
Doctoral Dissertation

Characterizing the Quality of
Third-Party Libraries through Runnability and
Risk Assessment in the Open Source Ecosystem

Bodin Chinthanet
Program of Information Science and Engineering

Graduate School of Science and Technology
Nara Institute of Science and Technology

Supervisor: Kenichi Matsumoto
Software Engineering Lab. (Division of Information Science)

Submitted on September 21, 2021

A Doctoral Dissertation
submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of Engineering

Bodin Chinthanet

Thesis Committee:
Supervisor Kenichi Matsumoto

(Professor, Division of Information Science)
Hajimu Iida
(Professor, Division of Information Science)
Takashi Ishio
(Associate Professor, Division of Information Science)
Raula Gaikovina Kula
(Assistant Professor, Division of Information Science)
Shane McIntosh
(Associate Professor, University of Waterloo)
Akinori Ihara
(Doctor, Wakayama University)

Characterizing the Quality of
Third-Party Libraries through Runnability and
Risk Assessment in the Open Source Ecosystem∗

Bodin Chinthanet

Abstract

Third-party library usage becomes the important part of software development
within the open source community. These library packages provide software de-
velopers with useful features without the need to “reinvent the wheel”, with each
package often depending on several others. Since there are millions of packages
available online, the understanding of the package quality is needed for choosing
the suitable package in the software development project.

This thesis characterizes the package quality through (1) the package selection
and (2) the package security risk. The first part of this thesis finds how to
choose the good package from user and contributor perspectives through the
developer survey and the analysis of package runnability. The results show that
both users and contributors share similar views on how to assess the package
quality. Runnability of the package could be used for choosing the good package.
The second part of this thesis investigates the risk of vulnerability in the package
through the vulnerability fix adoption analysis and the code-centric vulnerability
detection. The results show that lags of the fix adoption are affected by factors
(i.e., severity and freshness). Additionally, most of the vulnerable codes are not
reachable in the application.

Keywords:

Open Source Software, Software Libraries, Software Ecosystem, Mining Software
Repository, Security Vulnerabilities

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
and Technology, September 21, 2021.

i

Acknowledgements

First, I would like to express my deep gratitude to Prof. Kenichi Matsumoto for
giving me opportunities to study in his laboratory during the past five years as
an intern, master’s student, and Ph.D. student. He also provides me guidance
and encouragement during my Ph.D. journey. This thesis would never have been
accomplished without his generous support.

I would like to express my gratitude to Assist. Prof. Raula Gaikovina Kula for
teaching, suggesting, and sharing many things from the beginning of my study in
Japan. He also helps me relieve the stress and solve the problems while struggling
with research and daily life.

I would also like to express my gratitude to the rest of my thesis committee,
including Prof. Hajimu Iida, Assoc. Prof. Takashi Ishio, Assoc. Prof. Shane
McIntosh, and Dr. Akinori Ihara. They give me invaluable comments and sug-
gestions to improve the quality of my research.

I would like to extend my gratitude and appreciation to Assoc. Prof. Hideaki
Hata, Dr. Christoph Treude, and Dr. Markus Wagner for their insightful discus-
sions to improve my research skills.

During my internship at SAP Labs France, Dr. Serena Elisa Ponta, Dr.
Henrik Plate, and Dr. Antonino Sabetta were great mentors and showed how
researchers could work in a big company. I am very grateful for the opportunity
to work with them. Special thanks to my colleagues at SAP, who assisted me
with many things during my stay in France.

I sincerely thank Shade Ruangwan and Rungroj Maipradit, who have been
like brothers to me, for sharing their experiences and advice. I also thank my
colleagues and staff in NAIST for the delightful time during my study.

Special thanks to Pattaraporn Tulathum for always being by my side. We
went through many obstacles during this long journey, and finally, I am able to
see the end of the tunnel. I am sure that she will see the light at the end of her
Ph.D. journey soon.

Last but not least, I would like to thank my family for their love, support,
and encouragement to study until now. Without them, I would not have had a
chance to pursue my dream in Japan.

ii

List of Publications

• Lags in the Release, Adoption, and Propagation of npm Vulnera-
bility Fixes
Bodin Chinthanet, Raula Gaikovina Kula, Shane McIntosh, Takashi Ishio,
Akinori Ihara, and Kenichi Matsumoto. Empirical Software Engineering
(EMSE), 26(3): 1-28, 2021. (Accepted as a journal paper)

– Received SIGSE Distinguished Paper Award 2021.

• Code-based Vulnerability Detection in Node.js Applications: How
far are we?
Bodin Chinthanet, Serena Elisa Ponta, Henrik Plate, Antonino Sabetta,
Raula Gaikovina Kula, Takashi Ishio, Kenichi Matsumoto. In Proceeding
of the 35th International Conference on Automated Software Engineering
(ASE): Industry Showcase, 2020. (Accepted as a conference paper)

• SōjiTantei: Function-Call Reachability Detection of Vulnerable
Code for npm Packages
Bodin Chinthanet, Raula Gaikovina Kula, Rodrigo Eliza Zapata, Takashi
Ishio, Kenichi Matsumoto, Akinori Ihara. IEICE Transactions on Infor-
mation and Systems, Vol.E105-D, No.1, pp.-, Jan. 2022. (Accepted as a
letter)

iii

Contents

Abstract i

Acknowledgements ii

List of publications iii

Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1
1 Problem Statement . 2
2 Contributions . 4
3 Outline . 5

2 Related Studies 8

I Package Selection 12

3 Developer Survey on Goodness of Package 13
1 Introduction . 13
2 Audience Perspectives of an npm package 14

2.1 Developer Survey on Perspective 16
3 Summary . 20

iv

4 Package Quality Features and Runnability 22
1 Introduction . 22
2 GH-Node.js: A Node.js Repository and Interaction Dataset 23
3 Experiment Setup . 23

3.1 Runnable Code: Build and Run Tests 24
3.2 Runnable Package: Install and Execute Code Snippets . . 26

4 Correlating features by Perspective 27
5 Predicting whether or not an npm package is runnable 30
6 Discussion . 32
7 Threats to Validity . 33
8 Summary . 34

II Vulnerabilities and Fixes Assessment 42

5 Package-side Fixing Release 43
1 Introduction . 43
2 Concepts and Definitions . 45

2.1 Package-side Vulnerability Fixing Process 45
2.2 Client-side Fixing Release 47
2.3 Motivating Example . 47

3 Package-side Fix Commits and Landing: Preliminaries 49
3.1 Data Collection . 51
3.2 Results to the Preliminary Study 52

4 Summary . 55

6 Lags in the Adoption and Propagation of Package-side Fixes 56
1 Introduction . 56
2 Model and Track Lags . 56
3 Empirical Evaluation . 59
4 Results to the Empirical Study 63
5 Discussion . 67

5.1 Lessons Learned . 67
5.2 Threats to Validity . 70

v

6 Summary . 71

7 Vulnerability Assessment Tools 72
1 Introduction . 72
2 Eclipse-Steady : Node.js Vulnerable Code Detection Extension . . 73

2.1 Overview . 73
2.2 Perils of JavaScript Node.js Analysis 74
2.3 Bill of Materials for Node.js 75

Constructs for a Node.js application 75
Dependency Constructs and their Features 76

2.4 Case Study of Node.js Applications 78
Experiment Design . 78
Results . 79

2.5 Experience Report . 81
Mapping JavaScript Object to Constructs 81
Node.js application reliance on the npm ecosystem 82
Faster Technology Adoption 82

2.6 Summary . 82
3 SōjiTantei: Node.js Vulnerable Function Reachability Detection . 83

3.1 Overview . 83
3.2 Experiments . 83
3.3 Summary . 85

III Conclusion 87

8 Conclusion 88
1 Implications and Suggestions . 89
2 Opportunities for Future Research 91

vi

List of Figures

1.1 An overview of the scope of the thesis. 5

3.1 Respondents mapping of features to the perspectives. 18
3.2 Survey results on the relevance of features for package quality as-

sessment. Left hand (yellow) shows levels of disagreement, middle
(grey) shows neutral, and right (green) shows levels of agreement. 19

4.1 Features: correlations (top) and clustering (bottom). Lighter fields
correspond to a strong positive correlation between the features,
and darker fields to a strong negative correlation. X-labels are
omitted as they follow the order (optimised to co-locate correlated
features) of the y-labels. The dendrogram groups correlated fea-
tures closely together. Shown are the correlations based on the
11,127 data points for which all feature values are available; not
shown are the four timestamp-related features. 36

4.2 Value distribution of 28 features in alphabetical order. For non-
binary features (top five rows), I use strip plots to show the dis-
tributions qualitatively by showing single data points; for binary
features (bottom three rows), I use violin plots with shown means
to illustrate the amount of data at either end of the distribution.
Shown are all data points (11,127 to 104,364). 37

4.3 Repositories in 2D. The axes do not have any particular meaning
in projections like these, which is why I removed them. Note that
the clusters at the very bottom end of this figure are not easily
characterised by a single feature but by combinations of features. 38

vii

4.4 Permutation importance of a good predictive model for ableToIn-
stall. Larger values mean that the prediction is more sensitive
with respect to that parameter; hence it can be seen as more im-
portant. The + and − mark features with weak correlations with
the respective target > 0.2 and < −0.2; almost all correlations are
indeed in [−0.2, 0.2], and no correlation was outside of [−0.4, 0.4]. 39

4.5 Permutation importance of a good predictive model for ableTo-
Build. Larger values mean that the prediction is more sensitive
with respect to that parameter; hence it can be seen as more im-
portant. The + and − mark features with weak correlations with
the respective target > 0.2 and < −0.2; almost all correlations are
indeed in [−0.2, 0.2], and no correlation was outside of [−0.4, 0.4]. 40

4.6 Permutation importance of a good predictive model for ableToEx-
ecuteATest. Larger values mean that the prediction is more sensi-
tive with respect to that parameter; hence it can be seen as more
important. The + and − mark features with weak correlations
with the respective target > 0.2 and < −0.2; almost all correla-
tions are indeed in [−0.2, 0.2], and no correlation was outside of
[−0.4, 0.4]. 41

5.1 The relationship between package-side and client-side regarding
vulnerability discovery, fixing, and release process of package P
and client X over time. Red and green releases indicate whether
releases are vulnerable or not. 46

5.2 Developer artifacts that mitigate a vulnerability (socket.io) on
GitHub. 48

5.3 I find that 91.77% out of 231 fixing releases have fixing commits
up to 14.28% of commits in a package-side fixing release. 53

5.4 LoC of the fixing commits for 231 vulnerabilities. I find that there
are only few fixing fix commits in the package-side fixing release,
i.e., median of 10. 54

6.1 These figures show the terms that are used to model and track the
lags. 57

viii

7.1 Running example of the Node.js project with its hierarchical struc-
ture. 76

7.2 Comparison of results between the study of Zapata et al. and this
study. Results show that my method does not capture all vulner-
able projects. 84

ix

List of Tables

3.1 List of 30 features for package quality assessment presented in the
survey. The features are grouped by their characteristic (feature
type). 15

3.2 Demographic of the respondents (33 Node.js developers). 17

4.1 Dataset Snapshot Statistics. The full dataset estimations are ap-
proximate values. 24

4.2 Dataset for my experiment. 25
4.3 Top 5 negative correlations of features grouped by their types (U:

user, C: contributor, B: both of them, N: none of them). 28

5.1 A summary of package-side dataset information for preliminary
study. 52

5.2 A summary statistic of package-side fixing release distribution in
PQ1. 52

6.1 A summary of the data collection which used to populate the
dataset to answer RQ1 and RQ2. 61

6.2 A summary of dataset information for the empirical study to an-
swer RQ1 and RQ2. 62

6.3 A summary number of filtered clients grouped by their update
pattern in RQ1. There are 4,000 packages and clients that excluded
in the RQ1. 62

x

6.4 A contingency table shows the frequency distribution of client-
side fixing release for each package-side fixing release. I find that
(i) there is a dependency between package-side fixing release and
client-side fixing release and (ii) only the case of package minor
landing is consistent. 64

6.5 A result of statistical test for RQ1. I find that differences between
each distribution are significant and have a large level of effect size. 65

6.6 A summary statistic of lags in the propagation (# days) catego-
rized by lineage freshness to show the difference between lags in
LL and SL. Lags in the table is not accumulative. 65

6.7 A summary statistic of lags in the propagation (# days) catego-
rized by vulnerability severity to show the difference of lags be-
tween high, medium, and low severity vulnerability fixes. Lags in
the table is not accumulative. 66

6.8 A comparison of lags in the propagation between clients that adopt
the latest lineage and supported lineage fixing release, i.e., by the
median. I find that difference between each distribution is signif-
icant mostly in the case of medium severity. The effect sizes of
those differences are negligible and small level. (LL: median of
the latest lineage, SL: median of the supported lineage, *: p-value
< 0.001). 67

7.1 Defined List of Constructs in hierarchical chain for Node.js Appli-
cations. This is based on Figure 7.1 and Listing 7.1 74

7.2 Experimental Dataset . 78
7.3 Dependency Type information. 79
7.4 Summary of Construct Information from the experiment. 80
7.5 Frequency count of Dependent Construct Changes per vulnerability 80
7.6 Frequency distribution of Dependency Constructs based on the

dependency features. 81
7.7 Results of Performance Metrics 85
7.8 Summary of client classifications by SōjiTantei 86

xi

1 | Introduction

Software ecosystem is a collection of software packages, which are developed,
shared, and co-evolve in the same environment [25, 75, 78]. Packages in the
ecosystem are reusable, allowing the new software applications to use them as
third-party libraries. The usage of libraries in the ecosystem forms a network
of packages. The examples of existing software ecosystems are npm (JavaScript
ecosystem), Maven (Java ecosystem), and RubyGems (Ruby ecosystem).

Third-party library usage becomes an important part in the software ecosys-
tem as developers could reuse functionalities from existing packages in their own
applications [144]. The popularity of library usage is confirmed by GitHub, as
around 90% of JavaScript packages depend on at least one open source compo-
nent [46]. Using those packages not only prevents reinventing the wheel, but also
saves the cost of implementing the new features [144]. By using the available
package manager for each ecosystem, developers can easily access those millions
of packages at their fingertip. For example, npm (i.e., Node.js package manager)
provides the access of more than a million packages on the registry for Node.js
developers to find and install packages in their applications [90].

Despite the benefits of third-party library usages, those packages have a poten-
tial to introduce maintenance issues in the application [8]. For example, updating
the new release of packages with backward incompatible changes is likely to break
the applications that rely on those changed functions [14]. On the other hand,
keeping the outdated packages can potentially increase the risk from bugs and
security vulnerabilities [51, 64, 73].

In order to ensure the value of the package and avoid potential negative conse-
quences, developers have to concern about the quality of the package [40, 69, 144].

1

From the international organization for standardization (ISO), ISO25010 was
published to define the quality aspects for developing a software-based on static
properties of software and dynamic properties of the computer system [40]. The
defined aspects are (1) functional suitability, (2) performance efficiency, (3) com-
patibility, (4) usability, (5) reliability, (6) security, (7) maintainability, and (8)
portability. This standard helps developers in identifying and validating quality
requirements during the software development process.

Security vulnerability, one of quality aspects, is a rising concern in the software
development life cycle from academia, government, and industry [42, 94, 97]. As
shown by the recent studies, the risks from vulnerabilities are not only posed to
the direct user of libraries, but also the transitively affected through the depen-
dency network [32, 51, 64, 70, 73]. In order to eliminate the vulnerability in the
application, the US government introduces secure software development frame-
work (SSDF) which is a set of practices for creating secure software [97]. One
of the key practices in the framework is that third-party libraries should comply
with security requirements. This practice could be realized by using industrial
grade tools available for detecting vulnerabilities and mitigating the risks in their
applications [47, 94, 108, 109, 122].

As there are millions of packages available in the ecosystem, it is challenging
for developers to choose a good packages that have high-quality for their appli-
cation. Thus, the theme of this thesis is to find the characterization of package
quality in addition to ISO25010.

1 Problem Statement

Choosing a package is important for application development as the quality of the
application depends on the quality of the chosen packages [40, 69, 144]. However,
recent studies show that developers choose packages arbitrarily for their applica-
tions [69]. Moreover, other studies show that a small set of security vulnerabilities
can cause a cascade effect to the entire ecosystem [51, 64, 73]. These increase the
risks of encountering security issues while carelessly choose packages. Developers
have to choose a high-quality package to avoid risks; however, they comment that
there are too many packages that have the same functionality and hard to mea-

2

sure package quality [143]. In order to find a high-quality package systematically,
the characterization of package quality is needed. Therefore, I state this thesis as
follows:

Thesis Statement: Choosing a package is important for developers to
avoid risks posed by vulnerabilities. However, it is hard for them to measure
the quality of those packages and adopt high-quality ones. Hence, the
characterization of package quality is needed for finding a suitable package
in the software development project.

To validate this thesis, I focus on the package quality characterization through
the analysis of packages in the software ecosystem from two different dimensions:

Package Selection. In the software ecosystem, developers now have an easy
access to millions of packages at their fingertips. Developers could use the pack-
age manager to automatically find and install desired packages. The interested
audience of the package is not limited to developers who would like to adopt
the package into their application, but also to developers who are interested in
contributing to the package. Therefore, investigating of features to quantify the
a package quality by analysing the interested audience could contribute the un-
derstanding of a good package.

Vulnerabilities and Fixes Assessment. The potential risk of vulnerability
is not restricted to the direct users of packages, but it also extends to the broader
software ecosystem through the dependency network. To mitigate the risk, devel-
opers require to adopt the vulnerability fixing release from the package as soon
as it is available. However, developers who use vulnerable packages transitively
cannot adopt this fix right away as they have to wait the upstream packages to
adopt the fix and propagate to them first. Therefore, it is a challenging task to
reduce the lags in adoption and propagation of the fix.

3

2 Contributions

The main contributions of this thesis can be classified into three categories: em-
pirical observations, survey insights, and tools.

Empirical Observations

1. Package features from the same type have strong positive correlations.
Other feature combinations present trade-offs - in particular runnability
related features tend to be negatively correlated with other features (Chap-
ter 4).

2. Runnability of the package is predictable with high F1 score. Repository
features are particularly important for prediction the runnability (Chapter
4).

3. The vulnerability fix is not always released as its own patch update as it
released with unrelated commits (Chapter 5).

4. While the package release the fix as a patch, the client tend to slowly adopt
the fix and cause lags (Chapter 6).

5. Fixing releases that occur on the latest lineage and medium severity suffer
the most lags (Chapter 6).

6. Creating the bill of materials of Node.js project is not trivial (Chapter 7).

7. Majority of vulnerable functions in dependencies are not reachable from the
application (Chapter 7).

Survey Insights

1. User and contributor of packages share similar view on which features they
use to assess package quality (Chapter 3).

2. Runnability of packages is one of the most important features for the high-
quality package apart from the documentation (Chapter 3).

4

Tools

1. Implement of a viable code-based vulnerability detection tool for Node.js
applications (Chapter 7).

2. Implement of a prototype vulnerable function reachability detection tool
for Node.js applications (Chapter 7).

3 Outline

Characterizing
the Quality of Third-party Libraries

C
ha

pt
er

 8
C

on
cl

us
io

nEmpirical Studies

Chapter 4
Package Quality Features

and Runnability

Chapter 7
Vulnerability

Assessment Tools

C
ha

pt
er

 1
In

tro
du

ct
io

n

C
ha

pt
er

 2
R

el
at

ed
 S

tu
di

es

Part I Part II
Package Selection Vulnerabilities

and Fixes Assessment

Chapter 3
Developer Survey

Chapter 5
Package-side

Fixing Release

Chapter 6
Lags in the Adoption
and Propagation of
Package-side Fixes

Figure 1.1: An overview of the scope of the thesis.

In this section, I provide an outline of this thesis. Figure 1.1 illustrates the
structure of the thesis and the outcomes of each chapter. The details of the rest
of this thesis is structured as follows:

5

Part I: Package Selection. In the second part of this thesis, I present a devel-
oper survey and an empirical study to understand what features of packages that
users and contributors consider important when searching for a good npm pack-
age. I also present the possibility to predict the runnability of the package which
considered as one of the important package for assessing the package quality.

Chapter 3 presents a developer survey to understand what features users
and contributors consider important when searching for a good npm package
including GitHub activity, software usability, and properties of the package
repository and documentation. The results show that both users and con-
tributors share similar views on which features they use to assess package
quality, especially by using the runnability of packages.

Chapter 4 presents an empirical study to investigate the correlation be-
tween package features and to find possibility to predicting the runnability
of npm package. The results show that (1) several features negatively cor-
related with runnability-related features and (2) predicting the runnability
of packages is viable.

Part II: Vulnerabilities and Fixes Assessment.

Chapter 5 presents an empirical study to investigate the vulnerability
fixing release in packages. The results show that (1) most of the commits
are not related to the fix and (2) the fix itself tends to have only a few lines
of code.

Chapter 6 presents an empirical study of the adoption and propagation
tendencies of fixing releases that impact throughout a network of dependen-
cies. The results show that (1) outdated clients require additional migration
effort, even if the fixing release was quick and (2) factors such as the sever-
ity of vulnerability and the branch that the fixing release lands on influence
the propagation of fixes.

Chapter 7 presents two supporting tools to help developers (1) detecting
the vulnerable code and (2) detecting the reachbility of vulnerable function
inside their Node.js applications.

6

Part III: Conclusion. In this last part of the thesis, I focus on the big picture
of the studies done in this thesis and discuss about the findings, contributions,
and opportunities for future research.

Chapter 8 concludes this thesis by discussing the findings from each stud-
ies, listing contributions of this thesis, and suggesting the future research
opportunities.

7

2 | Related Studies

Complementary related works are introduced throughout the paper, in this sec-
tion, I discuss some key related works.

