU CIDEr Sim% BLEU CIDEr
(Baseline)

ASR [21] 16.30 3.23 9.30 15.18 3.09 9.07
(Proposed)

Cyclic Partial Code2Text
no adaptation 21.37 7.84 11.64 21.31 7.83 11.69
with adaptation 35.70 14.64 29.80 35.35 14.57 29.01

Table 5.3: Our proposed Speech2Text vocabulary utilization statistics for the
Flickr8k multispeaker natural speech dataset (Table 2) in comparison to the base-
line.

Metric Baseline Proposed
Number of unique words 20 300
Vocab utilization ratio 0.69% 10.42%
Pearson correlation (r) 0.343 0.958

and compared the corpus statistics in Table 5.3. We found that the baseline sys-

tem did not converge, as shown by the very low number of unique words with only

0.69% of the vocabulary being used. In comparison, our proposed model yielded

10.42% vocabulary utilization ratio. Moreover, our proposed method shows bet-

ter modelling of the vocabulary with a Pearson correlation (r) of 0.958, which

is close to the topline of 0.999. This shows that our proposed partially-aligned

Code2Text can model the training set word distribution as successfully as the

topline, even without using any parallel data. In addition, even with limited

vocabulary, our proposed method can still effectively convey the semantics of a

partially-aligned speech.

Table 5.4: Example results from the test set

Model Sentence

Baseline two dogs are running through the grass .
Proposed a woman and a little girl are smiling .
Reference a laughing woman holding a little girl .

Baseline a man and woman pose for a picture .
Proposed a man in a red shirt is rock climbing .
Reference a man poses as he jumps from rock to rock in a forest .

Table 5.4 shows a comparison of results between our proposed model, baseline

ASR, and the input speech transcription (reference). The first example shows the
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baseline ASR model hypothesis which is totally unrelated to the reference. Our

proposed method generated a hypothesis that semantically, closely resembles the

reference, even while replacing the word “laughing” with “smiling”. Then, in the

second example, our proposed method successfully described the rock-climbing

activity mentioned in the speech (reference). Although it is not an exact one-

to-one transcription, the speech content itself can be successfully described in

each of our proposed method’s generated hypotheses. We are confident that this

result will be very useful under the condition where no parallel speech-text data

are available, in addition to handling an untranscribed unknown speech language.

5.5.3 Result on Cross-Lingual Scenario

Table 5.5: Experiment result under cross-lingual EN-JA condition of transforming
multispeaker English speech [6] to non-parallel Japanese text [7]

Model
Dev Test

Sim% BLEU CIDEr Sim% BLEU CIDEr
ASR [21] 24.85 2.39 1.63 25.13 2.50 1.54

(Proposed)
Code2Text 30.15 13.17 12.96 30.28 13.49 13.22
+Partial Code2Text 30.08 13.33 13.94 30.06 13.41 13.57
+Cycle Augmentation 30.51 13.36 14.21 30.33 13.40 13.75

Finally, we demonstrate how our proposed method can be used under a cross-

lingual condition. As shown in Table 5.5, we found that the partial Code2Text

and the cycle augmentation showed a little improvement in terms of CIDEr score.

We hypothesize that this is due to the difficulty of aligning between different

language structures (i.e., SVO for English, but SOV for Japanese). Nevertheless,

while the baseline ASR did not show convergence, our proposed model could

still achieve BLEU score of about 13 points even with a small amount of non-

parallel data. This shows the effectiveness of our proposed discretization using

the transformer-based VQ-VAE.

5.6. Summary

In this study, we use our proposed MMC framework for a weakly-supervised map-

ping task to transform unknown untranscribed speech utterances into a semanti-
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cally equivalent text, even without a parallel speech-text dataset. Our proposed

system uses a pipeline of VQ-VAE to generate a discrete speech representation,

and a partially-aligned Code2Text Transformer model to learn the mapping be-

tween the code and the text. We also employed a cyclic augmentation strategy

to further improve the performance of the Code2Text model. Our experiments

with a multispeaker natural speech dataset showed improvement in every aspect

that we examined. Our analysis of the text hypothesis shows that our proposed

method can produce a more semantically relevant text. For future work, we

will explore methods to increase the vocabulary utilization ratio, including an

adversarial training method.
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Chapter 6

MMC Framework for End-to-end

Image-to-speech Generation for

Untranscribed Unknown

Language

(text)
image

Our proposed approach
(no text required)

image
captioning

text-to-
speech

speech

Figure 6.1: Image2Speech: direct image-to-speech captioning without using text
as a bridge.

This chapter describes our approach to create synthesize a speech caption

from an image, using part of the MMC framework defined in Section 3.2.6. As

commonly known, speech has a continuous representation with a high variability

due to the difference in pronunciation due to various factors such as speaker,

context, and others. To reduce this variability so that a direct image-to-speech

is possible, we introduce a discretization step using part of our MMC framework

that supports self-supervised learning, which we call as MMC-SelfSup. This
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chapter describes our attempt to use the MMC-SelfSup as a part to develop an

end-to-end Image2Speech system that does not need any textual information in

its training.

6.1. Introduction

Popular natural language technologies such as automatic speech recognition (ASR),

machine translation (MT), and image captioning (IC) are mostly built on the

assumption that every language has an orthographic representation. However,

some languages do not have reliable orthographic features such as those that

can provide a textual transcription [101], which renders these technologies im-

practical. To overcome this issue, an approach named “Zero Resource Speech

Technology” aimed to construct a speech system without any textual representa-

tion [54, 102, 103]. This kind of setting is inspired by the fact that young children

can communicate effectively in their native language even before they learn to

read or write [54].

Several applications of this zero resource setting have been explored in building

a speech representation for tasks that mimic human language development such as

acoustic unit discovery [104, 105, 106, 107, 3], subword modelling [108, 109, 110],

and spoken term discovery [111, 112, 113]. These tasks focused on discovering

a speech representation with minimal supervision, which generalizes across lan-

guages, especially for an unseen language. On the speech production side, the

Zero Resource Speech Challenge 2019 aimed to build a TTS without T (text-

to-speech without text) to bolster the zero resource settings in terms of speech

generation [102, 3]. Moreover, there was also an attempt to achieve speech-to-

speech translation between untranscribed unknown languages [114].
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Table 6.1: Our contribution in comparison with Hsu et al. (2020) [19]

Factor Hsu et al. (2020) Ours
Speech representation model Visual grounding-based Speech reconstruction-based with VQ-VAE
➛ Training data Required a large amount of paired image-speech data Possible with speech-only data
➛ Duration information Information lost due to run-length-encoding (RLE) Information intact because of frame-based encoding

Speech generation model
Required to train separate TTS with additional speech
data

Possible without additional TTS and additional data.
Generate speech from the speech representation model.

Optimization Separately End-to-end finetuning
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Given these attempts to develop language technologies for these languages,

there is one crucial aspect of natural human communication that has not yet

been explored. Orally describing what we are seeing is a simple task that we are

able to do from our early days. This activity includes an observation of what

objects are seen and what are the relationships among those objects. Then, we

speak to describe the observed object in the form of a descriptive sentence. Cur-

rently, the construction of such a system is done by cascading image captioning

and TTS models, which come from two separate fields: image and speech pro-

cessing. Unfortunately, this implementation still relies on the textual modality

as a bridge, which makes it impossible for use in untranscribed unknown lan-

guages. In this study, we combine these two fields by proposing an end-to-end

direct Image2Speech generation method without text (see Figure 6.1), which we

call MMC-SelfSup.

Consequently, the simplest way to accomplish this Image2Speech task is to

have a large amount of parallel image and speech data to train a generation

model. However, such parallel data are not common as data pairs and thus are

often unavailable. This has not yet been addressed in the previously published

Image2Speech works [115, 116, 5].

From these observations, we find that there are two main problems: (1) some

languages do not have a written form and (2) a large amount of parallel image-

speech data are often unavailable. To resolve these problems at once, in this

study, we use a simpler approach to learning a discrete speech representation

from speech-only data, instead of using the grounding-based approach [5] that al-

ways needs paired image-speech data. We use a self-supervised transformer-based

vector-quantized variational autoencoder (VQ-VAE), which has been proven to

deliver a promising discretization score for untranscribed unknown languages in

the recent Zero Resource Speech Challenge [107, 3]. As a result, we greatly reduce

the amount of needed parallel image-speech data, as shown by our experimen-

tal results that surpass those of the most recent frameworks, even while using a

smaller amount of parallel data.
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6.2. Related Work

6.2.1 Image2Speech with Text

Image2Speech is a relatively new task that bridges image and speech process-

ing. Previously, both modalities have been processed separately using textual

modalities as a bridge between them. This same approach was done by Ma et

al. (2019) by learning multimodal representations [117]. With their proposed

multimodal information bottleneck framework, they were able to train a model

with disjointed image-text and text-speech datasets. Then, during the genera-

tion process, they did what they called a “skip-modal generation” so that the

shared modality (text) is skipped during the generation process. Although this

work successfully captions an image into speech, its training process still uses text

as a bridge, which is different from what humans do during their early learning

process.

Hasegawa-Johnson et al. (2017) proposed a more direct approach for Im-

age2Speech tasks by converting an image feature into speech unit sequences such

as L1-Phones and L2-Phones. The speech unit sequences are then used by TTS

as inputs to generate speech utterances. In addition, they also experimented with

pseudo-phones, which are generated by an unsupervised statistical-based acoustic

unit discovery system [104]. However, their approaches using L1- and L2-Phones

still need textual information to generate the phones from the speech. Then, their

pseudo-phones approach performed poorly with 1.4 BLEU on a synthetic speech

dataset and it was not tested on a natural speech dataset.

6.2.2 Image2Speech without Text

In the previous section, those previous studies used text as a symbolic repre-

sentation of the objects found in the image. Similarly, to implement a text-free

approach, Hsu et al. (2020) proposed a visual-grounding approach [5] that gen-

erates a set of discrete units associated with speech segments and visual objects.

Then, they trained a TTS model using a separate speech-generation dataset with

the input of those speech units. However, although this approach can successfully

replace text as an intermediate representation, the training process for discrete
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speech units still needs a full amount of parallel image-speech data, which are

not commonly found data pairs in real-life conditions. In addition, they also

applied run-length encoding (RLE) so that each speech unit’s discrete represen-

tation could be easily assigned to an image object. Unfortunately, RLE is a lossy

approach that removes the duration information from the speech units, and thus

a separate TTS model is needed to recover the duration information during the

unit-to-speech generation process.

