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Data-science for Estimating Various Properties of Polymers Based on 

Monomer Unit Structure Information 

 

Hitoshi Yamano 

 

Abstract 

Materials informatics is the approach to develop materials using combination of 

materials science and informatics techniques. It should be noted that high throughput 

experiment is also the key to materials informatics. Nowadays, in both academic and 

industrial fields, there are many reports which use Materials informatics in real problem 

to understand mechanism, predict properties or design molecules. Therefore, the main 

topic in chemical industry is now changing from ‘whether informatics approach become 

useful’ to ‘how should informatics approach be applied to real dataset’. The reason why 

is the lack of enough complete dataset in real difficult problems you have to solve in 

industry.  

In this study, I will propose how to apply data-science techniques to real incomplete 

dataset and obtain helpful knowledge. In this thesis, I discuss how I should apply data-

science approach to small and incomplete dataset describing polymer property data. 

Considering the dataset of polymer property includes missing value, how it should be 

considered is discussed. It will be also shown that unsupervised manner is useful to 

understand the relationships of properties.  

Using the incomplete dataset, I will propose the way to predict polymer properties by 

data-science approach. It is simple way based on monomer unit structure information 

and be able to deal with various properties. I performed to evaluate the reliability 

prediction models and also propose judging generalization performance with data 

already obtained. On the basis of above consideration, I will discuss the situation of 

materials informatics in industrial use in the future.  
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1. Introduction 

 

1.1 Data-science in chemical industry 

Data science approach is called as “Forth Paradigm” [1]. It is known effective approach 

along with empirical science such as experimental approach (1st paradigm), theoretical 

science (2nd paradigm) and computational science (3rd paradigm). It has been applied to 

many fields. [2-8] 

This trend also occurred in chemical industry [9-14]. Soft sensor [15-16] is widely used 

to control status of chemical plant by constructing statistical model to predict process 

variables which are difficult to measure directly. It is important topics in chemical 

industry that how to improve the model accuracy of soft sensor and how to apply them to 

real systems. [17-18] 

A lot of researches were reported in the field of data driven approach based on chemical 

structure information. Funatsu et al. reported how to design novel molecules which show 

high activity as drugs. The research proposes visualizing chemical space and generating 

chemical structures based on data-science approach. [19] 

Kanaya and Eguchi et al. reported it is possible that clustering alkaloids and predict their 

biosynthesis pathways using graph convolutional neural networks based on chemical 

structure information. [20] 

As I've mentioned so far, data-science approach has become major method in industry 

where enough data can be obtained. However, some fields remain difficult for applying 

data science because lack of perfect dataset. Polymer property is also located in one of 

examples. I will discuss it in the next chapter.   
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1.2 Current status of predicting polymer properties 

In many chemical fields, property prediction is the most important topics to develop 

chemical products because reduction and optimization of experimental procedures. There 

are many works reported which apply data-science approach for predicting properties of 

small compounds [21-24]. However, predicting property of polymer materials includes 

specific problems which does not appear in small compounds. 

Polymers are used in a wide variety of applications. It is often necessary to optimize 

multiple physical / chemical properties as shown in Figure1. For example: thermal 

properties, solubility, density, dielectric constant and so on. Polymer material 

development usually means to optimize these multiple different properties simultaneously.  

Polymer structure is more complex than monomer structure because its property 

depends on not only chemical monomer design but also higher dimensional structure 

features and complex identity depends on its synthesis conditions such as tacticity of 

monomer units, distribution of molecular weight, structures of end group and so on [25-

28]. Then, generally it is more difficult to predict properties of polymer structure than 

monomer structure.  

 

 

Figure 1: Example of polymer properties  

Polymer materials have a lot of properties and they are sometimes should be optimized 

simultaneously in industrial products development. 

 

 

1.3 Semi-empirical or computational approaches for predicting polymer 

property 

Atomic group contribution method assumes that some unique partial chemical structure 

(i.e., atomic group) in a compound make a certain contribution to a property and estimates 

property of the compound by adding them together, which is widely used approach in 

property prediction [29-33]. Atomic group contribution method has been also used to 

Polymer Materials

Thermal properties

Solubility

Density

Dielectric constant

. . .
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estimate the properties of polymers. A lot of properties were studied by the method [34, 

35], there are some empirical parameters in their models and no unified method to explain 

the different properties has been established [33, 36]. 

Predicting the properties of polymers through computational simulations have also been 

actively studied [37]. For example, the method of molecular dynamics (MD) [38, 39] 

deals with the motion of molecules and constructs force field models to simulate the 

behavior of polymers [40-44]. The calculations are mainly based on physical laws without 

considering chemical reactions. The approach is strong to solve or visualize behavior of 

polymer materials. However, it sometimes has some difficulty in setting parameters to 

explain real-world experimental results. It needs very high computational costs when the 

system to be handled is large. 

 

1.4 Data-driven approaches for predicting polymer property 

Otherwise, with the development of data science, the quantitative structure property 

relationship (QSPR) approach has been studied to predict properties of polymers based 

on structural information effectively. For example, glass transition temperature [45-49], 

pyrolysis temperature [50], refractive index [51], dielectric constant [48], and intrinsic 

viscosity [50, 52] have been examined based on QSPRs. There are reports that topological 

descriptors can be used to infer the properties [54, 55]. 

Ramprasad et al. proposed an approach which is based on force fields developed with 

machine learning methods with quantum mechanics [53]. They constructed prediction 

models for properties of polymers based on data including computationally formed data 

(bandgap [54], dielectric constant [54-57], refractive index [58], and atomization energy) 

or experimentally obtained data (such as glass transition temperature [59] and solubility 

[60, 61]). They used density functional theory (DFT) calculation and form training dataset. 

Prediction were based on specific fingerprint [62] including different dimensional 

descriptors: atomic level descriptors, QSPR descriptors and morphological descriptors. 

Recursive feature elimination (RFE) was used for decrease dimension of dataset. 

Gaussian Process Regression (GPR) was carried out to construct nonlinear prediction 

model to predict properties of polymers with high accuracy. The models can be used for 

free as “Polymer Genome” platform (www.polymergenome.org) [63]. You can get 

predicted values when you input structural information (Simplified Molecular Input Line 

Entry System abbreviated as SMILES) of polymer. 

Oyaizu et al. [64] reported that solid polymer electrolyte material was found by machine 

learning approach using newly constructed database. They synthesized solid polymer 

electrolytes for lithium-ion battery. 
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Yoshida et al. [65-67] reported the Machine Learning framework called “transfer 

learning” is effective for property prediction of polymer materials. Pre-trained models 

library based on big database were “transferred” to other property which has only small 

dataset. They used the library comprises more than 140,000 models already constructed 

for various properties of small molecules, polymers, and inorganic crystalline materials. 

Along with the pre-trained models, they succeeded in transfer learning in different 

scenarios such as building models with only dozens of materials data. 

