
NAIST-IS-DD1821419

Doctoral Dissertation

Studies on Deep Learning-based Intrusion

Detection Systems for Computer & In-vehicle

CAN Bus Networks

Md Delwar Hossain

February 10, 2021

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Md Delwar Hossain

Thesis Committee:

Professor Youki Kadobayashi (Supervisor)

Professor Keiichi Yasumoto (Co-supervisor)

Professor Yuichi Hayashi (Co-supervisor)

Associate Professor Yuzo Taenaka (Co-supervisor)

Associate Professor Daisuke Miyamoto (The University of Tokyo)

3

Studies on Deep Learning-based Intrusion

Detection Systems for Computer & In-vehicle

CAN Bus Networks∗

Md Delwar Hossain

Abstract

The rapid growth of the Internet of Things (IoT) and the ubiquitous nature

of the Internet have made life more convenient for human beings. The rise of that

social convenience is accompanied by incessant efforts of miscreants to create new

tools, techniques, and tactics to destabilize the comfort of the dwellers by attack-

ing computer networks and applications. Even worse, these attacks are being

transferred into the increasingly connected cyber-physical systems (CPS), espe-

cially the automotive system where the in-vehicle CAN bus network lacks encryp-

tion and authentication mechanisms, making them even more vulnerable to some

of the attacks that are well-known in traditional computer networks. Addition-

ally, some automotive systems (e.g., the modern car) employ advanced technolo-

gies –the Telematics Unit, in-vehicle infotainment (IVI), V2X, etc.—accessible

through Bluetooth, Wi-Fi, GPS, etc., thus, augmenting their attack surface. In-

trusion Detection Systems are known to be the solution by excellence for detecting

and mitigating network attacks, however, based on the recrudescence of attacks,

we can affirm that traditional IDSs have failed. Elsewhere, artificial intelligence

(AI) or, more specifically, deep learning has shown immense promise in solving

lingering issues in other domains: we contend that deep learning can also help

make IDSs more efficient.

Hence, in this dissertation, our imperative is to devise new IDS methodolo-

gies to protect computer networks and in-vehicle CAN bus networks of automo-

tive systems by leveraging deep learning. First, we thoroughly study the deep

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, February 10, 2021.

i

learning-based IDS for several kinds of critical network attacks such as DoS (De-

nial of Service), DDoS (Distributed DoS), Brute Force, etc. Subsequently, we

investigate how to optimize the deep learning models. Our results illustrate that

Long Short-Term Memory (LSTM) can effectively detect network attacks with

high accuracy and reasonable detection rates. After ensuring security in computer

networks by using deep learning, we transfer our solutions to the automotive sys-

tems. Therefore, we propose a deep learning-based IDS for in-vehicle CAN bus

networks. Furthermore, for efficiency reasons, we also develop CAN bus net-

work attacks (DoS, Fuzzing, and Spoofing) datasets by using the CAN messages

of three distinct car models (Toyota, Subaru, and Suzuki). The results of our

experiment demonstrate that our deep learning-based IDS is more effective and

robust than existing methodologies.

Keywords:

intrusion detection system, Long Short-Term Memory, convolutional neural net-

work, automotive security, CAN Bus, cybersecurity, deep learning

ii

Contents

1. Introduction 1

1.1 Problem Statement . 3

1.2 Research Objectives and Contributions 5

1.2.1 Research Objectives . 5

1.2.2 Research Contributions . 6

1.3 Dissertation Outline . 8

2. Preliminaries 9

2.1 Computer Network Attacks . 9

2.2 Controller Area Network (CAN) bus 10

2.3 Communication Interfaces . 12

2.3.1 On-Board Diagnostics (OBD-II) 13

2.3.2 Telematics Unit . 13

2.3.3 In-vehicle Infotainment (IVI) 13

2.4 Performance Evaluation Matrix for Machine Learning Model . . . 14

2.5 Chapter Summary . 15

3. Studies on LSTM-based Intrusion Detection System 16

3.1 Introduction . 16

3.2 Related Work . 17

3.3 CICIDS2017 Dataset . 18

3.3.1 Dataset CICIDS2017 (Tuesday) 18

3.3.2 Dataset CICIDS2017 (Thursday) 19

3.4 LSTM-based Brute-force Attack Detection 19

3.4.1 Applying LSTM to CICIDS2017 (Tuesday) 20

3.4.2 Applying LSTM to CICIDS2017 (Thursday) 22

3.4.3 Discussion . 23

3.5 Chapter Summary . 24

4. Optimization of Deep Learning Models by Hyper-parameter Val-

ues Tuning 25

4.1 Introduction . 25

4.2 Related Work . 26

iii

4.3 Dataset CICIDS2017 . 27

4.3.1 Dataset CICIDS2017 (Wednesday) 27

4.3.2 Dataset CICIDS2017 (Friday) 27

4.4 LSTM-based Network Attack Detection 28

4.4.1 Applying the Long Short-Term Memory (LSTM) Model . . 28

4.5 Experiment Results and Performance Evaluation 29

4.5.1 LSTM Layer-wise Attacks Classification - Experiment Results 30

4.5.2 RMSprop Learning Rate wise LSTM Classification Results 32

4.5.3 Optimizer-wise LSTM Classification Results 36

4.5.4 Activation Function-wise LSTM Classification Results . . . 37

4.5.5 Loss Function-wise LSTM Classification Results 38

4.6 Discussion . 39

4.7 Chapter Summary . 40

5. Develop NAIST CAN Attack Dataset 42

5.1 Attacks Used in the Model . 42

5.1.1 Attack Types . 42

5.2 Develop NAIST CAN Attack dataset 43

5.2.1 Dataset Generation - NAIST CAN attack dataset 43

5.2.2 Data Collection Setup and Process 43

5.2.3 Attack Scenarios . 43

5.3 Develop NAIST In-vehicle CAN attack dataset 47

5.3.1 Dataset Generation - NAIST In-vehicle CAN attack dataset 47

5.3.2 Data Collection Setup and Process 47

5.3.3 Attack Scenarios . 48

5.4 Chapter Summary . 50

6. LSTM-based In-vehicle CAN bus Intrusion Detection System 51

6.1 Introduction . 51

6.2 Related Works . 54

6.3 Attacks Used in the Model . 55

6.3.1 Survival Analysis Dataset for automobile IDS - Benign and

Attack Instances . 56

6.4 LSTM-based Network Intrusion Detection System 56

iv

6.4.1 Dataset Preprocessing . 58

6.4.2 Application of the Long Short-Term Memory (LSTM) Model 59

6.5 Experiment Results and Performance Evaluation 65

6.5.1 LSTM Layer(s) - Attacks Classification Experiment Results 66

6.5.2 Nadam Learning Rate - LSTM Classification Results . . . 69

6.5.3 Optimizers - Classification Results 69

6.5.4 Activation Function - Classification Results 70

6.5.5 Loss Function - Classification Results 71

6.5.6 Results comparison with the Survival Analysis method/dataset 72

6.6 Discussion . 72

6.7 Chapter Summary . 77

7. In-vehicle CAN Bus Intrusion Detection System using 1D CNN

Deep Learning Approach 78

7.1 Introduction . 78

7.2 Related Works . 79

7.3 Attacks used in the model . 80

7.4 CNN-based Network Intrusion Detection System 81

7.4.1 Dataset Preprocessing . 82

7.4.2 Applying the Convolutional Neural Network (CNN) Model 83

7.5 Experiment Results and Performance Evaluation 84

7.5.1 CNN Binary and Multiclass Classification Experiment Re-

sults . 85

7.6 Discussions . 87

7.7 Chapter Summary . 88

8. Discussion and Future Works 89

8.1 Limitations . 90

8.2 Future Works: Resilience of Connected Cars 91

8.2.1 Automotive Attacks Investigation 92

8.2.2 IDS embedding into a real-car 92

8.2.3 V2X Communication Security 92

8.2.4 In-vehicle Infotainment Systems (IVI) Attack Analysis . . 93

8.2.5 In-vehicle Malware Activities and Analysis 93

v

9. Conclusion 95

Acknowledgments 97

References 98

Publication List 107

vi

List of Figures

1 CAN message format in 11bit mode with DLC=8. There are no

security features implemented in this protocol. 11

2 Few Components of Automotive Systems. 12

3 LSTM Confusion Matrix - FTP and SSH Attacks 21

4 LSTM Confusion Matrix - CICIDS2017 (Thursday) 23

5 LSTM L5 Confusion Matrix - Wednesday Dataset 31

6 Layer 5 Confusion Matrix - Friday Dataset 32

7 Layer-wise Attacks Detection Rate - Wednesday Dataset 32

8 Learning Rate-wise Classification Results - Wednesday Dataset . . 35

9 Learning Rate-wise Classification Results - Friday Dataset 36

10 Optimizer-wise Attacks Detection Rate - Wednesday Dataset . . 37

11 Attack scenarios assumed in this research. (a) DoS attack – an

attacker floods messages to the CAN bus. (b) Fuzzing attack –

an attacker injects random CAN messages for changing the IDs,

payload length. (c) Spoofing attack – an attacker generates fake

messages that deceive the receiver’s ECUs. 44

12 Injection of Messages with Timing Regarding DoS, Fuzzing and

Spoofing attacks. 44

13 Examples of NAIST CAN Attack Dataset 46

14 Attack Scenarios . 47

15 Injection of Messages . 47

16 Examples of NAIST In-vehicle CAN Attack Dataset 50

17 Typical Architecture of Intrusion Detection for CAN bus Network.

The IDS monitors the messages exchanged in the CAN bus and

gives an alert if it encounters suspicious activities. 52

18 CAN bus Network System Defense Verification Platform. Consist

of Two modules: Attack Verification and Intrusion Detection System 57

19 Basic RNN Architecture . 59

20 LSTM Cell Architecture . 59

21 LSTM IDS Architecture Regarding the Attack Classification . . . 60

22 Performance Evaluation based on the Batch Size, Learning Rate

and Number of LSTM Units . 63

vii

23 NAIST CAN Attack Dataset Classification Receiver Operating

Characteristics (ROC) . 68

24 Gradient Descent Optimizer Confusion Matrix - NAIST CAN At-

tack Dataset . 70

25 Detection Rate - Comparison with the Survival Analysis Dataset

for automobile IDS . 74

26 Security Verification Platform . 81

27 Performance Evaluation (50 epoch) of Suzuki model dataset based

on the Batch Size, Learning Rate and Number of Filter maps . . . 83

List of Tables

1 CICIDS2017 - Benign and Attack Instances 18

2 LSTM Parameter Values . 19

3 LSTM Classification Results - FTP and SSH Attacks 22

4 Confusion Matrix - FTP and SSH Attacks 22

5 Classification Results LSTM vs MLP 23

6 LSTM Classification Results of CICIDS2017 (Thursday) 24

7 CICIDS2017 - Benign and Attack Instances 28

8 LSTM Model Hyper-parameter Values 30

9 Layer-wise Attacks Classification Results - Wednesday Dataset . . 33

10 Layer-wise Attacks Classification Results - Friday Dataset 34

11 Optimizer-wise Classification Results 37

12 Activation Function-wise Classification Results 38

13 Loss Function-wise Classification Results 39

14 NAIST CAN Attack Dataset - Benign and Attack Instances . . . 45

15 NAIST In-vehicle CAN attack Datasets - Benign and Attack In-

stances . 49

16 Survival Analysis Dataset for automobile IDS - Benign and Attack

Instances . 56

17 LSTM Parameters for Binary Classification 64

18 LSTM Parameters for Multiclass Classification 64

19 Binary Classification Results - NAIST CAN Attack Dataset . . . 65

viii

20 LSTM Layer(s) Multiclass Classification Results - NAIST CAN

Attack Dataset . 67

21 Layer(s) Multiclass Classification results - NAIST CAN Attack

Dataset . 68

22 Nadam Learning Rate LSTM Classification Results - NAIST CAN

Attack Dataset . 69

23 Optimizers Classification Results - NAIST CAN Attack Dataset . 71

24 Activation Function-wise Classification Results - NAIST CAN At-

tack Dataset . 71

25 Loss Function-wise Classification Results - NAIST CAN Attack

Dataset . 72

26 LSTM Multicass Classification Results - Survival Analysis Dataset

for automobile IDS . 73

27 LSTM Binary Classification Results - Survival Analysis Dataset

for automobile IDS . 75

28 Parameter values for Multiclass Classification 84

29 CNN Binary Classification Results 85

30 CNN Multicass Classification Results 86

ix

1. Introduction

The Internet was introduced to connect the world and it is now becoming more

and more ubiquitous. The Internet is a patchwork of technologies, standards,

policies, etc., but to keep it simple and in line with our thesis, we define the

Internet as a network of computer networks composed of numerous features such

as the Internet of Things (IoT). The latter represents the epitome of the ubiq-

uity of the Internet, as IoT has been devised to accelerate digital transformation

and make “connecting the world” a reality. So far, billions of devices have been

connected to make, among other things, our lives more convenient. The rapid

growth of advanced technologies has tremendously impacted human beings’ com-

fort, and those technologies are invading every domain that constitutes society.

Recently, we have seen how they are helping cyber-physical systems (CPSs) to

reach higher levels of development. Cyber-physical systems are modern engi-

neering systems wherein physical systems are connected via computing networks;

physical systems are connected with many sensors, and the internal communi-

cation is processed with the embedded physical systems [50, 4]. Amidst several

CPSs entities, automotive systems are among the most important entities due to

their rapid transformations [50].

Indeed, the car is arguably the most important means of transportation of

the modern era. It is said that the modern car’s inception dates back to 1886,

when Karl Benz introduced a patent for his invention called the Benz Patent-

Motorwagen. Since then, the modern car has gone through numerous transfor-

mations to become more efficient, reliable and secure.

In regards to enhancing comfort and safety, automotive systems employ many

advanced technologies –the Telematics Unit, In-vehicle infotainment (IVI), etc.

Generally, users access the aforementioned advanced technologies through the

Bluetooth technology, Wi-Fi, and GPS [53]. Regarding maintenance and inspec-

tion of the vehicle systems, On-Board Diagnostics (OBD-II) is a commonly used

physical diagnostic interface of a modern car. OBD-II was developed in the early

80s with many advanced features to overcome the limitations of the earlier devel-

oped OBD and broadly used for the computer-controlled on-board vehicle [72].

There are up to 100 Electronic Control Units (ECU) in the modern automo-

tive system, and the Controller Area Network (CAN) bus system orchestrates

1

the communication between the ECUs. All the ECUs that reside in the modern

vehicle could be monitored through the OBD-II interface. Modern automotive

systems employ the Telematics Unit for: connecting the vehicle to the outside

world through wireless network, sending/receiving data in several advanced com-

puting systems such as the advanced driver assistance system (ADAS), Vehicle

Tracking, Vehicle-to-vehicle communication, vehicle navigation, etc[50].

However, the proliferation of intelligent hacking tools has allowed anyone with

basic computer literacy to be able to attack computer networks, that phenomenon

is a significant threat to the universal acceptance of digital transformation. Thus,

cybersecurity is essential to make safe communication, i.e., facilitate the accep-

tance of the digital transformation. Cybersecurity is a set of technologies, pro-

cesses, and operations which has been designed to protect the systems and net-

works against unauthorized accesses, modifications, and destruction. As we know,

network attacks have been observed since the beginning of the Internet and they

are still relevant due to numerous attempts of independent hackers, cybercrime

organizations and state-sponsored hacking squads to intrude other’s computer

networks. Even worse, critical network attacks are being transferred into the

cyber-physical systems applications, notably into the automotive system where

the in-vehicle CAN bus network does not support encryption and authentication

mechanisms, rendering it even more vulnerable to some of the attacks that are

conventional in traditional computer networks.

2

1.1 Problem Statement

The world is deeply connected thanks to the rapid evolution of Internet tech-

nologies. Simultaneously, we are experiencing the rapid growth of technological

weapons of mass destruction that anyone can use with elementary computer lit-

eracy. There exist several types of computer network attacks of which intrusion

and denial of service (DoS, including distributed DoS (DDoS), Brute Force, BoT)

attacks are the most prominent. The aforementioned attacks are of significant

concern to the stability of the network systems. Even worse, these attacks are be-

ing transferred into the cyber-physical systems (CPSs), especially in automotive

systems wherein lack of security mechanism (authentication/encryption) makes

them vulnerable to some of the attacks that are familiar in traditional computer

networks.

As per CPS’s consideration, the modern automobile is a complex piece of

technology that employs the Telematics Unit to connect the vehicle to the wire-

less network for communicating with the outside world. In addition, a technology

called In-vehicle infotainment (IVI) is integrated with the modern automobiles

for accessing the Internet, TV, etc., and, in general, users get access to the IVI

through the Bluetooth technology, Wi-Fi, and GPS. The aforementioned tech-

nologies are augmenting the attack surfaces of the modern car. Additionally,

limited processing power is also a significant fact. Moreover, a lack of standard

security solutions for automotive systems originates considerable attention about

safe driving. Furthermore, modern cars are transforming rapidly and integrated

with numerous advanced electronic pieces of equipment to make them connected;

modern cars are connected to the outside world through the aforementioned ex-

ternal communication interfaces and the latter are indispensable to the modern

car’s advancement.

Furthermore, the Controller Area Network (CAN) bus system is a central

system for managing the communication between the electronic control units

(ECUs). Despite its central importance, the CAN bus system doesn’t support

authentication and authorization mechanisms, i.e., CAN messages are broadcast

without basic security features. As a result, an attacker can launch attacks ef-

fortlessly into an In-vehicle CAN Bus system. Attackers can compromise the

CAN bus system in several ways, including Denial of Service (DoS), Fuzzing and

3

Spoofing attacks. When an attacker succeeds in compromising the ECUs, they

can take control and stop the engine, disable the brakes, turn the lights on/off,

etc [43]. Consequently, it proffers the questions of transforming modern cars and

safe driving. Henceforth, automotive systems required an effective methodology

to detect In-vehicle CAN Bus network attacks regarding safe driving, affirming

the digital transformation of automotive systems.

Reflecting these, researchers in academia and industry professionals have been

working diligently to detect and mitigate the CAN bus network attacks. How-

ever, they proposed several methodologies that appear to be lacking adequate and

effective attack detection and mitigation technologies [25, 62]. As a countermea-

sure, an Intrusion Detection System (IDS) that uses modern techniques, tactics

and technologies could be a solution to detect and mitigate the aforementioned

critical attacks.

4

1.2 Research Objectives and Contributions

In this research, our primary objectives and contributions are as follows:

1.2.1 Research Objectives

In this research, our primary aim is to design and develop an effective Intrusion

Detection System (IDS) to detect and mitigate critical cyber attacks regarding

Computer & In-vehicle CAN bus Network System by applying Deep Learning

(DL) approaches.

1. RO1.1: Design and develop an effective DL-based IDS for computer net-

works.

2. RO1.2: Transfer and adapt RO1.1 into In-vehicle CAN Bus networks

• RO1.1: Design and develop an effective DL-based IDS for computer net-

works.

– To develop effective Deep Learning-based Intrusion Detection Systems

(IDS) to detect and mitigate critical cyber attacks regarding computer

network.

– To optimize the Deep Learning models to achieve the best detection

performance.

– To investigate different deep learning algorithms based on performance,

accuracy, and effectiveness.

RO1.1 - the objective is to optimize deep learning models to achieve reason-

able detection accuracy and reduce false positive and false negative rates. We

thoroughly investigate how to optimize deep learning models. Our experiment

results demonstrate that right hyper-parameter values selection is essential to

develop a robust IDS. Additionally, transfer and adapt the above objective into

In-vehicle CAN Bus networks. The justification is presented in the later Chapters

3 & 4.

5

As we affirm, several computer network attacks can transfer into the In-vehicle

CAN bus system; hence, we intend to transfer our solution into the In-vehicle

CAN Bus system.

• RO1.2: Transfer and adapt RO1.1 into In-vehicle CAN Bus networks

– To develop real systems-based imbalanced attack datasets.

– To provide an effective pre-processing method for developing an effec-

tive supervised classification model.

– To develop an effective deep learning-based In-vehicle CAN Bus net-

work intrusion detection system (IDS).

RO1.2 - the research’s principal aim is to generate CAN Bus network attack

datasets from different real-car models by using On-board diagnostics (OBD-

II) communication interface and propose an effective pre-processing method to

develop a robust IDS for In-vehicle CAN Bus network system. Finally, we investi-

gate different deep learning models to determine the most suitable algorithms for

developing the IDS for CAN-bus network attack detection. Although we study

datasets from specific car models, we believe our IDS will be effective regarding

any models of cars. The aforementioned proposal details are presented later in

Chapters 5, 6 & 7.

1.2.2 Research Contributions

1. We study several critical computer network attacks and develop deep learning-

based IDS by using LSTM deep learning approach. We achieve reasonable

detection rates to classify network attacks such as DoS, DDoS, Brute Force,

etc.

• We thoroughly investigate how to optimize the deep learning approaches

to attain higher detection rates.

2. We develop LSTM and 1D CNN deep learning-based intrusion detection

systems that are effective in In-vehicle CAN Bus networks despite the pro-

6

liferation of attacks and the lack of encryption and authentication mecha-

nisms in In-vehicle CAN Bus systems.

3. We develop CAN Bus network attacks (DoS, Fuzzing, Spoofing) datasets

by using the CAN Bus messages of a real car.

4. We provide an effective pre-processing method to develop an effective LSTM

and 1D CNN-based supervised classification model regarding the CAN bus

attack detection.

5. Proposed solutions will provide an effective countermeasures in well-known

domains that can be transferred (adapted) to domains that are new play-

ground for hackers.

7

1.3 Dissertation Outline

The dissertation outline is as follows: In Chapter 2, we discuss the prelimi-

naries of Computer Network Attacks and the Controller Area Network (CAN)

Bus system, communications interfaces. We also discuss the machine learning

models’ performance evaluation matrix. Chapter 3 presents our studies about

deep learning-based IDS for SSH and FTP Brute Force attacks. In Chapter

4, we explain our proposed LSTM-based IDS regarding several critical network

attacks detection. We provide details on how to optimize the model and im-

prove the detection accuracy of the IDS. In Chapter 5, we discuss In-vehicle

CAN Bus attacks, also detail the development of NAIST CAN attack datasets.