In our proposed approach, we train the discrete speech unit representation

with a speech-only dataset in a self-supervised manner, as opposed to the ap-

proach of Hsu et al. [5] that needs paired image-speech data (See Table 6.1). This

consequently reduces the amount of parallel image-speech data needed in our pro-

posed framework. In addition, our reconstruction-based autoencoder model can

be re-used during the inversion of a speech unit into speech. In this way, we are

also able to remove the use of the previously required lossy RLE (e.g. [5]), which

is impractical because it removes duration information from the speech. There-

fore, we do not need to train a separate TTS model as did other approaches

(e.g. [115, 116, 5]) because the speech-generation process from the discrete unit

is simply an inversion process in the autoencoder part of our proposed frame-

work. Moreover, our proposed approach also does not need any additional speech

synthesis dataset for training a TTS model, as needed by another work [5]. As a

result, we propose an architecture for the Image2Speech task without any text,

where the data requirement for training also corresponds to real-life conditions

(i.e. lots of speech-only data, few parallel image-speech data).

6.3. Proposed Self-supervised Discrete Speech Rep-

resentation for End-to-end Image2Speech Gen-

eration

6.3.1 Model Components

� Vector-quantized Variational Autoencoder (VQ-VAE)

We use the VQ-VAE model with speaker embedding described in Sec-
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Figure 6.2: Overview of our proposed Image2Speech for direct image-to-speech
captioning without text.

tion 2.1.3 to learn speech discrete representation in a self-supervised man-

ner. We call this MMC-WeakSup, based on the MMC framework definition

in Section 3.2.6. We can list the variables for this task as follows:

– VQ-VAE represents a chain path CXXDX , where

– modality X is speech, and

– learned representation XD is the codebook of the VQ-VAE.

� Transformer-based Image2Code Generation

We use a transformer-based image captioning model mentioned in Sec-

tion 2.2.1. We train the text decoder part using teacher forcing on the

sequence of codebooks C. This determines the size of the output-embedding
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and softmax layer on the end, which is constrained to the number of code-

books predefined during the VQ-VAE training instead of the actual vocab-

ulary number.

� Mel-spectrogram inverter

We use the inverter part of the TTS model described in Section 2.1.2 to

invert the generated mel-spectrogram sequence into a speech waveform in

two steps. The first step is the inversion of this Mel-spectrogram into a

linear-spectrogram sequence. For this task, we used the inverter part of the

Tacotron TTS [2], which consists of a 1-D Convolution Bank + Highway +

bidirectional GRU (CBHG) block, followed by a fully connected layer. We

used L2 loss to compare the predicted linear-spectrogram with the original

linear-spectrogram extracted from the speech. The second step is to use the

Griffin-Lim algorithm [56] to iteratively estimate the phase spectrogram so

that the waveform can be reconstructed with the inverse short-time Fourier

transform (STFT).

6.3.2 Multispeaker Natural Speech Adaptation

In this study, we want our proposed model to also be able to generate multi-

speaker speech. However, using a multi-speaker natural speech dataset poses a

challenge to the VQ-VAE discretization due to its vast pronunciation variation.

In this study, we first trained the VQ-VAE model using the Flickr8k synthe-

sized dataset and measured its performance in the Image2Speech pipeline. Then,

we adapted the VQ-VAE model with the multi-speaker natural speech Flickr8k

dataset in the form of fine-tuning. During the fine-tuning, we froze the codebook

so that each codebook still represented the same speech unit as before. In this

way, our VQ-VAE model can reconstruct natural speech with a multi-speaker

condition while maintaining a meaningful codebook representation.

6.3.3 End-to-end Model Integration

The codebook hypotheses generated by the VQ-VAE model might contain some

errors. Since the Image2Code model is trained using teacher forcing against this

codebook hypothesis, the error from the codebook selection is also propagated to
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the final speech-generation process. To solve this problem, we entirely skip this

codebook step by combining the Image2Code model and the VQ-VAE model in

an end-to-end fashion. We integrate the output layer of the Image2Code model

with the decoder part of the VQ-VAE model.

We define the end-to-end loss Le2e as a weighted sum of the Image2Code

cross-entropy loss LCE with the VQ-VAE reconstruction loss Lrecon as follows:

Le2e = αLCE + βLrecon. (6.1)

To connect the output layer of the Image2Code model with the VQ-VAE

decoder, we multiply the posterior probability vector pi for each codebook with

each codebook vector itself. In this way, the codebook selection ambiguity can

be reflected in the VQ-VAE decoder.

ẑi =
L∑
i=1

pici. (6.2)

.

6.4. Experiment Settings

6.4.1 Dataset

We used Flickr8k [71], which contains 8k images of everyday activities, scenes, and

events, with five captions each. For the synthetic speech caption, we generated

single-speaker speech using GoogleTTS from the text caption. Then, for the

natural speech caption, we used Flickr Audio [92], which was recorded using

the crowdsourcing method. There are 183 unique speakers in this dataset. The

training, development, and test sets consist of 6k, 1k, and 1k images, respectively.

6.4.2 Experiment Settings

We extracted the speech feature of Mel-spectrogram (80 dimensions, 25-ms win-

dow size, 10-ms time steps) using the Librosa package [95]. For the inverter,

we also generated a linear magnitude spectrogram with 1025 dimensions for the
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Mel-spectrogram inverter. For images, we used a 224×224 image size with aug-

mentation (dynamic resize, random crop, random flip). All of our models are

trained with the Adam optimizer [73] with 1e-4 learning rate for VQ-VAE and

2.5e-4 for image-captioning and inverter.

We build our VQ-VAE with a transformer layer having a depth of three for

each encoder and decoder part. We use multi-head attention with the size of

256 and feed forward layer with the size of 1024. In addition, we also used

an embedding layer to represent a speaker id auxiliary input into the speaker

embedding with the size of 8. The speaker embedding will be concatenated to each

element of the decoder input sequence as the additional reconstruction condition.

When the training failed to reduce the development loss after a warmup of five,

we halved the learning rate. The training stops when the development loss does

not decrease anymore, with the average of 150 epochs. The training was done

with a bucket size of 20000 frames.

Our Image2Code uses a pretrained ResNet-50 [4] as an image encoder, which

high-level feature of 14×14×512 dimension is then attended by a transformer-

based text decoder with a depth of 6 and a size of 512 hidden units. For the

output layer, we used label smoothing with a factor of 0.005 and greedy-based

decoding unless specified. We use the same halving mechanism for the learning

rate as the VQ-VAE model. We use 32 captions per batch during training, which

are shuffled beforehand.

Finally, to listen to the generated speech caption, we inverted the Image2Code

code output into Mel-spectrogram. Then it is converted into a linear-spectrogram

by the inverter model with a projection size of 256, which then finally transformed

into a waveform by the inversion process described in Section 6.3.1. Since the

latter part of the inversion process (Mel-to-speech) is just to show the possibil-

ity of inverting our generated Mel-spectrogram into a speech waveform, we also

encourage the use of other waveform synthesizer models.

6.4.3 Baseline and Topline Model

As a simple baseline, we combined two popular neural network models: ResNet-

50 [4] and Tacotron [2]. We used ResNet, similarly to our Image2Code model, as

an image encoder that produces two-dimensional image features. Then, we take
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the decoder part of Tacotron so that it attends to these two-dimensional image

features. The Tacotron decoder is then trained using teacher forcing against

the Mel-spectrogram speech feature from the image’s caption. In addition, we

compare the proposed approach’s result with that of Hsu et al. [5], which used a

visual grounding-based model.

We also trained another baseline that leverages international phonetic alpha-

bet (IPA) as an intermediary to enable transfer learning from another language.

IPA is an international phonetic notation that represents speech sounds in writ-

ten form. To train this baseline system, we assume that there exists a dataset in

another language that has textual information. We generated the German speech

from the German image captions in Multi30k dataset [118] using GoogleTTS. The

transfer learning flow from German to English is as follows:

� First, we generated IPA transcriptions of German based on the textual

caption and pronunciation dictionary using Epitran1 transliteration tool.

� Second, we trained automatic speech recognition (ASR) using the pair of

German speech and its IPA transcription (Speech2IPA).

� Next, we transcribed the English speech in the Flickr8k dataset using this

Speech2IPA model, so an English image captioning model (Image2IPA) can

be trained using the generated IPA transcription.

� Then, the parallel of speech and IPA transcription in English is used to

train a TTS model (IPA2Speech).

During inference, given the image, the English caption (in terms of IPA) will be

generated by the Image2IPA model. Then the IPA2Speech model will produce

the speech based on the IPA caption in English. This baseline evaluation can be

used to measure the significance of our proposed discrete speech representation

compared with borrowing such features from another language.

For the topline, we follow the commonly used pipeline to make a speech cap-

tion out of an image by generating the text caption beforehand. First, we trained

the Image2Code model to generate phoneme captions. Then, we also train a

1https://github.com/dmort27/epitran

95



Tacotron [2] model to generate speech from phoneme sequences as a topline com-

parison. During inference, the Image2Code produces phoneme caption hypothe-

ses, which are then used by the Tacotron to generate speech captions. All of the

models for the topline and baseline were trained with the same Flickr8k dataset

as our proposed model.

Then, we also consider the use of the previously published work of Hout et

al. [116] that uses L1-Phones as a topline, since the training process still needs

textual information. However, the earlier work of Hasegawa-Johnson et al. [115]

cannot be compared because they used a different evaluation method as previously

mentioned [116]. Their proposed system was also similar in principle to that of

Hout et al., so we assume that their result is also representative.

6.4.4 Evaluation

We used phoneme-level and word-level granularity to evaluate the output of our

system, following the approaches of Hout et al. (2020) [116] and Hsu et al.

(2020) [5], respectively. We used the common metrics for image captioning task:

bilingual evaluation understudy with 4-grams (BLEU4) [76] and CIDEr [97]. Both

metrics are used in phoneme level for our proposed model parameter tuning and

for comparison with Hout et al.’s result. BLEU4 is used as the main metrics

because it was reported with the strongest correlation with human evaluators for

this Image2Speech task [116]. Then, for comparison with Hsu et al.’s result, we

also used METEOR [119] and ROUGE-L [120]. As commonly done in the image-

captioning field, we evaluated our model hypothesis with multiple references (each

image has five captions).

To generate the phoneme transcription, we trained a sequence-to-sequence

automatic speech recognition (ASR) model based on the “Listen, Attend, and

Spell” (LAS) framework [21] with the reconstructed Mel-spectrogram of the VQ-

VAE as input and phoneme or word (textual) caption as the transcription output.

Using the textual transcription of the generated Mel-spectrogram transcribed by

this model, we compared it with the ground truth text caption from the dataset.

This evaluation approach is similar to that of a previous work [5].
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6.5. Experiment Result and Analysis

There are several parameters such as the number of clusters, cluster size, and

stride in the proposed model that need to be evaluated. In this section, we report

the results of our parameter tuning and how each parameter affects the final

performance.