Analysis of Repositories - Recent studies have explored dependency networks
in different aspects. Some studies investigated the structure and evolution of
the dependency networks and revealed their issues such as dependency hell and
technical lag [31, 64, 147]. Several studies focused on how to detect known secu-
rity vulnerabilities from third-party libraries in the applications [17, 146]. Cogo
et al. [19] performed an empirical study of dependency downgrades and found
that downgrades occur because developers want to avoid some defects from a
specific version and some incompatibility issues. Hejderup et al. [52] extracted
the call graph for software to build a fine-grained representation of the depen-
dency network. Social coding in the ecosystem is also an emerging research
area. Some studies focused on how developers have social interactions with each
other [21, 22, 30, 99]. The relationship between different groups of developers in
coding collaboration is explored in various ecosystems [38, 49, 99]. Qiu et al. [112]
focused on how social coding impacts the chances of long-term engagement. Work
such as Blincoe et al. [13] looked at the reference coupling between projects in the
ecosystem. Other studies have shown that the maintenance of these dependencies
is critical to the ecosystem [32, 68, 83, 146]. This thesis have analysis in both
history and GitHub interaction of repositories. The aim of this thesis is to char-
acterize package quality in terms of package features from different perspectives
and package vulnerability fix responses.

Code Snippet Executability - Documentation is an important part of choosing
a library [69] and the popularity of GitHub repositories [3], and example code

8

is in itself an important aspect of good documentation. Code snippets are pri-
marily used online in documentation, tutorials, and collaborative sites like Stack
Overflow to demonstrate how software and APIs should be used; however, not all
code snippets are usable as-is [54, 80, 114, 145]. For developers learning APIs,
insufficient or inadequate examples can be a major obstacle [116], and many code
snippets online are incomplete, contain errors, or simply do not work. In many
cases, code snippets become outdated as software evolves, and despite being the
first resource many developers will see, official software documentation is fre-
quently out-of-date, and changes to the software are not immediately reflected in
documentation [71]. There is also little support for developers writing documen-
tation, which makes maintaining up-to-date, executable code snippets in GitHub
repositories a non-trivial task [26]. Studies of the executability of online code
snippets show that most are not executable; a study of online coding tutorials
found that only 26% of code snippets could be executed successfully, and no tuto-
rial could be executed to completion [80]. Gistable [54], a framework for running
Python code snippets found on GitHub using the gist system, found that only
25% of code snippets were executable by default. These numbers appear to be
consistent with other research into code snippet executability [55, 107, 145], with
some variance depending on the language. This thesis expands the knowledge
from existing studies by considering the ability to execute code snippets and test
cases for assessing the package quality.

Mining-related Studies - These studies relate to the mining techniques in the
software repository and software ecosystem with the focus of security vulnerabil-
ity. The first step of software repository mining is data collection and extraction.
Researchers need to have data sources and know about which part of the data
can use in their work. In the case of the npm package repository, I can extract the
information of packages from package.json meta-file [79, 142]. In the case of the
security vulnerability, I can collect data from Common Weakness Enumeration
(CWE) [82] and Common Vulnerabilities and Exposures (CVE) [81] database
[5, 16, 18, 70, 73, 84]. To study the issues within the software ecosystem, I also
define the traversal of the downstream clients by using the dependency list of
clients. These studies introduce some techniques to model the dependency graph
[9, 51, 64]. This thesis uses similar mining techniques to extract the depen-

9

dencies as well as construct the ecosystem. Specifically, I manually extract and
investigate the commits to understand the contents of the fix.

On Updating Dependencies - These studies relate to the migration of libraries
to the latest versions of libraries. With new libraries and newer versions of existing
libraries continuously being released, managing a system library dependencies is a
concern on its own. As outlined in Bogart et al. [14], Raemaekers et al. [113], Tey-
ton et al. [131], dependency management includes making cost-benefit decisions
related to keeping or updating dependencies on outdated libraries. Additionally,
Bavota et al. [9], Hora et al. [53], Ihara et al. [59], Robbes et al. [115], Sawant
et al. [119] showed that updating libraries and their APIs are slow and lagging.
Decan et al. [31] showed the comparison of dependency evolution and issue from
three different ecosystems. Their results showed that these ecosystems faced the
dependency update issue which causes a problem to downstream dependencies,
however, there is no perfect solution for this issue. Kula et al. [68] found that
such update decisions are not only influenced by whether or not security vulner-
abilities have been fixed and important features have been improved, but also
by the amount of work required to accommodate changes in the API of a newer
library version. Decan et al. [33] performed an empirical study of technical lag
in the npm dependency network and found that packages are suffered from the
lags if the latest release of dependencies are not covered by their version ranges
in package.json file. They also found that semantic versioning could be used in
order to reduce the technical lag. Mirhosseini and Parnin [79] studied about the
pull request notification to update the dependencies. Their results showed that
pull request and badge notification can reduce lags, however, developers are often
overwhelmed by lots of notifications. Another study by Abdalkareem et al. [2]
focused on the trivial packages and found that they are common and popular in
the npm ecosystem. They also suggested that developers should be careful about
the selection of packages and how to keep them updated. This thesis focuses on
the lag of the fixing release adoption and propagation with the influencing factors
(i.e., lineage freshness and severity). I also expand my study from prior works by
taking transitive clients (i.e., downstream propagation) into consideration. My
work complements the findings of prior work, with the similar goal of encouraging
developers to update.

10

Malware and Vulnerabilities - These studies relate to the security vulnerability
within a software ecosystem from various aspects. Decan et al. [32] explored the
impact of vulnerability within the npm ecosystem by analyzing the reaction time
of developers from both vulnerable packages and their direct dependent packages
to fix the vulnerabilities. They also considered the reactions of developers from
different levels of vulnerability severity. They found that the vulnerabilities were
prevalent and took several months to be fixed. Several studies also explored the
impact of vulnerability within various ecosystems by analyzing the dependency
usage [51, 64, 70, 73]. Some studies tried to characterize the vulnerability and
its fix in various ecosystems other than the npm ecosystem [72, 106]. There
is a study about the relationship between bugs and vulnerabilities, to conclude
that the relationship is weak [84]. In order to increase the developers’ awareness
of the security vulnerability, some studies tried to create a tool to detect and
alert vulnerability when it disclosed [16, 44]. There is a study about addressing
the over-estimation problem for reporting the vulnerable dependencies in open
source communities and the impact of vulnerable libraries usage in the industry
[101]. Additionally, some studies tried to predict the vulnerability of software
systems by analyzing the source code [5, 18, 120]. This thesis takes a look at
the package-side fixing release and its fix at the commit-level of npm package
vulnerabilities, instead of the release-level in prior studies. I also propose a set
of definitions to characterize the package-side fixing release and client-side lags,
which covers both direct and transitive clients. Prior works, instead, only analyze
the direct clients.

11

Part I

Package Selection

12

3 | Developer Survey on Good-
ness of Package

1 Introduction

The Node.js Package Manager (i.e., npm) serves as a critical part of the JavaScript
community and provides support to one of the largest developer ecosystems in
the world, with over 1.7 million packages [90]. These packages provide developers
with useful features and libraries without the need to “reinvent the wheel", with
each package often depending on several others. Searching for a suitable third-
party library is a well-known problem for software developers [143], especially in
a massive network like the npm ecosystem.

Most research revolves around selection criteria based on quantifying a library
goodness of fit for a certain scenario. For example, works such as LibRec [133]
and other proposed library recommendation techniques present a scenario where
a developer is interested in using a library that has also been used in other
similar projects [29, 57, 87, 98, 100, 118]. Other related work focuses on the
motivations behind why a software developer selects a package. For example,
Larios Vargas et al. [69] argue that software developers often choose libraries
arbitrarily, without considering the consequences of their decisions. These studies
confirm that developers do struggle with library selection and updates [34, 57,
102, 139, 149]. In all of these works, the common assumption is that the interested
audience of a library is a typical software developer who would like to adopt the
package into their application.

Unlike related work, the novelty of this work is to provide a comprehensive

13

investigation of features from previous work to quantify the goodness of a pack-
age by analysing the interested audience perspective. Based on the literature, I
identified the audience from two overlapping perspectives:

1. Users - who are looking to adopt a package into their applications. They
are typically software developers [11, 69], who interested in how well docu-
mented a package is and how it can be integrated into their existing project.

2. Contributors - who are interested in contributing to a package. They are
likely to be newcomer developers who view the package as a software project
they would like to onboard [126, 130].

To characterise Node.js packages published on npm registry (i.e., npm pack-
ages) from these two perspectives, I conducted an online survey to ask Node.js
developers what features they consider before adopting or contributing to as-
sessing the quality of npm packages. I separate features of npm packages into
four types: (1) Documentation: the properties of the package documentation,
(2) Repository : the properties of the git repository, (3) Software: the ability to
install, build, and execute the test of the package, and (4) GitHub activity : the
interaction between developers and the repository on GitHub. I formulate the
first research question as follows:

(RQ1) Which features of an npm package do practitioners find relevant for
assessing package quality?

In summary, this chapter presents the following contributions:

• A definition of the ‘goodness’ of an npm package from two perspectives,
user and contributor.

• A survey of Node.js developers to investigate how different perspectives
select npm packages.

2 Audience Perspectives of an npm package

In this chapter, I characterise the audience of an npm package into two different
perspectives. These perspectives are based on the various ways in which npm
packages or software projects, in general, have been discussed in related work:

14

Table 3.1: List of 30 features for package quality assessment presented in the
survey. The features are grouped by their characteristic (feature type).

Feature
Feature Description

type

D
oc
um

en
ta
ti
on

[D1] hasAReadmemd the existence of the README.md file in the root directory of the package [60, 110]
[D2] linesInReadmemd the number of lines in the README.md file [60, 110]
[D3] numberOfCodeBlocks the number of code snippets extracted from the README.md file [60, 110]
[D4] readmemdCodeSnippetsNumber the number of JavaScript snippets in the README.md file [60]
[D5] hasAnInstallExample the existence of an install example in the README.md file [50, 60, 110]
[D6] hasARunExample the existence of a run example in the README.md file [60, 110]
[D7] hasAContributionGuideline the existence of a CONTRIBUTING.md file in the root directory of the package [37, 65, 110, 121]
[D8] hasACodeOfConduct the existence of a CODE_OF_CONDUCT.md file in the root directory of the package [110, 135]
[D9] hasALicense the package has either license file or license description in REAMDE.md file [6, 60, 85, 110]
[D10] githubLink the GitHub repository link of the package [60]

R
ep

os
it
or
y

[R1] hasASourceDirectory the existence of a source directory (i.e., /src) within the root directory of the package [62]
[R2] numberOfFiles the number of files in the package [10]
[R3] numberOfJsFiles the number of JavaScript files (.js) in the package [10]
[R4] numberOfHtmlFiles the number of HTML files (.html) in the package [10]
[R5] sizeOfRepository the size of the package repository in bytes [89]
[R6] mostPopularFileExtension the most popular file extension appearing in the repository [10]
[R7] hasATestDirectory the existence of a test directory (i.e., /test, /tests) in the root directory of the package [85]
[R8] numberOfRepositoryTags the number of git tags in the repository [61]
[R9] numberOfCommits the number of commits in the main branch of the package [10]

So
ft
w
ar
e [S1] ableToInstall whether the package is able to install the project [76]

[S2] ableToBuild whether the package is able to build (i.e., install dependencies, prepare working environment) [10, 41]
[S3] ableToExecuteATest whether the package is able to execute all test cases [10]

G
it
H
ub

ac
ti
vi
ty

[G1] numberOfNewcomerLabels the number of newcomer labels in the GitHub issues [130]
[G2] numberOfContributors the number of GitHub contributors in the package [48, 85]
[G3] numberOfIssues the number of GitHub issues [48, 148]
[G4] numberOfPullRequests the number of GitHub pull requests [48]
[G5] mostRecentIssue the most recent GitHub issue date in an epoch format [48]
[G6] mostRecentPullRequest the most recent pull request date in an epoch format [48]
[G7] latestRepositoryUpdate the most recent committed date in an epoch format [48]
[G8] latestReadmemdUpdate the most recent README.md update date in an epoch format [48]

1. User perspective - according to Lethbridge et al. [71], apart from very good
code design and reusability aspects, high quality documentation is the key
to learning a software system. Bennett [11] explained that “The greatest
library in the world would fail if the only way to learn it was reading the code
(and, in fact, it already has to a large extent). Some packages have managed
to overcome this by way of lots of unofficial documentation – blog entries
and the like – but there is absolutely no substitute for full, well-written
documentation." Therefore, I consider the user perspective essential to my
investigation of what makes a good Node.js package.

2. Contributor perspective - according to Steinmacher et al. [126], newcom-
ers can be attracted to a project with characteristics such as license type,

15

project visibility, or a number of existing contributors. Moreover, providing
good support for the onboarding of newcomers to contribute to a project
is important. It can be done by identifying good first issues and creating
informative descriptions for them [130]. A package that is good for users
(e.g., easy to install) might not necessarily be good for contributors (e.g.,
presence of a CONTRIBUTING.md) and vice versa. Investigating such
different perspectives is one of the goals of this work.

2.1 Developer Survey on Perspective

To answer (RQ1) Which features of an npm package do practitioners find relevant
for assessing package quality? I start my investigation with a list of 30 package
features derived from related work. I extracted these features from prior works on
npm in particular or software reuse in general. Table 3.1 shows the 30 features I
identified along with the reference(s) for each. I group the features into four types
based on their characteristics: (1) Documentation, (2) Repository, (3) Software,
and (4) GitHub activity. However, related work has not validated the usefulness
of these features to contributors and users. To address this, I conducted an online
survey to identify developer opinions on what perspectives npm features belong
to and what features are relevant for assessing npm package quality.

In the survey, I first asked the developers about their demographics, i.e.,
their experience with Node.js and npm packages, including their contributions on
GitHub. After that, I asked the developers “which perspective do these features
belong to?" for each of the 30 features, to which they can answer either (1) user
perspective, (2) contributor perspective, (3) both of them, or (4) none of them.
To summarise the result of this question, I assign the top voted choice as the
perspective of each feature. In the case of the top voted choices are “user" and
“contributor" (i.e., scores are tied), I assign “both of them" to the feature. I also
confirmed that there were no cases where the “none of them" choice tied with
others. Next, I asked developers to evaluate “how relevant are these features for
assessing package quality?" for each of the 30 features using a five-point Likert
scale, i.e., ranging from strongly agree to strongly disagree with a neutral option
the middle strongly. To find participants for the survey, I contacted 2,150 npm
developers and received 33 responses.

16

Table 3.2: Demographic of the respondents (33 Node.js developers).

How many years of experience do you have with Node.js?

2 to 3 years 3
4 to 5 years 11
6 to 7 years 12
8 to 9 years 3
10 years or more 4

What do you identify yourself as?

User 19
Contributor 2
Both 12

How often do you use npm packages in your projects?

Once a month or more often 30
Less than once a month but more than once per year 2
Less than once per year 1

How often do you contribute to npm packages on GitHub?

Once a month or more often 8
Less than once a month but more than once per year 18
Less than once per year 6
Never 1

17

[D3], [D6]

[S1]

[D1], [D2], [D4],
[D5], [D9], [D10],

[R5], [R7],

[G2], [G3], [G4], [G5],
[G6], [G7], [G8]

[D7], [D8],

[R1],

[S2], [S3],

[G1]

[D3], [D6]

[S1]

[D1], [D2], [D4],
[D5], [D9], [D10]

[R5], [R7]

[G2], [G3], [G4],
[G5], [G6],
[G7], [G8]

[D7], [D8],

[R1]

[S2], [S3]

[G1]

User Contributor

[R2], [R3], [R4],
[R6], [R8], [R9]

Figure 3.1: Respondents mapping of features to the perspectives.

Table 3.2 shows the demographics of the participants. All have at least two
years of experience with Node.js and npm. 19 developers described themselves as
only a user of packages, two as a contributor to packages and 12 as both a user
and contributor. Regarding the usage of npm packages, 30 developers responded
that they used packages once a month or more often, two used them less than
once a month but more than once per year, and the only one used npm packages
less than once per year. Eight developers contribute to packages on GitHub once
a month or more often, 18 less than once a month but more than once per year, six
contribute less than once per year, and only one never makes any contributions.

Figure 3.1 shows which perspective package features belong to according to
the opinion of developers. I find that half of the features are shared among both
user and contributor perspectives. If features are specific to either perspective,
users focus on the example of code or snippet (D3, D6) and ability to install
the package (S1). On the other hand, contributors focus on guideline and code
of conduct (D7, D8), source code directory (R1), ability to build and test (S2,
S3), and newcomer labels in GitHub issues (G1). Interestingly, most repository
features (R2, R3, R4, R6, R8, R9) do not belong to any perspectives since their
usefulness does not convince participants to assess the package quality.

18

(a) Documentation features (Median agreement: 73%, neutral: 24%, disagreement: 6%)

100% 50% 0% 50% 100%
hasACodeOfConduct

linesInReadmemd

hasAContributionGuideline

readmemdCodeSnippetsNumber

githubLink

numberOfCodeBlocks

hasAnInstallExample

hasALicenseFile

hasAReadmemd

hasARunExample

27% 36% 36%

15% 33% 52%

18% 24% 58%

6% 39% 55%

3% 24% 73%

0% 27% 73%

6% 12% 82%

6% 9% 85%

0% 0% 100%

0% 0% 100%

(b) Repository features (Median agreement: 27%, neutral: 34.5%, disagreement: 42%)

100% 50% 0% 50% 100%
numberOfHtmlFiles

numberOfFiles

numberOfJsFiles

mostPopularFileExtension

numberOfCommits

numberOfRepositoryTags

sizeOfRepository

hasASourceDirectory

hasATestDirectory

48% 39% 12%

45% 42% 12%

45% 42% 12%

42% 45% 12%

42% 30% 27%

39% 30% 30%

36% 30% 33%

27% 24% 48%

12% 6% 82%

(c) Software features (Median agreement: 79%, neutral: 15%, disagreement: 6%)

100% 50% 0% 50% 100%
ableToBuild

ableToExecuteATest

ableToInstall

6% 15% 79%

6% 15% 79%

0% 3% 97%

(d) GitHub activity features (Median agreement: 43.5%, neutral: 37.5%, disagreement:
19.5%)

100% 50% 0% 50% 100%
numberOfNewcomerLabels

mostRecentPullRequest

numberOfContributors

numberOfPullRequests

mostRecentIssue

latestReadmemdUpdate

numberOfIssues

latestRepositoryUpdate

27% 42% 30%

21% 45% 33%

18% 39% 42%

21% 33% 45%

21% 33% 45%

18% 39% 42%

15% 36% 48%

3% 21% 76%

Figure 3.2: Survey results on the relevance of features for package quality as-
sessment. Left hand (yellow) shows levels of disagreement, middle (grey) shows
neutral, and right (green) shows levels of agreement.

19

Figure 3.2 shows the survey results on how relevant the features are for as-
sessing package quality. The green, grey, and yellow bars represent the level of
agreement, neutrality, and disagreement from developer votes. Overall, I find
that developers agree that documentation, GitHub activity, and software fea-
tures could be used to measure the quality of npm packages – on average, 73%,
43.5%, and 79% respectively agree (i.e., agree and strongly agree). There are
three features that get more than 90% of agreement includes (1) hasARunExam-
ple (100%), (2) hasAReadmemd (100%), and (3) ableToInstall (97%). On the
other hand, developers disagree that repository features can reflect the quality
of packages – on average, 42% of the respondents disagree (i.e., disagree and
strongly disagree).

From the additional comments from developers about unlisted features for
package quality assessment, users have a concern in security features when they
packages. For example, developers commented that they concerned about “Per-
ceived project activity, support, and security" when adopting packages. The other
comment showed that developers choose packages that have a “use of a fail-proof
security features (like Passport for authentication) to avoid related risk". Features
such as “code coverage" and “security scans" of packages are also mentioned by
developers.

Summary for RQ1: Choosing a good package from both perspectives
is slightly different based on their needs. Developers agree that software
and documentation features are highly relevant for package quality assess-
ment. Repository features such as the number of commits and git tags in
the repository are not useful in both perspectives. Additionally, security
features are also in the consideration of developers.

3 Summary

In this chapter, I conducted an online survey to ask Node.js developers what
features they consider before adopting or contributing to assessing the quality of
npm packages. The key results of this chapter are (1) users and contributors of
npm packages share similar views on which features are important for selecting a

20

good package; users focus more on how to use the package, while contributors fo-
cus on the contribution guideline and how to build and test the package, (2) from
lots of features, developers still agree that software and documentation features
are highly relevant to assess package quality, (3) developers believe that repos-
itory features do not belong to any perspectives and do not reflect the package
quality. (4) developers comment that security is one of the important feature
for assessing the package quality, but was not mentioned in the survey. Hence,
Chapter 4 explores the characteristic of these listed features in packages for a
better understanding how to choose a good package.

21

4 | Package Quality Features
and Runnability

1 Introduction

To investigate what trade-offs exist between features, I collected diverse data
related to Node.js packages to create GH-Node.js, a dataset of 723,218 Node.js
package repositories. First, I extracted and analysed the npm package features
from 103,364 npm packages to understand the correlation among the features.
I then explored the possibility of predicting package runnability since software
features are highly relevant for assessing package quality, as shown in my survey.
Through the two lenses of perspectives and extracted features, I formulate the
two following research questions to guide my study:

(RQ2)What features of an npm package correlate from different perspectives?

The key results of RQ2 are that (1) features from the same type usually have
strong correlations. (2) Software features are negatively correlated with other
features. (3) Features that are less likely to be considered by any perspective,
such as a number of files, are correlated with the ability to build a package.

(RQ3) What features of an npm package predict whether it is runnable or
not?

