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On Language Representation for Low-Resource
Neural Machine Translation∗

Ander Martínez

Abstract

In recent years, machine translation systems have taken a qualitative leap. This
leap is thanks to the introduction of systems based on neural networks. Neural
Machine Translation (NMT) systems have not only yielded unprecedented results,
which in certain cases are comparable to those of professional translators, but also
come with the promise of being general solutions. However, not all language pairs
are the same. If the number of parallel sentences is small, it is considered a low-
resource pair. The most popular datasets used as benchmarks in research are large
parallel corpora of related languages, such as French-English or English-German.
This thesis explores the problems of machine translation with respect to low-

resource pairs. We present the key elements of a low-resource machine translation
system and the critical decisions that have a great impact on the effectiveness of
the system. We propose a novel approach that combines subword-level segmen-
tation with character-level information in the form of character n-gram features
to construct subword representations for standard encoder-decoder models. We
use a custom algorithm to select a small number of effective binary character
n-gram features. We show the benefits and characteristics of the proposed ap-
proach through extensive experimentation. The thesis ends with several concrete
conclusions drawn from the experiments.
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Chapter 1.

Introduction

Language is a uniquely human trait that distinguishes us from other hominids and
animals. Ethnologue: languages of the world, an annual reference publication on
living languages, listed 7,139 languages in its 24rd edition [42]. Different societies
and human groups use different languages to communicate, based on various
reasons including cultural and historical background, perceived formality and/or
convenience. Languages are spoken, written or signed.
Translation is the rendering from one language into another [87]. In specialized

contexts, the term translation is usually restricted to written languages, while the
act of translating between spoken or signed languages is referred as interpretation.
Translation has been practiced since antiquity with various purposes, such as

assisting communication between different cultural groups or to import literature
works produced in a different language.
Translation is a specialized job because the translator needs to know both

source and target languages well. Moreover, an experienced translator will take
into consideration translation theory concepts such as fidelity and transparency.
Fidelity or faithfulness represents how faithful a translation is to the original, and
transparency represents how natural the resulting text is, or how likely it is for
the readers to realize that they are reading a translation. Often times, a text
needs to be re-structured or reformulated in order to sound natural in the target
language, and so a trade-off has to be made between fidelity and transparency.
The translation of technical or specialized texts requires that the translator know
the topic covered in the text and its specific vocabulary. Furthermore, translation
is a very time-consuming job, especially if the volume of text to be translated is
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high.
All types of public, specialized or not, may be interested in consuming transla-

tions. It may be for these reasons or others that machine translation has aroused
interest from the general public. Compared to other natural language processing
tasks, such as parsing, even people unfamiliar with the subject can appreciate
the usefulness of this technology.
In recent years, machine translation systems have taken a qualitative leap. This

leap is thanks to the introduction of systems based on neural networks. Neural
Machine Translation (NMT) systems have not only yielded unprecedented results,
which in certain cases are comparable to those of professional translators, but also
come with the promise of being general solutions. The most recent systems can
be trained to translate virtually any language pair if they are provided with a
parallel corpus with little or no specific preprocessing. However, not all language
pairs are the same. On the one hand, the distance between the languages must
be taken into account and, on the other, the volume of the parallel corpus. If the
number of parallel sentences is small, it is considered a "low-resource" pair. The
most popular datasets used as benchmarks in research are large parallel corpora
of related languages, such as French-English or English-German. These datasets
have millions of sentence pairs.
In this thesis, we explore the problems of machine translation with respect

to low-resource pairs. We present the key elements of a low-resource machine
translation system and the critical decisions that have a great impact on the
effectiveness of the system.
One of the main problems is identified to be in the representation of texts, and

we propose and evaluate a solution that significantly improves translation results.

1.1. Machine Translation
Starting in the 1950s-60s[119], the first machine translation systems used dictio-
naries and rules to produce translations under limited conditions (for a specific
domain and/or with a limited vocabulary). However, they soon realized the com-
plexity of the problem. Human language has ambiguity, metaphors, and puns.
The ALPAC (Automatic Language Processing Advisory Committee) report[31]
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Japanese English
犬は賢いよ。　 dogs are smart.
私の本はどこ？ where’s my book?
犬を見た。 I saw a dog.
犬が嫌いだ。 I hate dogs.
君の犬はどこ？ where’s your dog?

Figure 1.1.: An example of parallel corpus. The data suggests that "犬" can mean
"dog" or "dogs".

revealed the complexity of the problem and recommended directing resources
to tools to assist human translators. The possibilities of MT systems were also
limited by the hardware of that time.
At this time the problem of low-resource languages was already visible. Since

the systems required large dictionaries and standards written to measure by ex-
perts, most minority languages had fewer resources.
In the 90s, the investigation into Statistical Machine Translation (SMT) took

hold. One of the milestones of that time was the five IBM models[21]. One of
the strengths of statistical machine translation is that a system can be developed
with little or no knowledge of the languages involved. These systems build a
translation model from parallel corpora. Figure 1.1 shows an example of a small
parallel corpus that serves to illustrate how a statistical model could align the
words "犬" and "dog".
The quality of statistical machine translation systems depends on the amount

of data used to build them. The more data, the better the translation quality
(See Figure 1.2). These systems do not only use parallel corpora, but can also use
plain text or monolingual corpora to improve translations, as shown by Figure
1.2.
Going from needing dictionaries and experts to needing massive amounts of

data, problems persist for low-resource languages. Although monolingual corpora
may be readily available in large numbers, parallel corpora are less so.
Statistical translation systems have been refined in research until recent years,

being almost entirely replaced by neural machine translation systems.
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SMTs consist of various parts like translation models, language models, re-
ordering models, etc. The translation models model the possible translations of
each word in the source sentence, while language models model the probability
of a sequence of words in the target language, without considering the content of
the source sentence. In this way the language models can discard syntactically
incorrect or improbable sequences. The systems began to integrate neural models
as language models [14, 112, 88].
One can learn more about statistical translation systems by reading Jurafsky

and Martin [65] (Chapter 25) or Koehn [71].

1.2. Neural Machine Translation
Neural translation systems can be seen as a continuation of statistical systems.
When GPU computing made it practical to include neural language models in
SMT systems, the first hybrid systems were born.
Once the language model was replaced by a neural one, the next step was to

replace the translation models with neural networks, which allowed both models
to be integrated into one, training at the same time and allowing co-adaptation
[29].
Neural machine translation (NMT) has made remarkable progress in recent

years [66, 123, 8, 131] and has become a popular approach for general machine
translation tasks.
The improvement in performance and memory of the GPUs in recent years

has allowed to build larger and more robust models. Section 2.4.1 contains a
brief explanation of the different architectures and their evolution. Much of the
technology and techniques used in NMT come from the SMT era; as an example,
metrics such as BLEU, tokenizers, re-ranking etc. Some techniques have been
adapted to neural systems. For example Beam Search algorithm for NMT modes
is simpler than the one used in SMT systems [73].
Most recent research papers have replaced recurring networks (RNN) with self-

attention, since these give better results with longer sequences. Most of the sys-
tems that participated in the last WMT challenges [18, 19, 10, 11] are based on
Transformer[131]. As neural network performance improves, it is necessary to
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revisit techniques and preprocessing inherited from SMT systems. NMT systems
can be simplified by integrating some aspects of pre- and post-processing to con-
form an end-to-end system. As the entire system is based on neural networks,
advances in deep learning will also be reflected in NMT systems. In Chapter 2,
we discuss these issues.
According to Koehn and Knowles [72], NMT systems may need even more

data than SMT systems to achieve equivalent performance. Figure 1.2 shows this
trend.
In this dissertation we discuss some techniques that can improve the perfor-

mance of NMT systems in low-resource situations.

1.3. Low-Resource Neural Machine Translation
The term low-resource has been used in the NMT context to refer to language
pairs with relatively little data. However, I have not been able to find a clear
definition of what an low-resource pair is. From how many sentences or words
does a pair stop being low-resource?
Koehn and Knowles [72] include the plot in Figure 1.2 showing how their NMT

system performed worse than their SMT system under low-resource conditions. In
that specific case, compared to the SMT system, the pair stops being low-resource
when it performs better than the SMT system. The NMT system outperformed
the SMT at about 15 million target words. Considering an average of 27 words
per sentence calculated from Europarl v7, that gives us about 0.5M sentences
(555,555 sentences). Although in that case the definition is relative to the SMT
system, the term low-resource is often used without comparison.
I have researched the use of the term in various publications. As some publi-

cations measure the size of the corpus in target sentences and other words in the
target language, usually English, we consider an average of 27 words per sentence
to calculate the size of the corpus.
Most publications use the term with datasets of less than 400,000 sentences

[1, 34, 12, 45]. Some use it with less than 100,000 or 50,000[149, 24], and others
with less than 10,000[67, 56]. For cases of less than 10,000 sentences, the term
extremely low-resource is sometimes used.
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Figure 1.2.: Comparison of NMT and SMT with varying amounts of training
data. Figure from Koehn and Knowles [72].
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Another commonly used term is zero-shot translation, which consists of building
MT models using absolutely zero sentences. Monolingual data or data from other
languages are used for this. We discuss these models in more depth in Chapter 5.
A distinction must be made between low-resource pairs and low-resource lan-

guages. While low-resource pairs are those that have little parallel data, low-
resource languages are usually considered those that have few tools. For example,
according to Ethnologue [42], Mandarin Chinese and Spanish are the languages
with the most native speakers in the world. However, the Spanish-Chinese pair
can be considered low-resource as it has little public data available.
Thus, languages with a lack of tools such as tokenizers, morphological analyzers,

parsers, etc., may have the low-resource label.

1.4. Vocabulary
NMT systems take a sequence of source language tokens as inputs and predict a
sequence of target language tokens as corresponding translation outputs. Initially,
MT systems operated with individual punctuation marks and words, delimited
by spaces and punctuation marks. However, using this method results in very
large vocabularies, particularly for morphologically rich languages. As neural
machine translation systems are trained on GPUs and these have limited memory,
the vocabularies were limited to the most frequent words in the training data,
replacing the infrequent words with the UNK symbol, meaning unknown. The
tokens replaced by these unknown tokens are known as out-of-vocabulary (OOV)
words or tokens. NMT systems that operate on words are referred to as word-level
NMT.
Figure 1.3 shows the English word type count for a corpus of 3M sentences

(about 59.9M words). The data comes from English Europarl v7 [70]. In a
vocabulary of about 110K types, most types appear only three times or less in the
entire corpus and about 35% of the types are found only once. This distribution
responds to Zipf’s law. If the vocabulary were limited to 64,000 types, still half
of the types would appear 11 times or less. This demonstrates the vocabulary
problem in which a large part of the types are under-represented. The problem
is bigger with morphosyntactically complex languages.
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Figure 1.3.: English vocabulary type count. Most types are found only 3 times
or less in a 59.9M word corpus. About 35% of the types are found
only once.

There has been research on NMT systems that operate on character tokens,
usually referred to as character-level NMT systems [30, 80]. The type of token
on which the NMT systems operate (character, word...) is called translation
unit [146]. Although character-level systems solve the problem of having too
large vocabularies, they generate other types of problems [80]. The main one
of these problems is that they greatly increase the length of the sequences to
be processed. If the words of a language have an average of 7 characters, the
sequences of 10 words become sequences of 70 characters and the sequences of 50
words become sequences of 350. This increase in sequence length has an effect on
training and decoding latency. In addition, the distance of dependencies between
words increases and it is more difficult to map the sequences of characters with
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a meaning. Character-level systems require larger and deeper architectures to
achieve satisfactory results [28].
The granularity of input and output tokens can be smaller than words and

larger than character. Such translations units are known as subwords [116]. Re-
placing words with sequences of subwords has become a popular method. Sub-
word segmentation methods, such as byte-pair encoding (BPE), replace infre-
quent words with more frequent subword segments to limit vocabulary sizes.
Limiting vocabulary sizes is particularly important for morphologically complex
languages because their vocabularies may contain hundreds of thousands of en-
tries. The optimal size for a vocabulary depends on the particular training data.
As indicated by Denkowski and Neubig [38], NMT models trained on smaller cor-
pora tend to perform better with smaller BPE vocabularies, because subwords
with very low frequencies are avoided.
However, BPE segmentation does not consider the context of a word or its

morphemes. Subwords with similar surface forms are likely to contain the same
morphemes, but if these subwords are represented by unique IDs, their similarities
are not considered.
Character-level NMT can be regarded as an extreme case of subword segmen-

tation in which each subword corresponds to a single character. Character-level
systems can perform better transliteration results than subword-level systems, as
shown by Sennrich [115].
Sennrich [115] compared the character-level model proposed by Lee et al. [80]

and the BPE-to-character model proposed by Chung et al. [30] to their own BPE-
only model [117]. They concluded that character-level decoders “perform worse
at modelling morphosyntactic agreement, where information needs to be carried
over long distances.”
Cherry et al. [28] demonstrated that character-level models with large capacities

(large numbers of layers in their encoders and decoders) can outperform BPE
when their training datasets are very large (in their experiments, they considered
39.9 million sentence pairs). However, their model suffers from a disproportionate
reduction in speed.
In Chapter 4, we explore a novel training method for NMT models that allows

us to utilize the character n-gram information of each subword to learn corre-
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sponding embeddings. This method is described in detail in Section 4.3. Our
proposed models operate at the subword level and make use of short n-gram fea-
tures within subwords. We refer to the character n-gram features of subwords as
sub-subword features.

1.5. Parallel and monolingual corpora
We have already discussed the difficulty of collecting enough parallel data to
create a robust NMT model. To alleviate the lack of data, one option is to use
additional data, either parallel with a third auxiliary language, or monolingual
data. In Chapter 5 we discuss these methods.
Some research has shown that models trained with multiple language pairs

(multilingual models) can improve the performance of low-resource pairs, partic-
ularly when the target language is repeated in other pairs [63, 83, 46, 149].
Another method that works well on low-resource language pairs is back-translation

(BT) [118, 98, 43]. BT is a simple method that uses an NMT model to translate
sentences in a target language into source language sentences, allowing one to
synthesize a parallel corpus.
The quality of the data can also vary greatly. Some parallel corpora are cre-

ated on purpose by translators, or manually compiled and cleaned. Others are
the result of aligning sentences of two parallel documents. In this case, the trans-
lations may not be exact and may have additional or missing information (under-
or over-translation). Some corpora are compiled by web crawlers automatically,
and published without manual verification.
The noise problem can be particularly serious in the case of manual corpora.

Although some monolingual corpora are cleaned and standardized, others may
come from different sources, such as social networks or old books, and may not
follow standard or modern spelling, and may contain strange characters or coding
errors. Furthermore, often times, these corpora are automatically compiled by
web crawlers and filtered using language detection tools. These tools are fallible,
causing the corpus to contain text from other languages.
As an example, the Extended Common Crawl Hausa monolingual corpus, pub-

lished for the WMT 21 News Translation Task, contained large amounts of text
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from Japanese song lyrics written in Latin characters. This may be the result of
the language detection tool not being robust enough for low-resource languages
and also not being prepared for texts written in non-standard spellings, such as
Japanese written with Latin characters.

1.6. Other considerations
In this dissertation we do not discuss some methods that might be effective in
LR settings. In particular we do not discuss the following ideas:

Using bilingual dictionaries
The most common way to include bilingual dictionaries is to treat them as
a parallel corpus. The data is added to the training data along with the
parallel sentences. However, there has been research on the optimal way
to integrate this data. Some examples of this technology are Arthur et al.
[6], Zhang and Zong [141] and Zhong and Chiang [147].

Copy-mechanisms or transliteration-mechanisms
As a general rule, proper nouns are not usually translated. If the source and
target languages share a writing system, it may be enough to copy them.
If the writing systems are different, it may be possible to transliterate the
proper nouns more or less regularly. Depending on the type of text, it can
contain a large number of proper nouns or named entities. Although sub-
word segmentation methods like BPE can give good results in copying and
transliteration, under low-resource conditions they might not be satisfac-
tory. There has been research on the copy mechanisms. Some examples
of this technology are Luong et al. [82], Gu et al. [54], See et al. [113] and
Wang et al. [135].

Parsing methods and other linguistic characteristics
Linguistic tools can be used to improve the performance of machine transla-
tion systems. Some of these tools can be dependecy parsers or morpholog-
ical analyzers. The dependency parsing information can be used in various
ways like normalizing the word order or including information about the
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head word. Also, other information such as part-of-speech tags, dependency
tags, or lemmas can be included to enrich or regularize the embeddigs.

The problem with this type of method is that although they can improve
low-resource translation results, it is precisely low-resource languages that
usually lack this type of technology.

Some examples that use dependency parsing are Nguyen Le et al. [94],
Eriguchi et al. [44], Currey and Heafield [33] and Deguchi et al. [37].

Some examples using other kind of features are Niehues and Cho [95] and
Chakrabarty et al. [24]

Language-specific approaches
In addition to the examples given using dependency parsing and other tools,
the knowledge of the languages of the system can in theory help make an
educated selection of the hyperparameters and preprocessing. Rules can be
written to generate artificial data or augment existing data according to
syntactic or derivation rules.

An example of this technology is Torregrosa et al. [129].

1.7. Contributions
In this dissertation we explore different NMT techniques for low-resource sys-
tems. In particular, we focus on the method presented in Martinez et al. [84] and
through multiple experiments we test how it behaves in combination with other
techniques.
Our proposed subword-level NMT training method utilizes sub-subword n-

gram information to regularize subword embeddings and the output layer. Sub-
subword-level features are selected from all n-grams in the subword vocabulary
using a custom feature selection algorithm. The set of selected sub-subword fea-
tures can unambiguously identify every subword in the vocabulary. Sub-subword
binary features are fed through a multilayer feed-forward network to produce sub-
word embeddings. Because subword embeddings are produced exclusively from
constant sub-subword features, the subword embeddings can be pre-computed
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once the model has been trained. Therefore, our method does not need to mod-
ify baseline architectures or the numbers of parameters in trained models.
We explored how our proposed model can be combined with and auxiliary

language pair and BT.
We determined the optimal architecture for applying sub-subword features to

subword-level NMT and made an analysis of the produced embeddings. We
determined that this method works particularly well with small training sets.
Our main contributions can be summarized as follows:

• We describe the problem of low-resource machine translation and summa-
rize the different methods to address it (Chapter 1).

• We make an overview of a standard NMT pipeline and tools and explore
their effectiveness under low-resource settings (Chapter 2).

• We propose an NMT model training approach combining subword segmen-
tation to limit vocabulary sizes with n-gram features to construct subword
embeddings using a standard multilayer feed-forward network (Subsection
4.3.1).

• We use a feature selection algorithm to select a small number of character
n-gram features. Selected features should uniquely identify every word in
the vocabulary (Subsection 4.3.2).

• We demonstrate that a standard multilayer feed-forward network works
better than a self-attention mechanism (Subsection 4.4.2).