6.5.1 Result on Single-speaker Synthesized Speech Dataset

First, we compared the number of clusters (codebook size) for the VQ-VAE part of

our proposed model. There is a trade-off between the quality of the VQ-VAE re-

constructed speech and the number of vocabulary items used by the Image2Code

module. As shown in Table 6.2a, we found that the ideal number of clusters is

256, which yields a 36.29 BLEU4 score. Therefore, we chose this setting for the

next experiment to choose the cluster size. We found that the increase in cluster

number is not always positively correlated with the end performance because af-

ter convergence the VQ-VAE model did not use all of the possible codebooks to

represent the given speech-caption utterance.

Then, if we regard each code as a speech unit, the cluster size parameter

represents the dimensions needed to represent each of those units. A bigger cluster

size gives a richer representation, which we expected to give a better codebook

sequence representation and better reconstructed speech quality. However, the

results in Table 6.2b show that a cluster size of 32 is good enough to represent

the speech unit generated by the VQ-VAE model. A further increase in the

cluster size did not further improve performance and made the system prone to

overfitting. We suspect that this is due to the size of the dataset used, which is

not large enough.

Another factor that needs to be evaluated is how wide the stride size must

be. Stride size represents how many frames are represented by each codebook.

A smaller stride size produces a better fine-grained codebook representation but

makes the codebook sequence longer. Such a longer codebook sequence poses

more difficulties for the Image2Code module training. On the contrary, a bigger

stride size provides a more robust codebook representation because it spans a

wider receptive field. We found that the stride size of 8 produces 0.88 more
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Table 6.2: Experiments on Flickr8k single-speaker synthesized speech dataset.
(phoneme-level evaluation)

(a) Comparing number of cluster

#code size stride BLEU4 ↑ CIDEr ↑
64 32 4 33.98 40.28
128 32 4 35.35 45.53
256 32 4 36.29 45.88
512 32 4 35.46 46.95
1024 32 4 35.16 43.84
2048 32 4 34.17 44.71

(b) Comparing cluster size

#code size stride BLEU4 ↑ CIDEr ↑
256 16 4 35.96 45.38
256 32 4 36.29 45.88
256 64 4 35.23 46.63
256 128 4 34.17 40.99
256 256 4 35.26 43.99
256 512 4 34.17 42.90

(c) Comparing various strides

#code size stride BLEU4 ↑ CIDEr ↑
256 32 2 32.88 38.56
256 32 4 36.29 45.88
256 32 8 37.17 49.23
256 32 12 36.29 42.33

(d) End-to-end integration between Image2Code and VQ-VAE decoder. Pre-trained
model taken from best model in Table 6.2d. α: Image2Code loss weight, β: reconstruc-
tion loss weight

α β BLEU4 ↑ CIDEr ↑ Notes

0 1.0 1.64 0.02 reconstruction loss only
any 0 37.17 49.23 before end-to-end integration
1.0 0.25 37.12 48.31

weighted reconstruction loss1.0 0.50 36.91 46.62
1.0 0.75 37.78 49.07
1.0 1.0 37.43 47.54 equal for both

BLEU4 points than the stride size of 4 (see Table 6.2c).

Then, we used the best settings for the end-to-end fine-tuning between Im-

age2Code and the VQ-VAE decoder. We connect the output layer of Image2Code
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to the embedding input layer of VQ-VAE as described in Section 6.3.3. Table 6.2d

shows the effect of end-to-end fine-tuning applied on the best model of Table 6.2c,

with various combinations of α and β parameters. We regard the result when β=0

as the same as that with no integration because the Image2Speech system relies

only on cross-entropy loss from the Image2Code model. The results show that by

using 0.75 multipliers for the β parameter, we can get 0.61 BLEU4 improvements.

A comparison of the end-to-end integration results with no integration is shown

in Figure 6.3. In addition, we found that simply relying on reconstruction loss

(α=0,β=1) reduces performance greatly.

6.5.2 System Adaptation to Multi-speaker Natural Speech

Table 6.3: Adaptation results on Flickr8k multi-speaker natural speech
dataset (phoneme-level evaluation)

#code size stride BLEU4 ↑ CIDEr ↑ △BLEU4↑
256 32 2 32.76 38.48 -0.12
256 32 4 36.40 45.87 +0.11
256 32 8 37.26 49.29 +0.09
256 32 12 37.73 44.09 +1.44

The model was adapted so it could be trained with a multi-speaker natural

speech in the form of fine-tuning, as described in Section 6.3.2. By incorporat-

ing the speaker information as an additional condition in the VQ-VAE decoder,

we can adapt the entire pipeline to also generate multi-speaker natural speech.

Table 6.3 shows the result of the fine-tuning adaptation. The best performance

was reached by using a stride size of 12, different from the one in the synthesized

speech. We also calculated the △BLEU4 score in comparison with the synthe-

sized speech results in Table 6.2c. Interestingly, we found that a stride size of

12 is better at handling multi-speaker natural speech, as compared with the op-

timal stride size in the synthesized speech model. This validates our hypothesis

that a larger stride size provides a more robust representation against diverse

pronunciation variation, which is typical with multi-speaker natural speech data.

We added the example results of this model in Figure 6.4. The generated

speech output hypothesis of our proposed Image2Speech model is transcribed by
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an ASR model for evaluation. Example results (1) and (2) are good results, where

the object in the images is correctly captioned alongside its action. Example result

(3) is logically correct but sounds unnatural because “a group of people” is not a

commonly used phrase to describe two people. Example result (4) is also missing

a verb to connect “black dog” and “ball.” Finally, results (5) and (6) mentioned

a wrong object or a wrong action in the caption. We suspect that language

modelling is one of the factors that contribute to these errors. Compared with a

textual image-captioning model, the Image2Code decoding capabilities are now

trained with the discrete speech unit instead of using textual language.

6.5.3 Comparison with Other Systems
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Table 6.4: Image2Speech results on Flickr8k dataset in comparison with other systems (phoneme-level evaluation)

No. Model
Use

Output
Synthesized speech Natural speech

Notes
text? BLEU4 ↑ CIDEr ↑ BLEU4 ↑ CIDEr ↑

Cascade image → text ✓ text
(1) Hout et al., (2020) [116] - - 36.1 42.4 Topline for (6)
(2) Ours (Image2Text, beam 5) 46.21 64.51 46.21 64.51 Topline for (6)

Cascade image → text → speech ✓ speech
(3) Ours (Image2Text→TTS) 43.39 61.09 43.35 60.25 Topline for (6)

Transfer learning IPA de→en × speech
(4) Ours (Image2IPA→IPA2Speech) 23.57 21.17 - - Baseline for (6)

Direct image → speech × speech
(5) Concat ResNet + Tacotron decoder Did not converge Baseline for (6)
(6a) Ours1 (Image2Speech, greedy) 37.78 49.07 37.73 44.09 Proposed system
(6b) Ours1 (Image2Speech, beam 5) 40.09 51.40 41.12 48.22 Proposed system

Table 6.5: Image2Speech results on Flickr8k multi-speaker natural speech dataset (word-level comparison). Pro-
posed approach needs less paired image-speech data compared with previously published results which always need
100% image-speech pairs for training.

Model {sp} {img,sp} BLEU4 ↑ METEOR ↑ CIDEr ↑ ROUGE-L↑
Hsu et al. (2020) [5] (SAT) 2 - 100% 11.6 14.1 23.2 39.0
Hsu et al. (2020) [5] (SAT-FT) 2 - 100% 12.5 14.5 24.5 39.1

Ours (Image2Speech, beam 5)

100% 100% 14.78 17.40 32.89 45.75
100% 75% 14.58 16.82 31.07 45.34
100% 50% 13.93 15.91 28.48 44.21
100% 25% 9.88 13.43 16.50 41.04

.

1Best system from Table 6.2d (synthesized speech) and Table 6.3 (natural speech).
2The entire framework was trained with additional datasets: Places dataset [121] for discrete unit learning, and LJSpeech [122] for

TTS.
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Last, we also compared our best system performance with a previously pub-

lished system. In addition, we trained a model to be compared as the baseline

and topline. First, we trained our image-captioning model with phoneme output,

which we call the Image2Text model. This model is similar in principle with

Hout et al.’s (2020) previously published results. Our Image2Text model with

transformer-based architecture produced better BLEU4 and CIDEr performance

compared with Hout et al.’s work (see Table 6.4). Then, we generated the speech

utterance of this textual result with a TTS trained using the same dataset. Using

the same evaluation method described in Section 6.4.4, this model yields the per-

formance of 43.39 and 43.35 BLEU4 scores for synthesized and natural speech,

respectively. We use these scores for the topline of our proposed system because

it still uses text as a bridge between the image and speech modality.

Our proposed end-to-end system with an Image2Code beam size of 5 achieved

the performance of a 40.09 BLEU4 score for synthesized speech, which is about

3 points away from the topline of image→text→speech pipeline. This means

that our proposed discretization agent for a codebook works effectively to replace

the text modality. Moreover, the distance to topline is closer with our proposed

system on a natural speech dataset, which is about 2 BLEU4 points. Here, our

proposed Image2Speech model which does not use any text information during

training, outperforms Hout et al.’s previously proposed phoneme-based model by

about 5 BLEU4 points in the Flickr8k multi-speaker natural speech dataset.

Then, we also trained a simple end-to-end model with ResNet [4] as an image

encoder and the decoder Tacotron [2] to generate speech. We found that the

model did not converge and produced unintelligible sounds. We observed that

during the teacher forcing of the Tacotron decoder, the Mel-spectrogram input is

too long and the speech representation produced is insufficient for use as a query

to the attention mechanism to get context from the encoded image representation.

This shows that VQ-VAE in our proposed model is crucial for speech feature

discretization, where the representation can then be easily associated with the

encoded image representation.
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Figure 6.3: Proposed Image2Speech end-to-end integration results compared with
cascaded pre-trained model (straight line) on Flickr8k single speaker synthesized
dataset (phoneme-level evaluation)
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 (1) Good result (2) Good result (3) Correct but unnatural 

Image 

 
  

ASR transcription from 
 the speech hypothesis 

a brown and white dog running on 
grass . 

a surfer rides a wave . a group of people standing on the 
beach . 

    

 (4) Incorrect sentence (5) Wrong object (6) Wrong action 

Image 

   

ASR transcription from 
 the speech hypothesis 

a black dog is ball . a red biplane is playing soccer . a snowboarder jumps over a snowy 
mountain . 

 

 Figure 6.4: Various example results from proposed Image2Speech model trained on multi-speaker natural speech
dataset. Caption transcription generated using ASR from the speech caption hypothesis. Images courtesy of
Unsplash1.

1https://unsplash.com/; For presentation purposes, we use the example images from the free sources, but they still reflect of what
were happening in the Flickr8k test set.