In Chapter 6, we present our proposed LSTM-based IDS regarding In-vehicle

CAN Bus attack detection. Chapter 7 presents our 1D CNN-based IDS regard-

ing In-vehicle CAN Bus attack detection. In Chapter 8, we discuss the future

works. Chapter 9 concludes the dissertation.

8

2. Preliminaries

This chapter discusses an overview of the CAN bus network and how it works

inside the modern car. We further discuss the several kinds of critical Computer

& In-vehicle network attacks and attack surfaces and briefly discuss the external

communication interfaces for the summary of how to inject attack against the

modern car.

2.1 Computer Network Attacks

There exist several types of network attacks of which intrusion, Brute Force and

denial of service (DoS, including distributed DoS (DDoS)) attacks are the most

prominent.

SSH and FTP brute-force Attack. One of the oldest hacking techniques

is the brute-force attack on several services in computer networks such as SSH

and FTP. A Brute Force attack can be easily automated, with just minimum

attacking knowledge and intervention, attackers can launch brute-force attacks.

Several intelligent brute-force attack tools are available: Hydra, Aircrack-ng, John

the Ripper, Rainbow Crack, etc. Hydra is one of the most popular brute-force

attacking tools, it is available by default in Kali Linux. In a dictionary attack, the

attacker uses a word list that contains users’ commonly used passwords. Brute

Force attacks can be detected at the host and network levels. Researchers have

mostly focused on the host-based system to detect Brute Force attacks. For the

host-based system, access logs need to be analyzed to detect, for instance, the

number of failed login attempts [69]. The network traffic needs to be analyzed

to detect network-based Brute Force attacks [51, 70]. We can detect brute-force

attacks through an intrusion detection system by using NetFlow data analysis.

DoS/DDoS. DoS and DDoS are arguably the most prominent attacks on

computer networks and e-services [29]. DoS/DDoS disrupt the availability of the

systems; consequently, they affect the CIA triad. There are mainly two types of

DoS/DDoS attacks: high-volume and low-volume. The former is noticeable due

to the amount of traffic that is sent to a target network. The latter behaves like

a legitimate traffic; thus, making it less noticeable. The variations of low-volume

DoS/DDoS attacks are low-rate, slow-rate, and one-shot attacks [21]. For many

9

decades, academia and the industry have tried to find solutions for DoS/DDoS

attacks without much success. However, the recent advancements in machine

learning and deep learning have resuscitated the hope that we can find solutions

to counter the ever-sophisticated DoS/DDoS attacks in particular, and network

attacks in general. There are already trailblazing works in academia [77, 6], and

deep learning approaches have particularly been successfully applied to many

application domains.

2.2 Controller Area Network (CAN) bus

The modern car has gone through numerous transformations to become more

efficient, reliable and secure. The Controller Area Network (CAN) bus protocol

is one the most important transformations introduced to the car industry. Devel-

oped by Robert Bosch in the 1980s, the CAN is an International Standardization

Organization (ISO) defined serial communication bus that is in charge of the flow

of information between the Electronic Control Units (ECUs) of a car. In simpler

words, the CAN bus coordinates the movements between the engine, the brakes,

the steering wheel, etc., i.e., it makes the modern car connected. The CAN proto-

col was initially engineered for industrial machinery, however it has been adopted

for vehicular network communications.

The modern car is comprised of about 50 to 100 ECUs, some of which are

connected through the CAN bus. The CAN bus protocol is effective for vehicular

network systems because of its low cost and centralized system. The ECUs com-

municate with messages by using the CAN protocol. Each ECU receives messages

with unique CAN bus IDs which are used for intra-interactions.

In in-vehicle communication systems, messages are transferred to the vehicle

system managed by the CAN bus protocol. Hundreds of sensor data communicate

to send messages to the CAN bus system. An ECU can share control data with

an outside element of the vehicle through a network system.

Fig. 1 shows the 11 bit mode CAN message format. A standard CAN frame

consists of several fields which are Start of Frame (SOF), Arbitration Field (CAN

ID), Control Field, Data Field (payload), CRC Field, Acknowledge Field (ACK),

and End of Frame (EOF).

10

Figure 1. CAN message format in 11bit mode with DLC=8. There are no security

features implemented in this protocol.

• Start of Frame. The Start of Frame bit is used to synchronize and notify

all nodes regarding the start of the CAN messages transmission.

• CAN ID (Arbitration Field). CAN ID is used for an identification

number to which ECU the message should be received. The size is 11 bits.

The priority of the message is established by this field, in general, a lower

value indicates a higher priority.

• DLC Field. Data Lenght Code (DLC) is a part of the control field, which

indicates the byte length of the Data Field. It ranges between 0 to 8.

• Data Field (Payload). It contains the application payload data, which

is interpreted by the received ECUs.

• CRC Field. It is used to detect the error regarding the message transmis-

sion. CRC field size is 16 bits and it contains the CRC sequence from the

SOF to the Data Field.

• Acknowledge Field. This filed is used to get the confirmation from the

receiver node regarding the proper reception of the CAN message. In case of

transmission error detection, the sender can send the CAN message again.

• End of Frame. This field indicates the end of the CAN message.

Fig. 2 shows few components of modern automotive systems, which consists

of many advanced technologies such as OBD-II, Telematics Unit, In-vehicle Info-

tainment (IVI), etc.

11

2.3 Communication Interfaces

An attacker can compromise the In-vehicle CAN bus ECUs by using the Exter-

nal Communication Interfaces such as Telematics Unit, In-vehicle Infotainment

(IVI), and On-Board Diagnostics (OBD-II). An attacker tries to inject malicious

packets by using the interfaces, as mentioned above. Modern cars are transform-

ing rapidly thanks to the integration of numerous advanced electronic pieces of

equipment. Modern cars are connected to the outside world through the afore-

mentioned external communication interfaces [53]. Figure 2 shows the external

communication interfaces and a few of the advanced technologies integrated with

modern automotive systems. The interfaces mentioned above are indispensable

to the modern car’s advancement; however, they increase the attack surfaces

to compromise the connected car. In this research, we thoroughly investigated

how an attacker can compromise the modern car using external communication

interfaces.

Figure 2. Few Components of Automotive Systems.

12

2.3.1 On-Board Diagnostics (OBD-II)

On-Board Diagnostics (OBD-II) is one of the most typical physical diagnostic

interfaces into the modern car, which is majorly used to extract in-vehicle data

concerning vehicle inspection or maintenance. OBD was introduced in the early

80s and broadly employed for the computer-controlled on-board vehicle. OBD-II

has developed to modernize the on-board diagnostic features to overwhelm the

earlier developed OBD limitations [72]. We can monitor all the ECUs connected

to the CAN bus system through the OBD-II port.

In this research, we use the OBD-II port of a real-car to extract data to

develop the CAN bus attack dataset. Details regarding how we extract data

using OBD-II and develop the attack datasets presented in Chapter 5.

2.3.2 Telematics Unit

The modern vehicle is transforming so rapidly, and numerous electro-mechanical

pieces of equipment are embedded into the vehicle system. Telematics units are

employed to send/receive data in various advanced computing systems through

wireless networks such as the advanced driver assistance system (ADAS), Vehicle

Tracking, Vehicle-to-vehicle communication, vehicle navigation, etc. [50].

2.3.3 In-vehicle Infotainment (IVI)

Modern cars are integrated with numerous advanced electro-mechanical pieces of

equipment to modernize the connected car, users’ entertainment, and safe driving.

In-vehicle Infotainment (IVI) is an integrated system to provide information and

entertainment for users. IVI can be accessed and make a connection with the

external networks through Bluetooth, Wi-Fi, GPS. Diverse advanced automotive

instruments are connected with the IVI systems such as V2X, ADAS, Sensors,

etc., concerning safe driving and improvement, the user’s comfort [50, 57].

13

2.4 Performance Evaluation Matrix for Machine Learning

Model

Performance measurement is an essential aspect in machine learning. We evaluate

the network attack detection performance by using the Area Under The Curve

(AUC)-Receiver Operating Characteristics (ROC) curves, and F1 scores [3].

The F1 score is an essential factor for measuring machine learning perfor-

mance evaluation when the datasets are imbalanced. In the case of an imbal-

anced dataset, we cannot evaluate the performance by detecting the accuracy

only. Similar to AUC-ROC, the model is strong if the F1 score is close to 1.0.

The F1 score is the weighted average results of precision and recall. We also con-

sider the False Positive Rate (FPR) and False Negative Rate (FNR) regarding

the measure of effectiveness of the detection systems.

FPR =
FP

FP + TN
(1)

FNR =
FN

FN + TP
(2)

Accuracy (Equation 10) is the number of correctly classified attack instances

against the total observations [33].

Accuracy =
TP + TN

TP + FN + FP + TN
(3)

Where: TP = True Positive; FP = False Positive; TN = True Negative; FN

= False Negative.

Recall (Equation 12) is the ratio of correctly predicted positive observations

of all the observations in the actual class.

Recall =
TP

TP + FN
(4)

The F1 score (Equation 13) is calculated based on the precision and recall

[61, 73].

F1− Score =
2 ∗ (Recall ∗ Precision)

Recall + Precision
(5)

14

2.5 Chapter Summary

This chapter discusses the preliminaries of several kinds of critical network at-

tacks. This chapter also discusses the automotive communication interfaces and

a few advanced technologies/equipment regarding the modern car related to our

research. We provide an overview of a few advanced pieces of automotive sys-

tems equipment and how an attacker can compromise automotive systems using

external communication interfaces.

15

3. Studies on LSTM-based Intrusion Detection

System

3.1 Introduction

Network traffic anomaly detection is of critical importance in cybersecurity due to

the massive and rapid growth of sophisticated computer network attacks. Indeed,

the more new Internet-related technologies are created, the more elaborate the at-

tacks become. Among all the contemporary high-level attacks, dictionary-based

brute-force attacks (BFA) present one of the most unsurmountable challenges.

There are numerous security measures – firewalls, antivirus, intrusion detection

systems (IDS) [9, 16, 20, 54, 60, 68] – that have been elaborated throughout the

years to detect and protect entire network systems. The IDS provides vital con-

tributions thanks to its early alarm system against the network attacks. Afore-

mentioned, attacks can significantly disrupt the cyber-physical systems (CPS)

network systems. For instance, CPS are connected by means of the Internet of

Things (IoT) devices; hence, they are susceptible to brute-force attacks which are

prominent in IoT. We need to develop effective methods to detect and mitigate

such brute-force attacks in real-time.

Throughout the years, academia and the industry have worked together to

develop the different genre of IDS based on the functionalities and requirements:

signature-, and anomaly-based [39, 71]. Malicious activities can be monitored

in the network with effective and high performing intrusion detection systems

(IDS). Deep packet inspection (DPI)-based traditional IDS encounter difficulties

to be implemented in encrypted and high-speed networks. In contrast, network

flow-based IDS are effective in the aforementioned settings. Indeed, flow-based

IDS rely on network flow data instead of the payload information of the packets.

Brute-force attacks (BFA) [69] on SSH and FTP can be detected by a host

and network-based approaches. In case of host-based detection, we need to install

the software at the individual host; wherein network-based detection, which we

contemplate in this research, we can identify malicious activities such as BFA

by just monitoring the network. An effective and high performing method is

imperative to detect dictionary-based SSH and FTP brute-force attacks at the

16

network level. Because of the vast amount of data communications, most of

them being, it is obligatory to properly analyze the network traffic flow data to

distinguish malicious activities.

In this chapter, we focus on network-level brute-force attack detection on

the SSH and FTP protocols by applying and analyzing the LSTM deep learning

algorithm on network flow data. We also compare the effectiveness LSTM and

Multilayer Perceptron (MLP) feedforward artificial neural network models.

3.2 Related Work

There are numerous academic papers where researchers propose solutions to mit-

igate BFA attacks. Despite the big number of academic outputs, BFA are still

prevalent and, particularly, there is not yet an efficient method for thwarting SSH

and FTP attacks. Nevertheless, in the following, we summarize some of the best

work on the aforementioned attacks to provide an overview of the importance of

our work.

In paper [70], the authors investigated the SSH dictionary attack pattern

by analyzing the NetFlow data under the decision tree model. They evaluated

their proposal in a high-speed university network. Stiawan et al. explored a

time-sensitive statistical relationship approach and visualization of the brute-

force attack patterns in an IoT network environment. [64]. They successfully

detected the brute-force attack. Najafabadi et al. experimented with SSH brute-

force attack detection at the network-level by using NetFlow data analysis [51].

They generated a labeled attack dataset for attack detection by using machine

learning approaches, which have proven to be successful in detecting brute-force

attacks. In paper [10], the authors analyzed the network intrusion detection

system by leveraging LSTM. They used the CIDDS-001 dataset and they achieved

an accuracy score of 0.85. Kim et al. delved into a neural network classifier for

intrusion detection by using LSTM along with the KDDCUP99 dataset [37]. They

compared the results of the LSTM approach with machine learning algorithms

results, and the former outperformed the latter. In paper [31], the authors studied

distributed SSH brute-force attacks and investigated an eight-year dataset of

thousands of SSH users. They demonstrated that some of the individual attack

detection methods are somewhat difficult to implement. Satoh et al. [56] analyzed

17

Table 1. CICIDS2017 - Benign and Attack Instances

Dataset Attack Number of Instances

Benign 432074

Tuesday FTP-Patator 7938

SSH-Patator 5897

Benign 168186

Web Attack-brute-force 1507

Thursday Web Attack-XSS 652

Web Attack-SQL Injection 21

flow analysis-based SSH dictionary attack detection, and they afterward proposed

a method developed by two novel elements. In paper [26], the authors studied SSH

intrusion detection. They concluded that it is difficult to detect the attack at a

high-speed network with the conventional approach of Deep Packet Inspection. In

paper [18], authors considered protocol-independent dictionary attacks detection.

In the research we surveyed, researchers studied brute-force attacks detection

by using different methodologies. We use LSTM and NetFlow data analysis to

detect FTP and SSH brute-force attacks.

3.3 CICIDS2017 Dataset

In this research, we consider the CICIDS2017 [59] dataset to detect the SSH

and FTP brute-force attacks. The CICIDS2017 dataset consists of several kinds

of network attacks; the dataset contains five days of attack dataset; each day

consists of different types of network attacks. We consider the Tuesday and

Thursday dataset, which consists of brute-force attacks. We discussed the SSH

and FTP brute-force attack scenarios in Section 2.1.

3.3.1 Dataset CICIDS2017 (Tuesday)

CICIDS2017 [59] is a widely used dataset for attack detection. The dataset con-

tains common attacks and benign data. There are five days of attacks and normal

data in this dataset. The attack dataset was developed with the Patator brute-

18

Table 2. LSTM Parameter Values

Parameters Value

Activation Function Input tanh

Output Layer 4

Epoch 200

Activation Function Output softmax

Optimizer RMSprop

Dropout 0.1

Batch Size 512

Loss Function categorical crossentropy

Encoder Label Encoder

force tool, in a controlled environment which allowed to include the most up to

date attacks. Our aim is to investigate SSH and FTP related brute-force attacks.

We consider the Tuesday, July 4, 2017 sub-dataset which contains benign, FTP,

and SSH brute-force labeled attacks. There are 79 features in the CSV file. Table

1 shows that the number of benign elements is higher than the number of attack

elements.

3.3.2 Dataset CICIDS2017 (Thursday)

We also consider another day (Thursday, July 6, 2017) of data in the CICIDS2017

dataset. There are three types of labeled attacks in this sub-dataset: web attack

brute-force (WABF), web attack XSS (WAXSS), and web attack SQL injection

(WASQL). The sub-dataset contains 79 features and is labeled as per attack

type. The PCAP data, with full packets payload, is also publicly available for

researchers. Table 1 describes the sub-dataset in details.

3.4 LSTM-based Brute-force Attack Detection

Long Short Term Memory networks (LSTMs) is a special kind of Recurrent Neural

Networks (RNN). LSTM was introduced by Hochreiter and Hochreiter in 1997

[27]. In this research, we experiment with a Stacked LSTM model [12, 13] with

four hidden layers and we apply multiclass classification. Table 2 provides the

19

LSTM parameter details which we use for our experiment. We use the four LSTM

stack layers on top of each other with arbitrary neuron settings: 512-256-128-32,

and the final output is a dense layer with softmax activation, which gets input

from the last layer output of the LSTM layer.

In this LSTM model experiment, we use the RMSprop optimizer with a learn-

ing rate of 0.0001, and we let the remaining parameters to their default values.

We employ categorical crossentropy as loss function because of the multiclass

classification. We split the dataset into training and testing sets wherein 80% of

the data is used for training and 20% is used for testing. The validation dataset

was specified to the fit() function.

We use python PyCharm IDE 2019.2.2 and Keras with TensorFlow as back-

end. All the experiments were carried out on Intel Core i7 CPU 2.20 GHz, 16 GB

RAM, Windows 10 (64-bit), NVIDIA GeForce GTX 1050. As per Table 2, we

apply categorical crossentropy as loss function, RMSprop optimizer and softmax

as an activation function output for SSH and FTP brute-force attack detection.

We use categorical crossentropy as loss function, RMSprop optimizer and softmax

as activation function outputs regarding the Wednesday dataset.

Due to the fact that benign class elements are high in the dataset, the de-

tection accuracy with the proposed deep learning classifiers is also high. So, we

considered individual attack detection by using precision, recall, and F1-score,

and we use area under the curve (AUC) and receiver operating characteristics

(ROC) curves to evaluate the performance. We investigate SSH and FTP brute-

force attack detection performance and the classifiers’ classification accuracy.

3.4.1 Applying LSTM to CICIDS2017 (Tuesday)

In the last decade (2010 - 2019), deep learning has been successfully applied in

many fields such as image recognition, data processing, voice recognition, etc.

Thus, it is only normal to think that deep learning can also be successfully lever-

aged for cyber attacks detection. The CICIDS2017 (Tuesday) dataset contains 79

features and labels composed of benign and attack elements. We split the dataset

as follows: 80% for training, and 20% for testing. As a reminder, the dataset con-

tains benign elements, FTP and SSH attacks and the number of benign instances

are higher than the number of FTP and SSH attack instances.

20

In this experiment, we use the RMSprop optimizer. We set the optimizer

learning rate to 0.0001 and we let the remaining parameter of the optimizers to

their default values. We use categorical crossentropy as loss function. We choose

200 epochs as the number of iterations. We set the validation data by using the

fit() function.

Figure 3. LSTM Confusion Matrix - FTP and SSH Attacks

We train the model with benign and attacks classes. The proposed model can

classify the attack classes with high accuracy and low false positive (FP) and false-

negative detection rates. Fig. 3 and Table 4 show the LSTM confusion matrix

(CM) for the Tuesday dataset and Table 5 provides the classification results for

both datasets. The CM demonstrates that our model effectively classified the

FTP and SSH brute-force attacks with low false positive and false negative rates,

which are 0.0039 and 0.0088, respectively. The accuracy of the LSTM model for

FTP and SSH brute-force attacks is 99.88%. In Table 3, the results of individual

attacks detection for FTP and SSH are respectively as follows: precision, 0.98 and

0.97; recall, 0.99 and 0.98; F1-score, 0.99 and 0.97. These results are additional

proofs that our LSTM model is effective in detecting FTP and SSH brute-force

attacks at the network level.

Table 4 describes the confusion matrix regarding FTP and SSH attacks detec-

tion based on the LSTM and MLP models. As per the confusion matrix, LSTM

21

Table 3. LSTM Classification Results - FTP and SSH Attacks

Precision Recall F1-Score Support

Benign 1.00 1.00 1.00 86343

FTP-Patator 0.98 0.99 0.99 1594

SSH-Patator 0.97 0.98 0.97 1192

Accuracy 1.00 89129

Macro avg 0.98 0.99 0.99 89129

Weighted avg 1.00 1.00 1.00 89129

Table 4. Confusion Matrix - FTP and SSH Attacks

Method Datasets Benign FTP SSH

Benign 86266 37 40

LSTM FTP 8 1585 1

SSH 24 0 1168

Benign 86007 85 251

MLP FTP 358 1234 2

SSH 19 1 1172

is effectively detecting the FTP and SSH brute-force attacks. The MLP model

has a lower attack detection rate than the LSTM model.

3.4.2 Applying LSTM to CICIDS2017 (Thursday)

In this section, we discuss the experiment results regarding the CICIDS2017

(Thursday) dataset. The dataset contains benign, web attack brute-force (WABF),

web attack XSS (WAXSS), and web attack SQL (WASQL) instances. We applied

our LSTM model and analyzed the performance of overall and individual attack

detection. Fig. 4 depicts the LSTM confusion matrix for the Thursday dataset.

Table 2 provides the parameters of the model. The accuracy of our LSTM model

is 98.86%. As per Table 6, the precision of the web attack-brute-force detection

is 0.94, the recall is 0.11, and the F1-score is 0.19.

22

Figure 4. LSTM Confusion Matrix - CICIDS2017 (Thursday)

Table 5. Classification Results LSTM vs MLP

Dataset Method Accuracy TPR TNR FPR FNR

Tuesday LSTM 99.88% 0.9912 0.9961 0.0039 0.0088

MLP 99.20% 0.8897 0.9380 0.0620 0.1103

Thursday LSTM 98.86% 0.2790 0.7708 0.2292 0.7210

MLP 98.81% 0.2762 0.7690 0.2310 0.7238

3.4.3 Discussion

From the evaluation results, we could see that LSTM achieves reasonable detec-

tion accuracy. However, this is simply because the benign instances are higher

than the instances of SSH and FTP attacks in the dataset. That is why we con-

sidered precision, recall, F1-score in the performance analysis. In the confusion

matrix analysis, we observed that overall weighted classifier accuracy, precision,

recall, and F1-score were high. F1-score needs to be higher when it comes to

implementing such kinds of models in real-time environments. Our proposed

LSTM-based IDS is effective in detecting the FTP and SSH brute-force attacks

at the network system. We observed that LSTM did not perform well for the de-

tection of web brute-force attacks, web attack XSS, and web attack SQL injection.

23

Table 6. LSTM Classification Results of CICIDS2017 (Thursday)

Precision Recall F1-Score Support

Benign 0.99 1.00 0.99 33627

WA-brute-force 0.94 0.11 0.19 286

WA-SQL 0.00 0.00 0.00 7

WA-XSS 1.00 0.02 0.03 127

Accuracy 0.99 34047

Macro avg 0.73 0.28 0.30 34047

Weighted avg 0.99 0.99 0.98 34047

MLP was also unable to achieve a reasonable detection rate.