• We demonstrate that constructing subword embeddings strictly from n-
gram features works better than using n-gram features to complement stan-
dard embeddings (Subsection 4.4.2).

• We demonstrate that our method facilitates large vocabulary sizes with
small training datasets, thereby improving translation results (Subsection
4.4.3).

• We show that our proposed method can be combined with BPE dropout to
improve performance (Subsection 4.5).
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• We make an analysis of the embeddings created by the sub-subword feature
method in combination with BPE dropout (Subsection 4.7).

• We explore how the proposed method behaves with ideographic characters
and the usage of subcharacter information (Subsection 4.6).

• We demonstrate that our method works well for small training datasets
(Subsection 4.4.5).

• We explore how the proposed method can be combined with an auxilary
language pair (Subsection 5.1.1).

• We explore how the proposed method can be combined with BT (Subsection
5.2.4).

1.8. Thesis Outline
This thesis is organized in the following chapters:

Chapter 1: Introduction
The introduction outlined the state-of-the-art for low-resource NMT and
the problems that motivated the contents of this thesis.

Chapter 2: Preliminaries on Neural Machine Translation
This chapter explains in detail the concepts of NMT necessary to under-
stand the subsequent chapters.

Chapter 3: Subword Segmentation
This chapter explains in detail the concepts subword segmentation and pre-
processing and their relation to low-resource NMT. We compare different
settings for low-resource NMT through various experiments.

Chapter 4: Sub-subword n-gram features
We describe our novel NMT training method that utilizes sub-subword n-
gram features [84] and examine its properties through multiple sets of ex-
periments.
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Chapter 5: External Data
We compare different methods to exploit external data, such as monolin-
gual corpora or data from other language pairs, to improve NMT and run
multiple experiments to explore how back-translation can be combined with
the proposed sub-subword feature approach.

Chapter 6: Conclusion
We summarize the contents of this thesis and discuss some future research
directions.
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Chapter 2.

Preliminaries on Neural Machine
Translation

This chapter describes various Neural Machine Translation concepts necessary to
understand the rest of the dissertation. First there is a brief overview of NMT
systems. The Word Embedding concept, and language models are described
as a basis for better understanding of machine translation models. Next, the
most common architectures are described, and how to generate or decode text
from NMT models. The most common evaluation methods are described and,
to conclude, a summary of the NMT systems pipeline is presented. All these
concepts are presented with a focus on languages with few resources.

2.1. Overview
Machine translation systems produce a text from a given source text. The text
generated must be the translation of the source text. Thus, machine translation
systems can be considered conditional text generation systems. In the natural
language processing literature, machine translation is not usually classified as text
generation, reserving the term for systems that generate text from non-textual
data, such as report generation or automatic subtitling. Machine Translation
or Automatic Summarization (to take another example) are usually classified
separately.
In any case, all these tasks are strongly related to language modeling, in that

the generated text must be natural. Autoregressive language models are those
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that model the probability of a word conditioned by its precedents. These types
of models can be combined with search algorithms to generate a text that fits the
model.
A model similar to the one described in the previous paragraph that also condi-

tions the probability in a second text (the source text) can model the translation
process. Neural Machine Translation systems follow an architecture known as
encoder-decoder, according to which the encoder part is responsible for repre-
senting the information in the source text numerically and the decoder part is
responsible for modeling the translation. The encoder-decoder approach was in-
troduced by Cho et al. [29] and was later applied to other network architectures.
Figure 2.1 shows a simple diagram of an encoder-decoder model with the en-

coder and decoder separated by a dashed line. The embedding matrices and
output-layer may or may not be included in the encoder or decoder. The differ-
ent architectures that follow this design principle are described on Section 2.4.1.

2.2. Embeddings
NMT models are used to translate sequences of tokens, such as words, in a source
language into corresponding sequences of tokens in a target language. The sets of
all distinct tokens in the source and target language sentences are called the source
and target vocabularies, respectively. Like other NLP models, NMT models
operate based on closed vocabularies. The tokens in each vocabulary are assigned
unique identification numbers.
Artificial Neural Networks are trained using back-propagation which works by

computing the error gradient on the training data. In order to use these discrete
variable tokens in a continuous function, each discrete value is represented as a
one-hot vector. These one-hot vectors are then projected to dense vectors of size
d by computing the dot product with an embedding matrix. The resulting dense
vectors are called embeddings. As an example, for a vocabulary of size V , the
word k ∈ N is represented by a vector 1V (k) of length V such that

1V (k)i =

1 if i = k,

0 if i 6= k.
(2.1)
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Figure 2.1.: Simple diagram showing an encoder-decoder model. The encoder-
and decoder-side are separated by a dashed line. Embedding matrix
Ex is sometimes considered part of the encoder, and matrices Ey and
Wy part of the decoder.

The embedding e(k) corresponding to token k is defined with respect to embedding
matrix E ∈ Rd×V :

e(k) := E · 1V (k), (2.2)

which is equal to extracting the kth column of E. Each embedding has an em-
bedding size d.
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2.3. Language Modeling
Language models (LM) estimate the probability of a sentence or piece of text. A
language model trained on a given corpus learns to assign a probability for any
sequence of tokens y to occur in such a corpus. If the training corpus is from
a particular language and large enough, the language model approximates the
probability that a sequence of tokens is written in that particular language.
To model the probability of a sequence y := (y1, . . . , yT ), the language models

usually decompose the probability into the product of the probability of each of
its tokens conditioned on the previous tokens:

p(y) :=
T∏
t=1

pt, (2.3)

pt := p(yt|{y1, . . . , yt−1}). (2.4)

This kind of language models are called autoregressive.
Token sequences are usually bracketed with the special symbols BOS (beginning-

of-sentence/sequence) and EOS (end-of-sentence/sequence), also referred to as <s>
and </s>. Another common symbol is OOV (out-of-vocabulary), also referred to
as <UNK>, which works as a catch-all symbol for the tokens not found in the
vocabulary.
To train language models, no annotated data is necessary, just plain text.

The models are trained to predict the token following a sequence of tokens
(y1, . . . , yt−1). This type of training is called unsupervised training. Each token in
the sequence is represented in the way described on Section 2.2, so (e1, . . . , et−1)
is a matrix R(t−1)×d.
There are different types of architectures that conform to the equation

qt := LM({e0<j<t}), (2.5)

which condenses the contextual information necessary to predict yt into a single
vector qt. These architectures are explained in more detail on Section 2.4.1.
The vector qt is projected to a vector the size of the vocabulary, of which

each value represents the logit for the corresponding token. These values are
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transformed to a probability distribution using the Softmax function:

pt := Softmax(Wyqt + by), (2.6)

Softmax(z)k := ezk∑
l ezl

, (2.7)

whereWy is a matrix of size Vy × do and by a bias vector of size Vy. The embedding
matrix, output layer matrix Wy, and bias by are trained as conventional weight
parameters.
An autoregressive language model can be used to generate natural-sounding

sentences, or sequences that imitate the training data, from a prompt sequence.
The details of the decoding process are explained in Section 2.5.

2.4. Neural Machine Translation
Neural Machine Translation systems work in a similar way to LMs described in
Section 2.3 but conditioned on a source input sequence. The input tokens of
the source sentence x are represented as a sequence of one-hot vectors of the
corresponding tokens x := (x1, . . . , xTx), where Tx is the number of tokens in
the sentence. To output a probability distribution pt for a token yt, the previ-
ous output tokens y := (y1, . . . , yt−1), as well as the input x, are conditioned.
These tokens are then projected into dense vectors e(x)

i and e(y)
j using embedding

matrices Ex and Ey, in the way described on Section 2.2.
The source sequences are usually bracketed with BOS and EOS, same as described

for the target sequence in Section 2.3.
NMT models use two embedding matrices, namely Ex for source sentence words

and Ey for representing words in the target sentence. When using embeddings
of d dimensions and vocabularies of sizes Vx and Vy, the embedding matrices Ex
and Ey are in Rd×Vx and Rd×Vy , respectively.
Given an input embedding sequence e(x) and previous translation tokens’ em-

bedding sequence {e(y)
0<j<t}, where the NMT model produces a dense vector qt of

size do corresponding to the next token in the translation.

e
(x)
i := Exxi, (2.8)
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e
(y)
j := Eyyj, (2.9)

qt := NMT({e(x)
0<i≤Tx

}, {e(y)
0<j<t}), (2.10)

where NMT can be any architecture described on Section 2.4.1.
The vector qt is then projected into a vector of size Vd whence the Softmax

function produces a probability distribution, as per Equations 2.6 and 2.7.
If both the source language and target language are represented by the same

set of tokens, they can share an embedding matrix, resulting in Ex = Ey. This is
a common technique used in conjunction with subword segmentation, described
on Chapter 3, if the same subword segmentation model is used for both source
and target languages.
Another technique called weight tying [103] consists in definingWy as the trans-

pose of Ey. If source and target embeddings are shared and weight tying is used,
Ex = Ey = W ᵀ

y . All the experiments in this dissertation follow this approach.
There is also ongoing research on non-autoregressive neural machine translation

(NAT) [55, 53] that work in a different way than described here. The strong point
of these models is the decoding speed at the expense of a reduction in the quality
of the translations. These models are outside the scope of this dissertation.

2.4.1. NMT architectures

The first NMT models used Recurrent Neural Networks (RNN), also known as
(RNN) sequence-to-sequence models [123]. RNNs allow variable length sequences
to be processed. They do this by processing each element of the sequence one
by one in order. The order of processing can be from first to last or vice versa.
Bidirectional RNNs run through the sequence in both directions.
In early NMT models the encoder produced a vector representing the source

sequence. The decoder used the information from this vector to generate the
target sequence. A problem with this method is that the vector produced is of
a fixed size, in such a way that all sequences have to be compressed to this size,
regardless of their length. These models had difficulty translating long sequences,
since it is difficult to compress very long sequences into a reduced vector.
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The solution to this problem was the attention mechanism[8]. This mechanism
makes it possible to produce a single vector from a set of vectors. In sequence-to-
sequence with attention models, the encoder produces a vector for each element of
the sequence and the decoder uses an attention mechanism at each decoding step
to obtain a different representation of the source each time. The attention mech-
anism learns to select the source vectors that contain the relevant information for
each step. Figure 2.2 shows a diagram of this architecture.

DECODER
(RNN with attention)

x1 x2 x3 xTx

e1

input

embeddings e2 e3 eTx

ENCODER
(BiRNN)

h1

h2

h3

hTx

y0 y1 x2 xT-1

e0 e1 e2 eT-1
(y) (y) (y) (y)

z1 z2 z3 zT

output layer

y1 y2 x3 xT

RNN (ltr)
 

RNN (rtl)
 

RNN (ltr)
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value

query
key

key

key

s1 s2 s3 sT

Figure 2.2.: A diagram of a sequence-to-sequence with attention architecture.
The encoder produces a set of vectors that are used as keys to the
attention mechanism of the decoder.

An alternative or complement to RNNs are CNNs. NMT systems with CNN
have achieved good results [49, 50].
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In recent years, the most popular NMT systems are based on Transformer [131].
Transformer discards the RNNs to use the attention mechanisms instead. This
type of attention mechanism is called self-attention, which is nothing other than
the same attention mechanism used by sequence-to-sequence with attention but
applied to the immediately previous layer. The key idea that made Transformer
possible was positional embeddings. The attention mechanism processes all vec-
tors in an order-independent fashion. Adding the information about the position
of the vectors allows considering their context. Furthermore Vaswani et al. [131]
introduced multi-head attention, which is equivalent to several attention mecha-
nisms running in parallel, and made a smart use of layer normalization [7] and
label smoothing [124]. They explored multiple combinations of hyperparameters,
training with a learning rate schedule and warm-up.
Several improvements and optimizations to the original model have been sug-

gested [1, 126]. Figure 2.3 shows a diagram of the Transformer architecture.
In this dissertation, all experiments use the Transformer implementation pro-

vided by sockeye[61].

2.5. Decoding
The most straightforward method of generating translations from NMT models
is to generate tokens one by one starting with the Beginning-Of-Sequence symbol
and until the End-Of-Sequence symbol appears. This method is known as 1-best
greedy search. However, this method is vulnerable to the garden-path problem.
This problem occurs when the model generates the wrong token. As each

token depends on its precedents, a wrong choice can compromise the quality of
the translation from that point on, since the algorithm is not able to reverse the
choice.
The most popular decoding algorithm is known as Beam Search[52, 20, 123],

which alleviates this problem by counting a specified number of candidates. This
number is called beam size or beam width. Beam search is a breadth-first tree
search where only the beam width ω most promising paths are tracked. Each can-
didate or beam has an assigned score that is usually the negative of the logarithm
of the product of the probabilities of each of its tokens, which is the same as the
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Figure 2.3.: A diagram of a simplified Transformer architecture with two layers
in the encoder and decoder. Compare this figure with Figure2.2

negative cumulative log-probability.

S({y1, . . . , yt}, x) := − log
t∏
i=1

p(yi|{y0, . . . , yi−1}, x)

= −
t∑
i=1

log p(yi|{y0, . . . , yi−1}, x).
(2.11)

In this way, the best candidates have the lowest score. Note that if ω = 1,
Beam Search is the same as Greedy Search.
At each decoding step, the ω candidates with the lowest scores are selected.

NMT models produce a probability distribution for each beam. The negative
log-probability of each token is added to the corresponding beam score. Thus, for
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a vocabulary Vy, there are ω × Vy candidates. The best ω are selected and the
algorithm iterates until all the candidates finish in EOS.
The standard Beam Search algorithm has another known problem, which has

been called the Beam Search Curse [140]. This problem prevents large beam
widths from being used. Since the log-probabilities are always negative, the score
of the candidates can only increase. It is for this reason that shorter translations
tend to score lower. In practice, searches with large ω produce shorter translations
and this brevity conflicts with the BLEU brevity penalty described in Section 2.7.1.
A short translation often incurs the under-translation problem whereby some of
the information in the source sequence is omitted.
Various methods have been proposed to alleviate or counter this problem, such

as length normalization which normalizes the score by the length of the sequence.

SLN({y1, . . . , yt}, x) := S({y1, . . . , yt}, x)
|y|

(2.12)

This method is widely used for its simplicity.
On their GNMT system, Wu et al. [139] re-formulated length normalization as

SLP({y1, . . . , yt}, x) := S({y1, . . . , yt}, x)
LP(y) , (2.13)

LP(y) := (K + |y|)α
(K + 1)α , (2.14)

with K = 5 and hyperparameter α being the length normalization coefficient.
They also introduced coverage normalization based on the attention matrix of
sequence-to-sequence with attention models. He et al. [60] proposed a word-reward
to improve the score of longer sequences, and Huang et al. [62] made improvements
to this method.
Yang et al. [140] they analyzed the problem by comparing various solutions

and proposed BP-Norm. BP-Norm gave the best results among the proposed
systems.
In all the experiments in this dissertation, we used the LN of Wu et al. [139]

with K = 5, α = 0.6, and ω = 4. We used this function for simplicity, but it is
possible that BT-Norm with a large ω would have yielded better results.
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Another method that could improve the results in low-resource settings is to
use a language model in combination with BeamSearch to re-rank the generated
candidates [57, 58]. We discuss this method in Section 5.2.1.

2.6. Neural Machine Translation Pipeline
A standard NMT pipeline is divided into two phases: training and decoding. In
this section we break down the different steps of the pipeline and discuss some
details.
Figure 2.4 shows a diagram of a standard NMT pipeline.

TRAINING
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parallel
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parallel

data
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/ filter normalize

tokenization
/ word
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tokenization
/ word

segmentation
normalizeclean 
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Preprocessing
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Preprocessing

Preprocessing

Subword
segmentation

NMT
model

Translate
NMT

merge
subwords Detokenization

Postprocessing target
text

Figure 2.4.: Diagram of a standard NMT pipeline. Training and decoding phases
are separated by a dotted line.

Training is divided between data preparation and model training. The training
and evaluation data, necessary to train the model, are cleaned or filtered. Usually
this step involves removing some of the data. To do this, it is common to use a
language detection tool to remove misaligned data. In addition, texts that are
too long or with a length ratio that is far from the average are eliminated.
Next, or before, the texts are normalized. The most common things to do

in this step are to remove strange characters, or normalize punctuation marks
and character variants. The most popular option is the Moses [74] punctuation
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normalizer script (normalize-punctuation.perl). In some cases, all texts are
converted to lower case or a truecasing model is trained.
After that, comes the step of tokenization or word segmentation, depending

on the language. Languages like Chinese or Japanese, which do not separate
words with spaces, use a technology known as word segmentation to separate the
words. Some word segmentation systems for Japanese are Mecab[76], KyTea [93],
Juman[77] and Juman++[91, 128]. In other languages, tokenization consists of
separating the punctuation and numbers from alphabetic words. This tokeniza-
tion is usually carried out by means of rules. The most popular option is Moses’
tokenizer script (tokenizer.perl). However, it does not include rules for many
languages. In these cases, it is possible to use the rules of English or a language
that is similar to the one intended, although this can introduce noise.
These three steps (cleaning, normalization, and tokenization) are collectively

known as preprocessing.
Once the texts have been tokenized, a BPE model is trained. The BPE model,

described in Section 3.4, is trained exclusively on the training data. The BPE
model, once trained, is used to apply the subword segmentation to the training
and evaluation data. Sometimes subword segmentation is also included in the
preprocessing. These data can be used to train an NMT model.
With a trained NMT model, texts can be translated using an NMT system.

Text is preprocessed similar to training data, but without the filtering step. Once
the subword segmentation is applied, the NMT model decodes a translation,
which is then post-processed.
Post-processing includes merging the subwords and de-tokenizing the text,

putting together punctuation and words according to the practice of the target
language.

2.7. Evaluation Metrics
There are two types of evaluation for machine translation systems: human eval-
uation and automatic evaluation. The human evaluation is the most reliable
because a human who knows the two languages of the pair can consider the dif-
ferent possible translations and paraphrases. Automatic evaluation consists of
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comparing the translation produced by the system with one or more reference
translations produced by professional translators. However, human evaluation is
expensive since it requires the intervention of one or more people. That is why
there is automatic evaluation.
The annual WMT conference [18, 19, 10, 11] is one of the most popular con-

ferences in machine translation that also organizes a translation systems com-
petition. Enrolled systems are evaluated using human evaluation and automatic
evaluation. The human evaluation uses a method called direct assessment (DA)
[51]. This dual evaluation allows you to calculate the Spearman’s correlation co-
efficient or Pearson’s correlation coefficient to find out how correct the automatic
evaluation is.
There are several automatic evaluation systems, including BLEU[97], TER[120],

BEER[122], YiSi-1[81], ESIM[25, 85] and chrF[99]. Of all the systems, the most
popular is undoubtedly BLEU which, although they have some drawbacks, shows
a good correlation with human evaluation.
In a recent study, Mathur et al. [86] compared multiple metrics’ correlation. In

the conclusions, they recommend against using BLEU and TER, and recommend
to use chrF, YiSi-1 and ESIM instead. However, YiSi-1 and ESIM both make
use of contextual embeddings (such as BERT [39]), which are not usually available
for low-resource languages.
BERTScore [144] and BLEURT [114] are two other evaluation methods that

use BERT. BERTScore (BS) compares the tokens in the candidate and reference
sentences using cosine similarity. BLEURT uses a model trained with synthetic
data generated from small perturbations in the Wikipedia data. Both methods
show greater correlation with human evaluation than other methods. In Subsec-
tion 4.4.2 we use these methods to compare the performance of various systems.
Next, we discuss BLEU and CHRF, which are used in the experiments of this

dissertation. Both systems have been used in the last editions of WMT.