 

1.5 Current status and problems of predicting polymer properties 

As mentioned above, various studies have been conducted to predict the properties of 

polymers using enough computational resource and/or large dataset. Otherwise, it is still 

difficult to predict the properties using a practical data (small amount and incomplete) 

effectively. From the industrial point of view, it would be useful to establish a 

methodology how to use or interpret the practical (small data amount and/or including 

missing values) dataset on the properties of polymer materials. Moreover, it is much 

valuable if you can develop a manner to predict desired properties applying data-science 

approach even if usable data is small. 

 

1.6 What is “materials informatics”? 

Materials informatics is the approach to develop materials using combination of 

materials science and informatics techniques. It is said that using data-science approach, 

new values will be obtained which cannot come from materials science only. It became 

major after the Materials Genome Initiative project in USA [68, 69].  

Especially, in the field of inorganic materials research, there are reports indicate 

significant success in combination of materials science and data science [72]. It is should 

be noted that high throughput experiment is also the key to materials informatics [70-73]. 

Funatsu et al. proposed procedure which include constructing QSPR/QSAR models, 

analyze their applicability domains and generate chemical structures which have 

preferable property [74]. 

Morikawa et al. reported machine learning approach was effective to develop polymers 

with high thermal conductivity [67, 75, 78]. They used transfer learning and solve the 

problem on the lack of experimental data by using rich open dataset. 

Nowadays, in both academic and industrial fields, there are many reports which use 

Materials Informatics in real problem to understand mechanism, predict properties or 

design molecules [77-81]. Therefore, the main topic in chemical industry is now changing 

from ‘whether informatics approach become useful’ to ‘how should informatics approach 
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be applied to real dataset’. The reason why is the lack of enough complete dataset in real 

difficult problems you have to solve in industry. In this study, I will propose how to apply 

data-science techniques to real incomplete dataset and obtain helpful knowledge. 

 

1.7 Constructs of this paper 

In this thesis, I will discuss how I should apply data-science approach to small and 

incomplete dataset describing polymer property data. In chapter 2, considering the dataset 

of polymer property includes missing value were prepared and how it should be 

considered is discussed. It will be also shown that unsupervised manner is useful to 

understand the relationships of properties. In chapter 3, using the incomplete dataset, I 

will propose the way to predict polymer properties by data-science approach. It is simple 

way based on monomer unit structure information and be able to deal with various 

properties. I performed to evaluate the reliability prediction models and also propose 

judging generalization performance with data already obtained. The approach bases on 

the combination of unsupervised and supervised learning method. In chapter 4, based on 

above consideration, I will discuss the situation of materials informatics in industrial use 

in the future. Finally, I will remark my opinion concerning to feature perspective in 

chapter 5. 
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2. Relationships between polymer properties using data 

science 

 

2.1 Introduction 

There have been reported various types of polymer properties. For example, public 

database concerning PolyInfo DB (https://polymer.nims.go.jp/) consists of polymer 

properties concerning 12,913 homo-polymers, 5,537 copolymers, and 1,851 polymer 

blends, but it should be noted that values for the most of polymer properties are lacking 

because their experiments are limited. So we should compare relationships between 

polymer properties and between polymers taking into consideration that how missing 

values should be treated. 

In the present study, I examined 48 polymers and 34 properties in The Properties of 

Polymers (D.W. V. Krevelen) [34] included 641 polymer species and 171 physical 

properties. In this section we compare the polymers and properties based on 2D-heatmap 

based on the pairwise correlation coefficients. 

 

 

Table 1: Physical properties of polymers in PolyInfo DB 

(https://polymer.nims.go.jp/)  

Group of 

polymer 

property 

Polymer property 

Physical 

properties 

(2) 

Density, Specific volume 

Optical 

properties (2) 

Refractive index, Stress-optical coefficient 

Thermal 

properties 

(14) 

Crystallization kinetics, Crystallization temp., Grass transition temp.: 

Tg), Heat of crystallization, Heat of fusion, Thermal decomposition 

temp., LC phase transition temp., Linear expansion coefficient, 

Melting temp., Specific heat capacity: Cp, Specific heat capacity: Cv, 

Thermal conductivity, Thermal diffusivity, Volume expansion 

coefficient  

Electrical Dielectric breakdown voltage, Dielectric const.: DC, Electric 
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properties (5) conductivity, Surface resistivity, Volume resistivity 

Physical and 

chemical 

properties  

(9) 

Contact angle, Gas diffusion coefficient: D, Gas permeability 

coefficient: P, Gas solubility coefficient: S, Hansen parameters (delta-

d: dispersive component, delta-h: hydrogen bonding component, delta-

p: polar component), Interfacial tension, Solubility parameter, Surface 

tension, Water absorption, Water vapor transmission 

Dilute 

solution 

properties 

(10) 

Diffusion coeff., Solvent / Non-solvent / Poor-solvent, Theta-

solvent/theta-temp., Intrinsic viscosity: η, Radius of gyration, Second 

virial coeff., Sedimentation coeff. 

Rheology (2) Dynamic viscosity, Melt viscosity 

Elongation 

properties 

(7) 

Dynamic tensile properties, Elongation at break, Fiber tensile 

elongation at break, Fiber tensile modules, Fiber tensile 

stress[strength] at break, Tensile modulus, Tensile stress [strength] at 

break, Tensile stress[strength] at yield 

Shear 

properties (4) 

Dynamic shear properties, Shear modulus, Shear stress[strength] at 

break, Shear stress[strength] at yield 

Flexural 

properties (4) 

Dynamic flexural properties, Flexural modulus, Flexural 

stress[strength] at break, Flexural stress[strength] at yield 

Compressive 

properties 

(4) 

Compressive modulus, Compressive stress[strength] at break, 

Compressive stress[strength] at yield, Dynamic compressive 

properties 

Creep 

properties 

(12) 

Compressive creep rupture strength, Compressive creep rupture time, 

Compressive creep strain, Flexural creep rupture strength, Flexural 

creep rupture time, Flexural creep strain, Tensile creep compliance, 

Tensile creep modulus, Tensile creep recovery, Tensile creep rupture 

strength, Tensile creep rupture time, Tensile creep strain 

Temperature 

data (4) 

Brittleness temp., Temperature of deflection under load, Softening 

temp., Vicat softening temp. 

Hardness 

properties (2) 

Rockwell hardness, Shore hardness 

Fire 

resistance (3) 

Oxygen index, UL flammability code rating, UL temp. index 

Others (5) Bulk modulus, Compressibility, G-value, PVT relation, Radiation 

resistance 
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2.2 Materials and Methods  

The Properties of Polymers (D.W. V. Krevelen) [34] describes much information of 

general polymers. On this work, the data of polymer name, structure and their various 

properties were collected from the literature.  

From the tables in this book, there were 641 polymer species and 171 physical 

properties. However, there were many overlapping including alias names, it is needed to 

be cleaned. After data cleansing, 48 polymers and 34 properties (including missing 

values) are selected. About experimental values, some properties be described several 

different experimental values. In such cases, the averaged values were used. Table 1 

shows a list of physical properties. 