Although Brute Force is one of the old and common attacks, it is still promi-

nent and critical for the network system. In this research, we consider a supervised

classification model and labeled dataset. In the future, we will consider develop-

ing our own attack dataset to evaluate the detailed attack pattern and behavior

of the network before and after the Brute Force attack injection. We will further

consider an unsupervised method to detect Brute Force attacks. Furthermore,

we will consider how to reduce false positive and negative rates.

3.5 Chapter Summary

In this chapter, we studied an LSTM-based IDS for SSH and FTP brute-force

attacks. We trained the model in a dataset containing benign and brute-force at-

tack class instances. Our model can predict anomalous network traffic behavior

and identify malicious activities in network systems. Our experimental results

demonstrated that the proposed LSTM model could classify the SSH and FTP

brute-force attacks with high accuracy of 99.88% while having low false positive

and false negative rates. We investigated SSH and FTP brute-force attack de-

tection with LSTM and MLP. We compared the performance of attack detection

among those methods. These results indicate that we need to develop more ro-

bust IDS in detecting critical network attacks and reducing the false positive and

false negative rates.

24

4. Optimization of Deep Learning Models by Hyper-

parameter Values Tuning

4.1 Introduction

Cybersecurity is the cornerstone of the Internet. It is a set of technologies, pro-

cesses, and operations, which has been designed to protect the computer systems’

confidentiality, integrity, and availability (CIA). Among all of its many compo-

nents, network traffic attack detection is known to be one the most critical as it

allows to prevent and/or detect potentially destructive attacks. Moreover, net-

work attacks have been around since the beginning of the Internet and they are

still relevant due to the numerous attempts of independent hackers, cybercrime

organizations and state-sponsored hacking squads to intrude into others computer

networks. Simultaneously, the rapid growth of the attacker’s skills and the pro-

liferation of intelligent hacking tools exacerbate the situation by increasing the

attack surface on computer networks. In response, firewalls, antivirus, intrusion

detection systems (IDS) [60, 9, 54, 36] have been devised to protect the computer

networks and systems. There exist several types of network attacks of which

intrusion and denial of service (DoS, including distributed DoS (DDoS)) attacks

are the most prominent [29]. We discuss the DoS and DDoS attacks in Section

2.1.

In this chapter, we leverage the artificial recurrent neural network architec-

ture Long Short-Term Memory (LSTM) to detect network-level attacks such as

slow-rate DoS, DDoS LOIT, BoT ARES, and port scan. Furthermore, our aim

is to optimize the model to improve the network attack detection rate, reduce

false positives by fine-tuning different LSTM hyper-parameters: optimizers, loss

functions, learning rates and activation functions, and by comparing their perfor-

mance. We evaluate the performance considering detection accuracy, F1 score,

and AUC-ROC curve area because the number of attack elements are lower than

the number of benign elements. We evaluate the performance of individual at-

tacks detection by using precision, recall, and F1-score. We use a multiclass

classification model for our experiment and we consider overall and individual at-

tack detection performance. We investigate the optimum hyper-parameter values

25

by fine-tuning LSTM parameters such as layers, optimizers, activation functions,

learning rates, loss functions, and by comparing the different performance.

4.2 Related Work

We can argue that network attack detection research is as old as the Internet;

thus, there are thousands of academic papers in this field. In this section, we

discuss network attack detection systems that use deep learning models.

In paper [9], the authors analyzed the network intrusion detection system

by using LSTM. They applied their methodology on the CIDDS-001 dataset and

achieved an accuracy score of 0.85. Le et al. investigated LSTM-based IDS by us-

ing the KDD CUP99 dataset [36]. They experimented and compared the model’s

performance with six optimizers. Their results show that the Nadam optimizer

provided the best performance. Jihyun et al. proposed neural network classi-

fiers for intrusion detection by leveraging LSTM-RNN in the KDDCUP99 dataset

[38]. They also compared their results with different machine learning algorithms.

LSTM-RNN achieved an accuracy score of 96.93. Gao et al. worked on an intru-

sion detection system that takes advantage of Deep Belief Network (DBN) [23].

They achieved an accuracy of 93.49% while working with the KDD CUP 1999

dataset. Alrawashdeh et al. used Restricted Boltzmann Machine (RBM) and

DBN to develop an intrusion detection system, which they applied to the KDD-

CUP’99 dataset for their experiment [8]. They achieved a detection rate of 97.9%.

Zahangir Alom et al. investigated another intrusion detection system based on

DBN [7]. They used the NSL-KDD dataset for their investigation. The proposed

model achieved a 97.5% accuracy score. Zhao et al. engineered a DBN and Prob-

abilistic Neural Network (PNN)-based intrusion detection system [80], and made

use of the KDDCUP’99 dataset. Their solution optimized DBN-PNN achieved

a detection rate of 93.25%. Radford et al. explored network traffic anomaly

detection based on LSTM model [52]. They used the CICIDS2017 dataset for

their experiment. In paper [77], the authors analyzed deep learning-based DDoS

attack detection, and they also compared their LSTM model’s performance with

the random forest (RF) machine learning classifier. They achieved an accuracy

score of 97.606% and 93.627% by LSTM and RF, respectively. Alkasassbeh et al.

delved into DDoS attack detection by using Multilayer Perceptron (MLP), Näıve

26

Bayes, and Random Forest; MLP achieved an accuracy score of 98.63% [6].

It is essential to have a recent dataset comprised of the most up-to-date attacks

in order to devise efficient and effective network attack detection systems. Most

of the researchers use rather old datasets to test their proposals, which does

not make sense and there is a growing concern in the community for not using

datasets that are contemporaneous to the proposed solution. Effective detection

accuracy rate, i.e., the reduction of the false positive alarm is the key factor for

real-time network attack detection systems. In deep learning models, to improve

the detection accuracy, it is important to select the best parameter values. In

this research, we employ the CICIDS2017 [59] dataset for our exploration and

we investigate several hyper-parameter value changes to find the best parameter

values for detecting network attacks.

4.3 Dataset CICIDS2017

4.3.1 Dataset CICIDS2017 (Wednesday)

We use the CICIDS2017 labeled dataset for our experiment. The CICIDS2017

dataset is widely used for network attack detection [59]. The most common

network attacks are available in the dataset. CICIDS2017 contains five days

of attacks and benign data. Our goal is to investigate DoS, DDoS, port scan

and BoT attacks. Hence, we consider the Wednesday, July 5, 2017 dataset,

which contains several kinds of DoS labeled attacks, including slow-rate DoS

attacks, SlowHTTPTest and Slowloris. In the Friday, July 7, 2017 data, they

produced separate attack datasets. The Morning dataset contains BoT ARES,

the Afternoon dataset is comprised of separate datasets of port scan and DDoS

attacks. We concatenate all three datasets of the Friday data into one and we

applied multiclass classification. We drop the NaN and Infinity values from the

dataset in our experiment.

4.3.2 Dataset CICIDS2017 (Friday)

The Friday dataset contains DDoS LOIT, BoT ARES, and port scan attacks, with

79 features. Table 7 provides the attack and benign instances, and the number of

instances in the Wednesday and Friday datasets. The Wednesday DoS dataset

27

Table 7. CICIDS2017 - Benign and Attack Instances

Dataset Attack Number of Instances

Benign 440031

DoS GoldenEye 10293

Wednesday DoS Hulk 231073

DoS SlowHTTPTest 5499

DoS Slowloris 5796

Heartbleed 11

Benign 414322

Friday BoT ARES 1966

DDoS LOIT 128027

port scan 158930

contains 692703 elements wherein DoS SlowHTTPTest, Slowloris and Heartbleed

are 5499, 5796, and 11 elements, respectively, which are lower compared to other

attack instances. Those attacks are challenging to detect effectively with high

accuracy. We concatenate all three datasets of the Friday data into one. There

are 703245 attack and benign instances wherein 1966 instances are BoT ARES,

128027 are DDoS and 158930 are port scan.

4.4 LSTM-based Network Attack Detection

In our experiment, we used python PyCharm IDE 2019.2.2 and Keras [2] with

TensorFlow as backend. All the experiments were performed on an Intel Core

i7 laptop, with a CPU of 2.20 GHz, a RAM of 16 GB, Windows 10 (64-bit) as

operating system, and NVIDIA GeForce GTX 1050. We applied categorical cross

entropy as loss function, the RMSprop optimizer was used with the default values

of the parameter and softmax was used as activation function output.

4.4.1 Applying the Long Short-Term Memory (LSTM) Model

We experiment with a Stacked LSTM model with five hidden layers and arbitrary

units settings: 512-512-256-128-64, and we apply multiclass classification. Table

28

8 provides the LSTM parameter details which we use for our experiment. We

use five LSTM stack layers on top of each other with arbitrary neuron settings.

The final result is a dense layer with softmax activation which gets input from

the last layer output, the LSTM layer.

We experiment with changes in the parameter values, the number of layers,

activation functions, learning rates and loss functions and we use single to six

layers (L1-L6) to evaluate the best performance for network attack detection.

We use the parameter values described in Table 8 and as per the experimental

result, LSTM layer 5 can classify most of the attack class elements with reasonable

detection accuracy- hence, we consider layer 5 (L5) for further experiments.

We experiment hyper-parameter values tuning in layer 5 with the parameters

described in Table 8, and with the following arbitrary units 512-512-256-128-64.

We discuss the details regarding the hyper-parameter values changing experiment

settings and results in Section V.

In this LSTM model experiment, we use RMSprop optimizer and compare

the performance with other optimizers. We set the learning rate to 0.0001, we

let the remaining parameters to their default values as per the settings of the

optimizer. We use categorical crossentropy as loss function. We split the dataset

into training and testing sets wherein 80% of the data was used for training and

the remaining 20% was used for testing. The validation dataset was specified to

the fit() function by the use of validation data. We compare the performance

by hyper-parameter tuning. We observed that Layer 5 provides high accuracy

and a reasonable detection rate regarding DoS SlowHTTPTest, Slowloris, and

Heartbleed attacks.

4.5 Experiment Results and Performance Evaluation

In the following section, we discuss the experimental results, the effectiveness

and performance of the model based on hyper-parameter values tuning. The

performance evaluation matrix is available in section 2.6.

29

Table 8. LSTM Model Hyper-parameter Values

Hyper-parameter name Value

Activation Function Input tanh

Epoch 300

Activation Function Output softmax

Optimizer RMSprop

Learning Rate 0.0001

Batch Size 512

Loss Function categorical crossentropy

Encoder Label Encoder

4.5.1 LSTM Layer-wise Attacks Classification - Experiment Results

We experiment with all the attacks by 1-6 LSTM layers. Table 8 shows the pa-

rameter values which we applied to our experiment; we compared the performance

among the different layers. As per Table 9 and Fig. 7, Layers 5 and 6 provide bet-

ter detection rate regarding individual DoS attacks detection; the precision, recall,

and F1 score are also high. Layers 5-6 can detect DoS Slowloris, SlowHTTPTest

and Heartbleed attacks with a reasonable score. L5 detection accuracy is 99.08%

wherein detection rate regarding DoS SlowHTTPTest, Slowloris, and Heartbleed

attacks are 0.88, 0.76 and 1.00, respectively. We observe that L5-L6 classified

the Heartbleed attack with a detection rate of 1.00. The Wednesday dataset

contains 692703 elements wherein only 11 elements are heartbleed attacks and

our classifier correctly classified the heartbleed attack with a 1.00 detection rate.

Fig. 5 depicts the LSTM L5 confusion matrix where we observe that Heartbleed

attacks are classified without false negative and false positive. Regarding DoS

Goldeneye, Hulk, Slowloris, SlowHTTPTest have some false positive and false

negative elements.

As per Table 10, we observe that L5-L6 provide the higher detection accuracy,

which are 99.54% and 99.49%, compare to L1-L4 layers. L5 DDoS LOIT and

port scan detection rate are 0.9960 and 0.9984, respectively. We observe that the

detection rate regarding BoT ARES is lower through L1-L6 layers.

We investigated with hyper-parameter tuning by using layer 5 and evaluated

30

the performance. We observed that RMSprop optimizer with a learning rate

of 0.0001 provides a better model performance in the training and testing sets.

Regarding DDoS LOIT, BoT ARES and port scan, L5 and L6 have approximately

similar detection accuracy, and they outperform the remaining layers. Fig. 6

depicts the LSTM L5 confusion matrix. The confusion matrix shows that our

model can reasonably detect most of the DDoS LOIT and port scan attacks with

low false positive and false negative rate wherein BoT false positive and false

negative rate are higher.

Figure 5. LSTM L5 Confusion Matrix - Wednesday Dataset

31

Figure 6. Layer 5 Confusion Matrix - Friday Dataset

Figure 7. Layer-wise Attacks Detection Rate - Wednesday Dataset

4.5.2 RMSprop Learning Rate wise LSTM Classification Results

Gradient descent is widely used, and it is one of the most popular optimizer

algorithms for optimizing the neural networks [55]. The learning rate is one of

the key factors regarding gradient descent and other optimizers as well [22]. The

32

Table 9. Layer-wise Attacks Classification Results - Wednesday Dataset
Layer Attack Acc Recall F1 FPR FNR

Benign 0.9848 0.9862 0.0216 0.0152

GEye 0.8800 0.9042 0.0010 0.1200

Hulk 0.9902 0.9823 0.0128 0.0098

L1 Slowhttp 98.11% 0.8097 0.8437 0.0009 0.1903

Slowloris 0.6914 0.7816 0.0007 0.3086

H.bleed 0.0000 0.0000 0.0000 1.0000

Average 0.7260 0.7497 0.0062 0.2740

Benign 0.9900 0.9919 0.0108 0.0100

GEye 0.9547 0.9623 0.0004 0.0453

Hulk 0.9973 0.9905 0.0081 0.0027

L2 Slowhttp 98.89% 0.8761 0.8784 0.0010 0.1239

Slowloris 0.7494 0.8373 0.0003 0.2506

H.bleed 0.5000 0.6667 0.0000 0.5000

Average 0.8446 0.8879 0.0034 0.1554

Benign 0.9904 0.9915 0.0130 0.0096

GEye 0.9597 0.9694 0.0003 0.0403

Hulk 0.9959 0.9897 0.0082 0.0041

L3 Slowhttp 98.87% 0.8372 0.8833 0.0005 0.1628

Slowloris 0.7796 0.8611 0.0003 0.2204

H.bleed 1.0000 1.0000 0.0000 0.0000

Average 0.9271 0.9492 0.0037 0.0729

Benign 0.9901 0.9914 0.0129 0.0099

GEye 0.9710 0.9729 0.0004 0.0290

Hulk 0.9977 0.9906 0.0082 0.0023

L4 Slowhttp 98.86% 0.8212 0.8637 0.0007 0.1788

Slowloris 0.7122 0.8224 0.0002 0.2878

H.bleed 0.7500 0.8571 0.0000 0.2500

Average 0.8737 0.9163 0.0037 0.1263

Benign 0.9928 0.9934 0.0106 0.0072

GEye 0.9759 0.9785 0.0003 0.0241

Hulk 0.9962 0.9926 0.0055 0.0038

L5 Slowhttp 99.08% 0.8805 0.8728 0.0011 0.1195

Slowloris 0.7589 0.8475 0.0003 0.2411

H.bleed 1.0000 1.0000 0.0000 0.0000

Average 0.9340 0.9475 0.0030 0.0660

Benign 0.9905 0.9889 0.0224 0.0095

GEye 0.9710 0.9751 0.0003 0.0290

Hulk 0.9844 0.9844 0.0077 0.0156

L6 Slowhttp 98.52% 0.8575 0.8679 0.0010 0.1425

Slowloris 0.7640 0.8545 0.0002 0.2360

H.bleed 1.0000 1.0000 0.0000 0.0000

Average 0.9279 0.9451 0.0053 0.0721

usage of a large value for the learning rate will cause radical changes to the values

of the weights and bias, i.e., we may overpass the global minima. It is difficult to

33

Table 10. Layer-wise Attacks Classification Results - Friday Dataset

Layer Attack Acc Recall F1 FPR FNR

Benign 0.9913 0.9908 0.0141 0.0087

BoT ARES 0.3128 0.4686 0.0001 0.6872

L1 DDoS LOIT 98.90% 0.9829 0.9789 0.0056 0.0171

port scan 0.9967 0.9972 0.0007 0.0033

Average 0.8209 0.8589 0.0051 0.1791

Benign 0.9958 0.9936 0.0124 0.0042

BoT ARES 0.3670 0.5284 0.0001 0.6330

L2 DDoS LOIT 99.24% 0.9844 0.9868 0.0024 0.0156

port scan 0.9981 0.9980 0.0006 0.0019

Average 0.8363 0.8767 0.0039 0.1637

Benign 0.9965 0.9950 0.0094 0.0035

BoT ARES 0.3695 0.5357 0.0000 0.6305

L3 DDoS LOIT 99.40% 0.9908 0.9901 0.0023 0.0092

port scan 0.9980 0.9985 0.0003 0.0020

Average 0.8387 0.8798 0.0030 0.1613

Benign 0.9956 0.9950 0.0080 0.0044

BoT ARES 0.3867 0.5558 0.0000 0.6133

L4 DDoS LOIT 99.41% 0.9937 0.9899 0.0031 0.0063

port scan 0.9981 0.9989 0.0001 0.0019

Average 0.8435 0.8849 0.0028 0.1565

Benign 0.9971 0.9961 0.0070 0.0029

BoT ARES 0.3793 0.5471 0.0000 0.6207

L5 DDoS LOIT 99.54% 0.9960 0.9940 0.0018 0.0040

port scan 0.9984 0.9987 0.0003 0.0016

Average 0.8427 0.8840 0.0023 0.1573

Benign 0.9971 0.9957 0.0080 0.0029

BoT ARES 0.4015 0.5621 0.0001 0.5985

L6 DDoS LOIT 99.49% 0.9932 0.9929 0.0017 0.0068

port scan 0.9984 0.9985 0.0004 0.0016

Average 0.8475 0.8873 0.0026 0.1525

34

converge to the global minima by using a large learning rate. We can reduce the

risk regarding overpassing the minima by using a lower learning rate instead of a

large learning rate. The limitation behind using the smaller learning rate is that

it will increase the time to converge; thus, the training period is longer [22].

The RMSprop optimizer was introduced by Geoff Hinton in the coursera lec-

ture class [67]. RMSprop optimizer’s default learning rate is 0.001. It is suggested

to use default parameter values of the RMSprop optimizer except for the learning

rate, we can freely tune the learning rate. We use the RMSprop optimizer for our

experiment to detect DoS, DDoS, BoT and port scan attacks. We evaluated the

performance with RMSprop optimizer and a learning rate of 0.0001. We showed

in Section 5.A that LSTM layer 5 provides a reasonable attack detection accuracy.

Hence, we investigate the performance of Layer 5 by changing the learning rate

of the optimizer and letting the remaining optimizers to their default settings.

Figs. 8 and 9 show the experimental results based on the different learning rates.

We observe that a 0.0001 learning rate provides the best detection accuracy, the

best recall and a better F1 score in addition to low FPR and FNR to individual

attacks detection when compared to other learning rates [17]. Our experiment

results show how the learning rate affects the accuracy. A small learning rate

provides high accuracy, it is the opposite for a large learning rate.

Figure 8. Learning Rate-wise Classification Results - Wednesday Dataset

35

Figure 9. Learning Rate-wise Classification Results - Friday Dataset

4.5.3 Optimizer-wise LSTM Classification Results

Gradient descent is one of the most commonly used optimization algorithms to

optimize the deep neural network model in terms of performance optimization and

in-general. Three different gradient descent models are available: batch gradient

descent, stochastic gradient descent, and mini-batch gradient descent. Based

on the amount of data in the dataset, to compute the gradient of the objective

function, we have to select the right gradient descent model [55].

For our investigation of network attack detection we use the RMSprop opti-

mizer with a learning rate of 0.0001 and we compare the results with LSTM Layer

5, the settings of the experiment are described in Table 8. A suitable optimizer

is essential to get a better detection accuracy that is why we conducted our ex-

periment with the other optimizers in their default settings. We ran experiment

with six optimizers: RMSprop, Adam, Adagrad, Adadelta, Adamax and Nadam.

Table 11 and Fig. 10 show that RMSprop and Adam provide high detection rate

of 0.9340 and 0.9231, respectively for the Wednesday dataset and RMSprop and

Adamax provide detection rate of 0.8427 and 0.8448, respectively for the Friday

dataset. We observe that Adadelta and Adagrad provide the lowest detection rate

regarding the attacks elements classification wherein RMSprop is a suitable opti-

mizer for network attack detection, it performs well compared to other optimizers

[19, 78, 40].

36

Table 11. Optimizer-wise Classification Results

Optimizer DS Acc P R F1 AUC

RMSprop 99.08% 0.9648 0.9340 0.9475 1.00

Adam 98.54% 0.9544 0.9231 0.9362 1.00

Adagrad W.day 63.76% 0.1063 0.1667 0.1298 0.71

Adadelta 63.76% 0.1063 0.1667 0.1298 0.71

Adamax 98.96% 0.9627 0.7953 0.8400 1.00

Nadam 98.00% 0.9189 0.9206 0.9154 1.00

RMSprop 99.54% 0.9917 0.8427 0.8840 1.00

Adam 98.69% 0.9854 0.8215 0.8575 1.00

Adagrad Friday 66.05% 0.3913 0.3527 0.3385 0.82

Adadelta 58.99% 0.1475 0.2500 0.1855 0.81

Adamax 99.52% 0.9889 0.8448 0.8859 1.00

Nadam 98.98% 0.9894 0.8401 0.8798 1.00

DS-Dataset, Acc - Accuracy, P - Precision, R -Recall.

Figure 10. Optimizer-wise Attacks Detection Rate - Wednesday Dataset

4.5.4 Activation Function-wise LSTM Classification Results

We use the tanh as an input activation function and softmax as an output acti-

vation function for attacks detection with the LSTM model’s parameter settings

37

detailed in Table 8. We investigated LSTM layer 5 by only changing the input ac-

tivation function to relu and sigmoid, and the output activation function softmax

remained the same. Table 12 shows the activation functions experiment results.