The key results of RQ3 are that (1) predicting runnability of the package is viable.
(2) Based on the permutation feature importance, I find that repository features
are important for predicting the runnability.

22

In summary, this chapter presents the following contributions:

• Three measures of the runnability of an npm package.

• GH-Node.js, a dataset that contains a curated set of 723,218 Node.js pack-
ages containing repository and social interaction information.

• A large scale analysis of 104,364 npm packages for correlations and predic-
tions of runnability.

2 GH-Node.js: A Node.js Repository and Inter-
action Dataset

To extract the required features needed by the two perspectives, I compose my
own dataset of npm repositories named GH-Node.js. GH-Node.js is an open
dataset contains a curated snapshot of Node.js and npm packages that focuses
on the social, technical, and documentation aspects. GH-Node.js is based on two
existing datasets (GHTorrent and Libraries.io). GHTorrent provides a mirror
of git repositories and developer interactions gathered from GitHub [48], while
Libraries.io provides meta-data and relationships among packages hosted on pop-
ular software ecosystems, e.g., npm, Maven, and PyPI [134].

Table 4.1 shows the summary statistics of GH-Node.js from November 30,
2020, with 723,218 Node.js repositories, which only 104,364 repositories are iden-
tified as npm packages. I also collected 1,960,345 issues, 1,083,828 pull requests,
and 283,360 contributors associated with npm packages by using the GitHub
API. In total, I took four months, from August to December 2020, to acquire and
process all information for GH-Node.js.

3 Experiment Setup

To answer RQ2 and RQ3, I extracted a subset of GH-Node.js as shown in Ta-
ble 4.2. For my data preparation, I first extract metrics that relate to each
perspective. Note that to answer RQ2, I focus on all 11,127 packages that were

23

Table 4.1: Dataset Snapshot Statistics. The full dataset estimations are approx-
imate values.

Node.js and npm Package Repository Information

Repository Snapshot Nov 2, 2020
Node.js packages 723,218
total npm packages 104,364
- # last update 2013 7
- # last update 2014 9,867
- # last update 2015 25,680
- # last update 2016 26,115
- # last update 2017 15,057
- # last update 2018 8,869
- # last update 2019 7,642
- # last update 2020 11,127
- # commits 6,402,982
- # repository tags 674,258

last updated in 2020 from the total of 104,364 packages. My motivation was to
retrieve projects that were likely to be active.

3.1 Runnable Code: Build and Run Tests

Building a package (79%) and running its unit tests (also 79%) are two features
that received positive feedback in RQ1 survey. They are also among the first tasks
that contributors do to ensure that the selected package is ready to run and test
new features or fixes in the local environment. To confirm that an npm package
is runnable from its source code, I automatically create a virtual environment,
build, and test the package from scratch.

My approach to building and testing each package from its repository consists
of four steps:

1. Create a docker container to construct an isolated environment.

2. Clone the repository of the npm package to the docker container.

24

Table 4.2: Dataset for my experiment.

Runnable Code

repositories (last updated in 2020) 11,127
successfully built 8,199

- # passed tests 607
- # failed tests 4,262
- # no test 3,330

unsuccessfully built 2,928

Executable Documentation

repositories 104,364
collected code snippets 233,826

- Max 302
- Min 0
- Mean 2.2405
- Median 1.0000
- SD 4.8990

successfully installed 97,006
executed code snippets 220,324

- # successfully executed 33,484
- # unsuccessfully executed 186,840

3. Build the repository by using npm install –no-audit.

4. If the package is built successfully, then execute npm test to run a unit test
script as detailed in the package.json file.

Note that I set a timeout of five minutes for processing to detect frozen processes.
As shown in Table 4.2, I selected 11,127 repositories with at least one commit

in 2020 as the input of the runnable code experiment. I find that 8,199 packages
(73.68%) are successfully built. From these built packages, only 607 packages
(7.40%) have at least one test case and are able to pass all their test cases. Note
that the building and the testing process took around 21 days of execution.

25

3.2 Runnable Package: Install and Execute Code Snippets

Installing a package (97%) and trying the run example (100%) are two features
from the user perspective, which also received a positive result from RQ1. Both
features are among the first tasks that package users do to ensure that the selected
package is executable in their applications. To confirm that an npm package
is runnable after installed in any application, I automatically create a virtual
environment, install, and execute the extracted code snippets.

I extracted 233,826 Node.js code snippets from the README files of all
104,364 repositories (last updated from 2013 up to 2020). Example code in mark-
down files can be identified by the surrounding special characters (“‘) that allow
for the rendering of code blocks, and additional language information may be
provided to allow for syntax highlighting; for example, adding the tag js to the
same line (“‘js) will enable JavaScript syntax highlighting on GitHub. I ex-
tracted these code blocks, along with any language data, and then filtered my
dataset to contain only Node.js code. To do this, I discarded any code blocks
that were not in the JavaScript language, such as bash commands used to demon-
strate package installation, but kept those without a specified language, as not
all READMEs utilise syntax highlighting. Then, to discard more unrelated code
snippets, I filtered out common install commands such as npm install. Within
Node.js repositories, it is also common to see code blocks containing the results
of the previous snippet, often in the form of a JSON data object or array; as
such, I filtered out any singular objects or arrays from my set of snippets.

To simulate how developers include the package in their projects and test its
usage, I use a similar approach to Section 3.1. Instead of building the package
itself, I built the empty Node.js package, which depends on the selected npm
package. After that, I executed the code snippets inside my empty package.

As shown in Table 4.2, I selected all 104,364 npm package repositories as the
input of the executable documentation experiment. I found that 97,006 packages
(92.95%) are successfully installed. From these installed packages, I found that
only 64,280 packages (61.59%) have at least one code snippet in their README.
In the end, I executed 220,324 code snippets and found that only 33,484 (15.20%)
of them were successfully executed without any error. Note that the code snippet
executing process took around 14 days of execution.

26

4 Correlating features by Perspective

To answer (RQ2) What features of an npm package correlate from different per-
spectives? I initially perform a descriptive analysis of all features. From this
analysis, I first describe the most positive and most negative correlations in the
dataset to understand the trade-off between features and perspectives. I then
manually investigate correlations between different perspectives. The following
analysis characterises the 11,127 packages for which all 30 feature values are avail-
able; I ignore githubLink and mostPopularFileExtension. This was necessary to
achieve a consistent picture, as not all used techniques allow for missing values.

Figure 4.1 shows the Spearman rank-order correlation coefficients between
the 28 features and clustered with Wards hierarchical clustering approach. I
find that features from the same type are more likely to have strong positive
correlations among them. The GitHub activity features like numberOfIssues and
numberOfPullRequests have the strongest positive correlation among any feature
pairs. For documentation features, numberOfCodeBlocks and linesInReadmemd
have a strong positive correlation, but less than the GitHub activity features. For
repository features, numberOfCommits and numberOfRepositoryTags also have
a strong positive correlation and belong to the same cluster. Software features
(i.e., ableToExecuteATest, ableToInstall, ableToBuild) have positive correlations
among each other, but the correlations are not strong. On the other hand, the
features from different types tend to have either small positive correlations or
negative correlations.

Table 4.3 shows the top negative correlations between software features and
other features, which are top negative correlations among any feature pairs shown
in Figure 4.1. I find that various features that measure the size of a repository
(e.g., number of files, commits, issues, pull requests, contributors) tend to be neg-
atively correlated with the ability to install, build, and execute tests on a package.
This makes intuitive sense as larger repositories are more complex and more likely
to encounter issues regarding runnability. In addition, I note that correlations
between several of the documentation features and runnability also tend to be
slightly negative. Curiously, even the correlation between hasAnInstallExample
and the ability to install a package is not positive.

27

Table 4.3: Top 5 negative correlations of features grouped by their types (U: user,
C: contributor, B: both of them, N: none of them).

Feature Software
Correlation

Corresponding
type feature feature

D
oc
um

en
ta
ti
on

ableToBuild

-0.0962 hasAContributionGuideline (C)
-0.0536 hasACodeOfConduct (C)
-0.0448 linesInReadmemd (B)
-0.0426 numberOfCodeBlocks (U)
-0.0393 hasARunExample (U)

ableToExecuteATest

-0.0518 hasAContributionGuideline (B)
-0.0281 hasACodeOfConduct (C)
-0.0199 hasARunExample (U)
-0.0074 hasAReadmemd (B)
-0.0065 numberOfCodeBlocks (U)

ableToInstall

-0.0255 hasACodeOfConduct (C)
-0.0216 hasAContributionGuideline (C)
-0.0096 hasAnInstallExample (B)
-0.0092 linesInReadmemd (B)

R
ep

os
it
or
y

ableToBuild

-0.2485 numberOfFiles (N)
-0.2291 numberOfCommits (N)
-0.2224 sizeOfRepository (B)
-0.2126 hasASourceDirectory (C)
-0.1847 numberOfRepositoryTags (N)

ableToExecuteATest

-0.1141 sizeOfRepository (B)
-0.1114 numberOfCommits (N)
-0.0997 numberOfFiles (N)
-0.0897 hasASourceDirectory (C)
-0.0818 numberOfRepositoryTags (N)

ableToInstall

-0.0947 sizeOfRepository (B)
-0.0808 numberOfFiles (N)

28

Table 4.3 Continued table (U: user, C: contributor, B: both of them, N: none of them).

Feature Software
Correlation

Corresponding
type feature feature

-0.0683 numberOfCommits (N)
-0.0648 numberOfJsFiles (N)
-0.0270 numberOfRepositoryTags (N)

G
it
H
ub

ac
ti
vi
ty

ableToBuild

-0.2249 numberOfIssues (B)
-0.2139 numberOfPullRequests (B)
-0.1893 numberOfContributors (B)
-0.0662 numberOfNewcomerLabels (C)

ableToExecuteATest

-0.1099 numberOfIssues (B)
-0.1064 numberOfContributors (B)
-0.1029 numberOfPullRequests (B)
-0.0235 numberOfNewcomerLabels (C)

ableToInstall

-0.0484 numberOfIssues (B)
-0.0466 numberOfContributors (B)
-0.0379 numberOfPullRequests (B)
-0.0274 numberOfNewcomerLabels (C)

Figure 4.2 shows the distributions of the feature values. Note that the strip
plots cannot show all 11,127 data points; however, they provide a subjectively
better qualitative and quantitative characterisation of the distribution than violin
plots.

Figure 4.3 shows the clusters of npm packages using the t-distributed Stochas-
tic Neighbour Embedding (t-SNE) [137] to project the 28D data points into
2D. t-SNE’s reduction process attempts to preserve the distances in the high-
dimensional space as much as possible. Interestingly, a large number of clusters
has formed. I have manually inspected the clusters and added labels for cases
that I have found interesting. While I have to be careful not to over-interpret this
reduced representation, I can observe co-located areas where the neighbourhood

29

seems intuitively reasonable. For example, at the right, repositories are listed
with contribution guidelines and codes of conduct, both of which can be qualities
of mature repositories – and I can indeed find these repositories in the vicinity
of those with large numbers of issues; further to the left, I can find repositories
for which it is possible to execute tests. Similarly, I can find repositories that
cannot be built or do not have a license in the lower part of the plot. Lastly, and
a little bit to the left of the centre of the figure, I have repositories where the
README.md has a small number of code snippets: this seems to place them at
the (fuzzy) boundary between possible immature projects and mature ones.

Summary for RQ2: There are strong positive correlations among features
from the same type. Other feature combinations present trade-offs – in
particular software features tend to be negatively correlated with other
features.

5 Predicting whether or not an npm package is
runnable

To answer (RQ3) What features of an npm package predict whether it is runnable
or not? I first need to clarify what I mean by runnable that can be expressed
by my features defined in Table 3.1 in my experiments. To do so, I apply the
DUO principle (Data Mining Algorithms Using/Used-by Optimizers [4]) to mine
insights by using optimisers: I employ auto-sklearn [39] to automatically search
over the space of machine learning models to achieve an optimised insight, i.e.,
to achieve a good approximation of the truth while reducing potential limitations
of modelling technology and its default or manual configuration. auto-sklearn
is a combination of the machine learning library sklearn [105], the algorithm
configurator smac [58], and a set of preprocessing strategies for data.

I investigate three different binary target features as my interpretation of code
being runnable, focusing on essential aspects of software engineering:

1. ableToInstall: while this appears to be a weak condition, it can be a neces-
sary condition for subsequent code development;

30

2. ableToBuild: stronger than the previous one, and can indicate higher use-
fulness;

3. ableToExecuteATest: if true, then this can indicate correctness with respect
to the specification;

I consider all 104,364 repositories, and I consider all features as inputs except
for the three ableTo* (to avoid the accidental explanation through strong cor-
relations), as well as the two string-based features; this leaves us with 25 input
features. For the model search, I perform 5-fold cross-validation. For each fold,
auto-sklearn has 10 minutes allocated (single CPU core) to find a well-performing
model for a target feature.1 The average F1-scores and accuracy scores over the
five folds (per target) are as follows:

1. ableToInstall: F1=0.96, accuracy=0.92. This is not too surprising, as 92%
of the data set is installable.

2. ableToBuild: F1=0.83, accuracy=0.73. 72% can be built.

3. ableToExecuteATest: F1=0.09, accuracy=0.95. The F1 score is very low,
although this is partly due to the imbalanced dataset: it is possible to
execute at least one of the tests only for 5% of the repositories.

To dig deeper into the results, I take (for each target) one of the generated
models and investigate the permutation importance of the features [15]. In this
post-hoc approach, a single column of the validation data is randomly shuffled,
leaving the target and all other columns in place. This metric measures the effect
on the accuracy of predictions in that shuffled data. Due to randomised effects,
this process is repeated five times for each feature (sklearn default).

Figure 4.4, 4.5, and 4.6 show the results, where larger values indicate higher
importance in these tuned models. As I can observe, to predict ableToInstall
(Figure 4.4), a large number of features is necessary, with number-based and
size-based features being the four most important ones. To predict ableToBuild
(Figure 4.5), these features remain important, although the now most important

1As a performance reference: a random forest from sklearn is typically trained in about one
second on my standard laptop.

31

one is hasASourceDirectory. To predict ableToExecuteATest (Figure 4.6), the
previously mentioned features remain important, but they are now joined by
linesInReadmemd.

Figure 4.4, 4.5, and 4.6 also indicate positive and negative correlations with
the respective target features. In general, all correlations with the targets are
very weak, i.e., almost all correlations with the targets are within [−0.2, 0.2] and
are neither marked with a + or a −. ableToBuild stands out a bit as a number
of features are weakly negatively correlated with it.

Summary for RQ3: Predicting the runnability of a package is viable
(i.e., high F1 score). Repository features are particularly important for
predicting the runnability.

6 Discussion

I now discuss my results and provide suggestions for both researchers and prac-
titioners.

1. Audience perspective matters. As shown by my analysis of package features,
not all features are relevant from all perspectives, and some are even neg-
atively correlated. For example, the user perspective is more interested in
documentation than the contributor perspective, which may be interested
in workflow characteristics such as the pull-request and issue management
systems. My survey results also confirmed that package users are more
focused on documentation features. For example, one survey respondent
mentioned that they adopt a package due to “Usefulness, good documenta-
tion, recent releases”. On the other hand, contributors are more focused on
the contribution guidelines as mentioned by another respondent: “simple
rules for issues and pull requests”.

For practitioners, I suggest that taking into account both the user and con-
tributor may help the overall attractiveness of their Open Source projects.
Furthermore, opportunities for future work may be tool support for recom-
mending projects based on the identified features and the different scenarios

32

of these perspectives. My results confirm that automatically predicting the
runnability of a package may be viable. For researchers, I suggest that
my perspectives open up different scenarios for the different practitioners
and a re-evaluation of existing metrics as well as investigating new metrics
that can capture these two perspectives. The simple heuristics of using
the popularity, dependency usage, stars and downloads would need to be
re-evaluated, especially for selecting representative samples for empirical
studies.

2. Maintaining the runnability of npm packages is non-trivial. According to
my results, the definition of successfully running a project is not trivial.
Although some work has looked at a single definition, no work looks at
multiple different types of runnability. For practitioners, I suggest con-
sidering these different types when developing projects. This could be an
issue if the project is constantly evolving, causing especially code snippets
in the documentation (e.g., README) to be outdated. Furthermore, these
snippets may be the usage examples or installation instructions, and there-
fore important for users and contributors. Another answer from a survey
respondent supports this: “One thing that indicates a good package is an
example of someone using it to solve an existing problem. For npm pack-
ages, those are usually not found in the package’s documentation, but on
someone’s blog”.

7 Threats to Validity

Threats to construct validity exist in the appropriateness of my feature list and
perspectives. I mitigated these threats by conducting the survey to verify the
relevance of features and perspectives for assessing the quality of packages. My
feature list is taken from related works related to npm in particular or software
reuse in general; however, only a few features have been used for assessing the
package quality. In this case, I received 33 responses to confirm the relevant level
of features (i.e., 23 out of 30 features vote agree more than disagree).

Threats to internal validity involve the correctness of tools and techniques
used in this study. I use multiple features extracted from GH-Node.js. The threat

33

is that sometimes some packages do not have some features or are unavailable to
extract, so I applied a filter to remove packages that have at least one missing
feature for RQ2, thus making this threat minimal.

Threats to external validity correspond to my ability to generalise results.
Because my data and conclusions are based on a large number of npm packages
hosted on GitHub, I cannot generalise my results to all projects in general. Not all
npm packages are hosted on GitHub, and some Node.js libraries use alternative
package managers like Yarn. My research is also focused on Node.js and npm
only; there are similar package management systems for other languages, such as
PyPI for Python and Maven for Java.

8 Summary

With more than 1.7 million packages to choose from, selecting a suitable npm
package is a difficult task – and the factors that influence this decision vary
based on the developer intentions. Most existing research into library selection
has focused on the perspective of a user of a package; in this chapter, I have
investigated the perspective of user and contributor.

In this part, I first conducted a survey with 33 respondents to understand
which npm package features do practitioners find relevant for assessing package
quality (Chapter 3). I found that users and contributors of npm packages share
similar views when choosing a package, as half of the considered features belong
to both perspectives. However, the user perspective is more focused on the doc-
umentation and the usage of the package. The contributor perspective, on the
other hand, is more focused on contribution guidelines. Interestingly, developers
believe that most repository features do not belong to any perspectives and do
not reflect the quality of packages.

I then created the GH-Node.js dataset, a dataset containing a curated snap-
shot of npm packages that the research community can utilise (Chapter 4). I
identified a set of 30 features important to one or both perspectives and identi-
fied correlations between different perspectives. I found that features from differ-
ent perspectives are not necessarily correlated; in fact, in some cases, negatively
correlated. This suggests that my different perspectives are important and that

34

trade-offs exist; users and contributors have different priorities. This also sug-
gests a need for new metrics to capture these perspectives, which complement
the existing features such as popularity, dependency usage, stars, and download
count. I also evaluated the runnability of packages in terms of the runnability of
test cases and example code snippets (Chapter 4). Out of 11,127 npm packages
that were updated in 2020, I find that 8,199 (73.68%) are able to be built, and
only 607 (7.40%) are able to pass all test cases. Out of 104,364 npm packages
from my dataset, I found that 97,006 (92.95%) could be successfully installed,
64,280 (61.59%) have at least one code snippet in their README, and out of
220,324 code snippets, 33,484 (15.20%) were able to execute successfully. Using
this data, I investigated if I could predict the runnability of a package. I find that
predicting a package runnability depended heavily on what metric of runnability
I use; for example, I find that there is a strong correlation between the ability to
install a package and its number of files and commits; however, these features are
less important in predicting the ability to build a package.

My work lays the groundwork for future work on understanding how users
and contributors select appropriate npm packages. I suggest that practitioners
should take package audiences into account to help the attractiveness of their
packages. Package owners and contributors should maintain the runnability of
their package for attracting and helping new users and newcomer contributors
since this is not trivial. Potential future avenues for researchers include (1) a
package recommendation system based on the runnability of packages and (2)
an exploration of new metrics that can measure the package quality with the
consideration of both user and contributor perspectives.

35

(Repository)
(Repository)

(Repository)
(GitHub Activity)

(GitHub Activity)
(GitHub Activity)

(Repository)
(Repository)

(Software)
(Software)

(Software)
(Documentation)

(Documentation)
(Documentation)

(Documentation)
(Documentation)

(Documentation)
(Documentation)
(Repository)

(Repository)
(Repository)

(GitHub Activity)
(Documentation)

(Documentation)

Figure 4.1: Features: correlations (top) and clustering (bottom). Lighter fields
correspond to a strong positive correlation between the features, and darker fields
to a strong negative correlation. X-labels are omitted as they follow the order
(optimised to co-locate correlated features) of the y-labels. The dendrogram
groups correlated features closely together. Shown are the correlations based on
the 11,127 data points for which all feature values are available; not shown are
the four timestamp-related features.

36

no
n-

bi
na

ry
fe

at
ur

es

latestReadmemdUpdate latestRepositoryUpdate linesInReadmemd mostRecentIssue

mostRecentPullRequest numberOfCodeBlocks numberOfCommits numberOfContributors

numberOfFiles numberOfHtmlFiles numberOfIssues numberOfJsFiles

numberOfNewcomerLabels numberOfPullRequests numberOfRepositoryTags readmemdCodeSnippetsNumber

sizeOfRepository

bi
na

ry
fe

at
ur

es

ableToBuild ableToExecuteATest ableToInstall hasACodeOfConduct

hasAContributionGuideline hasALicense hasAnInstallExample hasAReadmemd

hasARunExample hasASourceDirectory hasATestDirectory

Figure 4.2: Value distribution of 28 features in alphabetical order. For non-binary
features (top five rows), I use strip plots to show the distributions qualitatively
by showing single data points; for binary features (bottom three rows), I use
violin plots with shown means to illustrate the amount of data at either end of
the distribution. Shown are all data points (11,127 to 104,364).