I applied Ward's clustering method [82] to comprehensively understand relationships 

among polymer property data and those among the polymers by the property data.  
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Table 2: The list of properties which the dataset include. 

 

 

 

2.3 Results 

The data matrix consists of 1632 elements, i.e., 48 x 34. The problem of the polymer 

data is that 554 are missing values (= 34% of the data) in the matrix. This situation occurs 

generally, but we cannot compare between polymer and between properties based on 

pairwise simple correlation methods.  

I applied Ward's clustering method [82] to comprehensively understand relationships 

among 34 property data of 48 polymers and those among the polymers of the property 

data. Hierarchical clustering can be carried out dataset with missing values like in this 

case. 

No. Symbol unit Property
The number

of data

1 CpExpLiq Jkg
-1

K
-1 Heat capacity in the liquid state (298K, exp) 24

2 CpExpSolid Jkg
-1

K
-1 Heat capacity in the solid state (298K, exp) 30

3 CpShawLiq Jkg
-1

K
-1 Heat capacity in the liquid state by Shaw (298K) 30

4 CpSatohSolid Jkg
-1

K
-1 Heat capacity in the solid state by Satoh (298K) 32

5 delta J
1/2

cm
-3/2 Solubility parameter (calc) 31

6 deltaexpmax J
1/2

cm
-3/2 Solubility parameter (exp, max.) 23

7 deltaexpmin J
1/2

cm
-3/2 Solubility parameter (exp, min.) 26

8 DHm kJ/mol Molar enthalpy of fusion 30

9 DHmexp kJ/mol Molar enthalpy of fusion (exp) 21

10 DSmexp Jmol
-1

K
-1 Entropy of fusion (exp) 21

11 eg 10
-4

cm
3
g

-1
K

-1 Thermal expansivity of a glass 31

12 Egcalc 10
-4

cm
3
mol

-1
K

-1 Molar thermal expansivity of a glass 35

13 Egexp 10
-4

cm
3
mol

-1
K

-1 Molar thermal expansivity of a glass 25

14 el 10
-4

cm
3
g

-1
K

-1 Thermal expansivity of a liquid 33

15 Elcalc 10
-4

cm
3
mol

-1
K

-1 Molar thermal expansivity of a liquid 35

16 Elexp 10
-4

cm
3
mol

-1
K

-1 Molar thermal expansivity of a liquid 31

17 epsilon - Dielectric constant 31

18 gamma mN/m Surface tension 32

19 gammacoh mN/m Surface tension (calculated by cohesive energy density) 27

20 gammacr mN/m Critical surface tension of wetting 29

21 gammapsv mN/m Surface tension (calculated by parachor) 30

22 Ktheta cm
3
mol

1/2
g

-3/2 Unperturbed viscosity coefficient (exp) 24

23 M g/mol Molar mass (molecular weight) 48

24 n - Index of refraction (exp) 36

25 nRGD - Index of refraction (calc) according to Gladstone and Dale 24

26 nRLL - Index of refraction (calc) according to Lorentz and Lorenz 24

27 nRV - Index of refraction (calc) according to Vogel 24

28 rhoa g/cm
3 Density of amorphous polymer 47

29 rhoc g/cm
3 Density of crystalline polymer 36

30 rhor g/cm
3 Density of rubbery amorphous polymer 41

31 Tg K Glass–rubber transition temperature 47

32 Tm K Crystalline melting point (exp) 39

33 Vr cm
3
/mol Molar volume of rubbery amorphous polymer 41

34 Vw cm
3
/mol Van der Waals volume 46
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Figure 2 shows the heatmap of the dataset and results of 2D clustering. Row shows 

polymer name, and column shows property name. The data was scaled before all 

procedures. In this heatmap, color key shows the values themselves. Note that they are 

not correlation coefficients. Correlation matrixes are shown as heatmaps on Figure 3 and 

4. Figure 3 means correlation of polymers, and Figure 4 means correlation of polymers.  

In Figure 2, white cell means missing value. We collected data which includes 48 

polymers and 34 properties.  

 

 

Figure 2: Heatmap and 2D clustering overview of polymer property dataset 

2D clustering with heatmap. White cell means missing value. 
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Figure 3: Heatmap of correlation coefficient of polymers  

2D-clustering with heatmap for polymers 
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Figure 4: Heatmap of correlation coefficient of properties  

2D-Clustering with heatmap for polymer properties 
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2.4 Discussion 

Considering relationships of polymers by hierarchical clustering 

In Figure 5, closely related polymers in the 34-property dimensional space are grouped 

in close clusters, in contrast, those with greatly different properties are placed in different 

clusters. Note that this analysis is based on only property dataset without any chemical 

structure information. Polymers were clustered to 8 groups. In table 2, the structures of 

polymers of each cluster are shown. Considering this clustering result, in same cluster, 

structures of polymers tend to be similar. For example, in cluster no.1, there are polymers 

which include halogen atoms. In cluster no.2 and 3, the repeating unit of polymer is small 

alkyl structure. In cluster no.4, main chain is made by few carbon atoms. Cluster no.5 is 

made from polymers whose main chain includes more than 10 carbon atoms. The 

structures in cluster no.6 contain benzene ring. No.7 and 8 contains methacrylate and 

amide polymers. Throughout, in other clusters, similar structure polymer tends to gather 

same cluster.  

As I mentioned, this clustering result was based on the information of properties only. 

This approach is useful to understand the relationships of polymers using property data 

in data-driven method. It could be carried out for the data include missing values. 

Besides, using same manner, properties of polymers were clustered into 7 groups shown 

in Figure 6. It helps considering and evaluating prediction models of properties. I will 

discuss detail on chapter 1-4. 
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Figure 5: Hierarchical clustering for polymers  

Hierarchical clustering for 48 polymers based on 34 polymer properties. 

 

 

 

 

Figure 6: Hierarchical clustering for properties  

Hierarchical clustering for 34 properties based on 47 polymers. 
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Table 3: Polymer structures which hierarchical clustered based on property information 

Cluster No. Structure 

1  

 

 

2  

 

 

 

 

3  

 

 

4  

 

 

 

 

5  

 

 

 

6  

 

 

 

 

7  

 

 

8  
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3. Predicting polymer properties using data science and 

evaluation approach for them 

 

3.1 Introduction 

It is difficult problem how to describe polymer structure. In the field of materials 

informatics, there is a lot of method to obtain molecular descriptors for polymers have 

been proposed but generally it is difficult to directly describe the polymer structure.  

It should be needed to consider that the characteristics of the repeating structures mainly 

determine the character of polymers. In this section, I tried to use monomer unit structure 

instead of polymer structure to estimate polymer properties. Figure 7 shows a 

comparative example of monomer and polymer structure. There are differences between 

monomer units and polymer structures (such as double-bond carbons exists or not in 

Figure 7) and the effect of end-group unit is ignored. However, it is simple approach 

worth considering. 