As per the experiment results, tanh and sigmoid input activation functions pro-

vide the highest accuracy scores which are 99.08% and 98.92% for the Wednesday

dataset and 99.54% and 99.43% for the Friday dataset.

Table 12. Activation Function-wise Classification Results

Activation DS Acc P R F1 AUC

Function Score -ROC

tanh 99.08% 0.9648 0.9340 0.9475 1.00

relu W.day 95.02% 0.1588 0.3278 0.3223 0.65

sigmoid 98.92% 0.7995 0.7633 0.7803 1.00

tanh 99.54% 0.9917 0.8427 0.8840 1.00

relu Friday 99.10% 0.9891 0.8225 0.8628 1.00

sigmoid 99.43% 0.9729 0.8485 0.8871 1.00

4.5.5 Loss Function-wise LSTM Classification Results

To predict the result accurately and optimize the model and reduce the prediction

error, We have to select the appropriate loss function for the model. There are a

few factors to consider before choosing the appropriate loss function. We have to

choose the appropriate loss function based on the particular predictive modeling

problem, such as classification or regression [11].

Loss function is one of the key parameters which is essential to get a better

network attack detection accuracy. We investigated four loss functions: categori-

cal crossentropy, mean absolute error, mean squared error, kullback leibler divergence

with layer 5 settings. Table 13, we observed that categorical crossentropy loss

function performs well and provides high detection accuracy. As per our exper-

imental results we observed that categorical crossentropy provides a reasonable

detection accuracy and AUC-ROC score regarding DoS attacks detection and

both categorical crossentropy and kullback leibler divergence provide similar ac-

curacy regarding BoT, DDoS and port scan attacks detection. Table 13 provides

38

the comparison results wherein the kullback leibler divergence classification accu-

racy are 98.87% and 99.52% for the Wednesday and Friday datasets, respectively.

Table 13. Loss Function-wise Classification Results

Loss DS Acc P R F1 AUC

Function Score

categorical 99.08% 0.9648 0.9340 0.9475 1.00

crossentropy

MAE W.day 88.86% 0.3053 0.2946 0.2973 0.54

MSE 98.85% 0.8016 0.7605 0.7788 0.85

KL divergence 98.87% 0.8113 0.7539 0.7796 0.93

categorical 99.54% 0.9917 0.8427 0.8840 1.00

crossentropy

MAE Friday 94.64% 0.7213 0.6860 0.7004 0.89

MSE 99.18% 0.9743 0.8412 0.8793 1.00

KL divergence 99.52% 0.9970 0.8399 0.8825 1.00

Acc-Accuracy, DS - Dataset, Acc - Accuracy, P - Precision, R -Recall.

4.6 Discussion

We need an effective network attacks detection system with a high detection

accuracy to mitigate the network attacks and stabilize the computer networks

and e-services. Several kinds of DoS attacks, especially slow-rate DoS attacks

such as SlowHTTPTest, Slowloris, etc., are challenging to detect effectively. We

achieved a reasonable attack detection score by applying our LSTM deep learning

model. A publicly available labeled dataset is one of the key factors to evaluate

the performance regarding network attack detection systems. We investigated

the CICIDS2017 labeled dataset which contains several kinds of DoS attacks

including the slow-rate DoS attacks. We also examined DDoS LOIT, BoT ARES,

and Heartbleed attacks, and we achieved reasonable detection accuracy, precision,

recall and F1 score. However, BoT ARES detection precision was high but recall

and F1 score were low.

We carefully exploited hyper-parameter tuning. We show how the detection

39

accuracy varied by hyper-parameter value changes. As per our experimental

results, we provided detailed results and we found the best hyper-parameter values

for developing a robust intrusion detection system. Our experimental results

demonstrate how hyper-parameter values affect the accuracy. In gradient descent,

the learning rate is one of the essential factors, it is better to use a smaller

learning rate instead of large learning rate to achieve reasonable detection rate.

The experiment results demonstrated that deep learning models are effective for

network attack detection systems. Our model classified the network attacks with

high detection accuracy, precision, recall, F1 score, and AUC-ROC curves. The

experiment results proved that the LSTM model is effective in detecting the

network attacks.

4.7 Chapter Summary

In this chapter, we studied with a labeled public dataset using a supervised

method. Our proposed LSTM model can classify most of the critical attacks with

a reasonable detection rate. Furthermore, we investigated how to optimize the

deep learning model. Our hyper-parameter-wise experiment results demonstrate

that it is necessary to select the right hyper-parameter values to develop an

effective IDS. The results indicate, deep learning-based IDS can outperform in the

detection network attacks. Our investigation regarding network attack detection

with hyper-parameter changes is to provide better directions for developing robust

network attacks detection by employing deep learning models.

The experiment results revealed that the LSTM detection accuracy was high,

F1 score and AUC-ROC were also high, i.e., the proposed model is efficient for

network attack detection. LSTM can effectively classify most of the attacks but

we observe that, for BoT ARES detection, the precision, the recall, and the F1

score are low. Our model could detect the DoS GoldenEye, Hulk, and Heartbleed

with high precision, recall and F1 score wherein Slowloris and SlowHTTPTest

detection rates were 0.76 and 0.88 respectively. As per the hyper-parameter

values tuning experiment, we observed that the RMSprop optimizer provides

better classification results for multiclass classification problems. We compared

the performance for the layers 1 through 6, Layer 5 provided the best detection

accuracy with 99.08% regarding DoS/DDoS attacks detection, BoT ARES and

40

port scan detection accuracy was 99.54%. We noticed that tanh and sigmoid

input activation functions provided high detection accuracy compared to relu.

41

5. Develop NAIST CAN Attack Dataset

5.1 Attacks Used in the Model

We mainly experiment with three types of attacks in this research: DoS, Fuzzing,

and Spoofing.

5.1.1 Attack Types

Several CAN bus network attacks such as DoS, Fuzzing, and Spoofing are consid-

ered the most prominent attacks due to consideration of the damage capability.

The modern vehicle includes many ECUs that utilize to communicate with in-

ternal and external devices, which increase the attack surfaces. We explain a

summary of the DoS, Fuzing, and Spoofing attacks to provide an overview to

clarify and understand the attack pattern.

DoS Attack. Flooding is one of the critical threats regarding the CAN bus

network system and, thus, safe driving of the car. In case an attacker compromises

a car, they can easily inject flooding attacks into the CAN bus network which can

cause the interruption or disabling of the services in the ECUs of automobiles.

Regarding flooding attacks, attackers continuously send arbitrary messages with

high priority bits. Thus, high frequency and high priority CAN messages are

transmitted into the CAN bus network system, and the system is occupied by

these messages. As a result, the attacks interrupt the transmission of legitimate

messages into the CAN bus network system and disable some functions of the

ECUs.

Fuzzing Attack. Despite the absence of proper information on the CAN

messages, a malicious user can easily attack an in-vehicle network with a Fuzzing

attack. During a Fuzzing attack, an attacker injects random ID, DLC, and data

fields into the CAN bus, which mimic the legitimate traffic, in the CAN bus

system. The Fuzzing attack’s disruptions of the CAN bus system manifest as

follows: shaking of the steering wheel, signal lights turning on/off erratically,

the gear shift changing automatically, etc., [43]. Attackers aim to compromise

the ECUs by randomly injecting arbitrary messages. A vehicle controlled by an

attacker may be identified by comparing the original CAN ID to its actual CAN

ID.

42

Spoofing Attack. Regarding the Spoofing attack, an attacker injects the

modified CAN message considering a specific CAN ID. In case the CAN IDs of

the attackers are incorporated in the real system CAN ID, then the ECUs get

biased. Consequently, it is difficult to identify legitimate messages, the system

may start to malfunction.

5.2 Develop NAIST CAN Attack dataset

5.2.1 Dataset Generation - NAIST CAN attack dataset

We design three attack scenarios –DoS, Fuzzing, and Spoofing– by creating the

attack datasets based on the real car messages. Fig. 13 depicts an example of

the NAIST CAN attack dataset. The dataset features contain Timestamp, CAN

ID, DLC, Payload Data [D0-D7], and Label column. CAN ID is an identifier of

the CAN messages. DLC data bytes range from 0-8. The data field contains 64

bits in maximum, and we position each byte in specific columns such as D0-D7.

The label represents the original data or the attack data which are added for an

experiment.

5.2.2 Data Collection Setup and Process

In this experiment, we collect the CAN message from an actual Toyota hybrid

car. We capture the attack-free messages using a CAN analysis tool named

Vehicle Spy 3 [65] and the OBD-II interface for a duration of 120 seconds. In this

experiment, we develop two datasets. To reiterate, we collected the attack-free

data from a real car as a first dataset: Toyota and we obtained the second dataset

by injecting DoS, Fuzzing, Speed, and RPM Spoofing attacks. Fig. 11 and Fig.

12 depict the attack injection scenarios with the injections timing wherein the

vast amount of attack messages are injected into the CAN within a short amount

of time. Regarding the Spoofing attack, injected messages are lower in the same

period of the original traffic.

5.2.3 Attack Scenarios

CAN messages are broadcast in the in-vehicle network system; there are no ade-

quate security measures regarding the CAN messages. In fact, there are lackings

43

Figure 11. Attack scenarios assumed in this research. (a) DoS attack – an attacker

floods messages to the CAN bus. (b) Fuzzing attack – an attacker injects random

CAN messages for changing the IDs, payload length. (c) Spoofing attack – an

attacker generates fake messages that deceive the receiver’s ECUs.

Figure 12. Injection of Messages with Timing Regarding DoS, Fuzzing and Spoof-

ing attacks.

of authentication and encryption mechanisms into the CAN bus system. As a

result, it is easy for attackers to disrupt the CAN bus system’s confidentiality,

integrity, and availability. We consider three critical attacks: DoS, Fuzzing, and

Spoofing. The aforementioned attacks are considered critical because they can

render the CAN system useless. We develop two datasets in the experiment for

each scenario for comparison, one in which we collect data from a real car without

any attack data; we obtain the second dataset by injecting attacks.

With the existing algorithm we can develop a single attack at a time. Regard-

ing the DoS attack, we use 0.5 ms as the interval time. The DoS attack interval

time can be between 0.1 ms and 1.0 ms. The DoS attack interval time 0.5ms

44

Table 14. NAIST CAN Attack Dataset - Benign and Attack Instances

Type of Attacks Number of Instances

Benign 947931 (69.22%)

DoS 286502 (20.92%)

Fuzzing 114027 (8.33%)

Spoofing 21072 (1.54%)

produces less amount of DoS attack elements. We use the 1.0 ms interval time to

generate the Fuzzing attack; this interval time allows us to inject the maximum

amount of Fuzzing attack elements to make the CAN bus system malfunction.

We develop the Spoofing attack for a 5-second period and a 5-second duration to

produce a smaller amount of Spoofing attack classes (1.54%) compared to the be-

nign classes. We try to mimic real-life scenarios to analyze the imbalance impacts

in our experiments and evaluate the performance of the IDS.

DoS Attack

During a DoS attack, the CAN bus system is flooded with messages; thus,

the ECUs’ regular communications trigger an interruption and the CAN network

becomes unavailable to legitimate users. We develop the DoS attack dataset by

injecting a large number of messages with the CAN ID 00, DLC 8, data 00. In

our experiment, an attack typically starts from 20 seconds for a 10-second period

and the interval time is 0.5 ms and the attack duration is 5 seconds. Fig. 13(a)

depicts the example of the NAIST DoS attack dataset.

Fuzzing Attack

Regarding the Fuzzing attack, an attacker randomly injects a vast amount of

CAN messages with arbitrary data. We use random CAN IDs between 0x000

and 0x7FF with arbitrary lengths. The attack starts from 20 seconds and lasts

5 seconds before resuming after another 5 seconds, and so on and so forth, the

interval time is 1ms. Fig. 13(b) depicts the example of the NAIST Fuzzing attack

dataset.

Spoofing Attack We inject handle angel and vehicle speed Spoofing attacks

into the Spoofing attack dataset. We inject Spoofing for 10 seconds, for a 5-

second duration and 5-second rest(no attack), and the attack starts from 20

seconds. Regarding handle angle Spoofing, we use CAN ID 025, DLC 8, data

45

xx, yy, 00, 02, 5F, FE, 00, CS. The interval time is 12 ms. Regarding vehicle

speed spoofing, we use CAN ID 0B4, DLC = 8, data 00, 00, 00, CT, 11, xx, yy,

CS. Where xx and yy are spoofed values, CS is a checksum, and CT is a counter

value. We consider a 25 ms interval for speed Spoofing attack.

Figure 13. Examples of NAIST CAN Attack Dataset

46

5.3 Develop NAIST In-vehicle CAN attack dataset

5.3.1 Dataset Generation - NAIST In-vehicle CAN attack dataset

In Section 5.2, we develop a NAIST CAN attack dataset considering a single

model of car. We extended and developed the CAN Bus attack dataset for our

experiment, consisting of three different car models: Toyota, Subaru, and Suzuki,

consisting of DoS, Fuzzing and Spoofing (RPM and Gear) attacks. Fig. 16 depicts

an example of the NAIST In-vehicle CAN attack dataset.

Figure 14. Attack Scenarios

Figure 15. Injection of Messages

5.3.2 Data Collection Setup and Process

We captured the attack-free traffic from the aforementioned real cars with a pe-

riod of 120 seconds by using CAN analyzers such as the Vehicle Spy 3 Professional

and the OBD-II interface. For our experiment, we develop two datasets. To reit-

erate, we collected the attack-free data from three different models of real cars as

47

a first dataset: Toyota, Subaru, and Suzuki, and we obtained the second dataset

by injecting DoS, Fuzzing, RPM, and Gear Spoofing attacks. Fig. 14 and Fig.

15 depict the attack injection scenarios with the injections timing wherein the

vast amount of attack messages are injected into the CAN within a short amount

of time. Regarding the Spoofing attack, injected messages are lower in the same

period of the original traffic.

5.3.3 Attack Scenarios

CAN messages are broadcast in the in-vehicle network system with no adequate

security measures. Indeed, there are no authentication and encryption mecha-

nisms that are available for CAN messages in standard protocol. As a result, it is

easy for attackers to violate the confidentiality, integrity, and availability of the

CAN bus system. We consider three critical attacks: DoS, Fuzzing, and Spoofing.

Such kinds of attacks are considered crucial because they can render the CAN

system useless.

Regarding the DoS attack, the interval time is 0.3 ms. DoS attack interval

time can be between 0.1 ms and 1.0 ms. We developed a little slower – 0.3ms –

DoS attack to produce less amount of DoS attack elements. We developed the

fuzzing attack with a 1 ms interval. It will produce a vast amount of fuzzing

attacks and will induce malfunction to the CAN bus system. We developed the

spoofing attack for a 5-seconds period and a 2-seconds duration because it will

produce a smaller amount of attack classes (0.15% 0.40%) compared to the benign

classes. The dataset is obviously imbalanced. We try to mimic real life scenarios

where normal traffic dominates anomalous traffic in order to analyze how the

imbalance impacts our experiments.

DoS Attack. As per the CAN messages characteristics, those CAN messages

contain high priority bits that must be accepted first. During a Flooding attack,

flood messages contain high priority bits that are flooded into the CAN bus

system; thus, they can cause a malfunction to the entire ECUs communication

and an interruption of the CAN bus network system. The DoS dataset was

developed by injecting a large number of messages with the CAN ID 00, DLC 8

and data 00. In our scenario, the attack injection was for a 5-seconds period and

a 2-seconds duration, and the interval time was 0.5 ms.

48

Table 15. NAIST In-vehicle CAN attack Datasets - Benign and Attack Instances

Attack Toyota Subaru Suzuki

Benign 413752 (74.73%) 710524 (85.49%) 1240492 (94.43%)

DoS 112012 (20.23%) 93843 (11.29%) 61676 (4.70%)

Fuzzing 24537 (4.43%) 20782 (2.50%) 7205 (0.55%)

RPM 1740 (0.31%) 3333 (0.40%) 2222 (0.17%)

Gear 1600 (0.29%) 2666 (0.32%) 2000 (0.15%)

Fuzzing Attack. An attacker injects a large number of CAN messages using

arbitrary CAN IDs during fuzzing attacks. The randint function was used to

generate random numbers regarding the fuzzing attack. We use random CAN

IDs between 0x000 and 0x7FF, arbitrary lengths, and data for a 5-seconds period

and a 2-seconds duration, and the interval time was 1 ms. The attack started at

20 seconds.

Spoofing Injection Attack. We injected RPM and Gear spoofing attacks

into the spoofing attack dataset. We injected the spoofing attack for a 5-seconds

period and a 2-seconds duration, the injection started from 20 seconds. We

detail the spoofed data as follows, where xx and yy are spoofed values, and CS

is a checksum value. Regarding spoofing attack for the Toyota, we used CAN ID

1C4, DLC 8, data xx, yy, 00, 00, 00, 00, 00, CS as the RPM data with 23 ms

interval, and CAN ID 3BC, DLC = 8, data 00, xx, 00, 00, 00, 00, 00, 00 as the

Gear data with 100 ms interval. Regarding the spoofing attack for the Subaru,

we used CAN ID 141, DLC 8, data 00, 00, 00, 00, yy, xx, 02 as the RPM data

with 10 ms interval, and CAN ID 148, DLC = 8, data xx, 00, 00, 01, 00, 00, yy,

01 as the Gear data with 10 ms interval. For the spoofing attack of the Suzuki,

we used CAN ID 13F, DLC 8, data xx, yy, 00, 00, 00, 00, 00, 00 as the RPM

data with 20 ms interval, and CAN ID 381, DLC = 5, data 00, xx, 00, 00, 00 as

the Gear data with 100 ms interval.

49

Figure 16. Examples of NAIST In-vehicle CAN Attack Dataset

5.4 Chapter Summary

In this chapter, we discuss the attack scenarios and methodologies of our devel-

oped NAIST CAN attack datasets. We make use of DoS, Fuzzing, and Spoofing

(Speed, Handle angel, Gear, and RPM) attack scenarios for the dataset develop-

ment. We use the aforementioned datasets in our experiments in Chapters 6 &

7.

50

6. LSTM-based In-vehicle CAN bus Intrusion De-

tection System

6.1 Introduction

The Controller Area Network (CAN) bus protocol is one the most important

transformations introduced to the car industry. Developed by Robert Bosch in the

1980s, the CAN is an International Standardization Organization (ISO) defined

serial communication bus that is in charge of the flow of information between

the Electronic Control Units (ECUs) of a car. In simpler words, the CAN bus

coordinates the movements between the engine, the brakes, the steering wheel,

etc., i.e., it makes the modern car connected. The CAN protocol was initially

engineered for industrial machinery, however it has been adopted for vehicular

network communications.

The modern car is comprised of about 50 to 100 ECUs, some of which are

connected through the CAN bus. The CAN bus protocol is effective for vehicular

network systems because of its low cost and centralized system. The ECUs com-

municate with messages by using the CAN protocol. Each ECU receives messages

with unique CAN bus IDs which are used for intra-interactions. Fig. 1 shows the

11 bit mode CAN message format.

Despite its importance, the CAN bus network is designed without security fea-

tures, making it susceptible to confidentiality, integrity, and availability attacks.

In in-vehicle communication systems, messages are transferred to the vehicle sys-

tem managed by the CAN bus protocol. Hundreds of sensor data communicate

to send messages to the CAN bus system. An ECU can share control data with

an outside element of the vehicle through a network system. The later possibility

increases the attack surface of the CAN bus protocol [25, 58]. The main security

issues of the CAN bus arise because it broadcasts all the ECUs’ messages without

encryption nor authentication[48]. Consequently, ECUs are vulnerable to basic

hacking techniques; thus, attackers can easily take control of the car system and

cause great damage.

Koscher et al. [42] demonstrated that it is possible to compromise the CAN

bus system and ECUs by investigating wireless attacks into the vehicle system.

51

Figure 17. Typical Architecture of Intrusion Detection for CAN bus Network.

The IDS monitors the messages exchanged in the CAN bus and gives an alert if

it encounters suspicious activities.

They examined how CAN messages can be susceptible to Spoofing, and to what

extent the CAN bus protocol is vulnerable to Denial of Service (DoS) attacks.

There are two obvious solutions for thwarting the attacks on the CAN bus

system: introducing a backward-compatible authentication mechanism or devel-

oping an Intrusion Detection System (IDS). In this chapter, as an extension of

our previous work [28] where we developed a CAN attack dataset consisting of

DoS, Fuzzing and Spoofing, we opt for the second option. We propose Long

Short-term Memory (LSTM)-based IDS for detecting attacks in the CAN bus

system of a vehicle. In this extension, we obtain more fine-grained results and

we compare our method to the Survival Analysis method [25]. We provide more

details later in this section. LSTM is a powerful deep learning classifier that

was created to address the look-back-in-time issue of Recurrent Neural Networks

(RNN). We employ a deep learning algorithm because artificial intelligence (AI)

is the contemporaneous dominant technology with proven applications in various

fields such as image recognition, voice recognition, weather forecasting, market

analysis, etc., [49].

An IDS can play an essential role in regards to cyber-attack detection and

mitigation. A traditional IDS is unable to detect malfunction attacks on the

CAN bus; thus, it is challenging for it to distinguish unknown attacks. Based on

the requirements and functionalities, there are different types of IDS: signature-

52

based, anomaly-based, misuse-based, and hybrid [24, 44]. A signature-based IDS

is unable to detect unknown attacks, whereas an anomaly-based IDS is capable

of detecting unknown and malfunction attacks.

Fig. 17 shows the typical IDS architecture regarding in-vehicle network at-

tacks. By using an external connection such as an OBD-II diagnostics port, a

telematics unit, or in-vehicle infotainment (IVI), an attacker may inject an attack

into the real car. An IDS can be placed in-between the CAN bus and the external

connection. It will be responsible for filtering all the traffic into the CAN bus

system; the IDS will send an alert message when an attacker attempts to inject

malicious traffic.