2.7.1. BLEU

BLEU [97] is by far the most popular assessment method, and is often featured
in most NMT publications.
BLEU computes a score for a produced translation y with w.r.t. a reference
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translation (or set of reference translations) y∗. The score is a value betwenn
0 and 1, where 1 represents a perfect translation, but it is usually reported as
percentages between 0 and 100. It is a combination of the precision of the n-grams
in translations, and a brevity penalty to avoid translations that are too short.

BLEU(y, y∗) := bp(y, y∗)
∑N
n=1 log pn(y, y∗)

N
, (2.15)

where N is usually 4, pn is the precision of the n-grams and bp the brevity penalty

bp(y, y∗) := min{1, e1−1/lr(y,y∗)}, (2.16)

lr(y, y∗) being the length ratio between the produced and reference translation.

lr(y, y∗) := |y|/|y∗|. (2.17)

BLEU normally operates on word n-grams but it can also be applied to char-
acter n-grams, in which case it is referred to as CharacterBLEU. CharacterBLEU
is normally used with languages that do not use white-space between words and
for which tokenization can be complicated, such as Chinese or Japanese.
Before calculating the BLEU score, the segments are tokenized using the same

tokenizer, which is usually the Moses script used by WMT. However, there are
multiple ways to tokenize the same segment. An example is that GNMT[139]
system separated the words joined by a hyphen into three tokens. As an example,
the word "six-pack" became

• [ "six", "##AT##-##AT##", "pack" ],

where "##AT##-##AT##" represents the joining hyphen. This approach
yields slightly higher BLEU scores.
The BLEU score is sensitive to the type of tokenization used and it is necessary

to use the same tokenizer to be able to compare two systems.
Sacrebleu[102] is a tool that was presented with the idea of facilitating compa-

rable and reproducible results by including tokenization in its pipeline.
All the results of this dissertation use sacrebleu.
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2.7.2. CHRF

Although characterBLEU can be used with characters, it works on the precision
of n-grams of characters, while chrF[99] works on the F-score. chrF has been
shown to have a high correlation with human assessment.
The chrF score is calculated as follows:

chrFβ := (1 + β2) chrP · chrR
β2 · chrP + chrR , (2.18)

where chrP is the n-gram precision and chrR is the n-gram recall. When the
parameter β = 1, both the recall and precision are assigned the same importance.
The n-gram precision and recall are computed from n = 1 up to parameter N .

Our experiments use N = 6 and β = 2, according to the recommendations of
[100].
There is also chrF++[101] that combines the punctuation of n-grams of char-

acters with the punctuation of n-grams of words.
chrF is also included in sacrebleu.

2.8. Tokenization Experiments
Table 2.1 shows the BLEU and chrF2 scores using different preprocessing op-
tions, for an low-resource corpus (205,000 pairs of parallel sentences) English-
Turkish[127]. In particular, the results of using or not using both, the Moses[74]
tokenizer script (with filename tokenizer.perl) and punctuation normalizer
script (with filename normalize-punctuation.perl), are compared.
The experiments use BPE (see Chapter 3) with a vocabulary size of 8,000

subwords. Instead of the mentioned scripts, the equivalent implmentations from
sacremoses∗ were used.
Although the difference in BLEU scores is not significant, we see that the best

results are obtained without tokenizing or normalizing the data. The models with
best BLEU and chrF2 scores match in this case. The scores of the model trained
on normalized punctuation but no tokenization are 13.37 BLEU and 0.446 chrF2.
The scores of the model trained on normalized punctuation and tokenization are

∗Found at https://github.com/alvations/sacremoses
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Table 2.1.: BLEU and chrF2 scores using different preprocessing options. Scores
are formatted as in "BLEU (chrF2)" with the best BLEU score for
each direction in bold and the best chrF2 score underlined. The
values under (+/-) punctuation refer to those using the normalizer
script and the values under (+/-) tokenize refer to those using the
tokenizer script.

-punctuation +punctuation
-tokenize +tokenize -tokenize +tokenize

en → tr 13.68 (.470) 12.79 (.465) 13.37 (.464) 13.13 (.469)
tr → en 16.22 (.446) 15.44 (.441) 16.07 (.445) 15.12 (.437)

13.13 BLEU and 0.469 chrF2. We can see that these results of BLEU and
chrF2 contradict each other, as the BLEU scores suggest it is better to avoid
tokenization, but the chrF2 scores suggest it is better to tokenize. However, rest
of the results show a tendency in favor of not using these scripts.
The reason for these results may be that the Moses scripts are not prepared for

Turkish data. García-Martínez et al. [48] were aware of this problem and used a
modified version of the tokenizer scripts in their experiments.

2.9. Conclusions
This chapter has presented the rudiments of NMT. This knowledge is necessary
to understand the rest of the dissertation.
The pipeline of a standard NMT system using BPE has been presented. The

preprocessing steps explained in that pipeline have not changed from SMT sys-
tems, with the exception of subword segmentation.
In addition, the same type of preprocessing is often used for low-resource and

non-low-resource pairs. Our experiments show that for a low-resource pair, which
does not have specific tokenization and normalization rules implemented, it is
better to use the text without tokenizing or normalizing. This option may depend
on the training data and how clean or noisy it is.
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Chapter 3.

Subword segmentation

As mentioned in Chapter 1, word-level vocabularies can be very large, particularly
for morphologically complex languages. Subword segmentation is used to reduce
vocabulary sizes as an alternative to selecting the top-N most frequently used
words.
This chapter explains the concept of subword segmentation, its motivation, and

different methods. Some techniques to improve your performance are presented.
The chapter concludes with a set of experiments that illustrate some of the ideas.

3.1. Motivation
As explained in Section 2.6, languages such as Chinese or Japanese that do not
separate words with spaces often require an additional preprocessing step known
as word segmentation. This step is often compared with the tokenization step used
for alphabetic languages. This segmentation is usually carried out using dictio-
naries and morphological analyzers such as Mecab[76], KyTea [93], Juman[77] or
Juman++[91, 128].
As shown in Figure 1.3, word vocabularies follow a near-Zipfian distribution

and that is why much of the vocabulary is rare. This creates a problem, especially
under low-resource conditions and with morphologically complex or agglutinative
languages. In agglutinative languages, a single very long word can contain a large
number of morphemes.
In addition, proper nouns and named entities are added to the vocabulary,

making it impossible to maintain the vocabulary as a closed list. In some domains,
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such as the biomedical domain, the number of named entities is always growing,
as new drugs and terms of other kinds are created.
With a closed vocabulary, a model has to translate words that did not appear

in the training data. In these cases, the best word NMT systems can do is to use
a copying or transliteration mechanism, but these add complexity to the system
and a point of failure.

3.2. Subword Segmentation
The number of different tokens can be reduced by splitting words into smaller
subword units. Subword segmentation increases the length of input and output
sequences, and smaller vocabularies result in longer sequences. The optimal vo-
cabulary size depends on the training data, where smaller datasets typically favor
smaller vocabularies.
Once data have been segmented into subword units, they are treated as in-

dependent tokens in the manner described in Section 2.4. The word embedding
matrix can then be considered as a subword embedding matrix containing sub-
word features.
The information regarding which characters comprise a token is ignored. The

potential benefits of taking advantage of this information represent the main
motivation for the use of sub-subword features as described in Chapter 4.

3.3. Linguistically Grounded Approaches
The most popular subword segmentation systems are unsupervised, but there is
an option to use linguistically grounded approaches instead. The word segmenta-
tion systems for Chinese and Japanese mentioned in Section 3.1, such as Mecab
and KyTea, can be classified as subword segmentation systems in a broad sense.
Other systems, such as morfessor [133], are designed for alphabetic languages,
such as Finnish or English, and separate words into morphemes or morpheme-
like units (morphs).
Morpheme segmentation has been used in NMT as an alternative to BPE

[9, 13, 41, 96]. Saleva and Lignos [107] compared this type of system to BPE
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(explained in Section 3.4) and concluded that these systems do not provide any
advantage over BPE.
Furthermore, both the word segmentation systems and the morpheme-based

systems do not provide a clear way to segment proper nouns and foreign words.
One more option may be to divide the words using rules. For example, words

can be split at certain characters or divided into syllables. This option may be
valid if the system languages have a simple syllable system.

3.4. BPE
One very popular subword segmentation method is byte pair encoding (BPE) [47],
which was originally proposed as a compression algorithm in 1994, but introduced
to NMT by Sennrich et al. [116] in 2015.
BPE is a bottom-up method, since it builds the vocabulary starting with the

most granular segmentation and increases the vocabulary until it reaches the
desired size.
The BPE subword vocabulary starts with the set of all individual characters

in the training data. The final characters in words are considered to be distinct
from their counterparts in other locations. A vocabulary is augmented until it
has the desired size by merging frequent subword pairs to form new subwords.
There are various approaches to word segmentation in the literature that are

similar to BPE. One such approach is theWordPieceModel [109]. Instead of merg-
ing subwords based on their frequency, this model merges subwords to optimize
a likelihood value for a language model. Different merging policies were explored
in [138], including frequency, accessor variety and descriptor length gain.
Algorithm 1 is the generalized BPE segmentation proposed by Wu and Zhao

[138].
A common practice in NMT systems is to train a single BPE model for the

source and target languages jointly, such that the source and target vocabularies
are the same. This practice allows a word to be segmented in the same way in
both languages. Thus proper nouns and named entities are represented in the
same way and are easier to copy. This also helps with transliteration as shown
by Sennrich et al. [116].
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Algorithm 1: Generalized BPE segmentation algorithm as described by
Wu and Zhao [138], re-formatted.

Data:
D, the training corpus;
N , merge times;
g, goodness measure;
Result: the segmented text D′ and merge list V
V ← [ ]
D′ ← {Training corpus D with all words split into individual characters.}
for i← 1 to N do

Calculate the goodness scores of all the distinct successive substring
pairs according to g
V ← append highest scoring pair
D′ ← merge all the occurrences of the chosen pair

end
return D′, V

Figure 3.1 shows an example of BPE segmentation of word internationaliza-
tion. Starting with character-level segmentation, as the size of the vocabulary
increases through merge operations, the word is represented by less subwords.
The character n at the end of the word is distinguished from n characters within
the word. If the word internationalization appeared in the corpus, increasing
the number of merge operations would include unsegmented word in the vocab-
ulary at some point. With 1,984 merge operations, the word is segmented into
inter-nation-al-iz-ation, which is closest to morpheme segmentation.

3.5. Unigram Language Model
Another approach to word segmentation is the unigram language model [75],
which can produce multiple segmentation candidates. In this model, the subword
vocabulary is selected to optimize the probabilities of words by considering the
probability of one word to be the product of the unigram probabilities of its
subwords.

36



merges new segmentation of word internationalization
0 i n t e r n a t i o n a l i z a t i o n$
2 i +n in t e r n a t i o n a l i z a t i o n$
6 t +i in t e r n a ti o n a l i z a ti o n$
7 e +r in t er n a ti o n a l i z a ti o n$
8 o +n in t er n a ti on a l i z a ti o n$
16 o +n$ in t er n a ti on a l i z a ti on$
24 a +l in t er n a ti on al i z a ti on$
25 a +ti in t er n ati on al i z ati on$
72 ati +on in t er n ation al i z ati on$
80 ati +on$ in t er n ation al i z ation$
94 t +er in ter n ation al i z ation$
212 n +ation in ter nation al i z ation$
294 in +ter inter nation al i z ation$
1984 i +z inter nation al iz ation$
5067 inter +nation internation al iz ation$
18201 iz +ation$ internation al ization$
30267 al +ization$ internation alization$

Figure 3.1.: An example of BPE subword segmentation. Symbol n$ represents
end of word n, distinct from character n. New merges in bold.

Kudo [75] released an opensource implementation called sentencepiece∗ with
the paper.
A drawback of BPE is that it is deterministic. A word is always segmented into

the same subwords. This is okay for inference, but during training, the model is
only exposed to one possible segmentation. The unigram language model allows
addressing the determinism problem of BPE through the subword regularization
method. Since the unigram language model segments words probabilistically, it
allows to sample different segmentations using the Viterbi algorithm.
The models trained with subword regularization are exposed to more training

data through data augmentation. This results to more robust embeddings and
models that better understand the composition of words. This improvements are
reflected in BLEU scores

∗Available at https://github.com/google/sentencepiece
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3.6. BPE dropout
BPE dropout [104] shares a goal with the unigram language model objective
and its subword regularization method. Provilkov et al. [104] introduced BPE
dropout method as an alternative to Kudo [75]. The main drawback that they
find in the subword regularization method is its complexity, since it requires
training a unigram language model instead of BPE, which is simpler, and to
sample segmentations, it uses EM and Viterbi algorithms.
BPE dropout works on BPE models, that is, the vocabularies are built in the

same way as vanilla BPE. While the unigram language model subword regular-
ization method uses a statistical model and dynamic programming to be able to
sample different segmentations from the same sequence, BPE dropout uses ran-
dom noise to discard certain merges, randomly generating a different sequence of
subwords each time. This is so because BPE does not store the frequencies of each
subword, only the order of the merges. Merges are discarded with a probability
p, which is usually 0.1.
Provilkov et al. concluded through several experiments that BPE dropout

achieves better results, produces better embedings and models that are more
robust to noise.

3.7. Character Vocabulary
As explained in Section 3.4, the minimum size of a BPE vocabulary is given by the
number of different characters in the data Nc. A system with a BPE vocabulary
with zero merges is basically a character level system, and has a vocabulary size
between Nc and 2Nc, depending on the number of characters that appear at the
end of the words.
A language written with Latin characters usually uses less than a hundred char-

acters, including lowercase letters, uppercase letters, digits, punctuation marks
and special characters or characters with diacritical marks. This is true for clean
and processed data. However, if the data is not clean it can contain all kinds of
characters as characters from other writing systems and emojis. This problem is
most obvious with monolingual data, as it is often raw, compared to parallel data.
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Parallel data is typically cleaned up as part of the alignment process[108, 106].
For example, on many occasions monolingual data is extracted fromWikipedia.

Figure 3.2 shows the first sentence of the Wikipedia article about Tokyo. We see
that although this sentence is written in English, it contains multiple foreign
characters, such as IPA characters and Japanese characters. When all the data
is considered, these characters are very sparse and difficult to train.

′Tokyo′ (/ ′toUkioU / TOH-kee-oh, / -kjoU / -kyoh; Japanese: 東京,
′Tōkyō′ [to:kjo:]), officially the ′Tokyo Metropolis′ Japanese: 東京都,
′Tōkyō-to′) , is the de facto capital and most populous prefecture of
Japan.

Figure 3.2.: An example of English text extracted from wikipedia. The text con-
tains many non-English characters.

The most common solution to this problem is usually to drop the characters
below a frequency threshold. However, this solution creates the new question of
what the cutoff frequency should be.
Another solution is to use BPE over bytes of text encoded in UTF-8, after

replacing the spaces with an underscore-like character [105, 134]. The character
used to separate words was LOWER ONE EIGHTH BLOCK. This way, the number
of characters can be limited to a maximum of 257. Wang et al. [134] analyzed
this solution, which they called BBPE, and concluded that it allowed to create
more compact vocabularies without deteriorating the BLEU scores. They also
observed an improvement in the scores for the multilingual models. Figure 3.3
shows an example of a sentence encoded for BBPE.

Original D. Trumpです。
BBPE input 44 2E E2 96 81 54 72 75 6D 70 E3 81 A7 E3 81 99 E3 80 82

Figure 3.3.: Example of BBPE input. BBPE learns a BPE vocabulary from se-
quences of bytes. The spaces between the bytes have been inserted
for clarity.

Although the results from Wang et al. [134] show that using the bytes of the
UTF-8 Unicode encoding as a basis solves the rare character problem without
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damaging performance, Unicode provides another source of normalization: char-
acter (codepoint) names. Each codepoint in the Unicode standard is assigned a
name, and these names are limited to ASCII characters. The name of a character
describes its characteristics. Table 3.1 contains some examples.

i LATIN SMALL LETTER I
í LATIN SMALL LETTER I WITH ACUTE
ı LATIN SMALL LETTER DOTLESS I
い HIRAGANA LETTER I
イ KATAKANA LETTER I
胃 CJK UNIFIED IDEOGRAPH-80C3
。 IDEOGRAPHIC FULL STOP

Table 3.1.: Example of Unicode codepoint names.

These names can be used to encode all printable non-ASCII characters. In this
way the number of characters is limited to less than 100 characters. This type of
encoding exposes information about the characters. Figure 3.4 contains a coding
example.

Original D. Trumpです。
Character reduction D. Trump [HIRAGANA LETTER DE][HIRAGANA

LETTER SU][IDEOGRAPHIC FULL STOP]

Figure 3.4.: Character reduction example. BPE can learn unique tokens to rep-
resent common sequences.

3.8. Experiments
Table 3.2 shows the results of using the character reduction described in Section
3.7, according to the example in Figure 3.4. The results are shown in comparison
with the results in Table 2.1.
The size of the vocabulary is the same (8,000), as well as the rest of the hyper-

parameters.
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Table 3.2.: Results of various models to compare the use of character reduction.
This table is built on the results of Table 2.1. The results follow the
format "BLEU (chrF2)". Best BLEU results are shown in bold and
the best chrF2 are underlined.

-punctuation +punctuation
-tokenize +tokenize -tokenize +tokenize

en → tr All 13.68 (.470) 12.79 (.465) 13.37 (.464) 13.13 (.469)
Reduction 13.70 (.466) 12.99 (.466) 13.12 (.458) 12.59 (.465)

tr → en All 16.22 (.446) 15.44 (.441) 16.07 (.445) 15.12 (.437)
Reduction 15.74 (.441) 15.26 (.437) 15.68 (.438) 14.52 (.431)

The new results confirm the trend observed in Section 2.8 that showed better
results when neither the punctuation normalizer nor the tokenizer was used.
With regard to character reduction, although the differences in BLEU score

are not significant, chrF2 shows a trend towards worse scores when using the
character reduction method. In particular, character reduction gives worse results
in the case of the English translation. The Turkish SETimes corpus is relatively
clean and contains few non-ASCII characters in the English data, and some more
in the Turkish data, due to the specific characters of the Turkish alphabet (such
as, Ç, Ğ, I, İ, Ö, Ş and Ü).
Table 3.3 repeats the experiment using BPE dropout. All the systems in Table

3.3 do not use any punctuation normalizer or tokenizer.