104



Figure 6.5: Proposed Image2Speech approach compared with Hsu et al. (2020)
[5] (red lines) on Flickr8k multi-speaker natural speech dataset (word-level evalu-
ation). Proposed approach (blue bar) can achieve comparable performance even
with less than 50% paired image-speech data.

Next, we trained a baseline that is based on transfer learning from German

to English in terms of IPA transcription (see Section 6.4.3 for details). As can

be seen from Table 6.4, our proposed method performed much better with more

than 14 BLEU4 points compared to this baseline. In this baseline, the features

of the source language might not be useful for the target language, and some

errors might be propagated. This result reveals that our proposed Image2Speech

self-supervised discrete speech representation is more effective than such features

learned from the cross-lingual approach through transfer-learning. Our proposed

approach also can perform in much better quality, even with less data than this

baseline, because there is no need for additional data in other languages.

Finally, we also compared our results with Hsu et al. (2020) [5], which also

used discrete speech unit representation (see Table 6.5). However, their discrete

speech unit is generated from a speech-visual grounding model that needs paral-

lel image-speech data, whereas our approach just needs speech-only data in this

step. The proposed approach outperforms their previously published results in all
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metrics, regardless of whether fine-tuning of the ResNet model was done as they

reported (SAT or SAT-FT). In addition, one of the advantages of the proposed

approach is that we do not always need to have the same proportions between

image and speech data, in addition to their being paired. Therefore, it is pos-

sible to train our model with 100% speech-only data ({sp}) but use less paired

image-speech data ({img,sp}), similar to real-life conditions. In both Table 6.5

and Figure 6.5, we demonstrate how our Image2Speech model can outperform

the previously published results, even with 50% less paired image-speech data.

Moreover, this work’s results were achieved without the need for training a sepa-

rate TTS model, since our proposed approach just needs to use the decoder part

of the VQ-VAE to invert the codebook units into speech features.

6.6. Summary

We described our proposed approach in achieving the Image2Speech task with-

out text using the multimodal machine chain framework, inspired by the zero

resource speech technology that attempts to provide speech technologies for un-

transcribed unknown language. Our proposed system uses a pipeline of VQ-VAE,

Image2Code, and a Mel2linear inverter. To completely avoid text as a bridge,

we used the VQ-VAE codebook to train our image-captioning model, where code

sequences can then be inverted into speech features for generating speech. We

explored various parameters in the proposed approach and did fine-tuning to

achieve end-to-end optimization within the Image2speech pipeline. Our experi-

ment results with a multi-speaker natural speech dataset outperformed previously

published work that uses a grounding-based approach, even while using only half

of the paired image-speech. This shows the effectiveness of our discrete speech

representation in replacing text as the intermediary in the Image2Speech task.

Our approach is also more efficient in terms of data size and model size because

it accomplishes training with less paired image-speech data than needed by the

previously published approach. In addition, the decoder part of our VQ-VAE can

also be used during the codebook-to-speech inversion, removing the need to train

a separate TTS model.
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Chapter 7

Conclusions and Future

Directions

In this last chapter, we conclude our thesis and discuss future directions for our

proposed framework.

7.1. Problem Reiteration

Human perceives the world with various senses which make their communication

multimodal. This perceived information then can be conveyed to other humans

in the form of speaking. Denes et al. described how listening and speaking are

closely related to each other through a mechanism called the speech chain [1]. In

addition, visual modality is also processed together during human communication

[10], supplying visual recollection of the viewed objects [9].

Researchers in the speech processing field has been developing machine learn-

ing models that mimic this human communication behaviour, in the form of a

cross-modal model. However, despite this close relationship in natural human

communication, the current research tends to be independently progressing. In

addition, it is difficult to introduce a new modality to the system because the

more modality we add, the more difficult it is to create the parallel data (i.e.

from pair to triplet, quadruplet, and so on). This problem occurs mainly because

their approach is mostly focused on supervised learning, which relies heavily on

paired data.
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7.2. Conclusions

In this section, we review our work from the perspective of theoretical, applica-

tion, and experimental.

7.2.1 Theoretical Issues

We take advantage of the closeness between various modalities used by humans in

communication, to develop a multimodal chain framework that leverages various

learning strategies. We generalize the idea of the chain mechanism in the form

of a multimodal machine chain (MMC) framework, which aims to enable cross-

modal model learning from any kind of data availability. This is possible because

we designed a feedback link in the form of reconstruction loss, for any cross-modal

operation that has been done inside the chain path.

7.2.2 Application Issues

We showed some proof-of-concept of our proposed MMC framework in various

data available for several use cases. First, we showcase our MMC framework ca-

pability to enable semi-supervised learning of cross-modal models in various data

availability. Second, our MMC framework successfully enables weakly-supervised

learning from completely unpaired data in the form of speech-to-text mapping,

which previously is not feasible for model training. Then, we successfully de-

velop end-to-end image-to-speech generation by using our framework to learn an

optimal speech representation for the task, which uses less paired image-speech

data.

7.2.3 Experimental Issues

Each of the applications of our proposed framework enabled a more efficient

learning strategy, compared with several existing baselines in each of the tasks. In

Chapter 4, we reported a semi-supervised ASR improvement from 36.35% CER

to 12.06% CER using unpaired and single-modality data from other unrelated

modalities. Then, in Chapter 5, our speech-to-text mapping successfully reaches
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14.57 BLEU, while the ASR baseline cannot even converge. Finally, our end-

to-end image-to-speech generation can successfully reach 41.12 phoneme BLEU,

which is close to the textual topline of 43.35 phoneme BLEU.

7.3. Summary of Contributions

The original contributions of this thesis are listed as follows:

� A general framework called MMC to enable cross-modal learning

by using various levels of supervision (in Chapter 3)

Major advantages of the proposed framework:

– It can be applied to any kind of modalities

– It can be applied to any kind of cross-modal model

– It is more effective in particular in low-resource condition

– It can also be used for untranscribed unknown language, because it

can learn an optimal representation when there is none available.

� Dual-loop multimodal machine chain that combines speech chain

and visual chain (in Chapter 4)

We showed that it is possible to continue the training of an ASR model,

beyond the machine speech chain framework [53]. Our dual-loop mechanism

enables ASR model improvement with a single-modality image data, which

modality is not even related to ASR (not speech or text). Our experiment

result shows that speech processing model performance is improved, while

maintaining the performance of other models, in addition to outperforming

the label propagation baseline.

� Multimodal machine chain mechanism that handles multispeaker

speech processing (in Chapter 4)

We enable multispeaker speech processing by implementing one-shot speaker

adaptation in the multimodal machine chain mechanism. The experiment

result shows its effectiveness in a multispeaker natural speech dataset.
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� Single-loop multimodal machine chain to show MMC framework

usage for multimodal multisource model (in Chapter 4)

Using an ImgSp2Txt multimodal multisource model, we showed that it is

also possible to use our proposed MMC framework for this kind of model.

Our experiment showed that an audiovisual model can be augmented us-

ing the single-loop multimodal chain, without any significant performance

decrease compared with the dual-loop one.

� Applications using MMC to enable speech-to-text mapping using

unpaired data (in Chapter 5)

We investigated a weakly-supervised mapping task to transform unknown

untranscribed speech utterances into semantically equivalent texts. The ex-

periment result shows that our proposed partially-aligned Code2Text model

and chain augmentation strategy inspired by the MMC framework can suc-

cessfully perform the mapping even for a cross-lingual application

� Applications using MMC for end-to-end image-to-speech genera-

tion (in Chapter 6)

Inspired by the zero resource speech technology that attempts to provide

speech technologies for untranscribed unknown language, we use our pro-

posed MMC to attempt image-to-speech generation without text. The

key contribution of this approach is the use of transformer-based VQ-

VAE to learn the discrete speech representation in a self-supervised man-

ner. Our proposed method outperformed the previously phoneme-based

and grounding-based approach, even while using only half of the paired

image-speech data.

7.4. Future Directions

Despite all the contributions listed in Section 7.3, we acknowledge that there are

still several things that our proposed framework cannot do, such as:

� Chapter 4: MMCSemiSup

Currently, the performance of MMCSemiSup has some percentage gap in

terms of CER/WER compared with the supervised topline. To relieve this,
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improving the model inside the chain into a more data efficient model can be

done. In addition, it is also possible to investigate other possible operation

order, considering the levels of supervision. For example, the current imple-

mentation of Chapter 4 starts from supervised learning to self-supervised

learning. The order can be reversed so that it starts from the least super-

vision, such as from self-supervised learning to supervised learning.

� Chapter 5: MMCWeakSup

The current implementation of our weakly-supervised Speech2Text map-

ping still has BLEU score under 20. Although it successfully describe the

semantic content of the speech to some extend, the quality of the sentence

can be improved, especially in terms of vocabulary modelling, such as de-

scribed in Table 5.3. Currently, the training relies not only on the chain

mechanism and the discrete representation, but also on how we provide the

alignment information to connect both partially-aligned speech and text

description. Currently, we still rely on an unsupervised aligner to generate

the alignment. A better partial alignment modelling strategies can benefit

the model performance.

� Chapter 6: MMCSelfSup

The Image2Speech task still produce wrong sentences or unnatural sen-

tences. We analyzed that the error are mostly comes from the difficulties of

the model to handle words that are not represented in the image (i.e. not

noun), which is also commonly found not only in Image2Speech but also in

Image2Text task. We suggest that the use of an adversarial-based image

captioning model may relieve this situation. In addition, another order or

target of the operation can be investigated too. The model can benefit from

the discretization of not only speech, but also image. The discretization of

image has been discussed by van den Oord (2018) [57].

� A modular implementation for easy operation combination

Currently, we implement the chaining mechanism using the PyTorch neural

network library [123]. When implementing the chain operation, we need to

define the forward operation manually for each of the chain paths (refer to

Section 3.2). For example, the implementation of CXYX and CY XY requires
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two different functions. This implementation is of course not ideal for rapid

prototyping, especially when we want to reorder the operations based on

the levels of supervision (i.e. unsupervised first, then semi-supervised).

We suggest developing a modular implementation that considers a modular

design that reflects the abstraction of the chain operation.

In general, the remaining gap of performance found in each of our proposed

framework implementation is caused by the model component that produces low

performance due to various reasons (i.e. not data efficient, bad tuning, etc),

and due to operation variations (different order, different target) of the general

framework that has not yet been investigated. On the other hand, there are

several things that are not yet covered in this thesis, such as:

� Still need to restart from zero when training inverse model

Currently, after finishing the training of MX→Y model, we need to re-train

the inverse model of MY→X from zero. An example of this is when the

ASR model has been fully trained, we still need to train the TTS model

from zero, although the acoustic information has been modelled by ASR.