37

!ableToInstall

!a
bl

eT
oB

ui
ld

ab
leT

oE
xe

cu
te

AT
es

t

hasA
C
ontributionG

uideline

hasA
C

odeO
fC

onductvery low readmemd-

CodeSnippetsNumber

!ha
sALicen

se

hasAnInstallExample

large
numberOfIssu

es

Figure 4.3: Repositories in 2D. The axes do not have any particular meaning in
projections like these, which is why I removed them. Note that the clusters at
the very bottom end of this figure are not easily characterised by a single feature
but by combinations of features.

38

Figure 4.4: Permutation importance of a good predictive model for ableToInstall.
Larger values mean that the prediction is more sensitive with respect to that
parameter; hence it can be seen as more important. The + and − mark features
with weak correlations with the respective target > 0.2 and < −0.2; almost all
correlations are indeed in [−0.2, 0.2], and no correlation was outside of [−0.4, 0.4].

39

Figure 4.5: Permutation importance of a good predictive model for ableToBuild.
Larger values mean that the prediction is more sensitive with respect to that
parameter; hence it can be seen as more important. The + and − mark features
with weak correlations with the respective target > 0.2 and < −0.2; almost all
correlations are indeed in [−0.2, 0.2], and no correlation was outside of [−0.4, 0.4].

40

Figure 4.6: Permutation importance of a good predictive model for ableToExe-
cuteATest. Larger values mean that the prediction is more sensitive with respect
to that parameter; hence it can be seen as more important. The + and − mark
features with weak correlations with the respective target > 0.2 and < −0.2;
almost all correlations are indeed in [−0.2, 0.2], and no correlation was outside of
[−0.4, 0.4].

41

Part II

Vulnerabilities and Fixes
Assessment

42

5 | Package-side Fixing Release

1 Introduction

Vulnerability in third-party dependencies is a growing concern for the software
developer. In a 2018 report, over four million vulnerabilities were raised to the
attention of developers of over 500 thousand GitHub repositories [43]. The risk
of vulnerabilities is not restricted to the direct users of these software artifacts,
but it also extends to the broader software ecosystems to which they belong.
Examples include the ShellShock [12] and Heartbleed [128] vulnerabilities, which
caused widespread damages to broad and diverse software ecosystems made up
of direct and indirect adopters. Indeed, the case of Heartbleed emphasized its
critical role in the modern web. Durumeric et al. [35] shows that OpenSSL, i.e.,
the project where the Heartbleed vulnerability originated, is presented on web
servers that host (at least) 66% of sites and (at least) 24% of the secure sites on
the internet were affected by Heartbleed.

The speed at which ecosystems react to vulnerabilities and the availability of
fixes to vulnerabilities is of paramount importance. Three lines of prior works
support this intuition:

1. Studies by Hejderup [51], Howard and Leblanc [56], Munaiah et al. [84],
Nguyen et al. [88], Pashchenko et al. [101], Ponta et al. [108], Williams
et al. [141] encourage developers to use security best practices, e.g., project
validation, security monitoring, to prevent and detect vulnerabilities in de-
ployed projects.

2. Studies by Cox et al. [23], Decan et al. [31], Kikas et al. [64] show that

43

vulnerabilities can cascade transitively through the package dependency
network. Moreover, they observe that security issues are more likely to
occur in the field due to stale (outdated) dependencies than directly within
product codes.

3. Studies by Bavota et al. [9], Bogart et al. [14], Ihara et al. [59], Kula et al.
[68] show that developers are slow to update their vulnerable packages,
which is occasionally due to management and process factors.

While these prior studies have made important advances, they have tended
to focus on (i) a coarse granularity, i.e., releases, that focused only on the vul-
nerable dependency and only the direct client. For example, Decan et al. [32]
analyzed how and when package releases with vulnerabilities are discovered and
fixed with a single direct client, while Decan et al. [33] analyzed releases to ex-
plore the evolution of technical lag and its impact. Commit-level analysis similar
to Li and Paxson [72], Piantadosi et al. [106] is important because it reveals how
much development activity (i.e., migration effort) is directed towards fixing vul-
nerabilities compare to the other tasks. Furthermore, there is also a research gap
that relates to (ii) the analysis of the package vulnerability fixes with respect to
the downstream clients, and not a single direct client.

To bridge these two research gaps, I set out to identify and characterize
the release, adoption, and propagation tendencies of vulnerability fixes. I iden-
tify and track a release that contains the fix, which is defined as a fixing re-
lease. I then characterize the fixing release for each npm JavaScript package in
terms of commits for fixing the vulnerability, which is defined as the package-
side fixing release. Based on semantic versioning [111], a package-side fixing re-
lease is a package major landing, package minor landing, or package patch
landing. From a client perspective, I identify client-side fixing release lags to
classify how a client migrates from a vulnerable version to the fixing version as
a client major landing, client minor landing, client patch landing, or
dependency removal. By comparing the package-side fixing release with the
client-side fixing release, I identify lags in the adoption process as clients keep
stale dependencies.

My empirical study is comprised of two parts. First, I perform a preliminary
study of 231 package-side fixing releases of npm packages on GitHub (Chapter 5).

44

I find that the package-side fixing release is rarely released on its own, with up
to 85.72% of the bundled commits being unrelated to the fix. Second, I conduct
an empirical study of 1,290 package-side fixing releases to analyze their adoption
and propagation tendencies throughout a network of 1,553,325 releases of npm
packages (Chapter 6). I find that quickly releasing fixes does not ensure that
clients will adopt them quickly. Indeed, I find that only 21.28% of clients reacted
to this by performing a client patch landing of their own. Furthermore, I find that
factors such as the branch upon which a fix lands and the severity of the vulnera-
bility have a small effect on its propagation trajectory throughout the ecosystem,
i.e., the latest lineage and medium severity suffer the most lags. To mitigate
propagation lags in an ecosystem, I recommend developers and researchers to (i)
develop strategies for making the most efficient update via the release cycle, (ii)
develop better awareness mechanisms for quicker planning of an update, and (iii)
allocate additional time before updating dependencies.

The contributions of Chapter 5 and 6 are three-fold. The first contribution
is a set of definitions and measures to characterize the vulnerability discovery
and fixing process from both the vulnerable package, i.e., package-side fixing re-
lease, and its client, i.e., client-side fixing release. The second contribution is
an empirical study that identified potential lags in the release, adoption, and
propagation of a package-side fixing release. The third contribution is a de-
tailed replication package, which is available at https://github.com/NAIST-SE/
Vulnerability-Fix-Lags-Release-Adoption-Propagation.

2 Concepts and Definitions

2.1 Package-side Vulnerability Fixing Process

Figure 5.1 illustrates the timeline of the package-side vulnerability fixing process
of package P in the lower part of the figure. I break down this process into two
steps:
Step one: Vulnerability Discovery. Figure 5.1 shows the vulnerability of package
P being detected after the release of PV 1.1.0. As reported by Kula et al. [68], CVE
defines four phases of a vulnerability: (i) threat detection, (ii) CVE assessment,

45

https://github.com/NAIST-SE/Vulnerability-Fix-Lags-Release-Adoption-Propagation
https://github.com/NAIST-SE/Vulnerability-Fix-Lags-Release-Adoption-Propagation

V2.0.0

V1.0.0 V1.0.1

V1.1.0
Vulnerable

release

Fixing
commit

V1.1.1 V1.1.2

V1.0.2

V2.0.1

V1.0.3

V2.0.0 V2.0.1

V1.1.3

Package-side
fixing release

Client-side fixing release

Fixing release
Package P

Client X

Affected package P, versions ≤ V1.0.1 || == V1.1.0

Figure 5.1: The relationship between package-side and client-side regarding vul-
nerability discovery, fixing, and release process of package P and client X over
time. Red and green releases indicate whether releases are vulnerable or not.

(iii) security advisory, and (iv) patch release. I define the vulnerability discovery
as the period between the threat detection and before the patch release. It is most
likely that the fixing process starts after the CVE assessment, i.e., a vulnerability
has been assigned a CVE number. In addition to a CVE number, a vulnerability
report details the affected packages, which can include releases up to an upper-
bound of reported versions. In this step, the developers of an affected package are
notified via communication channels such as a GitHub issue for GitHub projects.
Step two: Vulnerability Fix and Release. Figure 5.1 shows the vulnerability of
package P being fixed and released as PV 1.1.1. I define the vulnerability fix and
release as the period where developers spend their efforts to identify and miti-
gate the vulnerable code. Once the fix is ready, developers merge that fix to a
package repository. In most GitHub projects, developers will review changes via
a GitHub pull request. Semantic versioning convention is also used to manage
the release version number of a package [111]. I define the fixing release as the
first release that contains a vulnerability fix (PV 1.1.1). I also define package-side

46

fixing release to describe the fixing release of the vulnerable package and to show
how a package bumped the release version number from a vulnerable release to
a fixing release. There are three kinds of package-side fixing release based on the
semantic versioning: (i) package major landing (major number is bumped up),
(ii) package minor landing (minor number is bumped up), and (iii) package
patch landing (patch number is bumped up). As shown in Figure 5.1, package-
side fixing release of package P is package patch landing, i.e., PV 1.1.0 to PV 1.1.1.

2.2 Client-side Fixing Release

Prior work suggests that lags in adoption could be the result of migration effort
[68]. Thus to quantify this effort, I compare a vulnerable release that a client is
using, i.e., listed in the report, against the package-side fixing release to categorize
as a client-side fixing release. Developers of the vulnerable package fulfilled their
responsibility, thus the adoption responsibility is left to the client.

Figure 5.1 shows the timelines of a fixing release and its clients. As illustrated
in the figure, client X suffers a lag in the adoption of a package-side fixing re-
lease by switching dependency branches, i.e., client minor landing. Also, client X
directly depends on package P. Client X is vulnerable (V2.0.0) due to its depen-
dency (PV 1.0.1). To mitigate the vulnerability, package P creates a new branch,
i.e., minor branch, which includes the package-side fixing release (PV 1.1.1). Client
X finally adopts the new release of package P which is not vulnerable (V1.1.2).
I consider that client X has a lag, which was not efficient because it actually
skipped the package-side fixing release (PV 1.1.1). Instead, client X adopted the
next release (PV 1.1.2). A possible cause of lags is the potential migration effort
needed to switch branches, i.e., from PV 1.0.1 to PV 1.1.2. The migration effort for
major or minor changes may include breaking changes or issues in the release
cycle.

2.3 Motivating Example

Figure 5.2 shows a practical case of the vulnerability fixing process which affects
a library for network communication, i.e., socket.io. Figure 5.2a and Figure

47

(a) socket.io vulnerability report with medium severity.

(b) GitHub Issue reporting the vulnerability.

(c) Pull request containing the fixing commit.

(d) Fixing commit to mitigate the vulnerability.

(e) New package-side fixing release has been release.

Figure 5.2: Developer artifacts that mitigate a vulnerability (socket.io) on
GitHub.

48

5.2b show step one, where the vulnerability is reported as a GitHub issue,1 and
summarized in snyk.io.2 The vulnerability report contains detailed information
regarding the identified problem, its severity, and a proof-of-concept to confirm
the threat. In this example, socket.io was vulnerable to a medium severity
vulnerability. I also found that the reporter is the same person who also created
the fix. Figure 5.2c and 5.2d show step two. Figure 5.2c shows a fix that will be
merged into the code base. The fix is submitted in the form of a pull request.3

Figure 5.2d shows that there are four commits in a pull request with one com-
mit actually fixes the vulnerability.4 The other three commits were found to be
unrelated, e.g., "removing fixes for other bug". Figure 5.2e shows that the
package-side fixing release was available on July 25, 2012.5

Interestingly, there is a lag in the vulnerability fix and release step. This
example shows that there is an 89 days period between when the fix was created
and released for any client to use. I found that socket.io merged its fixes on
April 27, 2012, however, it was actually released on July 25, 2012 and classified
as a package patch landing, i.e., V0.9.7.

3 Package-side Fix Commits and Landing: Pre-
liminaries

From the motivating example in Section 2.3, I reveal how much development
activity is directed towards fixing vulnerabilities compare to the other tasks.
Thus, I conduct a preliminary study to characterize package-side fixing release at
the commit-level which including (i) changes of package-side fixing release, (ii)
contents of package-side fixing release. I first highlight the motivation, approach,
and analysis to answer my preliminary questions. I then show my data collection
and finally provide the results. The following two preliminary questions guide
the study:

1https://github.com/socketio/socket.io/issues/856
2https://snyk.io/vuln/npm:socket.io:20120323
3https://github.com/socketio/socket.io/pull/857
4https://github.com/socketio/socket.io/commit/67b4eb9abdf111dfa9be4176d1709374a2b4ded8
5https://github.com/socketio/socket.io/releases/tag/0.9.7

49

https://github.com/socketio/socket.io/issues/856
https://snyk.io/vuln/npm:socket.io:20120323
https://github.com/socketio/socket.io/pull/857
https://github.com/socketio/socket.io/commit/67b4eb9abdf111dfa9be4176d1709374a2b4ded8
https://github.com/socketio/socket.io/releases/tag/0.9.7

(PQ1) What is the prevalence of package patch landing?

• Motivation My motivation for PQ1 is to analyze the package-side fixing
release. Different from Decan et al. [32], I manually investigate the version
changes in the package-side fixing release itself. My assumption is that
every fix is applied as a package patch landing.

• Approach The approach to answer PQ1 involves a manual investigation to
identify the package-side fixing release, i.e., package major landing, package
minor landing, package patch landing. This is done in three steps.

1. The first step is to extract the fix-related information on GitHub. The
extracted information is captured into three types as (i) an issue, (ii)
a commit, and (iii) a pull request.

2. The second step is to identify the release that contains a fix. This step
involves an investigation of the package history. From the link in the
first step, the first author manually tracked the git commit history to
identify when the fix was applied.

3. The final step is to identify a difference between a vulnerable release
and a package-side fixing release. I compare a vulnerable release, i.e.,
listed in the report, against a package-side fixing release to categorize
the changes: (i) package major landing, (ii) package minor landing,
and (iii) package patch landing.

• Analysis The analysis to answer PQ1 is the investigation of package-side
fixing releases. I use a summary statistic to show the package-side fixing
release distribution. Furthermore, an interesting example case from the
result is used to confirm and explain my findings.

(PQ2) What portion of the release content is a vulnerability fix?

• Motivation Extending PQ1, my motivation for PQ2 is to reveal what kinds
of contents are bundled within the package-side fixing release. I complement
recent studies, but at the commit-level [32, 33, 51]. I would like to evaluate
the assumption that commits bundled in a package-side fixing release are
mostly related to the fixing commits.

50

• Approach The approach to answer PQ2 involves a manual investigation of
contents inside the package-side fixing release. This is done in three steps.

1. The first step is to gather information of a fixing commit. In this case,
I tracked the git commit history similar to the second step of PQ1.

2. The second step is to list commits in a package-side fixing release. I
use GitHub comparing changes tool to perform this task.6

3. The final step is to identify the type of commits bundled in a package-
side fixing release. Similar to PQ1, the first author manually tracked
and labeled the commit as either (i) fixing commit or (ii) other commit.
To label commits, the first author uses source codes, commit messages
and GitHub pull request information. For validation, other co-authors
confirmed the results, i.e., one author found the evidence and the other
validated.

• Analysis The analysis to answer PQ2 is to examine the portion of fix-
ing commits in a package-side fixing release. I show the cumulative fre-
quency distribution to describe the distribution of fixing commits for 231
package-side fixing releases. I use a box plot to show fixing commit size in
terms of lines of code (LoC). Similar to PQ1, I show interesting example
cases from the result.

3.1 Data Collection

My dataset contains the vulnerability reports with fix-related information on
GitHub. For the vulnerability reports, I crawled the data from snyk.io [122]
that were originally disclosed in CVE and CWE database. For the fix-related
information, I focus on packages from the npm JavaScript ecosystem that is one
of the largest package collections on GitHub [90] and also has been the focus of
recent studies [2, 31, 32, 33, 51, 64]. At the time of this study, I extracted fix-
related information links directly from snyk.io (e.g., GitHub issue, commit, pull
request).

6https://help.github.com/en/github/committing-changes-to-your-project/
comparing-commits

51

https://help.github.com/en/github/committing-changes-to-your-project/comparing-commits
https://help.github.com/en/github/committing-changes-to-your-project/comparing-commits

Table 5.1: A summary of package-side dataset information for preliminary study.

npm Vulnerability Report Information

Disclosures period Apr 9, 2009 – Aug 7, 2020
vulnerability reports 2,373
samples of vulnerability reports (with fix references) 231
vulnerable packages 172

Table 5.2: A summary statistic of package-side fixing release distribution in PQ1.

Package-side fixing release # of fixing releases

Major package landing 17 (7.36%)
Minor package landing 47 (28.14%)
Patch package landing 149 (64.50%)

231

As shown in Table 5.1, I crawled and collected all reports from April 9, 2009
to August 7, 2020, i.e., in total 2,373 reports. To identify the reports with fix-
related information, I removed reports that (i) do not have the fixing release
or (ii) do not provide any fix-related information. After that, I randomly select
around 237 reports (10% of 2,373) and manually filter reports that the vulnerable
package does not follow semantic versioning. In the end, the dataset for PQ1 and
PQ2 analysis consists of 231 reports that affect 172 packages.

3.2 Results to the Preliminary Study

(PQ1) What is the prevalence of package patch landing?
Table 5.2 shows the evidence that not every fix is applied as a patch. This

evidence contradicts my assumption. I find that 64.50% of fixes are a package
patch landing. On the other hand, I find that 7.36% and 28.14% of fixes are
package major landing and package minor landing respectively. From my result,
I suspect that some releases, especially package major landing and package minor
landing might contain unrelated contents to the fixing commits.

The example case is a package major landing of an HTTP server framework,

52

0% 5% 10% 15% 20%
0%

20%

40%

60%

80%

100%

Fixing commits (%)

C
um

ul
at

iv
e

F
re

qu
en

cy
 D

is
tr

ib
ut

io
n

(F
ix

in
g

re
le

as
es

)

Figure 5.3: I find that 91.77% out of 231 fixing releases have fixing commits up
to 14.28% of commits in a package-side fixing release.

i.e., connect (V2.0.0). This package was vulnerable to Denial of Service (DoS)
attack [123]. Under closer investigation, I manually validated that the other fixes
were bundled in a package-side fixing release, including API breaking changes
(i.e., removed function).7 This fix also takes 53 days before it gets released. I
suspect that this may cause a lag in the package-side fixing release, especially if
the project has a release cycle.

(PQ2) What portion of the release content is a vulnerability fix?
Figure 5.3 is evidence that fixes are usually bundled with other kinds of changes.

I find that 91.77% out of 231 fixing releases have up to 14.28% commits that
related to the fix, which means that 85.72% of commits were unrelated. Figure
5.4 shows that the fix itself tends to contain only a few lines of code, i.e., median of
10 LoC. Similar to the commit-level analysis, the package-side fixing release tends
to contain a lot of changes, i.e., median of 219 LoC. These results complement the
finding of PQ1 about package-side fixing release might contain unrelated changes
to the fixing commit.

7https://github.com/senchalabs/connect/blob/fe28026347c2653a9602240236fc43a8f0ff8e87/
History.md#200--2011-10-05

53

https://github.com/senchalabs/connect/blob/fe28026347c2653a9602240236fc43a8f0ff8e87/History.md#200--2011-10-05
https://github.com/senchalabs/connect/blob/fe28026347c2653a9602240236fc43a8f0ff8e87/History.md#200--2011-10-05

Fixing commits Package-side fixing release
1

10

100

1000

10k

100k

1M

#
 L

in
es

 o
f

C
od

e
(l

og
 s

ca
le

)

Figure 5.4: LoC of the fixing commits for 231 vulnerabilities. I find that there
are only few fixing fix commits in the package-side fixing release, i.e., median of
10.

I show two examples to investigate the content of a fix and its size. The first
example is a package patch landing of a simple publish-subscribe messing for a
web, i.e., faye [124]. Under closer manual inspection, I find that there is one
commit that updates the default value of variables.8 However, a package patch
landing includes a total of 45 commits that is not related to the fix.9 In the
second example, I show that the actual fix is only a few lines of code. The npm
package, which is the command line interface of a JavaScript package manager
[125], took seven lines of code to fix the vulnerability.10

8https://github.com/faye/faye/commit/e407e08c68dd885896552b59ce65503be85030ad
9https://github.com/faye/faye/compare/0.8.8...0.8.9

10https://github.com/npm/npm/commit/f4d31693

54

https://github.com/faye/faye/commit/e407e08c68dd885896552b59ce65503be85030ad
https://github.com/faye/faye/compare/0.8.8...0.8.9
https://github.com/npm/npm/commit/f4d31693

4 Summary

In this chapter, I first find the prevalence of package patch landing. The results
shows that the vulnerability fix is not always released as its own patch update.
Also, only 64.50% of fixing releases are a package patch landing. The rest of
fixing releases are either package major landing, i.e., 7.36%, or package minor
landing, i.e., 28.14%. After that, I show the portion of the release content that
is a vulnerability fix. I find that a small portion of the release contents related
to the vulnerability fix, with 91.77% of 231 fixing releases have up to 85.72%
unrelated commits. Furthermore, the fix itself tends to have only a few lines of
code (i.e., median of 10 lines of code). The results shows the characterization
of vulnerability fixing process of vulnerable packages. Chapter 6 looks further
than packages by characterizing the fix adoption of their direct clients and the
fix propagation to transitive clients.

55

6 | Lags in the Adoption and
Propagation of Package-
side Fixes

1 Introduction

The results of my preliminary study in Chapter 5 characterize the package-side
fixing release, where I find that (i) up to 64.50% of vulnerability fixes are classified
as a package patch landing and (ii) up to 85.72% of commits in a release are
unrelated to the actual fix. Based on these results, I suspect that potential lags
might occur while the package-side fixing release get adopted by the clients and
transitively propagate throughout the dependency network. Hence, I perform an
empirical evaluation to explore potential lags in the adoption and propagation of
the fix.