Table 3.3.: BPE dropout with character reduction. These models do not use a
punctuation normalizer and tokenizer. The results follow the format
"BLEU (chrF2)". Best BLEU results are shown in bold and the best
chrF2 are underlined.

En → Tr Tr → En
Base All 13.68 (.470) 16.22 (.446)

Reduction 13.70 (.466) 15.74 (.441)
BPE dropout All 14.17 (.479) 17.64 (.461)

Reduction 14.35 (.479) 17.18 (.457)
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We observe that BPE dropout improves the results in general. These improve-
ments come in line with those reported by Provilkov et al. [104]. The remarks on
character reduction are repeated, there being a small improvement in the case of
En → Tr and a worsening in the case of Tr → En. In the case of the En → Tr
direction, the use of BPE dropout causes the chrF2 results to be equal.

3.9. Conclusions
This chapter has explained the concept of subword segmentation and various
related techniques. There are several methods and variants of subword segmen-
tation but among them BPE is the most commonly used. One reason for this is
its simplicity.
In addition, BPE dropout provides a simple method to improve system per-

formance. Our experiments confirm the efficacy of the method and repeat the
results of Chapter 2, which indicated that it was better not to use tokenization
or punctuation normalization.
The proposed method to reduce characters gives mixed results, damaging the

results to some extent in some cases, and not giving significant improvements in
others. Even so, the method offers a way to limit the number of characters to
a small, predictable number. The effectiveness of the method with data with a
greater variety of characters remains to be tested.
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Chapter 4.

Sub-subword n-gram features

In this chapter, we explore different approaches utilizing n-gram features to rep-
resent translation tokens instead of learning their representations as embedding
matrix parameters or using n-gram features to augment embeddings. The pro-
posed method is the one we proposed in Martinez et al. [84]. Because we used
BPE subwords to limit vocabulary sizes in our experiments, we will refer to the
translation tokens as “subwords” and to their n-gram features as “sub-subword
features.”
First, we describe the problems that the proposed method aims to solve. Next,

we introduce some preliminaries and describe our proposed method, which con-
sists of an architecture used exclusively during the training phase, and an algo-
rithm to select sub-subword features. Next, we analyze different aspects of the
proposed method through multiple experiments. We conclude with a summary
of the findings of this chapter.

4.1. Sub-subword Information Problem
One problem with the standard embedding method is that each word or subword
functions as an independent discrete value, so the spelling of a word has no
effect on its embedding. Thus, two graphically close words can have completely
independent embeddings. This goes against the linguistic intuition, according to
which, two similar words have a high probability of being semantically related.
This opacity is not a problem when a large amount of data is available to

compensate for it. BPE alleviates the problem to some extent by dividing the
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rarer words into multiple subwords. By segmenting the words into subwords, the
model is more exposed to the composition of the words, but this exposure depends
on the granularity of the subwords. For this reason, small vocabularies, which
create more granular segmentations, work better under low-resource conditions.
BPE dropout further alleviates the problem by exposing different possible seg-

mentations of the same word, but the representation of each subword still remains
independent of its spelling.

4.2. Character n-gram Features
Using n-gram features to generate word vectors is not a new concept: Wieting
et al. [136] used n-gram count vectors to represent words for different natural
language processing (NLP) tasks. Bojanowski et al. [16] trained word vectors on
a skipgram language model by representing each word as the sum of the vectors
representing its n-grams. This method takes word-boundary symbols into con-
sideration. They considered n-gram sizes ranging from three to six characters.
Because representing each n-gram using a unique vector can consume excessive
memory, n-grams are grouped into buckets using a hash function, where they
share vector representations with other n-grams in the same bucket. Joulin et al.
[64] used the same approach to develop a model called fastText for text classifi-
cation.
The feature hashing methods do not guarantee that the feature representations

will discriminate every word in the vocabulary. FastText uses a large hash ta-
ble (the recommended size is 20,000) to minimize the risk of having the same
representation for multiple words. This kind of large matrices are difficult to
handle on NMT models. A feature hashing method requires a hash function to
distribute the features. The optimal hash function may depend on the language
of the n-grams.
N-gram vectors can complement word vectors, because words are also unique n-

grams. Zhang et al. [145] used subword segmentation to complement word-level
vectors with subword-level vectors for various NLP tasks that did not include
NMT. They compared various subword segmentation methods introduced by Wu
and Zhao [138]. Morishita et al. [90] reinterpreted BPE subwords from smaller
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vocabulary configurations as features of subwords in a larger vocabulary. The
embedding vector for a given subword was represented as the sum of its feature
vectors. Based on memory constraints, they only used sub-subword features for
input and output embeddings, and not for the final output layer.
Takase et al. [125] explored the use of n-gram features of a fixed size for gen-

erating embeddings and output layer weights for language modeling. They also
conducted experiments on NMT using trigram features to produce embeddings.
In contrast to other approaches, they used a self-attention mechanism to calculate
a weighted sum of feature embeddings.
We briefly describe the model proposed by Takase et al. [125], as we will com-

pare our proposed model to it. For a more detailed description, please refer to
the original work.

4.2.1. Character n-gram Embeddings

Takase et al. [125] incorporated embeddings inferred from fixed length n-grams
(such as bigrams) into standard embeddings by replacing (2.8) and (2.9) with the
following two equations:

e
(x)
i := Exxi + c(xi, θ(x)

c ), (4.1)

e
(y)
j := Eyyj + c(yj, θ(y)

c ), (4.2)

where c(ω, θc) is a neural network with a parameter set θc that produces dense
vector inferred from the n-gram features of word ω.
The n-gram features augment word embeddings without replacing them. To

produce c(xi, θ(x)
c ) and c(yj, θ(y)

c ) from n-gram features, Takase et al. used what
they called multidimensional self-attention. If the number of n-gram features of
a specific word ω is given by I(ω) ∈ N, then

c(ω, {Wc, S}) :=
I(ω)∑
i=1

gi � s(ω)
i , (4.3)

S(ω) := (s(ω)
1 , · · · , s(ω)

I(ω)), (4.4)
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gi := [RowSoftmax(WcS
(ω))]i, (4.5)

where � denotes element-wise product of vectors, [·]i is the i-th column of a given
matrix and RowSoftmax is a softmax function applied row wise. The matrices
S(ω) ∈ RDe×I(ω) represent the embeddings of the n-gram features in the word ω.
The dimension of the embeddings is De. These n-gram feature embeddings and
the square matrixWc ∈ RDe×De are trainable parameters, that can differ between
input and output layers.

4.3. Proposed Method
The method proposed below does not alter the architecture of the NMT model
and only has an effect on training. The method is presented in two parts. First
the training method is explained and then the unsupervised feature selection
algorithm is explained.

4.3.1. Training Method

We denote Vx and Vy as the vocabulary sizes, and dx and dy as the numbers
of n-gram features for the input and output languages, respectively. During
training, our model learns to produce embeddings and output matrices from two
sparse binary feature matrices Fx ∈ RVx×dx and Fy ∈ RVy×dy for the source and
target language vocabularies, respectively. Each element in the feature matrices
indicates whether an n-gram feature is included in a subword. When the input
and output vocabularies are the same, such as when training BPE subwords
jointly, the feature matrices Fx and Fy are equal. We will refer to this part of the
model as the feature-to-embedding (FTE) network. Unlike the method presented
by Takase et al. [125], we use a simple feed-forward network.
Our proposed approach does not train feature matrices. Equations (2.8), (2.9),

and (2.6) are replaced with the following equations:

e
(x)
i := φx(Fx)xi, (4.6)

e
(y)
j := φy(Fy)yj, (4.7)
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pt := Softmax(φo(Fy)qt + φb(Fy)). (4.8)

The parameter weights for the feed-forward network, namely φx, φy, and φo,
are updated during training. If weight tying is applied, then

φo(Fy) = φy(Fy)ᵀ. (4.9)

Figure 4.1 presents a diagram of the training model using weight tying. Com-
pare Figure 4.1 with the standard encoder-model of Figure 2.1.

x y1:t-1

Ex

ENC

Ey

DECh

Wy

yt

Fx

Φx

Fy

Transposed

Φy

Figure 4.1.: Simple diagram showing an encoder-decoder model using features to
produce embeddings. The inputs x and y1:t−1, and output yt are
depicted with dashed borders and neural subnetworks have rounded
corners. The model depicted in this diagram uses weight tying. The
output bias vector by is not shown for simplicity. On top of the
baseline model, the boxes containing the n-gram feature matrices Fx
and Fy, and the feed-forward networks φx and φy have been added.
Ex and Ey are not trainable parameters. Compare with Figure 2.1.

Once the model is trained, we revert to equations (2.8), (2.9), and (2.6) by

47



pre-computing the values of Ex, Ey, Wy, and by using the following equations:

Ex := φx(Fx), (4.10)

Ey := φy(Fy), (4.11)

Wy := φo(Fy), (4.12)

by := φb(Fy). (4.13)

After these calculations are completed, the FTE weights are no longer necessary
and can be discarded. The resulting model is the same size as the base model.
Our goal is to compare different architectures and n-gram features and to deter-

mine their utility. As shown later in Section 4.4, we determined that a three-layer
feed-forward network yields the best results among the compared architectures.
We use a rectifier activation function between layers.
Using all of the fixed-width n-grams can result in very large feature matrices.

In practice, when using all available features, we can only train models on bigram
features based on memory constraints. To be able to use longer n-grams, we use
a custom feature selection algorithm. We extract all n-grams for every possible
n and select a final subset using the algorithm described in Section 4.3.2.

4.3.2. Feature Selection

The goal of the proposed algorithm is to select a small number of features that
unambiguously represent a given vocabulary. As an example, consider a vo-
cabulary that contains the subwords ana and anana. When only using bigram
features, both subwords are represented as { ˆa, an, na, a$ }. In order to
disambiguate these two subwords, the trigram feature nan may be selected. The
algorithm selects the feature that disambiguates the maximum number of sub-
word occurrences, different to feature hashing methods.
Given a large set of potential character n-gram features, the proposed feature

selection algorithm selects a small subset. The initial feature-set contains features
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for all n-grams contained in the subword vocabulary, where n ranges from one up
to the maximum subword length in the vocabulary.
Consider a vocabulary V containing all subwords in a training dataset. The

proposed algorithm selects one character n-gram feature at a time to construct a
binary decision tree. Selection can be limited to a given number of features M
by stopping early. The selected feature partitions the vocabulary into positive
and negative subsets. The subwords in the former subset include the selected
feature and those in the latter subset do not. For every subset, we select the
subword with the highest unigram frequency and regard it as reachable; that is,
the only subword represented by its selected features. If there is a tie, one of the
top-frequency subwords is selected randomly to be regarded as reachable. The
rest of the subwords in the vocabulary are considered to be unreachable; that is,
other subwords are being represented by their selected features. The optimization
objective is to maximize the total unigram probabilities of reachable subwords.
The features that best partition the vocabulary in terms of objective are selected.
The subword embeddings will be derived strictly from the selected character n-
gram features.
Figure 4.2 shows the binary decision tree built after three selection steps on

an English vocabulary of about 32,000 subwords. The selected features are e,
ˆt and a. Each node in the tree shows the number of subwords included in the
partition. Of all the subwords included, the one with highest unigram frequency
is reachable and shown in bold. After choosing the third feature 8 subwords are
reachable and 31,835 subwords unreachable. Appendix A contains the full set of
features selected.
Algorithm 2 presents the process described above in the form of pseudo-code.

At each step, there is a set of partitions G and candidate features. Considering all
combinations of these partitions and candidate features is very expensive. Instead
of considering all partitions in G, we only consider a subset Φ(G) containing the
partitions with highest probabilities pg(g), defined in Algorithm 2, summing up
to a predefined threshold Tg. When selecting a candidate n-gram feature f , we
also consider a fixed number (NΨ), which is denoted as Ψ(G). Ψ(G) consists of
the features with the top-NΨ highest Ω(f,G) values. Ω(f,G) ranks the relevance
of the features with respect to their frequency within the partitions, and it is
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Figure 4.2.: Example of feature selection tree after three selection steps. The
selected features are e, ˆt and a.

defined as follows:

Ω(f,G) :=
∑

g∈Φ(G)
ω(f, g)pg(g), (4.14)

ω(f, g) := 1−
∣∣∣∣∣1− 2pf (f, g)

pg(g)

∣∣∣∣∣ , (4.15)

pf (f, g) :=
∑

{v∈g|f∈Q(v)}
pv(v), (4.16)

where Q(v) represents the n-gram features that appear in v.
These optimizations are optional and can be disabled by defining Φ(G) = G

and Ψ(G) as the set of all the features that have not been selected.
To illustrate the selections made by the proposed algorithm, next we present

some statistics for an English-Turkish dataset when using a vocabulary size of
approximately 64,000 words and Tg = 0.95. The dataset contained 2,399 bigrams
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Algorithm 2: Feature selection algorithm. Ψ and Φ, defined in the text,
are used to prune the search space. The notation [ ] represents an empty
sequence, [fi] represents a sequence of a single element fi, and the operator
· denotes sequence concatenation.

Data: V , a set of subword tokens;
v ∈ V ;
Q(v), n-gram features that appear in v;
pv(v), unigram probability of v; and
M , maximum number of n-gram features
Result: Fd, selected feature-list where d ≤M

Let:
pg(g) := ∑

v∈g pv(v)
pmax(g) := maxv∈g pv(v)/pg(g)
pmix(f, g):=

(pmax({v|v ∈ g, f ∈ Q(v)})
+pmax({v|v ∈ g, f /∈ Q(v)}))

choose_feature(G):=
arg max
f∈Ψ(G)

∑
g∈Φ(G) pmix(f, g)pg(g)

F0 ← [ ]
G0 ← {V }
for i← 1 to M do

fi ← choose_feature (Gi−1)
Fi ← Fi−1 · [fi]
G

(1)
i ← {{v | v ∈ g, fi ∈ Q(v)} | g ∈ Gi−1}

G
(0)
i ← {{v | v ∈ g, fi /∈ Q(v)} | g ∈ Gi−1}

Gi ← {g ∈ {G(0)
i ∪G

(1)
i } | |g| > 1}

if |Gi| = 0 then break
end
d← i

return Fd, d
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and 14,933 trigrams. The number of trigram features was too large to train a
model using the proposed approach on a single GPU. The number of features
selected by the feature selection algorithm was 598, out of which 28.8% were uni-
grams, 43.5% were bigrams, 14.5% were trigrams, 8% were four-grams, 3.8% were
five-grams, and the remaining 1.4% were longer n-grams. Other datasets yielded
similar statistics. Table 4.1 shows some features of more than two characters.

Table 4.1.: Some features of more than two characters when using BPE 32K.
language features
English (En) ss$, qu@, omo, ts$, opo, ˆas@, ˆce, eve, ˆves, dri ...
Turkish (Tr) unu, ını, usu, isi, ini, ununu, ye@, ya@, rbi, ii$ ...
German (De) en$, ˆ...$, ˆsich, zuz, ˆbe, eru, che, nten, ˆ20$ nten ...
French (Fr) es$, ent, ten, és$, ˆ19, ˆété, ˆ...$, let, our, ˆ1. ...
Finnish (Fi) ta$, lal, aa$, ava, eil, aan, saa, iin$, yön$, aaraa ...

The number of features necessary to unambiguously encode a vocabulary de-
pends on the vocabulary size, the number of unique characters and the writing
system or spelling conventions of a language. Noisy datasets contain many ex-
traneous characters such as foreign characters or emojis. The vocabularies of
languages that use a large number of characters such as Chinese and Japanese
may be difficult to represent using a reduced feature set. In Section 4.6, we
discuss this issue and present an approach to circumvent it.

4.4. Experiments and Analysis
To investigate the effectiveness of the proposed approach, we conducted four
sets of experiments. The experiments in Subsection 4.4.2 explain the choices
made by the proposed approach in comparison to other approaches. Subsection
4.4.3 demonstrates how the proposed approach relates to the chosen vocabulary
size and Subsection 4.4.5 demonstrates how it relates to the training dataset
size. Finally, Subsection 5.2.4 demonstrates how the proposed approach can be
combined with BT.
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4.4.1. Experimental Setup

We ran experiments targeting five languages: English (En), Turkish (Tr), German
(De), French (Fr) and Finnish (Fi). The source language was Turkish for the
models targeting English. For the rest of the models, the source language was
English. The Tr-En and En-tr models were trained using the same dataset. Table
4.2 shows the number of sentences of each dataset. These datasets were sampled
to make smaller training sets to simulate a low-resource setting.
The training dataset for the English-Turkish translation task comes from Tiede-

mann [127] and contains 205,000 parallel sentences. The German and French data
were distributed as part of WMT-2014 [17, 70] and the Turkish and Finnish data
as part of WMT-2017 [18, 70, 127]. For each language pair, the corresponding
newstest was used to calculate the displayed BLEU scores [97]. The reported
BLEU scores are case-sensitive and computed by sacrebleu [102]. It should be
noted that the BLEU scores reported by sacrebleu are not computed in the same
way as those reported by Vaswani et al. [131].
The baseline model was a transformer “base” [131] with eight attention heads,

six layers in the encoder, and six layers in the decoder with embeddings of size
512 and 2,048 units in the hidden layers. The hidden layers for producing em-
beddings (FTE) contained 3,000 units, except when indicated otherwise. This
implementation was based on Sockeye [61]. Each training mini batch contained
approximately 4,096 target words. All models were trained on a single GeForce
GTX 1080 Ti GPU.
In our experiments, the input and target languages shared a subword vocabu-

lary and sub-subword features. All related weights were shared too. As a result,
Ex = Ey = Wy = E and Fx = Fy = F .
The significance testing was done using bootstrap resampling [69]. We consider

improvements with P-value smaller than 0.05 to be significant.