It will be ideal if there is an information-sharing mechanism in between the

related components of the chain. This will enable us to reduce the number

of parameters and training time, and also possibly reducing the number of

data needed.

� A proof-of-concept with other kinds of modality

Currently, our proposed MMC framework has shown its capability to handle

image, speech, and text modalities. There are still other modalities that

have not yet been covered such as videos, sound/audio, and sensor data.

It will be good to have a proof-of-concept to showcase that our proposed

MMC framework can also be used for such modalities.

� A more comprehensive multilingual multimodal approach

Although we described an attempt for a multilingual approach in Section

5.5.3, our proposed MMC framework has not yet been used for a multilin-

gual approach. We hypothesize that the implementation of a multilingual

approach will regard another language as another modality, while image

modality can be used as a bridge or conduit.
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� Visual chain implementation lack an auxiliary information mod-

elling

The current visual chain implementation has not yet considered auxiliary

information passing from the IC to IR/IG. Auxiliary information is the ad-

ditional factor that is not directly related to the task itself but is important

to maintain the consistency of the loop. The example of auxiliary infor-

mation in the speech chain is the speaker information that is passed from

ASR to the TTS so that the reconstructed speech’s speakers are still con-

sistent. In the visual chain, the use of auxiliary information can be useful

to maintain the consistency of the generated image. For example, when

the IC generates a caption “a cat on the table”, additional information is

needed by IG to reconstruct the image, such as what is the colour of the

cat, in what position does the cat stays, and in what direction does the cat

looking.
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Figure 7.1: Future directions
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We discuss the future directions to cover these current limitations of our pro-

posed MMC framework. We redraw the Figure 1.7 in Chapter 1, in the Figure 7.1

with an addition of yellow box. The blue box represents the current scope of our

proposed MMC framework, while the yellow box represents possible improve-

ments in terms of data availability and level of supervision. Based on the figure,

we describe the future directions as follows:

� Cross-modal collaboration using data from different domain

Our MMC framework now can successfully take advantage of a non-ideal

data condition such as unpaired or detached (single-modality). However, all

those are based on an assumption that all the data are in-domain. Enabling

some domain adaptation methods to use this data will allow the MMC

framework to be used for more purposes.

� Unsupervised ASR without paired data

Related to the previous future direction, a speech-to-text mapping model

that can learn from purely unpaired data can be further developed into an

unsupervised ASR. We define unsupervised ASR here as an ASR model that

can be trained without paired data. We suppose that the representation

learning from our proposed MMC framework can be also conditioned to

some bootstrap information that links speech and text modality.

� Towards another type of media

Currently, we are using a multispeaker speech to represent speech modality,

and an image to represent visual modality. There is still various kind of

media that are not yet covered in this thesis, such as:

– noisy speech

– multilingual speech or code-switching speech

– sequence of image or video

� Towards better cross-modal model

Going beyond what is shown in the figure, we also consider it important

to upgrade the MMC framework implementation with a better cross-modal

model. Given data constraint in this thesis, it will be beneficial to have a
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cross-modal model that is more data-efficient. For example, Section 5 and

6 have already shown examples on how self-supervised discretization can

reduce dimensionality, which enables convergence with fewer data.

� Enabling information sharing

Figure 7.2: Centralized approach with shared multimodal representation.

Currently, each chain component is stand-alone, and there is no information

sharing in between them. Therefore, each model needs to be trained from

zero. In addition, there is no guarantee that every new information learned

in one model can be eventually be propagated in to other models. One

practical example is that while both ASR and IC receives different input,

but both of them are actually modelling the same language in the decoder

part. The combination of those two models, even in the simplest form such

as ensembling, has been proven to yield good results in MMCSemiSup2

using ImgSp2Txt model. Therefore, allowing information sharing by im-

plementing a centralized approach will be beneficial for the framework.

� Multilingual multimodal machine chain

For the framework in general, we can regard a different language as a dif-

ferent modality. In addition, image modality can be used as a good bridge

in between different languages. Furthermore, there has been some previous

works on using the chain mechanism for multilingual purpose. Novitasari et
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al. (2020) reported the use of machine speech chain for Indonesian ethnic

languages [124]. The ASR and TTS are initially trained using standard

Indonesian using supervised training, then the training is continued using

the ethnic languages. Therefore, the model can be adapted for those ethnic

languages without the use of paired data.

On the other hand, Nakayama et al. (2019) also reported a multilingual

machine speech chain for zero-shot code-switching ASR and TTS [125].

Code-switching is defined as when one speaker uses two or more languages

interchangeably within a conversation, which then can be classified as a mul-

tilingual phenomenon. In their work, the code-switching data is only used

for the semi-supervised step, while the supervised step is using monolingual

data. Therefore, it decreases the burden of getting parallel code-switching

data, which is expensive.

� Explore various operation order

The operation order for the current study is fixed. For example, in MM-

CSemiSup, the order of operation is first using supervised learning with a

small amount of paired data and then continued with semi-supervised learn-

ing using unpaired data and unrelated modality data. It will be interesting

to also incorporate the self-supervised learning into that training pipeline,

given its effectiveness in Chapters 5 and 6 for other tasks.
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Appendix A

Further Analysis in

MMCSemiSup

In this appendix, we provide further analysis on the cross-modal collaboration in

MMCSemiSup. First, we do an error analysis to compare the label propagation

and the speech chain result in Table 4.5. Then, we discuss the variations of the

model such as the size and pretraining factor in the cross-modal collaboration

using MMCSemiSup. The result comparison for these are also related to Table

4.4 (for Flickr30k result) and 4.5 (for Flickr8k result).

A.1. Error Analysis on Label Propagation vs MM-

CSemiSup

The result in Table 4.5 shows that given the same amount of parallel and unpaired

data, our MMCSemiSup can improve the baseline while the label propagation

method did not. In this section, we do an error analysis to see what kind of error

can be fixed and how specifically our proposed method can improve over the label

propagation. We focus on the second step, where the initial model training was

continued by using the unpaired data Ux,y,z.
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Table A.1: Detailed Comparison between Label Propagation and MMCSemiSup
in the 2nd Step of Table 4.5

Factor/Metric Baseline Label Propagation MMCSemiSup
CER 36.35% 39.57% 15.10%
△CER - −3.22% 21.25
WER changes 44.04% 47.36% 21.82%
△WER - −3.32% 22.22
#Utt Improved - 1294 3789
#Utt Worsen - 1841 343
overall - −547 3446

BLEU1 62.06 62.39 81.61
BLEU4 38.99 38.53 63.80
METEOR 30.27 30.09 45.24

A.1.1 Quantitative Analysis

We calculated the character and word level error rate (CER/WER), and measured

how much improvement does each method contributes in Table A.1. In both CER

and WER, the label propagation method failed to continue the training using the

unpaired data in a semi-supervised manner. We also compared the number of

utterances improved in both methods. We found that in total, there is more

utterance get worsen rather than improved in the label propagation, as compared

with the MMCSemiSup. In addition, we also calculate the BLEU and METEOR

score. Both metrics are improved in the result using MMCSemiSup, which shows

that the result is not only improved syntactically but also semantically.

A.1.2 Qualitative Analysis

We also observe the generated transcription, to get some perspective on what kind

of errors does our proposed MMCSemiSup relieved, in comparison to the label

propagation method. We listed some of the errors, together with the examples.

� Fixing from a wrong acoustically similar word to the correct word.
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Baseline: a blond woman in a blue shirt peering out from a white fence .

LabelProp: a blonde woman in a blue shirt poses with a white fence .

MMCSemiSup: a blond woman in a blue shirt appears to wipe for a ride .

Reference: a blond woman in a blue shirt appears to wait for a ride .

Baseline: a boy rides on a trampoline .

LabelProp: a boy rides on a trampoline .

MMCSemiSup: a boy rides on a tire swing .

Reference: a boy rides on a tire swing .

In the first result example, the initial baseline result has tried to find a

similar word of “appears” into “peering”. Both words are acoustically sim-

ilar, although it is incorrect. Then, the label propagation method relies on

improving the language modelling of the model, which then updates the

incorrect word “peering” into “poses”, which is still incorrect. Finally, the

MMCSemiSup corrects the word into “appears”. On the other hand, in the

second example, the MMCSemiSup fixes the word “trampoline” into “tire

swing”, which shows that now the model is more conditioned on the given

speech. In both examples, the model trained by MMCSemiSup relies more

on the improvement of acoustic modelling, which is enabled by the help of

the TTS model in the chain.

� Reduces word dropping, predicts length better.

Baseline: a boy is sitting .

LabelProp: a boy sitting in a pool .

MMCSemiSup: a boy sitting in water .

Reference: a boy sitting in water .

Baseline: the man is playing tennis guitar .

LabelProp: the man is playing tennis in the background .

MMCSemiSup: the man is playing tennis against a building .

Reference: the man is playing tennis against the building .

In these two examples, the baseline suffers from a shorter hypothesis com-

pared to the reference due to word droppings. This indicates that the model

is not good enough in predicting the length of the transcription, given the

speech utterance input. In the first example, label propagation successfully
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predicts the correct length but filling it with the incorrect word, while the

one using MMCSemiSup can predict the correct word accurately. Similar

to the first example, the second example shows how both models predict

the same length, but MMCSemiSup gives a better hypothesis than label

propagation.

� Better language modelling: fixes semantics

Baseline: a man and woman sitting on a dog .

LabelProp: a man and woman sitting on a dog .

MMCSemiSup: a man and woman sitting on a dock .

Reference: a man and a woman sitting on a dock .

The word “dog” and “dock” are acoustically similar, but the phrase “sitting

on a dog” perhaps is not as common as “sitting on a dock”. In this example,

our proposed MMCSemiSup fixes the wrong word selection, thanks to better

language modelling.

� Better language modelling: fixes unknown words.

Baseline: a young girl sfands with her leaves .

LabelProp: a young girl floats with her little girl in the leaves .

MMCSemiSup: a young girl ’ s face looking through leaves .

Reference: a young girl ’ s face looking through leaves .

Baseline: basketball player on the ribber .

LabelProp: brown and black dog is running through a ring .

MMCSemiSup: rafting boat on a river .

Reference: rafting boat on river .

In both examples, unknown words such as “sfands” and “ribber” are gen-

erated. This is because the ASR model is using a character-level granular-

ity, so in addition to word-by-word modelling, the model also needs to do

character-by-character modelling to generate a correct word. MMCSemiSup

corrects both errors into the correct words.

We found the ASR model trained using MMCSemiSup provides a qualitatively

better hypothesis. Several improvements in terms of better acoustic modelling,

language modelling, and length prediction can be found in our proposed MMC-

Semisup model, as compared with the label propagation.
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A.1.3 Continuous Improvement in the Chain Mechanism

Figure A.1: Model update interval illustration in semi-supervised step. Assume
that the model quality improvement is symbolized as a transition from the red to
green color. (A) the same model from the first epoch is being used to augment.
(B) model is updated in every specified interval. (C) model is updated in a shorter
interval. (D) model is updated continuously.