2 Model and Track Lags

To explore potential lags in both adoption and propagation, I model and track
the package-side fixing release and client-side fixing release as illustrated in Figure
6.1.

Released and Adopted by Version - I identify lags in the adoption by
analyzing the prevalence of patterns between a package-side fixing release and

56

Package P

V2.0.0

V1.0.0 V1.0.1

Client X

V1.1.0
Vulnerable

release

Fixing
commit

V1.1.1 V1.1.2

V1.0.2

V2.0.1

V1.0.3

V2.0.0 V2.0.1

V1.1.3
Fixing release

V0.0.1 V0.0.2 V0.0.3

Adopted

Client Y

Adopted

(a) An example of a lag in the propagation, caused by cascade delays from upstream
clients.

SL: 1.1.x lineage

SL: 1.0.x lineage

LL: 2.0.x lineage

V1.0.0 V1.0.1

V1.1.0 V1.1.1 V1.1.2

V1.0.2 V1.0.3

V2.0.0 V2.0.1

V1.1.3

LL: 1.1.x lineage

LL: 1.0.x lineage

Package P

(b) An example of a Latest Lineage (LL: a package-side fixing release in the latest
branch at any given point of time) and a Supported Lineage (SL: a package-side fixing
release in the outdated branch at any given point of time) classify to track the freshness
of a package-side fixing release.

Figure 6.1: These figures show the terms that are used to model and track the
lags.

57

client-side fixing release, which is similar to technical lag Zerouali et al. [147] and
based on semantic versioning. The definition of package-side fixing release was
explained in Section 2.1 which describes how the package bumped the release
version number. Note that pre-releases or special releases are not considered in
this study. I then define a new term called a client-side fixing release. Client-side
fixing release describes how clients bumped the version of an adopted package up
from vulnerable version to fixing release. There are four kinds of client-side fixing
release: (i) client major landing (major number of an adopted package is
bumped up), (ii) client minor landing (minor number of an adopted package is
bumped up), (iii) client patch landing (patch number of an adopted package
is bumped up), and (iv) dependency removal (adopted package is removed from
a client dependency list).

Figure 6.1a shows an example of the two terms defined above. First, I find
that the package-side fixing release for package P is classified as a package patch
landing. This is because of the difference between a fixing release (PV 1.1.1) and
its vulnerable release (PV 1.1.0). Furthermore, I find that the client-side fixing
release for client X is a client minor landing. This is because of the difference
between the adopted fixing release (PV 1.1.2) and its previous vulnerable release
(PV 1.0.1). In the reality, client X could decide to adopt PV 1.0.3 instead of PV 1.1.2.
In this case, the client-side fixing release for client X is a client patch landing.

Propagation Influencing Factors - I define Hop as the transitive dependency
distance between a package-side fixing release and any downstream clients that
have adopted this fix, i.e., one, two, three, and more than or equal to four hops.
As shown in Figure 6.1a, client X is one hop away from package P. I consider
two different factors to model and track lags in the propagation:

1. Lineage Freshness: refers to the freshness of the package-side fixing re-
lease as inspired by Cox et al. [23] and Kula et al. [67]. Figure 6.1b shows
two types of lineage freshness based on the release branches including: Lat-
est Lineage (LL): the client has adopted any package-side fixing release on
the latest branch, and Supported Lineage (SL): the client has adopted any
package-side fixing release not on the latest branch. My assumption is that
a package-side fixing release in the latest lineage is adopted faster than a

58

package-side fixing release in a supported lineage, i.e., suffer less lags. Fig-
ure 6.1b shows that three versions of package P (V1.0.2, V1.0.3, V1.1.3) are
classified as SL.

2. Vulnerability Severity: refers to the severity of vulnerability, i.e., H = high,
M = medium, L = low, as indicated in the vulnerability report (as shown
in Figure 5.2a from Section 2). My assumption is that a package-side fixing
release with higher severity is adopted quicker, i.e., less lags.

3 Empirical Evaluation

The goal of my empirical study is to investigate lags in the adoption and propa-
gation. I use these two research questions to guide my study:

(RQ1) Is the package-side fixing release consistent with the client-side
fixing release? My motivation for RQ1 is to understand whether developers
are keeping up to date with the package-side fixing releases. I define that package-
side and client-side fixing releases are consistent if client-side fixing release follow
package-side fixing release. For example, client minor landing and package minor
landing combination is consistent, but client major landing and package patch
landing combination is not consistent. My key assumption is that the inconsistent
combination requires more migration effort than the consistent one, which in turn
is likely to create lags.

(RQ2) Do lineage freshness and severity influence lags in the fix prop-
agation? My motivation for RQ2 is to identify the existence of lags during a
propagation. Concretely, I use my defined measures, i.e., propagation influencing
factors, to characterize a propagation lag. My assumption is that a package-side
fixing release on the latest lineage with high severity should propagate quickly.

Data Collection - My data collection consists of (i) vulnerability reports and
(ii) the set of cloned npm package and client git repositories. I use the same
2,373 vulnerability reports as shown in my preliminary study which crawled from

59

snyk.io [122]. As inspired by Wittern et al. [142], I cloned and extracted informa-
tion of npm package and client from public GitHub repositories. In this study, I
consider only normal dependencies listed in the package.json file to make sure
that the packages are used in the production environment. Hence, other types
of dependencies including: (1) devDependencies, (2) peerDependencies, (3) bun-
dledDependencies, and (4) optionalDependencies are ignored in this study since
they will not be installed in the downstream clients in the production or cannot
be retrieved directly from the npm registry. To perform the lags analysis, I first
filter reports that do not have the fixing release. I then used the package name
and its GitHub link from the reports to automatically match cloned repositories.

As shown in Table 6.1, my data collection included 2,373 vulnerability reports
that disclosed from April 9, 2009 to August 7, 2020. There are 1,290 reports that
already published the fixing releases which affect 786 different packages. The
statistics of vulnerable packages and reports are presented in the table. For
package and client repositories, I collected a repository snapshot from GitHub on
August 9, 2020 with 152,074 repositories, 611,468 dependencies, and 1,553,325
releases.

Approach to Answer RQ1 - The data processing to answer RQ1 involves
the package-side fixing release and client-side fixing release extraction. Similar
to PQ1, I first identify the package-side fixing release by comparing a vulnerable
release and a fixing release. To track the client-side fixing release, I then extract
the direct clients’ version history of the vulnerable packages. A client is deemed
vulnerable if its lower-bound dependency falls within the reported upper-bound
as listed in a vulnerability report.

To ensure quality, I additionally filter out packages and clients that did not
follow semantic versioning as shown Table 6.3. My key assumption is to keep
packages and clients that follow a semantic version release cycle, i.e., packages
and clients should have all the update patterns of major landing, minor landing,
and patch landing. As a result, 4,000 packages and clients were filtered out from
the dataset. As shown in Table 6.2, my final dataset for RQ1 consists of 410
vulnerability reports that affect 230 vulnerable packages and 5,417 direct clients.

The analysis to answer RQ1 is the identification of lags in the adoption. I show

60

Table 6.1: A summary of the data collection which used to populate the dataset
to answer RQ1 and RQ2.

npm JavaScript Ecosystem Information

Repository snapshot Aug 9, 2020
package & client GitHub repositories 152,074
total dependencies (with downstream) 611,468
total packages releases 1,553,325

npm Vulnerability Report Information

Disclosures period Apr 9, 2009 – Aug 7, 2020
reports 2,373
reports (with fixing release) 1,290
vulnerable packages 786
vulnerabilities per package

- mean 1.64
- median 1.00
- SD 2.58

high severity vulnerabilities 566
medium severity vulnerabilities 647
low severity vulnerabilities 77

the frequency distribution of client-side fixing release in each package-side fixing
release. In order to statistically validate my results, I apply Pearson’s chi-squared
test (χ2) [104] with the null hypothesis ‘the package-side fixing release and the
client-side fixing release are independent’. To show the power of differences be-
tween each package-side fixing release and client-side fixing release combination,
I investigate the effect size using Cramér’s V (φ′), which is a measure of associ-
ation between two nominal categories [24]. According to Cohen [20], since the
contingency Table 6.4 has 2 degrees of freedom (df*), effect size is analyzed as
follows: (1) φ′ < 0.07 as Negligible, (2) 0.07 ≤ φ′ < 0.20 as Small, (3) 0.20 ≤
φ′ < 0.35 as Medium, or (4) 0.35 ≥ φ′ as Large. To analyze Cramér’s V, I use
the researchpy package.1

1https://pypi.org/project/researchpy/

61

https://pypi.org/project/researchpy/

Table 6.2: A summary of dataset information for the empirical study to answer
RQ1 and RQ2.

RQ1 Dataset

vulnerability reports (follow semver) 410
vulnerable packages (follow semver) 230
direct clients (follow semver) 5,417
filtered clients (break semver) 4,000

RQ2 Dataset

vulnerability reports (with fix released) 617
vulnerable packages (with fix released) 344
downstream clients 416,582

Table 6.3: A summary number of filtered clients grouped by their update pattern
in RQ1. There are 4,000 packages and clients that excluded in the RQ1.

semver Update Patterns # clients

Major only 94
Minor only 293
Patch only 2,812
No change 801

Filtered packages & clients 4,000

62

Approach to Answer RQ2 - The data processing to answer RQ2 involves
propagation influencing factors extraction. There are three steps to track down-
stream clients and classify lineage freshness and severity. First, I build and tra-
verse in a dependency tree for each package-side fixing release using a breadth-first
search (BFS) approach. The meta-data is collected from each downstream client
which includes: (i) version, (ii) release date, and (iii) dependency list, i.e., exact
version and ranged version. I then classify whether or not a client is vulnera-
ble using an approach similar to RQ1. My method involves removing duplicated
clients in the dependency tree, which is caused by the npm tree structure. Sec-
ond, I classify the lineage freshness of a fixing release by confirming that it is on
the latest branch. Finally, I extract the vulnerability severity from the report. As
shown in Table 6.2, my final dataset for RQ2 consists of 617 vulnerability reports,
344 vulnerable packages with fixing releases, and 416,582 downstream clients.

The analysis to answer RQ2 is the identification of lags in the propagation. I
show a summary statistic of lags in terms of days, i.e., the mean, the median, the
standard deviation, and the frequency distribution, with two influencing factors.
In order to statistically validate the differences in the results, I apply Kruskal-
Wallis non-parametric statistical test [66]. This is a one-tailed test.2 I test the
null hypothesis that ‘lags in the latest and supported lineages are the same’. I
investigate the effect size using Cliff’s δ, which is a non-parametric effect size
measure [117]. Effect size are analyzed as follows: (1) |δ| < 0.147 as Negligible, (2)
0.147 ≤ |δ| < 0.33 as Small, (3) 0.33 ≤ |δ| < 0.474 as Medium, or (4) 0.474 ≤ |δ| as
Large. To analyze Cliff’s δ, I use the cliffsDelta package.3

4 Results to the Empirical Study

(RQ1) Is the package-side fixing release consistent with the client-side
fixing release? My results are summarized into two findings. First, Table 6.4
shows the evidence that most of package-side fixing releases are package patch
landings. As shown in the first row of a table, I find that 245 out of 410 fix-
ing releases have package patch landings (highlighted in red). I also find that

2https://github.com/scipy/scipy/issues/12231#issuecomment-660404413
3https://github.com/neilernst/cliffsDelta

63

https://github.com/scipy/scipy/issues/12231#issuecomment-660404413
https://github.com/neilernst/cliffsDelta

Table 6.4: A contingency table shows the frequency distribution of client-side
fixing release for each package-side fixing release. I find that (i) there is a depen-
dency between package-side fixing release and client-side fixing release and (ii)
only the case of package minor landing is consistent.

Package major landing (66) Package minor landing (99) Package patch landing (245) All

Client major landing 448 (46.18%) 453 (30.00%) 657 (22.37%) 1,558
Client minor landing 2 (0.21%) 761 (50.40%) 1,082 (36.84%) 1,845
Client patch landing 0 (0.00%) 0 (0.00%) 625 (21.28%) 625
Dependency removal 520 (53.61%) 296 (19.60%) 573 (19.51%) 1,389

All 970 1,510 2,937 5,417

there are 66 package major landings and 99 package minor landings. This finding
complements the result of PQ1.

Second, Table 6.4 shows the evidence that there is a dependency between
package-side fixing release and client-side fixing release variables. However, there
is no consistency across package-side fixing release and client-side fixing release.
As highlighted in Client patch landing row of Table 6.4, I find that there are only
21.28% of clients adopt a package patch landing as client patch landings. Instead,
clients are more likely have client minor landings, i.e., 36.84% of clients (high-
lighted in red). For the case of package major landing, there are 53.61% of clients
remove their dependencies to avoid vulnerability (highlighted in yellow). The
majority of clients that still adopt the package major landing are around 43.18%
as client major landing. The only case that I find consistent is package minor
landing which 50.40% of clients adopt the fix as client minor landing (highlighted
in green).

For the statistical evaluation, I find that there is an association between the
package-side fixing release and the client-side fixing release. Table 6.5 shows that
my null hypothesis on ‘the package-side fixing release and the client-side fixing
release are independent’ is rejected (i.e., χ2 = 1, 484.48, p-value < 0.001). From
the Cramér’s V effect size (φ′), I got a value of 0.37 which shows the large level
of association.

64

Table 6.5: A result of statistical test for RQ1. I find that differences between
each distribution are significant and have a large level of effect size.

Statistic Value

Pearson’s chi-squared test (χ2) 1, 484.48

p-value < 0.001

Cramér’s V (φ′) 0.37

Answer to RQ1: No for the case of package patch landing, but yes for the
others. I find that only 21.28% of package patch landing are adopted as a
client patch landing in clients. Instead, 36.84% of package patch landing are
adopted as a client minor landing. The evidence suggests that since clients
keep stale dependencies, more migration effort is required to fix that client
due to the potential risk from backward incompatible changes (i.e., client
major landing or client minor landing).

Table 6.6: A summary statistic of lags in the propagation (# days) categorized
by lineage freshness to show the difference between lags in LL and SL. Lags in
the table is not accumulative.

hop # clients Mean Median SD

LL

1 18,444 311.69 164.00 370.92
2 55,044 299.70 157.00 359.80
3 74,257 255.21 130.00 313.86
≥ 4 239,128 212.11 112.00 270.62

386,873

SL

1 2,880 217.90 89.00 298.30
2 5,675 269.55 139.00 318.41
3 5,948 216.43 101.00 276.27
≥ 4 15,206 181.55 96.00 240.11

29,709

65

Table 6.7: A summary statistic of lags in the propagation (# days) categorized
by vulnerability severity to show the difference of lags between high, medium,
and low severity vulnerability fixes. Lags in the table is not accumulative.

hop # clients Mean Median SD

H

1 5,569 187.09 91.00 239.72
2 16,160 212.04 103.00 277.36
3 18,444 190.99 88.00 255.29
≥ 4 34,189 184.91 94.00 242.13

74,362

M

1 14,320 350.54 194.00 399.91
2 39,758 341.29 193.00 386.66
3 55,625 280.18 151.00 331.87
≥ 4 210,571 215.75 116.00 274.23

320,274

L

1 1,435 219.39 123.00 248.54
2 4,801 214.78 127.00 246.28
3 6,136 184.29 98.00 223.92
≥ 4 9,574 180.46 94.00 234.38

21,946

(RQ2) Do lineage freshness and severity influence lags in the fix prop-
agation? My results are summarized into two findings. First, Table 6.6 shows
the evidence that the lineage freshness influences lags in a propagation. As high-
lighted in red, I find that LL has more lags than SL in terms of days for every
hops, e.g., median of lags for the first hop: 164 days > 89 days.

Second, Table 6.7 shows the evidence that the vulnerability severity influences
lags in a propagation. As highlighted in green, I find that the high severity
fixing release has the least lags than others in every hop, e.g., the first hop: 91
days. I also find that the medium severity fix has the most lags than others as
highlighted in red, e.g., the first hop: 194 days.

For the statistical evaluation, I find that lags in the latest and supported
lineage showed to have a significant (p-value < 0.001), but negligible to small

66

Table 6.8: A comparison of lags in the propagation between clients that adopt the
latest lineage and supported lineage fixing release, i.e., by the median. I find that
difference between each distribution is significant mostly in the case of medium
severity. The effect sizes of those differences are negligible and small level. (LL:
median of the latest lineage, SL: median of the supported lineage, *: p-value
< 0.001).

hop H M L

1
LL > SL LL > SL * LL > SL
negligible small negligible

2
LL > SL * LL > SL * LL > SL *
negligible negligible small

3
LL > SL LL > SL * LL > SL
negligible negligible negligible

≥ 4
LL > SL LL > SL * LL < SL *
negligible negligible negligible

association. Table 6.8 shows that my null hypothesis on whether ‘lags in the
latest and supported lineages are the same’ is rejected, i.e., the first hop to the
more than the fourth hop for medium severity, the second hop and more than the
fourth hop for low severity; and the second hop for high severity.

Answer to RQ2: Yes, lineage freshness and severity influence lags in the
propagation. I find that fixing releases that occur on the latest lineage and
medium severity suffer the most lags.

5 Discussion

5.1 Lessons Learned

This section discusses three main implications based on my results in PQ1, PQ2,
RQ1, and RQ2. These are presented as lessons learned and could have implica-
tions for both practitioner and researcher.

67

1. Release cycle matters. According to the results of PQ2, fixing commits are
small with less than 14.28% of fixing commits in the package-side fixing
release. I suspect that vulnerability fix repackage is a cause for lags. Hence,
developers of the vulnerable packages are recommended to release fixes as
soon as they have applied the fix, if not, they should highlight these fixes
when bundling the fix. Additionally, from 10 randomly selected vulner-
abilities, I found that discussions between developers did not include an
explicit mention of the vulnerability, i.e., GitHub issue, commit, and pull
request. Since developers bundled the fix with other updates, developers
may have been unaware. In summary, researchers should provide strategies
for making the most efficient update via the release cycle. For example,
(i) releasing an emergency patch that does not introduce any new features
for security fixes to maintain backward compatibility and (ii) providing a
security support for an active version, i.e., long-term-release version. Fur-
thermore, practitioners can upgrade security fixes as first class citizens, so
that the vulnerability fix can travel quicker throughout the ecosystem.

2. Awareness is important. According to PQ1 and RQ1, 64.50% of fixes are
a package patch landing. However, clients are more likely to have client
major landing and client minor landing, i.e., 22.37% and 36.84%, than the
patch client landing, i.e., 21.28%. Security fixes need to be highlighted in
the update note, as a possible reason is for failure to update because client
developers are more interested in major features that are highlighted in
an update. Recently, some open source communities start to make tools
to highlight the vulnerability problems in a software ecosystem. GitHub
[42, 47] made a new function for notifying a new vulnerability from the
dependency list of clients by using a bot. However, GitHub stated that
the tool will not be able to catch everything and send the alert notification
within a guaranteed time frame. Also, npm [94] made a new command for
listing the vulnerability information in downloaded dependencies of clients
and try to automatically fix them called npm audit. However, there are
some cases that npm audit does not work. For example, the immediate
dependency does not adopt the package-side fixing release from the vulner-
able package [95]. In these cases, a manual review is required. Thus, client

68

developers have to wait for the propagation of the fixing release, i.e., a lag
exists. According to RQ1, 1,389 of 5,417 clients, i.e., 25.64%, decided to
remove vulnerable dependencies to mitigate the risk of vulnerabilities. In-
stead of waiting for the fix, clients might remove the vulnerable dependency
if they are able to find a similar package as a replacement or do not want
to use the vulnerable dependency anymore.

From a result of PQ2, explicit package-side fixing release with a highlight
of the vulnerability is needed to speed up the adoption. In summary,
researchers and practitioners need to provide developers more awareness
mechanisms to allow quicker planning of the update. The good news is cur-
rent initiatives like GitHub security are trending towards this.

3. Migration cost effort. From my first finding of RQ2, the package-side fixing
release in the latest lineage suffers more lags than the supported lineage
in terms of days. A possible reason is that migrating to the latest version
of packages required a new testing process that incurs some cost for the
downstream clients. This also might be due to the risk from using the
latest version as sometimes they are unstable, introducing new bugs, or
breaking changes.

In terms of security, according to the official documentation of npm [93],
when a security threat is identified, the following severity policy is put into
action: (a) P0: Drop everything and fix!, (b) P1: High severity, schedule
work within 7 days, (c) P2: Medium severity, schedule work within 30 days,
(d) P3: Low severity, fix within 180 days. Surprisingly, the second finding
of RQ2 shows evidence that low severity fixes are adopted quicker than
medium severity fixes. A possible reason for the quicker adopting of low
severity could be because the fix is easier to integrate into the application.
In summary, researchers and practitioners that are package developers in
npm seem to require additional time before updating their dependencies.
Although migrating to the latest version of packages might require extra
effort, they still have to prioritize their works and consider adopting the
vulnerability fixes if possible.