 

Figure 7: Example of differ of chemical structure between polymer and monomer 

Chemical structures differs between polymer and monomer. Polymer structure is 

more complicated than monomer unit structure because it has repeating of the unit. 

  

  

(a) Monomer Unit (b) Polymer
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3.2 Materials and Methods 

Figure 8 summarized the conceptual representation of estimation of targeted properties 

by molecular descriptors. The monomer unit structure was converted to the SMILES [83] 

structure formula. SMILES is structural expression notation that expresses a chemical 

structure by one-dimensional string information, and is often used in the field of 

chemoinformatics. It is difficult to express all information of polymer structure directly 

but it is easy in the case of monomer structure. Using SMILES information, I generated 

molecular descriptors by alvaDesc [84], and selected constitutional and topological 

descriptors consisting of 127 descriptors listed in Table 3. These descriptors were used as 

explanatory variables to predict polymer properties. In this study, I targeted three 

properties density (ρ), dissolution parameter (δ), and glass transition temperature (Tg). I 

performed partial least regression method for estimating the three properties by the 127 

descriptors.  

The PLS method has been widely used in medical imaging as well as the chemo- and 

bio-informatics fields because PLS models can be constructed even if there are more 

variables than observations. In addition, this method can be applied if multi-

collinearities are hidden between the independent variables. The objective variable, Y, 

corresponds to the three targeted properties and the interpretive variables X1, X2, …, XM 

corresponds to 127 descriptors were correlated by a linear model as Eq. (1) 

 MMjj XaXaXaaY  ......110  (1) 

Here M represents the total number of the questions. 

The PLS model is represented in Eqs (2) and (3).  

 eqTyetyy  


k

A

k

kq
1

  (2) 

 EPTXEptXX  


TT

k

A

k

k

1

  (3) 

where qk is the coefficient of y for the kth component, pk is the loading vector of X, A is 

the number of components, and tk is a score vector for the kth component. The residual 

matrix and vector are represented by E(M×N) and e(M×1), respectively. Eqs (2) and (3) 

can be combined to create Eq (4).  
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qWPWXqWPWXyY
11 )()(   TTTT

  (4) 

The number of PLS components was determined by maximizing the Q2, which was 

calculated by a leave one out cross-validation for each component, as shown in Eq (5).  
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Here, y and 
)(i

cvy are original and predicted y-values in the cross-validation for every ith 

individual, respectively and y  represents the average for all y-values. We determined 

the number of components so that Q2 value reaches the maximum. Then after determining 

the number of components, we also calculated the R2 for examining prediction accuracy 

for the PLS model. 
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Here, 
)(i

ally  represents the predicted y-value for the ith individual when the PLS model 

using all individuals in selecting the number of components by Q2.  
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Figure 8: Approach for predicting polymer properties  

This figure shows overview of the approach for predicting polymer properties using 

monomer unit structure information in this study. 

 

  

(a) Monomer Unit (b) PolymerMonomer unit 
structure

Polymer
materials

Properties of
polymer

Molecular 
Descriptors

(127)
Predicting

Density (ρ)

Dissolution 
parameter (δ)

Glass transition 
temperature (Tg)

Using commercial 
software (alvaDesc)
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Table 4: Descriptors used in this work 

They were calculated by commercial software (alvaDesc) [84] 

 

  

No. Name Description Block Sub-Block

1 MW molecular weight Constitutional indices Basic descriptors

2 AMW average molecular weight Constitutional indices Basic descriptors

3 Sv sum of atomic van der Waals volumes (scaled on Carbon atom) Constitutional indices Basic descriptors

4 Se sum of atomic Sanderson electronegativities (scaled on Carbon atom) Constitutional indices Basic descriptors

5 Sp sum of atomic polarizabilities (scaled on Carbon atom) Constitutional indices Basic descriptors

6 Si sum of first ionization potentials (scaled on Carbon atom) Constitutional indices Basic descriptors

7 Mv mean atomic van der Waals volume (scaled on Carbon atom) Constitutional indices Basic descriptors

8 Me mean atomic Sanderson electronegativity (scaled on Carbon atom) Constitutional indices Basic descriptors

9 Mp mean atomic polarizability (scaled on Carbon atom) Constitutional indices Basic descriptors

10 Mi mean first ionization potential (scaled on Carbon atom) Constitutional indices Basic descriptors

11 GD graph density Constitutional indices Basic descriptors

12 nAT number of atoms Constitutional indices Basic descriptors

13 nSK number of non-H atoms Constitutional indices Basic descriptors

14 nTA number of terminal atoms Constitutional indices Basic descriptors

15 nBT number of bonds Constitutional indices Basic descriptors

16 nBO number of non-H bonds Constitutional indices Basic descriptors

17 nBM number of multiple bonds Constitutional indices Basic descriptors

18 SCBO sum of conventional bond orders (H-depleted) Constitutional indices Basic descriptors

19 RBN number of rotatable bonds Constitutional indices Basic descriptors

20 RBF rotatable bond fraction Constitutional indices Basic descriptors

21 nDB number of double bonds Constitutional indices Basic descriptors

22 nTB number of triple bonds Constitutional indices Basic descriptors

23 nAB number of aromatic bonds Constitutional indices Basic descriptors

24 nH number of Hydrogen atoms Constitutional indices Basic descriptors

25 nC number of Carbon atoms Constitutional indices Basic descriptors

26 nN number of Nitrogen atoms Constitutional indices Basic descriptors

27 nO number of Oxygen atoms Constitutional indices Basic descriptors

28 nP number of Phosphorous atoms Constitutional indices Basic descriptors

29 nS number of Sulfur atoms Constitutional indices Basic descriptors

30 nF number of Fluorine atoms Constitutional indices Basic descriptors

31 nCL number of Chlorine atoms Constitutional indices Basic descriptors

32 nBR number of Bromine atoms Constitutional indices Basic descriptors

33 nI number of Iodine atoms Constitutional indices Basic descriptors

34 nB number of Boron atoms Constitutional indices Basic descriptors

35 nHM number of heavy atoms Constitutional indices Basic descriptors

36 nHet number of heteroatoms Constitutional indices Basic descriptors

37 nX number of halogen atoms Constitutional indices Basic descriptors

38 H% percentage of H atoms Constitutional indices Basic descriptors

39 C% percentage of C atoms Constitutional indices Basic descriptors

40 N% percentage of N atoms Constitutional indices Basic descriptors

41 O% percentage of O atoms Constitutional indices Basic descriptors

42 X% percentage of halogen atoms Constitutional indices Basic descriptors

43 nCsp3 number of sp3 hybridized Carbon atoms Constitutional indices Basic descriptors

44 nCsp2 number of sp2 hybridized Carbon atoms Constitutional indices Basic descriptors