As defined in Section 4.4.5, label propagation generates a pseudo-label from

unlabelled data, using the model previously trained using a small set of labelled

data. Therefore, with this traditional definition, the pseudo-label itself is gener-

ated only at the beginning, using the model before the label propagation starts.

The pseudo-label will never be updated, even when the model is getting better

due to additional epochs from the label propagation. In Figure A.1, this method

is (A), where a model with bad performance (red) produces a bad quality pseudo-

label, which are continuously being used throughout the semi-supervised training

step.

Then, assume that we set an interval to update the model, whether it is

every epoch or every certain number of iterations. The pseudo-label are then

generated with an intermediary model, which is assumed to be better than the

initial model. As we can see in Figure A.1 B and C, the interval is getting smaller,

and the color gradates step by step, representing the quality of the pseudo-label.

The training process, as represented by the loss function, are progressing towards

convergence, where each steps is better than the previous one. Therefore, the
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Figure A.2: Quality of the ASR model (in terms of WER) throughout epoch.

more often the pseudo-label is updated, the more effective it is for semi-supervised

training. Inspired by this observation, our proposed MMCSemiSup takes this

to the next step, by enabling a continuous improvement throughout the semi-

supervised training. The pseudo-label is generated when it is needed so that it is

generated by the latest version of the model. This ensures that the pseudo-label

quality is advancing alongside the model quality.

We show the quality of our ASR and TTS models during the semi-supervised

step in every 5 epochs, by running inference using test set (Figure A.2 and A.3).

ASR quality here is represented as WER, while TTS quality here is represented

as L2 Loss. Using label propagation, the quality of the pseudo-label is always the

same from epoch 0. Then, looking at the ASR quality using chain, the increase at

the early epochs shows that the pseudo-label itself is not good enough to leverage

the training convergence. However, looking at the TTS quality, it is clear that the

TTS itself is consistently improving throughout epochs. When the TTS quality

is good enough in around epoch 15, the ASR quality can also be directly affected

thanks to the continuous improvement. We regard this as a rationale on how our

proposed method is more effective than label propagation.
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Figure A.3: Quality of the TTS model (in terms of L2 loss) throughout epoch.

Table A.2: Comparison with the current ASR model (refer to Section 4.4.3) with
its smaller version.

Parameter Current Model Smaller Model
Bi-LSTM Encoder Size 256 (x2) 128 (x2)
Encoder Depth 3 3
LSTM Decoder Size 512 256
Decoder Depth 1 1
Dropout 0.25 0.25

A.2. Model Size Effect on MMCSemiSup

Table A.2 compares the ASR model used in Chapter 4 (Current Model), with

a smaller version of the model which uses about half of the parameter (Smaller

Model). The purpose of this additional experiment is to see if the baseline re-

ported in Tables 4.4 and 4.5 are under-trained. We use a model with half of the

LSTM size from 512 to 256.

As shown in Table A.3, the smaller model has lower CER in the baseline

setting, it is because that model has fewer parameters. However, the performance

is almost similar with the bigger model after cross-modal collaboration, with final

CER about 2.98% compared with 2.77% with the bigger model. On the other
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Table A.3: Comparison of the current and smaller ASR model in the Flickr30k
and Flickr8k dataset.

Training Data Type Hour(s)
Current Smaller

ASR IC TTS IG ASR IC TTS IG
CER↓ B4↑ L22↓ IS↑ CER↓ B4↑ L22↓ IS↑

Flickr30k Pxyz Multimodal 3.54 21.46 10.55 0.72 4.06 7.93 10.55 0.72 4.06
SingleSpk +Ux,y,z Multimodal 12.55 4.02 10.92 0.49 5.59 4.04 10.92 0.46 5.59

(Semi-Supervised) +Sx,z Sp/Img only 19.97 2.77 11.38 0.43 7.21 2.98 10.58 0.43 6.55
Topline Pxyz Multimodal 51.96 0.68 13.64 0.40 7.57 0.82 13.64 0.40 7.57
Flickr8k Pxyz Multimodal 4.57 36.35 12.75 0.77 5.90 29.90 12.75 0.77 5.90
MultiSpk +Ux,y,z Multimodal 8.57 15.10 13.22 0.59 8.29 20.36 13.22 0.60 8.29

(Semi-Supervised) +Sx,z Sp/Img only 10.70 12.37 13.28 0.56 9.12 17.06 13.83 0.57 9.16
Topline Pxyz Multimodal 34.31 5.76 19.91 0.50 9.66 6.39 19.91 0.50 9.66

hand, the difference is more apparent in the multi-speaker natural speech setting,

using the Flickr8k dataset. Initially, the smaller model has a lower CER of

29.90%, as compared to the original model with 36.35% CER. However, after the

cross-modal collaboration using a semi-supervised chain mechanism, the bigger

model is able to get a better score than the smaller ones. This shows that the

bigger model is indeed needed, given the multi-speaker settings which is more

difficult.

From a higher perspective, this experiment showcases the confusion in decid-

ing the model size. If the model size is smaller, it will have a better score at the

beginning, but less improvement in the next step. On the other hand, a bigger

model size gives more room for improvement in the latter step. Therefore, we

suggest the use of a bigger model when doing cross-modal collaboration using

MMCSemiSup.

A.3. Image Encoder Pretraining Effect on MM-

CSemiSup

This section compares the effect of using a pretrained or not pretrained ResNet. A

pretrained ResNet allows the image to be encoded into a richer high-level feature.

On the other hand, we also provide an additional experiment to show that our

proposed MMCSemiSup can still be effective even with a not pretrained ResNet.

In the initial supervised step of using Pxyz paired dataset, the BLEU score
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Table A.4: Comparison of the pretrained and not pretrained ResNet in IC model
in the Flickr30k and Flickr8k dataset

Training Data Type Hour(s)
Pretrained Not Pretrained

ASR IC TTS IG ASR IC TTS IG
CER↓ B4↑ L22↓ IS↑ CER↓ B4↑ L22↓ IS↑

Flickr30k Pxyz Multimodal 3.54 21.46 10.55 0.72 4.06 21.46 8.38 0.72 4.06
SingleSpk +Ux,y,z Multimodal 12.55 4.02 10.92 0.49 5.59 4.02 8.60 0.49 7.93

(Semi-Supervised) +Sx,z Sp/Img only 19.97 2.77 11.38 0.43 7.21 2.65 10.92 0.43 7.51
Topline Pxyz Multimodal 51.96 0.68 13.64 0.40 7.57 0.68 14.91 0.40 7.57
Flickr8k Pxyz Multimodal 4.57 36.35 12.75 0.77 5.90 36.35 8.40 0.77 5.90
MultiSpk +Ux,y,z Multimodal 8.57 15.10 13.22 0.59 8.29 15.10 9.68 0.59 4.68

(Semi-Supervised) +Sx,z Sp/Img only 10.70 12.37 13.28 0.56 9.12 13.00 12.47 0.57 8.43
Topline Pxyz Multimodal 34.31 5.76 19.91 0.50 9.66 5.76 13.54 0.50 9.66

of IC using a not pretrained ResNet is about 2 points less than the one using

a pretrained ResNet. This is because the not pretrained ResNet, given more

layers untrained from the beginning, needs more data to train. Then, continuing

the training using Ux,y,z unpaired data improves the IC model into 9.68 BLEU.

Finally, with the cross-modal collaboration using the speech only and the image

only dataset, we can get the IC performance with 12.47 BLEU. Even without a

pretrained ResNet, the visual chain component can still see some improvement.

Then, looking at the ASR performance, we can see that the CER score can

still be improved from 15.10% to 13.00% in the cross-modal collaboration step,

even without a pretrained ResNet. This CER is also close to the CER of the one

with pretrained ResNet. From this result, we can conclude that our proposed

framework can still work even without pretraining, although it is also good to

have when it is available.
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Appendix B

Discussion on the Tradeoff

between Data Size and Quality

B.1. In Cross-modal Collaboration (using MM-

CSemiSup)

The tradeoff between data size and quality has been discussed in Sections 4.5.5

and 4.5.6.

B.2. In Weakly Supervised Speech2Text Map-

ping (using MMCWeakSup)

In principle, there are two kinds of data being used to train the framework in

Chapter 5:

� Speech only dataset (Sx) to train the VQ-VAE model

� Visually-connected non-parallel speech-text dataset (Ux,y) to train partially

aligned Code2Text and Text2Code

To analyze the tradeoff between data size and quality, we trained another

model with the data specifications as described in Table B.1. The 100:100 scenario

means that it is using 100% of the speech only dataset Sx and 100% of the Ux,y
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Table B.1: Data availabilities to measure the tradeoff between data size and
quality. The scenario 100:100 is similar with the settings described in Section
5.4.1. Percentage reported in data partition size is measured against scenario
100:100.

Scenario Sx Ux, y
50:50 6k (50%) 6k (50%)
100:50 12k (100%) 6k (50%)
100:100 12k (100%) 12k (100%)

dataset for training. It is the result reported in Table 5.1 and 5.2, which is using

the data specifications described in Section 5.4.1. Then, the 100:50 scenario is

decreasing the number of unpaired data Ux.y into half of the 100:100, so that it

is using 100% of the Sx data, while reducing the use of Ux,y data into 50% of

the original amount. Finally, 50:50 reduces both single-modality data Sx and

unpaired data Ux.y into half of the 100:100.

Table B.2: Adapting best Speech2Text model trained on Table 6.2 to the Flickr8k
multispeaker natural speech non-parallel dataset

Model
50:50 100:50 100:100

Sim% BLEU CIDEr Sim% BLEU CIDEr Sim% BLEU CIDEr
(Synthesized Speech - SingleSpk)

Code2Text 35.29 12.57 26.28 34.61 12.64 26.37 35.79 15.04 31.66
+Partial Code2Text 37.21 14.94 30.70 31.28 14.86 37.09 40.94 16.80 36.86
+Cycle Augmentation 36.86 15.67 31.75 36.85 14.19 30.02 40.47 17.25 37.52

(Natural Speech - MultiSpk)
no adaptation 19.25 6.31 9.45 21.58 6.98 11.16 21.31 7.83 11.69
with adaptation 22.85 8.86 15.62 31.76 12.54 24.62 35.35 14.57 29.01

Table B.2 shows the result for each scenario. Comparing 50:50 and 100:50

scenarios, we can find out the effect of adding more single modality data. We

found that on the single-speaker data result, the cosine similarity between 50:50

and 100:50 does not change much. We also find that the 50:50 BLEU score

with cycle augmentation is higher than 100:50. However, comparing the further

adaptation to natural speech, we found that the 50:50 performance is fall behind

the 100:50. Therefore, we can conclude that adding more single-modality data is

useful when the speech data has a high variability, such as multiple speaker and

noisy environment.
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Table B.3: Tradeoff between data size and quality. The scenario 100:50 and
100:100 are similar with the settings described in Table 6.5. Percentage reported
in data partition size is measured against scenario 100:100.