4.4.2. Approach Comparison Experiments

In this subsection, we compare different approaches to determine the best archi-
tecture. All models were trained using a vocabulary size of approximately 32,000
subwords. All training datasets contained approximately 200,000 sentences. Ex-
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Table 4.2.: Training data statistics. † This dataset is sampled to make training
sets of different sizes. ‡ These datasets are sampled to make training
sets of 200,000 sentences.

language pair sentences
Turkish-English

205,000
English-Turkish
English-German 4,520,620 †
English-French 40,842,333 ‡
English-Finnish 2,663,065 ‡

cluding the Turkish-English pairs, the training data were sub-sampled from larger
datasets.
Table 4.3 lists the results for different models divided into three sections. Sec-

tion A compares the feed-forward models (l-FF, where l ∈ [1, 4]) to the self-
attention (att) approach proposed by Takase et al. [125]. The 1-FF approach is
equivalent to summing feature embeddings, similar to some of the models intro-
duced in Chapter 2 [136, 90]. One can see that the best results in Section A are
provided by the three-layer feed-forward models. Adding extra layers does not
result in any significant gains in terms of BLEU scores.
Section B in Table 4.3 compares the proposed feature selection algorithm to

a naive approach of selecting the features with highest frequency. Both model
sets use a similar number of features, but the proposed selection algorithm re-
sults in scores comparable to those achieved when using all bigrams, whereas the
naive approach yields poor results. When using the frequency-selected bigrams
approach, many subwords contain non-unique representations. As an example, if
the features "po", "pa", "oi" and "ai" were not selected, the words point and
paint would have the same representation: {"ˆp", "in", "nt", "t$"}. In such
cases, the subwords are indistinguishable and the output layer will always output
the one with highest unigram probability.
While the cited approaches [136, 90, 125] use n-gram features to complement

standard trainable embeddings, our proposed approach avoids training subword
embeddings directly. Section C reveals that for small training datasets, using fea-
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Table 4.3.: Different approaches compared in terms of BLEU score results. The
models starting with “2-gram” used all known bigrams as features,
while those starting with “selection” use the proposed feature selec-
tion algorithm. The l-FF models use l-layered feed-forward networks
to produce embeddings, while the those containing “att” use the ap-
proach proposed by Takase et al. [125]. For the +comp models, the
embeddings produced from the features are used to complement the
traditional embeddings through addition. It should be noted that the
numbers of parameters for all models are the same after training. Best
scores excluding subword regularization are shown in bold.

Tr → En En → Tr En → De En → Fr En → Fi
Baseline 16.7 13.1 18.0 26.8 12.1

A

2-gram 1-FF 16.2 13.0 17.3 25.8 12.6
2-gram 2-FF 17.3 13.9 18.7 27.8 13.8
2-gram 3-FF 17.6 14.3 18.9 28.2 14.1
2-gram 4-FF 17.5 14.3 18.8 28.1 14.1
2-gram att 17.4 13.4 18.0 27.1 13.3

B
selection 3-FF 17.8 14.1 18.9 28.0 14.2
2-gram-freq 3-FF 6.2 3.5 3.7 6.8 2.4

C
2-gram 3-FF +comp 16.2 13.4 18.2 27.2 12.6
selection 3-FF +comp 16.5 13.4 18.4 27.1 12.8

D
Regularization 18.5 15.3 19.2 27.4 15.6
Regularization + selection 3-FF 18.7 15.6 19.3 27.3 15.7

tures to complement standard embeddings is sub-optimal. For example, consider
the results for models 2-gram 3-FF and 2-gram 3-FF +comp, where the later
complements n-gram features with subword features. The results are consistently
better for the model without subword embeddings. We believe this occurs because
without subword embeddings, models are forced to infer subword features from
n-gram features, resulting in better generalization. In contrast, when subword
embeddings are available subword features can be represented directly based on
subword embeddings without using n-gram features, resulting in poor generaliza-
tion and the learning of training data biases.
Section D in Table 4.3 explores the subword regularization technique proposed

by Kudo [75]. Their approach produced good results with significant improve-
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ments with respect to the baseline, in accordance with their report. The sampling
hyperparameters were α = 0.2 and l = ∞. Their method obtained significantly
better BLEU scores than our proposed approach for Turkish-English, English-
Turkish, and English-Finnish. The subword regularization model also obtained a
higher BLEU score for English-German but the gain (+0.3) is not significant. For
English-French, the subword regularization model obtained significantly worse re-
sults than our proposed model. The reason for this may be that both English
and French are not morphologically complex. Combining our proposed approach
with subword regularization improved the results non-significantly.

BERT-based Scores

The BLEU scores in Table 4.3 show that the proposed method improves baseline
results when combined with the subword regularization method. However, the
improvements are not significant.
We decided to compare the systems using a more robust evaluation method.

Tables 4.4 and 4.5 contain the BERTScore [144] evaluation for the systems from
Table 4.3. Table 4.4 also contains the BLEURT [114] scores for the systems
targeting English.

Table 4.4.: Comparison of BLEURT and BERTScores for En-Tr systems. The
BERTScore within parentheses is the rescaled score, not available for
Turkish. BLEURT scores are only available for English. Highest
BERTScore and BLEURT scores highlighted.

Tr → En En → Tr
BLEU BERTScore BLEURT BLEU BERTScore

Baseline 16.7 .911 (.471) -0.246 13.1 .819
selection 3-FF 17.8 .915 (.498) -0.194 14.1 .827
Reg. 18.5 .918 (.513) -0.121 15.3 .832
Reg. + sel. 3-FF 18.7 .919 (.521) -0.104 15.6 .835

BERTScore and BLEURT use BERT or similar models to evaluate translations
considering synonyms and alternative expressions. The results show the superior-
ity of the proposed method in all the cases tested. In the case of En→Fr using the
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Table 4.5.: Comparison of BERTScores for En→De, En→Fr and En→Fi systems.
The BERTScore within parentheses is the rescaled score. Highest
BERTScores highlighted.

En → De En → Fr En → Fi
BLEU BERTScore BLEU BERTScore BLEU BERTScore

Baseline 18.0 .829 (.570) 26.8 .859 (.524) 12.1 .809 (.501)
selection 3-FF 18.9 .835 (.575) 28.0 .864 (.637) 14.2 .815 (.529)
Reg. 19.2 .836 (.575) 27.4 .860 (.627) 15.6 .817 (.531)
Reg. + sel. 3-FF 19.3 .837 (.577) 27.3 .861 (.629) 15.7 .820 (.536)

subword regularization method, although the proposed method achieves a lower
BLEU score, BERTScore gives it a higher score. However, in the En→Fr case, the
proposed model achieves the best result without using subword regularization.

4.4.3. Vocabulary Size Experiments

When using BPE subword segmentation, the vocabulary size can be regulated.
The results in Table 4.6 reveal the effects of varying vocabulary sizes.

Table 4.6.: Results for different vocabulary sizes. The English-German models are
trained on a large corpus and the English-Turkish models are trained
on a small corpus. The scores marked with * have a statistically
significant improvement with respect to the best baseline.

(full dataset) char 2K 4K 8K 16K 32K 64K

en → de
baseline 19.0 25.3 25.4 26.0 26.4 26.1 26.5
proposed — 25.3 25.3 26.1 26.3 26.5 26.5

en → tr
baseline 6.8 13.7 13.9 14.0 13.6 13.3 12.4
proposed — 14.1 14.4* 14.4* 14.1 14.6* 14.6*

tr → en
baseline 7.0 16.9 16.9 17.1 17.0 16.7 15.5
proposed — 17.3 17.3 17.5 17.8* 17.8* 17.9*

The English-German NMT models are trained on approximately 4.5 million
sentences and the English-Turkish models are trained on approximately 0.2 mil-
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lion sentences. Having a larger vocabulary leads to less word segmenting and
shorter token sequences. When the training dataset is sufficiently large, a larger
vocabulary results in higher BLEU scores. However, performance drops when
there is insufficient data for training the rare subwords. This effect is diminished
by the proposed method because embeddings are inferred from more frequent
sub-subword features.
The character-level models (char) yield poor BLEU scores, particularly for

the low-resource settings. As shown by Cherry et al. [28], character-level NMT
requires deeper models.
Table 4.7 shows some statistics for English-Turkish models of different sizes.

The encoder and decoder parameters of each the model take 168.2 MiB. The
size of the embedding matrix and the bias vector depends on the vocabulary
size. The model size column shows the size of each model, baseline and proposed,
after precomputing the embedding matrix and bias vector. The with FTE column
shows the size of the proposed model without precomputing the embedding matrix
and bias vector. This size depends on the number of features displayed in the
column features. The test time column shows the seconds needed to translate
the test set of 3,007 sentences. Larger vocabulary sizes produce shorter subword
sequences, which results in faster decoding speeds. Decoding was done using
beam search with a beam size of 5. The updates/sec column shows the times
the parameters are updated per second during training. The penalty on training
time for the proposed model is bigger for larger vocabulary sizes.

4.4.4. Grammatical Mistakes

Sennrich [115] demonstrated that character-level NMT performs poorly in terms
of morphosyntactic agreement as the distance between tokens increases. Their
evaluation data, denoted as lingeval97, contain sentences with categorized syn-
thetic errors.
We evaluated our models to determine how vocabulary size affects grammatical

accuracy and to elucidate the effects of the proposed method. The evaluate model
is the large English-German corpus of approximately 4.5 M sentences. Table 4.8
lists accuracy metrics for different models for various error categories. Out of
the 13 error categories, the proposed method performs the best on ten error
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Table 4.7.: Statistics of English-Turkish models of different sizes. Model sizes
are in MiB considering that each parameter takes 4 bytes. † The
character-level model has a vocabulary size of 275 characters.

vocabulary features model size with FTE test time updates/sec
baseline proposed

Char † — 169 MiB — 445.9 s 2.23 —
BPE 2K 151 172 MiB 211 MiB 160.8 s 1.88 1.82 (97%)
BPE 4K 194 176 MiB 214 MiB 137.8 s 1.86 1.74 (94%)
BPE 8K 234 184 MiB 218 MiB 122.0 s 1.82 1.62 (89%)
BPE 16K 301 200 MiB 230 MiB 102.9 s 1.74 1.42 (82%)
BPE 32K 367 231 MiB 257 MiB 101.0 s 1.59 1.12 (70%)
BPE 64K 470 293 MiB 325 MiB 101.4 s 1.37 0.79 (58%)

categories. The absolute best results are shown in bold font and the best results
among the baseline models are underlined. The results are divided into four
groups.
Some errors seem to be less common with smaller vocabulary sizes, even when

the BLEU score is lower. When comparing each vocabulary size independently, we
observe that our proposed model is superior to the baseline model with vocabulary
sizes larger than 2K subwords. The effect of including sub-subword information
is larger for larger vocabulary sizes. As Table 4.6 shows, our proposed model
does not significantly improve the BLEU scores for this large corpus. However,
our proposed model is more resilient to the grammatical errors evaluated by
lingeval97. The baseline and proposed models of 64 K subwords both have the
same BLEU score of 26.5 but the proposed model behaves better for 10 out 13
grammatical mistake categories.
The first group of results is related to morpheme order (Compound) and translit-

eration (Transl). Small vocabularies work best for these error categories based on
the nature of the target problem. Overall, including character n-gram information
improves transliteration accuracy.
In the German language, the pronoun “Sie” can mean “they” or “she.” NMT

models must choose the correct grammatical number for verbs by referring to
source sentences. Including character n-gram features improves accuracy because
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Table 4.8.: Grammatical accuracy for different error categories. The models cor-
respond to the English-German results in Table 4.6. The best result
out of the baseline models is underlined and the absolute best result
is shown in bold.
char. 2K 4K 8K 16K 32K 64K
bas. bas. pro. bas. pro. bas. pro. bas. pro. bas. pro. bas. pro.

Compound .700 .874 .888 .888 .895 .899 .888 .892 .892 .884 .888 .892 .888
Transl .921 .979 .984 .984 .987 .983 .986 .979 .981 .979 .981 .970 .979
SubjAdeq .664 .817 .838 .829 .818 .820 .836 .819 .822 .829 .848 .822 .840
VerbPart .712 .903 .896 .893 .886 .908 .910 .893 .926 .911 .929 .929 .936
NP .810 .944 .944 .946 .949 .949 .949 .951 .952 .953 .954 .954 .956
SubjVerb .716 .840 .855 .841 .846 .834 .855 .841 .848 .839 .846 .843 .839
Aux .652 .902 .898 .871 .863 .888 .912 .889 .892 .884 .911 .879 .906
NichtDel .536 .911 .848 .902 .930 .930 .951 .942 .949 .945 .961 .951 .959
KeinDel .673 .929 .883 .879 .933 .914 .937 .920 .942 .898 .928 .907 .926
AffixDel .534 .887 .875 .901 .911 .923 .932 .925 .935 .933 .933 .922 .927
NichtIns .822 .905 .894 .894 .905 .884 .881 .851 .854 .835 .837 .827 .839
KeinIns .786 .984 .985 .994 .994 .993 .994 .996 .996 .997 .997 .998 .998
AffixIns .847 .982 .980 .981 .977 .977 .977 .970 .967 .961 .961 .959 .960
superior — 7/13 5/13 4/13 8/13 2/13 9/13 1/13 10/13 0/13 10/13 2/13 10/13
BLEU 19.0 25.3 25.3 25.4 25.3 26.0 26.1 26.4 26.3 26.1 26.5 26.5 26.5

the third-person singular English verbs in the source sentences include features
indicating that they end with the letter “s.”
The third group of results is related to agreement. Morphosyntactic agreement

between a subject and verb (SubjVerb), and between determiners and nouns in
noun phrases (NP), considers number and gender. Agreement between verbs, par-
ticles (VerbPart), and auxiliary verbs (Aux) is improved by the proposed method.
Excluding auxiliary verb agreement, these error categories are less common with
larger vocabularies (i.e., shorter sequences).
The final group of errors changes the polarity of a sentence by either inserting

or deleting polarity markers. When the negating word “nicht” or other polarity
affixes are inserted (NichtIns, AffixIns), the models operating on longer sequences
perform better because they are more likely to drop source sentence information.
There is no optimal vocabulary size. When considering only the BLEU scores,

the larger vocabulary sizes are better. However, these improvements come as a
trade-off with some error categories such as NichtIns and AffixIns.
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4.4.5. Corpus Size Experiments

Table 4.9.: English-German NMT results for different dataset sizes. The benefit
of the proposed method decreases as the size of the training dataset
increases. The best results are shown in bold. It should be noted that
the number of parameters for the proposed model after training is the
same as that for the baseline. The scores marked with * have a sta-
tistically significant improvement with respect to their corresponding
baseline.

sentences baseline proposed
small-1 205,483 17.1 19.2 (+2.1)*
small-2 410,966 19.9 21.4 (+1.5)*
small-3 753,437 22.5 23.1 (+0.6)*
small-4 1,506,874 24.5 24.9 (+0.4)*
small-5 2,260,310 25.4 25.7 (+0.3)
full 4,520,620 26.5 26.5 (=)

Table 4.9 compares the results of different methods for different dataset sizes.
We sampled random sentences from the English-German training corpus to con-
struct training sets of increasing sizes. We then trained NMT models using these
sets. The vocabulary size was approximately 64,000 subwords. We trained three
models for each dataset.
One can see that the benefit of applying the proposed method decreases for

larger training datasets. For the full dataset of approximately 4.5 M sentences,
the proposed method does not improve the results of the baseline model.
The models trained on smaller datasets are more prone to overfitting. We

believe the proposed method provides better generalization because subword fea-
tures are derived from n-gram features. This regularization effect is more promi-
nent for small datasets. For large datasets, the need for regularization is lessened
and the proposed method is less salient.

61



4.5. Character Reduction Experiments
As a continuation of the experiments in Section 3.8, we repeat the experiments
including the proposed method.
When using character reduction, the number of features needed to represent

the vocabulary is reduced. For a vocabulary of 8,000 subwords, as used in the
experiments, 196 features are required without character reduction and 190 with
character reduction. The vocabularies are identical in both directions. Table 4.10
extends Table 3.3 which explores character reduction.

Table 4.10.: Reduction of characters with the proposed method. This table is
built on the results of Table 3.3. The results follow the format "BLEU
(chrF2)". Best BLEU results are shown in bold and the best chrF2
are underlined.

En→Tr Tr→En
Base Proposed Base Proposed

Base All 13.68 (.470) 15.14 (.487) 16.22 (.446) 17.90 (.465)
Reduction 13.70 (.466) 15.38 (.489) 15.74 (.441) 17.24 (.458)

BPE dropout All 14.17 (.479) 15.45 (.491) 17.64 (.461) 18.07 (.467)
Reduction 14.35 (.479) 15.57 (.493) 17.18 (.457) 17.77 (.465)

The proposed model improves the results of its equivalent baseline in all cases.
The observations on Table 3.3 are repeated in this case. The use of character

reduction improves chrF2) by 0.2 points compared to the equivalent without
reduction in the En→Tr direction and decreases chrF2) by 0.2 points in the
Tr→En direction for models with BPE dropout.

4.6. Ideographic Characters
A problem with the proposed method is related to the ideographic characters.
While in alphabetic or phonetic writing systems most words consist of several
characters, in ideographic writing systems, such as Chinese characters, many
words consist of a single character. In particular, if a small BPE vocabulary is

62



used, a large part of the subwords are single character. The effectiveness of the
proposed method may be limited by this characteristic.
The vast majority of Chinese characters are formed by combining various com-

ponents. Some components can provide information about the meaning of the
character. Not all components are semantic, some may be phonetic or other-
wise. Exposing these components could improve representation in NMT models.
For example, many characters for tree names have the 木 component, such as
楓 (maple),桃 (peach),柏 (oak),松 (pine),椿 (camellia) and many others. Many
characters for insects have the 虫component, such as 蚊(mosquito), 蜂 (bee) and
蛍 (firefly). Also some characters with similar meanings can share a component:
見 (see) 視 (look), 観 (observe). In Table 3.1, we show how Unicode codepoints
have an assigned a name. However, in the case of Chinese characters, they all
follow the CJK UNIFIED IDEOGRAPH-XXXX format, where XXXX is an index key.
To deal with this problem, we decided to try decomposing characters into

components. We propose a decomposition scheme and test it in the Subsection
4.6.1 experiments. This approach is similar to Zhang and Komachi [142] and Han
et al. [59].
There are several CJKV character decomposition databases, in our experi-

ments we use the hfhchan/ids dataset ∗ Applying decomposition recurrently, all
characters can be represented by 948 bases. These bases can represent 47,553
characters from various languages, including Chinese, Japanese, and Vietnamese,
rare or obsolete characters, and regional variations. If we limit the characters to
the Japanese data from our training data, we get 5,669 ideographic characters
and 703 bases.
Table 4.11 shows some examples of CJKV character decomposition.
This sub-character information can be applied by decomposing before BPE. In

this way BPE can learn the most frequent combinations and BPE dropout can
be applied to character decomposition. However, such a model has the possibility
of generating characters of any combination of components including nonexistent
or rare characters.
Another way the decomposition data can be used in combination with the

proposed model. That is, to include the n-grams of the decomposition among the

∗Found at https://github.com/hfhchan/ids
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Table 4.11.: Some examples of CJKV character decomposition.
character decomposition
楓 ⿰木⿵凡虫

桃 ⿰木兆

柏 ⿰木白

松 ⿰木⿱八厶

蚊 ⿰虫文

蜂 ⿰虫⿱夂丰

蜘 ⿰虫⿰矢口

蛛 ⿰虫朱

見 見

視 ⿰示見

features to select.

4.6.1. Experiments

Table 4.12 shows the statistics of the English-Japanese data used in the exper-
iments. Three datasets are used in both directions, of 200,000, 400,000 and
800,000 parallel sentences. The data is sampled from The Kyoto Free Transla-
tion Task Corpus [92] for the 200,000 sentence pairs and 400,000 pairs datasets.
The 800,000-pair dataset includes data from TED Talks English-Japanese corpus
[23] to achieve this amount of sentences.