69

5.2 Threats to Validity

Internal Validity - I discuss three internal threats. The first threat is the correct-
ness of the tools and techniques used in this study. I use the listed dependencies
and version number as defined in the package.json meta-file. The threat is that
sometimes some dependencies are not listed or the semantic version is invalid
and vice-versa, so I applied a filter to remove clients that do not follow the se-
mantic versioning, thus making this threat minimal. The second threat is the
tools used to implement my defined terminology (i.e., numpy, scipy, gitpython,
and semantic-version). To mitigate this, I carefully confirmed my results by
manually validating the results for RQ1 and RQ2, then also manually validating
results with statistics on the npm website. For the existing tool for suggesting
the package-side fixing release like npm audit, I found that this tool was inappro-
priate to use in this work due to its limitation of the package-lock.json file is
required for analyzing repositories, which only 2.27% of repositories of the dataset
and the tool assumes the latest information. Unlike my work, I analyzed the data
available in the historical snapshot. As the correctness of dependency relations
depends on getting all dependencies, the final internal threat is the validity of my
collected data. In this study, my ecosystem is made up of packages and clients
that were either affected directly or transitively by at least a single vulnerability.
I also make sure that the packages and their repositories are actually listed on a
npm registry. I are confident that the results of RQ2 are not affected by invalid
data.

External Validity - The main external threat is the generality of other results to
other ecosystems. In this study, I focused solely on the npm JavaScript ecosystem.
However, my analysis is applicable to other ecosystems that have similar package
management systems, e.g., PyPI for Python, Maven for Java. Immediate future
plans include studying the lags in other ecosystems. Another threat is the sample
size of the analyzed data. In this study, I analyzed only 1,290 vulnerability reports
with package-side fixing releases from 2,373 extracted reports from snyk.io. This
small size of sample data might not be able to represent the population. However,
I are confident of the data quality and reduced bias as I followed strict methods
to validate by two authors for PQ1, PQ2, and RQ1 data.

Construct Validity - The key threat is that there may be other factors apart

70

from the two factors, i.e., lineage freshness and vulnerability severity. These
factors are based on prior studies, i.e., measuring of dependency freshness from
Cox et al. [23], exploring the impact of vulnerability to transitive dependencies
from Kikas et al. [64], responding to a vulnerability NPM [93]. For future work,
I would like to investigate other factors.

6 Summary

Security vulnerability in third-party dependencies is a growing concern for soft-
ware developers as the risk of it could be extended to the entire software ecosys-
tem. To ensure quick adoption and propagation of a fixing release, I conduct an
empirical investigation to identify lags that may occur between the vulnerable
release and its fixing release from a case study of npm JavaScript ecosystem. I
found that the package-side fixing release is rarely released on its own, with up to
85.72% of the bundled commits in a package-side fixing release being unrelated
to the fix (Chapter 5). I then found that a quick package-side fixing release (i.e.,
package patch landing) does not always ensure that a client will adopt it quicker,
with only 17.69% of clients matching a package patch landing to a client patch
landing (Chapter 6). Furthermore, factors such as the lineage freshness and the
vulnerability severity have a small effect on its propagation (Chapter 6).

In addition to theses lags that I identified and characterized, this chapter lays
the groundwork for future research on how to mitigate these propagation lags in
an ecosystem. I suggest that researchers should provide strategies for making the
most efficient update via the release cycle. Practitioners also need more awareness
to allow quicker planning of the update. Potential future avenues for researchers
include (i) a developer survey to a better understanding of the reason for releasing
and adopting fixes, (ii) a performance improvement plan for highlighting the
fixing release tool, (iii) a tool for managing and prioritizing vulnerability fixing
process. As a result, Chapter 7 introduces the vulnerability assessment tools for
prioritizing vulnerability fixing process by detecting vulnerable codes and their
execution traces inside vulnerable packages.

71

7 | Vulnerability Assessment
Tools

1 Introduction

As of 2020, the Node.js package manager (i.e., npm) is reported to serve over 1.3
million packages to roughly 12 million developers, who download such packages 75
billion times a month, and all at a growing rate [132]. Furthermore, as evidence of
its influence, the industry giant Microsoft’s GitHub had completed its acquisition
of npm earlier in April, 2020.

Raising the awareness for developers to quickly update their third-party de-
pendencies is now regarded seen as the priority [64, 68], especially if the threat
includes malice intent. As well as fixing bugs and adding new features, migration
to a new version (i.e., update) sometimes includes fixes to prevent these threats.
Such threats on dependency are regarded as vulnerable dependency. Recent epi-
demic vulnerabilities such as heartbleed [1] are examples of how vulnerable
dependencies can affect all users in an ecosystem of users such as the npm ecosys-
tem. Recent studies have shown evidence that known vulnerabilities can affect
both open source and industrial applications alike [129].

Most detection methods for vulnerabilities has been at meta-detection [32,
33, 42, 64, 94, 147]. Meta-detection capabilities rely on the assumption that
the metadata associated to Open Source Software (OSS) libraries (e.g., name,
version), and to vulnerability descriptions (e.g., technical details, list of affected
components) are always available and accurate. The metadata, which are used
to map each library onto a list of known vulnerabilities that affect it, are often

72

incomplete, inconsistent, or missing altogether. Recent studies [52, 109, 146] have
supported the claim of overestimation of vulnerability alerts, where the client does
not actually call the vulnerable code. Ponta et al. [109] showed that, for Java
projects, many clients do not actually call the affected function.

Ponta et al. [108, 109] proposed Eclipse-Steady , a code-centric and usage-based
approach to detect open source vulnerabilities. The Eclipse-Steady project [36]
is able to identify, assess and mitigate open source dependencies with known vul-
nerabilities for Java and Python industry grade applications. It supports software
development organizations in regard to the secure use of open source components
during application development. A code-centric approach reduces the number of
false positives and false negatives as it accounts for the actual presence of vulner-
able constructs (i.e., constructs that are modified by the patch), no matter where
they occur [108, 109]. Having identified the vulnerable constructs, it is then pos-
sible to establish whether they are reachable in the context of an application
thereby assessing the potential impact of the vulnerability.

Lauinger et al. [70] provides evidence that JavaScript issues are prevalent in
most web applications, strengthening the argument for a Node.js code-centric
solution. Due to the dynamic event-based nature of JavaScript code, the perfor-
mance of a code-centric approach is unknown.

To address this gap, in this chapter, I present two supporting tools to de-
tect open source vulnerabilities and their reachability in the Node.js application.
Section 2 present a code-based vulnerability detection in Node.js applications
by extending the industry-grade tool (i.e., Eclipse-Steady). Section 3 present a
prototype of a vulnerability function reachability detection tool (i.e., SōjiTantei).

2 Eclipse-Steady : Node.js Vulnerable Code De-
tection Extension

2.1 Overview

In this section, I present an experience report on a code-centric approach to detect
open source vulnerabilities using bill of materials to determine whether vulnerable
code is repackaged within Node.js applications. First, I discuss the challenges

73

associated with the construction of bill of materials of Node.js applications. I
then propose my solution to counter these challenges. To evaluate my approach,
I perform a case study on 65 Node.js applications under development at SAP.
Preliminary results show that my method is viable, with vulnerable code from five
vulnerabilities being detected in 18 applications under development. The study
highlights three lessons learned and the challenges that require attention by both
researchers and practitioners dealing with Node.js applications and JavaScript in
general.

Table 7.1: Defined List of Constructs in hierarchical chain for Node.js Applica-
tions. This is based on Figure 7.1 and Listing 7.1

Construct Type Description Fully Qualified Name

Package (PACK) Package and Directory name ProjectA
Module (MODU) File name ProjectA.utils.util_b
Function (FUNC) Function name with arguments ProjectA.utils.util_b.buy(item)
Class (CLAS) Class name with extended class ProjectA.utils.util_b.Car()
Method (METH) Method name with arguments ProjectA.utils.util_b.Car().drive(distance,direction)
Constructor (CONS) Constructor name with arguments ProjectA.utils.util_b.Car().constructor(name,age)
Object (OBJT) Object name ProjectA.utils.util_b.item_list

2.2 Perils of JavaScript Node.js Analysis

Analysis of JavaScript code is not trivial, as server-side Node.js applications (in-
cluding npm packages) involve sockets, streams, and files performed in an asyn-
chronous manner, where the execution of listeners is triggered by events [77]. The
challenge for such dynamic code is the proper identification of a function call,
which has been the issue for static analysis tools [28, 127]. Moreover, JavaScript
allows anonymous functions, i.e., functions without a name [136]. To avoid this
complexity of the reachability analysis, my approach is based on the detection of
vulnerable code.

I reuse the approach proposed by Ponta et al. [108, 109], where a vulnerabil-
ity is detected whenever an application dependency contains program constructs
(such as methods) that were modified, added, or deleted to fix that vulnerability.
I extend Eclipse-Steady to support the analysis of JavaScript code [86]. In par-

74

ticular, I add the ability to construct the list of program constructs modified to
fix JavaScript vulnerabilities, as well as the list of program constructs which are
part of a JavaScript application and dependencies (its bill of materials).

2.3 Bill of Materials for Node.js

When compared to the classical model (i.e., Java or C++), JavaScript does not
provide a true class implementation. Instead, it has only the object construct with
its private property (i.e., prototype) to imitate the constructs from the classical
model [140]. A program construct is defined as a set of structural elements
with a language, a type, and a unique fully-qualified name identifier as defined
in Ponta et al. [108, 109].

Constructs for a Node.js application

1 class Car {
2 constructor(name , age) { ...
3 }
4 drive(distance , direction) { ...
5 }
6 }
7 var item_list = { ...
8 }
9 function buy(item) { ...

10 }

Listing 7.1: Example of a class of util_b.js

Figure 7.1 illustrates a hierarchical structure of a Node.js project, which will
be used as my running example. Complementary, Listing 7.1 shows a code snippet
from the JavaScript file util_b.js of Figure 7.1. I use these running examples
to explain my proposed constructs.

Table 7.1 shows a summary of the seven construct types I use for Node.js
applications. I now explain each construct in detail. The PACK construct rep-
resents an application scope and its internal directories e.g., ProjectA, /utils.
The MODU construct represents a JavaScript file in an application e.g., util_a.js.
The FUNC construct represents a function declaration in a MODU e.g., buy(item).

75

/ProjectA

/utils

util_a.js util_b.js

index.js package.json README.md

/node_modules

/ms

/moment

/debug

/src/node.js Vulnerable construct in debug:
debug.src.node.exports.formatters.o(v)

Figure 7.1: Running example of the Node.js project with its hierarchical structure.

The CLAS construct represents a class declaration in a MODU e.g., Car(). The
METH construct represents a method declaration in a CLAS e.g., drive(distance,
direction). The CONS construct represents a constructor declaration in a CLAS
e.g., constructor(name, age). The OBJT construct represents an object in a
MODU e.g., item_list.

As shown in Table 7.1, I use the PACK construct (i.e., ProjectA) hierarchy
to form my fully qualified name. Since JavaScript does allow for anonymous
functions, classes, or objects, I use the (LoC) position for the fully-qualified name
of anonymous constructs.

Dependency Constructs and their Features

The program constructs defined in Section 2.3 are also used to obtain the bill
of materials of the third-party dependencies that are contained within the appli-
cation (i.e., npm package). Following my running example in Figure 7.1, I use
the package.json configuration file and the nodes_modules directory. In my
example, the vulnerable construct is in the debug package at the OBJT level (i.e.,

76

debug.src.node.exports.formatters.o(v))

1 ...
2 },
3 "dependencies": {
4 "moment": "2.25.3"
5 },
6 "devDependencies": {
7 "debug": "3.0.0"
8 },
9 ...

Listing 7.2: Dependency snippet from package.json

Listing 7.2 shows that my example ProjectA depends on the packages debug
and moment. On top of collecting the bill of materials of each dependency, I
analyze them according to two features. The first is related to whether or not
the dependency will be used in production. There are two types of dependencies.
Runtime dependencies (i.e., moment package) are those intended to be used in
production. Test dependencies (i.e., debug package) are intended as development-
only packages, unneeded in production.

1 ProjectA@1 .0.0 /ProjectA
2 |--- debug@4 .1.1
3 | |--- ms@2 .1.2
4 |--- moment@2 .25.3

Listing 7.3: Dependency tree of ProjectA

The second feature is the dependency tree depth. Listing 7.3 shows the de-
pendency tree that depicts the relationships among the packages debug, moments
and ms. There are two types of dependencies: direct and transitive. Direct de-
pendencies are directly required by the application. As shown in the example,
the packages debug and moment are direct dependencies and are listed in the
package.json file. Transitive dependencies are not directly required by the ap-
plication but are required by its dependencies. As shown in Listing 7.3, the ms
package is a transitive package required by debug.

77

Table 7.2: Experimental Dataset

OSS npm package vulnerabilities

number of vulnerabilities 60
number of vulnerable package 24
number of valid vulnerabilities 32
number of valid vulnerable package 15

Industrial Node.js applications

number of applications 65
number of valid application 42

2.4 Case Study of Node.js Applications

To evaluate my proposed constructs, I conducted an assessment of vulnerable
code from under-development projects at SAP.

Experiment Design

The experiment consisted of the detection of a set of known open source vulner-
abilities against a set of industrial applications. Note that my experiment was
conducted in September, 2019.

Bill of materials extraction I create a bill of materials (BOM) which consists
of construct lists of the application and its dependencies (i.e., both direct and
transitive). To do this, I use ANTLR-v4 with a JavaScript grammar [7] to model
and extract the Node.js application source code. This grammar is able to partially
extract JavaScript with ES6 features at the beginning of my development (July
24, 2019).

To obtain the BOM from an application, I first download the application
dependencies by using npm install. I then explore and build the dependency
tree by looking at the package-lock.json file. After that, I use ANTLR-v4 to
extract the list of constructs from the JavaScript files of the application. Next,
I traverse the dependency tree depth-first to extract the list of constructs from

78

each dependency.

Vulnerability knowledge base I build my own Node.js vulnerability dataset
which includes the vulnerability information and its fix for Eclipse-Steady . I first
retrieve the list of Node.js vulnerabilities and their information from the National
Vulnerability Database (NVD) [27]. I selected only vulnerabilities that have fixes
and affect the top-100 most depended npm packages [96]. I then manually an-
notate the set of commits that correspond to the vulnerability fix. The set of
commits has to be confirmed as it appeared on the master branch of the library
git repository. Given the fix commit(s) for a vulnerability, I use my extension of
Eclipse-Steady to determine the changes that were applied to the code by the fix
commit. As shown in Table 7.2, I end up with 60 vulnerabilities in my study.

SAP Node.js Applications I used SAP GitHub enterprise to identify Node.js
applications suitable for my case study. I considered only applications under
development having the package.json file in their root directory. I selected a
sample of 65 applications, as shown in Table 7.2.

Table 7.3: Dependency Type information.

Dependencies Median Min Max Q1 Q3 SD

All Dep. 464.5 3 1,226 229.75 748.5 339.55
Runtime Dep. 108.5 0 586 40.75 193 146.18
Test Dep. 257 0 1,067 117.25 561.5 335.31

Table 7.3 shows the distribution of dependencies, showing more than a hun-
dred dependencies in each application by median (i.e. 464.5 dependencies) with
some applications having up to a thousand dependencies (i.e., 1,226 dependen-
cies). I observe that the number of test dependencies is bigger than the one of
runtime dependencies by two times (i.e., 257 > 108.5).

Results

I present my results in terms of: (i) detected vulnerabilities, and (ii) dependency
constructs.

79

Detected Vulnerabilities My prototype was able to detect five vulnerabilities
that affected the lodash and debug npm packages. Lodash [74] is "A modern
JavaScript utility library delivering modularity, performance, and extras". Ac-
cording to the npmjs website [92], lodash is a very popular package, with over
27,500,000 weekly downloads and 114,917 other packages that are dependent on
this package. Debug [138] is "A tiny JavaScript debugging utility modelled after
Node.js core’s debugging technique". According to the npmjs website [91], debug
is also considered a popular package, with over 66,800,000 weekly downloads and
34,494 dependents.

Dependency Constructs and features In my case study, my extension to
Eclipse-Steady could analyze 42 out of 65 applications.

Table 7.4 shows the distribution of the BOM extracted from the applications.
My prototype was able to extract more than a hundred constructs from an appli-
cation and its dependencies (i.e., 164.5 constructs). In more detail, the number of
application constructs is bigger than the one of dependency constructs by three
times (i.e., 75 > 26).

Table 7.4: Summary of Construct Information from the experiment.

Constructs Median Min Max Q1 Q3 SD

App Consts. 75 0 3,083 28.25 167.5 573.99
Dep Consts. 26 0 9,549 1.25 114.25 2,144.69
App + Dep Consts. 164.5 1 9,671 83.25 609.75 2,224.14

Table 7.5: Frequency count of Dependent Construct Changes per vulnerability

CVE
Construct Change Type

Added Modified Removed

CVE-2017-16137 FUNC:1 MODU:1, FUNC:1
CVE-2018-3721 FUNC:2, OBJT:1 MODU:2, FUNC:7
CVE-2018-16487 FUNC:2, OBJT:4 MODU:2, FUNC:4 FUNC:1
CVE-2019-10744 FUNC:1, OBJT:3 MODU:2, FUNC:5
CVE-2019-1010266 FUNC:1 MODU:2, FUNC:3

80

Table 7.6: Frequency distribution of Dependency Constructs based on the depen-
dency features.

Vulnerability
Runtime (26) Test (31)

Direct Trans. Direct Trans.

CVE-2017-16137 0 1 0 11
CVE-2018-3721 0 6 1 2
CVE-2018-16487 0 6 1 3
CVE-2019-10744 0 7 1 8
CVE-2019-1010266 0 6 1 3

0 26 4 27

Table 7.5 and Table 7.6 show the affected dependency constructs and their
construct type. Table 7.5 shows that the construct changes were detected at
the OBJT, MODU and FUNC level. I observe that the majority of the vulnerable
dependencies are transitive (28 runtime dependencies and 27 test dependencies),
i.e., usually out of the control of the application developer. I also observe that
most of the vulnerable constructs are detected in test dependencies.

2.5 Experience Report

My results indicate that a Node.js vulnerable code detector is viable. I now report
three lessons learned and their potential future roadmap.

Mapping JavaScript Object to Constructs

In my approach, I defined a more classical inheritance of constructs (like Java and
C++) on top of the JavaScript prototypal inheritance model. With this choice,
one of the main issues is to ensure that I capture all the different ways to create
objects and their constructs. For instance, there are at least six way to declare a
function in JavaScript [103]. Furthermore, it is still an open question whether the
implementation efforts required to extract the finer-level constructs (e.g., OBJT)
are worth. As shown in Table 7.5, in most of the cases the MODU constructs were
sufficient for the detection of the vulnerabilities.

Potential future avenues are two-fold. First, I would like to consider all the

81

ways in which objects can be created in JavaScript. Second, I intend to evalu-
ate the detection capabilities of my approach at different levels of the construct
hierarchy (i.e., MODU vs. FUNC vs. OBJT).

Node.js application reliance on the npm ecosystem

The applications in my case study rely on npm packages, and as such, are po-
tentially prone to attacks targeting popular packages, like the lodash and debug
packages. Since the npm ecosystem is considered one of the biggest and most
popular, it does also suffer the most in terms of known vulnerabilities, with the
GitHub Advisory Database reporting npm as having the highest number of vul-
nerabilities (i.e., 681) when compared to six other ecosystems [45].

With the GitHub acquisition of npm, I envisage that Node.js applications
will need to be aware of changes within the npm ecosystem. The creation and
evaluation of such reporting mechanisms are seen a future work.

Faster Technology Adoption

Officially known as ECMAScript, the JavaScript language has been in constant
evolution with its technology, with new specifications released every year. In
response, Node.js keeps up to date [63]. Since industrial projects struggle with
migration due to various migration or compatibility issue, it is a struggle for appli-
cations to keep up with the Node.js technology. For example, practitioners would
like to control or specify the supported platform of the language. As mentioned
in Section 5.2, the usage of npm packages requires industrial applications to keep
up with the npm ecosystem evolution. Like most tools, I find that JavaScript
static tools (such as ANTLRv4) struggle to keep up to date.

Potential future avenues for both researchers and practitioners should include
strategies that help application developers to properly manage backward com-
patibility or guidelines to keep up with the ever-evolving technology.

2.6 Summary

In this section, I present an experience report on the implementation of a code-
centric vulnerability detection tool for open source dependencies of Node.js ap-

82

plications. Using extracted constructs, I show that a code-centric detection tool
is viable, although there are challenges related to the JavaScript language and
the complexity of the application dependencies.

Future work would be to tackle the challenges of JavaScript analysis, or ex-
tending the tool to analyze the reachability of vulnerable constructs using static
and dynamic analysis techniques. I believe that my results and experience is
not only useful for the Eclipse-Steady project, but also in regards to the overall
analysis of Node.js applications and their npm packages.

3 SōjiTantei: Node.js Vulnerable Function Reach-
ability Detection

3.1 Overview

The prior work [146] showed that there is indeed an overestimation, with 73.3% of
outdated clients were actually not in direct danger from the threat. In this section,
I analyze the effect of vulnerabilities within the npm ecosystem on a larger scale
than the manual study of 60 clients from prior work. I develop SōjiTantei that
automatically detect the reachability of the vulnerable code in the application.
This tool is evaluated in two experiments: (i) a replication study for accuracy
and (ii) a larger scale analysis of vulnerabilities.

I refer to these projects as being clean (i.e., they do not execute the affecting
code in their client applications). Conversely, I refer to reached clients as projects
that adopt and execute the vulnerability code.

3.2 Experiments

I carried out two experiments. The first experiment was a replication study of
the prior work. For the first experiment, I evaluate the performance by using the
same data collected in Zapata et al. [146]. I plan to present a comparison of my
results against this manual work.

For the second experiment, my aim is to analyze a larger statistical sample
set of projects. I draw from the Decan et al. [32] study, using a stratified sample

83

Figure 7.2: Comparison of results between the study of Zapata et al. and this
study. Results show that my method does not capture all vulnerable projects.

from the 400 vulnerabilities. (with a confidence level of 95% and a confidence
interval of 5.1) The final dataset that matched my criteria included 780 clients
that were affected by 78 vulnerabilities, ending with 196 vulnerabilities. To ensure
a quality dataset, I then selected vulnerabilities that met the following criteria:
(i) were accessible to be downloaded (ii) had at least 10 clients (i.e., similar to
the prior study) that I could test, and (iii) the vulnerability had to have a fix in
which, I could identify the vulnerable function. It is important to note that the
detection of the vulnerable function was still performed manually. For my results,
I will report the proportion of projects using the vulnerable function. Note that
listed dependencies refer to clients that list the vulnerable dependency, but the
client code does not call any functions of the dependency. Furthermore, I also
investigate whether the vulnerable dependency was updated or not (i.e., for the
SōjiTantei performance).