45 nCsp number of sp hybridized Carbon atoms Constitutional indices Basic descriptors

46 max_conj_path maximum number of atoms that can be in conjugation with each other Constitutional indices Basic descriptors

47 nStructures number of disconnected structures Constitutional indices Basic descriptors

48 totalcharge total charge Constitutional indices Basic descriptors

49 ZM1 first Zagreb index Topological indices Vertex degree-based indices

50 ZM1V first Zagreb index by valence vertex degrees Topological indices Vertex degree-based indices

51 ZM1Kup first Zagreb index by Kupchik vertex degrees Topological indices Vertex degree-based indices

52 ZM1Mad first Zagreb index by Madan vertex degrees Topological indices Vertex degree-based indices

53 ZM1Per first Zagreb index by perturbation vertex degrees Topological indices Vertex degree-based indices

54 ZM1MulPer first Zagreb index by multiplicative perturbation vertex degrees Topological indices Vertex degree-based indices

55 ZM2 second Zagreb index Topological indices Vertex degree-based indices

56 ZM2V second Zagreb index by valence vertex degrees Topological indices Vertex degree-based indices

57 ZM2Kup second Zagreb index by Kupchik vertex degrees Topological indices Vertex degree-based indices

58 ZM2Mad second Zagreb index by Madan vertex degrees Topological indices Vertex degree-based indices

59 ZM2Per second Zagreb index by perturbation vertex degrees Topological indices Vertex degree-based indices

60 ZM2MulPer second Zagreb index by multiplicative perturbation vertex degrees Topological indices Vertex degree-based indices

61 ON0 overall modified Zagreb index of order 0 Topological indices Vertex degree-based indices

62 ON0V overall modified Zagreb index of order 0 by valence vertex degrees Topological indices Vertex degree-based indices

63 ON1 overall modified Zagreb index of order 1 Topological indices Vertex degree-based indices

64 ON1V overall modified Zagreb index of order 1 by valence vertex degrees Topological indices Vertex degree-based indices
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Table 4 (continued) 

 

No. Name Description Block Sub-Block

65 Qindex quadratic index Topological indices Vertex degree-based indices

66 BBI Bertz branching index Topological indices Vertex degree-based indices

67 DBI Dragon branching index Topological indices Vertex degree-based indices

68 SNar Narumi simple topological index (log function) Topological indices Vertex degree-based indices

69 HNar Narumi harmonic topological index Topological indices Vertex degree-based indices

70 GNar Narumi geometric topological index Topological indices Vertex degree-based indices

71 Xt total structure connectivity index Topological indices Vertex degree-based indices

72 Dz Pogliani index Topological indices Vertex degree-based indices

73 Ram ramification index Topological indices Vertex degree-based indices

74 BLI Kier benzene-likeliness index Topological indices Vertex degree-based indices

75 Pol polarity number Topological indices Distance-based indices

76 LPRS log of product of row sums (PRS) Topological indices Distance-based indices

77 MSD mean square distance index (Balaban) Topological indices Distance-based indices

78 SPI superpendentic index Topological indices Distance-based indices

79 PJI2 2D Petitjean shape index Topological indices Distance-based indices

80 ECC eccentricity Topological indices Distance-based indices

81 AECC average eccentricity Topological indices Distance-based indices

82 DECC eccentric Topological indices Distance-based indices

83 MDDD mean distance degree deviation Topological indices Distance-based indices

84 UNIP unipolarity Topological indices Distance-based indices

85 CENT centralization Topological indices Distance-based indices

86 VAR variation Topological indices Distance-based indices

87 ICR radial centric information index Topological indices Distance-based indices

88 MaxTD max topological distance Topological indices Distance-based indices

89 MeanTD mean pairwise topological distance Topological indices Distance-based indices

90 MaxDD max detour distance Topological indices Distance-based indices

91 MeanDD mean pairwise detour distance Topological indices Distance-based indices

92 SMTI Schultz Molecular Topological Index (MTI) Topological indices MTI indices

93 SMTIV Schultz Molecular Topological Index by valence vertex degrees Topological indices MTI indices

94 GMTI Gutman Molecular Topological Index Topological indices MTI indices

95 GMTIV Gutman Molecular Topological Index by valence vertex degrees Topological indices MTI indices

96 Xu Xu index Topological indices MTI indices

97 CSI eccentric connectivity index Topological indices MTI indices

98 Wap all-path Wiener index Topological indices Path/walk indices

99 S1K 1-path Kier alpha-modified shape index Topological indices Path/walk indices

100 S2K 2-path Kier alpha-modified shape index Topological indices Path/walk indices

101 S3K 3-path Kier alpha-modified shape index Topological indices Path/walk indices

102 PHI Kier flexibility index Topological indices Path/walk indices

103 PW2 path/walk 2 - Randic shape index Topological indices Path/walk indices

104 PW3 path/walk 3 - Randic shape index Topological indices Path/walk indices

105 PW4 path/walk 4 - Randic shape index Topological indices Path/walk indices

106 PW5 path/walk 5 - Randic shape index Topological indices Path/walk indices

107 MAXDN maximal electrotopological negative variation Topological indices E-state indices

108 MAXDP maximal electrotopological positive variation Topological indices E-state indices

109 DELS molecular electrotopological variation Topological indices E-state indices

110 TIE E-state topological parameter Topological indices E-state indices

111 Psi_i_s intrinsic state pseudoconnectivity index - type S Topological indices E-state indices

112 Psi_i_A intrinsic state pseudoconnectivity index - type S average Topological indices E-state indices

113 Psi_i_0 intrinsic state pseudoconnectivity index - type 0 Topological indices E-state indices

114 Psi_i_1 intrinsic state pseudoconnectivity index - type 1 Topological indices E-state indices

115 Psi_i_t intrinsic state pseudoconnectivity index - type T Topological indices E-state indices

116 Psi_i_0d intrinsic state pseudoconnectivity index - type 0d Topological indices E-state indices

117 Psi_i_1d intrinsic state pseudoconnectivity index - type 1d Topological indices E-state indices

118 Psi_i_1s intrinsic state pseudoconnectivity index - type 1s Topological indices E-state indices

119 Psi_e_A electrotopological state pseudoconnectivity index - type S average Topological indices E-state indices

120 Psi_e_0 electrotopological state pseudoconnectivity index - type 0 Topological indices E-state indices

121 Psi_e_1 electrotopological state pseudoconnectivity index - type 1 Topological indices E-state indices

122 Psi_e_t electrotopological state pseudoconnectivity index - type T Topological indices E-state indices

123 Psi_e_0d electrotopological state pseudoconnectivity index - type 0d Topological indices E-state indices

124 Psi_e_1d electrotopological state pseudoconnectivity index - type 1d Topological indices E-state indices

125 Psi_e_1s electrotopological state pseudoconnectivity index - type 1s Topological indices E-state indices

126 BAC Balaban centric index Topological indices Centric indices

127 LOC lopping centric index Topological indices Centric indices
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3.3 Results 

Figure 9 is a heatmap which shows correlation coefficient of the variables. Rows and 

columns are molecular descriptors. The number of them is 127. Red cell means -1, blue 

cell means 1, and yellow cell means 0. The descriptors used in this study are based on the 

2D structure information. Several descriptors include duplicate information for each other, 

many of the prepared descriptors contained strong correlations shown in figure 9. In the 

case of a strong correlation among the explanatory variables called multi-collinearity, 

ordinary multiple regression analysis cannot be used directly. However, even in this case, 

Partial Least Squares regressions (PLSR) [85] could be carried out to constructing linear 

predicting model. 