In our setup, we collect raw CAN bus messages from a real car, and we inject

attacks to develop our own DoS, Fuzzing, and Spoofing datasets. We train our

LSTM model with benign and attack classes. The proposed model effectively

classifies benign and attack instances with a high detection accuracy of 99.995%

and with low false positive and false negative detection rates. We experiment with

both binary and multiclass classification models. We also investigate the CAN

bus attack detection performance by hyper-parameter values tuning. Based on

the systematic experimentation, we select the best hyperparameter values to de-

velop a robust IDS regarding the CAN bus attack detection. Our experiment

results provide better directions on how fine-tuned hyper-parameter values sig-

nificantly affect the detection accuracy and overall performance. We evaluate

our model’s performance based on F1 score, AUC-ROC curve, and false positive

and false negative rates. We also evaluate our method against the Survival Anal-

ysis Dataset for automobile IDS [25] which was developed by the Hacking and

Countermeasure Research Lab, Korea. The proposed model provides reasonable

detection accuracy and detection rates against the Survival Analysis Datasets

and the LSTM model achieves a higher detection rate compared to the Survival

Analysis method.

In this chapter, our major contributions are as follows:

• We develop CAN system attacks (DoS, Fuzzing, Spoofing) datasets by using

the CAN messages of a real car.

• To the best of our knowledge, we are the first to propose an effective LSTM-

based IDS for in-vehicle CAN bus systems to detect well-known network

53

attacks: DoS, Fuzzing and Spoofing.

• We provide an effective pre-processing method to develop an effective LSTM-

based supervised classification model regarding the CAN bus attack detec-

tion.

• We select the best hyper-parameter values to develop an effective CAN bus

IDS based on LSTM.

6.2 Related Works

In this section, we discuss the essence of the related work regarding network

anomaly detection of in-vehicle systems.

Koscher et al. are the first to demonstrate attack injection through wireless

communication in in-vehicle network systems during an investigation of the se-

curity of modern vehicles [42]. They employed the CARSHARK tool to debunk

numerous security vulnerabilities on the CAN bus, and they showed that the CAN

broadcasting characteristics, when applied to all nodes, makes it easy for an at-

tacker to intrude into the communication messages. Kleberger et al. investigated

the security threats and attacks of in-vehicle network systems, they afterwards

discussed the problems and solutions [41]. They also argued about IDS and ar-

chitectural security features. Loukas et al. [46] proposed a deep learning-based

Intrusion Detection System for the in-vehicle network systems by leveraging sev-

eral machine learning classifiers. They conducted their experiment by injecting

cloud-based attacks to a robotic vehicle. Their results show that LSTM is more

suitable for in-vehicle intrusion detection with an overall accuracy of 86.9%. Kim

et al. [58] proposed Generative Adversarial Networks (GAN)-based IDS (GIDS)

for in-vehicle networks. They studied four vehicular attacks: DoS, Fuzzy1, RPM,

and Gear. As per their experiment results for the second discriminator in GIDS,

they obtained attack detection rates of 99.60%, 99.50%, 99.00%, and 96.50%,

respectively. Han et al. proposed a survival analysis method regarding intrusion

detection for vehicular networks [25]. They extracted attack data from a real car,

and they also injected attacks to generate: Flooding, Fuzzy, and Malfunction

1We use “Fuzzy attack” to keep the same vocabulary as in the related work, but we consider

“Fuzzy attack” and “Fuzzing attack” to be the same in this chapter.

54

attack datasets. Kang et al. [34] devised an unsupervised deep belief network

(DBN)-based IDS for the CAN BUS. They produced attack datasets by using

a packet generator named Open Car Test-bed and Network Experiments (OC-

TANE). In paper [24], the authors studied several kinds of attacks against the

connected cars and provided an overview of Artificial Neural Networks (ANN)-

based IDS to mitigate cyber attacks on modern vehicle systems. The researchers

in [32] used different machine learning algorithms to classify CAN bus messages.

Their results show that the k-nearest neighbor (k-NN) algorithm performed bet-

ter with an accuracy of 86.00%. Song et al. [62] proposed an IDS for in-vehicle

networks based on a time interval analysis (TIA) of the CAN messages.

L. Hyunsang et al. [43] developed an IDS by analyzing the request-response

message in the CAN bus, based on an offset ratio and time interval analysis.

Khan et al. [35] Khan et al. investigated SDN-based false data injection into

the brake-related ECUs. They developed false information attack dataset and

applied LSTM to detect the attack, and they achieved a detection rate of 87%.

Woo et al. [75] developed an in-vehicle CAN security protocol and analyzed

the wireless attacks on the connected car. They discussed the connected car

environment, several kinds of attack models, and security requirements. Taylor

et al. [66] engineered an IDS based on the LSTM model. Their proposal relies

on the prediction of the next data of the CAN bus network, while acknowledging

that the data originates from the senders.

6.3 Attacks Used in the Model

We mainly experiment with three types of attacks in this chapter: DoS, Fuzzing,

and Spoofing. Table 14 shows the NAIST CAN attack dataset details which

we consider for further experimentation. The attack mentioned above, attack

scenarios, and the dataset creation details are available in Section 5.1 and 5.2.

We also study with the Survival Analysis dataset [25], dataset details available

in section 7.3.1.

55

Table 16. Survival Analysis Dataset for automobile IDS - Benign and Attack

Instances

Type of Attacks Sonata Soul Spark

Benign 468527 717489 366510

Flooding 32422 33141 22587

Fuzzy 18118 39812 5812

Malfunction 15974 7401 8047

6.3.1 Survival Analysis Dataset for automobile IDS - Benign and At-

tack Instances

Regarding the Survival Analysis datasets multiclass classification, we concatenate

all the three attack classes for each car model. After concatenation, we observe

from Table 16 that Sonata contains 468527 benign elements and Flooding, Fuzzy

and Malfunction (Malf.) elements are 32422, 18118 and 15974, respectively. The

Soul car’s benign elements are 717489, whereas its Flooding, Fuzzy and Mal-

function elements are 33141, 39812 and 7401, respectively. The Spark car model

has 366510 benign elements and 22587, 5812 and 8047 of Flooding, Fuzzy and

Malfunction elements, respectively. We observe that the number of benign class

elements is higher compared to the number of attack class elements. As per Table

16, 89.44% of the elements belong to the benign class, whereas we have 5.08%,

3.67% and 1.81% of Flooding, Fuzzy and Malfunction elements, respectively.

6.4 LSTM-based Network Intrusion Detection System

For our investigation, we use python PyCharm IDE 2019.2.2 and Keras [2] with

TensorFlow as backend. We conduct our experiment with Intel Core i7 CPU

2.20 GHz, 16 GB RAM, Windows 10 (64-bit), and NVIDIA GeForce GTX 1050.

We use the categorical cross entropy as loss function. The Nadam optimizer is

applied with a learning rate of 0.0001, the rest of the parameters conserve their

default values and softmax is used as an activation function output. Tables 17

and 18 provide the experimental settings regarding attacks detection based on

LSTM binary and multiclass classification models. We preprocessed raw CAN

dataset before inputting the model, we train the model by providing 80% of the

56

Figure 18. CAN bus Network System Defense Verification Platform. Consist of

Two modules: Attack Verification and Intrusion Detection System

elements and we test the classifier with 20% of the elements. After training, the

classifier can classify the attack and benign class elements. Fig. 21 schematizes

the deep neural network model wherein we can input the CAN bus data into the

input layer and, after preprocessing, the classifier will provide the output as a

benign or attack class.

Figure 18 depicts the architecture of the proposed defense verification platform

about in-vehicle CAN bus and ECUs. Two modules compose the architecture:

the attack verification platform and the Intrusion Detection System. As per the

attack verification platform, we extract raw CAN bus data from the real car.

We develop the attack datasets by making use of our attack creation algorithm.

As per the connection point, an attacker can compromise the CAN bus network

system by using the communication interfaces: Telematics unit, Car Navigation

System, Physical access to an OBD-II port. We place an IDS into the CAN bus

system, the IDS filter module filters all the malicious traffic into the CAN bus

message communication and provides an alert message in case of malicious traffic

injection.

57

6.4.1 Dataset Preprocessing

For our experiment, we use NAIST CAN attack labelled dataset to evaluate the

performance of our proposed LSTM model. We extract the attack-free dataset

from a Toyota Hybrid car and we develop attack datasets –DoS, Fuzzing and

Spoofing– by injecting attacks through a program written with the Python pro-

gramming language.

In Section 5.2, we discuss in detail about the NAIST CAN attack datasets.

We use the Vehicle Spy3 Professional tool to extract the raw data from a real car.

The NAIST CAN attack raw dataset only consists of the attack-free instances

extracted from the Toyota Hybrid car. For the attack dataset, we develop a

Python-based program for injecting attacks to generate DoS, Fuzzing, and Spoof-

ing datasets. The CAN bus raw dataset is in hexadecimal format shown in Fig.

13; we experiment with the attack dataset without decoding and converting hex-

adecimal to decimal as per machine learning requirement. In the CAN message

format, the classification label R represents the benign class message and T de-

notes the injected attack message. In our experiment, we switch the roles as

follows: R as benign and T as an attack class name. In our experiment, we

only took into account 10 features in the dataset –CAN ID, DLC, Data [D0-D7]–

and the Label column. CAN ID is an identifier of the CAN messages. DLC data

bytes is between 0-8. The data field contains 64 bits, and we position each byte in

specific columns such as D0-D7. Since we did not consider time interval analysis

to detect the intrusion, we did not analyze the timestamp field.

We concatenate three attack datasets and apply the multiclass classification.

From Table 14, the number of benign instances is 947931 (69.22%), DoS instances,

286502 (20.92%), Fuzzing instances, 114027 (8.33%), and Spoofing instances,

21072 (1.54%). We observe that the number of benign instances is higher than

the number of attack instances. CAN ID data fields range from 1-8 bytes. As

per machine learning requirement, we fill up the CAN bus data fields with blank

values by -1, which helps to keep the integrity of the datasets intact. We use 10

features that we label as benign, DoS, Fuzzing, and Spoofing attacks. We use

80% of the data for training, and the remaining 20% of the data is used for the

testing set. There are 1095625 instances in the training set and 273907 instances

in the testing set.

58

Figure 19. Basic RNN Architecture

Figure 20. LSTM Cell Architecture

6.4.2 Application of the Long Short-Term Memory (LSTM) Model

LSTM is a special kind of recurrent neural networks. It was introduced by Hochre-

iter and Schmidhuber in 1997 [27]. We contend that LSTM is suitable for this

research because the LSTM performs well regarding Time Series data and Se-

quence Classification.

As per the recurrent neural network (RNN) architecture (Fig. 19), we can pro-

cess a sequence of data x1, ...xn by applying RNN and it will produce a sequence

of outputs y1, ...yi.

ht = fW (ht−1, xt) (6)

ht = New state

59

Figure 21. LSTM IDS Architecture Regarding the Attack Classification

fW = Function with parameter W

ht−1 = old state

xt = Input vector at time step t

By applying the recurrence equation, Equation 1, at every time step, we can

process a sequence of vectors x1, ...xn. The same function and set of parameters

fW (ht−1, xt) are used in every time step t with the input xt and the old state ht−1

and, we get as output ht, new state.

The standard recurrent sigma cell’s mathematical expressions are as follows:

ht = σ(Whht−1 +Wxxt + b) (7)

yt = ht (8)

Where xt represents the input, ht the recurrent information, and yt the output

of the cell at time t, Wh and Wx are the weights and b is the bias.

However, standard recurrent cells of the recurrent networks are incompetent

to handle long-term dependencies; since the gap between the associated inputs

grows, it is complicated to learn the connection information. Hochreiter and

Schmidhuber (1997) proposed the LSTM cell to overcome the “long-term depen-

dencies” problem. They introduced the “gate” into the cell; thus, it facilitates

60

the standard recurrent cell to retain memory. Generally, the LSTM cell signifies

LSTM with a forget gate [76].

Three gates are available in LSTM and they are responsible for the cell state

protection and control [1]. Figure 20 depicts the LSTM cell architecture consisting

of the input vector xt, hidden input vector ht−1 and output vector ht.

it = σ(Wi.[ht−1, xt] + bi) (9)

ft = σ(Wf .[ht−1, xt] + bf) (10)

C̄t = tanh(Wc.[ht−1, xt] + bc) (11)

Ct = ft ∗ Ct−1 + it ∗ C̄t (12)

ot = σ(Wo[ht−1, xt] + bo) (13)

ht = ot ∗ tanh(Ct) (14)

Wf , Wi and Wc are weights, and bf , bi and bc are bias. The sigmoid layer

makes the decision, it is called the “forget gate layer” and it outputs between 0

and 1.

Ct is the new cell state, it is obtained from the old cell state Ct−1 and is

regulated by the input it and forget ft gates.

We employ the LSTM model for supervised binary and multiclass classifica-

tion. Regarding supervised learning, we have input variables (X) and an output

variables (Y). We use the LSTM model to learn the mapping function from the

input to the output: Y = f(X). The objective is to determine the mapping

accurately; hence, we can predict the output variables (Y) when we input the

new input data (X).

61

X =

X1

X2

X3

.

.

.

Xi

=

x11 x12 x13 ... x1n

x21 x22 x23 ... x2n

x31 x32 x33 ... x3n

.

.

.

xi1 xi2 xi3 ... xin

Y =

y1

y2

y3

.

.

.

yi

We give an input sequenceX = (X1, X2, X3, . . . , Xi) andXj = (xj1, xj2, xj3, . . . , xjn),

j ∈ [1, . . . , i], where xjz, z ∈ [1, . . . , n], is an element of the input variables (X),

and we obtain an output sequence Y = (y1, y2, y3, . . . , yi), where yq, q ∈ [1, . . . , i],

is an element of the output variables (Y). For each time step, the input Xj is each

row/CAN packet payloads of the corresponding CAN ID of the dataset. Each

row/CAN packet is an observation comprised of ten features as input variables

(X) and one output variable to be predicted (Y).

We have to reshape the input because the input shape for the LSTM model

must be three-dimensional (Samples, Time Steps, and Features). We use single

time steps and define a 3D array of the LSTM input layer regarding the fitting

of the model and when making the predictions.

We experiment with changing the different hyper-parameter values such as

optimizer, learning rate, units, activation function, etc. We select the best hyper-

parameter values based on the systematic experimentation for our experiment to

achieve the best detection accuracy.

62

We train our LSTM classifier with benign and CAN bus attack instances; 80%

of the dataset is used for training the classifier, and 20% is used for the testing. We

evaluate to which degree the classifier is capable of detecting the attack instances.

We conduct our experiment with a Vanilla LSTM model, and we also use the

Stacked LSTM model with single to five hidden layers and arbitrary unit settings:

512-512-256-128-64, and we apply binary and multiclass classifications. As per

Fig. 27(c), we observe that it is better to use bigger units –512-256– instead of

lower units to achieve the best detection accuracy with low variance. Fig. 27(a)

shows that 256-512 batch size provides better detection accuracy. Table 17 and

Table 18 describe the LSTM parameter details which we use for our experiment.

We use a single to five LSTM stacked layers on top of each other; the final result

is a dense layer with softmax activation, which gets input from the last layer

output, the LSTM layer.

Figure 22. Performance Evaluation based on the Batch Size, Learning Rate and

Number of LSTM Units

In this experiment, we use the Keras [2] API. Keras is written in Python;

hence, it is easy to use it along with Tensorflow. Table 17 provides the parameter

values that we use in our binary classification experiment. We select the best

hyper-parameters values by experimenting with hyper-parameter value changes.

We utilize the Adam optimizer with a learning rate of 0.0001. We employ the

binary crossentropy as the loss function and the sigmoid as an output activation

function. In the proposed multiclass LSTM model experiment, we use the Nadam

optimizer. We use the optimizer’s learning rate of 0.0001, and the remaining

63

Table 17. LSTM Parameters for Binary Classification

Parameters Value

Activation Function Input tanh

Epoch 200

Activation Function Output sigmoid

Optimizer Adam

Learning Rate 0.0001

Batch Size 512

Loss Function binary crossentropy

Encoder Label Encoder

Table 18. LSTM Parameters for Multiclass Classification

Parameters Value

Activation Function Input sigmoid

Epoch 200

Activation Function Output softmax

Optimizer Nadam

Learning Rate 0.0001

Batch Size 512

Loss Function categorical crossentropy

Encoder Label Encoder

parameters of the optimizer are used with their default values. In Fig. 27(b), we

see that 0.0001 provides the highest detection accuracy with the lowest variance.

The categorical crossentropy optimizer is used as loss function. We set the number

of iterations to 200 epochs.

We perform a validation through the fit() function by using validation data.

After training and testing, we calculate the accuracy and loss based on a number

of correctly classified instances. It is challenging to optimize the model loss and

achieve the best detection accuracy for the best hyper-parameter values selection.

Hyper-parameter values are strong indicators for gaining better accuracy and

detection rates when using a deep learning model. We have to find out the right

optimizer, activation function, learning rate, and loss functions to develop a useful

64

model and efficient design. Nadam and Adam are both appropriate optimizers

concerning large datasets and efficient models. We fine-tune the hyper-parameter

values such as layers, activation functions, learning rates, and loss functions.

We experiment with hype-parameter tuning by using layer 1 with 512 arbitrary

units. In Section 7.5, we discuss the details regarding how hyper-parameter values

change the experiment settings and results.

Table 19. Binary Classification Results - NAIST CAN Attack Dataset

Attack Acc TPR TNR FPR FNR AUC

DoS 100% 1.00 1.00 0.00 0.00 1.00

Fuzzing 99.98% 0.9993 1.00 0.00002 0.0007 1.00

Spoofing 100% 1.00 1.00 0.00 0.00 1.00

6.5 Experiment Results and Performance Evaluation

Performance measurement is an essential aspect in machine learning. We eval-

uate the CAN bus network attack detection performance by using the detection

accuracy, detection rate, Area Under The Curve (AUC)-Receiver Operating Char-

acteristics (ROC) curve, and F1 scores [3].

We use the AUC-ROC curve to perform visualizations for multiclass classifi-

cation at all the classification thresholds. We plot the True Positive Rate (TPR)

against the False Positive Rate (FPR) in the AUC-ROC curve wherein FPR and

TPR are on the x-axis and y-axis, respectively. A higher AUC-ROC is better

because it demonstrates the strength of the model. In other words, the model

is strong when AUC-ROC is close to 1.0, and the model is weak (worse model)

when AUC-ROC is close to 0.0. Based on the number of classes, we can plot

AUC-ROC curves for multiclass classification.

The F1 score is an essential factor for measuring machine learning perfor-

mance evaluation when the datasets are imbalanced. In the case of an imbal-

anced dataset, we cannot evaluate the performance by only detecting the accu-

racy (Acc). Similar to AUC-ROC, the model is strong if the F1 score is around

1.0, and the model is weak if the F1 score is close to 0.0. The F1 score is the

weighted average results of the precision and recall [61, 33].

65

We visualize the model’s performance by using the AUC-ROC multiclass curve

and also the class-specific multiclass curve. In the following section, we discuss

the experimental results and the effectiveness and performance of the model based

on hyper-parameter tuning.

We conduct our experiment with the binary classification parameter settings

depicted in Table 17. Table 19 shows the binary classification results, we observe

that DoS and Spoofing attacks are classified with 100% accuracy, and Fuzzing is

detected with a 99.98% accuracy. FPR is zero for the DoS and Spoofing attacks,

wherein few false positive and false negatives are available for the Fuzzing attack.

6.5.1 LSTM Layer(s) - Attacks Classification Experiment Results

There are two main hyper-parameters in Artificial Neural Networks which con-

trol the network’s topology: the number of layers and number of nodes in the

respective hidden layer. The most effective approach is to select the number of

layers and nodes for each hidden layer and other hyper-parameter values, we have

to proceed with systematic experimentation for the particular predictive models

[15].

To achieve an effective detection accuracy and detection rate, we have to select

and find out the LSTM layer’s number providing the best accuracy and detection

rates. We study a single to five LSTM layers based on the parameter settings in

Table 18, and we compare the performance among them. In Table 20, according

to our experiment results, Vanilla LSTM with a single hidden layer provides the

best detection accuracy wherein the FPR and FNR are lower. Table 20 shows the

layer-wise results wherein L1 provides the best detection accuracy, 99.995%, and

when we increase the layer size to L2-L5, we notice a decrease of the detection

accuracy and an increase of the false positive and false negative rates.

Fig. 24 shows the LSTM multiclass confusion matrix (CM). For the Nadam

optimizer, which we consider for this research, we observe that DoS and Spoofing

attacks are accurately classified (100%), but few false negatives (14 instances) are

available regarding the Fuzzing attack. Based on the CM and Table 21 (L1), we

detect DoS and Spoofing attacks more accurately without false positives and false

negatives wherein the FPR and the FNR are 0.00004 and 0.0002, respectively.

Still, some false negatives are available regarding Fuzzing attack detection. Our

66

Table 20. LSTM Layer(s) Multiclass Classification Results - NAIST CAN Attack

Dataset

Layer Attack Acc Recall F1 FPR FNR

Benign 1.0000 1.0000 0.0002 0.0000

DoS 1.0000 1.0000 0.0000 0.0000

L1 Fuzzing 99.995% 0.9994 0.9997 0.0000 0.0006

Spoofing 1.0000 1.0000 0.0000 0.0000

Avg 0.9998 0.9999 0.00004 0.0002

Benign 1.0000 0.9999 0.0004 0.0000

DoS 1.0000 1.0000 0.0000 0.0000

L2 Fuzzing 99.988% 0.9986 0.9993 0.0000 0.0014

Spoofing 1.0000 1.0000 0.0000 0.0000

Avg 0.9997 0.9998 0.0001 0.0003

Benign 1.0000 0.9998 0.0007 0.0000

DoS 1.0000 1.0000 0.0000 0.0000

L3 Fuzzing 99.978% 0.9974 0.9987 0.0000 0.0026

Spoof 1.0000 1.0000 0.0000 0.0000

Avg 0.9993 0.9996 0.0002 0.0007

Benign 1.0000 0.9999 0.0004 0.0000

DoS 1.0000 1.0000 0.0000 0.0000

L4 Fuzzing 99.987% 0.9985 0.9992 0.0000 0.0015

Spoofing 1.0000 1.0000 0.0000 0.0000

Avg 0.9996 0.9998 0.0001 0.0004

Benign 1.0000 0.9999 0.0003 0.0000

DoS 1.0000 1.0000 0.0000 0.0000

L5 Fuzzing 99.989% 0.9990 0.9993 0.00004 0.0010

Spoofing 1.0000 1.0000 0.0000 0.0000

Avg 0.9997 0.9998 0.0001 0.0003

model’s overall detection accuracy and the detection rate are adequate to classify

the CAN bus network attacks efficiently. We observe that L1 provides the best

detection rate regarding the Fuzzing attack detection wherein L2-L5 decrease the

67

Table 21. Layer(s) Multiclass Classification results - NAIST CAN Attack Dataset

Layer Accuracy TPR TNR FPR FNR

L1 99.995% 0.9998 1.0000 0.00004 0.0002

L2 99.988% 0.9997 0.9999 0.0001 0.0003

L3 99.978% 0.9993 0.9998 0.0002 0.0007

L4 99.987% 0.9996 0.9999 0.0001 0.0004

L5 99.989% 0.9997 0.9999 0.0001 0.0003

Figure 23. NAIST CAN Attack Dataset Classification Receiver Operating Char-

acteristics (ROC)

detection rate. That is why it is better to use L1 for CAN bus attack detection;

additionally, it requires less computation cost compared to L2-L5 layers. Fig.