Results for SōjiTantei performance. Table 7.7 presents results for the
first experiment. Importantly, I find that SōjiTantei has an accuracy of 83.3%
out of the 60 projects that were studied. This indicates that my method is reliable
for the sample projects. As shown in Figure 7.2, SōjiTantei is not perfect, as not
report all detected functions (i.e., these are reported as 10 false negatives).

1https://www.surveysystem.com/sscalc.htm

84

https://www.surveysystem.com/sscalc.htm

Table 7.7: Results of Performance Metrics

Metric Value Description
Statistical Measures

n 60 # projects
TN 39 True Negatives.
FN 10 False Negatives.
FP 0 False Positives.
TP 11 True Positives.

Performance Measures
Accuracy 0.833 (TN + TP)/N
Miss-classification rate 0.167 (FP + FN)/N
TP rate 0.524 TP/(FN + TP)
FP rate 0 FP/(TN + FP)
TN rate 1 TN/(TN + FP)
FN rate 0.476 FN/(FN + TP)

Additionally, it is important to mention that the average execution time for
the function-call extraction was 0.73 seconds per project, making this approach
significantly faster than the manual execution. This is especially significantly
faster when compared to a manual analysis task.

Results for the Case Study Table 7.8 shows the results of the analysis of
the output generated by SōjiTantei, finding that 249 of the clients were using the
vulnerable package, but not actually have a direct function-call to the vulnerable
code. Overall I found that a majority (61 vulnerabilities) of the clients did not
reach the vulnerable code. I found that 61 of the vulnerabilities had no clients that
were directly using the vulnerable code (0% reached). There were vulnerabilities
that reached at least one client (i.e., 1%∼99%). In this case, around a median of
42.86% of the total clients for each vulnerability had clean clients.

3.3 Summary

I summarize the implications of the study and its contributions as follows: (1) It
is likely for the client not to reach the dependency vulnerable code. (2) Automa-

85

Table 7.8: Summary of client classifications by SōjiTantei

Client Classification # Clients
Clean 249
Reached 33
Listed Only 445
No Data Available 53

Total 780

tion is promising with the potential for improvement. (3) I believe that knowing
that a client is clean can motivate client developers to update dependencies and
that the community can contribute to finding accurate methods to report vulner-
abilities threats. The immediate future is integrating SōjiTantei with the existing
automated pull request bot such as Dependabot.2

2https://dependabot.com/

86

https://dependabot.com/

Part III

Conclusion

87

8 | Conclusion

Third-party library usages have become common among software developers in
the open source software ecosystem. The npm ecosystem is one of the examples
of the ecosystem that provides over a million packages to more than 11 million
developers worldwide. These packages help developers to save their costs and
efforts to implement their desired features. Choosing high-quality packages is
essential for developers to avoid risks posed by vulnerability. However, it is hard
for developers to measure the quality of those packages and adopt high-quality
ones.

In this thesis, I focus on package quality characterization through the analysis
of packages in the npm ecosystem. To validate this thesis, I explore two dimen-
sions in the ecosystem: (1) the package selection and (2) the vulnerabilities and
fixes assessment.

For the first dimension, I identified the list of features that developers use for
assessing the package quality through the survey. As a result, developers could
use this feature list to help them while searching for new packages. I then em-
pirically identified a correlation between features and use them to predict the
runnability of packages. The results show that those features can predict the
runnability, which can be used in the package recommendation system. For the
second dimension, I identified a small portion of the release contents related to
the vulnerability fix. By analyzing the lags of adoption and propagation of fixes
in the dependency networks, I found that developers do not keep adopting the
new fixing release potentially due to the backward incompatibility risk. I also
found that the lineage freshness of the fixing release and the severity of the vul-
nerability influence lags in propagation. These results suggest that developers

88

need more awareness not only to the vulnerability but also to the fix. To help
developers to assess their vulnerability in their application, I created the tools to
identify vulnerable constructs in the source code and trace the vulnerable code
execution. The outcomes of this thesis contribute (1) understanding of different
perspectives on assessing the package quality, (2) understanding of how vulnera-
bility fixes are propagated within the ecosystem, and (3) vulnerability assessment
improvement by using tools. Based on the results of this thesis, I conclude that a
good package should be able to run in a developer environment and quickly react
to the security vulnerability threat. These two conclusions supply the knowledge
to maintainability and security aspects of ISO25010. Specifically, the first part
of this thesis contributes to the maintainability aspect as developers highlight
runnability for assessing the package quality. The second part of this thesis con-
tributes to security aspects as the proposed vulnerability assessment tools help
developers to detect vulnerable codes and their execution traces. This thesis also
adds knowledge about the lags of vulnerability fix adoption, which could affect
the package quality.

1 Implications and Suggestions

The main goal of this thesis is to help developers (1) choosing high-quality pack-
ages and (2) understanding lags from the adoption and propagation of vulnerabil-
ity fixes towards creating the high-quality application from their library usages.
To achieve these goals, I perform a developer survey and three empirical stud-
ies with two supporting tools. Therefore, the empirical findings from this thesis
could be valuable to both practitioners and researchers. I summarize the findings
and suggestion for each part as follows:

Part I Package Selection.

1. User and contributor of packages share similar view on which features they
use to assess package quality (Chapter 3).
Suggestion. Practitioners should take both user and contributor perspec-
tives into account to help the overall attractiveness of their packages.

89

2. Runnability of packages is one of the most important features for the high-
quality package apart from the documentation (Chapter 3).
Suggestion. Practitioners could consider runnability and other important
features for selecting good packages.

3. Package features from the same type have strong positive correlations.
Other feature combinations present trade-offs - in particular runnability
related features tend to be negatively correlated with other features (Chap-
ter 4).
Suggestion. Developers should aware of features that negatively correlated
with runnability, as it might potentially affect the package goodness.

4. Runnability of the package is predictable with high F1 score. Repository
features are particularly important for prediction the runnability (Chapter
4).
Suggestion. It is possible to use the predicted runnability feature to im-
prove the package recommendation system.

Part II Vulnerabilities and Fixes Assessment.

1. The vulnerability fix is not always released as its own patch update as it
released with unrelated commits (Chapter 5).
Suggestion. Researchers should provide strategies for making the most ef-
ficient update via the release cycle. Furthermore, practitioners can upgrade
security fixes as first class citizens, so that the vulnerability fix can travel
quicker throughout the ecosystem.

2. While the package release the fix as a patch, the client tend to slowly adopt
the fix and cause lags (Chapter 6).
Suggestion. Researchers and practitioners need to provide developers
more awareness mechanisms to allow quicker planning of the update. Since
clients keep stale dependencies, more migration effort is required to fix that
client due to the potential risk from backward incompatible changes.

3. Fixing releases that occur on the latest lineage and medium severity suffer
the most lags (Chapter 6).

90

Suggestion. Even though the dependencies are from the latest lineage,
developers still need to keep eyes on the vulnerability fix. While waiting
for the propagation of the fix, developers should assess the possibility of
executing the vulnerable code in their applications.

4. Creating the bill of materials of Node.js project is not trivial (Chapter 7).
Suggestion. As the standard of JavaScript is evolving every year, the
JavaScript static analysis tool has to keep up to date with the new specifi-
cation.

5. Majority of vulnerable functions in dependencies are not reachable from the
application (Chapter 7)
Suggestion. Developers could prioritize their task to adopt the fixing
release by using the reachability of the vulnerable code.

2 Opportunities for Future Research

In this thesis, I investigate (1) package selection and (2) vulnerabilities and fixes
assessment. However, there are still a lot of research aspect that can be done
in order to help developers towards creating the high-quality application. In the
following, I outline the research opportunities for the immediate future.

An exploration of new metrics that can measure the package quality.
In Chapter 3, I identified 30 features that important to one or both perspectives
and identified correlations between different perspectives. This list of features
were obtained from the prior studies, which might not be able to capture the
all characteristics of packages. I suggest that there is a need for new features
to capture both user and contributor perspectives, which complement the ex-
isting features such as package popularity, dependency usage, GitHub star, and
download count.

A package recommendation system based on the runnability of pack-
ages. In Chapter 3 and 4, I found that runnability of packages is one of the
most important feature from both user and contributor perspective for assessing

91

the package quality. I also found that there is a possibility to use the presented
features to predict the runnability of packages instead of actually install and run
the package. I envision that the package recommendation system could benefit
from the runnability features to improve the quality of the ranking result.

A developer survey to a better understanding of the reason for re-
leasing and adopting vulnerability fixes. In Chapter 6, the evidences show
that developer tend to keep their outdated dependencies even though their pack-
age client landing. I suspect that this phenomenon occur due to the potential
risk of incompatibility issues. Hence, a developer survey could help the research
community to understand the reason of the fix adoption.

A tool for managing and prioritizing the vulnerability fixing process.
In Chapter 6, I found that the severity of vulnerability do influence the lags of the
fix propagation. However, the fixing releases of medium severity vulnerabilities
are taking longer time than to low severity to propagate to through out the
dependency network. This suggest that there is the need for tool for managing
and prioritizing the vulnerability fixing process.

Extend the vulnerability detection tool to analyze the reachability of
vulnerable constructs by using both static and dynamic analysis. In
Chapter 7, I created two supporting tools to (i) detect the vulnerable construct
in the source code and (ii) trace the reachability of vulnerable function. In the
current state, the vulnerable construct detection tool is derived from Eclipse
Steady, the industry-grade tool which come with the web service for assessing
the risk of vulnerability online. Due to the limitation of the implementation,
I cannot include the vulnerable code execution tracer to this tool, but instead
implement the prototype tool for the empirical study by using the static analysis.
In the new future, implementing the vulnerable code execution tracer by using
both static and dynamic analysis is needed which could help developers to secure
their application dependencies.

92

References

[1] Heartbleed bug. http://heartbleed.com/, 2017. (Accessed on 06/16/2018).

[2] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad
Shihab. Why Do Developers Use Trivial Packages? An Empirical Case Study
on npm. In Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pages 385–395, 2017.

[3] Karan Aggarwal, Abram Hindle, and Eleni Stroulia. Co-evolution of project doc-
umentation and popularity within github. In Proceedings of IEEE/ACM Mining
Software Repositories Conference (MSR), pages 360–363, 2014.

[4] Amritanshu Agrawal, Tim Menzies, Leandro L. Minku, Markus Wagner, and Zhe
Yu. Better software analytics via “duo”: Data mining algorithms using/used-by
optimizers. Empirical Software Engineering (EMSE), 25(3):2099–2136, 2020.

[5] O. H. Alhazmi, Y. K. Malaiya, and I. Ray. Measuring, analyzing and predicting
security vulnerabilities in software systems. Computers and Security, 26(3):219–
228, 2007.

[6] Daniel A. Almeida, Gail C. Murphy, Greg Wilson, and Mike Hoye. Do software
developers understand open source licenses? In Proceedings of International
Conference on Program Comprehension (ICPC), May 2017.

[7] ANTLR. grammars-v4/javascript at master · antlr/grammars-v4. https://

github.com/antlr/grammars-v4/tree/master/javascript, 2017. (Accessed on
08/11/2020).

[8] Veronika Bauer, Lars Heinemann, and Florian Deissenboeck. A structured ap-
proach to assess third-party library usage. In Proceedings of International
Conference on Software Maintenance (ICSM). IEEE, September 2012.

93

http://heartbleed.com/
https://github.com/antlr/grammars-v4/tree/master/javascript
https://github.com/antlr/grammars-v4/tree/master/javascript

[9] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. How the Apache Community Upgrades Dependencies: An
Evolutionary Study. Empirical Software Engineering (EMSE), 20(5):1275–1317,
October 2015.

[10] Moritz Beller, Georgios Gousios, and Andy Zaidman. TravisTorrent: Synthe-
sizing travis CI and GitHub for full-stack research on continuous integration. In
Proceedings of IEEE/ACMMining Software Repositories Conference (MSR), May
2017.

[11] James Bennett. Choosing a javascript library. https://www.b-list.

org/weblog/2007/jan/22/choosing-javascript-library/. (Accessed on
01/13/2021).

[12] James T Bennett. Shellshock in the Wild - Shellshock in the
Wild. https://www.fireeye.com/blog/threat-research/2014/09/

shellshock-in-the-wild.html, 2014. (Accessed on 08/11/2020).

[13] Kelly Blincoe, Francis Harrison, Navpreet Kaur, and Daniela Damian. Reference
coupling: An exploration of inter-project technical dependencies and their charac-
teristics within large software ecosystems. Information and Software Technology
(IST), 110:174–189, 2019.

[14] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How
to Break an API: Cost Negotiation and Community Values in Three Software
Ecosystems. In 24th International Symposium on the Foundations of Software
Engineering (FSE), pages 109–120, 2016.

[15] Leo Breiman. Random forests. Machine Learning, 45(1):5, 2001.

[16] Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen. Tracking
known security vulnerabilities in proprietary software systems. In Proceedings
of the 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 516–519, mar 2015.

[17] Bodin Chinthanet, Serena Elisa Ponta, Henrik Plate, Antonino Sabetta,
Raula Gaikovina Kula, Takashi Ishio, and Kenichi Matsumoto. Code-based vul-
nerability detection in node.js applications: How far are we? In Proceedings of

94

https://www.b-list.org/weblog/2007/jan/22/choosing-javascript-library/
https://www.b-list.org/weblog/2007/jan/22/choosing-javascript-library/
https://www.fireeye.com/blog/threat-research/2014/09/shellshock-in-the-wild.html
https://www.fireeye.com/blog/threat-research/2014/09/shellshock-in-the-wild.html

IEEE/ACM International Conference on Automated Software Engineering (ASE),
Sept 2018.

[18] Istehad Chowdhury and Mohammad Zulkernine. Using complexity, coupling,
and cohesion metrics as early indicators of vulnerabilities. Journal of Systems
Architecture (JSA), 57(3):294–313, mar 2011.

[19] F. R. Cogo, G. A. Oliva, and A. E. Hassan. An empirical study of dependency
downgrades in the npm ecosystem. IEEE Transactions on Software Engineering
(TSE), pages 1–1, 2019.

[20] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge,
1988.

[21] E. Constantinou and T. Mens. Socio-technical evolution of the ruby ecosys-
tem in github. In Proceedings of International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 34–44, 2017.

[22] Eleni Constantinou and Tom Mens. An empirical comparison of developer reten-
tion in the RubyGems and npm software ecosystems. Innovations in Systems and
Software Engineering (ISSE), 13(2-3):101–115, 2017.

[23] J. Cox, E. Bouwers, M. Eekelen, and J. Visser. Measuring dependency freshness
in software systems. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering (ICSE), pages 109–118, 2015.

[24] Harald Cramér. Mathematical Methods of Statistics. Princeton University Press,
1946.

[25] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding in
GitHub. In Proceedings of ACM Conference on Computer Supported Cooperative
Work and Social Computing (CSCW), 2012.

[26] Barthélémy Dagenais and Martin P Robillard. Creating and evolving devel-
oper documentation: understanding the decisions of open source contributors.
In Proceedings of International Symposium on the Foundations of Software
Engineering (FSE), pages 127–136, 2010.

[27] National Vulnerability Database. Nvd - home. https://nvd.nist.gov/, 2007.
(Accessed on 08/11/2020).

95

https://nvd.nist.gov/

[28] James Davis, Arun Thekumparampil, and Dongyoon Lee. Node.fz: Fuzzing
the server-side event-driven architecture. In Proceedings of the 12th European
Conference on Computer Systems (EuroSys), page 145–160, 2017.

[29] Fernando López de la Mora and Sarah Nadi. Which library should I use? A metric-
based comparison of software libraries . In Proceedings of International Conference
on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pages
37–40, may 2018.

[30] Cleidson R.B. de Souza, Fernando Figueira Filho, Müller Miranda, Renato Pina
Ferreira, Christoph Treude, and Leif Singer. The social side of software plat-
form ecosystems. In Proceedings of Conference on Human Factors in Computing
Systems (CHI), page 3204–3214, 2016.

[31] Alexandre Decan, Tom Mens, and Maelick Claes. An empirical comparison of
dependency issues in OSS packaging ecosystems. In Proceedings of the 24th
International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 2–12, feb 2017.

[32] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact of security
vulnerabilities in the npm package dependency network. In Proceedings of the
15th International Conference on Mining Software Repositories (MSR), pages 181–
191, 2018.

[33] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the evolution of tech-
nical lag in the npm package dependency network. In Proceedings of the 34th
International Conference on Software Maintenance and Evolution (ICSME), pages
404–414, 2018.

[34] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. Keep Me
Updated: An Empirical Study of Third-Party Library Updatability on Android.
In Proceedings of ACM SIGSAC Conference on Computer and Communications
Security, pages 2187–2200, oct 2017.

[35] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey,
and J. Alex Halderman. The matter of heartbleed. In Proceedings of the 2014
Conference on Internet Measurement Conference (IMC). ACM, November 2014.

96

[36] Eclipse. Eclipse steady 3.1.11 (incubator project). https://eclipse.github.

io/steady/, 2018. (Accessed on 08/11/2020).

[37] Omar Elazhary, Margaret-Anne Storey, Neil Ernst, and Andy Zaidman. Do as i
do, not as i say: Do contribution guidelines match the GitHub contribution pro-
cess? In Proceedings of IEEE International Conference on Software Maintenance
and Evolution (ICSME), September 2019.

[38] Pablo Estefo, Jocelyn Simmonds, Romain Robbes, and Johan Fabry. The Robot
Operating System: Package reuse and community dynamics. Journal of Systems
and Software (JSS), pages 226–242, 2019. ISSN 01641212.

[39] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and
Frank Hutter. Auto-sklearn 2.0: The next generation. Computing Research
Repository (CoRR), abs/2007.04074, 2020.

[40] International Organization for Standardization. Iso - iso/iec 25010:2011 - systems
and software engineering — systems and software quality requirements and eval-
uation (square) — system and software quality models. https://www.iso.org/

standard/35733.html. (Accessed on 08/30/2021).

[41] Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh. Noise
and heterogeneity in historical build data: an empirical study of travis CI. In
Proceedings of IEEE/ACM International Conference on Automated Software
Engineering (ASE), September 2018.

[42] GitHub. About security alerts for vulnerable de-
pendencies. https://help.github.com/articles/

about-security-alerts-for-vulnerable-dependencies/, 2017. (Accessed on
08/11/2020).

[43] GitHub. How security alerts are keeping your code safer. https://github.blog/
2018-03-21-security-alerting-a-first-look-at-community-responses/,
2018. (Accessed on 08/11/2020).

[44] GitHub. Viewing and updating vulnerable dependencies
in your repository. https://help.github.com/articles/

viewing-and-updating-vulnerable-dependencies-in-your-repository/,
2018. (Accessed on 08/11/2020).

97

https://eclipse.github.io/steady/
https://eclipse.github.io/steady/
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://github.blog/2018-03-21-security-alerting-a-first-look-at-community-responses/
https://github.blog/2018-03-21-security-alerting-a-first-look-at-community-responses/
https://help.github.com/articles/viewing-and-updating-vulnerable-dependencies-in-your-repository/
https://help.github.com/articles/viewing-and-updating-vulnerable-dependencies-in-your-repository/

[45] GitHub. Github advisory database. https://github.com/advisories, 2019.
(Accessed on 08/11/2020).

[46] GitHub. The state of the octoverse | the state of the octoverse explores a year
of change with new deep dives into developer productivity, security, and how we
build communities on github. https://octoverse.github.com/, 2020. (Accessed
on 05/31/2021).

[47] GitHub. Keep all your packages up to date with de-
pendabot - the github blog. https://github.blog/

2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/,
2020. (Accessed on 10/09/2020).

[48] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of
IEEE/ACM Mining Software Repositories Conference (MSR), pages 233–236,
2013.

[49] H. Guercio, V. Stroele, J. M. N. David, R. Braga, and F. Campos. Complex
network analysis in a software ecosystem: Studying the eclipse community. In
Proceedings of International Conference on Computer Supported Cooperative
Work in Design (CSCWD), pages 618–623, 2018.

[50] Foyzul Hassan and Xiaoyin Wang. Mining readme files to support automatic
building of java projects in software repositories. In Proceedings of International
Conference on Software Engineering Companion (ICSE-C), May 2017.

[51] Joseph Hejderup. In Dependencies We Trust: How vulnerable are dependencies in software modules?
Master’s thesis, Delft University of Technology, 2015.

[52] Joseph Hejderup, Arie van Deursen, and Georgios Gousios. Software ecosys-
tem call graph for dependency management. In Proceedings of International
Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER), page 101–104, 2018.

[53] Andre Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stephane Ducasse,
and Marco Tulio Valente. How Do Developers React to API Evolution? The
Pharo Ecosystem Case. In Proceedings of the 31st International Conference on
Software Maintenance and Evolution (ICSME), pages 251–260, 2015.

98

https://github.com/advisories
https://octoverse.github.com/
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/

[54] Eric Horton and Chris Parnin. Gistable: Evaluating the executability of python
code snippets on github. In Proceedings of IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 217–227, 2018.

[55] Md Monir Hossain, Nima Mahmoudi, Changyuan Lin, Hamzeh Khazaei, and
Abram Hindle. Executability of python snippets in stack overflow. arXiv preprint
arXiv:1907.04908, 2019.