I performed to create mathematical models for relating three polymer properties, i.e., the 

density (ρ), the dissolution parameter (δ), and the glass transition temperature (Tg), by 

127 descriptors generated from the monomer structure. We tried to predict these three 

parameters by PLSR. Since the number of data is relatively small (48 data), LOOCV 

(Leave-One-Out Cross Validation) was applied to the data. 

Figures 10 (a-c) show predicted results of PLSR models of each property. Table 4 

compares the number of components used in the models, root mean square error (RMSE) 

and R2 (determination coefficient) for training data. 

For each model, the value of RMSE went down to a certain point and increased thereafter. 

In PLSR, it is necessary to determine the number of components to be used in the model. 

This time, the number of component when contribution rate exceeds 85% for the first 

time is selected. 

R2 for PLSR models were from 0.80 to 0.96. The models could be constructed for these 

properties and their fitting is good for training dataset, but generalization of prediction 

model should be evaluated.  
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Figure 9: Correlation coefficient of molecular descriptors 

 Correlation coefficient of 127 values of molecular descriptor as explanatory variables to 

predict polymer properties 
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Figure 10: The summary of training results of PLSR model (ρ, δ, Tg) 

 The result of PLSR model for three properties (a): density, (b): dissolution parameter, 

(c): glass transition temperature. Predicted values versus measured values were plotted 

for training data. 

  

(c) 

(b) 

(a) 
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Table 5: Comparison of PLSR models of three properties 

Property 
Number of 

component 
RMSE R2 

ρ 6 0.068 0.96 

δ 6 1.1 0.90 

Tg 5 34 0.80 
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3.4 Discussion 

Test dataset preparation 

For evaluating reliability of models, test dataset which is not concluded in training data 

is used. Chemical structures of the test data were listed in Table 6. The data were obtained 

from other source, which is “Polymer Data Handbook” edited by James E. Mark [86]. 

The number of test data is 11. The values of properties (objective variables of regression) 

were compared to training dataset by scatter plot (Figure 11). The values of descriptors 

(explanatory variables of regression) were compared to training dataset by hierarchical 

clustering (Figure 12). These results showed there are no significant outlier data in test 

dataset, therefore it is appropriate to use this data as evaluating the reliability of obtained 

models. 

 

Considering applicability domain of models 

Statistical models have applicability domain (AD). There are some proposal to evaluate 

AD [88, 89].  

In industrial view, it is important to evaluate AD for unknown data. Accurate evaluation 

of models lead to development of novel materials with predicting their characteristics 

before synthesize them practically. It is highly contributed to high efficiency performance 

development. In other words, models which constructed based limited training data 

should be accurately evaluated for unknown (test) data.  

For evaluating AD, T2 statistics and Q statistics which are based on principal component 

analysis (PCA) can be applied [90]. This method is adequate for dataset with 

multicollinearity like this case. 

 

 

T2 statistics are defined by Eq (7).  
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              (7) 

 

Here ti means score of ith principal component (PC), si means standard deviation of ith 

PC and A is the number of PCs need to be considered (for example, it is determined as 

the component number which firstly gives over 95% contribution ratio). 

 

Q statistics are defined by Eq (8). 
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Here k is the number of variables, yi means the value of ith variable and 𝑦𝑖̂ means 

estimated value of ith variable based on PCA (namely inverse mapping of ith variable 

using first Ath PCs information).  

T2 means the distance of data from the origin based on the information of the first Ath 

PCs. Q statistics means the indicator of information which can not be described by the 

first Ath PCs. When these values get large for test data, the data is outlier from training 

dataset and it possibly is out of applicability domain. In this study, the datasets (training 

and test) were analyzed by PCA. T2 and Q statistics were calculated which is based on 

95% contribution rate. The result are shown in figure 13. Black circles show training data 

and red show test data. From this plot, four data (TEST 1, 9, 10 and 11) are plotted far 

from training data and they appear outlier. From this analysis, it is considered that these 

four data are likely out of AD and prediction results can be worse. As described before, 

from correlation analysis and hierarchical clustering, no significant difference are 

appeared about these four data. Using PCA approach you can find abnormal data which 

cannot detected by simple correlation or clustering analysis. Note that other seven data 

are considered as applicable data for the prediction model. 

 

 

Table 6: Chemical structures of test dataset. 

No. Name Structure 

1 Poly(methyltrifluoropropylsiloxane) 

 

 

 

2 Poly(propylene sulfide) 
 

3 Poly(methylphenylsiloxane) 

 

 

 

4 Poly(1,3-dioxepane) 
 

5 Poly(hydroxybutyrate) 
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6 Poly(p-chlorostyrene) 

 

 

 

7 Poly(1,3-dioxolane) 
 

8 Poly(methacrylonitrile) 

 

9 Poly(ether sulfone) 

 

10 Cellulose 

 

11 Poly(ether ether ketone) 
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Figure 11: The scatter plots of training and test dataset (ρ, δ, Tg) 

 The scatter plots of training (black) and test (red) dataset. Values of density (ρ), solubility 

parameter (δ) and glass transition temperature (Tg) are shown. Range of values of test 

dataset is similar to training dataset. Correlation coefficients are: 0.10(ρ and δ; 38 data), 

0.21(ρ and Tg; 50 data), 0.50(δ and Tg; 41 data). 
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Figure 12: Hierarchical clustering of training and test dataset (ρ, δ, Tg) 

 The result of hierarchical clustering of training (black) and test (red) dataset which is 

constituted from descriptor values of monomer unit structures. Test data distribute to 

different clusters of training data. This shows there are no significant outlier data in test 

dataset.   
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Figure 13: T2 and Q statistics of training and test dataset based on PCA 

 Based on PCA, T2 and Q statistics are calculated and plotted. Training dataset (black) 

and test (red) dataset are shown, and four test data (TEST 1, 9, 10 and 11) appear as 

outliers. 

 

 

 

Results of prediction of test dataset and other consideration 

In Table 7, I compared the root means square errors and coefficient of determinations 

between only training data and only test data. For ρ, fitting of test data is good. However, 

for δ and Tg, the value got much worse than training data only. So models of δ and Tg does 

not show good accuracy for test data. In other words, these prediction models have poor 
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reliability for additional data. The plots of prediction result are also shown in figure 14.  