23 depicts the ROC curve, and we observe that AUC is 1.0 for all the classes,

which indicates that all the instances are almost classified accurately, it demon-

strates that our proposed model is quite effective to classify the CAN bus network

attacks.

We assume that in case of using the 30% testing data set. The FPR and FNR

may increase slightly based on a large testing set, and also it may degrade the

detection accuracy a bit.

68

6.5.2 Nadam Learning Rate - LSTM Classification Results

Gradient descent is one of the most popular and extensively used optimizer algo-

rithms for optimizing neural networks [55]. The optimizer learning rate (LR) is

one of the critical factors regarding detection accuracy. Weights and bias are rad-

ical changes in the case of the usage of a large learning rate. A large learning rate

may cause an overpass of the global minima. To avoid the risk of an overpass, it

is better to set the minima to a smaller learning rate instead of a large value. The

training period is longer and it also proliferates the time to converge to a small

learning rate [17, 22]. We compare the performance by using a few learning rate

values. Table 22 shows that the lower the learning rate, the better the detection

accuracy. We observe that a learning rate of 0.0001 achieves a detection accuracy

of 99.995% whereas a 0.5 learning rate’s detection accuracy is 91.57%, and an

LR of 0.5 cannot classify any attack instances. An LR of 0.0001 provides the

best detection accuracy because a smaller learning rate can thoroughly learn the

dataset and be able to classify the instances accurately.

Table 22. Nadam Learning Rate LSTM Classification Results - NAIST CAN

Attack Dataset

Learning Acc Recall F1 FPR FNR

Rate

0.0001 99.995% 0.9998 0.9999 0.00004 0.0002

0.001 99.87% 0.9981 0.9979 0.0006 0.0019

0.01 99.18% 0.9868 0.9862 0.0043 0.0132

0.5 91.57% 0.9317 0.7844 0.0273 0.0683

6.5.3 Optimizers - Classification Results

Regarding the deep learning model performance optimization, we optimize the

neural network by using one of the most popular algorithms, which is gradient

descent. There are three different gradient descent algorithms: batch gradient

descent, stochastic gradient descent, and mini-batch gradient descent. We have

to select the gradient descent as per the amount of data we would like to compute

the gradient of the objective function [55].

69

To achieve better accuracy, we need to select the right optimizer(s) for the

model. We study six optimizers: RMSprop, Adam, Adagrad, Adadelta, Adamax

and Nadam. As per Table 23, Adam and Nadam provide high detection accuracy

regarding CAN bus attacks. We found that Adam and Nadam are appropriate

optimizers regarding binary and multiclass classifications for CAN bus network

attack detection. Both optimizers provide the best classification accuracy [19, 78,

40]. Nadam and Adam provides the detection accuracy of 99.995% and 99.993%

and the detection rate for both optimizers is 0.9998. We observe that Adagrad

and Adadelta optimzers provide lower detection accuracy as compared to other

optimizers. As per Figure 24, we observe that Nadam and Adam classify most of

the instances correctly with fewer false positives and false negative instances.

Figure 24. Gradient Descent Optimizer Confusion Matrix - NAIST CAN Attack

Dataset

6.5.4 Activation Function - Classification Results

We use sigmoid as an input activation function and softmax as an output acti-

vation function for classifying the CAN bus attacks in our model. We study with

three input activation functions by using L1 and we use the parameter values

70

Table 23. Optimizers Classification Results - NAIST CAN Attack Dataset

Optimizer Accuracy Recall F1 FPR FNR

RMSprop 99.984% 0.9997 0.9997 0.0001 0.0003

Adam 99.993% 0.9998 0.9999 0.00005 0.0002

Nadam 99.995% 0.9998 0.9999 0.00004 0.0002

Adagrad 98.212% 0.9581 0.9632 0.0099 0.0419

Adadelta 97.756% 0.9457 0.9534 0.0126 0.0543

Adamax 99.987% 0.9997 0.9998 0.0001 0.0003

Table 24. Activation Function-wise Classification Results - NAIST CAN Attack

Dataset

Activation Accuracy Recall F1 FPR FNR

Function

sigmoid 99.995% 0.9998 0.9999 0.00004 0.0002

relu 99.988% 0.9998 0.9998 0.00007 0.0002

tanh 99.994% 0.9998 0.9999 0.00005 0.0002

settings in Table 18. In this experiment, softmax output activation function re-

mains the same, we only change the input activation functions as tanh, relu and

sigmoid. Table 24 shows that sigmoid and tanh provide the best performances

compared to relu.

The sigmoid and tanh input activation functions provide the best detection

accuracy of 99.995% and 99.994% whereas relu provides a detection accuracy of

99.988%.

6.5.5 Loss Function - Classification Results

In a deep learning approach, the loss function is an essential factor that signif-

icantly impacts the detection accuracy. To optimize the model and reduce the

error, we need to select the proper loss function for the model to predict the results

accurately. We have to consider various factors before choosing the loss function.

Based on the specific predictive model such as regression or classification losses,

we have to choose the appropriate loss function [11].

71

We also change the loss functions and compare the performance among them.

Table 25 shows that categorical crossentropy and kullback leibler divergence per-

form well compared to the other optimizers regarding CAN bus attacks detection.

Both optimizers provide similar detection accuracy of 99.995%.

Table 25. Loss Function-wise Classification Results - NAIST CAN Attack Dataset

Loss Acc Recall F1 FPR FNR

Function

categorical 99.995% 0.9998 0.9999 0.00004 0.0002

crossentropy

MAE 91.100% 0.6641 0.6830 0.0720 0.3359

MSE 99.990% 0.9997 0.9998 0.0001 0.0003

KL divergence 99.995% 0.9998 0.9999 0.00004 0.0002

6.5.6 Results comparison with the Survival Analysis method/dataset

We apply the proposed LSTM IDS to the Survival Analysis Dataset for auto-

mobile IDS [25]. The datasets contain three different car models with Flooding,

Fuzzy, and Malfunction attacks. We use binary and multiclass classification ac-

cording to Tables 17 and 18 parameter settings. From the experiment results,

we observe that in Tables 26 and 27 LSTM can detect the attacks with almost

100% accuracy wherein Flooding and Malfunction detection rate is almost 1.00

and few false positives are visible regarding the Fuzzy attacks. The proposed

method is quite effective in classifying the attacks with a high detection rate and

it achieves a higher detection rate than the Survival Analysis method’s average

detection rate (Fig. 25). Our classifier can classify the Flooding and Malfunction

attacks with a high detection rate of 1.00 (Table 27). The proposed method’s

Fuzzy attack detection rate is also high compared to the conventional method

but it is not as good as for Flooding and Malfunction attacks.

6.6 Discussion

Researchers whose work revolves around deep learning face issues related to

the availability of real-time public datasets. We produce our CAN bus attacks

72

Table 26. LSTM Multicass Classification Results - Survival Analysis Dataset for

automobile IDS

Model Attack Acc Recall F1 FPR FNR

Benign 1.0000 1.0000 0.0001 0.00001

Flooding 1.0000 1.0000 0.0000 0.0000

Sonata Fuzzy 99.997% 0.9995 0.9996 0.00001 0.0005

Malf. 1.0000 1.0000 0.0000 0.0000

Avg 0.9999 0.9999 0.00004 0.0001

Benign 1.0000 0.9994 0.0116 0.0000

Flooding 1.0000 1.0000 0.0000 0.0000

Soul Fuzzy 99.707% 0.9469 0.9701 0.0003 0.0531

Malf. 0.9697 0.9087 0.0015 0.0303

Avg 0.9792 0.9696 0.0034 0.0208

Benign 0.9998 0.9997 0.0027 0.0002

Flooding 1.0000 1.0000 0.0000 0.0000

Spark Fuzzy 99.953% 0.9823 0.9831 0.0002 0.0177

Malf. 1.0000 1.0000 0.0000 0.0000

Avg 0.9955 0.9957 0.0007 0.0045

datasets from an actual car. We extract raw data from the real car, and we

generate three separate attack scenario datasets: DoS, Fuzzing, and Spoofing.

These types of attacks are considered the most prominent in the CAN bus sys-

tem in terms of damage capabilities. The connected car market is rapidly growing;

hence, the interest of hackers is proportionally growing. CAN bus data security

is of utmost importance regarding safe driving.

The CAN protocol broadcasts the messages to all nodes without encryption

or authentication. Hence, attackers can easily inject malicious messages to the

CAN bus system and disrupt the confidentiality, integrity, and availability of

the said system. If an attacker succeeds in injecting an attack and taking con-

trol of the CAN bus system, they can stop the engine, disable the brakes, turn

the lights on/off, etc. An efficient IDS can protect the CAN bus systems. We

conduct research on hyper-parameter values tuning, and we observe how the de-

73

Figure 25. Detection Rate - Comparison with the Survival Analysis Dataset for

automobile IDS

tection accuracy and detection rate vary depending on the hyper-parameter value

changes. Our investigation results demonstrate that hyper-parameter values sig-

nificantly affect the IDS detection accuracy. In this study, we were able to find

the best hyper-parameter values for designing an effective Intrusion Detection

System for the CAN bus network system. In this Investigation, we have taken

multi-classification approach for detecting the type of attacks in CAN bus net-

work. There might be a discussion that multi-label approach may be able to pick

up several types of attacks if the attacks are mixed. But our focus was not in

that direction in this research.

An effective IDS is essential regarding the in-vehicle CAN bus attack detec-

tion, and it will make a significant impact for the safe driving of the car. An

anomaly-based IDS can play a vital role in mitigating the known and unknown

attacks in the CAN bus network system. Preprocessing is one of the key facts

regarding the IDS system to achieve the best performance. Our proposed prepro-

cessing system is effective and it’s working fine in LSTM for CAN bus network

attack detection. We achieve the best detection rate regarding Toyota and Sur-

vival Analysis dataset experiment.

Our proposed LSTM-based IDS is effective and efficient. Without decoding

the raw messages of the CAN bus, we can detect CAN bus network attacks. The

74

proposed model detects DoS and Spoofing attacks with a detection rate of 1.00,

and the Fuzzing detection rate is 0.9994.

Table 27. LSTM Binary Classification Results - Survival Analysis Dataset for

automobile IDS

Model Attack Acc Recall F1 FPR FNR

Flooding 100% 1.0000 1.0000 0.0000 0.0000

Sonata Fuzzy 99.996% 1.0000 0.9999 0.00004 0.0000

Malf. 100% 1.0000 1.0000 0.0000 0.0000

Avg 99.999% 1.0000 1.0000 0.00001 0.0000

Flooding 100% 1.0000 1.0000 0.0000 0.0000

Soul Fuzzy 99.62% 0.9763 0.9880 0.0000 0.0237

Malf. 100% 1.0000 1.0000 0.0000 0.0000

Avg 99.87% 0.9921 0.9960 0.0000 0.0079

Flooding 100% 1.0000 1.0000 0.0000 0.0000

Spark Fuzzy 99.60% 0.9780 0.9780 0.0022 0.0220

Malf. 100% 1.0000 1.0000 0.0000 0.0000

Avg 99.87% 0.9927 0.9927 0.0007 0.0073

Although we use datasets from a specific vehicle, we believe that our model

can work for the CAN bus system for any vehicle. To evaluate the performance of

the proposed IDS, we also experiment with the Survival Analysis CAN bus attack

dataset which is developed by the Hacking and Countermeasure Research Lab,

Korea. The proposed LSTM models can classify the attack instances with high

detection rates. We also compare our detection rate with the one of the Survival

Analysis method, and our results show that LSTM is quite effective compared

to the Survival Analysis method. As per our binary experiment results with

the Survival Analysis datasets, we are able to detect Flooding and Malfunction

attacks with 100% accuracy. We also observe the presence of few false negatives

and false positives for the Fuzzy attacks. Our proposed LSTM model achieves

higher detection accuracy compared with the conventional methods.

Hyper-parameter values selection is essential to develop a robust IDS by deep

learning models. We select the hyper-parameter values based on the systematic

75

experimentation and fine-tuning of the values. The proposed hyper-parameter

values are quite effective regarding in-vehicle CAN bus attack detection for the

LSTM deep learning approach. We provide detailed experiment results regarding

the hyper-parameter values tuning, and we select the best values from them. As

per our experiment results, Layer 1 combined with the Nadam optimizer with a

learning rate of 0.0001, the categorcal crossentropy loss function, and the Sigmoid

activation function provide the best detection accuracy regarding CAN bus IDS.

Our assumption is that the proposed LSTM model achieves a higher detec-

tion accuracy regarding DoS and Spoofing attacks because these attacks consist

of specific CAN IDs with similar repeated attack patterns. The LSTM model is

a robust deep learning algorithm, and after training, the proposed LSTM model

can classify those attack traffic effortlessly. The Fuzzing attack dataset is devel-

oped based on the use of random CAN IDs and messages, and the attack pattern

is almost similar to the legitimate traffic. Hence, the model faces difficulties in

learning the intricate attack patterns, so the proposed model’s Fuzzing attack de-

tection rate is lower compared to the DoS and Spoofing attacks, and the classifier

is unable to achieve 100% detection accuracy for the Fuzzing attack. The pro-

posed LSTM model’s performance regarding the detection accuracy may slightly

degrade, and the FNR and FPR may increase when using a large testing set.

The major limitation of our model resides in the fact that we experiment in

offline mode with labeled datasets, we are concerned regarding the performance of

the IDS on online mode and also about the IDS effectiveness regarding unknown

attacks detection. Additionally, we have not defined how to recover the vehicle

system after injecting the attacks, i.e., the CAN bus system must be available

even after our attack injections. Another key challenge is about how to embed

the deep learning-based IDS with the CAN bus system.

In our future work, we will consider implementing this LSTM-based IDS to

real CAN bus systems to evaluate IDS’s performance in real-time. Furthermore,

we will investigate how to detect unknown attacks in real vehicles. Finally, we

will consider how to return the vehicle to a working condition after an injection

attack incident.

76

6.7 Chapter Summary

In this chapter, we propose an effective long short-term memory (LSTM)-based

Intrusion Detection System (IDS) for in-vehicle CAN bus network attack. We

develop the CAN bus attack dataset by extracting the attack-free traffic from a

real car. We generate attack datasets by injecting three kinds of attacks –DoS,

Fuzzing, and Spoofing– into the attack-free dataset. We effectively preprocess the

dataset, and our proposed LSTM model can classify benign and attack classes

with a high accuracy of 99.995% and low false positive and false negative rates for

the layer and optimizer we considered. We thoroughly study the hyper-parameter

values changing, and we select the best parameter values to achieve efficient

detection accuracy and detection rates. As per the experiment results, Vanilla

LSTM provides the best detection accuracy with sigmoid activation function and

the Nadam optimizer with a learning rate of 0.0001. We also conduct experiment

with the Survival Analysis datasets to show that our proposed model detection

rate outperforms the related works regarding the CAN bus attack detection.

77

7. In-vehicle CAN Bus Intrusion Detection Sys-

tem using 1D CNN Deep Learning Approach

7.1 Introduction

The rapid growth of connected technologies, such as the Internet of Things (IoT),

and the ubiquitous nature of the Internet have made life more convenient for hu-

man beings. The rise of that social convenience is accompanied by incessant

efforts of miscreants to create new tools, techniques and tactics to destabilize

the comfort of the dwellers of the connected world. Indeed, we are experienc-

ing a rapid growth of technological weapons of mass destruction that can be

used by anyone with elementary computer literacy. Cars are getting increasingly

connected; thus, they are becoming a new playground for hackers.

The modern car is a complex piece of technology that contains millions of

lines of code that facilitate the interconnection between the electronic control

units (ECUs). The Controller Area Network (CAN) bus protocol is the central

communication system between ECUs. CAN ID is the destination address of the

designated ECU. Because the maximum length of payload is only 8 bytes, there

is no encryption or authentication mechanism. This latter state is the origin of

all the security issues of the modern car. In fact, the absence of basic security

mechanisms makes it easy for attackers to perpetrate several kinds of critical

attacks: Denial of Service (DoS), Fuzzing, Malfunction, etc. Thus, it is essential

to develop a robust methodology to detect and mitigate such kinds of critical

attacks [62].

We believe that, with the aforementioned absence of encryption and authen-

tication mechanisms, an intrusion detection system (IDS) is the most adequate

solution to protect CAN bus systems of modern cars [44, 24]. Fig. 17 shows the

typical IDS regarding In-vehicle network attack security. An attacker may launch

an attack into the real car by using external connections such as an OBD-II di-

agnostics port, a telematics unit, or in-vehicle infotainment (IVI). An IDS can be

placed between the external connection and the CAN bus. In case the attacker

tries to inject malicious traffic into the CAN bus system, the IDS will filter the

malicious traffic and provide the alert messages.

78

Researchers in academia and industry professionals have been working dili-

gently to detect and mitigate the CAN bus network attacks. They proposed

several methodologies which appear to be lacking adequate and effective attack

detection and mitigation technologies. Most of the IDS are inefficient due to the

high false positive and false negative alarms. A reason that may explain this

fact is that most researchers rely on simulated data to test their proposals. We

contend that it is essential to experiment and validate the effectiveness of an IDS

with datasets of real cars CAN bus network attacks.

Deep learning has proven to be the right tool for modern IDS. Hence, as a

solution to the issue we tackle in this chapter, we propose a Convolutional Neural

Network (CNN)-based IDS for in-vehicle CAN bus network attacks detection. For

the experiment, we developed an in-vehicle network attacks dataset, which con-

sists of DoS, Fuzzing, RPM and Gear Spoofing attacks of three different models

of cars: Toyota, Subaru and Suzuki.

In this chapter, our major contributions are as follows:

• We develop in-vehicle network attacks (DoS, Fuzzing and Spoofing) datasets

by using the CAN messages of three different car models (Toyota, Subaru,

and Suzuki).

• We propose an efficient Convolutional Neural Network-based IDS for in-

vehicle CAN bus systems for well-known network attacks: DoS, Fuzzing,

and Spoofing. We evaluate the performance of the IDS regarding in-vehicle

network attacks.

• Regarding the improvement of the detection rate, we select the best hyper-

parameter values to develop an effective CAN bus IDS based on CNN.

7.2 Related Works

In this section, we discuss the related work regarding network anomaly detection

of in-vehicle systems. Researchers have applied a variety of anomaly detection

techniques. Several techniques were used for CAN bus anomaly detection, e.g.,

Statistical, Frequency-based, Hidden Markov Model (HMM), etc.

Song et al. [62] proposed a lightweight IDS for in-vehicle networks based on a

time interval analysis (TIA) of CAN’s messages. Hyunsang et al. [43] developed

79

an IDS by analyzing the request-response messages in the CAN bus, based on

an offset ratio and time interval analysis. In [63], the authors proposed a Deep

CNN Inception-ResNet Architecture regarding CAN bus attack detection. They

experiment with real-car datasets consisting of DoS, Fuzzy, and Spoofing attacks

and achieved detection rates of 0.9989 for DoS, 0.9965 for the Fuzzy attack, and

0.9989 and 0.9994 for Gear and RPM spoofing attacks. We applied a 1D CNN

model wherein we can directly use the CAN messages as an input into the CNN

model without any conversion to the CAN messages. Loukas et al. [46] pro-

posed an LSTM-based intrusion detection system for in-vehicle network systems

and compared the performance between several machine learning classifiers. They

used robotic vehicles and they conducted their experiment at the cloud-based sys-

tem by injecting attacks. They achieved overall accuracy at 86.9%, and declared

that LSTM is suitable to detect vehicular attacks. Kang et al. [34] developed an

unsupervised deep belief network (DBN)-based IDS for detecting the CAN bus

network attacks. Koscher et al. are the first to demonstrate that several kinds of

wireless attack injections are possible in in-vehicle network systems [42]. In case

of compromise of the car’s network, several kinds of malfunction injections are

possible, and it also becomes possible to take control of the car and to stop the

engine, disable the brakes, etc.

In this chapter, we note that in an IDS for in-vehicle networks (CAN bus),

deep learning algorithms outperform other methodologies. These methodolo-

gies include statistical analysis, frequency-based analysis, and Hidden Markov

Model (HMM), etc. Additionally, among the deep learning algorithms, LSTM

and CNN provides the best results regarding the Time series and Sequential

datasets. Hence, in this chapter, we propose an Deep Learning-based IDS for

CAN bus networks that performs better than the related work due to our sys-

tematic hyper-parameter values fine-tuning.

7.3 Attacks used in the model

In this section, we note that in IDS for in-vehicle networks (CAN bus), deep

learning algorithms outperform other methodologies such as statistical analysis,

frequency-based technique, Hidden Markov Model (HMM), etc. CNN provides

the best results compared to other deep learning algorithms. Hence, in this

80

chapter, we propose a CNN-based IDS for in-vehicle CAN bus network attacks

detection. We developed the network attack dataset for our experiment, which

consist of three different vehicle models to which we inject DoS, Fuzzing and

Spoofing attacks, Table 15 shows the dataset details. The attack mentioned

above explanation is available in Section 5.1, attack scenarios, and the NAIST

In-vehicle CAN attack dataset creation details are available in Section 5.3.