Table 4.12.: Statistics of the English-Japanese data used in the experiments.
Sentences English Words Japanese characters
200,000 4,419,913 7,701,060
400,000 8,910,971 15,361,559
800,000 12,360,397 22,410,306

Table 4.13 shows five models’ chrF2 and Character BLEU scores for English
→ Japanese translation. The dec row contains the results of decomposing the
characters before training the BPE vocabulary and without using the proposed
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method. The feats row contains the results of using the proposed method with-
out decomposing the characters and the dec>feats row contains the results of
using the proposed method decomposing the characters before applying BPE sub-
word segmentation. The feats(dec) row contains the results of including the
character decomposition as features of the proposed method but without affecting
the subword segmentation.

Table 4.13.: English → Japanese low-resource translation results using sub-
character features. Best character BLEU results are shown in bold
and the best chrF2 are underlined.

en→ja 4K 8K 16K 32K
sents model chrF cBLEU chrF cBLEU chrF cBLEU chrF cBLEU

200,000

base – – .112 10.04 .092 7.48 .079 5.99
feats – – .133 12.59 .130 12.15 .118 10.48
dec .102 8.74 .104 9.06 .084 6.62 .075 5.39
dec>feats .119 10.90 .127 11.82 .125 11.43 .123 11.06
feats(dec) – – .114 10.26 .122 11.10 .123 10.96

400,000

base – – .152 15.35 .135 12.97 .117 10.60
feats – – .160 16.18 .156 15.49 .147 14.19
dec .144 14.03 .138 13.51 .125 11.78 .117 10.75
dec>feats .145 14.07 .155 15.40 .151 14.80 .146 14.20
feats(dec) – – .162 16.42 .157 15.65 .150 14.78

800,000

base – – .192 20.65 .177 18.57 .152 15.30
feats – – .176 18.56 .194 20.56 .193 20.36
dec .177 18.38 .173 18.01 .166 17.15 .161 16.48
dec>feats .167 16.99 .188 19.82 .192 20.30 .181 18.82
feats(dec) – – .197 20.71 .198 21.10 .195 20.67

For the smallest dataset, the proposed method manages to improve the baseline
results without the need for sub-character features. For larger datasets, the pro-
posed method works best when includig the character decomposition as features.
The benefit of this approach is larger for the largest dataset.
Table 4.14 shows the chrF2 and BLEU scores for Japanese→English transla-

tion.
The results show a trend in favor of not using sub-character features. In all

three datasets, the models of the proposed method without sub-character features
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Table 4.14.: Japanese → English low-resource translation results using sub-
character features. Best BLEU results are shown in bold and the
best chrF2 are underlined.

ja→en 4K 8K 16K 32K
sents model chrF BLEU chrF BLEU chrF BLEU chrF BLEU

200,000

base – – .342 5.25 .328 4.55 .311 3.77
feats – – .320 4.68 .343 5.42 .342 5.07
dec .312 4.09 .322 4.47 .317 4.19 .284 2.66
dec>feats .323 4.98 .329 4.83 .327 4.63 .322 4.65
feats(dec) – – .316 4.85 .319 4.43 .339 5.16

400,000

base – – .366 6.50 .367 6.36 .349 5.23
feats – – .348 5.97 .370 6.59 .365 5.90
dec .347 5.72 .343 5.39 .346 5.38 .331 4.65
dec>feats .343 5.77 .345 5.87 .364 6.17 .346 5.67
feats(dec) – – .361 6.01 .364 6.40 .365 6.27

800,000

base – – .388 8.21 .388 8.01 .387 7.37
feats – – .366 7.23 .387 8.31 .399 8.37
dec .382 7.70 .383 7.69 .389 7.79 .378 7.33
dec>feats .373 7.57 .382 7.91 .389 7.71 .394 8.11
feats(dec) – – .373 7.57 .389 8.27 .394 8.27
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achieve the best results. However, the difference with the models using sub-
character features (dec>feats and feats(dec)) is not significant. These results
show that sub-character features are most effective when they appear in the
target language. For the larger vocabulary sizes, the results of dec>feats and
feats(dec) are very close. This confirms the idea that the way in which the
sub-character features in the source language is not very relevant.

4.7. Embedding Analysis
Provilkov et al. [104] made a visualization of the embeddings to show that BPE
dropout improves the quality of rare embeddings, preventing these from forming
clusters. However, their experiments focused on non-low-resource pairs. For their
visualization they used the embeddings of two models (BPE and BPE dropout)
trained in 4 million English-French sentences.
To better understand the effect that the proposed method has on rare embed-

dings, we visualized the embeddings using t-SNE. Figure 4.3 shows the embed-
dings of a model trained using vanilla BPE (BASE), a model using BPE dropout
(BPE DROPOUT) and a model using the proposed method with BPE dropout
(PROPOSED). The models were trained on a 205,000 sentence pair low-resource
Turkish-English corpus using a vocabulary size of 32,000 subwords. To avoid
clustering the subwords based on their language we plot only subwords that ap-
pear at least once in the English data.
We found that BPE DROPOUT does not completely avoid clustering of rare words,

although it does perform better than BASE. We believe that the difference with
respect to the results of Provilkov et al. [104] is due to the fact that in our case
the dataset is low-resource.
On the other hand, we observe that the proposed method manages to eliminate

the clustering of rare words and also forms better delimited clusters based on
graphic and semantic characteristics.
Many of the rare subwords are parts of proper names such as _Mü, _Scepan

and _Yap. This explains why they are still clustered together.
To find out the nature of the clusters formed by the proposed method, we use

the k-means clustering method to cluster the data into 8 clusters for each layer
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Figure 4.3.: English subword embeddings’ t-SNE plot for three different models:
baseline, using BPE dropout and usig BPE dropout with the pro-
posed method. The plot shows rarer words in a darker color. The
proposed methods reduces clustering of rare words.

in the FTE network.
Table 4.15 contains the most frequent English words for each of the 3 × 8

clusters.
The subwords shown are those with the highest frequency of each cluster. The

recurring politics theme is caused by the domain of the training data.
Layer 1 represents the features selected by the featre selection algorithm. The

clusters formed in layer 1 are strictly based on the n-gram features of each sub-
word. For example, cluster C13 contains many subwords with the letter r and
cluster C15 contains many subwords with the letter l.
Layer 2 is the result of applying one feed-forward layer to Layer 1. The clus-

ters formed in this layer are based on both spelling and semantic features. For
example, cluster C21 contains words with capital letter M and cluster C26 contains
many subwords with digraph ng.
Layer 3 contains the embeddings of the subwords, result of applying one feed-

forward layer to Layer 2. This is the layer used in Figure 4.3. The clusters
formed in this layer are mainly semantic but do expose some spelling features.
For example, many subwords in cluster C32 end in s, cluster C36 contains numbers,
and cluster C37 contains punctuation marks and isolated letters.
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Table 4.15.: Embedding clusters formed by the proposed method in each of the
three layers. The symbol _ represents the beginning of a word.

C11 C12 C13 C14 C15 C16 C17 C18

layer 1
(features)

_government _the _for ’s _also _is _and _will
_country _of _are s _all _as _in _would
_countries _to _from - _political _has _on _told
_during _a _their d _international _was _an _only
_under _that _were t _last _said _not _should

_country’s _with _more : _talks _its _new _people
_co-operation _be _after m _local _this _been _could

_foreign _by _other ted _officials _his _In _public
_agreement _have _or ly _military _first _one _police
_number _– _over te _national _Times _than _while
C21 C22 C23 C24 C25 C26 C27 C28

layer 2

_Minister _political _of _the _at _during _The _from
_BiH _Prime _to _that _it _against ’s _government

_Macedonia _up _and _with _its ting s _more
_Monday _President _in _has _but _foreign _In _Times

_Macedonian _people _a _have _two _including _By _economic
_Montenegro _per _for _he _after _meeting - _some

_May _part _is _this _told _agreement d _former
_Serbia-Montenegro _support _on _which _about _among t _most

_March _public _will _their _first _being : _must
_Parliament _police _as _his _country _according m _time

C31 C32 C33 C34 C35 C36 C37 C38

layer 3
(embeddings)

_the _Times _first _government ’s _15 _and _EU
_of _countries _while _told ted _30 _– _European
_to _euros _take _country ly _16 s _Minister
_in _talks _media _international ting _13 _- _Kosovo
_a _says _key _against te _18 _In _Southeast
_for _years _took _support se _3 - _Serbian
_is _officials _like _police re _24 d _Serbia

_that _crimes _think _co-operation st _27 t _Prime
_on ts _team _foreign ri _4 : _President
_with _members _election _According na _26 m _Turkish
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4.8. Conclusion
We explored different approaches for utilizing character n-gram features for subword-
level NMT without changing baseline model architectures or number of parame-
ters.
We analyzed the best approach for utilizing n-gram features and determined

that a nonlinear function seems to perform better than a (weighted) sum of
plural feature embeddings. For low-resource language pairs, translation accuracy
(BLEU score) can be improved by utilizing n-gram features. This approach also
improves the grammatical accuracy of the produced translations.
We explicitly analyzed how the vocabulary size affects grammatical accuracy

and found that although models using larger vocabularies tend to produce fewer
grammatical errors, they are difficult to train when training data is scarce. Using
n-gram features to infer embeddings can help with training.
By varying the dataset size, we determined that the proposed method works

particularly well on small datasets, but its benefits decrease as the dataset size
increases.
We tested the effect of the proposed sub-subword features method in combi-

nation with the character reduction method. The results show similar results to
those of Chapter 3. The character reduction method allows to reduce the number
of features required.
The proposed method also shows an improvement in English-Japanese results,

which uses CJKV characters. We tried using CJKV character decomposition
with the proposed method. The results show that, when there is enough training
data, it is useful to include sub-character information from the target language,
but not from the source language.
We use t-SNE to represent the effect of the proposed method on low-frequency

subwords. Our method not only succeeds in eliminating low-frequency subword
clusters but also better delimits clusters based on graphic and semantic char-
acteristics. We analyzed the content of the clusters formed by the embeddings
and found that the deeper layers abstract most of the spelling features while
preserving the relevant ones.
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Chapter 5.

External Data

We have already mentioned in this dissertation that getting parallel data can be
difficult for many language pairs. In particular, pairs that do not include English
tend to have little data. That is why there is research in low-resource NMT.
As we have already discussed in previous chapters, some options to improve the

performance of NMT systems under low-resource conditions go through the re-
processing of data and refining architectures, hyperparameters and other machine
learning techniques.
Another part of the research has focused on taking advantage of external data

to make up for the lack of parallel data in target pair. One option is to use
monolingual data from the source or target language, since it is easier to collect
monolingual text. Another option may be to take advantage of parallel data in
relation to a third language, in such a way that there are two pairs, one of them
auxiliary, that have overlapping source or target language.
In this chapter, we discuss how to use the data from an auxiliary pair and how

to use monolingual data to improve the performance of low-resource pairs.
We do not discuss other ideas, such as using bilingual dictionaries effectively,

or data from other tasks.

5.1. Using a third language
A commonly used method of building machine translation systems for pairs with
little or no parallel data is pivot translation. In the event that no parallel corpus
is available from language L1 to a language L2 (for example, Japanese-Spanish),
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but there are datasets available from L1 to a third language LP and from LP to
L2, two translation systems can be built and chained to translate from L1 to L2

[36, 130, 137].

train

L1➔ LP
corpus

L1➔ LP
NMT

x
(L1)

y(P)

(LP)

train

LP➔ L2
corpus

LP➔ L2
NMT

y
(L2)

Figure 5.1.: Diagram of a cascade pivot MT. The first model translates into the
pivot language LP from L1 and the second model translates from L1

into L2.

This kind of system is also known as sequential or cascade MT. In this case,
there is no need for parallel data from the target pair, so the pivot translation
could be considered as zero-shot translation. However, this term is usually re-
served for systems that consist of a single model. The term zero-resource is
preferred instead.
An obvious problem with this type of system is that the errors propagate from

the first model to the second. Also, if the pivot language is not adequate, a lot
of relevant information may disappear systematically. For example, the pivot
language could lack a plural mark, gender distinction, or degrees of formality.
Another problem is the speed of translation, since two translations have to

be decoded. To avoid this problem, for SMT models, one can use the technique
known as model triangulation to create a model by combining model L1 → LP and
LP → L2 [130, 148, 89]. For NMT, a solution is to train the L1 → L2 translation
model using data synthesized by an LP → L2 model from an L1 → LP corpus
[15, 26].
To improve the performance of pivot translation, models L1 → LP and LP →

72



train

LP➔ L2
corpus

LP➔ L2
NMT

LP
corpus

L2
corpus

train

L1➔ L2
corpus

LP➔ L2
NMT

y
(L2)

merge

L1➔ LP
corpus

x
(L1)

ex
tra

ct

Figure 5.2.: Diagram of a synthesizing pivot MT system creation. L1 → LP

and LP → L2 corpora are necessary. An LP → L2 model is used to
translate the LP sentences of a L1 → LP corpus to L2 in order to
synthesize a new L1 → L2 corpus to train the final model

L2 can be trained jointly in pursuit of co-adaptation[27].
Johnson et al. [63] introduced multilingual models to NMT. Multilingual mod-

els are capable of translating more than one pair. For this, they used a simple
approach that consists of using a special symbol inserted in the source sentence
indicating the target language. The architecture of the model can be the same
as that of non-multilingual models. In their experiments, they showed that, al-
though the performance of pairs with more resources worsens when sharing a
model with other pairs, the performance of pairs with fewer resources improves.
Multilingual models allow translation between pairs with zero resources. This is
known as the zero-shot translation.
In Martınez and Matsumoto [83], we experimented with multilingual models

using separate encoders and decoders for each language. We explored the case
in which a resourceful LA auxiliary language is used to improve a low-resource
model. For this, data from an L1 → LA or LA → L2 pair is used. In the case
of L1 → LA the encoder is shared and in the case of LA → L2 the decoder is
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L1

LA

L2

Trained direction

Not trained

Figure 5.3.: Diagram of multilingual zero-shot MT. L1 ↔ L2 directions do not
have training data, but by sharing a model, it may be possible to pro-
duce translations. It is possible to have multiple auxiliary languages.

shared. The results showed the auxiliary data improved the performance of the
low-resource pair when the decoder was shared, but not the encoder.

L1
ENCODER

LA
ENCODER

L2
DECODER

L2
DECODER

LA
DECODER

L1
ENCODER

Figure 5.4.: Diagram of two multilingual models. The model on the left has a
shared decoder and the auxiliary language is on the source side, and
the model on the right a shared encoder with the auxiliary language
on the target side. It is possible to have multilingual encoders and
decoders that can process multiple languages.

Firat et al. [46] followed a similar method, with a specific encoder and decoder
for each language but sharing the attention mechanism. The results show a similar
trend, whereby English translation results improve consistently but translations
to other languages have mixed results. This may be due to the fact that all pairs
included English and therefore in the case of the English translation the shared
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part was the decoder.
Zoph et al. [149] used transfer-learning to train low-resource models. They first

trained the model on a pair with a large amounts of parallel data and then used
that model to initialize the low-resource model, freezing some of the parameters.
In their experiments, English was always the target language and the low-resource
pairs improved performance, particularly when pre-trained on a related language.
Vázquez et al. [132] explored multilingual models with independent encoders

and decoders for each language and a shared attention mechanism. Their ex-
periments gave good results for the multilingual models in both zero-shot and
non-zero-shot settings.
Dabre et al. [35] published a comprehensive survey that summarizes the differ-

ent ideas and techniques of Multilingual Neural Machine Translation.

5.1.1. Auxiliary Language Experiments

We experimented to test the effectiveness of our proposed method in multilingual
models. In particular, we tested the effect of leveraging data from the English-
German pair to improve the results of the English-Turkish models.
The English-German data is two million parallel pairs drawn from NewsCom-

mentaryV9 [127] and EuroparlV7 [70]. The system used to train the models is
similar to that described by Johnson et al. [63]. We mark both the source state-
ments and the target statements with a sequence specifying the origin of the data
(German or Turkish corpus). For the English → Turkish models the English
→ German data is used and for the Turkish → English models the German →
English data is used.
Since there is approximately ten times more data from English-German than

from English-Turkish, only 10% of the minibatches are data from the English-
Turkish pair. The baseline models were trained on two GPUs, with minibatches
of approximately 4,012 tokens on the target side. With one minibatch for each
GPU, each update consumed approximately 8,024 tokens of the target language.
To maintain this amount of Turkish data for each update, we keep the size of the
minibatches the same but we consume twenty minibatches for each update (ten
on each GPU).
Table 5.1 shows the results of the experiments. We also tested the effect of
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BPE dropout under these settings.

Table 5.1.: Results with an auxiliary language. Using an auxiliary language im-
proves results only when the target language is matched. The results
follow the format "BLEU (chrF2)". Best BLEU results are shown in
bold and the best chrF2 are underlined.

En-Tr Tr-En
Base Proposed Base Proposed

Base 13.68 (.470) 15.14 (.487) 16.22 (.446) 17.90 (.465)
+BPEd 14.17 (.479) 15.45 (.491) 17.64 (.461) 18.07 (.467)
+AUX 12.69 (.455) 11.97 (.445) 19.25 (.478) 19.27 (.479)
+AUX +BPEd 11.96 (.448) 11.29 (.441) 18.91 (.475) 18.45 (.474)

The results show that the auxiliary language only improves the results when
it is the target language that matches, that is, the auxiliary language is on the
source side. The results improve considerably with the auxiliary language but
only in the Turkish → English case. Furthermore the proposed method does not
make a significant improvement in this case. BPE dropout also does not improve
results, but rather deteriorates them to some extent.

5.2. Monolingual data
Unlike parallel data, monolingual corpora are easier to collect, as these do not
require manual annotation. That is why different ways of taking advantage of
them have been explored.

5.2.1. Using Target Language Models

As we have already explained in section 2.4, the decoders of the NMT models
have an architecture similar to a language model. Under low-resource conditions,
the language-model of the NMT model may be under-trained. Monolingual data
from the target language can be used to reinforce this LM. There are several ways
to do it.
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In SMT systems, neural language models, mainly recurrent neural network
language models (RNNLM), have been used to re-rank translation candidates
[111, 110, 112]. The system produces multiple candidates and the LM selects
those that sound most natural. Since Beam Search (described in section 2.5) can
produce several candidates, the same technique can be used with NMT systems
[57, 58]. This approach requires training an NMT model and an LM model
independently.
Gulcehre et al. [57] introduced two methods different to re-ranking that com-

bine two independently trained NMT and LMmodels. The shallow fusion method
consists of combining the probabilities produced by the NMT and LMmodels dur-
ing the Beam Search decoding. The deep fusion method consists of concatenating
the hidden state vectors before the output layer. This method requires a third
step after the NMT model and the LM model have been trained: the fine-tuning.
During fine-tuning all weights except the output layer are frozen. The hidden
states of the LM model uses a gating mechanism. Sriram et al. [121] introduced
the CF method whereby instead of fine-tuning the combination of the NMT and
LM, the NMT is trained with a frozen LM. By training the NMT model exposed
to the state of the pre-trained LM, its weights adapt and achieve better results.
In Martınez and Matsumoto [83], we trained a LM in jointly with an NMT

sharing the weights of the decoder. For this we use multitask learning (MTL).
Domhan and Hieber [40] used a similar approach.