In Table 8, more detail result is shown. It summarizes measured values, prediction result 

and their errors. In figure 15-17, regression results are shown again with labels of the 

name of test data. In some structures, prediction residuals are likely to large (such as # 1, 

2, 3, 4, 8, and 10). The trend can be understood by considering chemical structures of the 

data. In test dataset, #2: poly-(propylene sulfide) and #9: poly-(ether sulfone) contains S 

atom. However, in training dataset, there was no structure included S-atom. The difficulty 

of prediction of #10 (cellulose) came from that training dataset include no glycosidic-

bonded structures. #1 (Poly (methyl trifluoro propyl siloxane)) and #3 (Poly (methyl 

phenyl siloxane)) includes poly-siloxane structure which is included only 1 data in 

training dataset. Nitrile structure included #8 (Poly-(methacrylonitrile)) were also 

contained only one data in training dataset.  

Generally speaking, it will be concluded that poor reliability of the models comes from 

the lack of variety of training dataset. However, this situation often happens in real 

experimental data. Pragmatically, it is helpful to judge the reliability of the model using 

only already obtained data without any additional test dataset.  

In the aspect of using the training dataset effectively, it is helpful that other property 

data can be used to evaluate reliability of prediction. Based on the training dataset, PLS 

prediction models were constructed for all properties. The result is summarized in table8. 

The model accuracies were different depends on property. As I mentioned before, 

properties can be clustered by hierarchical clustering based on the training dataset. In 

Table 10, depends on the clusters, prediction results were sorted and average of R2 for 

each cluster were calculated.  

Figure 18 shows cluster ID and average of R2 values of each cluster. Please note this 

clustering came from property information only based on the training dataset not 

including structural information.  

On the other hand, using monomer unit structure information, PLS prediction models 

have been obtained as shown in chapter1-4. Their fitting for test data was different. For 

ρ, fitting of test data was good, however for δ and Tg, fitting of test data were not good. 

For each cluster, average R2 value of PLS models for training data are shown in figure17. 

You can evaluate the reliability of the models from this perspective. For example, ρ is 

located in cluster “C”. The R2 value of models of parameters in cluster “C” is high. 

However, clusters which includes δ or Tg (“F” or “G” each) show low R2 values. In this 

way, for each cluster, average R2 of PLS models for training data relate the reliability of 

the models.  
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Table 7: Comparison of PLSR models of three properties 

Comparison of root means square errors and coefficient determinations between training 

and test dataset. 

Property 
Number of 

component 

RMSE  

(Training) 

R2 

(Training) 

RMSE 

(Test) 

R2 

(Test) 

ρ 6 0.068 0.96 0.14 0.54 

δ 6 1.1 0.90 4.2 0.08 

Tg 5 34 0.80 91 0.39 

 

 

 

Table 8: Prediction result of test dataset 

Error values were calculated as the ratio of prediction residuals per measured value. Gray 

cells mean absolute of error ratio is large (over 20%). 

 

 

  

Measured Predicted Error Measured Predicted Error Measured Predicted Error

1 Poly(methyltrifluoropropylsiloxane) 1.30 1.52 18% 17.9 14.0 -22% 205 266 30%

2 Poly(propylene sulfide) 1.08 1.13 5% 17.9 20.9 17% 228 294 29%

3 Poly(methylphenylsiloxane) 1.11 1.26 14% 18.4 19.4 5% 246 355 44%

4 Poly(1,3-dioxepane) 1.03 1.16 13% 18.8 18.1 -4% 187 247 32%

5 Poly(hydroxybutyrate) 1.18 1.37 16% 19.2 22.4 17% 275 289 5%

6 Poly(p-chlorostyrene) 1.25 1.33 7% 19.7 19.7 0% 400 415 4%

7 Poly(1,3-dioxolane) 1.02 1.25 22% 20.7 19.6 -5% 210 222 5%

8 Poly(methacrylonitrile) 1.13 1.23 9% 21.9 26.0 19% 285 408 43%

9 Poly(ether sulfone) 1.49 1.40 -6% 22.9 18.5 -19% 498 405 -19%

10 Cellulose 1.49 1.41 -5% 32.0 21.6 -33% 505 302 -40%

11 Poly(ether ether ketone) 1.26 1.24 -2% 21.9 18.7 -15% 425 464 9%

ρ δ T gNo. Name
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Figure 14: The summary of test results of PLSR model (ρ, δ, Tg) 

 The result of PLSR model for three properties (a): density, (b): dissolution parameter, 

(c): glass transition temperature. Black points mean training data and red means test data. 

Predicted values versus measured values were plotted. 
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Figure 15: The test result of PLSR model (ρ) 

 The result of PLSR model for density (ρ). Predicted values versus measured values were 

plotted. Black points mean training data and red means test data. Labels of points indicate 

the data ID of test data. 
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Figure 16: The test result of PLSR model (δ) 

 The result of PLSR model for solubility parameter (δ). Predicted values versus measured 

values were plotted. Black points mean training data and red means test data. Labels of 

points indicate the data ID of test data. 
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Figure 17: The test result of PLSR model (Tg) 

 The result of PLSR model for glass transition temperature (Tg). Predicted values versus 

measured values were plotted. Black points mean training data and red means test data. 

Labels of points indicate the data ID of test data. 
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Table 9: Summary of the results of PLS prediction models 

PLS prediction models were constructed for 34 properties, sorted by R2 of PLS model 

based on the training dataset. 

 

 
 

  

Property Number_of_data PLS_ncomp PLS_RMSE PLS_R
2 Cluster_ID

El.calc 35 8 6.9 1.00 G

Eg.calc 35 7 4.7 1.00 G

CpExpLiq 24 6 4.3 1.00 G

El.exp 31 2 72 0.97 G

rho.a 48 6 0.044 0.97 A

M 48 1 12 0.97 G

Eg.exp 25 3 33 0.97 G

Vw 46 2 8.8 0.96 G

gamma.coh 27 5 2.8 0.92 E

nRLL 24 3 0.019 0.91 C

D.Sm.exp 21 2 8.4 0.91 G

CpExpSolid 30 2 28 0.90 G

CpSatohSolid 32 2 26 0.90 G

rho.c 36 2 0.12 0.89 A

delta.exp.min 26 4 1.2 0.88 E

CpShawLiq 30 2 42 0.88 G

delta 31 5 1.2 0.88 E

rho.r 41 2 0.12 0.87 A

K.theta 24 4 0.027 0.87 B

Vr 41 1 21 0.85 G

D.Hm.exp 21 1 5.9 0.82 G

nRV 24 2 0.021 0.81 C

nRGD 24 2 0.028 0.81 C

Tg 47 5 34 0.80 D

Tm 39 3 60 0.67 D

D.Hm 30 1 9.4 0.64 G

delta.exp.max 23 1 2.8 0.46 E

gamma.para 30 2 6.9 0.41 E

el 33 1 1.1 0.40 F

eg 31 1 0.59 0.40 F

n 36 1 0.054 0.35 C

gamma.cr 29 1 6.2 0.18 E

gamma 32 1 5.8 0.13 E

epsilon 31 1 1.8 0.07 B
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Table 10: Summary of the results of PLS prediction models (sorted)  

Summary of the results of PLS prediction models were constructed for 34 properties, 

sorted by the clustering result on the training dataset. 