Figure 26. Security Verification Platform

7.4 CNN-based Network Intrusion Detection System

In our proposed CNN model experiment, we used python PyCharm IDE 2020.1

and Keras [2] with TensorFlow as backend. We did our experiment on an Intel

Core i9-9000K CPU 3.60 GHz, 64 GB RAM, Windows 10 (64-bit), and NVIDIA

GeForce RTX 2080. Table 28 provides the parameter values regarding attacks

detection based on CNN multiclass classification models.

Figure 26 depicts the proposed security verification platform’s architecture

about in-vehicle CAN bus and ECUs. Two modules compose the architecture:

the attack analysis platform and the Intrusion Detection System. We depict how

an attacker can compromise an In-vehicle CAN bus system through physical and

remote access. Moreover, we discussed our security verification proposal. As per

the Figure 26 Attack Analysis Platform connection point, an attacker may at-

tempt to compromise the In-vehicle CAN Bus system through OBD-II, Telematics

81

Unit, and IVI communication interfaces. In general, users utilize the Telemat-

ics/IVI through LTE, Wi-Fi, Bluetooth, wherein an attacker can inject malicious

messages through the technologies mentioned above. When an attacker succeeds

in compromising the CAN Bus system, they can take control of a car system and

disrupt safe driving. In this research, we contemplate physical access of a car for

compromise by using an OBD-II port. In the attack analysis platform, we ex-

tract attack-free data from a real-car by OBD-II port. Subsequently, we develop

attack algorithms to develop attack(DoS, Fuzzing, and Spoofing) datasets. The

IDS module contains the IDS filtering, which is responsible for filtering malicious

traffic into the CAN bus message communication.

7.4.1 Dataset Preprocessing

We use NAIST In-vehicle CAN attack dataset; elaborate about the dataset is

available in Section 5.3. The NAIST CAN attack dataset is in an hexadecimal

format. As per the machine learning requirement, without decoding the data,

we converted the hexadecimal format to decimal format and inputed it into the

CNN model. We replaced all the blank fields with -1. For our experiment, we

considered 10 features and a CAN ID-based IDS. The dataset features contain

CAN ID, DLC, Data [D0-D7], and Flag T/R column. CAN ID is an identifier of

the CAN messages. DLC data bytes is from 0-8. The data field contains 64 bits,

and we position each byte in specific columns such as D0-D7. We denominate R

as benign and T as attack class.

For a multiclass classification perspective, we concatenate all the three attack

classes for each car model. The results of the concatenation are visible in Table

15.

As per Table 15, the Toyota dataset contains 74.73% of benign class elements

and 20.23%, 4.43%, 0.31% and 0.29% of DoS, Fuzzing, RPM and Gear Spoofing

elements, respectively. The Subaru car’s benign elements are 710524 wherein DoS,

Fuzzing, RPM, and Gear Spoofing elements are 93843, 20782, 3333, and 2666,

respectively. Benign elements represent 94.43%, and DoS, Fuzzing, RPM, and

Gear Malfunction elements are 4.70%, 0.55%, 0.17%, and 0.15%, respectively,

in the Suzuki. We noted that the number of benign class elements is higher

compared to the attack class elements.

82

Figure 27. Performance Evaluation (50 epoch) of Suzuki model dataset based on

the Batch Size, Learning Rate and Number of Filter maps

7.4.2 Applying the Convolutional Neural Network (CNN) Model

Convolutional Neural Networks (CNN) are one of the most popular deep learning

architectures. The popularity of CNN has been exponentially growing since 2012

after the debut of AlexNet. CNN has been successfully applied to many real-

time applications. We can use the 1D CNN model regarding time series dataset,

that is why we consider the 1D CNN model for our experiment. We split the

dataset into training and testing [14]. We trained our CNN classifier, we used

20% for testing. Table 28 shows the CNN parameter values which are used for

our experiment.

We experiment with a CNN model to which we apply binary and multiclass

classifications. We use a dropout of 0.1 before the pooling layer to avoid over-

fitting.

We use the Keras [2] API for our experiment. Regarding binary classifica-

tion, we use the Adam optimizer with a learning rate of 0.0001. We employed

binary crossentropy as the loss function and tanh as an input activation function

sigmoid, as an output activation function. In Convolutional Neural Network, Fil-

ter is one of the key parameters which significantly impacts the performance of

the IDS. Fig. 27 shows that batch size 256 and 512, learning rate 0.0001, 256 and

512 filter sizes are effective compared to lower filter sizes because they provide

effective accuracy and low variance. We use a single convolutional layer with a

512 filter for the binary classification model, and we used two layers with the 512

83

filters for each layer for the multiclass classification model. In the proposed mul-

ticlass CNN model experiment, we use the Nadam optimizer with an optimizer’s

learning rate of 0.0001, and the remaining parameters of the optimizer were used

with their default values. We used categorical crossentropy as the loss function.

We set the number of iterations to 200 epochs. We accomplished a validation by

the fit() function by using validation data. After training and testing, we calcu-

lated the accuracy and loss based on a number of correctly classified instances.

We need to carefully choose the hyper-parameter values due to the fact that it

significantly impacts the detection accuracy and detection rate.

Table 28. Parameter values for Multiclass Classification

Parameters Value

Activation Function Input sigmoid

Epoch 200

Dropout 0.1

Activation Function Output softmax

Optimizer Nadam

Batch Size 256

Learning Rate 0.0001

Loss Function categorical crossentropy

Encoder Label Encoder

7.5 Experiment Results and Performance Evaluation

In machine learning, performance measurement is a key fact to evaluate the

model’s strength. We consider the detection accuracy, detection rate, false posi-

tive rate (FPR), false negative rate (FNR) and F1 score to evaluate the model’s

performance regarding CAN bus IDS. In the case of the imbalanced dataset, the

F1 score is an indispensable factor in evaluating the performance of the machine

learning algorithms. We cannot consider the accuracy by only regarding the

imbalanced dataset [33].

84

7.5.1 CNN Binary and Multiclass Classification Experiment Results

In Table 29, we observe that CNN can classify DoS and Spoofing attacks with

100% accuracy. It is difficult to detect the fuzzing attack with higher accuracy

because the fuzzing attack traffic almost seems like the legitimate traffic, it is

challenging to differentiate them. Our classifier detects the Fuzzing attacks with

high accuracy for all three car models, which are 99.92%, 99.96%, and 99.94% for

Toyota, Subaru, and Suzuki, respectively.

Table 29. CNN Binary Classification Results

Model Attack Acc Recall F1 FPR FNR

DoS 100% 1.0000 1.0000 0.0000 0.0000

Toyota Fuzzing 99.92% 0.9971 0.9980 0.0003 0.0029

RPM 100% 1.0000 1.0000 0.0000 0.0000

Gear 100% 1.0000 1.0000 0.0000 0.0000

DoS 100% 1.0000 1.0000 0.0000 0.0000

Subaru Fuzzing 99.96% 0.9963 0.9981 0.0000 0.0037

RPM 100% 1.0000 1.0000 0.0000 0.0000

Gear 100% 1.0000 1.0000 0.0000 0.0000

DoS 100% 1.0000 1.0000 0.0000 0.0000

Suzuki Fuzzing 99.94% 0.9718 0.9857 0.0000 0.0282

RPM 100% 1.0000 1.0000 0.0000 0.0000

Gear 100% 1.0000 1.0000 0.0000 0.0000

Gradient descent is one of the most popular and often widely used as a black-

box optimizer algorithm to optimize neural networks. To optimize the machine

learning algorithms and optimize the neural networks, it is preferred and popular

to use the Gradient descent optimization algorithms [55]. We observe that Adam

and Nadam are suitable optimizers regarding binary and multiclass classifications,

respectively, for CAN bus network attack detection. We achieve the best detection

accuracy with both optimizers.

The optimizer’s learning rate largely impacts the model to achieve reasonable

detection accuracy. It is recommended to use the optimizer with default values

except for changes in the learning rate. It is better to use a lower learning rate

85

Table 30. CNN Multicass Classification Results

Model Attack Acc Recall F1 FPR FNR

Benign 1.0000 0.9999 0.0006 0.0000

DoS 1.0000 1.0000 0.0000 0.0000

Toyota Fuzzing 99.9856% 0.9967 0.9984 0.0000 0.0033

RPM 1.0000 1.0000 0.0000 0.0000

Gear 1.0000 1.0000 0.0000 0.0000

Avg 0.9993 0.9997 0.0001 0.0007

Benign 1.0000 0.9999 0.0006 0.0000

DoS 1.0000 1.0000 0.0000 0.0000

Subaru Fuzzing 99.9910% 0.9964 0.9982 0.0000 0.0036

RPM 1.0000 1.0000 0.0000 0.0000

Gear 1.0000 1.0000 0.0000 0.0000

Avg 0.9993 0.9996 0.0001 0.0007

Benign 1.0000 0.9999 0.0019 0.0000

DoS 1.0000 1.0000 0.0000 0.0000

Suzuki Fuzzing 99.9897% 0.9813 0.9906 0.0000 0.0187

RPM 1.0000 1.0000 0.0000 0.0000

Gear 1.0000 1.0000 0.0000 0.0000

Avg 0.9963 0.9981 0.0004 0.0037

instead of using the large learning rate to avoid the risk of an overpass of the

global minima, but a small learning rate implies longer duration to train the

model.

As per Table 30, we observe that our CNN model can classify most of the

attacks with effective detection accuracy for all three models of the car attack

dataset, which is 99.9856%, 99.9910% and 99.9897% for the Toyota, Subaru and

Suzuki, respectively. In the Suzuki dataset, there are only 0.55% fuzzing elements,

and we achieve the detection rate of 0.98, which is lower compared to the Toyota

and Subaru fuzzing detection rates. From the experiment results we observe that

DoS and Spoofing attack detection accuracy is 100%. Our assumption is that the

DoS and Spoofing attacks contain a single CAN ID and the attacks patterns are

86

similar; hence, CNN can easily detect those attacks with high detection accuracy.

It is challenging to detect the fuzzing attacks because they contain thousands of

random CAN IDs, and the flow of attack patterns mimics the legitimate traffic.

Our proposed CNN model can effectively detect the Fuzzing attacks with low

false-positive and false-negative rates. The false-negative rate may increase a

little based on a large testing set, and also it may degrade the accuracy a bit,

i.e., using the 30% testing data set.

7.6 Discussions

An effective and robust intrusion detection system regarding in-vehicle network

attack detection is essential for safely driving the modern car. Due to the lack

of security mechanisms in the CAN bus system, malicious users can easily inject

critical attacks into the CAN bus network; thus, making safe driving concerning.

An effective IDS can protect the modern vehicle from critical network attacks.

The CAN bus system broadcasts the messages to all the ECUs; hence, it is

attractive to attackers for injecting attacks, into the CAN bus network, that can

create malfunctioning. In case attackers succeed to inject attacks and compromise

the car, then they can stop the engine, disable the brakes and may be able to

take control of the entire car system.

We proceeded with a systematic experiment and fine-tuned the model by

changing the layer size, filters, optimizer, learning rate, activation and loss func-

tion, etc. and selected the best hyperparameter values regarding the improvement

of the detection accuracy. Our experiment results show that, to develop an effec-

tive IDS, we need to choose the right hyper-parameter values.

Our proposed CNN-based IDS is effective in detecting the CAN bus network

attacks. We can detect the attacks without decoding the CAN packets. The

dataset contains three different car models Toyota, Subaru, and Suzuki, and each

model contains DoS, Fuzzing, RPM, and Gear Spoofing attack. Our CNN model

effectively classified all those attacks for individual vehicle models. We achieved

a detection accuracy of 99.99% for all the three models of vehicles. In the future,

we will consider implementing our classifier into a real car system and evaluate

the performance to detect the unknown attacks.

87

7.7 Chapter Summary

In this chapter, we propose a robust intrusion detection system regarding in-

vehicle CAN bus network system based on 1D CNN deep learning approach. For

efficiency reason, we develop an In-vehicle CAN Bus attack dataset from three

distinct car models: Toyota, Subaru and Suzuki. As per our experiment results,

we achieve a high attack detection rate regarding CAN bus network attack detec-

tion. We consider Fuzzing as the most critical attack in the in-vehicle system, and

it is difficult to detect it because it is similar to the legitimate traffic into the CAN

bus network. Our model classifies the Fuzzing attack with high detection accu-

racy. The proposed 1D CNN model proved that deep learning-based intrusion

detection systems are more effective and robust than other methodologies.

88

8. Discussion and Future Works

In this thesis, our first aim is to investigate several kinds of critical cyber attacks

such as Brute Force, DoS, DDoS, and develop an effective deep learning-based

Intrusion Detection System. Then, we investigate further on how to optimize

the deep learning model to develop a robust IDS concerning the detection of

cyber attacks. Our key objective (RO 1.2) is to transfer and adapt (RO 1.1) IDS

solutions into the automotive system to improve the vehicle safety and detect a

few critical CAN network attacks.

Regarding the improvement of automotive safety, our key aim is to generate a

real-time In-vehicle CAN bus attack dataset to develop a robust IDS to detect the

critical In-vehicle CAN bus network attacks. We develop the CAN attack dataset

by extracting the attack-free traffic from real cars: Toyota, Subaru and Suzuki.

We generate attack datasets by injecting three kinds of attacks –DoS, Fuzzing,

and Spoofing– into the attack-free dataset. These types of attacks are considered

the most prominent in the CAN bus system, in terms of damage capabilities.

For the first experiment, we develop attack dataset from the extracted attack-

free data from a Toyota car (Section 5.2) and, for next, we extend the dataset

development by adding two other real car models, Subaru and Suzuki, along with

the Toyota model (Section 5.3). Additionally, our key objective was to try to

mimic real-life scenarios to analyze the imbalance impacts in our experiments

and evaluate the performance of the IDS. The connected cars market is rapidly

growing; hence, the interest of hackers is proportionally growing. CAN bus data

security is of utmost importance regarding safe driving.

Consequently, we propose long short-term memory (LSTM)-based Intrusion

Detection System (IDS) for in-vehicle CAN bus network attack by using the

NAIST CAN attack dataset (Chapter 6). As per the experiment results, LSTM-

based IDS is effective in detecting the In-vehicle CAN bus network attacks. We

propose an effective pre-processing method, and our proposed LSTM model can

classify benign and attack classes with a high accuracy. Finally, we extend our

dataset and develop the In-vehicle CAN bus attack dataset by using aforemen-

tioned three real model car. For the effectiveness, we also further investigate

by applying another deep learning model 1D Convolutional Neural Network (1D

CNN) for CAN bus attack detection (Chapter 7). As per our experiment re-

89

sults,the proposed 1D CNN model proves that deep learning-based intrusion de-

tection systems are more effective and robust than other methodologies.

Although the proliferation of intelligent hacking tools, techniques, and tactics

has allowed anyone with basic computer literacy to be able to attack automotive

systems, our proposed solutions will provide effective solutions and significantly

impact the resilience of connected and modern automotive systems.

8.1 Limitations

The major limitation of our model resides in the fact that we experiment in offline

mode with labeled datasets; we are concerned regarding the performance of the

IDS on online mode and also about the IDS effectiveness regarding unknown

attack detection. Additionally, we have not defined how to recover the vehicle

system subsequent to injecting the attacks, i.e., the CAN bus system must be

available even after our attack injections. Another key challenge is about how

to embed the deep learning-based IDS with the CAN bus system due to limited

processing power. In fact, a real-world dataset is quite essential to evaluate a

model’s performance and develop robust solutions regarding automotive security.

In this research, we consider developing the CAN attack dataset by using the

OBD-II port only. We did not study how an attacker can compromise automotive

systems through Wi-Fi, Bluetooth, etc.

As we asserted, advanced technologies enlarge the automotive attack sur-

face. Hence, effective security solutions are required regarding the acceptance

of autonomous cars. Academia and industry are suppose to pay more attention

to improving the security of the modern connected automotive systems for safe

driving and mitigating cyber attack threats, because there are no standard se-

curity solutions for the automotive system. Many stakeholders are involved in

the modernization of the automotive systems in which they embedded their ad-

vanced technologies, and they did not consider the security features at the time

of technology development. The embedded advanced technologies are augment-

ing the attack surfaces; thus, they constitute a significant threat to automotive

systems. It is a significant challenge to secure the whole system at once, because

the modern automotive is a system of systems. Moreover, we have to consider

the integrated security solutions and standard security framework in the future

90

for the better adoption of the autonomous car in particular, and digital trans-

formation in general. However, to develop security solutions, real-world datasets

are imperative to evaluate the performance.

Researchers whose work revolve around automotive security and deep learning

face issues related to the availability of real-time public datasets. However, mod-

ern automotive systems are now not only mechanical equipment; they have been

modernized with many advanced embedded technologies, millions of code lines

are used to facilitate ECUs communication, and concurrently, the rapid modern-

ization of automotive systems is augmenting the attack surface. The industry

should pay more attention to automotive security along with the modernization

of the automotive system to mitigate car hacking, protect car takeover by hackers,

and avoid unexpected accidents. Hence, a real-world dataset is considerably nec-

essary for advanced-level research, developing efficient solutions, and ultimately

the resilience of connected cars.

8.2 Future Works: Resilience of Connected Cars

Many stakeholders are involved in the advancement of modern automotive sys-

tems. Modern automotive systems consist of many embedded technologies de-

veloped by various vendors. It is challenging to secure the automotive system

as a whole because of large attack surfaces. Industry and academia need to pay

more attention to developing sophisticated methodologies to improve automo-

tive safety and mitigate cyber attacks. Numerous challenges persist in securing

the most advanced embedded technologies and protecting the automotive cyber-

physical system. Researchers are required to take into account advanced security

measures to protect the automotive systems. To ensure safe driving, the most

important fact to consider is to effectively detect the critical cyber attacks and

develop a protection mechanism to drive the vehicle without interruption after

attacks’ injection. Our aim is to design and develop new security mechanisms for

the modern automotive system or autonomous car that are compliant with the

CIA (Confidentiality, integrity, and availability) triad.

91

8.2.1 Automotive Attacks Investigation

We consider a few critical In-vehicle CAN bus network attacks in this research.

The rapid transformation of the modern car increases the attack surfaces, and an

attacker can inject attacks physically or through remote access. The present work

is based on the physical interface access to investigate the In-vehicle CAN bus

attacks. We will moreover explore different attack surfaces; also, we will contem-

plate some distinct attack patterns.We will also further intensify the detection

of unknown attacks. Additionally, we will analyze unsupervised deep learning

approaches to develop a robust IDS about automotive security.

8.2.2 IDS embedding into a real-car

In this study, we develop an effective IDS regarding In-vehicle CAN Bus network

attack detection, but it’s challenging to embed the deep learning-based IDS into

a real-car. We will further analyze and design how to embed an IDS into a real-

car in our future work. An IDS can be placed as a gateway of the CAN bus

system network or placed in between the ECUs. A more detailed investigation is

required for the effective placing of the IDS. Nevertheless, it’s more challenging

and concerning to embed the IDS because of the automotive system’s limited

processing power. Addressing these challenges to embed IDS into a real-car is

imperative in future work.

8.2.3 V2X Communication Security

Regarding the advancement of safe driving, the Telematics concept has been in-

troduced. The Vehicle-to-Everything (V2X) concept is to communicate between

vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), as well as any diverse

communication systems that affect the vehicle to improve safe driving, mitigate

accidents and reduce traffic, etc. [74, 5, 50, 47]. In V2V, vehicles connect with the

other vehicles to exchange data regarding safety to circumvent accidents. Regard-

ing connection and exchange data to other vehicles and Vehicle-to-Infrastructure

(V2I), the V2X uses WLAN or cellular networks; thus, it augments the attack

surface [74]. The attackers can spoof such kinds of inter-vehicle communication

channels or message exchanges; consequently, rendering safe driving questionable.

92

Moreover, it’s imperative to investigate V2X communications, attack possibili-

ties, and detection and protection procedures, and robust methodologies for safe

driving.

8.2.4 In-vehicle Infotainment Systems (IVI) Attack Analysis

In-general, the In-vehicle Infotainment system has been developed to improve

the driving experience and exchange information for safe driving. Users can

connect the IVI to the external networks through Bluetooth, Wi-Fi, GPS. Many

advanced instruments, such as V2X, ADAS, Sensors, etc., are connected with

the IVI to improve the user’s comfort and safe driving [50, 57]. An attacker can

easily compromise the connected car with the aforementioned external connection

technologies; thus, they can inject malicious malware into the car and disrupt

safe driving [30]. A further comprehensive investigation regarding the Wi-Fi-

based attack injection and protection mechanism is imperative for the advanced

connected car’s safe driving.

Users can connect several systems through the Bluetooth networks. In gen-

eral, Bluetooth is used for short-range wireless connectivity. Users can connect the

In-vehicle Infotainment Systems (IVI) through Bluetooth technology. Numerous

kinds of security threats concern the Bluetooth connectivity: such as Information

leakage, Malware Injection, Denial of Service (DoS) attacks, etc [45]. As a result,

an attacker can compromise the car systems through Bluetooth, thus initiating

significant threats concerning the car’s safe driving. Going forward,investigate

and develop an effective solution to prevent modern automotive systems to be

compromised through Bluetooth, and further, intricate attack patterns investi-

gation is indispensable for future research directions.

8.2.5 In-vehicle Malware Activities and Analysis

The modern cars are connected; it consists of many advanced pieces of equipment

and sensors to improve the connectivity and share information with the outside

world but at the same time, that connectivity increases it’s security threats. An

attacker, with minimum hacking knowledge, can easily inject malicious malware

into a vehicle to compromise the ECUs through intelligent attacking tools [79]. In

case ECUs are compromised by hackers, the latter can take control of the car and

93

disrupt the In-vehicle functionalities. A novel solution to defend against malware

injection for safe driving is very crucial. Academia and the industry need to pay

more attention, address the existing challenges, and find an effective protection

system against malware attacks.

In summary, our robust IDS solutions regarding the CAN bus system pro-

vide evidence that Artificial Intelligence (deep learning) can play a vital role

in the cybersecurity and resilience of connected cars. For future research, deep

learning-based solutions will be dominant in terms of automotive security or the

other cyber-physical systems domains. Conclusively, we contend that to fulfill the

future research directions, develop robust Artificial Intelligence (deep learning)-

based solutions concerning connected cars’ resilience, a real-world dataset is oblig-

atory. Indeed, academia and industry develop a few datasets, but, because of pri-

vacy concerns, they are unable to make them publicly available. Thus, academia

and industry must be more collaborative regarding publicly available datasets for

academic research.