5.2.2. Back Translation

Another way to take advantage of the monolingual data of the target language
is back-translation (BT) [118]. Back-translation is a type of distant supervision
in which a model of the opposite direction to the one that one wants to build is
used to synthesize more parallel data. The method requires training an opposite
model and the synthesized data is noisy. Still BT has been used extensively with
reported good results [118, 98, 43].
BT is particularly helpful for low-resource language pairs, but it requires a big

monolingual corpus of the target language. A large monolingual corpus may not
exist for some low-resource languages. It also introduces new problems, such as
what is the optimal amount or ratio for synthetic data or how noisy the data
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can be. Poncelas et al. [98] experimented with different amounts of BT data and
found that from a certain amount the increase in the BLEU score was smaller.
Although they did not conclude any formula to predict the optimal amount of
parallel data, they observed that a model trained only on BT data achieved a
performance close to one trained with real data.
Generating millions of translations to synthesize a parallel corpus can take a

long time. To reduce the cost greedy search can be used or multiple translations
can be generated from single source using Beam Search. Edunov et al. [43] found
that adding noise to beam search resulted in best performance.
Burlot and Yvon [22] compared different methods to take advantage of mono-

lingual data. As a result, they found that BT gave the best results and proposed
some alternative methods to use when quality BT is not available.

5.2.3. Unsupervised Machine Translation

The most radical way to take advantage of monolingual corpora is unsupervised
machine translation [3, 78, 5].
Unsupervised neural machine translation (UNMT) removes the need for parallel

data by training only on monolingual data.
Artetxe et al. [3] and Lample et al. [78] independently introduced UNMT as

a continuation of earlier research on unsupervised cross-lingual word embeddings
[2, 143, 32]. The model described by Artetxe et al. [3] combines denoising autoen-
coding and backtranslation, with the embeddings initialized with cross-lingual
embeddings.
The word embeddings of a language can be built from monolingual data. (ap-

pointment) To build CLE in an unsupervised way, you can first build the embed-
dings for two languages independently. Then a small set of bases or seeds can be
used to project the two sets of embeddings to the same space. Numbers are an
example of a seed.
Unsupervised machine translation has also been built on SMT [79, 4]. These

systems initialize the phrase table using cross-lingual embeddings and are im-
proved using iterative back translation.
Artetxe et al. [5] created an unsupervised SMT model using cross-lingual em-

beddings and incorporating subword information. This SMT model is then used
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to initialize an NMT model that is refined using iterative back-translation. Four
models are trained: two SMT models (one in each direction), and two NMT mod-
els. As the BT iterations are repeated, the training switches to using only NMT.
This method gave very good results in English-French and English-German pairs.
Although unsupervised machine translation has been proposed for low-resource

conditions, research has focused on resource-rich languages, primarily English-
German and English-French. The reason for this is that building robust cross-
lingual embeddings in an unsupervised way requires a very large amount of quality
monolingual data, and that the languages are related or use similar expressions.
Kim et al. [68] did an analysis of the problem and reflected on the usefulness of
unsupervised machine translation. They concluded that UNMT depends on the
similarity of the source and target languages, and on the domain similarity of
source and target data. They also show that a large amount of monolingual data
is not enough to achieve good results and that a small dataset of about 50,000
bilingual pairs is likely to achieve better results.

5.2.4. BT Experiments

Back-translation is one of the most effective methods to improve the performance
of low-resource models. We measured how the proposed approach behaves in
combination with BT.
Table 5.2 shows the statistics for four language pairs. The rows are ordered from

smallest to largest. The Xhosa-Zulu and English-Hausa data were published in
the WMT21 news translation task. Both are classified as low-resource in the task,
but Xhosa and Zulu are two closely-related languages and English and Hausa two
distant languages. The English-Basque data were published for the biomedical
task of WMT21. The English-Basque dataset cannot be considered low-resource
by the criteria in Section 1.3 but represents two distant languages. The Basque
language has a complex morphology that makes its generation difficult.
Ratios can hint about the similarity or dissimilarity of languages. Xhosa and

Zulu are related languages and that is why they show a ratio close to one. English
and Hausa are distant languages but their morphological characteristics result in
sequences of similar length.
Table 5.3 compares the BLEU scores for five English-to-Turkish NMT models.
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Table 5.2.: Statistics of the datasets used for BT experiments. The rows of the
table are ordered from smallest to largest, the source language being
that of the pair. The ratios are the number of words of the largest
language compared to the other.

Sentences Words in source Words in target Word ratio
Xh-Zu 94,323 1,356,127 1,325,168 1.02
En-Tr 207,678 4,428,280 3,654,669 1.21
En-Ha 752,287 11,044,101 11,713,109 1.06
En-Eu 2,627,745 23,225,786 17,472,145 1.33

The first two rows contain the best results from Table 4.6. The three models
using BT are represented by the remaining rows. These models have vocabu-
lary sizes of approximately 32,000 words. We translated four million randomly
sampled sentences from the Turkish monolingual common crawl corpus. The
model baseline-baseline uses the baseline model with an 8,000 word vocabulary
from Table 4.6 to perform BT on sentences. The models proposed-baseline and
proposed-proposed use the proposed model with a vocabulary size of 64,000 words
to perform BT on the monolingual sentences.
The proposed-baseline and proposed-proposed models give similar results, with

proposed-baseline being non-significantly superior. The results suggest that there
is no benefit to using the proposed method with synthetically enhanced training
data.
Table 5.4 shows the results for the rest of the languages in Table 5.2. The BT

data were translated using the proposed model. The BT data contain 2 million
pairs of sentences.
The chrF2 scores show better results for the proposed method in all cases.

For models using BT data, the BLEU scores are better in the case of Hausa →
English and English → Basque.
Except in the case of English-Basque, which is not an low-resource pair, the

synthetic data improves the performance of the models. In the case of Hausa-
English, the improvement in performance is especially noteworthy.
In the case of English→ Basque, the use of synthetic data damages the perfor-
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Table 5.3.: Results for different BT approaches for English-to-Turkish translation.
Using the proposed approach to perform BT on the monolingual sen-
tences to generate a synthetic corpus (proposed-baseline) yields the
best performance. It should be noted that the number of parame-
ters for the proposed model after training is the same as that for the
baseline. The scores marked with * have a statistically significant
improvement with respect to baseline-baseline.

approach BLEU
best baseline (BPE 8K) 14.0
best proposed (BPE 64K) 14.6
BPE 32K baseline 13.3
BPE 32K proposed 14.6
baseline-baseline (BPE 32K) 17.3
proposed-baseline (BPE 32K) 17.8*
proposed-proposed (BPE 32K) 17.7*

mance of the model, but the proposed method significantly improves the baseline
score. Bad BT results in this case may be due to domain mismatch of parallel
and monolingual data. While parallel data from both training and evaluation are
primarily from the biomedical domain, the monolingual data come from various
sources.
In the case of Xhosa-Zulu, the BT data improves the results, although moder-

ately. This may be due to the high noise level in the synthetic data, due to the
poor performance of the model used to generate them in the first place.

5.3. Conclusion
In this chapter we explain two ways to take advantage of external data to improve
the performance of NMT models.
One way is by using parallel data from other languages. We tried to train

models using parallel data from an auxiliary language. We found that, when the
weights are shared, the results improve only when the auxiliary language is on
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Table 5.4.: BT results for various language pairs. (+/-) BT indicates the
use or non-use of BT data. The results follow the format "BLEU
(chrF2)". Best BLEU results are shown in bold and the best chrF2
are underlined.

-BT +BT
Base Proposed Base Proposed

Xh → Zu 6.52 (.416) 9.27 (.470) 9.18 (.471) 9.71 (.478)
Zu → Xh 6.30 (.421) 8.52 (.468) 8.57 (.467) 8.82 (.470)
En → Ha 12.02 (.412) 12.48 (.420) 17.54 (.480) 17.98 (.482)
Ha → En 13.04 (.403) 14.53 (.429) 16.69 (.460) 15.52 (.461)
En → Eu 16.47 (.456) 17.34 (.471) 16.44 (.462) 16.35 (.463)

the source side. Combining the proposed sub-subword features method, we verify
that it does not provide significant improvements.
Another way is to use monolingual data from the target language. The most

common method is BT. When combining the proposed method with BT, we
determined that it is helpful to use the proposed method with a BT model, but
whether it provides benefits when applied to a forward translating model after
incorporating a large synthetic dataset into the training data depends on the
target language and the quality of the synthetic data.
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Chapter 6.

Conclusion

6.1. Summary
This dissertation explored the problems related to language representation for
low-resource NMT. It provided an overview of the related technologies and tech-
niques highlighting their effect on low-resource NMT
We focused on the method we proposed in Martınez and Matsumoto [83] and

explored how it relates to other techniques that have been shown effective on
low-resource settings.
On Chapter 2, we explained in detail the concepts of NMT necessary to under-

stand the subsequent chapters. Some tools frequently used in non-low-resource
NMT may not be available for low-resource languages. On the other hand, these
tools may not be necessary for modern NMT models. Our experiments show
that for one low-resource pair, which does not have specific tokenization and nor-
malization rules implemented, it is better to use the text without tokenizing or
normalizing.
On Chapter 3, we explained in detail the concepts subword segmentation and

their relation to low-resource NMT. Some innovations, such as BPE dropout,
have a great effect on low-resource NMT. We compared different settings for
low-resource NMT through various experiments.
Although BPE can limit the size of the vocabulary to a specific number of

subwords, the minimum number of subwords is given by the number of different
characters. If a dataset contains a great variety of characters these can occupy a
large part of the vocabulary affecting the BPE model. We propose a method to
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reduce the number of characters. Experiments show that this method, although
it allows to control vocabulary, can have a negative effect in some cases.
On Chapter 4, we described our NMT training method that utilizes sub-

subword n-gram features and examined its properties through multiple sets of
experiments.
The proposed method also shows an improvement in English-Japanese results,

which uses CJKV characters. We tried using CJKV character decomposition
with the proposed method. The results show that, when there is enough training
data, it is useful to include sub-character information from the target language,
but not from the source language.
We use t-SNE to represent the effect of the proposed method on low-frequency

subwords. Our method not only succeeds in eliminating low-frequency subword
clusters but also better delimits clusters based on graphic and semantic charac-
teristics.
On Chapter 5, we compared different methods to exploit external corpora to

improve NMT. We explored using parallel data from other languages. We tried to
train models using parallel data from an auxiliary language. We found that, when
the weights are shared, the results improve only when the auxiliary language is
on the source side. Combining the proposed sub-subword features method, we
verify that it does not provide significant improvements.
Another way is to use monolingual data from the target language. The most

common method is BT. When combining the proposed method with BT, we
determined that it is helpful to use the proposed method with a BT model, but
whether it provides benefits when applied to a forward translating model after
incorporating a large synthetic dataset into the training data depends on the
target language and the quality of the synthetic data.

6.2. Future Directions
In this dissertation, We have mentioned several effective methods for low-resource
NMT, such as multilingual NMT, backtranslation, including bilingual dictionar-
ies, and copy-mechanisms. Improvements in any of these techniques can con-
tribute to improving the state-of-the-art. The effectiveness of the techniques de-

84



pends on several factors such as the quality of the training data, the domain and
the source and target languages. The WMT results show that the best models
are those that combine various techniques effectively. Thus, techniques developed
for unsupervised NMT could be applied in low-resource NMT to achieve better
results in the future.
The sub-subword feature method presented in this dissertation achieves good

results, but there is still room for improvement. In the future, we wish to ex-
plore how the proposed low-resource techniques can be applied to tasks other
than NMT, such as named entity recognition (NER). Some tasks such as dialog
modeling and automatic summarization use model architectures similar to MT’s.
Tasks like NER and RE typically have less data than MT systems by their nature.
These tasks require manual annotations that are more expensive than sentence
aligning. This is why I think the proposed sub-subword features method can be
effective.
Additionally, it would also be of interest to try different feature selection algo-

rithms. The algorithm presented looks for a minimum set of features to define
the vocabulary, however the selected set is one of many possibilities. It is pos-
sible to devise a method to select a minimum number of features, and to use
regularization techniques to train more robust models.
The proposed method can be used to select all types of features, not just n-

grams, as we have already done in Section 4.6 to include sub-character features.
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Appendix A.

Example of feature selection

This appendix contains the output of the proposed feature selection algorithm
executed on an English vocabulary of about 32,000 subwords.
The output is shown in several tables with a maximum of 30 entries in each

one. Each row represents a step in the execution of the algorithm. Column fea-
ture shows the feature selected in each step step. The columns data coverage and
vocabulary coverage represent the subwords that can be represented unambigu-
ously using the selected feature set. The column data coverage represents the
portion of subwords in the training data that has been covered, and the column
vocabulary coverage represents the covered subwords in the vocabulary.
The columns example 1 and example 2 show up to two examples of new sub-

words covered, if any. The new words can be defined by the absence of the chosen
feature and so it may not contain it.
The column active partitions shows the number of ambiguous subword parti-

tions, as defined in Section 4.3.2. We observe two phases in the algorithm. First
the number of active partitions increases, and then decreases.
The characters \u240f and \u240e represent the beginning-of-word and end-

of-word symbols respectively.
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Table A.1.: Example of the output of the proposed feature selection algorithm.
Features 1 - 30.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

1 e 2 0.0825 0.0000 – –
2 \u240ft 4 0.1224 0.0000 – –
3 a 8 0.1623 0.0000 – –
4 i 16 0.1989 0.0000 – –
5 n 32 0.2310 0.0000 – –
6 r 64 0.2613 0.0000 – –
7 t 96 0.2932 0.0000 – –
8 s 187 0.3285 0.0001 tioners trinski
9 o 352 0.3699 0.0003 termination tracks
10 h 599 0.4091 0.0017 thirds technologi@@
11 d 918 0.4464 0.0046 discour@@ withstand
12 c 1395 0.4821 0.0100 hydroelectric Undersecretary
13 l 1958 0.5204 0.0193 ticul@@ English-language
14 m 2481 0.5559 0.0326 h four-month
15 u 3018 0.5872 0.0531 Tournam@@ unofficial
16 , 3615 0.6166 0.0820 donors, Srebrenica,
17 . 3945 0.6440 0.1144 southeast. anymore.
18 p 4277 0.6710 0.1474 pillar ballots
19 y 4353 0.6957 0.1756 quickly securing
20 @ 4804 0.7201 0.2222 Shkodra election@@
21 w 4885 0.7419 0.2380 everywhere where@@
22 g 4973 0.7630 0.2762 wage England
23 f 4977 0.7797 0.3042 underworld influential
24 s\u240e 4923 0.7954 0.3294 issue shareholder
25 b 4916 0.8104 0.3569 Built oyed
26 v 4898 0.8219 0.3868 erable Stankovic,
27 \" 4684 0.8325 0.4150 this, huge
28 k 4623 0.8416 0.4380 Osijek, spokesperson
29 \u240fa 4463 0.8501 0.4658 Karic, academy
30 \u240fe 4341 0.8577 0.4887 emocr@@ eg@@
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Table A.2.: Example of the output of the proposed feature selection algorithm.
Features 31 - 60.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

31 n\u240e 4292 0.8641 0.4978 Queen donor
32 T 4263 0.8703 0.5063 Tat@@ Tep@@
33 - 4160 0.8763 0.5194 -euro power@@
34 \u240fr 3994 0.8821 0.5402 Israel@@ rang@@
35 \u240fi 3895 0.8874 0.5568 itarian igh
36 S 3807 0.8923 0.5724 Sol@@ Sokol@@
37 A 3764 0.8970 0.5819 sk@@ Assad
38 e\u240e 3610 0.9010 0.5963 \"New \"we
39 C 3544 0.9046 0.6079 Conc@@ Concerning
40 \u240fo 3448 0.9077 0.6194 Pacolli Bode
41 ( 3443 0.9108 0.6226 left, (EurActiv,
42 E 3424 0.9139 0.6286 Mrk@@ change
43 ’ 3314 0.9168 0.6389 isn’t om’s
44 M 3268 0.9196 0.6488 Party members
45 P 3216 0.9223 0.6595 Perform@@ perhaps
46 B 3183 0.9249 0.6691 Bist@@ MB@@
47 er 3061 0.9274 0.6800 porter tren@@
48 N 3049 0.9298 0.6862 News Neret@@
49 j 2983 0.9322 0.6957 Ognj@@ Miha@@
50 I 2959 0.9345 0.7024 (ISAF) Ig@@
51 D 2917 0.9367 0.7109 ND visas
52 ) 2888 0.9381 0.7156 September), September)
53 R 2847 0.9402 0.7236 quasi-@@ Re@@
54 \u240fs 2722 0.9422 0.7350 staff, kers
55 2 2737 0.9432 0.7360 3rd. 21st.
56 ed 2645 0.9450 0.7427 directing end,
57 H 2611 0.9467 0.7490 (HN@@ zer
58 1 2643 0.9481 0.7494 – 12th),
59 5 2662 0.9496 0.7510 15th, 25th.
60 0 2692 0.9516 0.7528 125 50th
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Table A.3.: Example of the output of the proposed feature selection algorithm.
Features 61 - 90.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

61 4 2720 0.9534 0.7548 14th), 24th),
62 6 2749 0.9552 0.7567 6th). (26
63 9 2777 0.9570 0.7592 2009, /12/09)
64 3 2816 0.9589 0.7615 1st, 31st)
65 7 2837 0.9608 0.7643 8th). 8th),
66 8 2855 0.9623 0.7668 ht 7/07)
67 ll 2756 0.9638 0.7750 cell@@ ell@@
68 F 2718 0.9653 0.7811 narco@@ For@@
69 es 2605 0.9667 0.7890 Weeks machines
70 G 2587 0.9681 0.7933 G, zen
71 K 2545 0.9694 0.7997 Kac@@ uck@@
72 \"\u240e 2477 0.9707 0.8041 y.\" ly\".
73 L 2444 0.9719 0.8094 gauge jub@@
74 z 2375 0.9731 0.8169 [a Krye@@
75 / 2394 0.9741 0.8189 HIV/@@ /SETimes]
76 \u240fl 2334 0.9751 0.8239 log@@ location
77 O 2294 0.9760 0.8288 NGO@@ O),
78 00 2284 0.9769 0.8307 2006 700@@
79 % 2280 0.9778 0.8335 6, 6.
80 r@ 2177 0.9786 0.8409 bor@@ art@@
81 ee 2129 0.9793 0.8443 ber green@@
82 x 2072 0.9801 0.8489 next, x@@
83 \u240f1 2059 0.9808 0.8513 1/08) $1
84 V 2033 0.9814 0.8547 Ved@@ VO@@
85 in 1976 0.9820 0.8587 Toni ations.
86 t\u240e 1940 0.9826 0.8613 heart Packett:
87 ; 1923 0.9831 0.8648 5/11 );
88 s, 1851 0.9837 0.8694 professors, reasons,
89 oo 1801 0.9842 0.8730 dog choos@@
90 11 1787 0.9848 0.8750 /11/05) 11m
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Table A.4.: Example of the output of the proposed feature selection algorithm.
Features 91 - 120.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