 

 

 

  

Property Number_of_data PLS_ncomp PLS_RMSE PLS_R
2 Cluster_ID

Average of R
2

for the cluster

rho.a 48 6 0.044 0.97

rho.c 36 2 0.12 0.89

rho.r 41 2 0.12 0.87

K.theta 24 4 0.027 0.87

epsilon 31 1 1.8 0.07

nRLL 24 3 0.019 0.91

nRV 24 2 0.021 0.81

nRGD 24 2 0.028 0.81

n 36 1 0.054 0.35

Tg 47 5 34 0.80

Tm 39 3 60 0.67

gamma.coh 27 5 2.8 0.92

delta.exp.min 26 4 1.2 0.88

delta 31 5 1.2 0.88

delta.exp.max 23 1 2.8 0.46

gamma.para 30 2 6.9 0.41

gamma.cr 29 1 6.2 0.18

gamma 32 1 5.8 0.13

el 33 1 1.1 0.40

eg 31 1 0.59 0.40

El.calc 35 8 6.9 1.00

Eg.calc 35 7 4.7 1.00

CpExpLiq 24 6 4.3 1.00

El.exp 31 2 72 0.97

M 48 1 12 0.97

Eg.exp 25 3 33 0.97

Vw 46 2 8.8 0.96

D.Sm.exp 21 2 8.4 0.91

CpExpSolid 30 2 28 0.90

CpSatohSolid 32 2 26 0.90

CpShawLiq 30 2 42 0.88

Vr 41 1 21 0.85

D.Hm.exp 21 1 5.9 0.82

D.Hm 30 1 9.4 0.64

E 0.55

D 0.73

0.72C

B 0.47

0.91

0.91

0.40F

G

A
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Figure 18: Comparison of clustering result and PLSR prediction models R2 

 Relationships of hierarchical clustering and generalization performance of PLSR 

prediction models. Result of hierarchical clustering of properties. 7 clusters are obtained 

and they are named as A-G. PLSR models were constructed to all properties and their 

average R2 values of regression result were shown to each clusters.  
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4. Outlook of materials informatics in the future 

 

4.1 Trend of big database in chemical field 

In recent years, efforts have been made in the chemical industry to collect and provide 

large chemical databases. There are many available databases [92-97]. This situation will 

encourage the use of data. It could widen the gap between those who have data and those 

who don't. However, even if you have a lot of data, the quality and usage of the data is 

still important. If you can't use data correctly, the results from it will be incorrect. The 

characteristics and limitations of the data must be properly understood.  

 

 

4.2 The limitation of data usage these days and importance of 

methodology to interpret data 

In the field of polymer material development, databases are inevitably incomplete. For 

example, values of the glass transition temperature and viscosity of polymers vary 

depending on the measurement conditions (temperature and measurement accuracy). It is 

impossible to apply totally the same experimental conditions to all polymers. Practically, 

when it comes to develop polymer materials, performance values based on specific 

evaluation conditions are always required, so training data always remain small. 

Therefore, as discussed in this paper, the approach to gain helpful knowledge by dealing 

with the data at hand will become even more important in the future. 

 There is big trend in materials informatics that Bayesian optimization is powerful tool 

to discover useful material structure or best formulation of the product [98-101]. It is an 

exploratory approach, which is effective method to discover optimized chemical 

compositions when field to explore were set clearly. However, another approach is needed 

for interpret obtained data already. Pragmatically obtained dataset is always a small part 

of whole chemical field to be explored. In that situation, the methodology I proposed in 

this work is able to reveal the concept how to use meaningfully small dataset already 

obtained. Namely I showed how unsupervised manner apply to classify or understand 

polymer structures based on small and imperfect dataset. When prediction model is 

constructed for one target property, other property dataset will be effectively used as 

evaluation of the generalization applicability of the prediction model. This methodology 

enables to engineers who work develop novel material product using data-science 

approach because they have evidence for the performance of data-driven prediction. The 

engineers will be able to rely on the models so that this leads to increase the success rate 
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of materials-informatics project. Generally speaking, when introducing a new method, it 

is critical factor to the success how much you trust in the method. 
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5. Conclusive remarks 

Data of 48 types of polymers consisting of 34 properties were prepared based on the 

literature [34]. The relationship between polymer type and properties was analyzed by 

hierarchical clustering. Several properties are reflected by the structure of the monomer 

unit. For these polymers, descriptors were calculated from the 2D SMILES information 

of the monomer units and the physical properties were estimated. The prediction model 

by PLSR was obtained for three different property values. Reliability of obtained models 

could be evaluated using clustering result based on training dataset. 

Data-driven approaches, in other words, accumulation of molecular data concerning 

polymers and selection of optimal models for predicting individual polymer properties 

are needed strongly in development novel polymer materials fundamentally. Furthermore, 

it will become important approach for industry to use incomplete dataset to make helpful 

prediction model and to evaluate it in the future. These approach clear practical problems 

and realize applying data-science techniques to industrial chemical data. 
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Research achievement 

 The contents of chapter 2-1, 2-2 and 3-1 were published as: Relationships of 

Polymer Properties and Predicting Polymer Properties Based on Monomer Structure 

Information, Hitoshi Yamano, Tomoyuki Miyao, Naoaki Ono, Aki Morita, 

Shigehiko Kanaya, Journal of Computer Aided Chemistry, Vol.20, 84-91 (2019). 

 The contents of chapter 2-1, 2-2 and 3-1 were presented as: Considering and 

predicting properties of general polymers based on their monomer unit structure, 

Hitoshi Yamano, Tomoyuki Miyao, Naoaki Ono, Aki Morita, Shigehiko Kanaya, 

6th Autumn School of Chemoinformatics (poster session) in Nara, Japan (2019). 

 The contents of chapter 3-1, 3-2 and 3-3 were presented as: Clustering and 

predicting properties of general polymers based on their monomer unit structure, 

Hitoshi Yamano, Hiroaki Shimizu, Shigehiko Kanaya, Tomoyuki Miyao, Aki 

Morita, Naoaki Ono, American Chemical Society Fall 2020 Virtual Meeting & 

Expo, CINF-113. 

 The contents of chapter 3-1, 3-2 and 3-3 were presented as: Predicting and 

considering properties of general polymers using incomplete dataset, Hitoshi 

Yamano, Hiroaki Shimizu, Shigehiko Kanaya, Tomoyuki Miyao, Aki Morita, 

Naoaki Ono, International Symposium on Semiconductor Manufacturing Virtual 

Symposium 2020, MI-036.  
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