94

9. Conclusion

In this research, our primary aim is to develop deep learning-based intrusion de-

tection systems that are effective in Computer and In-vehicle CAN Bus networks.

In the beginning, we thoroughly investigate several critical computer network at-

tacks and experiment with the LSTM-based deep learning models to achieve our

aims. Our models achieve better performance to detect a few critical computer

network attacks. As we said earlier, well-known traditional computer network

attacks are being transferred to the In-vehicle CAN Bus network due to the lack

of security mechanism. Additionally, there are no standard security solutions

regarding automotive cyber attack detection, which significantly undermine safe

driving. We also transfer our traditional computer network solutions into the In-

vehicle CAN Bus IDS network system to detect sophisticated CAN Bus system

attacks. First, we develop In-vehicle CAN Bus attack datasets from a real-car

and extend the dataset with three distinct car models. Moreover, we provide

an effective pre-processing method, which is utterly essential to develop a robust

IDS. Finally, we design and develop In-vehicle CAN bus system IDS based on

the LSTM and 1D CNN deep learning approaches. Our efficient IDS solution can

mitigate the attacking threat and improve safe driving.

Safety is one of the most significant solicitudes for the adoption of autonomous

cars, our methodology can augment the connected car’s safety on detecting crit-

ical cyber attacks, which can help propel the adoption of autonomous cars. Fur-

thermore, our studies present significant directions regarding effective counter-

measures in well-known domains that can be transferred (adapted) to domains

that are a new playground for hackers such as smart grid, industrial control sys-

tems security, etc. Our investigations provide the approaches and guidelines for

adapting our solutions into other challenging domains, i.e., developing less biased

attack datasets, the importance of an efficient pre-processing method, and finally

developing deep learning-based IDS.

Moreover, deep learning, Artificial Intelligence (AI) is the contemporaneous

dominant technology with proven applications in various fields such as image

recognition, voice recognition, weather forecasting, market analysis, etc. How-

ever, the recent advancements in machine learning and deep learning have re-

suscitated the hope that we can find solutions to counter the ever-sophisticated

95

aforementioned attacks, and to realize the resilience of connected cars. There

are already trailblazing works in academia, and deep learning approaches have

particularly been successfully applied to many application domains. Hence, we

contend that it can equally be successfully applied for automotive cyber attacks

detection.

96

Acknowledgments

I would like to express my sincere appreciation to all of the people who are in-

volved in the making of my Ph.D. thesis. First of all, I would like to acknowledge

my supervisor, Professor Dr. Youki Kadobayashi, for his guidance and encourage-

ment and for facilitating my collaboration with The University of Tokyo and The

Hiroshima City University. I also thank Associate Prof. Dr. Hideya Ochiai (The

University of Tokyo) and Associate Prof. Dr. Hiroyuki Inoue for their collective

effort to support me since the beginning of my doctoral research journey. I am

also grateful to Prof. Keiichi Yasumoto, Prof. Yuichi Hayashi, Associate Prof.

Daisuke Miyamoto, Associate Prof. Dr. Yuzo Taenaka and Assistant Prof. Dr.

Doudou Fall for their advice and comments. I want to express my gratitude to

the secretaries and other laboratory members for their support and cooperation

regarding academic as well as daily life matters. I would like to thank my wife and

two daughters for their tremendous support during my Doctoral Research. I am

also thankful to the Doctoral fellowship Committee members - Ministry of Posts,

Telecommunication and Information Technology, ICT Division, Bangladesh.

I am remarkably grateful to the Industrial Cyber Security Center of Ex-

cellence (ICS-CoE) for providing me Research Assistantship during my entire

Ph.D. research. I am grateful to the following funding organizations who sup-

ported my research: ICS-CoE, JST CREST, JSPS KAKENHI, MEXT Japan,

and Ministry of Posts, Telecommunication and Information Technol-

ogy, ICT Division, Bangladesh.

97

References

[1] colah’s blog, Understanding LSTM Networks, 2020 (accessed August 15,

2020). http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[2] Keras: The Python Deep Learning library, 2020 (accessed January 10, 2020).

https://keras.io/.

[3] Scikit-Learn Project, “Receiver Operating Characteristic

(ROC), 2020 (accessed March 03, 2020). https://scikit-

learn.org/stable/autoexamples/modelselection/plotroc.htm.

[4] Cyber-Physical Systems, 2020 (accessed Nov 17, 2020).

https://cyberphysicalsystems.org.

[5] V2XAutotalks, [Online; accessed21 − November −
2020].https : //www.auto− talks.com/technology/v2x− wiki/.

[6] Mouhammd Alkasassbeh, Ghazi Al-Naymat, Ahmad Hassanat, and Moham-

mad Almseidin. Detecting distributed denial of service attacks using data

mining techniques. International Journal of Advanced Computer Science and

Applications, 7(1):436–445, 2016.

[7] Md Zahangir Alom, VenkataRamesh Bontupalli, and Tarek M Taha. Intru-

sion detection using deep belief networks. In 2015 National Aerospace and

Electronics Conference (NAECON), pages 339–344. IEEE, 2015.

[8] Khaled Alrawashdeh and Carla Purdy. Toward an online anomaly intrusion

detection system based on deep learning. In 2016 15th IEEE international

conference on machine learning and applications (ICMLA), pages 195–200.

IEEE, 2016.

[9] Sara A Althubiti, Eric Marcell Jones, and Kaushik Roy. Lstm for anomaly-

based network intrusion detection. In 2018 28th International Telecommu-

nication Networks and Applications Conference (ITNAC), pages 1–3. IEEE,

2018.

98

[10] Sara A Althubiti, Eric Marcell Jones, and Kaushik Roy. Lstm for anomaly-

based network intrusion detection. In 2018 28th International Telecommu-

nication Networks and Applications Conference (ITNAC), pages 1–3. IEEE,

2018.

[11] Jason Brownlee. How to Choose Loss Functions When Training

Deep Learning Neural Networks, 2020 (accessed April 024, 2020).

https://machinelearningmastery.com/how-to-choose-loss-functions-when-

training-deep-learning-neural-networks/.

[12] Jason Brownlee. Stacked Long Short-Term Memory Networks, 2020 (ac-

cessed Feb 04, 2020). https://machinelearningmastery.com/stacked-long-

short-term-memory-networks/.

[13] Jason Brownlee. How to Develop LSTM Models for Time Series Forecasting,

2020 (accessed Feb 05, 2020). https://machinelearningmastery.com/how-to-

develop-lstm-models-for-time-series-forecasting/.

[14] Jason Brownlee. 1D Convolutional Neural Network Models for

Human Activity Recognition, 2020 (accessed March 02, 2020).

https://machinelearningmastery.com/cnn-models-for-human-activity-

recognition-time-series-classification/.

[15] Jason Brownlee. How to Configure the Number of Layers and

Nodes in a Neural Network, 2020 (accessed March 02, 2020).

https://machinelearningmastery.com/how-to-configure-the-number-of-

layers-and-nodes-in-a-neural-network/.

[16] David Freeman Clarence Chio. Machine Learning and Security. O’Reilly,

2018.

[17] Christian Darken, Joseph Chang, John Moody, et al. Learning rate schedules

for faster stochastic gradient search. In Neural networks for signal processing,

volume 2, 1992.

[18] Martin Drašar. Protocol-independent detection of dictionary attacks. In

Meeting of the European Network of Universities and Companies in Infor-

mation and Communication Engineering, pages 304–309. Springer, 2013.

99

[19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of machine learning

research, 12(7), 2011.

[20] Asmaa Elsaeidy, Kumudu S Munasinghe, Dharmendra Sharma, and Abbas

Jamalipour. Intrusion detection in smart cities using restricted boltzmann

machines. Journal of Network and Computer Applications, 135:76–83, 2019.

[21] Canadian Institute for Cybersecurity. CIC DoS dataset (2017), 2020 (ac-

cessed April 05, 2020). https://www.unb.ca/cic/datasets/dos-dataset.html.

[22] Rohith Gandhi. A Look at Gradient Descent and RMSprop Optimizers, 2019

(accessed November 05, 2019). https://towardsdatascience.com/a-look-at-

gradient-descent-and-rmsprop-optimizers-f77d483ef08b.

[23] Ni Gao, Ling Gao, Quanli Gao, and Hai Wang. An intrusion detection model

based on deep belief networks. In 2014 Second International Conference on

Advanced Cloud and Big Data, pages 247–252. IEEE, 2014.

[24] Roland E Haas, Dietmar PF Möller, Prateek Bansal, Rahul Ghosh, and

Srikrishna S Bhat. Intrusion detection in connected cars. In 2017 IEEE

International Conference on Electro Information Technology (EIT), pages

516–519. IEEE, 2017.

[25] Mee Lan Han, Byung Il Kwak, and Huy Kang Kim. Anomaly intrusion de-

tection method for vehicular networks based on survival analysis. Vehicular

communications, 14:52–63, 2018.

[26] Laurens Hellemons, Luuk Hendriks, Rick Hofstede, Anna Sperotto, Ramin

Sadre, and Aiko Pras. Sshcure: a flow-based ssh intrusion detection system.

In IFIP International Conference on Autonomous Infrastructure, Manage-

ment and Security, pages 86–97. Springer, 2012.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[28] Md Delwar Hossain, Hiroyuki Inoue, Hideya Ochiai, Doudou Fall, and Youki

Kadobayashi. Long short-term memory-based intrusion detection system for

100

in-vehicle controller area network bus. In 2020 IEEE 44th Annual Com-

puters, Software, and Applications Conference (COMPSAC), pages 10–17.

IEEE, 2020.

[29] Yadigar Imamverdiyev and Fargana Abdullayeva. Deep learning method for

denial of service attack detection based on restricted boltzmann machine.

Big Data, 6(2):159–169, 2018.

[30] Japan IT Security Center, INFORMATION-TECHNOLOGY PROMO-

TION AGENCY. Approaches for Vehicle Information Security, 2020 (ac-

cessed Nov 22, 2020). https://www.ipa.go.jp/files/000033402.pdf.

[31] Mobin Javed and Vern Paxson. Detecting stealthy, distributed ssh brute-

forcing. In Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security, pages 85–96, 2013.

[32] Michael Jaynes, Ram Dantu, Roland Varriale, and Nathaniel Evans. Au-

tomating ecu identification for vehicle security. In 2016 15th IEEE Interna-

tional Conference on Machine Learning and Applications (ICMLA), pages

632–635. IEEE, 2016.

[33] Renuka Joshi. Accuracy, Precision, Recall F1 Score: Inter-

pretation of Performance Measures, 2019 (accessed April 11,

2019). https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-

interpretation-of-performance-measures/.

[34] Min-Joo Kang and Je-Won Kang. Intrusion detection system using deep

neural network for in-vehicle network security. PloS one, 11(6):e0155781,

2016.

[35] Zadid Khan, Mashrur Chowdhury, Mhafuzul Islam, Chin-Ya Huang, and

Mizanur Rahman. Long short-term memory neural networks for false in-

formation attack detection in software-defined in-vehicle network. arXiv

preprint arXiv:1906.10203, 2019.

[36] Jihyun Kim, Howon Kim, et al. An effective intrusion detection classifier

using long short-term memory with gradient descent optimization. In 2017

101

International Conference on Platform Technology and Service (PlatCon),

pages 1–6. IEEE, 2017.

[37] Jihyun Kim, Jaehyun Kim, Huong Le Thi Thu, and Howon Kim. Long

short term memory recurrent neural network classifier for intrusion detec-

tion. In 2016 International Conference on Platform Technology and Service

(PlatCon), pages 1–5. IEEE, 2016.

[38] Jihyun Kim, Jaehyun Kim, Huong Le Thi Thu, and Howon Kim. Long

short term memory recurrent neural network classifier for intrusion detec-

tion. In 2016 International Conference on Platform Technology and Service

(PlatCon), pages 1–5. IEEE, 2016.

[39] Kwangjo Kim, Muhamad Erza Aminanto, and Harry Chandra Tanuwidjaja.

Network Intrusion Detection Using Deep Learning: A Feature Learning Ap-

proach. Springer, 2018.

[40] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[41] Pierre Kleberger, Tomas Olovsson, and Erland Jonsson. Security aspects

of the in-vehicle network in the connected car. In 2011 IEEE Intelligent

Vehicles Symposium (IV), pages 528–533. IEEE, 2011.

[42] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi

Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Ander-

son, Hovav Shacham, et al. Experimental security analysis of a modern

automobile. In 2010 IEEE Symposium on Security and Privacy, pages 447–

462. IEEE, 2010.

[43] Hyunsung Lee, Seong Hoon Jeong, and Huy Kang Kim. Otids: A novel

intrusion detection system for in-vehicle network by using remote frame. In

2017 15th Annual Conference on Privacy, Security and Trust (PST), pages

57–5709. IEEE, 2017.

[44] Siti-Farhana Lokman, Abu Talib Othman, and Muhammad-Husaini Abu-

Bakar. Intrusion detection system for automotive controller area network

102

(can) bus system: a review. EURASIP Journal on Wireless Communications

and Networking, 2019(1):184, 2019.

[45] Angela M Lonzetta, Peter Cope, Joseph Campbell, Bassam J Mohd, and

Thaier Hayajneh. Security vulnerabilities in bluetooth technology as used in

iot. Journal of Sensor and Actuator Networks, 7(3):28, 2018.

[46] George Loukas, Tuan Vuong, Ryan Heartfield, Georgia Sakellari, Yongpil

Yoon, and Diane Gan. Cloud-based cyber-physical intrusion detection for

vehicles using deep learning. IEEE Access, 6:3491–3508, 2017.

[47] Radu Popescu-Zeletin Mihai Adrian Rigani, Ilja Radusch. Vehicular-2-X

Communication. Springer-Verlag Berlin Heidelberg, 2010.

[48] Xiuliang Mo, Pengyuan Chen, Jianing Wang, and Chundong Wang.

Anomaly detection of vehicle can network based on message content. In

International Conference on Security and Privacy in New Computing Envi-

ronments, pages 96–104. Springer, 2019.

[49] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen Guizani.

Deep learning for iot big data and streaming analytics: A survey. IEEE

Communications Surveys & Tutorials, 20(4):2923–2960, 2018.

[50] Dietmar P.F. Möller and Roland E. Haas. Guide to Automotive Connectivity

and Cybersecurity. Springer International Publishing, 2019.

[51] Maryam M Najafabadi, Taghi M Khoshgoftaar, Clifford Kemp, Naeem

Seliya, and Richard Zuech. Machine learning for detecting brute force attacks

at the network level. In 2014 IEEE International Conference on Bioinfor-

matics and Bioengineering, pages 379–385. IEEE, 2014.

[52] Benjamin J Radford, Bartley D Richardson, and Shawn E Davis. Sequence

aggregation rules for anomaly detection in computer network traffic. arXiv

preprint arXiv:1805.03735, 2018.

[53] Shiho Kim Rakesh Shrestha. Automotive Cyber Security. Springer Singapore,

2020.

103

[54] Markus Ring, Sarah Wunderlich, Deniz Scheuring, Dieter Landes, and An-

dreas Hotho. A survey of network-based intrusion detection data sets. Com-

puters & Security, 86:147–167, 2019.

[55] Sebastian Ruder. An overview of gradient descent optimization algorithms,

2019 (accessed November 02, 2019). https://ruder.io/optimizing-gradient-

descent/.

[56] Akihiro Satoh, Yutaka Nakamura, and Takeshi Ikenaga. Ssh dictionary at-

tack detection based on flow analysis. In 2012 IEEE/IPSJ 12th International

Symposium on Applications and the Internet, pages 51–59. IEEE, 2012.

[57] Anshul Saxena. Everything You Need to Know About In-

Vehicle Infotainment Systems, 2020 (accessed Nov 18, 2020).

https://www.einfochips.com/blog/everything-you-need-to-know-about-

in-vehicle-infotainment-system.

[58] Eunbi Seo, Hyun Min Song, and Huy Kang Kim. Gids: Gan based intrusion

detection system for in-vehicle network. In 2018 16th Annual Conference on

Privacy, Security and Trust (PST), pages 1–6. IEEE, 2018.

[59] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward

generating a new intrusion detection dataset and intrusion traffic character-

ization. In ICISSP, pages 108–116, 2018.

[60] Nathan Shone, Tran Nguyen Ngoc, Vu Dinh Phai, and Qi Shi. A deep

learning approach to network intrusion detection. IEEE transactions on

emerging topics in computational intelligence, 2(1):41–50, 2018.

[61] Koo Ping Shung. Accuracy, Precision, Recall or F1?, 2019 (accessed Novem-

ber 01, 2019). https://towardsdatascience.com/accuracy-precision-recall-or-

f1-331fb37c5cb9.

[62] Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. Intrusion detection sys-

tem based on the analysis of time intervals of can messages for in-vehicle net-

work. In 2016 international conference on information networking (ICOIN),

pages 63–68. IEEE, 2016.

104

[63] Hyun Min Song, Jiyoung Woo, and Huy Kang Kim. In-vehicle network in-

trusion detection using deep convolutional neural network. Vehicular Com-

munications, 21:100198, 2020.

[64] Deris Stiawan, Mohd Idris, Reza Firsandaya Malik, Siti Nurmaini, Nizar

Alsharif, Rahmat Budiarto, et al. Investigating brute force attack patterns

in iot network. Journal of Electrical and Computer Engineering, 2019, 2019.

[65] Intrepid Control Systems. Vehicle Spy Enterprise, 2020 (accessed March 06,

2020). https://intrepidcs.com/products/software/vehicle-spy/.

[66] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. Anomaly detection

in automobile control network data with long short-term memory networks.

In 2016 IEEE International Conference on Data Science and Advanced An-

alytics (DSAA), pages 130–139. IEEE, 2016.

[67] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop, coursera: Neu-

ral networks for machine learning. University of Toronto, Technical Report,

2012.

[68] Hung Nguyen Viet, Quan Nguyen Van, Linh Le Thi Trang, and Shone

Nathan. Using deep learning model for network scanning detection. In

Proceedings of the 4th International Conference on Frontiers of Educational

Technologies, pages 117–121, 2018.

[69] Jan Vykopal, Martin Drašar, Philipp Winter, et al. Flow-based brute-force

attack detection. Fraunhofer Verlag, 2013.

[70] Jan Vykopal, Tomas Plesnik, and Pavel Minarik. Network-based dictionary

attack detection. In 2009 international conference on future networks, pages

23–27. IEEE, 2009.

[71] Wikipedia contributors. Intrusion detection sys-

tem — Wikipedia, the free encyclopedia, 2020.

https://en.wikipedia.org/w/index.php?title=Intrusiondetectionsystemoldid =

997247832.

105

[72] Wikipedia contributors. On-board diagnostics — Wikipedia, the

free encyclopedia, 2020. https://en.wikipedia.org/w/index.php?title=On-

boarddiagnosticsoldid = 993657894.

[73] Wikipedia contributors. Precision and re-

call — Wikipedia, the free encyclopedia, 2020.

https://en.wikipedia.org/w/index.php?title=Precisionandrecalloldid =

995861774.

[74] Wikipedia contributors. Vehicle-to-everything — Wikipedia, the free en-

cyclopedia, 2020. https://en.wikipedia.org/w/index.php?title=Vehicle-to-

everythingoldid=984798501.

[75] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee. A practical wireless attack on

the connected car and security protocol for in-vehicle can. IEEE Transactions

on intelligent transportation systems, 16(2):993–1006, 2014.

[76] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of

recurrent neural networks: Lstm cells and network architectures. Neural

computation, 31(7):1235–1270, 2019.

[77] Xiaoyong Yuan, Chuanhuang Li, and Xiaolin Li. Deepdefense: identifying

ddos attack via deep learning. In 2017 IEEE International Conference on

Smart Computing (SMARTCOMP), pages 1–8. IEEE, 2017.

[78] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv

preprint arXiv:1212.5701, 2012.

[79] Tao Zhang, Helder Antunes, and Siddhartha Aggarwal. Defending connected

vehicles against malware: Challenges and a solution framework. IEEE In-

ternet of Things journal, 1(1):10–21, 2014.

[80] Guangzhen Zhao, Cuixiao Zhang, and Lijuan Zheng. Intrusion detection

using deep belief network and probabilistic neural network. In 2017 IEEE

International Conference on Computational Science and Engineering (CSE)

and IEEE International Conference on Embedded and Ubiquitous Computing

(EUC), volume 1, pages 639–642. IEEE, 2017.

106

Publication List

Journals

[1] Hossain, Md Delwar, Hiroyuki Inoue, Hideya Ochiai, Doudou Fall, and

Youki Kadobayashi. “LSTM-Based Intrusion Detection System for In-

Vehicle Can Bus Communications.” IEEE Access 8 (2020): 185489-185502.

International Conferences

[1] Hossain, Md Delwar, Hiroyuki Inoue, Hideya Ochiai, Doudou Fall, and

Youki Kadobayashi. “An Effective In-Vehicle CAN Bus Intrusion Detection

System Using CNN Deep Learning Approach.” In GLOBECOM 2020-2020

IEEE Global Communications Conference, pp. 1-6. IEEE, 2020.

[2] Hossain, Md Delwar, Hiroyuki Inoue, Hideya Ochiai, Doudou Fall, and

Youki Kadobayashi. “Long short-term memory-based intrusion detection

system for in-vehicle controller area network bus.” In 2020 IEEE 44th An-

nual Computers, Software, and Applications Conference (COMPSAC), pp.

10-17. IEEE, 2020.

[3] Hossain, Md Delwar, Hideya Ochiai, Doudou Fall, and Youki Kadobayashi.

“LSTM-based Network Attack Detection: Performance Comparison by Hyper-

parameter Values Tuning.” In 2020 7th IEEE International Conference on

Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE Interna-

tional Conference on Edge Computing and Scalable Cloud (EdgeCom), pp.

62-69. IEEE, 2020.

[4] Hossain, Md Delwar, Hideya Ochiai, Doudou Fall, and Youki Kadobayashi.

“SSH and FTP brute-force Attacks Detection in Computer Networks: LSTM

and Machine Learning Approaches.” In 2020 5th International Conference

on Computer and Communication Systems (ICCCS), pp. 491-497. IEEE,

2020.

107