91 [ 1752 0.9853 0.8777 Fil@@ AFP
92 : 1710 0.9858 0.8813 ovic: s:
93 U 1680 0.9863 0.8839 Up@@ (D@@
94 J 1639 0.9868 0.8875 going Jim
95 ss 1579 0.9872 0.8916 ss@@ les@@
96 i@ 1491 0.9877 0.8975 Krasniq@@ pi@@
97 s.\u240e 1437 0.9881 0.9009 arrests. ships.
98 W 1411 0.9885 0.9030 here Web@@
99 ni 1373 0.9889 0.9057 Bosniak inated
100 de 1351 0.9893 0.9072 needed, fined
101 ] 1330 0.9896 0.9091 es? t]
102 \u240f3 1287 0.9900 0.9119 37@@ 43
103 o\u240e 1271 0.9903 0.9129 who pol
104 Z 1249 0.9907 0.9149 AZ@@ fa@@
105 ff 1235 0.9910 0.9158 of. ff@@
106 se 1197 0.9913 0.9182 addresses witness.
107 ac 1164 0.9916 0.9204 sacred financing
108 al 1131 0.9919 0.9226 ailing fla@@
109 \u240fu 1105 0.9922 0.9246 unconstitutional uh
110 ro 1083 0.9924 0.9259 corporate board@@
111 0, 1083 0.9927 0.9265 4,000 150,000
112 0\u240e 1072 0.9929 0.9275 2002 /11/10
113 \u240f5 1038 0.9932 0.9297 5/06) 6/05;
114 22 1026 0.9934 0.9306 22nd) 220
115 n@ 983 0.9936 0.9335 conferenc@@ Constan@@
116 nn 953 0.9938 0.9355 question@@ tunn@@
117 a\u240e 919 0.9940 0.9377 mila lava
118 \u240f2 903 0.9942 0.9389 6.2 20m
119 st 882 0.9944 0.9404 situ@@ stak@@
120 l@ 845 0.9946 0.9427 Kle@@ Ble@@
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Table A.5.: Example of the output of the proposed feature selection algorithm.
Features 121 - 150.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

121 gi 833 0.9947 0.9436 staging bringing
122 Y 823 0.9949 0.9443 FIC@@ Yug@@
123 \u240fS 812 0.9950 0.9452 SEEC@@ AS
124 \u240f6 791 0.9952 0.9466 /10/06-@@ 7/06
125 000 774 0.9953 0.9476 ,00@@ 12,000
126 pe 759 0.9955 0.9486 scep@@ preparation
127 \u240fd 740 0.9956 0.9498 mad@@ model@@
128 tt 715 0.9957 0.9514 ety itting
129 re 693 0.9959 0.9528 firefighters fresco@@
130 q 678 0.9960 0.9539 Iraq@@ Sh@@
131 00, 668 0.9961 0.9545 200,000 40,000
132 te 646 0.9962 0.9559 ites investigate
133 \u240f7 626 0.9963 0.9572 7/10-@@ 4/07
134 i\u240e 609 0.9965 0.9583 Dacic ari
135 99 604 0.9966 0.9587 1989, 99.@@
136 dd 591 0.9967 0.9596 adding med@@
137 p@ 571 0.9967 0.9609 princip@@ prop@@
138 \u240fE 562 0.9968 0.9615 MESS FE@@
139 \u240f4 550 0.9969 0.9623 /10/04; 9/04;
140 on 538 0.9970 0.9630 autonomous counted
141 ? 525 0.9971 0.9639 ing er?
142 ar 506 0.9972 0.9650 guard@@ marg@@
143 \u240fI 495 0.9972 0.9658 DI@@ BI@@
144 rr 477 0.9973 0.9670 arre@@ arrest
145 e@ 457 0.9974 0.9683 rev@@ eye@@
146 a, 448 0.9975 0.9688 at, ean,
147 EE 446 0.9975 0.9689 SEE SE@@
148 \u240fA 437 0.9976 0.9695 NA@@ ANA,
149 \u240f1999 433 0.9977 0.9698 1999. 1991.
150 .\u240e 421 0.9977 0.9706 5. 1.8
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Table A.6.: Example of the output of the proposed feature selection algorithm.
Features 151 - 180.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

151 to 416 0.9978 0.9709 protests tough
152 10 412 0.9978 0.9712 2010. 2012.
153 DP 406 0.9979 0.9716 DPS (DP@@
154 u@ 389 0.9980 0.9728 ouf@@ statu@@
155 mm 380 0.9980 0.9734 am@@ im@@
156 \u240f9 370 0.9981 0.9740 9/08) 8/09-@@
157 X 365 0.9981 0.9744 EX@@ Xhel@@
158 mo 358 0.9982 0.9748 bomb@@ Smo@@
159 a@ 346 0.9982 0.9756 Strat@@ agend@@
160 pp 338 0.9983 0.9762 ped supp@@
161 ” 336 0.9983 0.9763 ’, ”@@
162 ri 328 0.9984 0.9768 parliamentarians Adrian
163 SS 324 0.9984 0.9771 DS, USS
164 \u2019 315 0.9985 0.9777 as days
165 it 305 0.9985 0.9783 enti@@ title
166 \u240fBB 303 0.9985 0.9785 BBC, B@@
167 ul 300 0.9986 0.9786 flu flu.
168 o@ 290 0.9986 0.9793 Kosov@@ mom@@
169 am 282 0.9986 0.9798 Ramadanovic liam@@
170 ea 277 0.9987 0.9801 delay are.
171 is 270 0.9987 0.9805 idis i/SETimes]
172 55 264 0.9987 0.9809 550@@ 55th
173 \u240fII 262 0.9988 0.9811 I, II,
174 \u240fc 254 0.9988 0.9816 civic becom@@
175 1\u240e 251 0.9988 0.9818 121 12
176 gg 245 0.9989 0.9822 big@@ Strugg@@
177 08 241 0.9989 0.9824 /10/08) 80@@
178 id 236 0.9989 0.9828 did, di,
179 Q@ 235 0.9989 0.9829 Q@@ H@@
180 or 229 0.9990 0.9833 torturing orus
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Table A.7.: Example of the output of the proposed feature selection algorithm.
Features 181 - 210.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

181 D@ 224 0.9990 0.9836 DVD@@ (UD@@
182 \u240f- 219 0.9990 0.9840 by-@@ -by-@@
183 N@ 211 0.9991 0.9845 (BN@@ MN@@
184 (S 205 0.9991 0.9848 (RS), (SRS),
185 ns\u240e 200 0.9991 0.9851 convictions championships
186 cc 197 0.9991 0.9853 ac@@ oc@@
187 i, 193 0.9992 0.9856 it, ik,
188 \u240f-@ 192 0.9992 0.9857 –@@ -@@
189 \u0107 189 0.9992 0.9860 Kaletovi\u0107 \u0107,
190 \u201c 188 0.9992 0.9861 \u201c@@ \u201cThe
191 AA 184 0.9992 0.9863 (AAK@@ SAA@@
192 \u240fO 181 0.9993 0.9865 MO@@ OT@@
193 na 175 0.9993 0.9869 an. Canad@@
194 $ 175 0.9993 0.9869 $@@ –
195 \u00fc 172 0.9993 0.9871 \u00fcr@@ Tur@@
196 rs 170 0.9993 0.9872 starts stars
197 .. 169 0.9993 0.9873 ... +.
198 44 165 0.9994 0.9876 1244@@ 4%
199 he 160 0.9994 0.9879 threat. arche@@
200 la 155 0.9994 0.9882 gambling Milanovic
201 33 151 0.9994 0.9885 3@@ 33,
202 s@ 146 0.9994 0.9888 this@@ mechanis@@
203 S\u240e 143 0.9994 0.9890 SRS SP
204 ci 137 0.9995 0.9894 icial recei@@
205 02 133 0.9995 0.9896 2020, 20
206 \u240fP 130 0.9995 0.9898 KP@@ PC@@
207 ck 127 0.9995 0.9900 kic@@ kick@@
208 ev 121 0.9995 0.9904 ive sever@@
209 n- 117 0.9995 0.9906 month-@@ Macedonian-@@
210 un 112 0.9996 0.9910 unding trun@@
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Table A.8.: Example of the output of the proposed feature selection algorithm.
Features 211 - 240.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

211 \u0131@ 112 0.9996 0.9910 \u0131@@ –
212 &@ 111 0.9996 0.9911 S&@@ R@@
213 le 108 0.9996 0.9913 Welle, compiled
214 0/ 103 0.9996 0.9916 30/0@@ /10-@@
215 \u00e7 103 0.9996 0.9916 \u00e7@@ –
216 (EC 102 0.9996 0.9917 (EC) (CEC)
217 \u00e9@ 102 0.9996 0.9918 \u00e9@@ –
218 si 99 0.9996 0.9920 crisis@@ ison
219 fi 97 0.9997 0.9921 specific@@ affair@@
220 zz@ 96 0.9997 0.9922 ez@@ zz@@
221 66 94 0.9997 0.9923 6@@ 66@@
222 WW 93 0.9997 0.9924 W@@ WW@@
223 \u2013@ 93 0.9997 0.9924 \u2013@@ –
224 vo 91 0.9997 0.9925 ovo, zov@@
225 0.@ 90 0.9997 0.9926 0.@@ 0.0@@
226 \u240fBB@ 89 0.9997 0.9927 BBB@@ BB@@
227 OC 87 0.9997 0.9928 (ICO) ICO
228 \u00f6 87 0.9997 0.9928 \u00f6@@ –
229 TR 85 0.9997 0.9930 RTS, TR@@
230 g@ 84 0.9997 0.9930 glob@@ blog@@
231 \u240f19 83 0.9998 0.9931 189@@ 198@@
232 en 81 0.9998 0.9932 eness enting
233 I@ 79 0.9998 0.9933 IFI@@ FI@@
234 \u240fexe 78 0.9998 0.9934 exc@@ exec@@
235 C@ 75 0.9998 0.9936 CH@@ CR@@
236 \u240fases\u240e 74 0.9998 0.9937 assess assesses
237 now,\u240e 73 0.9998 0.9937 known, know,
238 io 71 0.9998 0.9938 biodi@@ Momir
239 t@ 70 0.9998 0.9939 text@@ tex@@
240 \u240fign 69 0.9998 0.9940 igning ining
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Table A.9.: Example of the output of the proposed feature selection algorithm.
Features 241 - 270.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

241 12 67 0.9998 0.9941 \u00bd@@ 201@@
242 r\u240e 64 0.9998 0.9943 perform ord
243 ad 62 0.9998 0.9944 Hadj@@ ading
244 CC 60 0.9998 0.9945 ACC@@ AC@@
245 +@ 60 0.9998 0.9946 +@@ –
246 \u00eb@ 60 0.9998 0.9946 \u00eb@@ –
247 \u011f 59 0.9998 0.9947 g@@ \u011f@@
248 \u240fsup 58 0.9999 0.9947 susp@@ sup@@
249 olo 56 0.9999 0.9948 ols olos
250 ia.\u240e 55 0.9999 0.9949 Albanian. Albania.
251 \u240fII\u240e 54 0.9999 0.9950 III II
252 ! 54 0.9999 0.9950 !@@ –
253 e.\u240e 53 0.9999 0.9951 scheduled. schedule.
254 \u00c7 53 0.9999 0.9951 \u00c7@@ –
255 \u2026@ 53 0.9999 0.9951 \u2026@@ –
256 \u240fpop 52 0.9999 0.9952 popul@@ poul@@
257 \u010d 51 0.9999 0.9953 \u010d@@ c@@
258 \u240fVA 50 0.9999 0.9953 TAV VAT
259 Kiri@ 49 0.9999 0.9954 Kiri@@ Kri@@
260 \u240fCNN 48 0.9999 0.9954 CNN@@ CN@@
261 t. 47 0.9999 0.9955 iti. it.
262 \u0161 47 0.9999 0.9955 \u0161@@ –
263 20 46 0.9999 0.9956 2010 210
264 \u240fLa 45 0.9999 0.9957 Laj@@ Ljaj@@
265 TT 44 0.9999 0.9957 RTT@@ RT@@
266 ara 42 0.9999 0.9959 Parv@@ part@@
267 \u201d 42 0.9999 0.9959 \u201d@@ –
268 PS 41 0.9999 0.9959 (SP) (SPS)
269 \u240fw 40 0.9999 0.9960 however whoever
270 los@ 39 0.9999 0.9961 Milosos@@ Milos@@
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Table A.10.: Example of the output of the proposed feature selection algorithm.
Features 271 - 300.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

271 pr 37 0.9999 0.9962 prepares prepared
272 \u017e 36 0.9999 0.9963 z@@ \u017e@@
273 obb 35 0.9999 0.9963 lobb@@ lob@@
274 anti 34 0.9999 0.9964 anting ating
275 \u2018 34 0.9999 0.9964 \u2018@@ –
276 im 32 0.9999 0.9965 Dimit@@ Simil@@
277 \u0130 31 0.9999 0.9966 I@@ \u0130@@
278 \u240fass@ 30 0.9999 0.9967 ass@@ assass@@
279 \u0160 30 1.0000 0.9967 \u0160@@ –
280 KK@ 28 1.0000 0.9968 PK@@ PKK@@
281 \u00e0 28 1.0000 0.9969 \u00e0@@ –
282 EC 27 1.0000 0.9969 CE CEC
283 yy@ 26 1.0000 0.9970 Tayy@@ Tay@@
284 \u00dc 25 1.0000 0.9970 \u00dc@@ U@@
285 \u02c8@ 25 1.0000 0.9971 \u02c8@@ –
286 \u015f 24 1.0000 0.9971 s@@ \u015f@@
287 \u0431 24 1.0000 0.9972 \u0431@@ –
288 \u00d6 23 1.0000 0.9972 O@@ \u00d6@@
289 nd-@ 22 1.0000 0.9973 and-a-@@ and-@@
290 * 22 1.0000 0.9973 *@@ –
291 ch 21 1.0000 0.9974 ithic itch
292 \u00ef@ 21 1.0000 0.9974 \u00ef@@ –
293 \u0433 21 1.0000 0.9975 \u0433@@ –
294 \u20ac 21 1.0000 0.9975 \u20ac@@ –
295 \u0111 21 1.0000 0.9975 \u0111@@ –
296 \u2014 21 1.0000 0.9976 \u2014@@ –
297 \\ 21 1.0000 0.9976 \\@@ –
298 \u00ed 20 1.0000 0.9976 \u00ed@@ i@@
299 \u017d 19 1.0000 0.9977 Z@@ \u017d@@
300 Liber@ 18 1.0000 0.9978 Lieber@@ Liber@@
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Table A.11.: Example of the output of the proposed feature selection algorithm.
Features 301 - 330.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

301 ...@ 17 1.0000 0.9978 ..@@ ...@@
302 \u0399 17 1.0000 0.9979 \u0399@@ –
303 \u00f3 16 1.0000 0.9979 \u00f3@@ o@@
304 \u00e2 16 1.0000 0.9980 \u00e2@@ –
305 \u0080 16 1.0000 0.9980 \u0080@@ –
306 \u00c9 15 1.0000 0.9981 E@@ \u00c9@@
307 \u240f@ 15 1.0000 0.9981 @@@ –
308 _ 15 1.0000 0.9981 _@@ –
309 \u00b0 15 1.0000 0.9981 \u00b0@@ –
310 =@ 15 1.0000 0.9982 =@@ –
311 \u039a 15 1.0000 0.9982 \u039a@@ –
312 \u0391@ 15 1.0000 0.9982 \u0391@@ –
313 \u039f 15 1.0000 0.9983 \u039f@@ –
314 \u015e 14 1.0000 0.9983 S@@ \u015e@@
315 \u0440 14 1.0000 0.9984 \u0440@@ –
316 ht 13 1.0000 0.9984 roughout rought
317 11/ 12 1.0000 0.9985 /11 /11/11
318 ww@ 11 1.0000 0.9986 www@@ w@@
319 \u0093 11 1.0000 0.9986 \u0093 –
320 \u0410@ 11 1.0000 0.9986 \u0410@@ –
321 \u0443 11 1.0000 0.9986 \u0443@@ –
322 < 11 1.0000 0.9987 <@@ –
323 ‘ 11 1.0000 0.9987 ‘@@ –
324 \u0422 11 1.0000 0.9987 \u0422@@ –
325 \u00f8 11 1.0000 0.9988 \u00f8@@ –
326 \u0395 11 1.0000 0.9988 \u0395@@ –
327 # 11 1.0000 0.9988 #@@ –
328 \u043b 11 1.0000 0.9989 \u043b@@ –
329 \u00e1 11 1.0000 0.9989 \u00e1@@ –
330 \u010c 10 1.0000 0.9990 C@@ \u010c@@
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Table A.12.: Example of the output of the proposed feature selection algorithm.
Features 331 - 353.

n feature active data vocabulary example 1 example 2
partitions coverage coverage

331 \u044f 10 1.0000 0.9990 \u044f@@ –
332 \u00f1 9 1.0000 0.9991 \u00f1@@ n@@
333 \u00e8 8 1.0000 0.9991 \u00e8@@ e@@
334 \u0096 7 1.0000 0.9992 \u009d \u0096
335 // 6 1.0000 0.9992 /@@ //@@
336 \u00e4 5 1.0000 0.9993 a@@ \u00e4@@
337 \u00c3 4 1.0000 0.9994 \u00c3@@ A@@
338 _m 3 1.0000 0.9994 m \u00e6
339 dj@ 2 1.0000 0.9995 Djind@@ Djindj@@
340 \u00fd@ 1 1.0000 0.9996 y@@ \u00fd@@
341 \u0435 1 1.0000 0.9996 \u0435@@ –
342 \u043e 1 1.0000 0.9996 \u043e@@ –
343 \u0110 1 1.0000 0.9997 \u0110@@ –
344 \u2010 1 1.0000 0.9997 \u2011@@ –
345 > 1 1.0000 0.9997 >@@ –
346 \u00a6 1 1.0000 0.9997 \u00a6@@ –
347 \u03bc 1 1.0000 0.9998 \u03bc@@ –
348 \u041c 1 1.0000 0.9998 \u041c@@ –
349 \u00a3 1 1.0000 0.9998 \u00a3@@ –
350 { 1 1.0000 0.9999 { @@ –
351 } 1 1.0000 0.9999 } @@ –
352 \u044a 1 1.0000 0.9999 \u044a@@ –
353 \u0430 0 1.0000 1.0000 \u0430@@ \u0438@@
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