Scenario Sx Pxz BLEU CIDEr
50:50 14.5k (50%) 14.5k (50%) 12.34 26.26
100:50 29k (100%) 14.5k (50%) 13.93 28.48
100:100 29k (100%) 29k (100%) 14.78 32.89

Then, we compare the 100:50 and 100:100 experiments to investigate the effect

of adding more unpaired data. This allows more training to the partially-aligned

Code2Text model. We observe about 2 points of BLEU improvement when adding

more unpaired data. We also see some improvement in the multispeaker settings.

This shows that adding more unpaired data will generally improve the perfor-

mance, because it allows more iteration on the Code2Text model.

B.3. In Image2Speech (using MMCSelfSup)

In principle, there are two kinds of data being used to train the framework in

Chapter 6:

� Speech only dataset (Sx) to train the VQ-VAE model

� Parallel speech-image dataset (Pxz) to train the Image2Code model

Table B.3 shows the tradeoff between adding more single-modality Sx data

and paired image-speech Pxz data. Similar to the previous section, the 100:100

scenario means that it is using 100% of the speech-only dataset Sx and 100% of

the parallel speech-image dataset Pxz. By comparing 50:50 and 100:50 scenarios,

we can find the effect of adding more single-modality data, which contributes

to a VQ-VAE that trained with more data. We found that this increases the

BLEU score by 1.59 and CIDEr by 2.22 points. Then, we compare the 100:50

and 100:100 scenarios, which shows the effect of adding more paired data, so

that the Image2Code model can be trained with more data. We found that this

increases the BLEU score further by 0.85 and CIDEr by 4.41 points.

The first comparison has more BLEU improvement, but the second compar-

ison has more CIDEr improvement. We can conclude that both of them are
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equally improved. Consequently, we can regard that both single-modality data

and paired image-speech data are both equally important to improve the Im-

age2Speech model using the MMCSelfSup framework.
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Appendix C

Discussion on Number of

Codes/Clusters in MMCSelfSup

This appendix complements Table 6.2a which compares the number of clusters

in MMCSelfSup. We found that the increase in cluster number is not always

positively correlated with the end performance because, after convergence, the

VQ-VAE model did not use all of the possible codebooks to represent the given

speech-caption utterance.

C.1. Number of Codes Effect to the VQ-VAE

Losses

In this section, we compare the different number of cluster effects to the overall

VQ-VAE loss described in Section 3.2.6 and to the reconstruction loss in partic-

ular.

Figure C.1 compares the VQ-VAE loss from different number of clusters. We

found that the VQ-VAE with 256 clusters has the lowest loss. Then, we can

regard that a cluster number less than 256 is not enough, and higher than 256 is

too many. Looking at the figure, we can conclude that when the model has not

had enough clusters, the loss will be much higher than when the model has too

many clusters.

Then, we can see the reconstruction loss in particular, by looking at Fig-
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Figure C.1: Comparing the MMCSelfSup VQ-VAE loss of different number of
clusters (refer to Table 6.2a). X-axis: loss, Y-axis: epoch.

ure C.2. Compared with the VQ-VAE loss, the effect of the number of codes is

more apparent here. The VQ-VAE with 256 clusters has the lowest reconstruction

loss, with quite a large margin compared with the other settings. We also can

take a similar conclusion, that by assuming 256 is the ideal number of clusters,

too many clusters will give lower loss than too few clusters.

C.2. Number of Codes Effect to Codebook Uti-

lization Rate

Figure C.3 compares the utilization rate of VQ-VAE with various number of

clusters. After decoding the speech using a trained VQ-VAE model, we get the

discrete representation of each utterance. Then, we calculate the unique number

of codes that are being used to define the dataset. In this way, we can find out
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Figure C.2: Comparing the MMCSelfSup reconstruction loss of different number
of clusters (refer to Table 6.2a). X-axis: reconstruction loss, Y-axis: epoch.

how many codes are actually being used, given the available number of codes. We

call this “codebook utilization rate”, which can be used to decide if the number

of the codebook is too few or too many for the given dataset.

We found that the number of codes 64 and 128 utilizes 100% of the available

code. There are two interpretations of these results. It is either that (a) there

is not enough code available, or (b) there is just enough code available. Given

that the utilization rate is under 100% in 256 codes setting, we can assume that

code number 64 is the case (a), and code number 128 might have a possibility to

be the case (b). Considering the losses also in the previous section, we decided

to use code number 256 for the next step of the experiment. Nevertheless, the

unused code is also not a problem for the Image2Code model. This is because

in this case, the Image2Code model vocabulary was build only on the utilized

vocabulary (i.e. the one with frequency > 0).
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Figure C.3: Codebook utilization rate of different number of clusters (refer to
Table 6.2a). X-axis: number of clusters, Y-axis: utilization rate.

C.3. Additional Analysis on Code Sequence Pat-

tern

Figure C.4: The example where the generated codebook sequence can also con-
sistently represent the overlap in the original speech. (top: speech transcription,
bottom: code sequence/discrete representation)

Figure C.4 shows the codebook from speech captions from the same image.

As we can see, the same overlap can be found between the speech transcription

and the codebook sequence. This consistency of the generated codebook sequence

shows how successful our proposed MMCSelfSup was to learn a discrete repre-
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sentation. In addition, we found an interesting phenomenon, where the same

speech segment can have a slightly different code sequence. For example, the

same phrase “a brown dog” has a slightly different code sequences of “12 19 5 25

14 61”, “12 34 5 25 14 61”, and “12 19 5 25 14 20” due to the uncertainty in the

codebook selection process. This slight difference is the reason we add an end-to-

end finetuning, which allows the ambiguity to be handled later in the VQ-VAE

decoder. This resulted in a slight improvement as reported in Table 6.2d.

136



References

[1] P. Denes and E. Pinson. The Speech Chain. Anchor books. Worth Publish-

ers, 1993.

[2] Yuxuan Wang, R.J. Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron Weiss,

Navdeep Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio,

Quoc Le, Yannis Agiomyrgiannakis, Rob Clark, and Rif Saurous. Tacotron:

Towards end-to-end speech synthesis. In Proc. INTERSPEECH, pages

4006–4010, 2017.

[3] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Transformer VQ-

VAE for unsupervised unit discovery and speech synthesis: Zerospeech 2020

challenge. Proc. INTERSPEECH, 2020.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proc. IEEE CVPR, pages 770–778, 2016.

[5] Wei-Ning Hsu, David Harwath, Christopher Song, and James Glass. Text-

free image-to-speech synthesis using learned segmental units. In NeurIPS

2020 Workshop for Self-Supervised Learning for Speech and Audio Process-

ing, 2020.

[6] William Havard, Laurent Besacier, and Olivier Rosec. SPEECH-COCO:

600k visually grounded spoken captions aligned to MSCOCO data set. In

Proc. GLU International Workshop on Grounding Language Understand-

ing, pages 42–46, 2017.

[7] Yuya Yoshikawa, Yutaro Shigeto, and Akikazu Takeuchi. STAIR captions:

137



Constructing a large-scale japanese image caption dataset. In Proc. ACL,

pages 417–421, Vancouver, Canada, 2017.

[8] National Research Council. Hearing Loss: Determining Eligibility for Social

Security Benefits. The National Academies Press, Washington, DC, 2004.

[9] Alex Byrne. Recollection, perception, imagination. Philosophical Studies,

148(1):15–26, 2010.

[10] Gemma A. Calvert. Crossmodal Processing in the Human Brain: Insights

from Functional Neuroimaging Studies. Cerebral Cortex, 11(12):1110–1123,

12 2001.

[11] W. H. Sumby and Irwin Pollack. Visual contribution to speech intelligibility

in noise. The Journal of the Acoustical Society of America, 26:212–215,

1954.

[12] Dan Jurafsky and James H. Martin. Speech and Language Processing : An

Introduction to Natural Language Processing, Computational Linguistics,

and Speech Recognition. Pearson Prentice Hall, Upper Saddle River, N.J.,

2009.

[13] James Cooley and John Tukey. An algorithm for the machine calculation of

complex fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[14] F. Itakura. Minimum prediction residual principle applied to speech recog-

nition. IEEE Transactions on Acoustics, Speech, and Signal Processing,

23(1):67–72, 1975.

[15] Leonard E. Baum and Ted Petrie. Statistical inference for probabilistic

functions of finite state markov chains. The Annals of Mathematical Statis-

tics, 37(6):1554–1563, 1966.

[16] F. Jelinek, L. Bahl, and R. Mercer. Design of a linguistic statistical decoder

for the recognition of continuous speech. IEEE Transactions on Information

Theory, 21(3):250–256, 1975.

138



[17] P. Price, W.M. Fisher, J. Bernstein, and D.S. Pallett. The darpa 1000-

word resource management database for continuous speech recognition. In

ICASSP-88., International Conference on Acoustics, Speech, and Signal

Processing, pages 651–654 vol.1, 1988.

[18] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J. Lang. Phoneme

recognition using time-delay neural networks. IEEE Transactions on Acous-

tics, Speech, and Signal Processing, 37(3):328–339, 1989.

[19] N. Morgan and H. Bourlard. Continuous speech recognition using multilayer

perceptrons with hidden markov models. In International Conference on

Acoustics, Speech, and Signal Processing, pages 413–416 vol.1, 1990.

[20] N. Morgan and H.A. Bourlard. Neural networks for statistical recognition

of continuous speech. Proceedings of the IEEE, 83(5):742–772, 1995.

[21] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend

and spell: A neural network for large vocabulary conversational speech

recognition. In Proc. IEEE ICASSP, pages 4960–4964, 2016.

[22] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang

Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang

Cheng, Guoliang Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike

Chrzanowski, Adam Coates, Greg Diamos, Ke Ding, Niandong Du, Erich

Elsen, Jesse Engel, Weiwei Fang, Linxi Fan, Christopher Fougner, Liang

Gao, Caixia Gong, Awni Hannun, Tony Han, Lappi Johannes, Bing Jiang,

Cai Ju, Billy Jun, Patrick LeGresley, Libby Lin, Junjie Liu, Yang Liu,

Weigao Li, Xiangang Li, Dongpeng Ma, Sharan Narang, Andrew Ng, Sherjil

Ozair, Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng Quan, Jonathan

Raiman, Vinay Rao, Sanjeev Satheesh, David Seetapun, Shubho Sengupta,

Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang, Chong Wang,

Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang, Zhiqian Wang, Shuang

Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan,

Jun Zhan, and Zhenyao Zhu. Deep speech 2 : End-to-end speech recog-

nition in english and mandarin. In Maria Florina Balcan and Kilian Q.