[56] Michael Howard and David Leblanc. Writing Secure Code. Microsoft Press,
Redmond, Wash, 2003. ISBN 978-0735617223.

[57] Kaifeng Huang, Bihuan Chen, Bowen Shi, Ying Wang, Congying Xu, and Xin
Peng. Interactive, effort-aware library version harmonization. In Proceedings of
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), pages 518–529, nov 2020.

[58] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential Model-Based
Optimization for General Algorithm Configuration. In Learning and Intelligent
Optimization (LION), pages 507–523, Berlin, Heidelberg, 2011. ISBN 978-3-642-
25566-3.

[59] Akinori Ihara, Daiki Fujibayashi, Hirohiko Suwa, Raula Gaikovina Kula, and
Kenichi Matsumoto. Understanding When to Adopt a Library: A Case Study on
ASF Projects. In International Conference on Open Source Systems (OSS), pages
128–138, 2017.

[60] Shohei Ikeda, Akinori Ihara, Raula Gaikovina Kula, and Kenichi Matsumoto.
An empirical study of README contents for JavaScript packages. IEICE
Transactions on Information and Systems, E102.D(2):280–288, February 2019.

[61] Saket Dattatray Joshi and Sridhar Chimalakonda. RapidRelease - a dataset of
projects and issues on github with rapid releases. In Proceedings of IEEE/ACM
Mining Software Repositories Conference (MSR), May 2019.

[62] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. The promises and perils of mining GitHub.
In Proceedings of IEEE/ACM Mining Software Repositories Conference (MSR),
2014.

99

[63] William Kapke. Node.js es2015/es6, es2016 and es2017 support. https://node.
green/, 2016. (Accessed on 08/11/2020).

[64] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. Structure
and Evolution of Package Dependency Networks. In Proceedings of the 14th
International Conference on Mining Software Repositories (MSR), pages 102–112,
2017.

[65] Naoki Kobayakawa and Kenichi Yoshida. How GitHub contributing.md con-
tributes to contributors. In Proceedings of Computer Software and Applications
Conference (COMPSAC), July 2017.

[66] William H Kruskal and W Allen Wallis. Use of Ranks in One-Criterion Variance
Analysis. Journal of the American Statistical Association, 47(260):583–621, dec
1952. ISSN 0162-1459.

[67] R. G. Kula, C. De Roover, D. M. German, T. Ishio, and K. Inoue. A gen-
eralized model for visualizing library popularity, adoption, and diffusion within
a software ecosystem. In Proceedings of International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 288–299, 2018.

[68] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. Do developers update their library dependencies? Empirical Software
Engineering (EMSE), 23(1):384–417, 2018.

[69] Enrique Larios Vargas, Maurício Aniche, Christoph Treude, Magiel Bruntink, and
Georgios Gousios. Selecting third-party libraries: the practitioners’ perspective.
In Proceedings of ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 245–
256, nov 2020. doi: 10.1145/3368089.3409711.

[70] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson,
Christo Wilson, and Engin Kirda. Thou Shalt Not Depend on Me: Analysing
the Use of Outdated JavaScript Libraries on the Web. In Proceedings of the 24th
Network and Distributed System Security Symposium (NDSS), 2017.

[71] Timothy C Lethbridge, Janice Singer, and Andrew Forward. How software engi-
neers use documentation: The state of the practice. IEEE Software, 20(6):35–39,
2003.

100

https://node.green/
https://node.green/

[72] Frank Li and Vern Paxson. A large-scale empirical study of security patches.
In 24th ACM SIGSAC Conference on Computer and Communications Security
(CCS), page 2201–2215, 2017.

[73] Mario Linares-Vásquez, Gabriele Bavota, and Camilo Escobar-Velásquez. An
Empirical Study on Android-related Vulnerabilities. In Proceedings of the 14th
International Conference on Mining Software Repositories (MSR), pages 2–13,
2017.

[74] Lodash. lodash/lodash: A modern javascript utility library delivering modularity,
performance, & extras. https://github.com/lodash/lodash, 2012. (Accessed
on 08/11/2020).

[75] Mircea Lungu. Towards reverse engineering software ecosystems. In Proceedings
of International Conference on Software Maintenance (ICSM), September 2008.

[76] Christian Macho, Shane McIntosh, and Martin Pinzger. Automatically repairing
dependency-related build breakage. In Proceedings of International Conference
on Software Analysis, Evolution and Reengineering (SANER), March 2018.

[77] Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static analysis of event-driven
node.js javascript applications. In Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), page 505–519, 2015.

[78] Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems – a system-
atic literature review. Journal of Systems and Software (JSS), 86(5):1294–1306,
May 2013.

[79] Samim Mirhosseini and Chris Parnin. Can automated pull requests encourage
software developers to upgrade out-of-date dependencies? In Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 84–94, oct 2017.

[80] Samim Mirhosseini and Chris Parnin. Docable: Evaluating the executability of
software tutorials. In Proceedings of ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), page 375–385, 2020.

101

https://github.com/lodash/lodash

[81] Mitre Corporation. CVE - Common Vulnerabilities and Exposures (CVE). https:
//cve.mitre.org/, 2018. (Accessed on 08/11/2020).

[82] Mitre Corporation. CWE - Common Weakness Enumeration. https://cwe.

mitre.org/, 2018. (Accessed on 08/11/2020).

[83] Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh. Using
others’ tests to avoid breaking updates. In Proceedings of IEEE/ACM Mining
Software Repositories Conference (MSR), 2020.

[84] Nuthan Munaiah, Felivel Camilo, Wesley Wigham, Andrew Meneely, and Meiyap-
pan Nagappan. Do bugs foreshadow vulnerabilities? An in-depth study of the
chromium project. Empirical Software Engineering (EMSE), 22(3):1305–1347,
2017.

[85] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Cu-
rating GitHub for engineered software projects. Empirical Software Engineering
(EMSE), 22(6):3219–3253, 2017.

[86] NAIST-SE. Naist-se/steady: Analyses your java and python applications for
open-source dependencies with known vulnerabilities, using both static analysis
and testing to determine code context and usage for greater accuracy. https:

//github.com/NAIST-SE/steady, 2020. (Accessed on 08/11/2020).

[87] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.
CrossRec: Supporting software developers by recommending third-party libraries.
Journal of Systems and Software (JSS), 161:110460, mar 2020.

[88] Viet Hung Nguyen, Stanislav Dashevskyi, and Fabio Massacci. An automatic
method for assessing the versions affected by a vulnerability. Empirical Software
Engineering (EMSE), 21(6):2268–2297, Dec 2016.

[89] Ehsan Noei, Mark D. Syer, Ying Zou, Ahmed E. Hassan, and Iman Keivanloo. A
study of the relation of mobile device attributes with the user-perceived quality of
android apps. Empirical Software Engineering (EMSE), 22(6):3088–3116, March
2017.

[90] NPM. npm. https://www.npmjs.com/, 2010. (Accessed on 05/13/2021).

102

https://cve.mitre.org/
https://cve.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://github.com/NAIST-SE/steady
https://github.com/NAIST-SE/steady
https://www.npmjs.com/

[91] npm. debug - npm. https://www.npmjs.com/package/debug, 2011. (Accessed
on 08/11/2020).

[92] npm. lodash - npm. https://www.npmjs.com/package/lodash, 2012. (Accessed
on 08/11/2020).

[93] NPM. Responding to Security Threats and Critical Up-
dates . https://www.npmjs.com/policies/security#

responding-to-security-threats-and-critical-updates, 2016. (Accessed
on 08/11/2020).

[94] NPM. Auditing package dependencies for se-
curity vulnerabilities. https://docs.npmjs.com/

auditing-package-dependencies-for-security-vulnerabilities, 2018.
(Accessed on 08/11/2020).

[95] NPM. Security vulnerabilities found requir-
ing manual review. https://docs.npmjs.com/

auditing-package-dependencies-for-security-vulnerabilities#

security-vulnerabilities-found-requiring-manual-review, 2018. (Ac-
cessed on 10/12/2020).

[96] npm. npm - most dependend upon. https://www.npmjs.com/browse/depended,
2020. (Accessed on 08/11/2020).

[97] National Institute of Standards and Technology. Secure software develop-
ment framework | csrc. https://csrc.nist.gov/Projects/ssdf. (Accessed on
06/08/2021).

[98] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Takashi Ishio, Daniel M.
German, and Katsuro Inoue. Search-based software library recommendation using
multi-objective optimization. Information and Software Technology (IST), 83:55–
75, mar 2017.

[99] M. Palyart, G. C. Murphy, and V. Masrani. A study of social interactions in
open source component use. IEEE Transactions on Software Engineering (TSE),
44(12):1132–1145, Dec 2018.

103

https://www.npmjs.com/package/debug
https://www.npmjs.com/package/lodash
https://www.npmjs.com/policies/security#responding-to-security-threats-and-critical-updates
https://www.npmjs.com/policies/security#responding-to-security-threats-and-critical-updates
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities#security-vulnerabilities-found-requiring-manual-review
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities#security-vulnerabilities-found-requiring-manual-review
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities#security-vulnerabilities-found-requiring-manual-review
https://www.npmjs.com/browse/depended
https://csrc.nist.gov/Projects/ssdf

[100] Amantia Pano, Daniel Graziotin, and Pekka Abrahamsson. Factors and ac-
tors leading to the adoption of a JavaScript framework. Empirical Software
Engineering (EMSE), 23(6):3503–3534, dec 2018.

[101] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. Vulnerable Open Source Dependencies: Counting Those That Mat-
ter. In Proceedings of the 12th International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 42:1–42:10, 2018.

[102] Jibesh Patra, Pooja N. Dixit, and Michael Pradel. ConflictJS: finding and under-
standing conflicts between JavaScript libraries. In Proceedings of International
Conference on Software Engineering (ICSE), pages 741–751, may 2018.

[103] Dmitri Pavlutin. 6 ways to declare javascript functions. https:

//dmitripavlutin.com/6-ways-to-declare-javascript-functions/, 2016.
(Accessed on 08/11/2020).

[104] Karl Pearson. X. on the criterion that a given system of deviations from the proba-
ble in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 50(302):157–175, 1900.

[105] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[106] V. Piantadosi, S. Scalabrino, and R. Oliveto. Fixing of security vulnerabilities in
open source projects: A case study of apache http server and apache tomcat. In
12th IEEE Conference on Software Testing, Validation and Verification (ICST),
pages 68–78, apr 2019.

[107] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
A large-scale study about quality and reproducibility of jupyter notebooks. In
Proceedings of IEEE/ACM Mining Software Repositories Conference (MSR),
pages 507–517, 2019.

[108] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. Beyond Metadata:
Code-centric and Usage-based Analysis of Known Vulnerabilities in Open-source

104

https://dmitripavlutin.com/6-ways-to-declare-javascript-functions/
https://dmitripavlutin.com/6-ways-to-declare-javascript-functions/

Software. In Proceedings of the 34th International Conference on Software
Maintenance and Evolution (ICSME), pages 58–68, 2018.

[109] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. Detection, assessment
and mitigation of vulnerabilities in open source dependencies. Empirical Software
Engineering (EMSE), 2020. doi: 10.1007/s10664-020-09830-x.

[110] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung, Thushari Atapattu,
and David Lo. Categorizing the content of GitHub README files. Empirical
Software Engineering (EMSE), 24(3):1296–1327, October 2018.

[111] Tom Preston-Werner. Semantic Versioning 2.0.0. https://semver.org/, 2009.
(Accessed on 08/11/2020).

[112] H. S. Qiu, A. Nolte, A. Brown, A. Serebrenik, and B. Vasilescu. Going farther
together: The impact of social capital on sustained participation in open source.
In Proceedings of International Conference on Software Engineering (ICSE), pages
688–699, 2019.

[113] S. Raemaekers, A. van Deursen, and J. Visser. Measuring software library stabil-
ity through historical version analysis. In Proceedings of the 28th International
Conference on Software Maintenance (ICSM), pages 378–387, Sept 2012.

[114] Brittany Reid, Christoph Treude, and Markus Wagner. Optimising the fit of
stack overflow code snippets into existing code. In Proceedings of Genetic and
Evolutionary Computation Conference (GECCO), page 1945–1953, 2020.

[115] Romain Robbes, Mircea Lungu, and David Röthlisberger. How Do Developers
React to API Deprecation?: The Case of a Smalltalk Ecosystem. In Proceedings
of the 20th International Symposium on the Foundations of Software Engineering
(FSE), pages 56:1–56:11, 2012.

[116] Martin P Robillard. What makes apis hard to learn? answers from developers.
IEEE Software, 26(6):27–34, 2009.

[117] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff Skowronek, and Linda
Devine. Exploring methods for evaluating group differences on the nsse and
other surveys: Are the t-test and cohen’sd indices the most appropriate choices.
In Proceedings of Annual meeting of the Southern Association for Institutional
Research. Citeseer, 2006.

105

https://semver.org/

[118] Mohamed Aymen Saied, Ali Ouni, Houari Sahraoui, Raula Gaikovina Kula, Kat-
suro Inoue, and David Lo. Improving reusability of software libraries through us-
age pattern mining. Journal of Systems and Software (JSS), 145(October 2017):
164–179, 2018. ISSN 01641212.

[119] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. On the reaction
to deprecation of 25,357 clients of 4+1 popular Java APIs. In Proceedings of the
32th International Conference on Software Maintenance and Evolution (ICSME),
pages 400–410, 2016.

[120] Yonghee Shin and Laurie Williams. An empirical model to predict security vulner-
abilities using code complexity metrics. In Proceedings of the 2nd International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages
315–317, 2008.

[121] Dan Sholler, Igor Steinmacher, Denae Ford, Mara Averick, Mike Hoye, and Greg
Wilson. Ten simple rules for helping newcomers become contributors to open
projects. PLOS Computational Biology, 15(9):e1007296, September 2019.

[122] Snyk. Vulnerability DB. https://snyk.io/vuln, 2015. (Accessed on
04/20/2020).

[123] Snyk. Denial of Service (DoS) - npm:connect. https://snyk.io/vuln/npm:

connect:20120107, 2017. (Accessed on 04/20/2020).

[124] Snyk. Insecure defaults in faye | snyk. https://snyk.io/vuln/npm:faye:

20121107, 2017. (Accessed on 04/20/2020).

[125] Snyk. Symlink attack due to predictable tmp folder names in npm | snyk. https:
//snyk.io/vuln/npm:npm:20130708, 2017. (Accessed on 04/20/2020).

[126] Igor Steinmacher, Marco Aurélio Gerosa, and David F. Redmiles. Attracting,
onboarding, and retaining newcomer developers in open source software projects.
In Proceedings of ACM Conference on Computer Supported Cooperative Work
and Social Computing (CSCW), number February, pages 1–4, 2014.

[127] Chungha Sung, Markus Kusano, Nishant Sinha, and ChaoWang. Static dom event
dependency analysis for testing web applications. In Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering
(FSE), page 447–459, 2016.

106

https://snyk.io/vuln
https://snyk.io/vuln/npm:connect:20120107
https://snyk.io/vuln/npm:connect:20120107
https://snyk.io/vuln/npm:faye:20121107
https://snyk.io/vuln/npm:faye:20121107
https://snyk.io/vuln/npm:npm:20130708
https://snyk.io/vuln/npm:npm:20130708

[128] Synopsys. Heartbleed Bug. http://heartbleed.com/, 2014. (Accessed on
08/11/2020).

[129] Synopsys. 2020 open source security and risk analysis (ossra) report |
synopsys. https://www.synopsys.com/software-integrity/resources/

analyst-reports/2020-open-source-security-risk-analysis.html, 2020.
(Accessed on 05/27/2020).

[130] Xin Tan, Minghui Zhou, and Zeyu Sun. A first look at good first issues on
GitHub. In Proceedings of ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE), pages
398–409, nov 2020.

[131] C. Teyton, J.-R. Falleri, and X. Blanc. Mining Library Migration Graphs. In
Proceedings of the 19th Working Conference on Reverse Engineering (WCRE),
pages 289–298, Oct 2012.

[132] the npm blog. npm blog: Next Phase Montage. https://blog.npmjs.org/post/
612764866888007680/next-phase-montage, 2020. (Accessed on 05/20/2020).

[133] Ferdian Thung, David Lo, and Julia Lawall. Automated library recommendation.
In Proceedings of Working Conference on Reverse Engineering (WCRE), number
October, pages 182–191, oct 2013.

[134] Tidelift. Libraries.io - The Open Source Discovery Service. https://libraries.
io/, 2017. (Accessed on 01/13/2021).

[135] Parastou Tourani, Bram Adams, and Alexander Serebrenik. Code of conduct in
open source projects. In Proceedings of International Conference on Software
Analysis, Evolution and Reengineering (SANER), February 2017.

[136] JavaScript Tutorial. Javascript anonymous functions. https://www.

javascripttutorial.net/javascript-anonymous-functions/, 2020. (Ac-
cessed on 08/11/2020).

[137] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9:2579–2605, November 2008. ISSN 1533-
7928 (electronic); 1532-4435 (paper).

107

http://heartbleed.com/
https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html
https://blog.npmjs.org/post/612764866888007680/next-phase-montage
https://blog.npmjs.org/post/612764866888007680/next-phase-montage
https://libraries.io/
https://libraries.io/
https://www.javascripttutorial.net/javascript-anonymous-functions/
https://www.javascripttutorial.net/javascript-anonymous-functions/

[138] Visionmedia. visionmedia/debug: A tiny javascript debugging utility modelled
after node.js core’s debugging technique. works in node.js and web browsers.
https://github.com/visionmedia/debug, 2011. (Accessed on 08/11/2020).

[139] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu,
Zhiliang Zhu, and Shing-Chi Cheung. Do the dependency conflicts in my project
matter? In Proceedings of ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE), pages
319–330, oct 2018.

[140] MDN web docs. Inheritance and the prototype chain - javascript
| mdn. https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Inheritance_and_the_prototype_chain, 2020. (Accessed on 08/11/2020).

[141] L. Williams, G. McGraw, and S. Migues. Engineering Security Vulnerability
Prevention, Detection, and Response. IEEE Software, 35(5):76–80, Sep. 2018.

[142] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. A Look at the Dynamics
of the JavaScript Package Ecosystem. In Proceedings of the 13th International
Conference on Mining Software Repositories (MSR), pages 351–361, 2016.

[143] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. What do developers search for on the web? Empirical Software
Engineering (EMSE), 22(6):3149–3185, December 2017.

[144] Bowen Xu, Le An, Ferdian Thung, Foutse Khomh, and David Lo. Why reinventing
the wheels? an empirical study on library reuse and re-implementation. Empirical
Software Engineering (EMSE), 25(1):755–789, September 2019.

[145] Di Yang, Aftab Hussain, and Cristina Videira Lopes. From query to usable
code: An analysis of stack overflow code snippets. In Proceedings of IEEE/ACM
Mining Software Repositories Conference (MSR), page 391–402, 2016. ISBN
9781450341868.

[146] Rodrigo Elizalde Zapata, Raula Gaikovina Kula, Bodin Chinthanet, Takashi
Ishio, Kenichi Matsumoto, and Akinori Ihara. Towards smoother library mi-
grations: A look at vulnerable dependency migrations at function level for npm
javascript packages. In Proceedings of IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 559–563, 2018.

108

https://github.com/visionmedia/debug
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

[147] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesus
Gonzalez-Barahona. An empirical analysis of technical lag in npm package de-
pendencies. In Proceedings of the 17th International Conference on Software
Reuse (ICSR), pages 95–110, 2018.

[148] Jiayuan Zhou, Shaowei Wang, Cor-Paul Bezemer, Ying Zou, and Ahmed E. Has-
san. Studying the association between bountysource bounties and the issue-
addressing likelihood of GitHub issue reports. IEEE Transactions on Software
Engineering (TSE), pages 1–1, 2020.

[149] Markus Zimmermann, Cristian Alexandru Staicu, Cam Tenny, and Michael
Pradel. Small world with high risks: A study of security threats in the npm
ecosystem. In Proceedings of USENIX Security Symposium, number February,
2019.

109

	Abstract
	Acknowledgements
	List of publications
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contributions
	Outline

	Related Studies
	I Package Selection
	Developer Survey on Goodness of Package
	Introduction
	Audience Perspectives of an npm package
	Developer Survey on Perspective

	Summary

	Package Quality Features and Runnability
	Introduction
	GH-Node.js: A Node.js Repository and Interaction Dataset
	Experiment Setup
	Runnable Code: Build and Run Tests
	Runnable Package: Install and Execute Code Snippets

	Correlating features by Perspective
	Predicting whether or not an npm package is runnable
	Discussion
	Threats to Validity
	Summary

	II Vulnerabilities and Fixes Assessment
	Package-side Fixing Release
	Introduction
	Concepts and Definitions
	Package-side Vulnerability Fixing Process
	Client-side Fixing Release
	Motivating Example

	Package-side Fix Commits and Landing: Preliminaries
	Data Collection
	Results to the Preliminary Study

	Summary

	Lags in the Adoption and Propagation of Package-side Fixes
	Introduction
	Model and Track Lags
	Empirical Evaluation
	Results to the Empirical Study
	Discussion
	Lessons Learned
	Threats to Validity

	Summary

	Vulnerability Assessment Tools
	Introduction
	Eclipse-Steady: Node.js Vulnerable Code Detection Extension
	Overview
	Perils of JavaScript Node.js Analysis
	Bill of Materials for Node.js
	Constructs for a Node.js application
	Dependency Constructs and their Features

	Case Study of Node.js Applications
	Experiment Design
	Results

	Experience Report
	Mapping JavaScript Object to Constructs
	Node.js application reliance on the npm ecosystem
	Faster Technology Adoption

	Summary

	SojiTantei: Node.js Vulnerable Function Reachability Detection
	Overview
	Experiments
	Summary

	III Conclusion
	Conclusion
	Implications and Suggestions
	Opportunities for Future Research