Weinberger, editors, Proceedings of The 33rd International Conference on

139



Machine Learning, volume 48 of Proceedings of Machine Learning Research,

pages 173–182, New York, New York, USA, 20–22 Jun 2016. PMLR.

[23] Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: A no-recurrence

sequence-to-sequence model for speech recognition. In 2018 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 5884–5888, 2018.

[24] George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel

Thomas, Dimitrios Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran,

Michael Picheny, Lynn-Li Lim, Bergul Roomi, and Phil Hall. English con-

versational telephone speech recognition by humans and machines. In Proc.

INTERSPEECH, pages 132–136, 2017.

[25] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke. The

microsoft 2017 conversational speech recognition system. In Proc. IEEE

ICASSP, pages 5934–5938, 2018.

[26] K. N. Stevens, S. Kasowski, and C. Gunnar M. Fant. An electrical ana-

log of the vocal tract. The Journal of the Acoustical Society of America,

25(4):734–742, 1953.

[27] J. L. Flanagan, K. Ishizaka, and K. L. Shipley. Synthesis of speech from

a dynamic model of the vocal cords and vocal tract. The Bell System

Technical Journal, 54(3):485–506, 1975.

[28] Gunnar Fant. Glottal flow: models and interaction. Journal of Phonetics,

14(3):393–399, 1986. Voice Acoustics and Dysphonia Gotland, Sweden,

August 1985.

[29] N. Dixon and H. Maxey. Terminal analog synthesis of continuous speech

using the diphone method of segment assembly. IEEE Transactions on

Audio and Electroacoustics, 16(1):40–50, 1968.

[30] J. Olive. Rule synthesis of speech from dyadic units. In ICASSP ’77. IEEE

International Conference on Acoustics, Speech, and Signal Processing, vol-

ume 2, pages 568–570, 1977.

140



[31] Jonathan Allen, M. Sharon Hunnicutt, Dennis H. Klatt, Robert C. Arm-

strong, and David B. Pisoni. From Text to Speech: The MITalk System.

Cambridge University Press, USA, 1987.

[32] D. Klatt. The klattalk text-to-speech conversion system. In ICASSP ’82.

IEEE International Conference on Acoustics, Speech, and Signal Process-

ing, volume 7, pages 1589–1592, 1982.

[33] Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and

Tie-Yan Liu. Fastspeech: Fast, robust and controllable text to speech. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlche Buc, E. Fox, and

R. Garnett, editors, Advances in Neural Information Processing Systems,

volume 32. Curran Associates, Inc., 2019.

[34] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-

Yan Liu. Fastspeech 2: Fast and high-quality end-to-end text to speech,

2021.

[35] Isaac Elias, Heiga Zen, Jonathan Shen, Yu Zhang, Ye Jia, Ron J. Weiss,

and Yonghui Wu. Parallel tacotron: Non-autoregressive and controllable

TTS. CoRR, abs/2010.11439, 2020.

[36] Isaac Elias, Heiga Zen, Jonathan Shen, Yu Zhang, Jia Ye, R. J. Skerry-

Ryan, and Yonghui Wu. Parallel tacotron 2: A non-autoregressive neural

TTS model with differentiable duration modeling. CoRR, abs/2103.14574,

2021.

[37] Stavros Petridis, Yujiang Wang, Zuwei Li, and Maja Pantic. End-to-end

audiovisual fusion with LSTMs. In Proc. of AVSP, pages 36–40, 2017.

[38] Triantafyllos Afouras, Joon Son Chung, Andrew Senior, Oriol Vinyals, and

Andrew Zisserman. Deep audio-visual speech recognition. Proc. of IEEE

transactions on pattern analysis and machine intelligence, 2018.

[39] Iacer Calixto, Qun Liu, and Nick Campbell. Doubly-attentive decoder for

multi-modal neural machine translation. In ACL, 2017.

141



[40] Jingyi Zhang, Masao Utiyama, Eiichiro Sumita, Graham Neubig, and

Satoshi Nakamura. Nict-naist system for wmt17 multimodal translation

task. In WMT, 2017.

[41] Robert Anderson, Bjorn Stenger, Vincent Wan, and Roberto Cipolla. Ex-

pressive visual text-to-speech using active appearance models. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2013.

[42] Jonathan Parker, Ranniery Maia, Yannis Stylianou, and Roberto Cipolla.

Expressive visual text to speech and expression adaptation using deep neu-

ral networks. In 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 4920–4924, 2017.

[43] R. Bellman, Rand Corporation, and Karreman Mathematics Research Col-

lection. Dynamic Programming. Rand Corporation research study. Prince-

ton University Press, 1957.

[44] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled

data with label propagation. In Tech. Rep., 2002.

[45] Dong-Hyun Lee. Pseudo-label : The simple and efficient semi-supervised

learning method for deep neural networks. ICML 2013 Workshop : Chal-

lenges in Representation Learning (WREPL), 07 2013.

[46] Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and

Wei-Ying Ma. Dual learning for machine translation. In Proc. of NIPS,

pages 820–828, 2016.

[47] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon

Kim. Learning to discover cross-domain relations with generative adversar-

ial networks. In Proc. of ICML, pages 1857–1865, 2017.

[48] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired

image-to-image translation using cycle-consistent adversarial networks. In

Proc. of IEEE ICCV, 2017.

142



[49] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. DualGAN: Unsupervised

dual learning for image-to-image translation. In Proc. of ICCV, pages 2868–

2876, 2017.

[50] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Listening while

speaking: Speech chain by deep learning. In Proc. IEEE ASRU, pages

301–308, 2017.

[51] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Machine speech

chain with one-shot speaker adaptation. In Proc. of INTERSPEECH, pages

887–891, 2018.

[52] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. End-to-end feed-

back loss in speech chain framework via straight-through estimator. In

Proc. of IEEE ICASSP, pages 6281–6285, 2019.

[53] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Machine speech

chain. IEEE/ACM Transactions on Audio, Speech, and Language Process-

ing, 28:976–989, 2020.

[54] E. Dunbar, X. N. Cao, J. Benjumea, J. Karadayi, M. Bernard, L. Besacier,

X. Anguera, and E. Dupoux. The zero resource speech challenge 2017. In

Proc. IEEE ASRU, pages 323–330, 2017.

[55] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effec-

tive approaches to attention-based neural machine translation. CoRR,

abs/1508.04025, 2015.

[56] D. Griffin and Jae Lim. Signal estimation from modified short-time fourier

transform. IEEE Transactions on Acoustics, Speech, and Signal Processing,

32(2):236–243, April 1984.

[57] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural dis-

crete representation learning. In Proc. NIPS, volume 30, pages 6306–6315.

Curran Associates, Inc., 2017.

143



[58] Yunlong Jiao, Adam Gabrys, Georgi Tinchev, Bartosz Putrycz, Daniel Ko-

rzekwa, and Viacheslav Klimkov. Universal neural vocoding with parallel

wavenet, 2021.

[59] M. Kramer. Nonlinear principal component analysis using autoassociative

neural networks. Aiche Journal, 37:233–243, 1991.

[60] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes.

In Proc. ICLR 2014, 2014.

[61] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Rus-

lan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell:

Neural image caption generation with visual attention. In Proc. of ICML,

pages 2048–2057, 2015.

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez,  L ukasz Kaiser, and Illia Polosukhin. Attention is all you

need. In Proc. NIPS, pages 5998–6008. 2017.

[63] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei

Huang, and Xiaodong He. AttnGAN: Fine-grained text to image generation

with attentional generative adversarial networks. In Proc. of CVPR, 2018.

[64] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach (2nd Edition). Prentice Hall, December 2002.

[65] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National

Science Review, 5(1):44–53, 08 2017.

[66] Joon Son Chung, Andrew Senior, Oriol Vinyals, and Andrew Zisserman.

Lip reading sentences in the wild. In Proc. of IEEE CVPR, pages 3444–

3453, 2017.

[67] F. Sun, D. Harwath, and J. Glass. Look, listen, and decode: Multimodal

speech recognition with images. In Proc. of IEEE SLT, pages 573–578, Dec

2016.

144



[68] Shigeki Karita, Shinji Watanabe, Tomoharu Iwata, Marc Delcroix, Atsunori

Ogawa, and Tomohiro Nakatani. Semi-supervised end-to-end speech recog-

nition using text-to-speech and autoencoders. In ICASSP 2019 - 2019

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 6166–6170, 2019.

[69] Qiuyuan Huang, Pengchuan Zhang, Dapeng Oliver Wu, and Lei Zhang.

Turbo learning for captionbot and drawingbot. CoRR, abs/1805.08170,

2018.

[70] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hockenmaier,

and S. Lazebnik. Flickr30k entities: Collecting region-to-phrase correspon-

dences for richer image-to-sentence models. In 2015 IEEE International

Conference on Computer Vision (ICCV), pages 2641–2649, Dec 2015.

[71] Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier.

Collecting image annotations using amazon’s mechanical turk. In Proc.

NAACL HLT Workshop on Creating Speech and Language Data with Ama-

zon’s Mechanical Turk, pages 139–147, 2010.

[72] Johanes Effendi, Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura.

Listening while speaking and visualizing: Improving ASR through multi-

modal chain. In Proc. IEEE ASRU, pages 471–478, 2019.

[73] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. CoRR, abs/1412.6980, 2014.

[74] Suyoun Kim, Takaaki Hori, and Shinji Watanabe. Joint CTC-attention

based end-to-end speech recognition using multi-task learning. In Proc. of

IEEE ICASSP, pages 4835–4839, 2017.

[75] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015.

145



[76] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU:

a method for automatic evaluation of machine translation. In Proc. ACL,

pages 311–318, 2002.

[77] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec

Radford, and Xi Chen. Improved techniques for training gans. In Pro-

ceedings of the advances in neural information processing systems (NIPS),

pages 2234–2242, 2016.

[78] Douglas B Paul and Janet M Baker. The design for the wall street journal-

based CSR corpus. In Proceedings of the workshop on Speech and Natural

Language, pages 357–362. Association for Computational Linguistics, 1992.

[79] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philémon Brakel,

and Yoshua Bengio. End-to-end attention-based large vocabulary speech

recognition. In 2016 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 4945–4949, 2016.

[80] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Multi-scale

alignment and contextual history for attention mechanism in sequence-to-

sequence model. In Proc. of IEEE SLT, pages 648–655, 2018.

[81] Armand Vilalta, Dario Garcia-Gasulla, Ferran Parés, Eduard Ayguadé, Je-
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